2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
69 * NOTICE: This file was modified by SPARTA, Inc. in 2006 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/ioctl.h>
79 #include <sys/file_internal.h>
80 #include <sys/proc_internal.h>
81 #include <sys/socketvar.h>
82 #include <sys/uio_internal.h>
83 #include <sys/kernel.h>
84 #include <sys/guarded.h>
86 #include <sys/malloc.h>
87 #include <sys/sysproto.h>
89 #include <sys/mount_internal.h>
90 #include <sys/protosw.h>
93 #include <sys/kdebug.h>
95 #include <sys/event.h>
96 #include <sys/eventvar.h>
98 #include <sys/kauth.h>
100 #include <mach/mach_types.h>
101 #include <kern/kern_types.h>
102 #include <kern/assert.h>
103 #include <kern/kalloc.h>
104 #include <kern/thread.h>
105 #include <kern/clock.h>
106 #include <kern/ledger.h>
107 #include <kern/task.h>
108 #include <kern/telemetry.h>
109 #include <kern/waitq.h>
110 #include <kern/sched_prim.h>
112 #include <sys/mbuf.h>
113 #include <sys/domain.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/errno.h>
117 #include <sys/syscall.h>
118 #include <sys/pipe.h>
120 #include <security/audit/audit.h>
123 #include <net/route.h>
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/ip_var.h>
130 #include <netinet/ip6.h>
131 #include <netinet/tcp.h>
132 #include <netinet/tcp_fsm.h>
133 #include <netinet/tcp_seq.h>
134 #include <netinet/tcp_timer.h>
135 #include <netinet/tcp_var.h>
136 #include <netinet/tcpip.h>
137 #include <netinet/tcp_debug.h>
138 /* for wait queue based select */
139 #include <kern/waitq.h>
140 #include <kern/kalloc.h>
141 #include <sys/vnode_internal.h>
143 /* XXX should be in a header file somewhere */
144 void evsofree(struct socket
*);
145 void evpipefree(struct pipe
*);
146 void postpipeevent(struct pipe
*, int);
147 void postevent(struct socket
*, struct sockbuf
*, int);
148 extern kern_return_t
IOBSDGetPlatformUUID(__darwin_uuid_t uuid
, mach_timespec_t timeoutp
);
150 int rd_uio(struct proc
*p
, int fdes
, uio_t uio
, user_ssize_t
*retval
);
151 int wr_uio(struct proc
*p
, struct fileproc
*fp
, uio_t uio
, user_ssize_t
*retval
);
153 __private_extern__
int dofileread(vfs_context_t ctx
, struct fileproc
*fp
,
154 user_addr_t bufp
, user_size_t nbyte
,
155 off_t offset
, int flags
, user_ssize_t
*retval
);
156 __private_extern__
int dofilewrite(vfs_context_t ctx
, struct fileproc
*fp
,
157 user_addr_t bufp
, user_size_t nbyte
,
158 off_t offset
, int flags
, user_ssize_t
*retval
);
159 __private_extern__
int preparefileread(struct proc
*p
, struct fileproc
**fp_ret
, int fd
, int check_for_vnode
);
160 __private_extern__
void donefileread(struct proc
*p
, struct fileproc
*fp_ret
, int fd
);
163 /* Conflict wait queue for when selects collide (opaque type) */
164 struct waitq select_conflict_queue
;
167 * Init routine called from bsd_init.c
169 void select_waitq_init(void);
171 select_waitq_init(void)
173 waitq_init(&select_conflict_queue
, SYNC_POLICY_FIFO
);
176 #define f_flag f_fglob->fg_flag
177 #define f_type f_fglob->fg_ops->fo_type
178 #define f_msgcount f_fglob->fg_msgcount
179 #define f_cred f_fglob->fg_cred
180 #define f_ops f_fglob->fg_ops
181 #define f_offset f_fglob->fg_offset
182 #define f_data f_fglob->fg_data
188 * preparefileread:EBADF
189 * preparefileread:ESPIPE
190 * preparefileread:ENXIO
191 * preparefileread:EBADF
195 read(struct proc
*p
, struct read_args
*uap
, user_ssize_t
*retval
)
197 __pthread_testcancel(1);
198 return(read_nocancel(p
, (struct read_nocancel_args
*)uap
, retval
));
202 read_nocancel(struct proc
*p
, struct read_nocancel_args
*uap
, user_ssize_t
*retval
)
207 struct vfs_context context
;
209 if ( (error
= preparefileread(p
, &fp
, fd
, 0)) )
212 context
= *(vfs_context_current());
213 context
.vc_ucred
= fp
->f_fglob
->fg_cred
;
215 error
= dofileread(&context
, fp
, uap
->cbuf
, uap
->nbyte
,
216 (off_t
)-1, 0, retval
);
218 donefileread(p
, fp
, fd
);
227 * preparefileread:EBADF
228 * preparefileread:ESPIPE
229 * preparefileread:ENXIO
230 * preparefileread:EBADF
234 pread(struct proc
*p
, struct pread_args
*uap
, user_ssize_t
*retval
)
236 __pthread_testcancel(1);
237 return(pread_nocancel(p
, (struct pread_nocancel_args
*)uap
, retval
));
241 pread_nocancel(struct proc
*p
, struct pread_nocancel_args
*uap
, user_ssize_t
*retval
)
243 struct fileproc
*fp
= NULL
; /* fp set by preparefileread() */
246 struct vfs_context context
;
248 if ( (error
= preparefileread(p
, &fp
, fd
, 1)) )
251 context
= *(vfs_context_current());
252 context
.vc_ucred
= fp
->f_fglob
->fg_cred
;
254 error
= dofileread(&context
, fp
, uap
->buf
, uap
->nbyte
,
255 uap
->offset
, FOF_OFFSET
, retval
);
257 donefileread(p
, fp
, fd
);
259 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_SC_EXTENDED_INFO
, SYS_pread
) | DBG_FUNC_NONE
),
260 uap
->fd
, uap
->nbyte
, (unsigned int)((uap
->offset
>> 32)), (unsigned int)(uap
->offset
), 0);
267 * Code common for read and pread
271 donefileread(struct proc
*p
, struct fileproc
*fp
, int fd
)
274 fp_drop(p
, fd
, fp
, 1);
287 preparefileread(struct proc
*p
, struct fileproc
**fp_ret
, int fd
, int check_for_pread
)
297 error
= fp_lookup(p
, fd
, &fp
, 1);
303 if ((fp
->f_flag
& FREAD
) == 0) {
307 if (check_for_pread
&& (fp
->f_type
!= DTYPE_VNODE
)) {
311 if (fp
->f_type
== DTYPE_VNODE
) {
312 vp
= (struct vnode
*)fp
->f_fglob
->fg_data
;
314 if (check_for_pread
&& (vnode_isfifo(vp
))) {
318 if (check_for_pread
&& (vp
->v_flag
& VISTTY
)) {
330 fp_drop(p
, fd
, fp
, 1);
341 __private_extern__
int
342 dofileread(vfs_context_t ctx
, struct fileproc
*fp
,
343 user_addr_t bufp
, user_size_t nbyte
, off_t offset
, int flags
,
344 user_ssize_t
*retval
)
347 user_ssize_t bytecnt
;
349 char uio_buf
[ UIO_SIZEOF(1) ];
354 if (IS_64BIT_PROCESS(vfs_context_proc(ctx
))) {
355 auio
= uio_createwithbuffer(1, offset
, UIO_USERSPACE64
, UIO_READ
,
356 &uio_buf
[0], sizeof(uio_buf
));
358 auio
= uio_createwithbuffer(1, offset
, UIO_USERSPACE32
, UIO_READ
,
359 &uio_buf
[0], sizeof(uio_buf
));
361 uio_addiov(auio
, bufp
, nbyte
);
365 if ((error
= fo_read(fp
, auio
, flags
, ctx
))) {
366 if (uio_resid(auio
) != bytecnt
&& (error
== ERESTART
||
367 error
== EINTR
|| error
== EWOULDBLOCK
))
370 bytecnt
-= uio_resid(auio
);
378 * Scatter read system call.
