2 * Copyright (c) 1998-2017 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/domain.h>
73 #include <sys/kernel.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/malloc.h>
78 #include <sys/mcache.h>
79 #include <sys/protosw.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/syslog.h>
87 #include <kern/locks.h>
88 #include <net/route.h>
89 #include <net/content_filter.h>
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <sys/kdebug.h>
93 #include <libkern/OSAtomic.h>
96 #include <security/mac_framework.h>
99 #include <mach/vm_param.h>
102 #include <netinet/mptcp_var.h>
105 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
106 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
108 extern char *proc_best_name(proc_t p
);
110 SYSCTL_DECL(_kern_ipc
);
112 __private_extern__ u_int32_t net_io_policy_throttle_best_effort
= 0;
113 SYSCTL_INT(_kern_ipc
, OID_AUTO
, throttle_best_effort
,
114 CTLFLAG_RW
| CTLFLAG_LOCKED
, &net_io_policy_throttle_best_effort
, 0, "");
116 static inline void sbcompress(struct sockbuf
*, struct mbuf
*, struct mbuf
*);
117 static struct socket
*sonewconn_internal(struct socket
*, int);
118 static int sbappendaddr_internal(struct sockbuf
*, struct sockaddr
*,
119 struct mbuf
*, struct mbuf
*);
120 static int sbappendcontrol_internal(struct sockbuf
*, struct mbuf
*,
122 static void soevent_ifdenied(struct socket
*);
125 * Primitive routines for operating on sockets and socket buffers
127 static int soqlimitcompat
= 1;
128 static int soqlencomp
= 0;
131 * Based on the number of mbuf clusters configured, high_sb_max and sb_max can
132 * get scaled up or down to suit that memory configuration. high_sb_max is a
133 * higher limit on sb_max that is checked when sb_max gets set through sysctl.
136 u_int32_t sb_max
= SB_MAX
; /* XXX should be static */
137 u_int32_t high_sb_max
= SB_MAX
;
139 static u_int32_t sb_efficiency
= 8; /* parameter for sbreserve() */
140 int32_t total_sbmb_cnt
__attribute__((aligned(8))) = 0;
141 int32_t total_sbmb_cnt_floor
__attribute__((aligned(8))) = 0;
142 int32_t total_sbmb_cnt_peak
__attribute__((aligned(8))) = 0;
143 int64_t sbmb_limreached
__attribute__((aligned(8))) = 0;
145 /* Control whether to throttle sockets eligible to be throttled */
146 __private_extern__ u_int32_t net_io_policy_throttled
= 0;
147 static int sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS
;
149 u_int32_t net_io_policy_log
= 0; /* log socket policy changes */
150 #if CONFIG_PROC_UUID_POLICY
151 u_int32_t net_io_policy_uuid
= 1; /* enable UUID socket policy */
152 #endif /* CONFIG_PROC_UUID_POLICY */
155 * Procedures to manipulate state flags of socket
156 * and do appropriate wakeups. Normal sequence from the
157 * active (originating) side is that soisconnecting() is
158 * called during processing of connect() call,
159 * resulting in an eventual call to soisconnected() if/when the
160 * connection is established. When the connection is torn down
161 * soisdisconnecting() is called during processing of disconnect() call,
162 * and soisdisconnected() is called when the connection to the peer
163 * is totally severed. The semantics of these routines are such that
164 * connectionless protocols can call soisconnected() and soisdisconnected()
165 * only, bypassing the in-progress calls when setting up a ``connection''
168 * From the passive side, a socket is created with
169 * two queues of sockets: so_incomp for connections in progress
170 * and so_comp for connections already made and awaiting user acceptance.
171 * As a protocol is preparing incoming connections, it creates a socket
172 * structure queued on so_incomp by calling sonewconn(). When the connection
173 * is established, soisconnected() is called, and transfers the
174 * socket structure to so_comp, making it available to accept().
176 * If a socket is closed with sockets on either
177 * so_incomp or so_comp, these sockets are dropped.
179 * If higher level protocols are implemented in
180 * the kernel, the wakeups done here will sometimes
181 * cause software-interrupt process scheduling.
184 soisconnecting(struct socket
*so
)
186 so
->so_state
&= ~(SS_ISCONNECTED
|SS_ISDISCONNECTING
);
187 so
->so_state
|= SS_ISCONNECTING
;
189 sflt_notify(so
, sock_evt_connecting
, NULL
);
193 soisconnected(struct socket
*so
)
195 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISDISCONNECTING
|SS_ISCONFIRMING
);
196 so
->so_state
|= SS_ISCONNECTED
;
198 soreserve_preconnect(so
, 0);
200 sflt_notify(so
, sock_evt_connected
, NULL
);
202 if (so
->so_head
!= NULL
&& (so
->so_state
& SS_INCOMP
)) {
203 struct socket
*head
= so
->so_head
;
207 * Enforce lock order when the protocol has per socket locks
209 if (head
->so_proto
->pr_getlock
!= NULL
) {
210 socket_lock(head
, 1);
211 so_acquire_accept_list(head
, so
);
214 if (so
->so_head
== head
&& (so
->so_state
& SS_INCOMP
)) {
215 so
->so_state
&= ~SS_INCOMP
;
216 so
->so_state
|= SS_COMP
;
217 TAILQ_REMOVE(&head
->so_incomp
, so
, so_list
);
218 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
222 * We have to release the accept list in
223 * case a socket callback calls sock_accept()
226 so_release_accept_list(head
);
227 socket_unlock(so
, 0);
229 postevent(head
, 0, EV_RCONN
);
231 wakeup_one((caddr_t
)&head
->so_timeo
);
234 socket_unlock(head
, 1);
237 } else if (locked
!= 0) {
238 so_release_accept_list(head
);
239 socket_unlock(head
, 1);
242 postevent(so
, 0, EV_WCONN
);
243 wakeup((caddr_t
)&so
->so_timeo
);
246 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_CONNECTED
|
247 SO_FILT_HINT_CONNINFO_UPDATED
);
252 socanwrite(struct socket
*so
)
254 return ((so
->so_state
& SS_ISCONNECTED
) ||
255 !(so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) ||
256 (so
->so_flags1
& SOF1_PRECONNECT_DATA
));
260 soisdisconnecting(struct socket
*so
)
262 so
->so_state
&= ~SS_ISCONNECTING
;
263 so
->so_state
|= (SS_ISDISCONNECTING
|SS_CANTRCVMORE
|SS_CANTSENDMORE
);
264 soevent(so
, SO_FILT_HINT_LOCKED
);
265 sflt_notify(so
, sock_evt_disconnecting
, NULL
);
266 wakeup((caddr_t
)&so
->so_timeo
);
272 soisdisconnected(struct socket
*so
)
274 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISCONNECTED
|SS_ISDISCONNECTING
);
275 so
->so_state
|= (SS_CANTRCVMORE
|SS_CANTSENDMORE
|SS_ISDISCONNECTED
);
276 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_DISCONNECTED
|
277 SO_FILT_HINT_CONNINFO_UPDATED
);
278 sflt_notify(so
, sock_evt_disconnected
, NULL
);
279 wakeup((caddr_t
)&so
->so_timeo
);
284 /* Notify content filters as soon as we cannot send/receive data */
285 cfil_sock_notify_shutdown(so
, SHUT_RDWR
);
286 #endif /* CONTENT_FILTER */
290 * This function will issue a wakeup like soisdisconnected but it will not
291 * notify the socket filters. This will avoid unlocking the socket
292 * in the midst of closing it.
295 sodisconnectwakeup(struct socket
*so
)
297 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISCONNECTED
|SS_ISDISCONNECTING
);
298 so
->so_state
|= (SS_CANTRCVMORE
|SS_CANTSENDMORE
|SS_ISDISCONNECTED
);
299 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_DISCONNECTED
|
300 SO_FILT_HINT_CONNINFO_UPDATED
);
301 wakeup((caddr_t
)&so
->so_timeo
);
306 /* Notify content filters as soon as we cannot send/receive data */
307 cfil_sock_notify_shutdown(so
, SHUT_RDWR
);
308 #endif /* CONTENT_FILTER */
312 * When an attempt at a new connection is noted on a socket
313 * which accepts connections, sonewconn is called. If the
314 * connection is possible (subject to space constraints, etc.)
315 * then we allocate a new structure, propoerly linked into the
316 * data structure of the original socket, and return this.
317 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
319 static struct socket
*
320 sonewconn_internal(struct socket
*head
, int connstatus
)
322 int so_qlen
, error
= 0;
324 lck_mtx_t
*mutex_held
;
326 if (head
->so_proto
->pr_getlock
!= NULL
)
327 mutex_held
= (*head
->so_proto
->pr_getlock
)(head
, 0);
329 mutex_held
= head
->so_proto
->pr_domain
->dom_mtx
;
330 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
334 * This is the default case; so_qlen represents the
335 * sum of both incomplete and completed queues.
337 so_qlen
= head
->so_qlen
;
340 * When kern.ipc.soqlencomp is set to 1, so_qlen
341 * represents only the completed queue. Since we
342 * cannot let the incomplete queue goes unbounded
343 * (in case of SYN flood), we cap the incomplete
344 * queue length to at most somaxconn, and use that
345 * as so_qlen so that we fail immediately below.
347 so_qlen
= head
->so_qlen
- head
->so_incqlen
;
348 if (head
->so_incqlen
> somaxconn
)
353 (soqlimitcompat
? head
->so_qlimit
: (3 * head
->so_qlimit
/ 2)))
354 return ((struct socket
*)0);
355 so
= soalloc(1, SOCK_DOM(head
), head
->so_type
);
357 return ((struct socket
*)0);
358 /* check if head was closed during the soalloc */
359 if (head
->so_proto
== NULL
) {
361 return ((struct socket
*)0);
364 so
->so_type
= head
->so_type
;
365 so
->so_options
= head
->so_options
&~ SO_ACCEPTCONN
;
366 so
->so_linger
= head
->so_linger
;
367 so
->so_state
= head
->so_state
| SS_NOFDREF
;
368 so
->so_proto
= head
->so_proto
;
369 so
->so_timeo
= head
->so_timeo
;
370 so
->so_pgid
= head
->so_pgid
;
371 kauth_cred_ref(head
->so_cred
);
372 so
->so_cred
= head
->so_cred
;
373 so
->last_pid
= head
->last_pid
;
374 so
->last_upid
= head
->last_upid
;
375 memcpy(so
->last_uuid
, head
->last_uuid
, sizeof (so
->last_uuid
));
376 if (head
->so_flags
& SOF_DELEGATED
) {
377 so
->e_pid
= head
->e_pid
;
378 so
->e_upid
= head
->e_upid
;
379 memcpy(so
->e_uuid
, head
->e_uuid
, sizeof (so
->e_uuid
));
381 /* inherit socket options stored in so_flags */
382 so
->so_flags
= head
->so_flags
&
383 (SOF_NOSIGPIPE
| SOF_NOADDRAVAIL
| SOF_REUSESHAREUID
|
384 SOF_NOTIFYCONFLICT
| SOF_BINDRANDOMPORT
| SOF_NPX_SETOPTSHUT
|
385 SOF_NODEFUNCT
| SOF_PRIVILEGED_TRAFFIC_CLASS
| SOF_NOTSENT_LOWAT
|
386 SOF_USELRO
| SOF_DELEGATED
);
388 so
->next_lock_lr
= 0;
389 so
->next_unlock_lr
= 0;
391 so
->so_rcv
.sb_flags
|= SB_RECV
; /* XXX */
392 so
->so_rcv
.sb_so
= so
->so_snd
.sb_so
= so
;
393 TAILQ_INIT(&so
->so_evlist
);
395 #if CONFIG_MACF_SOCKET
396 mac_socket_label_associate_accept(head
, so
);
399 /* inherit traffic management properties of listener */
401 head
->so_flags1
& (SOF1_TRAFFIC_MGT_SO_BACKGROUND
);
402 so
->so_background_thread
= head
->so_background_thread
;
403 so
->so_traffic_class
= head
->so_traffic_class
;
405 if (soreserve(so
, head
->so_snd
.sb_hiwat
, head
->so_rcv
.sb_hiwat
)) {
407 return ((struct socket
*)0);
409 so
->so_rcv
.sb_flags
|= (head
->so_rcv
.sb_flags
& SB_USRSIZE
);
410 so
->so_snd
.sb_flags
|= (head
->so_snd
.sb_flags
& SB_USRSIZE
);
413 * Must be done with head unlocked to avoid deadlock
414 * for protocol with per socket mutexes.