387 readv(struct proc
*p
, struct readv_args
*uap
, user_ssize_t
*retval
)
389 __pthread_testcancel(1);
390 return(readv_nocancel(p
, (struct readv_nocancel_args
*)uap
, retval
));
394 readv_nocancel(struct proc
*p
, struct readv_nocancel_args
*uap
, user_ssize_t
*retval
)
398 struct user_iovec
*iovp
;
400 /* Verify range bedfore calling uio_create() */
401 if (uap
->iovcnt
<= 0 || uap
->iovcnt
> UIO_MAXIOV
)
404 /* allocate a uio large enough to hold the number of iovecs passed */
405 auio
= uio_create(uap
->iovcnt
, 0,
406 (IS_64BIT_PROCESS(p
) ? UIO_USERSPACE64
: UIO_USERSPACE32
),
409 /* get location of iovecs within the uio. then copyin the iovecs from
412 iovp
= uio_iovsaddr(auio
);
415 goto ExitThisRoutine
;
417 error
= copyin_user_iovec_array(uap
->iovp
,
418 IS_64BIT_PROCESS(p
) ? UIO_USERSPACE64
: UIO_USERSPACE32
,
421 goto ExitThisRoutine
;
424 /* finalize uio_t for use and do the IO
426 error
= uio_calculateresid(auio
);
428 goto ExitThisRoutine
;
430 error
= rd_uio(p
, uap
->fd
, auio
, retval
);
448 write(struct proc
*p
, struct write_args
*uap
, user_ssize_t
*retval
)
450 __pthread_testcancel(1);
451 return(write_nocancel(p
, (struct write_nocancel_args
*)uap
, retval
));
456 write_nocancel(struct proc
*p
, struct write_nocancel_args
*uap
, user_ssize_t
*retval
)
461 bool wrote_some
= false;
465 error
= fp_lookup(p
,fd
,&fp
,0);
468 if ((fp
->f_flag
& FWRITE
) == 0) {
470 } else if (FP_ISGUARDED(fp
, GUARD_WRITE
)) {
472 error
= fp_guard_exception(p
, fd
, fp
, kGUARD_EXC_WRITE
);
475 struct vfs_context context
= *(vfs_context_current());
476 context
.vc_ucred
= fp
->f_fglob
->fg_cred
;
478 error
= dofilewrite(&context
, fp
, uap
->cbuf
, uap
->nbyte
,
479 (off_t
)-1, 0, retval
);
481 wrote_some
= *retval
> 0;
484 fp_drop_written(p
, fd
, fp
);
486 fp_drop(p
, fd
, fp
, 0);
502 pwrite(struct proc
*p
, struct pwrite_args
*uap
, user_ssize_t
*retval
)
504 __pthread_testcancel(1);
505 return(pwrite_nocancel(p
, (struct pwrite_nocancel_args
*)uap
, retval
));
509 pwrite_nocancel(struct proc
*p
, struct pwrite_nocancel_args
*uap
, user_ssize_t
*retval
)
514 vnode_t vp
= (vnode_t
)0;
515 bool wrote_some
= false;
519 error
= fp_lookup(p
,fd
,&fp
,0);
523 if ((fp
->f_flag
& FWRITE
) == 0) {
525 } else if (FP_ISGUARDED(fp
, GUARD_WRITE
)) {
527 error
= fp_guard_exception(p
, fd
, fp
, kGUARD_EXC_WRITE
);
530 struct vfs_context context
= *vfs_context_current();
531 context
.vc_ucred
= fp
->f_fglob
->fg_cred
;
533 if (fp
->f_type
!= DTYPE_VNODE
) {
537 vp
= (vnode_t
)fp
->f_fglob
->fg_data
;
538 if (vnode_isfifo(vp
)) {
542 if ((vp
->v_flag
& VISTTY
)) {
546 if (uap
->offset
== (off_t
)-1) {
551 error
= dofilewrite(&context
, fp
, uap
->buf
, uap
->nbyte
,
552 uap
->offset
, FOF_OFFSET
, retval
);
553 wrote_some
= *retval
> 0;
557 fp_drop_written(p
, fd
, fp
);
559 fp_drop(p
, fd
, fp
, 0);
561 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_SC_EXTENDED_INFO
, SYS_pwrite
) | DBG_FUNC_NONE
),
562 uap
->fd
, uap
->nbyte
, (unsigned int)((uap
->offset
>> 32)), (unsigned int)(uap
->offset
), 0);
571 * <fo_write>:??? [indirect through struct fileops]
573 __private_extern__
int
574 dofilewrite(vfs_context_t ctx
, struct fileproc
*fp
,
575 user_addr_t bufp
, user_size_t nbyte
, off_t offset
, int flags
,
576 user_ssize_t
*retval
)
580 user_ssize_t bytecnt
;
581 char uio_buf
[ UIO_SIZEOF(1) ];
583 if (nbyte
> INT_MAX
) {
588 if (IS_64BIT_PROCESS(vfs_context_proc(ctx
))) {
589 auio
= uio_createwithbuffer(1, offset
, UIO_USERSPACE64
, UIO_WRITE
,
590 &uio_buf
[0], sizeof(uio_buf
));
592 auio
= uio_createwithbuffer(1, offset
, UIO_USERSPACE32
, UIO_WRITE
,
593 &uio_buf
[0], sizeof(uio_buf
));
595 uio_addiov(auio
, bufp
, nbyte
);
598 if ((error
= fo_write(fp
, auio
, flags
, ctx
))) {
599 if (uio_resid(auio
) != bytecnt
&& (error
== ERESTART
||
600 error
== EINTR
|| error
== EWOULDBLOCK
))
602 /* The socket layer handles SIGPIPE */
603 if (error
== EPIPE
&& fp
->f_type
!= DTYPE_SOCKET
&&
604 (fp
->f_fglob
->fg_lflags
& FG_NOSIGPIPE
) == 0) {
605 /* XXX Raise the signal on the thread? */
606 psignal(vfs_context_proc(ctx
), SIGPIPE
);
609 bytecnt
-= uio_resid(auio
);
616 * Gather write system call
619 writev(struct proc
*p
, struct writev_args
*uap
, user_ssize_t
*retval
)
621 __pthread_testcancel(1);
622 return(writev_nocancel(p
, (struct writev_nocancel_args
*)uap
, retval
));
626 writev_nocancel(struct proc
*p
, struct writev_nocancel_args
*uap
, user_ssize_t
*retval
)
631 struct user_iovec
*iovp
;
632 bool wrote_some
= false;
634 AUDIT_ARG(fd
, uap
->fd
);
636 /* Verify range bedfore calling uio_create() */
637 if (uap
->iovcnt
<= 0 || uap
->iovcnt
> UIO_MAXIOV
)
640 /* allocate a uio large enough to hold the number of iovecs passed */
641 auio
= uio_create(uap
->iovcnt
, 0,
642 (IS_64BIT_PROCESS(p
) ? UIO_USERSPACE64
: UIO_USERSPACE32
),
645 /* get location of iovecs within the uio. then copyin the iovecs from
648 iovp
= uio_iovsaddr(auio
);
651 goto ExitThisRoutine
;
653 error
= copyin_user_iovec_array(uap
->iovp
,
654 IS_64BIT_PROCESS(p
) ? UIO_USERSPACE64
: UIO_USERSPACE32
,
657 goto ExitThisRoutine
;
660 /* finalize uio_t for use and do the IO
662 error
= uio_calculateresid(auio
);
664 goto ExitThisRoutine
;
667 error
= fp_lookup(p
, uap
->fd
, &fp
, 0);
669 goto ExitThisRoutine
;
671 if ((fp
->f_flag
& FWRITE
) == 0) {
673 } else if (FP_ISGUARDED(fp
, GUARD_WRITE
)) {
675 error
= fp_guard_exception(p
, uap
->fd
, fp
, kGUARD_EXC_WRITE
);
678 error
= wr_uio(p
, fp
, auio
, retval
);
679 wrote_some
= *retval
> 0;
683 fp_drop_written(p
, uap
->fd
, fp
);
685 fp_drop(p
, uap
->fd
, fp
, 0);
696 wr_uio(struct proc
*p
, struct fileproc
*fp
, uio_t uio
, user_ssize_t
*retval
)
700 struct vfs_context context
= *vfs_context_current();
702 count
= uio_resid(uio
);
704 context
.vc_ucred
= fp
->f_cred
;
705 error
= fo_write(fp
, uio
, 0, &context
);
707 if (uio_resid(uio
) != count
&& (error
== ERESTART
||
708 error
== EINTR
|| error
== EWOULDBLOCK
))
710 /* The socket layer handles SIGPIPE */
711 if (error
== EPIPE
&& fp
->f_type
!= DTYPE_SOCKET
&&
712 (fp
->f_fglob
->fg_lflags
& FG_NOSIGPIPE
) == 0)
715 *retval
= count
- uio_resid(uio
);
722 rd_uio(struct proc
*p
, int fdes
, uio_t uio
, user_ssize_t
*retval
)
727 struct vfs_context context
= *vfs_context_current();
729 if ( (error
= preparefileread(p
, &fp
, fdes
, 0)) )
732 count
= uio_resid(uio
);
734 context
.vc_ucred
= fp
->f_cred
;
736 error
= fo_read(fp
, uio
, 0, &context
);
739 if (uio_resid(uio
) != count
&& (error
== ERESTART
||
740 error
== EINTR
|| error
== EWOULDBLOCK
))
743 *retval
= count
- uio_resid(uio
);
745 donefileread(p
, fp
, fdes
);
760 * fp_lookup:EBADF Bad file descriptor
764 ioctl(struct proc
*p
, struct ioctl_args
*uap
, __unused
int32_t *retval
)
766 struct fileproc
*fp
= NULL
;
769 caddr_t datap
= NULL
, memp
= NULL
;
770 boolean_t is64bit
= FALSE
;
772 #define STK_PARAMS 128
773 char stkbuf
[STK_PARAMS
];
775 u_long com
= uap
->com
;
776 struct vfs_context context
= *vfs_context_current();
778 AUDIT_ARG(fd
, uap
->fd
);
779 AUDIT_ARG(addr
, uap
->data
);
781 is64bit
= proc_is64bit(p
);
784 AUDIT_ARG(value64
, com
);
786 AUDIT_ARG(cmd
, CAST_DOWN_EXPLICIT(int, com
));
787 #endif /* CONFIG_AUDIT */
790 * Interpret high order word to find amount of data to be
791 * copied to/from the user's address space.
793 size
= IOCPARM_LEN(com
);
794 if (size
> IOCPARM_MAX
)
796 if (size
> sizeof (stkbuf
)) {
797 if ((memp
= (caddr_t
)kalloc(size
)) == 0)
804 error
= copyin(uap
->data
, datap
, size
);
808 /* XXX - IOC_IN and no size? we should proably return an error here!! */
810 *(user_addr_t
*)datap
= uap
->data
;
813 *(uint32_t *)datap
= (uint32_t)uap
->data
;
816 } else if ((com
& IOC_OUT
) && size
)
818 * Zero the buffer so the user always
819 * gets back something deterministic.
822 else if (com
& IOC_VOID
) {
823 /* XXX - this is odd since IOC_VOID means no parameters */
825 *(user_addr_t
*)datap
= uap
->data
;
828 *(uint32_t *)datap
= (uint32_t)uap
->data
;
833 error
= fp_lookup(p
,fd
,&fp
,1);
839 AUDIT_ARG(file
, p
, fp
);
841 if ((fp
->f_flag
& (FREAD
| FWRITE
)) == 0) {
846 context
.vc_ucred
= fp
->f_fglob
->fg_cred
;
849 error
= mac_file_check_ioctl(context
.vc_ucred
, fp
->f_fglob
, com
);
856 *fdflags(p
, fd
) &= ~UF_EXCLOSE
;
860 *fdflags(p
, fd
) |= UF_EXCLOSE
;
864 if ( (tmp
= *(int *)datap
) )
865 fp
->f_flag
|= FNONBLOCK
;
867 fp
->f_flag
&= ~FNONBLOCK
;
868 error
= fo_ioctl(fp
, FIONBIO
, (caddr_t
)&tmp
, &context
);
872 if ( (tmp
= *(int *)datap
) )
873 fp
->f_flag
|= FASYNC
;
875 fp
->f_flag
&= ~FASYNC
;
876 error
= fo_ioctl(fp
, FIOASYNC
, (caddr_t
)&tmp
, &context
);
881 if (fp
->f_type
== DTYPE_SOCKET
) {
882 ((struct socket
*)fp
->f_data
)->so_pgid
= tmp
;
885 if (fp
->f_type
== DTYPE_PIPE
) {
886 error
= fo_ioctl(fp
, (int)TIOCSPGRP
, (caddr_t
)&tmp
, &context
);
892 struct proc
*p1
= proc_find(tmp
);
900 error
= fo_ioctl(fp
, (int)TIOCSPGRP
, (caddr_t
)&tmp
, &context
);
904 if (fp
->f_type
== DTYPE_SOCKET
) {
905 *(int *)datap
= ((struct socket
*)fp
->f_data
)->so_pgid
;
908 error
= fo_ioctl(fp
, TIOCGPGRP
, datap
, &context
);
909 *(int *)datap
= -*(int *)datap
;
913 error
= fo_ioctl(fp
, com
, datap
, &context
);
915 * Copy any data to user, size was
916 * already set and checked above.
918 if (error
== 0 && (com
& IOC_OUT
) && size
)
919 error
= copyout(datap
, uap
->data
, (u_int
)size
);
923 fp_drop(p
, fd
, fp
, 1);
932 int selwait
, nselcoll
;
933 #define SEL_FIRSTPASS 1
934 #define SEL_SECONDPASS 2
935 extern int selcontinue(int error
);
936 extern int selprocess(int error
, int sel_pass
);
937 static int selscan(struct proc
*p
, struct _select
* sel
, struct _select_data
* seldata
,
938 int nfd
, int32_t *retval
, int sel_pass
, struct waitq_set
*wqset
);
939 static int selcount(struct proc
*p
, u_int32_t
*ibits
, int nfd
, int *count
);
940 static int seldrop_locked(struct proc
*p
, u_int32_t
*ibits
, int nfd
, int lim
, int *need_wakeup
, int fromselcount
);
941 static int seldrop(struct proc
*p
, u_int32_t
*ibits
, int nfd
);
942 static int select_internal(struct proc
*p
, struct select_nocancel_args
*uap
, uint64_t timeout
, int32_t *retval
);
945 * Select system call.
948 * EINVAL Invalid argument
949 * EAGAIN Nonconformant error if allocation fails
952 select(struct proc
*p
, struct select_args
*uap
, int32_t *retval
)
954 __pthread_testcancel(1);
955 return select_nocancel(p
, (struct select_nocancel_args
*)uap
, retval
);
959 select_nocancel(struct proc
*p
, struct select_nocancel_args
*uap
, int32_t *retval
)
961 uint64_t timeout
= 0;
966 if (IS_64BIT_PROCESS(p
)) {
967 struct user64_timeval atv64
;
968 err
= copyin(uap
->tv
, (caddr_t
)&atv64
, sizeof(atv64
));
969 /* Loses resolution - assume timeout < 68 years */
970 atv
.tv_sec
= atv64
.tv_sec
;
971 atv
.tv_usec
= atv64
.tv_usec
;
973 struct user32_timeval atv32
;
974 err
= copyin(uap
->tv
, (caddr_t
)&atv32
, sizeof(atv32
));
975 atv
.tv_sec
= atv32
.tv_sec
;
976 atv
.tv_usec
= atv32
.tv_usec
;
981 if (itimerfix(&atv
)) {
986 clock_absolutetime_interval_to_deadline(tvtoabstime(&atv
), &timeout
);
989 return select_internal(p
, uap
, timeout
, retval
);
993 pselect(struct proc
*p
, struct pselect_args
*uap
, int32_t *retval
)
995 __pthread_testcancel(1);
996 return pselect_nocancel(p
, (struct pselect_nocancel_args
*)uap
, retval
);
1000 pselect_nocancel(struct proc
*p
, struct pselect_nocancel_args
*uap
, int32_t *retval
)
1004 uint64_t timeout
= 0;
1009 if (IS_64BIT_PROCESS(p
)) {
1010 struct user64_timespec ts64
;
1011 err
= copyin(uap
->ts
, (caddr_t
)&ts64
, sizeof(ts64
));
1012 ts
.tv_sec
= ts64
.tv_sec
;
1013 ts
.tv_nsec
= ts64
.tv_nsec
;
1015 struct user32_timespec ts32
;
1016 err
= copyin(uap
->ts
, (caddr_t
)&ts32
, sizeof(ts32
));
1017 ts
.tv_sec
= ts32
.tv_sec
;
1018 ts
.tv_nsec
= ts32
.tv_nsec
;
1024 if (!timespec_is_valid(&ts
)) {
1027 clock_absolutetime_interval_to_deadline(tstoabstime(&ts
), &timeout
);
1030 ut
= get_bsdthread_info(current_thread());
1032 if (uap
->mask
!= USER_ADDR_NULL
) {
1033 /* save current mask, then copyin and set new mask */
1035 err
= copyin(uap
->mask
, &newset
, sizeof(sigset_t
));
1039 ut
->uu_oldmask
= ut
->uu_sigmask
;
1040 ut
->uu_flag
|= UT_SAS_OLDMASK
;
1041 ut
->uu_sigmask
= (newset
& ~sigcantmask
);
1044 err
= select_internal(p
, (struct select_nocancel_args
*)uap
, timeout
, retval
);
1046 if (err
!= EINTR
&& ut
->uu_flag
& UT_SAS_OLDMASK
) {
1048 * Restore old mask (direct return case). NOTE: EINTR can also be returned
1049 * if the thread is cancelled. In that case, we don't reset the signal
1050 * mask to its original value (which usually happens in the signal
1051 * delivery path). This behavior is permitted by POSIX.