416 if (head
->so_proto
->pr_unlock
)
417 socket_unlock(head
, 0);
418 if (((*so
->so_proto
->pr_usrreqs
->pru_attach
)(so
, 0, NULL
) != 0) ||
421 if (head
->so_proto
->pr_unlock
)
422 socket_lock(head
, 0);
423 return ((struct socket
*)0);
425 if (head
->so_proto
->pr_unlock
) {
426 socket_lock(head
, 0);
428 * Radar 7385998 Recheck that the head is still accepting
429 * to avoid race condition when head is getting closed.
431 if ((head
->so_options
& SO_ACCEPTCONN
) == 0) {
432 so
->so_state
&= ~SS_NOFDREF
;
434 return ((struct socket
*)0);
438 atomic_add_32(&so
->so_proto
->pr_domain
->dom_refs
, 1);
440 /* Insert in head appropriate lists */
441 so_acquire_accept_list(head
, NULL
);
446 * Since this socket is going to be inserted into the incomp
447 * queue, it can be picked up by another thread in
448 * tcp_dropdropablreq to get dropped before it is setup..
449 * To prevent this race, set in-progress flag which can be
452 so
->so_flags
|= SOF_INCOMP_INPROGRESS
;
455 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
456 so
->so_state
|= SS_COMP
;
458 TAILQ_INSERT_TAIL(&head
->so_incomp
, so
, so_list
);
459 so
->so_state
|= SS_INCOMP
;
464 so_release_accept_list(head
);
466 /* Attach socket filters for this protocol */
470 so
->so_state
|= connstatus
;
472 wakeup((caddr_t
)&head
->so_timeo
);
479 sonewconn(struct socket
*head
, int connstatus
, const struct sockaddr
*from
)
481 int error
= sflt_connectin(head
, from
);
486 return (sonewconn_internal(head
, connstatus
));
490 * Socantsendmore indicates that no more data will be sent on the
491 * socket; it would normally be applied to a socket when the user
492 * informs the system that no more data is to be sent, by the protocol
493 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
494 * will be received, and will normally be applied to the socket by a
495 * protocol when it detects that the peer will send no more data.
496 * Data queued for reading in the socket may yet be read.
500 socantsendmore(struct socket
*so
)
502 so
->so_state
|= SS_CANTSENDMORE
;
503 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_CANTSENDMORE
);
504 sflt_notify(so
, sock_evt_cantsendmore
, NULL
);
509 socantrcvmore(struct socket
*so
)
511 so
->so_state
|= SS_CANTRCVMORE
;
512 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_CANTRCVMORE
);
513 sflt_notify(so
, sock_evt_cantrecvmore
, NULL
);
518 * Wait for data to arrive at/drain from a socket buffer.
521 sbwait(struct sockbuf
*sb
)
523 boolean_t nointr
= (sb
->sb_flags
& SB_NOINTR
);
524 void *lr_saved
= __builtin_return_address(0);
525 struct socket
*so
= sb
->sb_so
;
526 lck_mtx_t
*mutex_held
;
531 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
532 __func__
, sb
, sb
->sb_flags
, lr_saved
);
534 } else if (so
->so_usecount
< 1) {
535 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
536 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
537 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
541 if ((so
->so_state
& SS_DRAINING
) || (so
->so_flags
& SOF_DEFUNCT
)) {
543 if (so
->so_flags
& SOF_DEFUNCT
) {
544 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
545 "(%d)\n", __func__
, proc_selfpid(),
546 proc_best_name(current_proc()),
547 (uint64_t)VM_KERNEL_ADDRPERM(so
),
548 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
553 if (so
->so_proto
->pr_getlock
!= NULL
)
554 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
556 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
558 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
560 ts
.tv_sec
= sb
->sb_timeo
.tv_sec
;
561 ts
.tv_nsec
= sb
->sb_timeo
.tv_usec
* 1000;
564 VERIFY(sb
->sb_waiters
!= 0);
566 error
= msleep((caddr_t
)&sb
->sb_cc
, mutex_held
,
567 nointr
? PSOCK
: PSOCK
| PCATCH
,
568 nointr
? "sbwait_nointr" : "sbwait", &ts
);
570 VERIFY(sb
->sb_waiters
!= 0);
573 if (so
->so_usecount
< 1) {
574 panic("%s: 2 sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
575 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
576 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
580 if ((so
->so_state
& SS_DRAINING
) || (so
->so_flags
& SOF_DEFUNCT
)) {
582 if (so
->so_flags
& SOF_DEFUNCT
) {
583 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
584 "(%d)\n", __func__
, proc_selfpid(),
585 proc_best_name(current_proc()),
586 (uint64_t)VM_KERNEL_ADDRPERM(so
),
587 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
595 sbwakeup(struct sockbuf
*sb
)
597 if (sb
->sb_waiters
> 0)
598 wakeup((caddr_t
)&sb
->sb_cc
);
602 * Wakeup processes waiting on a socket buffer.
603 * Do asynchronous notification via SIGIO
604 * if the socket has the SS_ASYNC flag set.
607 sowakeup(struct socket
*so
, struct sockbuf
*sb
)
609 if (so
->so_flags
& SOF_DEFUNCT
) {
610 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] si 0x%x, "
611 "fl 0x%x [%s]\n", __func__
, proc_selfpid(),
612 proc_best_name(current_proc()),
613 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
614 SOCK_TYPE(so
), (uint32_t)sb
->sb_sel
.si_flags
, sb
->sb_flags
,
615 (sb
->sb_flags
& SB_RECV
) ? "rcv" : "snd");
618 sb
->sb_flags
&= ~SB_SEL
;
619 selwakeup(&sb
->sb_sel
);
621 if (so
->so_state
& SS_ASYNC
) {
623 gsignal(-so
->so_pgid
, SIGIO
);
624 else if (so
->so_pgid
> 0)
625 proc_signal(so
->so_pgid
, SIGIO
);
627 if (sb
->sb_flags
& SB_KNOTE
) {
628 KNOTE(&sb
->sb_sel
.si_note
, SO_FILT_HINT_LOCKED
);
630 if (sb
->sb_flags
& SB_UPCALL
) {
631 void (*sb_upcall
)(struct socket
*, void *, int);
632 caddr_t sb_upcallarg
;
634 sb_upcall
= sb
->sb_upcall
;
635 sb_upcallarg
= sb
->sb_upcallarg
;
636 /* Let close know that we're about to do an upcall */
637 so
->so_upcallusecount
++;
639 socket_unlock(so
, 0);
640 (*sb_upcall
)(so
, sb_upcallarg
, M_DONTWAIT
);
643 so
->so_upcallusecount
--;
644 /* Tell close that it's safe to proceed */
645 if ((so
->so_flags
& SOF_CLOSEWAIT
) &&
646 so
->so_upcallusecount
== 0)
647 wakeup((caddr_t
)&so
->so_upcallusecount
);
651 * Trap disconnection events for content filters
653 if ((so
->so_flags
& SOF_CONTENT_FILTER
) != 0) {
654 if ((sb
->sb_flags
& SB_RECV
)) {
655 if (so
->so_state
& (SS_CANTRCVMORE
))
656 cfil_sock_notify_shutdown(so
, SHUT_RD
);
658 if (so
->so_state
& (SS_CANTSENDMORE
))
659 cfil_sock_notify_shutdown(so
, SHUT_WR
);
662 #endif /* CONTENT_FILTER */
666 * Socket buffer (struct sockbuf) utility routines.
668 * Each socket contains two socket buffers: one for sending data and
669 * one for receiving data. Each buffer contains a queue of mbufs,
670 * information about the number of mbufs and amount of data in the
671 * queue, and other fields allowing select() statements and notification
672 * on data availability to be implemented.
674 * Data stored in a socket buffer is maintained as a list of records.
675 * Each record is a list of mbufs chained together with the m_next
676 * field. Records are chained together with the m_nextpkt field. The upper
677 * level routine soreceive() expects the following conventions to be
678 * observed when placing information in the receive buffer:
680 * 1. If the protocol requires each message be preceded by the sender's
681 * name, then a record containing that name must be present before
682 * any associated data (mbuf's must be of type MT_SONAME).
683 * 2. If the protocol supports the exchange of ``access rights'' (really
684 * just additional data associated with the message), and there are
685 * ``rights'' to be received, then a record containing this data
686 * should be present (mbuf's must be of type MT_RIGHTS).
687 * 3. If a name or rights record exists, then it must be followed by
688 * a data record, perhaps of zero length.
690 * Before using a new socket structure it is first necessary to reserve
691 * buffer space to the socket, by calling sbreserve(). This should commit
692 * some of the available buffer space in the system buffer pool for the
693 * socket (currently, it does nothing but enforce limits). The space
694 * should be released by calling sbrelease() when the socket is destroyed.
702 soreserve(struct socket
*so
, u_int32_t sndcc
, u_int32_t rcvcc
)
704 if (sbreserve(&so
->so_snd
, sndcc
) == 0)
707 so
->so_snd
.sb_idealsize
= sndcc
;
709 if (sbreserve(&so
->so_rcv
, rcvcc
) == 0)
712 so
->so_rcv
.sb_idealsize
= rcvcc
;
714 if (so
->so_rcv
.sb_lowat
== 0)
715 so
->so_rcv
.sb_lowat
= 1;
716 if (so
->so_snd
.sb_lowat
== 0)
717 so
->so_snd
.sb_lowat
= MCLBYTES
;
718 if (so
->so_snd
.sb_lowat
> so
->so_snd
.sb_hiwat
)
719 so
->so_snd
.sb_lowat
= so
->so_snd
.sb_hiwat
;
722 so
->so_snd
.sb_flags
&= ~SB_SEL
;
723 selthreadclear(&so
->so_snd
.sb_sel
);
724 sbrelease(&so
->so_snd
);
730 soreserve_preconnect(struct socket
*so
, unsigned int pre_cc
)
732 /* As of now, same bytes for both preconnect read and write */
733 so
->so_snd
.sb_preconn_hiwat
= pre_cc
;
734 so
->so_rcv
.sb_preconn_hiwat
= pre_cc
;
738 * Allot mbufs to a sockbuf.
739 * Attempt to scale mbmax so that mbcnt doesn't become limiting
740 * if buffering efficiency is near the normal case.
743 sbreserve(struct sockbuf
*sb
, u_int32_t cc
)
745 if ((u_quad_t
)cc
> (u_quad_t
)sb_max
* MCLBYTES
/ (MSIZE
+ MCLBYTES
))
748 sb
->sb_mbmax
= min(cc
* sb_efficiency
, sb_max
);
749 if (sb
->sb_lowat
> sb
->sb_hiwat
)
750 sb
->sb_lowat
= sb
->sb_hiwat
;
755 * Free mbufs held by a socket, and reserved mbuf space.
757 /* WARNING needs to do selthreadclear() before calling this */
759 sbrelease(struct sockbuf
*sb
)
767 * Routines to add and remove
768 * data from an mbuf queue.
770 * The routines sbappend() or sbappendrecord() are normally called to
771 * append new mbufs to a socket buffer, after checking that adequate
772 * space is available, comparing the function sbspace() with the amount
773 * of data to be added. sbappendrecord() differs from sbappend() in
774 * that data supplied is treated as the beginning of a new record.
775 * To place a sender's address, optional access rights, and data in a
776 * socket receive buffer, sbappendaddr() should be used. To place
777 * access rights and data in a socket receive buffer, sbappendrights()
778 * should be used. In either case, the new data begins a new record.
779 * Note that unlike sbappend() and sbappendrecord(), these routines check
780 * for the caller that there will be enough space to store the data.
781 * Each fails if there is not enough space, or if it cannot find mbufs
782 * to store additional information in.
784 * Reliable protocols may use the socket send buffer to hold data
785 * awaiting acknowledgement. Data is normally copied from a socket
786 * send buffer in a protocol with m_copy for output to a peer,
787 * and then removing the data from the socket buffer with sbdrop()
788 * or sbdroprecord() when the data is acknowledged by the peer.
792 * Append mbuf chain m to the last record in the
793 * socket buffer sb. The additional space associated
794 * the mbuf chain is recorded in sb. Empty mbufs are
795 * discarded and mbufs are compacted where possible.
798 sbappend(struct sockbuf
*sb
, struct mbuf
*m
)
800 struct socket
*so
= sb
->sb_so
;
802 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
808 SBLASTRECORDCHK(sb
, "sbappend 1");
810 if (sb
->sb_lastrecord
!= NULL
&& (sb
->sb_mbtail
->m_flags
& M_EOR
))
811 return (sbappendrecord(sb
, m
));
813 if (sb
->sb_flags
& SB_RECV
&& !(m
&& m
->m_flags
& M_SKIPCFIL
)) {
814 int error
= sflt_data_in(so
, NULL
, &m
, NULL
, 0);
815 SBLASTRECORDCHK(sb
, "sbappend 2");
819 error
= cfil_sock_data_in(so
, NULL
, m
, NULL
, 0);
820 #endif /* CONTENT_FILTER */
823 if (error
!= EJUSTRETURN
)
828 m
->m_flags
&= ~M_SKIPCFIL
;
831 /* If this is the first record, it's also the last record */
832 if (sb
->sb_lastrecord
== NULL
)
833 sb
->sb_lastrecord
= m
;
835 sbcompress(sb
, m
, sb
->sb_mbtail
);
836 SBLASTRECORDCHK(sb
, "sbappend 3");
841 * Similar to sbappend, except that this is optimized for stream sockets.
844 sbappendstream(struct sockbuf
*sb
, struct mbuf
*m
)
846 struct socket
*so
= sb
->sb_so
;
848 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
854 if (m
->m_nextpkt
!= NULL
|| (sb
->sb_mb
!= sb
->sb_lastrecord
)) {
855 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
856 m
->m_nextpkt
, sb
->sb_mb
, sb
->sb_lastrecord
);
860 SBLASTMBUFCHK(sb
, __func__
);
862 if (sb
->sb_flags
& SB_RECV
&& !(m
&& m
->m_flags
& M_SKIPCFIL
)) {
863 int error
= sflt_data_in(so
, NULL
, &m
, NULL
, 0);
864 SBLASTRECORDCHK(sb
, "sbappendstream 1");
868 error
= cfil_sock_data_in(so
, NULL
, m
, NULL
, 0);
869 #endif /* CONTENT_FILTER */
872 if (error
!= EJUSTRETURN
)
877 m
->m_flags
&= ~M_SKIPCFIL
;
880 sbcompress(sb
, m
, sb
->sb_mbtail
);
881 sb
->sb_lastrecord
= sb
->sb_mb
;
882 SBLASTRECORDCHK(sb
, "sbappendstream 2");
888 sbcheck(struct sockbuf
*sb
)
892 u_int32_t len
= 0, mbcnt
= 0;
893 lck_mtx_t
*mutex_held
;
895 if (sb
->sb_so
->so_proto
->pr_getlock
!= NULL
)
896 mutex_held
= (*sb
->sb_so
->so_proto
->pr_getlock
)(sb
->sb_so
, 0);
898 mutex_held
= sb
->sb_so
->so_proto
->pr_domain
->dom_mtx
;
900 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
905 for (m
= sb
->sb_mb
; m
; m
= n
) {
907 for (; m
; m
= m
->m_next
) {
910 /* XXX pretty sure this is bogus */
911 if (m
->m_flags
& M_EXT
)
912 mbcnt
+= m
->m_ext
.ext_size
;
915 if (len
!= sb
->sb_cc
|| mbcnt
!= sb
->sb_mbcnt
) {
916 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len
, sb
->sb_cc
,
917 mbcnt
, sb
->sb_mbcnt
);
923 sblastrecordchk(struct sockbuf
*sb
, const char *where
)
925 struct mbuf
*m
= sb
->sb_mb
;
927 while (m
&& m
->m_nextpkt
)
930 if (m
!= sb
->sb_lastrecord
) {
931 printf("sblastrecordchk: mb 0x%llx lastrecord 0x%llx "
933 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_mb
),
934 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_lastrecord
),
935 (uint64_t)VM_KERNEL_ADDRPERM(m
));
936 printf("packet chain:\n");
937 for (m
= sb
->sb_mb
; m
!= NULL
; m
= m
->m_nextpkt
)
938 printf("\t0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(m
));
939 panic("sblastrecordchk from %s", where
);
944 sblastmbufchk(struct sockbuf
*sb
, const char *where
)
946 struct mbuf
*m
= sb
->sb_mb
;
949 while (m
&& m
->m_nextpkt
)
952 while (m
&& m
->m_next
)
955 if (m
!= sb
->sb_mbtail
) {
956 printf("sblastmbufchk: mb 0x%llx mbtail 0x%llx last 0x%llx\n",
957 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_mb
),
958 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_mbtail
),
959 (uint64_t)VM_KERNEL_ADDRPERM(m
));
960 printf("packet tree:\n");
961 for (m
= sb
->sb_mb
; m
!= NULL
; m
= m
->m_nextpkt
) {
963 for (n
= m
; n
!= NULL
; n
= n
->m_next
)
965 (uint64_t)VM_KERNEL_ADDRPERM(n
));
968 panic("sblastmbufchk from %s", where
);
973 * Similar to sbappend, except the mbuf chain begins a new record.
976 sbappendrecord(struct sockbuf
*sb
, struct mbuf
*m0
)
981 if (m0
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
987 for (m
= m0
; m
!= NULL
; m
= m
->m_next
)
990 if (space
> sbspace(sb
) && !(sb
->sb_flags
& SB_UNIX
)) {
995 if (sb
->sb_flags
& SB_RECV
&& !(m0
&& m0
->m_flags
& M_SKIPCFIL
)) {
996 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
,
997 sock_data_filt_flag_record
);
1001 error
= cfil_sock_data_in(sb
->sb_so
, NULL
, m0
, NULL
, 0);
1002 #endif /* CONTENT_FILTER */
1005 SBLASTRECORDCHK(sb
, "sbappendrecord 1");
1006 if (error
!= EJUSTRETURN
)
1011 m0
->m_flags
&= ~M_SKIPCFIL
;
1015 * Note this permits zero length records.
1018 SBLASTRECORDCHK(sb
, "sbappendrecord 2");
1019 if (sb
->sb_lastrecord
!= NULL
) {
1020 sb
->sb_lastrecord
->m_nextpkt
= m0
;
1024 sb
->sb_lastrecord
= m0
;
1029 if (m
&& (m0
->m_flags
& M_EOR
)) {
1030 m0
->m_flags
&= ~M_EOR
;
1031 m
->m_flags
|= M_EOR
;
1033 sbcompress(sb
, m
, m0
);
1034 SBLASTRECORDCHK(sb
, "sbappendrecord 3");
1039 * As above except that OOB data
1040 * is inserted at the beginning of the sockbuf,
1041 * but after any other OOB data.
1044 sbinsertoob(struct sockbuf
*sb
, struct mbuf
*m0
)
1052 SBLASTRECORDCHK(sb
, "sbinsertoob 1");
1054 if ((sb
->sb_flags
& SB_RECV
&& !(m0
->m_flags
& M_SKIPCFIL
)) != 0) {
1055 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
,
1056 sock_data_filt_flag_oob
);
1058 SBLASTRECORDCHK(sb
, "sbinsertoob 2");
1062 error
= cfil_sock_data_in(sb
->sb_so
, NULL
, m0
, NULL
, 0);
1063 #endif /* CONTENT_FILTER */
1066 if (error
!= EJUSTRETURN
) {
1072 m0
->m_flags
&= ~M_SKIPCFIL
;
1075 for (mp
= &sb
->sb_mb
; *mp
; mp
= &((*mp
)->m_nextpkt
)) {
1078 switch (m
->m_type
) {
1081 continue; /* WANT next train */
1086 goto again
; /* inspect THIS train further */
1091 * Put the first mbuf on the queue.
1092 * Note this permits zero length records.
1095 m0
->m_nextpkt
= *mp
;
1097 /* m0 is actually the new tail */
1098 sb
->sb_lastrecord
= m0
;
1103 if (m
&& (m0
->m_flags
& M_EOR
)) {
1104 m0
->m_flags
&= ~M_EOR
;
1105 m
->m_flags
|= M_EOR
;
1107 sbcompress(sb
, m
, m0
);
1108 SBLASTRECORDCHK(sb
, "sbinsertoob 3");
1113 * Append address and data, and optionally, control (ancillary) data
1114 * to the receive queue of a socket. If present,
1115 * m0 must include a packet header with total length.
1116 * Returns 0 if no space in sockbuf or insufficient mbufs.
1118 * Returns: 0 No space/out of mbufs
1122 sbappendaddr_internal(struct sockbuf
*sb
, struct sockaddr
*asa
,
1123 struct mbuf
*m0
, struct mbuf
*control
)
1125 struct mbuf
*m
, *n
, *nlast
;
1126 int space
= asa
->sa_len
;
1128 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
1129 panic("sbappendaddr");
1132 space
+= m0
->m_pkthdr
.len
;
1133 for (n
= control
; n
; n
= n
->m_next
) {
1135 if (n
->m_next
== 0) /* keep pointer to last control buf */
1138 if (space
> sbspace(sb
))
1140 if (asa
->sa_len
> MLEN
)
1142 MGET(m
, M_DONTWAIT
, MT_SONAME
);
1145 m
->m_len
= asa
->sa_len
;
1146 bcopy((caddr_t
)asa
, mtod(m
, caddr_t
), asa
->sa_len
);
1148 n
->m_next
= m0
; /* concatenate data to control */
1151 m
->m_next
= control
;
1153 SBLASTRECORDCHK(sb
, "sbappendadddr 1");
1155 for (n
= m
; n
->m_next
!= NULL
; n
= n
->m_next
)
1160 if (sb
->sb_lastrecord
!= NULL
) {
1161 sb
->sb_lastrecord
->m_nextpkt
= m
;
1165 sb
->sb_lastrecord
= m
;
1166 sb
->sb_mbtail
= nlast
;
1168 SBLASTMBUFCHK(sb
, __func__
);
1169 SBLASTRECORDCHK(sb
, "sbappendadddr 2");
1171 postevent(0, sb
, EV_RWBYTES
);
1176 * Returns: 0 Error: No space/out of mbufs/etc.