1053 ut
->uu_sigmask
= ut
->uu_oldmask
;
1055 ut
->uu_flag
&= ~UT_SAS_OLDMASK
;
1062 * Generic implementation of {,p}select. Care: we type-pun uap across the two
1063 * syscalls, which differ slightly. The first 4 arguments (nfds and the fd sets)
1064 * are identical. The 5th (timeout) argument points to different types, so we
1065 * unpack in the syscall-specific code, but the generic code still does a null
1066 * check on this argument to determine if a timeout was specified.
1069 select_internal(struct proc
*p
, struct select_nocancel_args
*uap
, uint64_t timeout
, int32_t *retval
)
1074 struct uthread
*uth
;
1075 struct _select
*sel
;
1076 struct _select_data
*seldata
;
1077 int needzerofill
= 1;
1081 th_act
= current_thread();
1082 uth
= get_bsdthread_info(th_act
);
1083 sel
= &uth
->uu_select
;
1084 seldata
= &uth
->uu_kevent
.ss_select_data
;
1087 seldata
->args
= uap
;
1088 seldata
->retval
= retval
;
1089 seldata
->wqp
= NULL
;
1096 /* select on thread of process that already called proc_exit() */
1097 if (p
->p_fd
== NULL
) {
1101 if (uap
->nd
> p
->p_fd
->fd_nfiles
)
1102 uap
->nd
= p
->p_fd
->fd_nfiles
; /* forgiving; slightly wrong */
1104 nw
= howmany(uap
->nd
, NFDBITS
);
1105 ni
= nw
* sizeof(fd_mask
);
1108 * if the previously allocated space for the bits is smaller than
1109 * what is requested or no space has yet been allocated for this
1110 * thread, allocate enough space now.
1112 * Note: If this process fails, select() will return EAGAIN; this
1113 * is the same thing pool() returns in a no-memory situation, but
1114 * it is not a POSIX compliant error code for select().
1116 if (sel
->nbytes
< (3 * ni
)) {
1117 int nbytes
= 3 * ni
;
1119 /* Free previous allocation, if any */
1120 if (sel
->ibits
!= NULL
)
1121 FREE(sel
->ibits
, M_TEMP
);
1122 if (sel
->obits
!= NULL
) {
1123 FREE(sel
->obits
, M_TEMP
);
1124 /* NULL out; subsequent ibits allocation may fail */
1128 MALLOC(sel
->ibits
, u_int32_t
*, nbytes
, M_TEMP
, M_WAITOK
| M_ZERO
);
1129 if (sel
->ibits
== NULL
)
1131 MALLOC(sel
->obits
, u_int32_t
*, nbytes
, M_TEMP
, M_WAITOK
| M_ZERO
);
1132 if (sel
->obits
== NULL
) {
1133 FREE(sel
->ibits
, M_TEMP
);
1137 sel
->nbytes
= nbytes
;
1142 bzero((caddr_t
)sel
->ibits
, sel
->nbytes
);
1143 bzero((caddr_t
)sel
->obits
, sel
->nbytes
);
1147 * get the bits from the user address space
1149 #define getbits(name, x) \
1151 if (uap->name && (error = copyin(uap->name, \
1152 (caddr_t)&sel->ibits[(x) * nw], ni))) \
1153 goto continuation; \
1161 seldata
->abstime
= timeout
;
1163 if ( (error
= selcount(p
, sel
->ibits
, uap
->nd
, &count
)) ) {
1168 * We need an array of waitq pointers. This is due to the new way
1169 * in which waitqs are linked to sets. When a thread selects on a
1170 * file descriptor, a waitq (embedded in a selinfo structure) is
1171 * added to the thread's local waitq set. There is no longer any
1172 * way to directly iterate over all members of a given waitq set.
1173 * The process of linking a waitq into a set may allocate a link
1174 * table object. Because we can't iterate over all the waitqs to
1175 * which our thread waitq set belongs, we need a way of removing
1178 * Thus we need a buffer which will hold one waitq pointer
1179 * per FD being selected. During the tear-down phase we can use
1180 * these pointers to dis-associate the underlying selinfo's waitq
1181 * from our thread's waitq set.
1183 * Because we also need to allocate a waitq set for this thread,
1184 * we use a bare buffer pointer to hold all the memory. Note that
1185 * this memory is cached in the thread pointer and not reaped until
1186 * the thread exists. This is generally OK because threads that
1187 * call select tend to keep calling select repeatedly.
1189 sz
= ALIGN(sizeof(struct waitq_set
)) + (count
* sizeof(uint64_t));
1190 if (sz
> uth
->uu_wqstate_sz
) {
1191 /* (re)allocate a buffer to hold waitq pointers */
1192 if (uth
->uu_wqset
) {
1193 if (waitq_set_is_valid(uth
->uu_wqset
))
1194 waitq_set_deinit(uth
->uu_wqset
);
1195 FREE(uth
->uu_wqset
, M_SELECT
);
1196 } else if (uth
->uu_wqstate_sz
&& !uth
->uu_wqset
)
1197 panic("select: thread structure corrupt! "
1198 "uu_wqstate_sz:%ld, wqstate_buf == NULL",
1199 uth
->uu_wqstate_sz
);
1200 uth
->uu_wqstate_sz
= sz
;
1201 MALLOC(uth
->uu_wqset
, struct waitq_set
*, sz
, M_SELECT
, M_WAITOK
);
1203 panic("can't allocate %ld bytes for wqstate buffer",
1204 uth
->uu_wqstate_sz
);
1205 waitq_set_init(uth
->uu_wqset
,
1206 SYNC_POLICY_FIFO
|SYNC_POLICY_PREPOST
, NULL
, NULL
);
1209 if (!waitq_set_is_valid(uth
->uu_wqset
))
1210 waitq_set_init(uth
->uu_wqset
,
1211 SYNC_POLICY_FIFO
|SYNC_POLICY_PREPOST
, NULL
, NULL
);
1213 /* the last chunk of our buffer is an array of waitq pointers */
1214 seldata
->wqp
= (uint64_t *)((char *)(uth
->uu_wqset
) + ALIGN(sizeof(struct waitq_set
)));
1215 bzero(seldata
->wqp
, sz
- ALIGN(sizeof(struct waitq_set
)));
1217 seldata
->count
= count
;
1223 * We have already cleaned up any state we established,
1224 * either locally or as a result of selcount(). We don't
1225 * need to wait_subqueue_unlink_all(), since we haven't set
1226 * anything at this point.