1179 * Imputed: (*error_out) errno for error
1181 * sflt_data_in:??? [whatever a filter author chooses]
1184 sbappendaddr(struct sockbuf
*sb
, struct sockaddr
*asa
, struct mbuf
*m0
,
1185 struct mbuf
*control
, int *error_out
)
1188 boolean_t sb_unix
= (sb
->sb_flags
& SB_UNIX
);
1193 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
1194 panic("sbappendaddrorfree");
1196 if (sb
->sb_flags
& SB_DROP
) {
1199 if (control
!= NULL
&& !sb_unix
)
1201 if (error_out
!= NULL
)
1202 *error_out
= EINVAL
;
1206 /* Call socket data in filters */
1207 if (sb
->sb_flags
& SB_RECV
&& !(m0
&& m0
->m_flags
& M_SKIPCFIL
)) {
1209 error
= sflt_data_in(sb
->sb_so
, asa
, &m0
, &control
, 0);
1210 SBLASTRECORDCHK(sb
, __func__
);
1214 error
= cfil_sock_data_in(sb
->sb_so
, asa
, m0
, control
,
1216 #endif /* CONTENT_FILTER */
1219 if (error
!= EJUSTRETURN
) {
1222 if (control
!= NULL
&& !sb_unix
)
1230 m0
->m_flags
&= ~M_SKIPCFIL
;
1233 result
= sbappendaddr_internal(sb
, asa
, m0
, control
);
1237 if (control
!= NULL
&& !sb_unix
)
1240 *error_out
= ENOBUFS
;
1247 sbappendcontrol_internal(struct sockbuf
*sb
, struct mbuf
*m0
,
1248 struct mbuf
*control
)
1250 struct mbuf
*m
, *mlast
, *n
;
1254 panic("sbappendcontrol");
1256 for (m
= control
; ; m
= m
->m_next
) {
1261 n
= m
; /* save pointer to last control buffer */
1262 for (m
= m0
; m
; m
= m
->m_next
)
1264 if (space
> sbspace(sb
) && !(sb
->sb_flags
& SB_UNIX
))
1266 n
->m_next
= m0
; /* concatenate data to control */
1267 SBLASTRECORDCHK(sb
, "sbappendcontrol 1");
1269 for (m
= control
; m
->m_next
!= NULL
; m
= m
->m_next
)
1274 if (sb
->sb_lastrecord
!= NULL
) {
1275 sb
->sb_lastrecord
->m_nextpkt
= control
;
1277 sb
->sb_mb
= control
;
1279 sb
->sb_lastrecord
= control
;
1280 sb
->sb_mbtail
= mlast
;
1282 SBLASTMBUFCHK(sb
, __func__
);
1283 SBLASTRECORDCHK(sb
, "sbappendcontrol 2");
1285 postevent(0, sb
, EV_RWBYTES
);
1290 sbappendcontrol(struct sockbuf
*sb
, struct mbuf
*m0
, struct mbuf
*control
,
1294 boolean_t sb_unix
= (sb
->sb_flags
& SB_UNIX
);
1299 if (sb
->sb_flags
& SB_DROP
) {
1302 if (control
!= NULL
&& !sb_unix
)
1304 if (error_out
!= NULL
)
1305 *error_out
= EINVAL
;
1309 if (sb
->sb_flags
& SB_RECV
&& !(m0
&& m0
->m_flags
& M_SKIPCFIL
)) {
1312 error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, &control
, 0);
1313 SBLASTRECORDCHK(sb
, __func__
);
1317 error
= cfil_sock_data_in(sb
->sb_so
, NULL
, m0
, control
,
1319 #endif /* CONTENT_FILTER */
1322 if (error
!= EJUSTRETURN
) {
1325 if (control
!= NULL
&& !sb_unix
)
1333 m0
->m_flags
&= ~M_SKIPCFIL
;
1336 result
= sbappendcontrol_internal(sb
, m0
, control
);
1340 if (control
!= NULL
&& !sb_unix
)
1343 *error_out
= ENOBUFS
;
1350 * Append a contiguous TCP data blob with TCP sequence number as control data
1351 * as a new msg to the receive socket buffer.
1354 sbappendmsgstream_rcv(struct sockbuf
*sb
, struct mbuf
*m
, uint32_t seqnum
,
1357 struct mbuf
*m_eor
= NULL
;
1358 u_int32_t data_len
= 0;
1360 struct socket
*so
= sb
->sb_so
;
1362 VERIFY((m
->m_flags
& M_PKTHDR
) && m_pktlen(m
) > 0);
1363 VERIFY(so
->so_msg_state
!= NULL
);
1364 VERIFY(sb
->sb_flags
& SB_RECV
);
1366 /* Keep the TCP sequence number in the mbuf pkthdr */
1367 m
->m_pkthdr
.msg_seq
= seqnum
;
1369 /* find last mbuf and set M_EOR */
1370 for (m_eor
= m
; ; m_eor
= m_eor
->m_next
) {
1372 * If the msg is unordered, we need to account for
1373 * these bytes in receive socket buffer size. Otherwise,
1374 * the receive window advertised will shrink because
1375 * of the additional unordered bytes added to the
1379 m_eor
->m_flags
|= M_UNORDERED_DATA
;
1380 data_len
+= m_eor
->m_len
;
1381 so
->so_msg_state
->msg_uno_bytes
+= m_eor
->m_len
;
1383 m_eor
->m_flags
&= ~M_UNORDERED_DATA
;
1385 if (m_eor
->m_next
== NULL
)
1389 /* set EOR flag at end of byte blob */
1390 m_eor
->m_flags
|= M_EOR
;
1392 /* expand the receive socket buffer to allow unordered data */
1393 if (unordered
&& !sbreserve(sb
, sb
->sb_hiwat
+ data_len
)) {
1395 * Could not allocate memory for unordered data, it
1396 * means this packet will have to be delivered in order
1398 printf("%s: could not reserve space for unordered data\n",
1402 if (!unordered
&& (sb
->sb_mbtail
!= NULL
) &&
1403 !(sb
->sb_mbtail
->m_flags
& M_UNORDERED_DATA
)) {
1404 sb
->sb_mbtail
->m_flags
&= ~M_EOR
;
1405 sbcompress(sb
, m
, sb
->sb_mbtail
);
1408 ret
= sbappendrecord(sb
, m
);
1410 VERIFY(sb
->sb_mbtail
->m_flags
& M_EOR
);
1415 * TCP streams have message based out of order delivery support, or have
1416 * Multipath TCP support, or are regular TCP sockets
1419 sbappendstream_rcvdemux(struct socket
*so
, struct mbuf
*m
, uint32_t seqnum
,
1424 if ((m
!= NULL
) && (m_pktlen(m
) <= 0)) {
1429 if (so
->so_flags
& SOF_ENABLE_MSGS
) {
1430 ret
= sbappendmsgstream_rcv(&so
->so_rcv
, m
, seqnum
, unordered
);
1433 else if (so
->so_flags
& SOF_MPTCP_TRUE
) {
1434 ret
= sbappendmptcpstream_rcv(&so
->so_rcv
, m
);
1438 ret
= sbappendstream(&so
->so_rcv
, m
);
1445 sbappendmptcpstream_rcv(struct sockbuf
*sb
, struct mbuf
*m
)
1447 struct socket
*so
= sb
->sb_so
;
1449 VERIFY(m
== NULL
|| (m
->m_flags
& M_PKTHDR
));
1450 /* SB_NOCOMPRESS must be set prevent loss of M_PKTHDR data */
1451 VERIFY((sb
->sb_flags
& (SB_RECV
|SB_NOCOMPRESS
)) ==
1452 (SB_RECV
|SB_NOCOMPRESS
));
1454 if (m
== NULL
|| m_pktlen(m
) == 0 || (sb
->sb_flags
& SB_DROP
) ||
1455 (so
->so_state
& SS_CANTRCVMORE
)) {
1460 /* the socket is not closed, so SOF_MP_SUBFLOW must be set */
1461 VERIFY(so
->so_flags
& SOF_MP_SUBFLOW
);
1463 if (m
->m_nextpkt
!= NULL
|| (sb
->sb_mb
!= sb
->sb_lastrecord
)) {
1464 panic("%s: nexpkt %p || mb %p != lastrecord %p\n", __func__
,
1465 m
->m_nextpkt
, sb
->sb_mb
, sb
->sb_lastrecord
);
1469 SBLASTMBUFCHK(sb
, __func__
);
1471 if (mptcp_adj_rmap(so
, m
) != 0)
1474 /* No filter support (SB_RECV) on mptcp subflow sockets */
1476 sbcompress(sb
, m
, sb
->sb_mbtail
);
1477 sb
->sb_lastrecord
= sb
->sb_mb
;
1478 SBLASTRECORDCHK(sb
, __func__
);
1484 * Append message to send socket buffer based on priority.
1487 sbappendmsg_snd(struct sockbuf
*sb
, struct mbuf
*m
)
1489 struct socket
*so
= sb
->sb_so
;
1490 struct msg_priq
*priq
;
1493 VERIFY(so
->so_msg_state
!= NULL
);
1495 if (m
->m_nextpkt
!= NULL
|| (sb
->sb_mb
!= sb
->sb_lastrecord
))
1496 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
1497 m
->m_nextpkt
, sb
->sb_mb
, sb
->sb_lastrecord
);
1499 SBLASTMBUFCHK(sb
, __func__
);
1501 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
) || so
->so_msg_state
== NULL
) {
1507 priq
= &so
->so_msg_state
->msg_priq
[m
->m_pkthdr
.msg_pri
];
1509 /* note if we need to propogate M_EOR to the last mbuf */
1510 if (m
->m_flags
& M_EOR
) {
1513 /* Reset M_EOR from the first mbuf */
1514 m
->m_flags
&= ~(M_EOR
);
1517 if (priq
->msgq_head
== NULL
) {
1518 VERIFY(priq
->msgq_tail
== NULL
&& priq
->msgq_lastmsg
== NULL
);
1519 priq
->msgq_head
= priq
->msgq_lastmsg
= m
;
1521 VERIFY(priq
->msgq_tail
->m_next
== NULL
);
1523 /* Check if the last message has M_EOR flag set */
1524 if (priq
->msgq_tail
->m_flags
& M_EOR
) {
1525 /* Insert as a new message */
1526 priq
->msgq_lastmsg
->m_nextpkt
= m
;
1528 /* move the lastmsg pointer */
1529 priq
->msgq_lastmsg
= m
;
1531 /* Append to the existing message */
1532 priq
->msgq_tail
->m_next
= m
;
1536 /* Update accounting and the queue tail pointer */
1538 while (m
->m_next
!= NULL
) {
1540 priq
->msgq_bytes
+= m
->m_len
;
1544 priq
->msgq_bytes
+= m
->m_len
;
1547 m
->m_flags
|= M_EOR
;
1550 * Since the user space can not write a new msg
1551 * without completing the previous one, we can
1552 * reset this flag to start sending again.
1554 priq
->msgq_flags
&= ~(MSGQ_MSG_NOTDONE
);
1557 priq
->msgq_tail
= m
;
1559 SBLASTRECORDCHK(sb
, "sbappendstream 2");
1560 postevent(0, sb
, EV_RWBYTES
);
1565 * Pull data from priority queues to the serial snd queue
1566 * right before sending.
1569 sbpull_unordered_data(struct socket
*so
, int32_t off
, int32_t len
)
1572 struct msg_priq
*priq
= NULL
;
1574 VERIFY(so
->so_msg_state
!= NULL
);
1576 topull
= (off
+ len
) - so
->so_msg_state
->msg_serial_bytes
;
1579 while (i
>= MSG_PRI_MIN
&& topull
> 0) {
1580 struct mbuf
*m
= NULL
, *mqhead
= NULL
, *mend
= NULL
;
1581 priq
= &so
->so_msg_state
->msg_priq
[i
];
1582 if ((priq
->msgq_flags
& MSGQ_MSG_NOTDONE
) &&
1583 priq
->msgq_head
== NULL
) {
1585 * We were in the middle of sending
1586 * a message and we have not seen the
1589 VERIFY(priq
->msgq_lastmsg
== NULL
&&
1590 priq
->msgq_tail
== NULL
);
1593 if (priq
->msgq_head
!= NULL
) {
1594 int32_t bytes
= 0, topull_tmp
= topull
;
1596 * We found a msg while scanning the priority
1597 * queue from high to low priority.
1599 m
= priq
->msgq_head
;
1604 * Move bytes from the priority queue to the
1605 * serial queue. Compute the number of bytes
1608 while (mqhead
->m_next
!= NULL
&& topull_tmp
> 0) {
1609 bytes
+= mqhead
->m_len
;
1610 topull_tmp
-= mqhead
->m_len
;
1612 mqhead
= mqhead
->m_next
;
1615 if (mqhead
->m_next
== NULL
) {
1617 * If we have only one more mbuf left,
1618 * move the last mbuf of this message to
1619 * serial queue and set the head of the
1620 * queue to be the next message.
1622 bytes
+= mqhead
->m_len
;
1624 mqhead
= m
->m_nextpkt
;
1625 if (!(mend
->m_flags
& M_EOR
)) {
1627 * We have not seen the end of
1628 * this message, so we can not
1631 priq
->msgq_flags
|= MSGQ_MSG_NOTDONE
;
1634 mend
->m_flags
&= ~(M_EOR
);
1637 /* propogate the next msg pointer */
1638 mqhead
->m_nextpkt
= m
->m_nextpkt
;
1640 priq
->msgq_head
= mqhead
;
1643 * if the lastmsg pointer points to
1644 * the mbuf that is being dequeued, update
1645 * it to point to the new head.
1647 if (priq
->msgq_lastmsg
== m
)
1648 priq
->msgq_lastmsg
= priq
->msgq_head
;
1650 m
->m_nextpkt
= NULL
;
1651 mend
->m_next
= NULL
;
1653 if (priq
->msgq_head
== NULL
) {
1654 /* Moved all messages, update tail */
1655 priq
->msgq_tail
= NULL
;
1656 VERIFY(priq
->msgq_lastmsg
== NULL
);
1659 /* Move it to serial sb_mb queue */
1660 if (so
->so_snd
.sb_mb
== NULL
) {
1661 so
->so_snd
.sb_mb
= m
;
1663 so
->so_snd
.sb_mbtail
->m_next
= m
;
1666 priq
->msgq_bytes
-= bytes
;
1667 VERIFY(priq
->msgq_bytes
>= 0);
1668 sbwakeup(&so
->so_snd
);
1670 so
->so_msg_state
->msg_serial_bytes
+= bytes
;
1671 so
->so_snd
.sb_mbtail
= mend
;
1672 so
->so_snd
.sb_lastrecord
= so
->so_snd
.sb_mb
;
1675 (off
+ len
) - so
->so_msg_state
->msg_serial_bytes
;
1677 if (priq
->msgq_flags
& MSGQ_MSG_NOTDONE
)
1683 sblastrecordchk(&so
->so_snd
, "sbpull_unordered_data");
1684 sblastmbufchk(&so
->so_snd
, "sbpull_unordered_data");
1688 * Compress mbuf chain m into the socket
1689 * buffer sb following mbuf n. If n
1690 * is null, the buffer is presumed empty.
1693 sbcompress(struct sockbuf
*sb
, struct mbuf
*m
, struct mbuf
*n
)
1695 int eor
= 0, compress
= (!(sb
->sb_flags
& SB_NOCOMPRESS
));
1699 /* There is nothing to compress; just update the tail */
1700 for (; n
->m_next
!= NULL
; n
= n
->m_next
)
1707 eor
|= m
->m_flags
& M_EOR
;
1708 if (compress
&& m
->m_len
== 0 && (eor
== 0 ||
1709 (((o
= m
->m_next
) || (o
= n
)) && o
->m_type
== m
->m_type
))) {
1710 if (sb
->sb_lastrecord
== m
)
1711 sb
->sb_lastrecord
= m
->m_next
;
1715 if (compress
&& n
!= NULL
&& (n
->m_flags
& M_EOR
) == 0 &&
1719 m
->m_len
<= MCLBYTES
/ 4 && /* XXX: Don't copy too much */
1720 m
->m_len
<= M_TRAILINGSPACE(n
) &&
1721 n
->m_type
== m
->m_type
) {
1722 bcopy(mtod(m
, caddr_t
), mtod(n
, caddr_t
) + n
->m_len
,
1723 (unsigned)m
->m_len
);
1724 n
->m_len
+= m
->m_len
;
1725 sb
->sb_cc
+= m
->m_len
;
1726 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1727 m
->m_type
!= MT_OOBDATA
) {
1728 /* XXX: Probably don't need */
1729 sb
->sb_ctl
+= m
->m_len
;
1732 /* update send byte count */
1733 if (sb
->sb_flags
& SB_SNDBYTE_CNT
) {
1734 inp_incr_sndbytes_total(sb
->sb_so
,
1736 inp_incr_sndbytes_unsent(sb
->sb_so
,
1749 m
->m_flags
&= ~M_EOR
;
1757 printf("semi-panic: sbcompress\n");
1760 SBLASTMBUFCHK(sb
, __func__
);
1761 postevent(0, sb
, EV_RWBYTES
);
1765 sb_empty_assert(struct sockbuf
*sb
, const char *where
)
1767 if (!(sb
->sb_cc
== 0 && sb
->sb_mb
== NULL
&& sb
->sb_mbcnt
== 0 &&
1768 sb
->sb_mbtail
== NULL
&& sb
->sb_lastrecord
== NULL
)) {
1769 panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p "
1770 "lastrecord %p\n", where
, sb
, sb
->sb_so
, sb
->sb_cc
,
1771 sb
->sb_mbcnt
, sb
->sb_mb
, sb
->sb_mbtail
,
1778 sbflush_priq(struct msg_priq
*priq
)
1781 m
= priq
->msgq_head
;
1784 priq
->msgq_head
= priq
->msgq_tail
= priq
->msgq_lastmsg
= NULL
;
1785 priq
->msgq_bytes
= priq
->msgq_flags
= 0;
1789 * Free all mbufs in a sockbuf.
1790 * Check that all resources are reclaimed.
1793 sbflush(struct sockbuf
*sb
)
1795 void *lr_saved
= __builtin_return_address(0);
1796 struct socket
*so
= sb
->sb_so
;
1799 /* so_usecount may be 0 if we get here from sofreelastref() */
1801 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
1802 __func__
, sb
, sb
->sb_flags
, lr_saved
);
1804 } else if (so
->so_usecount
< 0) {
1805 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
1806 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
1807 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
1812 * Obtain lock on the socket buffer (SB_LOCK). This is required
1813 * to prevent the socket buffer from being unexpectedly altered
1814 * while it is used by another thread in socket send/receive.
1816 * sblock() must not fail here, hence the assertion.
1818 (void) sblock(sb
, SBL_WAIT
| SBL_NOINTR
| SBL_IGNDEFUNCT
);
1819 VERIFY(sb
->sb_flags
& SB_LOCK
);
1821 while (sb
->sb_mbcnt
> 0) {
1823 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1824 * we would loop forever. Panic instead.
1826 if (!sb
->sb_cc
&& (sb
->sb_mb
== NULL
|| sb
->sb_mb
->m_len
))
1828 sbdrop(sb
, (int)sb
->sb_cc
);
1831 if (!(sb
->sb_flags
& SB_RECV
) && (so
->so_flags
& SOF_ENABLE_MSGS
)) {
1832 VERIFY(so
->so_msg_state
!= NULL
);
1833 for (i
= MSG_PRI_MIN
; i
<= MSG_PRI_MAX
; ++i
) {
1834 sbflush_priq(&so
->so_msg_state
->msg_priq
[i
]);
1836 so
->so_msg_state
->msg_serial_bytes
= 0;
1837 so
->so_msg_state
->msg_uno_bytes
= 0;
1840 sb_empty_assert(sb
, __func__
);
1841 postevent(0, sb
, EV_RWBYTES
);
1843 sbunlock(sb
, TRUE
); /* keep socket locked */
1847 * Drop data from (the front of) a sockbuf.
1848 * use m_freem_list to free the mbuf structures
1849 * under a single lock... this is done by pruning
1850 * the top of the tree from the body by keeping track
1851 * of where we get to in the tree and then zeroing the
1852 * two pertinent pointers m_nextpkt and m_next
1853 * the socket buffer is then updated to point at the new
1854 * top of the tree and the pruned area is released via
1858 sbdrop(struct sockbuf
*sb
, int len
)
1860 struct mbuf
*m
, *free_list
, *ml
;
1861 struct mbuf
*next
, *last
;
1863 next
= (m
= sb
->sb_mb
) ? m
->m_nextpkt
: 0;
1865 if ((m
!= NULL
) && (len
> 0) &&
1866 (!(sb
->sb_flags
& SB_RECV
)) &&
1867 ((sb
->sb_so
->so_flags
& SOF_MP_SUBFLOW
) ||
1868 ((SOCK_CHECK_DOM(sb
->sb_so
, PF_MULTIPATH
)) &&
1869 (SOCK_CHECK_PROTO(sb
->sb_so
, IPPROTO_TCP
)))) &&
1870 (!(sb
->sb_so
->so_flags1
& SOF1_POST_FALLBACK_SYNC
))) {
1871 mptcp_preproc_sbdrop(sb
->sb_so
, m
, (unsigned int)len
);
1874 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_START
), sb
, len
, 0, 0, 0);
1876 free_list
= last
= m
;
1877 ml
= (struct mbuf
*)0;
1883 * temporarily replacing this panic with printf
1884 * because it occurs occasionally when closing
1885 * a socket when there is no harm in ignoring
1886 * it. This problem will be investigated
1889 /* panic("sbdrop"); */
1890 printf("sbdrop - count not zero\n");
1893 * zero the counts. if we have no mbufs,
1894 * we have no data (PR-2986815)
1898 if (!(sb
->sb_flags
& SB_RECV
) &&
1899 (sb
->sb_so
->so_flags
& SOF_ENABLE_MSGS
)) {
1900 sb
->sb_so
->so_msg_state
->
1901 msg_serial_bytes
= 0;
1906 next
= m
->m_nextpkt
;
1909 if (m
->m_len
> len
) {
1913 /* update the send byte count */
1914 if (sb
->sb_flags
& SB_SNDBYTE_CNT
)
1915 inp_decr_sndbytes_total(sb
->sb_so
, len
);
1916 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1917 m
->m_type
!= MT_OOBDATA
)
1927 while (m
&& m
->m_len
== 0) {
1934 ml
->m_next
= (struct mbuf
*)0;
1935 last
->m_nextpkt
= (struct mbuf
*)0;
1936 m_freem_list(free_list
);
1940 m
->m_nextpkt
= next
;
1946 * First part is an inline SB_EMPTY_FIXUP(). Second part
1947 * makes sure sb_lastrecord is up-to-date if we dropped
1948 * part of the last record.
1952 sb
->sb_mbtail
= NULL
;
1953 sb
->sb_lastrecord
= NULL
;
1954 } else if (m
->m_nextpkt
== NULL
) {
1955 sb
->sb_lastrecord
= m
;
1959 cfil_sock_buf_update(sb
);
1960 #endif /* CONTENT_FILTER */
1962 postevent(0, sb
, EV_RWBYTES
);
1964 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_END
), sb
, 0, 0, 0, 0);
1968 * Drop a record off the front of a sockbuf
1969 * and move the next record to the front.
1972 sbdroprecord(struct sockbuf
*sb
)
1974 struct mbuf
*m
, *mn
;
1978 sb
->sb_mb
= m
->m_nextpkt
;
1986 postevent(0, sb
, EV_RWBYTES
);
1990 * Create a "control" mbuf containing the specified data
1991 * with the specified type for presentation on a socket buffer.