1231 return selprocess(0, SEL_FIRSTPASS
);
1235 selcontinue(int error
)
1237 return selprocess(error
, SEL_SECONDPASS
);
1244 * Parameters: error The error code from our caller
1245 * sel_pass The pass we are on
1248 selprocess(int error
, int sel_pass
)
1253 struct uthread
*uth
;
1255 struct select_nocancel_args
*uap
;
1257 struct _select
*sel
;
1258 struct _select_data
*seldata
;
1263 wait_result_t wait_result
;
1266 th_act
= current_thread();
1267 uth
= get_bsdthread_info(th_act
);
1268 sel
= &uth
->uu_select
;
1269 seldata
= &uth
->uu_kevent
.ss_select_data
;
1270 uap
= seldata
->args
;
1271 retval
= seldata
->retval
;
1273 if ((error
!= 0) && (sel_pass
== SEL_FIRSTPASS
))
1275 if (seldata
->count
== 0)
1282 OSBitOrAtomic(P_SELECT
, &p
->p_flag
);
1284 /* skip scans if the select is just for timeouts */
1285 if (seldata
->count
) {
1286 error
= selscan(p
, sel
, seldata
, uap
->nd
, retval
, sel_pass
, uth
->uu_wqset
);
1287 if (error
|| *retval
) {
1290 if (prepost
|| somewakeup
) {
1292 * if the select of log, then we can wakeup and
1293 * discover some one else already read the data;
1294 * go to select again if time permits
1305 clock_get_uptime(&now
);
1306 if (now
>= seldata
->abstime
)
1311 /* cleanup obits and try again */
1313 sel_pass
= SEL_FIRSTPASS
;
1318 * To effect a poll, the timeout argument should be
1319 * non-nil, pointing to a zero-valued timeval structure.
1321 if (uap
->tv
&& seldata
->abstime
== 0) {
1325 /* No spurious wakeups due to colls,no need to check for them */
1326 if ((sel_pass
== SEL_SECONDPASS
) || ((p
->p_flag
& P_SELECT
) == 0)) {
1327 sel_pass
= SEL_FIRSTPASS
;
1331 OSBitAndAtomic(~((uint32_t)P_SELECT
), &p
->p_flag
);
1333 /* if the select is just for timeout skip check */
1334 if (seldata
->count
&& (sel_pass
== SEL_SECONDPASS
))
1335 panic("selprocess: 2nd pass assertwaiting");
1337 /* waitq_set has waitqueue as first element */
1338 wait_result
= waitq_assert_wait64_leeway((struct waitq
*)uth
->uu_wqset
,
1339 NO_EVENT64
, THREAD_ABORTSAFE
,
1340 TIMEOUT_URGENCY_USER_NORMAL
,
1343 if (wait_result
!= THREAD_AWAKENED
) {
1344 /* there are no preposted events */
1345 error
= tsleep1(NULL
, PSOCK
| PCATCH
,
1346 "select", 0, selcontinue
);
1353 sel_pass
= SEL_SECONDPASS
;
1360 seldrop(p
, sel
->ibits
, uap
->nd
);
1361 waitq_set_deinit(uth
->uu_wqset
);
1363 * zero out the waitq pointer array to avoid use-after free
1364 * errors in the selcount error path (seldrop_locked) if/when
1365 * the thread re-calls select().
1367 bzero((void *)uth
->uu_wqset
, uth
->uu_wqstate_sz
);
1369 OSBitAndAtomic(~((uint32_t)P_SELECT
), &p
->p_flag
);
1370 /* select is not restarted after signals... */
1371 if (error
== ERESTART
)
1373 if (error
== EWOULDBLOCK
)
1375 nw
= howmany(uap
->nd
, NFDBITS
);
1376 ni
= nw
* sizeof(fd_mask
);
1378 #define putbits(name, x) \
1380 if (uap->name && (error2 = \
1381 copyout((caddr_t)&sel->obits[(x) * nw], uap->name, ni))) \
1394 if (error
!= EINTR
&& sel_pass
== SEL_SECONDPASS
&& uth
->uu_flag
& UT_SAS_OLDMASK
) {
1395 /* restore signal mask - continuation case */
1396 uth
->uu_sigmask
= uth
->uu_oldmask
;
1397 uth
->uu_oldmask
= 0;
1398 uth
->uu_flag
&= ~UT_SAS_OLDMASK
;
1406 * remove the fileproc's underlying waitq from the supplied waitq set;
1407 * clear FP_INSELECT when appropriate
1410 * fp File proc that is potentially currently in select
1411 * wqset Waitq set to which the fileproc may belong
1412 * (usually this is the thread's private waitq set)
1414 * proc_fdlock is held
1416 static void selunlinkfp(struct fileproc
*fp
, uint64_t wqp_id
, struct waitq_set
*wqset
)
1418 int valid_set
= waitq_set_is_valid(wqset
);
1419 int valid_q
= !!wqp_id
;
1422 * This could be called (from selcount error path) before we setup
1423 * the thread's wqset. Check the wqset passed in, and only unlink if
1427 /* unlink the underlying waitq from the input set (thread waitq set) */
1428 if (valid_q
&& valid_set
)
1429 waitq_unlink_by_prepost_id(wqp_id
, wqset
);
1431 /* allow passing a NULL/invalid fp for seldrop unwind */
1432 if (!fp
|| !(fp
->f_flags
& (FP_INSELECT
|FP_SELCONFLICT
)))
1436 * We can always remove the conflict queue from our thread's set: this
1437 * will not affect other threads that potentially need to be awoken on
1438 * the conflict queue during a fileproc_drain - those sets will still
1439 * be linked with the global conflict queue, and the last waiter
1440 * on the fp clears the CONFLICT marker.
1442 if (valid_set
&& (fp
->f_flags
& FP_SELCONFLICT
))
1443 waitq_unlink(&select_conflict_queue
, wqset
);
1446 * This isn't quite right - we don't actually know if this
1447 * fileproc is in another select or not! Here we just assume
1448 * that if we were the first thread to select on the FD, then
1449 * we'll be the one to clear this flag...
1451 if (valid_set
&& fp
->f_wset
== (void *)wqset
) {
1452 fp
->f_flags
&= ~FP_INSELECT
;
1458 * connect a fileproc to the given wqset, potentially bridging to a waitq
1459 * pointed to indirectly by wq_data
1462 * fp File proc potentially currently in select
1463 * wq_data Pointer to a pointer to a waitq (could be NULL)
1464 * wqset Waitq set to which the fileproc should now belong
1465 * (usually this is the thread's private waitq set)
1468 * proc_fdlock is held
1470 static uint64_t sellinkfp(struct fileproc
*fp
, void **wq_data
, struct waitq_set
*wqset
)
1472 struct waitq
*f_wq
= NULL
;
1474 if ((fp
->f_flags
& FP_INSELECT
) != FP_INSELECT
) {
1476 panic("non-null data:%p on fp:%p not in select?!"
1477 "(wqset:%p)", wq_data
, fp
, wqset
);
1481 if ((fp
->f_flags
& FP_SELCONFLICT
) == FP_SELCONFLICT
) {
1483 * The conflict queue requires disabling interrupts, so we
1484 * need to explicitly reserve a link object to avoid a
1485 * panic/assert in the waitq code. Hopefully this extra step
1486 * can be avoided if we can split the waitq structure into
1487 * blocking and linkage sub-structures.
1489 uint64_t reserved_link
= waitq_link_reserve(&select_conflict_queue
);
1490 waitq_link(&select_conflict_queue
, wqset
, WAITQ_SHOULD_LOCK
, &reserved_link
);
1491 waitq_link_release(reserved_link
);
1495 * The wq_data parameter has potentially been set by selrecord called
1496 * from a subsystems fo_select() function. If the subsystem does not
1497 * call selrecord, then wq_data will be NULL
1499 * Use memcpy to get the value into a proper pointer because
1500 * wq_data most likely points to a stack variable that could be
1501 * unaligned on 32-bit systems.
1504 memcpy(&f_wq
, wq_data
, sizeof(f_wq
));
1505 if (!waitq_is_valid(f_wq
))
1509 /* record the first thread's wqset in the fileproc structure */
1511 fp
->f_wset
= (void *)wqset
;
1513 /* handles NULL f_wq */
1514 return waitq_get_prepost_id(f_wq
);
1521 * Parameters: p Process performing the select
1522 * sel The per-thread select context structure
1523 * nfd The number of file descriptors to scan
1524 * retval The per thread system call return area
1525 * sel_pass Which pass this is; allowed values are
1526 * SEL_FIRSTPASS and SEL_SECONDPASS
1527 * wqset The per thread wait queue set
1529 * Returns: 0 Success
1530 * EIO Invalid p->p_fd field XXX Obsolete?