1994 sbcreatecontrol(caddr_t p
, int size
, int type
, int level
)
1999 if (CMSG_SPACE((u_int
)size
) > MLEN
)
2000 return ((struct mbuf
*)NULL
);
2001 if ((m
= m_get(M_DONTWAIT
, MT_CONTROL
)) == NULL
)
2002 return ((struct mbuf
*)NULL
);
2003 cp
= mtod(m
, struct cmsghdr
*);
2004 VERIFY(IS_P2ALIGNED(cp
, sizeof (u_int32_t
)));
2005 /* XXX check size? */
2006 (void) memcpy(CMSG_DATA(cp
), p
, size
);
2007 m
->m_len
= CMSG_SPACE(size
);
2008 cp
->cmsg_len
= CMSG_LEN(size
);
2009 cp
->cmsg_level
= level
;
2010 cp
->cmsg_type
= type
;
2015 sbcreatecontrol_mbuf(caddr_t p
, int size
, int type
, int level
, struct mbuf
**mp
)
2021 *mp
= sbcreatecontrol(p
, size
, type
, level
);
2025 if (CMSG_SPACE((u_int
)size
) + (*mp
)->m_len
> MLEN
) {
2026 mp
= &(*mp
)->m_next
;
2027 *mp
= sbcreatecontrol(p
, size
, type
, level
);
2033 cp
= (struct cmsghdr
*)(void *)(mtod(m
, char *) + m
->m_len
);
2034 /* CMSG_SPACE ensures 32-bit alignment */
2035 VERIFY(IS_P2ALIGNED(cp
, sizeof (u_int32_t
)));
2036 m
->m_len
+= CMSG_SPACE(size
);
2038 /* XXX check size? */
2039 (void) memcpy(CMSG_DATA(cp
), p
, size
);
2040 cp
->cmsg_len
= CMSG_LEN(size
);
2041 cp
->cmsg_level
= level
;
2042 cp
->cmsg_type
= type
;
2049 * Some routines that return EOPNOTSUPP for entry points that are not
2050 * supported by a protocol. Fill in as needed.
2053 pru_abort_notsupp(struct socket
*so
)
2056 return (EOPNOTSUPP
);
2060 pru_accept_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2062 #pragma unused(so, nam)
2063 return (EOPNOTSUPP
);
2067 pru_attach_notsupp(struct socket
*so
, int proto
, struct proc
*p
)
2069 #pragma unused(so, proto, p)
2070 return (EOPNOTSUPP
);
2074 pru_bind_notsupp(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2076 #pragma unused(so, nam, p)
2077 return (EOPNOTSUPP
);
2081 pru_connect_notsupp(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2083 #pragma unused(so, nam, p)
2084 return (EOPNOTSUPP
);
2088 pru_connect2_notsupp(struct socket
*so1
, struct socket
*so2
)
2090 #pragma unused(so1, so2)
2091 return (EOPNOTSUPP
);
2095 pru_connectx_notsupp(struct socket
*so
, struct sockaddr
*src
,
2096 struct sockaddr
*dst
, struct proc
*p
, uint32_t ifscope
,
2097 sae_associd_t aid
, sae_connid_t
*pcid
, uint32_t flags
, void *arg
,
2098 uint32_t arglen
, struct uio
*uio
, user_ssize_t
*bytes_written
)
2100 #pragma unused(so, src, dst, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written)
2101 return (EOPNOTSUPP
);
2105 pru_control_notsupp(struct socket
*so
, u_long cmd
, caddr_t data
,
2106 struct ifnet
*ifp
, struct proc
*p
)
2108 #pragma unused(so, cmd, data, ifp, p)
2109 return (EOPNOTSUPP
);
2113 pru_detach_notsupp(struct socket
*so
)
2116 return (EOPNOTSUPP
);
2120 pru_disconnect_notsupp(struct socket
*so
)
2123 return (EOPNOTSUPP
);
2127 pru_disconnectx_notsupp(struct socket
*so
, sae_associd_t aid
, sae_connid_t cid
)
2129 #pragma unused(so, aid, cid)
2130 return (EOPNOTSUPP
);
2134 pru_listen_notsupp(struct socket
*so
, struct proc
*p
)
2136 #pragma unused(so, p)
2137 return (EOPNOTSUPP
);
2141 pru_peeloff_notsupp(struct socket
*so
, sae_associd_t aid
, struct socket
**psop
)
2143 #pragma unused(so, aid, psop)
2144 return (EOPNOTSUPP
);
2148 pru_peeraddr_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2150 #pragma unused(so, nam)
2151 return (EOPNOTSUPP
);
2155 pru_rcvd_notsupp(struct socket
*so
, int flags
)
2157 #pragma unused(so, flags)
2158 return (EOPNOTSUPP
);
2162 pru_rcvoob_notsupp(struct socket
*so
, struct mbuf
*m
, int flags
)
2164 #pragma unused(so, m, flags)
2165 return (EOPNOTSUPP
);
2169 pru_send_notsupp(struct socket
*so
, int flags
, struct mbuf
*m
,
2170 struct sockaddr
*addr
, struct mbuf
*control
, struct proc
*p
)
2172 #pragma unused(so, flags, m, addr, control, p)
2173 return (EOPNOTSUPP
);
2177 pru_send_list_notsupp(struct socket
*so
, int flags
, struct mbuf
*m
,
2178 struct sockaddr
*addr
, struct mbuf
*control
, struct proc
*p
)
2180 #pragma unused(so, flags, m, addr, control, p)
2181 return (EOPNOTSUPP
);
2185 * This isn't really a ``null'' operation, but it's the default one
2186 * and doesn't do anything destructive.
2189 pru_sense_null(struct socket
*so
, void *ub
, int isstat64
)
2191 if (isstat64
!= 0) {
2192 struct stat64
*sb64
;
2194 sb64
= (struct stat64
*)ub
;
2195 sb64
->st_blksize
= so
->so_snd
.sb_hiwat
;
2199 sb
= (struct stat
*)ub
;
2200 sb
->st_blksize
= so
->so_snd
.sb_hiwat
;
2208 pru_sosend_notsupp(struct socket
*so
, struct sockaddr
*addr
, struct uio
*uio
,
2209 struct mbuf
*top
, struct mbuf
*control
, int flags
)
2211 #pragma unused(so, addr, uio, top, control, flags)
2212 return (EOPNOTSUPP
);
2216 pru_sosend_list_notsupp(struct socket
*so
, struct uio
**uio
,
2217 u_int uiocnt
, int flags
)
2219 #pragma unused(so, uio, uiocnt, flags)
2220 return (EOPNOTSUPP
);
2224 pru_soreceive_notsupp(struct socket
*so
, struct sockaddr
**paddr
,
2225 struct uio
*uio
, struct mbuf
**mp0
, struct mbuf
**controlp
, int *flagsp
)
2227 #pragma unused(so, paddr, uio, mp0, controlp, flagsp)
2228 return (EOPNOTSUPP
);
2232 pru_soreceive_list_notsupp(struct socket
*so
,
2233 struct recv_msg_elem
*recv_msg_array
, u_int uiocnt
, int *flagsp
)
2235 #pragma unused(so, recv_msg_array, uiocnt, flagsp)
2236 return (EOPNOTSUPP
);
2240 pru_shutdown_notsupp(struct socket
*so
)
2243 return (EOPNOTSUPP
);
2247 pru_sockaddr_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2249 #pragma unused(so, nam)
2250 return (EOPNOTSUPP
);
2254 pru_sopoll_notsupp(struct socket
*so
, int events
, kauth_cred_t cred
, void *wql
)
2256 #pragma unused(so, events, cred, wql)
2257 return (EOPNOTSUPP
);
2261 pru_socheckopt_null(struct socket
*so
, struct sockopt
*sopt
)
2263 #pragma unused(so, sopt)
2265 * Allow all options for set/get by default.
2271 pru_preconnect_null(struct socket
*so
)
2278 pru_sanitize(struct pr_usrreqs
*pru
)
2280 #define DEFAULT(foo, bar) if ((foo) == NULL) (foo) = (bar)
2281 DEFAULT(pru
->pru_abort
, pru_abort_notsupp
);
2282 DEFAULT(pru
->pru_accept
, pru_accept_notsupp
);
2283 DEFAULT(pru
->pru_attach
, pru_attach_notsupp
);
2284 DEFAULT(pru
->pru_bind
, pru_bind_notsupp
);
2285 DEFAULT(pru
->pru_connect
, pru_connect_notsupp
);
2286 DEFAULT(pru
->pru_connect2
, pru_connect2_notsupp
);
2287 DEFAULT(pru
->pru_connectx
, pru_connectx_notsupp
);
2288 DEFAULT(pru
->pru_control
, pru_control_notsupp
);
2289 DEFAULT(pru
->pru_detach
, pru_detach_notsupp
);
2290 DEFAULT(pru
->pru_disconnect
, pru_disconnect_notsupp
);
2291 DEFAULT(pru
->pru_disconnectx
, pru_disconnectx_notsupp
);
2292 DEFAULT(pru
->pru_listen
, pru_listen_notsupp
);
2293 DEFAULT(pru
->pru_peeloff
, pru_peeloff_notsupp
);
2294 DEFAULT(pru
->pru_peeraddr
, pru_peeraddr_notsupp
);
2295 DEFAULT(pru
->pru_rcvd
, pru_rcvd_notsupp
);
2296 DEFAULT(pru
->pru_rcvoob
, pru_rcvoob_notsupp
);
2297 DEFAULT(pru
->pru_send
, pru_send_notsupp
);
2298 DEFAULT(pru
->pru_send_list
, pru_send_list_notsupp
);
2299 DEFAULT(pru
->pru_sense
, pru_sense_null
);
2300 DEFAULT(pru
->pru_shutdown
, pru_shutdown_notsupp
);
2301 DEFAULT(pru
->pru_sockaddr
, pru_sockaddr_notsupp
);
2302 DEFAULT(pru
->pru_sopoll
, pru_sopoll_notsupp
);
2303 DEFAULT(pru
->pru_soreceive
, pru_soreceive_notsupp
);
2304 DEFAULT(pru
->pru_soreceive_list
, pru_soreceive_list_notsupp
);
2305 DEFAULT(pru
->pru_sosend
, pru_sosend_notsupp
);
2306 DEFAULT(pru
->pru_sosend_list
, pru_sosend_list_notsupp
);
2307 DEFAULT(pru
->pru_socheckopt
, pru_socheckopt_null
);
2308 DEFAULT(pru
->pru_preconnect
, pru_preconnect_null
);
2313 * The following are macros on BSD and functions on Darwin
2317 * Do we need to notify the other side when I/O is possible?
2321 sb_notify(struct sockbuf
*sb
)
2323 return (sb
->sb_waiters
> 0 ||
2324 (sb
->sb_flags
& (SB_SEL
|SB_ASYNC
|SB_UPCALL
|SB_KNOTE
)));
2328 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
2329 * This is problematical if the fields are unsigned, as the space might
2330 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
2331 * overflow and return 0.
2334 sbspace(struct sockbuf
*sb
)
2337 int space
= imin((int)(sb
->sb_hiwat
- sb
->sb_cc
),
2338 (int)(sb
->sb_mbmax
- sb
->sb_mbcnt
));
2340 if (sb
->sb_preconn_hiwat
!= 0)
2341 space
= imin((int)(sb
->sb_preconn_hiwat
- sb
->sb_cc
), space
);
2346 /* Compensate for data being processed by content filters */
2348 pending
= cfil_sock_data_space(sb
);
2349 #endif /* CONTENT_FILTER */
2350 if (pending
> space
)
2359 * If this socket has priority queues, check if there is enough
2360 * space in the priority queue for this msg.