1531 * EBADF One of the files in the bit vector is
1535 selscan(struct proc
*p
, struct _select
*sel
, struct _select_data
* seldata
,
1536 int nfd
, int32_t *retval
, int sel_pass
, struct waitq_set
*wqset
)
1538 struct filedesc
*fdp
= p
->p_fd
;
1541 struct fileproc
*fp
;
1542 int n
= 0; /* count of bits */
1543 int nc
= 0; /* bit vector offset (nc'th bit) */
1544 static int flag
[3] = { FREAD
, FWRITE
, 0 };
1545 u_int32_t
*iptr
, *optr
;
1547 u_int32_t
*ibits
, *obits
;
1548 uint64_t reserved_link
, *rl_ptr
= NULL
;
1550 struct vfs_context context
= *vfs_context_current();
1553 * Problems when reboot; due to MacOSX signal probs
1554 * in Beaker1C ; verify that the p->p_fd is valid
1563 nw
= howmany(nfd
, NFDBITS
);
1565 count
= seldata
->count
;
1574 for (msk
= 0; msk
< 3; msk
++) {
1575 iptr
= (u_int32_t
*)&ibits
[msk
* nw
];
1576 optr
= (u_int32_t
*)&obits
[msk
* nw
];
1578 for (i
= 0; i
< nfd
; i
+= NFDBITS
) {
1579 bits
= iptr
[i
/NFDBITS
];
1581 while ((j
= ffs(bits
)) && (fd
= i
+ --j
) < nfd
) {
1584 if (fd
< fdp
->fd_nfiles
)
1585 fp
= fdp
->fd_ofiles
[fd
];
1589 if (fp
== NULL
|| (fdp
->fd_ofileflags
[fd
] & UF_RESERVED
)) {
1591 * If we abort because of a bad
1592 * fd, let the caller unwind...
1597 if (sel_pass
== SEL_SECONDPASS
) {
1600 selunlinkfp(fp
, seldata
->wqp
[nc
], wqset
);
1602 reserved_link
= waitq_link_reserve((struct waitq
*)wqset
);
1603 rl_ptr
= &reserved_link
;
1604 if (fp
->f_flags
& FP_INSELECT
)
1605 /* someone is already in select on this fp */
1606 fp
->f_flags
|= FP_SELCONFLICT
;
1608 fp
->f_flags
|= FP_INSELECT
;
1611 context
.vc_ucred
= fp
->f_cred
;
1614 * stash this value b/c fo_select may replace
1615 * reserved_link with a pointer to a waitq object
1617 uint64_t rsvd
= reserved_link
;
1619 /* The select; set the bit, if true */
1620 if (fp
->f_ops
&& fp
->f_type
1621 && fo_select(fp
, flag
[msk
], rl_ptr
, &context
)) {
1622 optr
[fd
/NFDBITS
] |= (1 << (fd
% NFDBITS
));
1625 if (sel_pass
== SEL_FIRSTPASS
) {
1626 waitq_link_release(rsvd
);
1628 * If the fp's supporting selinfo structure was linked
1629 * to this thread's waitq set, then 'reserved_link'
1630 * will have been updated by selrecord to be a pointer
1631 * to the selinfo's waitq.
1633 if (reserved_link
== rsvd
)
1634 rl_ptr
= NULL
; /* fo_select never called selrecord() */
1636 * Hook up the thread's waitq set either to
1637 * the fileproc structure, or to the global
1638 * conflict queue: but only on the first
1641 seldata
->wqp
[nc
] = sellinkfp(fp
, (void **)rl_ptr
, wqset
);
1653 int poll_callback(struct kqueue
*, struct kevent_internal_s
*, void *);
1655 struct poll_continue_args
{
1656 user_addr_t pca_fds
;
1662 poll(struct proc
*p
, struct poll_args
*uap
, int32_t *retval
)
1664 __pthread_testcancel(1);
1665 return(poll_nocancel(p
, (struct poll_nocancel_args
*)uap
, retval
));
1670 poll_nocancel(struct proc
*p
, struct poll_nocancel_args
*uap
, int32_t *retval
)
1672 struct poll_continue_args
*cont
;
1676 int ncoll
, error
= 0;
1677 u_int nfds
= uap
->nfds
;
1683 * This is kinda bogus. We have fd limits, but that is not
1684 * really related to the size of the pollfd array. Make sure
1685 * we let the process use at least FD_SETSIZE entries and at
1686 * least enough for the current limits. We want to be reasonably
1687 * safe, but not overly restrictive.
1689 if (nfds
> OPEN_MAX
||
1690 (nfds
> p
->p_rlimit
[RLIMIT_NOFILE
].rlim_cur
&& (proc_suser(p
) || nfds
> FD_SETSIZE
)))
1693 kq
= kqueue_alloc(p
, 0);
1697 ni
= nfds
* sizeof(struct pollfd
) + sizeof(struct poll_continue_args
);
1698 MALLOC(cont
, struct poll_continue_args
*, ni
, M_TEMP
, M_WAITOK
);
1704 fds
= (struct pollfd
*)&cont
[1];
1705 error
= copyin(uap
->fds
, fds
, nfds
* sizeof(struct pollfd
));
1709 if (uap
->timeout
!= -1) {
1712 atv
.tv_sec
= uap
->timeout
/ 1000;
1713 atv
.tv_usec
= (uap
->timeout
% 1000) * 1000;
1714 if (itimerfix(&atv
)) {
1718 getmicrouptime(&rtv
);
1719 timevaladd(&atv
, &rtv
);
1725 /* JMM - all this P_SELECT stuff is bogus */
1727 OSBitOrAtomic(P_SELECT
, &p
->p_flag
);
1728 for (i
= 0; i
< nfds
; i
++) {
1729 short events
= fds
[i
].events
;
1731 /* per spec, ignore fd values below zero */
1732 if (fds
[i
].fd
< 0) {
1737 /* convert the poll event into a kqueue kevent */
1738 struct kevent_internal_s kev
= {
1740 .flags
= EV_ADD
| EV_ONESHOT
| EV_POLL
,
1741 .udata
= CAST_USER_ADDR_T(&fds
[i
]) };
1743 /* Handle input events */
1744 if (events
& ( POLLIN
| POLLRDNORM
| POLLPRI
| POLLRDBAND
| POLLHUP
)) {
1745 kev
.filter
= EVFILT_READ
;
1746 if (events
& ( POLLPRI
| POLLRDBAND
))
1747 kev
.flags
|= EV_OOBAND
;
1748 kevent_register(kq
, &kev
, p
);
1751 /* Handle output events */
1752 if ((kev
.flags
& EV_ERROR
) == 0 &&
1753 (events
& ( POLLOUT
| POLLWRNORM
| POLLWRBAND
))) {
1754 kev
.filter
= EVFILT_WRITE
;
1755 kevent_register(kq
, &kev
, p
);
1758 /* Handle BSD extension vnode events */
1759 if ((kev
.flags
& EV_ERROR
) == 0 &&
1760 (events
& ( POLLEXTEND
| POLLATTRIB
| POLLNLINK
| POLLWRITE
))) {
1761 kev
.filter
= EVFILT_VNODE
;
1763 if (events
& POLLEXTEND
)
1764 kev
.fflags
|= NOTE_EXTEND
;
1765 if (events
& POLLATTRIB
)
1766 kev
.fflags
|= NOTE_ATTRIB
;
1767 if (events
& POLLNLINK
)
1768 kev
.fflags
|= NOTE_LINK
;
1769 if (events
& POLLWRITE
)
1770 kev
.fflags
|= NOTE_WRITE
;
1771 kevent_register(kq
, &kev
, p
);
1774 if (kev
.flags
& EV_ERROR
) {
1775 fds
[i
].revents
= POLLNVAL
;
1782 * Did we have any trouble registering?
1783 * If user space passed 0 FDs, then respect any timeout value passed.
1784 * This is an extremely inefficient sleep. If user space passed one or
1785 * more FDs, and we had trouble registering _all_ of them, then bail
1786 * out. If a subset of the provided FDs failed to register, then we
1787 * will still call the kqueue_scan function.
1789 if (nfds
&& (rfds
== nfds
))
1793 * If any events have trouble registering, an event has fired and we
1794 * shouldn't wait for events in kqueue_scan -- use the current time as
1798 getmicrouptime(&atv
);
1800 /* scan for, and possibly wait for, the kevents to trigger */
1801 cont
->pca_fds
= uap
->fds
;
1802 cont
->pca_nfds
= nfds
;
1803 cont
->pca_rfds
= rfds
;
1804 error
= kqueue_scan(kq
, poll_callback
, NULL
, cont
, NULL
, &atv
, p
);
1805 rfds
= cont
->pca_rfds
;
1808 OSBitAndAtomic(~((uint32_t)P_SELECT
), &p
->p_flag
);
1809 /* poll is not restarted after signals... */
1810 if (error
== ERESTART
)
1812 if (error
== EWOULDBLOCK
)
1815 error
= copyout(fds
, uap
->fds
, nfds
* sizeof(struct pollfd
));
1828 poll_callback(__unused
struct kqueue
*kq
, struct kevent_internal_s
*kevp
, void *data
)
1830 struct poll_continue_args
*cont
= (struct poll_continue_args
*)data
;
1831 struct pollfd
*fds
= CAST_DOWN(struct pollfd
*, kevp
->udata
);
1832 short prev_revents
= fds
->revents
;
1835 /* convert the results back into revents */
1836 if (kevp
->flags
& EV_EOF
)
1837 fds
->revents
|= POLLHUP
;
1838 if (kevp
->flags
& EV_ERROR
)
1839 fds
->revents
|= POLLERR
;
1841 switch (kevp
->filter
) {
1843 if (fds
->revents
& POLLHUP
)
1844 mask
= (POLLIN
| POLLRDNORM
| POLLPRI
| POLLRDBAND
);
1846 mask
= (POLLIN
| POLLRDNORM
);
1847 if (kevp
->flags
& EV_OOBAND
)
1848 mask
|= (POLLPRI
| POLLRDBAND
);
1850 fds
->revents
|= (fds
->events
& mask
);
1854 if (!(fds
->revents
& POLLHUP
))
1855 fds
->revents
|= (fds
->events
& ( POLLOUT
| POLLWRNORM
| POLLWRBAND
));
1859 if (kevp
->fflags
& NOTE_EXTEND
)
1860 fds
->revents
|= (fds
->events
& POLLEXTEND
);
1861 if (kevp
->fflags
& NOTE_ATTRIB
)
1862 fds
->revents
|= (fds
->events
& POLLATTRIB
);
1863 if (kevp
->fflags
& NOTE_LINK
)
1864 fds
->revents
|= (fds
->events
& POLLNLINK
);
1865 if (kevp
->fflags
& NOTE_WRITE
)
1866 fds
->revents
|= (fds
->events
& POLLWRITE
);
1870 if (fds
->revents
!= 0 && prev_revents
== 0)
1877 seltrue(__unused dev_t dev
, __unused
int flag
, __unused
struct proc
*p
)
1886 * Count the number of bits set in the input bit vector, and establish an
1887 * outstanding fp->f_iocount for each of the descriptors which will be in
1888 * use in the select operation.
1890 * Parameters: p The process doing the select
1891 * ibits The input bit vector
1892 * nfd The number of fd's in the vector
1893 * countp Pointer to where to store the bit count
1895 * Returns: 0 Success
1896 * EIO Bad per process open file table
1897 * EBADF One of the bits in the input bit vector
1898 * references an invalid fd
1900 * Implicit: *countp (modified) Count of fd's
1902 * Notes: This function is the first pass under the proc_fdlock() that
1903 * permits us to recognize invalid descriptors in the bit vector;
1904 * the may, however, not remain valid through the drop and
1905 * later reacquisition of the proc_fdlock().
1908 selcount(struct proc
*p
, u_int32_t
*ibits
, int nfd
, int *countp
)
1910 struct filedesc
*fdp
= p
->p_fd
;
1913 struct fileproc
*fp
;
1919 int need_wakeup
= 0;
1922 * Problems when reboot; due to MacOSX signal probs
1923 * in Beaker1C ; verify that the p->p_fd is valid
1929 nw
= howmany(nfd
, NFDBITS
);
1932 for (msk
= 0; msk
< 3; msk
++) {
1933 iptr
= (u_int32_t
*)&ibits
[msk
* nw
];
1934 for (i
= 0; i
< nfd
; i
+= NFDBITS
) {
1935 bits
= iptr
[i
/NFDBITS
];
1936 while ((j
= ffs(bits
)) && (fd
= i
+ --j
) < nfd
) {
1939 if (fd
< fdp
->fd_nfiles
)
1940 fp
= fdp
->fd_ofiles
[fd
];
1945 (fdp
->fd_ofileflags
[fd
] & UF_RESERVED
)) {
1965 /* Ignore error return; it's already EBADF */
1966 (void)seldrop_locked(p
, ibits
, nfd
, n
, &need_wakeup
, 1);
1971 wakeup(&p
->p_fpdrainwait
);
1980 * Drop outstanding wait queue references set up during selscan(); drop the
1981 * outstanding per fileproc f_iocount() picked up during the selcount().
1983 * Parameters: p Process performing the select
1984 * ibits Input bit bector of fd's
1985 * nfd Number of fd's
1986 * lim Limit to number of vector entries to
1987 * consider, or -1 for "all"
1989 * need_wakeup Pointer to flag to set to do a wakeup
1990 * if f_iocont on any descriptor goes to 0
1992 * Returns: 0 Success
1993 * EBADF One or more fds in the bit vector
1994 * were invalid, but the rest
1995 * were successfully dropped
1997 * Notes: An fd make become bad while the proc_fdlock() is not held,
1998 * if a multithreaded application closes the fd out from under
1999 * the in progress select. In this case, we still have to
2000 * clean up after the set up on the remaining fds.
2003 seldrop_locked(struct proc
*p
, u_int32_t
*ibits
, int nfd
, int lim
, int *need_wakeup
, int fromselcount
)
2005 struct filedesc
*fdp
= p
->p_fd
;
2006 int msk
, i
, j
, nc
, fd
;
2008 struct fileproc
*fp
;
2013 uthread_t uth
= get_bsdthread_info(current_thread());
2014 struct _select_data
*seldata
;
2019 * Problems when reboot; due to MacOSX signal probs
2020 * in Beaker1C ; verify that the p->p_fd is valid
2026 nw
= howmany(nfd
, NFDBITS
);
2027 seldata
= &uth
->uu_kevent
.ss_select_data
;
2030 for (msk
= 0; msk
< 3; msk
++) {
2031 iptr
= (u_int32_t
*)&ibits
[msk
* nw
];
2032 for (i
= 0; i
< nfd
; i
+= NFDBITS
) {
2033 bits
= iptr
[i
/NFDBITS
];
2034 while ((j
= ffs(bits
)) && (fd
= i
+ --j
) < nfd
) {
2036 fp
= fdp
->fd_ofiles
[fd
];
2038 * If we've already dropped as many as were
2039 * counted/scanned, then we are done.
2041 if ((fromselcount
!= 0) && (++dropcount
> lim
))
2045 * unlink even potentially NULL fileprocs.
2046 * If the FD was closed from under us, we
2047 * still need to cleanup the waitq links!
2050 seldata
->wqp
? seldata
->wqp
[nc
] : 0,
2056 /* skip (now) bad fds */
2062 if (fp
->f_iocount
< 0)
2063 panic("f_iocount overdecrement!");
2065 if (fp
->f_iocount
== 0) {
2067 * The last iocount is responsible for clearing
2068 * selconfict flag - even if we didn't set it -
2069 * and is also responsible for waking up anyone
2070 * waiting on iocounts to drain.
2072 if (fp
->f_flags
& FP_SELCONFLICT
)
2073 fp
->f_flags
&= ~FP_SELCONFLICT
;
2074 if (p
->p_fpdrainwait
) {
2075 p
->p_fpdrainwait
= 0;
2088 seldrop(struct proc
*p
, u_int32_t
*ibits
, int nfd
)
2091 int need_wakeup
= 0;
2094 error
= seldrop_locked(p
, ibits
, nfd
, nfd
, &need_wakeup
, 0);
2097 wakeup(&p
->p_fpdrainwait
);
2103 * Record a select request.