2363 msgq_sbspace(struct socket
*so
, struct mbuf
*control
)
2365 int space
= 0, error
;
2367 VERIFY(so
->so_type
== SOCK_STREAM
&&
2368 SOCK_PROTO(so
) == IPPROTO_TCP
);
2369 if (control
!= NULL
) {
2370 error
= tcp_get_msg_priority(control
, &msgpri
);
2376 space
= (so
->so_snd
.sb_idealsize
/ MSG_PRI_COUNT
) -
2377 so
->so_msg_state
->msg_priq
[msgpri
].msgq_bytes
;
2383 /* do we have to send all at once on a socket? */
2385 sosendallatonce(struct socket
*so
)
2387 return (so
->so_proto
->pr_flags
& PR_ATOMIC
);
2390 /* can we read something from so? */
2392 soreadable(struct socket
*so
)
2394 return (so
->so_rcv
.sb_cc
>= so
->so_rcv
.sb_lowat
||
2395 ((so
->so_state
& SS_CANTRCVMORE
)
2397 && cfil_sock_data_pending(&so
->so_rcv
) == 0
2398 #endif /* CONTENT_FILTER */
2400 so
->so_comp
.tqh_first
|| so
->so_error
);
2403 /* can we write something to so? */
2406 sowriteable(struct socket
*so
)
2408 if ((so
->so_state
& SS_CANTSENDMORE
) ||
2411 if (so_wait_for_if_feedback(so
) || !socanwrite(so
))
2413 if (so
->so_flags1
& SOF1_PRECONNECT_DATA
)
2416 if (sbspace(&(so
)->so_snd
) >= (so
)->so_snd
.sb_lowat
) {
2417 if (so
->so_flags
& SOF_NOTSENT_LOWAT
) {
2418 if ((SOCK_DOM(so
) == PF_INET6
||
2419 SOCK_DOM(so
) == PF_INET
) &&
2420 so
->so_type
== SOCK_STREAM
) {
2421 return (tcp_notsent_lowat_check(so
));
2424 else if ((SOCK_DOM(so
) == PF_MULTIPATH
) &&
2425 (SOCK_PROTO(so
) == IPPROTO_TCP
)) {
2426 return (mptcp_notsent_lowat_check(so
));
2439 /* adjust counters in sb reflecting allocation of m */
2442 sballoc(struct sockbuf
*sb
, struct mbuf
*m
)
2445 sb
->sb_cc
+= m
->m_len
;
2446 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
2447 m
->m_type
!= MT_OOBDATA
)
2448 sb
->sb_ctl
+= m
->m_len
;
2449 sb
->sb_mbcnt
+= MSIZE
;
2451 if (m
->m_flags
& M_EXT
) {
2452 sb
->sb_mbcnt
+= m
->m_ext
.ext_size
;
2453 cnt
+= (m
->m_ext
.ext_size
>> MSIZESHIFT
);
2455 OSAddAtomic(cnt
, &total_sbmb_cnt
);
2456 VERIFY(total_sbmb_cnt
> 0);
2457 if (total_sbmb_cnt
> total_sbmb_cnt_peak
)
2458 total_sbmb_cnt_peak
= total_sbmb_cnt
;
2461 * If data is being added to the send socket buffer,
2462 * update the send byte count
2464 if (sb
->sb_flags
& SB_SNDBYTE_CNT
) {
2465 inp_incr_sndbytes_total(sb
->sb_so
, m
->m_len
);
2466 inp_incr_sndbytes_unsent(sb
->sb_so
, m
->m_len
);
2470 /* adjust counters in sb reflecting freeing of m */
2472 sbfree(struct sockbuf
*sb
, struct mbuf
*m
)
2476 sb
->sb_cc
-= m
->m_len
;
2477 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
2478 m
->m_type
!= MT_OOBDATA
)
2479 sb
->sb_ctl
-= m
->m_len
;
2480 sb
->sb_mbcnt
-= MSIZE
;
2481 if (m
->m_flags
& M_EXT
) {
2482 sb
->sb_mbcnt
-= m
->m_ext
.ext_size
;
2483 cnt
-= (m
->m_ext
.ext_size
>> MSIZESHIFT
);
2485 OSAddAtomic(cnt
, &total_sbmb_cnt
);
2486 VERIFY(total_sbmb_cnt
>= 0);
2487 if (total_sbmb_cnt
< total_sbmb_cnt_floor
)
2488 total_sbmb_cnt_floor
= total_sbmb_cnt
;
2491 * If data is being removed from the send socket buffer,
2492 * update the send byte count
2494 if (sb
->sb_flags
& SB_SNDBYTE_CNT
)
2495 inp_decr_sndbytes_total(sb
->sb_so
, m
->m_len
);
2499 * Set lock on sockbuf sb; sleep if lock is already held.
2500 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
2501 * Returns error without lock if sleep is interrupted.
2504 sblock(struct sockbuf
*sb
, uint32_t flags
)
2506 boolean_t nointr
= ((sb
->sb_flags
& SB_NOINTR
) || (flags
& SBL_NOINTR
));
2507 void *lr_saved
= __builtin_return_address(0);
2508 struct socket
*so
= sb
->sb_so
;
2511 thread_t tp
= current_thread();
2513 VERIFY((flags
& SBL_VALID
) == flags
);
2515 /* so_usecount may be 0 if we get here from sofreelastref() */
2517 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2518 __func__
, sb
, sb
->sb_flags
, lr_saved
);
2520 } else if (so
->so_usecount
< 0) {
2521 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2522 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
2523 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
2528 * The content filter thread must hold the sockbuf lock
2530 if ((so
->so_flags
& SOF_CONTENT_FILTER
) && sb
->sb_cfil_thread
== tp
) {
2532 * Don't panic if we are defunct because SB_LOCK has
2533 * been cleared by sodefunct()
2535 if (!(so
->so_flags
& SOF_DEFUNCT
) && !(sb
->sb_flags
& SB_LOCK
))
2536 panic("%s: SB_LOCK not held for %p\n",
2539 /* Keep the sockbuf locked */
2543 if ((sb
->sb_flags
& SB_LOCK
) && !(flags
& SBL_WAIT
))
2544 return (EWOULDBLOCK
);
2546 * We may get here from sorflush(), in which case "sb" may not
2547 * point to the real socket buffer. Use the actual socket buffer
2548 * address from the socket instead.
2550 wchan
= (sb
->sb_flags
& SB_RECV
) ?
2551 &so
->so_rcv
.sb_flags
: &so
->so_snd
.sb_flags
;
2554 * A content filter thread has exclusive access to the sockbuf
2555 * until it clears the
2557 while ((sb
->sb_flags
& SB_LOCK
) ||
2558 ((so
->so_flags
& SOF_CONTENT_FILTER
) &&
2559 sb
->sb_cfil_thread
!= NULL
)) {
2560 lck_mtx_t
*mutex_held
;
2563 * XXX: This code should be moved up above outside of this loop;
2564 * however, we may get here as part of sofreelastref(), and
2565 * at that time pr_getlock() may no longer be able to return
2566 * us the lock. This will be fixed in future.
2568 if (so
->so_proto
->pr_getlock
!= NULL
)
2569 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
2571 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
2573 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
2576 VERIFY(sb
->sb_wantlock
!= 0);
2578 error
= msleep(wchan
, mutex_held
,
2579 nointr
? PSOCK
: PSOCK
| PCATCH
,
2580 nointr
? "sb_lock_nointr" : "sb_lock", NULL
);
2582 VERIFY(sb
->sb_wantlock
!= 0);
2585 if (error
== 0 && (so
->so_flags
& SOF_DEFUNCT
) &&
2586 !(flags
& SBL_IGNDEFUNCT
)) {
2588 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
2589 "(%d)\n", __func__
, proc_selfpid(),
2590 proc_best_name(current_proc()),
2591 (uint64_t)VM_KERNEL_ADDRPERM(so
),
2592 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
2598 sb
->sb_flags
|= SB_LOCK
;
2603 * Release lock on sockbuf sb
2606 sbunlock(struct sockbuf
*sb
, boolean_t keeplocked
)
2608 void *lr_saved
= __builtin_return_address(0);
2609 struct socket
*so
= sb
->sb_so
;
2610 thread_t tp
= current_thread();
2612 /* so_usecount may be 0 if we get here from sofreelastref() */
2614 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2615 __func__
, sb
, sb
->sb_flags
, lr_saved
);
2617 } else if (so
->so_usecount
< 0) {
2618 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2619 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
2620 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
2625 * The content filter thread must hold the sockbuf lock
2627 if ((so
->so_flags
& SOF_CONTENT_FILTER
) && sb
->sb_cfil_thread
== tp
) {
2629 * Don't panic if we are defunct because SB_LOCK has
2630 * been cleared by sodefunct()
2632 if (!(so
->so_flags
& SOF_DEFUNCT
) &&
2633 !(sb
->sb_flags
& SB_LOCK
) &&
2634 !(so
->so_state
& SS_DEFUNCT
) &&
2635 !(so
->so_flags1
& SOF1_DEFUNCTINPROG
)) {
2636 panic("%s: SB_LOCK not held for %p\n",
2639 /* Keep the sockbuf locked and proceed */
2641 VERIFY((sb
->sb_flags
& SB_LOCK
) ||
2642 (so
->so_state
& SS_DEFUNCT
) ||
2643 (so
->so_flags1
& SOF1_DEFUNCTINPROG
));
2645 sb
->sb_flags
&= ~SB_LOCK
;
2647 if (sb
->sb_wantlock
> 0) {
2649 * We may get here from sorflush(), in which case "sb"
2650 * may not point to the real socket buffer. Use the
2651 * actual socket buffer address from the socket instead.
2653 wakeup((sb
->sb_flags
& SB_RECV
) ? &so
->so_rcv
.sb_flags
:
2654 &so
->so_snd
.sb_flags
);
2658 if (!keeplocked
) { /* unlock on exit */
2659 lck_mtx_t
*mutex_held
;
2661 if (so
->so_proto
->pr_getlock
!= NULL
)
2662 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
2664 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
2666 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
2668 VERIFY(so
->so_usecount
> 0);
2670 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
2671 so
->next_unlock_lr
= (so
->next_unlock_lr
+ 1) % SO_LCKDBG_MAX
;
2672 lck_mtx_unlock(mutex_held
);
2677 sorwakeup(struct socket
*so
)
2679 if (sb_notify(&so
->so_rcv
))
2680 sowakeup(so
, &so
->so_rcv
);
2684 sowwakeup(struct socket
*so
)
2686 if (sb_notify(&so
->so_snd
))
2687 sowakeup(so
, &so
->so_snd
);
2691 soevent(struct socket
*so
, long hint
)
2693 if (so
->so_flags
& SOF_KNOTE
)
2694 KNOTE(&so
->so_klist
, hint
);
2696 soevupcall(so
, hint
);
2699 * Don't post an event if this a subflow socket or
2700 * the app has opted out of using cellular interface
2702 if ((hint
& SO_FILT_HINT_IFDENIED
) &&
2703 !(so
->so_flags
& SOF_MP_SUBFLOW
) &&
2704 !(so
->so_restrictions
& SO_RESTRICT_DENY_CELLULAR
) &&
2705 !(so
->so_restrictions
& SO_RESTRICT_DENY_EXPENSIVE
))
2706 soevent_ifdenied(so
);
2710 soevupcall(struct socket
*so
, u_int32_t hint
)
2712 if (so
->so_event
!= NULL
) {
2713 caddr_t so_eventarg
= so
->so_eventarg
;
2714 int locked
= hint
& SO_FILT_HINT_LOCKED
;
2716 hint
&= so
->so_eventmask
;
2719 socket_unlock(so
, 0);
2721 so
->so_event(so
, so_eventarg
, hint
);
2730 soevent_ifdenied(struct socket
*so
)
2732 struct kev_netpolicy_ifdenied ev_ifdenied
;
2734 bzero(&ev_ifdenied
, sizeof (ev_ifdenied
));
2736 * The event consumer is interested about the effective {upid,pid,uuid}
2737 * info which can be different than the those related to the process
2738 * that recently performed a system call on the socket, i.e. when the
2739 * socket is delegated.
2741 if (so
->so_flags
& SOF_DELEGATED
) {
2742 ev_ifdenied
.ev_data
.eupid
= so
->e_upid
;
2743 ev_ifdenied
.ev_data
.epid
= so
->e_pid
;
2744 uuid_copy(ev_ifdenied
.ev_data
.euuid
, so
->e_uuid
);
2746 ev_ifdenied
.ev_data
.eupid
= so
->last_upid
;
2747 ev_ifdenied
.ev_data
.epid
= so
->last_pid
;
2748 uuid_copy(ev_ifdenied
.ev_data
.euuid
, so
->last_uuid
);
2751 if (++so
->so_ifdenied_notifies
> 1) {
2753 * Allow for at most one kernel event to be generated per
2754 * socket; so_ifdenied_notifies is reset upon changes in
2755 * the UUID policy. See comments in inp_update_policy.
2757 if (net_io_policy_log
) {
2760 uuid_unparse(ev_ifdenied
.ev_data
.euuid
, buf
);
2761 log(LOG_DEBUG
, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2762 "euuid %s%s has %d redundant events supressed\n",
2763 __func__
, so
->last_pid
,
2764 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
2765 SOCK_TYPE(so
), ev_ifdenied
.ev_data
.epid
, buf
,
2766 ((so
->so_flags
& SOF_DELEGATED
) ?
2767 " [delegated]" : ""), so
->so_ifdenied_notifies
);
2770 if (net_io_policy_log
) {
2773 uuid_unparse(ev_ifdenied
.ev_data
.euuid
, buf
);
2774 log(LOG_DEBUG
, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2775 "euuid %s%s event posted\n", __func__
,
2776 so
->last_pid
, (uint64_t)VM_KERNEL_ADDRPERM(so
),
2777 SOCK_DOM(so
), SOCK_TYPE(so
),
2778 ev_ifdenied
.ev_data
.epid
, buf
,
2779 ((so
->so_flags
& SOF_DELEGATED
) ?
2780 " [delegated]" : ""));
2782 netpolicy_post_msg(KEV_NETPOLICY_IFDENIED
, &ev_ifdenied
.ev_data
,
2783 sizeof (ev_ifdenied
));
2788 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
2791 dup_sockaddr(struct sockaddr
*sa
, int canwait
)
2793 struct sockaddr
*sa2
;
2795 MALLOC(sa2
, struct sockaddr
*, sa
->sa_len
, M_SONAME
,
2796 canwait
? M_WAITOK
: M_NOWAIT
);
2798 bcopy(sa
, sa2
, sa
->sa_len
);
2803 * Create an external-format (``xsocket'') structure using the information
2804 * in the kernel-format socket structure pointed to by so. This is done
2805 * to reduce the spew of irrelevant information over this interface,
2806 * to isolate user code from changes in the kernel structure, and
2807 * potentially to provide information-hiding if we decide that
2808 * some of this information should be hidden from users.
2811 sotoxsocket(struct socket
*so
, struct xsocket
*xso
)
2813 xso
->xso_len
= sizeof (*xso
);
2814 xso
->xso_so
= (_XSOCKET_PTR(struct socket
*))VM_KERNEL_ADDRPERM(so
);
2815 xso
->so_type
= so
->so_type
;
2816 xso
->so_options
= (short)(so
->so_options
& 0xffff);
2817 xso
->so_linger
= so
->so_linger
;
2818 xso
->so_state
= so
->so_state
;
2819 xso
->so_pcb
= (_XSOCKET_PTR(caddr_t
))VM_KERNEL_ADDRPERM(so
->so_pcb
);
2821 xso
->xso_protocol
= SOCK_PROTO(so
);
2822 xso
->xso_family
= SOCK_DOM(so
);
2824 xso
->xso_protocol
= xso
->xso_family
= 0;
2826 xso
->so_qlen
= so
->so_qlen
;
2827 xso
->so_incqlen
= so
->so_incqlen
;
2828 xso
->so_qlimit
= so
->so_qlimit
;
2829 xso
->so_timeo
= so
->so_timeo
;
2830 xso
->so_error
= so
->so_error
;
2831 xso
->so_pgid
= so
->so_pgid
;
2832 xso
->so_oobmark
= so
->so_oobmark
;
2833 sbtoxsockbuf(&so
->so_snd
, &xso
->so_snd
);
2834 sbtoxsockbuf(&so
->so_rcv
, &xso
->so_rcv
);
2835 xso
->so_uid
= kauth_cred_getuid(so
->so_cred
);
2841 sotoxsocket64(struct socket
*so
, struct xsocket64
*xso
)
2843 xso
->xso_len
= sizeof (*xso
);
2844 xso
->xso_so
= (u_int64_t
)VM_KERNEL_ADDRPERM(so
);
2845 xso
->so_type
= so
->so_type
;
2846 xso
->so_options
= (short)(so
->so_options
& 0xffff);
2847 xso
->so_linger
= so
->so_linger
;
2848 xso
->so_state
= so
->so_state
;
2849 xso
->so_pcb
= (u_int64_t
)VM_KERNEL_ADDRPERM(so
->so_pcb
);
2851 xso
->xso_protocol
= SOCK_PROTO(so
);
2852 xso
->xso_family
= SOCK_DOM(so
);
2854 xso
->xso_protocol
= xso
->xso_family
= 0;
2856 xso
->so_qlen
= so
->so_qlen
;
2857 xso
->so_incqlen
= so
->so_incqlen
;
2858 xso
->so_qlimit
= so
->so_qlimit
;
2859 xso
->so_timeo
= so
->so_timeo
;
2860 xso
->so_error
= so
->so_error
;
2861 xso
->so_pgid
= so
->so_pgid
;
2862 xso
->so_oobmark
= so
->so_oobmark
;
2863 sbtoxsockbuf(&so
->so_snd
, &xso
->so_snd
);
2864 sbtoxsockbuf(&so
->so_rcv
, &xso
->so_rcv
);
2865 xso
->so_uid
= kauth_cred_getuid(so
->so_cred
);
2870 * This does the same for sockbufs. Note that the xsockbuf structure,
2871 * since it is always embedded in a socket, does not include a self
2872 * pointer nor a length. We make this entry point public in case
2873 * some other mechanism needs it.
2876 sbtoxsockbuf(struct sockbuf
*sb
, struct xsockbuf
*xsb
)
2878 xsb
->sb_cc
= sb
->sb_cc
;
2879 xsb
->sb_hiwat
= sb
->sb_hiwat
;
2880 xsb
->sb_mbcnt
= sb
->sb_mbcnt
;
2881 xsb
->sb_mbmax
= sb
->sb_mbmax
;
2882 xsb
->sb_lowat
= sb
->sb_lowat
;
2883 xsb
->sb_flags
= sb
->sb_flags
;
2884 xsb
->sb_timeo
= (short)
2885 (sb
->sb_timeo
.tv_sec
* hz
) + sb
->sb_timeo
.tv_usec
/ tick
;
2886 if (xsb
->sb_timeo
== 0 && sb
->sb_timeo
.tv_usec
!= 0)
2891 * Based on the policy set by an all knowing decison maker, throttle sockets
2892 * that either have been marked as belonging to "background" process.
2895 soisthrottled(struct socket
*so
)
2898 * On non-embedded, we rely on implicit throttling by the
2899 * application, as we're missing the system wide "decision maker"
2902 (so
->so_flags1
& SOF1_TRAFFIC_MGT_SO_BACKGROUND
));
2906 soisprivilegedtraffic(struct socket
*so
)
2908 return ((so
->so_flags
& SOF_PRIVILEGED_TRAFFIC_CLASS
) ? 1 : 0);
2912 soissrcbackground(struct socket
*so
)
2914 return ((so
->so_flags1
& SOF1_TRAFFIC_MGT_SO_BACKGROUND
) ||
2915 IS_SO_TC_BACKGROUND(so
->so_traffic_class
));
2919 soissrcrealtime(struct socket
*so
)
2921 return (so
->so_traffic_class
>= SO_TC_AV
&&
2922 so
->so_traffic_class
<= SO_TC_VO
);
2926 soissrcbesteffort(struct socket
*so
)
2928 return (so
->so_traffic_class
== SO_TC_BE
||
2929 so
->so_traffic_class
== SO_TC_RD
||
2930 so
->so_traffic_class
== SO_TC_OAM
);
2934 sonullevent(struct socket
*so
, void *arg
, uint32_t hint
)
2936 #pragma unused(so, arg, hint)
2940 * Here is the definition of some of the basic objects in the kern.ipc
2941 * branch of the MIB.
2943 SYSCTL_NODE(_kern
, KERN_IPC
, ipc
,
2944 CTLFLAG_RW
|CTLFLAG_LOCKED
|CTLFLAG_ANYBODY
, 0, "IPC");
2946 /* Check that the maximum socket buffer size is within a range */
2949 sysctl_sb_max SYSCTL_HANDLER_ARGS
2951 #pragma unused(oidp, arg1, arg2)
2952 u_int32_t new_value
;
2954 int error
= sysctl_io_number(req
, sb_max
, sizeof (u_int32_t
),
2955 &new_value
, &changed
);
2956 if (!error
&& changed
) {
2957 if (new_value
> LOW_SB_MAX
&& new_value
<= high_sb_max
) {
2967 sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS
2969 #pragma unused(arg1, arg2)
2972 i
= net_io_policy_throttled
;
2974 err
= sysctl_handle_int(oidp
, &i
, 0, req
);
2975 if (err
!= 0 || req
->newptr
== USER_ADDR_NULL
)
2978 if (i
!= net_io_policy_throttled
)
2979 SOTHROTTLELOG("throttle: network IO policy throttling is "
2980 "now %s\n", i
? "ON" : "OFF");
2982 net_io_policy_throttled
= i
;
2987 SYSCTL_PROC(_kern_ipc
, KIPC_MAXSOCKBUF
, maxsockbuf
,
2988 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
2989 &sb_max
, 0, &sysctl_sb_max
, "IU", "Maximum socket buffer size");
2991 SYSCTL_INT(_kern_ipc
, KIPC_SOCKBUF_WASTE
, sockbuf_waste_factor
,
2992 CTLFLAG_RW
| CTLFLAG_LOCKED
, &sb_efficiency
, 0, "");
2994 SYSCTL_INT(_kern_ipc
, KIPC_NMBCLUSTERS
, nmbclusters
,
2995 CTLFLAG_RD
| CTLFLAG_LOCKED
, &nmbclusters
, 0, "");
2997 SYSCTL_INT(_kern_ipc
, OID_AUTO
, njcl
,
2998 CTLFLAG_RD
| CTLFLAG_LOCKED
, &njcl
, 0, "");
3000 SYSCTL_INT(_kern_ipc
, OID_AUTO
, njclbytes
,
3001 CTLFLAG_RD
| CTLFLAG_LOCKED
, &njclbytes
, 0, "");
3003 SYSCTL_INT(_kern_ipc
, KIPC_SOQLIMITCOMPAT
, soqlimitcompat
,
3004 CTLFLAG_RW
| CTLFLAG_LOCKED
, &soqlimitcompat
, 1,
3005 "Enable socket queue limit compatibility");
3007 SYSCTL_INT(_kern_ipc
, OID_AUTO
, soqlencomp
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
3008 &soqlencomp
, 0, "Listen backlog represents only complete queue");
3010 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sbmb_cnt
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3011 &total_sbmb_cnt
, 0, "");
3012 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sbmb_cnt_peak
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3013 &total_sbmb_cnt_peak
, 0, "");
3014 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sbmb_cnt_floor
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3015 &total_sbmb_cnt_floor
, 0, "");
3016 SYSCTL_QUAD(_kern_ipc
, OID_AUTO
, sbmb_limreached
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3017 &sbmb_limreached
, "");
3020 SYSCTL_NODE(_kern_ipc
, OID_AUTO
, io_policy
, CTLFLAG_RW
, 0, "network IO policy");
3022 SYSCTL_PROC(_kern_ipc_io_policy
, OID_AUTO
, throttled
,
3023 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &net_io_policy_throttled
, 0,
3024 sysctl_io_policy_throttled
, "I", "");
3026 SYSCTL_INT(_kern_ipc_io_policy
, OID_AUTO
, log
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
3027 &net_io_policy_log
, 0, "");
3029 #if CONFIG_PROC_UUID_POLICY
3030 SYSCTL_INT(_kern_ipc_io_policy
, OID_AUTO
, uuid
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
3031 &net_io_policy_uuid
, 0, "");
3032 #endif /* CONFIG_PROC_UUID_POLICY */