2106 selrecord(__unused
struct proc
*selector
, struct selinfo
*sip
, void *s_data
)
2108 thread_t cur_act
= current_thread();
2109 struct uthread
* ut
= get_bsdthread_info(cur_act
);
2110 /* on input, s_data points to the 64-bit ID of a reserved link object */
2111 uint64_t *reserved_link
= (uint64_t *)s_data
;
2113 /* need to look at collisions */
2115 /*do not record if this is second pass of select */
2119 if ((sip
->si_flags
& SI_INITED
) == 0) {
2120 waitq_init(&sip
->si_waitq
, SYNC_POLICY_FIFO
);
2121 sip
->si_flags
|= SI_INITED
;
2122 sip
->si_flags
&= ~SI_CLEAR
;
2125 if (sip
->si_flags
& SI_RECORDED
)
2126 sip
->si_flags
|= SI_COLL
;
2128 sip
->si_flags
&= ~SI_COLL
;
2130 sip
->si_flags
|= SI_RECORDED
;
2131 /* note: this checks for pre-existing linkage */
2132 waitq_link(&sip
->si_waitq
, ut
->uu_wqset
,
2133 WAITQ_SHOULD_LOCK
, reserved_link
);
2136 * Always consume the reserved link.
2137 * We can always call waitq_link_release() safely because if
2138 * waitq_link is successful, it consumes the link and resets the
2139 * value to 0, in which case our call to release becomes a no-op.
2140 * If waitq_link fails, then the following release call will actually
2141 * release the reserved link object.
2143 waitq_link_release(*reserved_link
);
2147 * Use the s_data pointer as an output parameter as well
2148 * This avoids changing the prototype for this function which is
2149 * used by many kexts. We need to surface the waitq object
2150 * associated with the selinfo we just added to the thread's select
2151 * set. New waitq sets do not have back-pointers to set members, so
2152 * the only way to clear out set linkage objects is to go from the
2153 * waitq to the set. We use a memcpy because s_data could be
2154 * pointing to an unaligned value on the stack
2155 * (especially on 32-bit systems)
2157 void *wqptr
= (void *)&sip
->si_waitq
;
2158 memcpy((void *)s_data
, (void *)&wqptr
, sizeof(void *));
2164 selwakeup(struct selinfo
*sip
)
2167 if ((sip
->si_flags
& SI_INITED
) == 0) {
2171 if (sip
->si_flags
& SI_COLL
) {
2173 sip
->si_flags
&= ~SI_COLL
;
2175 /* will not support */
2176 //wakeup((caddr_t)&selwait);
2180 if (sip
->si_flags
& SI_RECORDED
) {
2181 waitq_wakeup64_all(&sip
->si_waitq
, NO_EVENT64
,
2182 THREAD_AWAKENED
, WAITQ_ALL_PRIORITIES
);
2183 sip
->si_flags
&= ~SI_RECORDED
;
2189 selthreadclear(struct selinfo
*sip
)
2193 if ((sip
->si_flags
& SI_INITED
) == 0) {
2196 if (sip
->si_flags
& SI_RECORDED
) {
2198 sip
->si_flags
&= ~(SI_RECORDED
| SI_COLL
);
2200 sip
->si_flags
|= SI_CLEAR
;
2201 sip
->si_flags
&= ~SI_INITED
;
2203 wq
= &sip
->si_waitq
;
2206 * Higher level logic may have a handle on this waitq's prepost ID,
2207 * but that's OK because the waitq_deinit will remove/invalidate the
2208 * prepost object (as well as mark the waitq invalid). This de-couples
2209 * us from any callers that may have a handle to this waitq via the
2218 #define DBG_POST 0x10
2219 #define DBG_WATCH 0x11
2220 #define DBG_WAIT 0x12
2221 #define DBG_MOD 0x13
2222 #define DBG_EWAKEUP 0x14
2223 #define DBG_ENQUEUE 0x15
2224 #define DBG_DEQUEUE 0x16
2226 #define DBG_MISC_POST MISCDBG_CODE(DBG_EVENT,DBG_POST)
2227 #define DBG_MISC_WATCH MISCDBG_CODE(DBG_EVENT,DBG_WATCH)
2228 #define DBG_MISC_WAIT MISCDBG_CODE(DBG_EVENT,DBG_WAIT)
2229 #define DBG_MISC_MOD MISCDBG_CODE(DBG_EVENT,DBG_MOD)
2230 #define DBG_MISC_EWAKEUP MISCDBG_CODE(DBG_EVENT,DBG_EWAKEUP)
2231 #define DBG_MISC_ENQUEUE MISCDBG_CODE(DBG_EVENT,DBG_ENQUEUE)
2232 #define DBG_MISC_DEQUEUE MISCDBG_CODE(DBG_EVENT,DBG_DEQUEUE)
2235 #define EVPROCDEQUE(p, evq) do { \
2237 if (evq->ee_flags & EV_QUEUED) { \
2238 TAILQ_REMOVE(&p->p_evlist, evq, ee_plist); \
2239 evq->ee_flags &= ~EV_QUEUED; \
2246 * called upon socket close. deque and free all events for
2247 * the socket... socket must be locked by caller.
2250 evsofree(struct socket
*sp
)
2252 struct eventqelt
*evq
, *next
;
2258 for (evq
= sp
->so_evlist
.tqh_first
; evq
!= NULL
; evq
= next
) {
2259 next
= evq
->ee_slist
.tqe_next
;
2262 if (evq
->ee_flags
& EV_QUEUED
) {
2263 EVPROCDEQUE(p
, evq
);
2265 TAILQ_REMOVE(&sp
->so_evlist
, evq
, ee_slist
); // remove from socket q
2272 * called upon pipe close. deque and free all events for
2273 * the pipe... pipe must be locked by caller
2276 evpipefree(struct pipe
*cpipe
)
2278 struct eventqelt
*evq
, *next
;
2281 for (evq
= cpipe
->pipe_evlist
.tqh_first
; evq
!= NULL
; evq
= next
) {
2282 next
= evq
->ee_slist
.tqe_next
;
2285 EVPROCDEQUE(p
, evq
);
2287 TAILQ_REMOVE(&cpipe
->pipe_evlist
, evq
, ee_slist
); // remove from pipe q
2294 * enqueue this event if it's not already queued. wakeup
2295 * the proc if we do queue this event to it...
2296 * entered with proc lock held... we drop it before
2297 * doing the wakeup and return in that state
2300 evprocenque(struct eventqelt
*evq
)
2307 KERNEL_DEBUG(DBG_MISC_ENQUEUE
|DBG_FUNC_START
, (uint32_t)evq
, evq
->ee_flags
, evq
->ee_eventmask
,0,0);
2311 if (evq
->ee_flags
& EV_QUEUED
) {
2314 KERNEL_DEBUG(DBG_MISC_ENQUEUE
|DBG_FUNC_END
, 0,0,0,0,0);
2317 evq
->ee_flags
|= EV_QUEUED
;
2319 TAILQ_INSERT_TAIL(&p
->p_evlist
, evq
, ee_plist
);
2323 wakeup(&p
->p_evlist
);
2325 KERNEL_DEBUG(DBG_MISC_ENQUEUE
|DBG_FUNC_END
, 0,0,0,0,0);
2330 * pipe lock must be taken by the caller
2333 postpipeevent(struct pipe
*pipep
, int event
)
2336 struct eventqelt
*evq
;
2340 KERNEL_DEBUG(DBG_MISC_POST
|DBG_FUNC_START
, event
,0,0,1,0);
2342 for (evq
= pipep
->pipe_evlist
.tqh_first
;
2343 evq
!= NULL
; evq
= evq
->ee_slist
.tqe_next
) {
2345 if (evq
->ee_eventmask
== 0)
2349 switch (event
& (EV_RWBYTES
| EV_RCLOSED
| EV_WCLOSED
)) {
2352 if ((evq
->ee_eventmask
& EV_RE
) && pipep
->pipe_buffer
.cnt
) {
2354 evq
->ee_req
.er_rcnt
= pipep
->pipe_buffer
.cnt
;
2356 if ((evq
->ee_eventmask
& EV_WR
) &&
2357 (MAX(pipep
->pipe_buffer
.size
,PIPE_SIZE
) - pipep
->pipe_buffer
.cnt
) >= PIPE_BUF
) {
2359 if (pipep
->pipe_state
& PIPE_EOF
) {
2360 mask
|= EV_WR
|EV_RESET
;
2364 evq
->ee_req
.er_wcnt
= MAX(pipep
->pipe_buffer
.size
, PIPE_SIZE
) - pipep
->pipe_buffer
.cnt
;
2370 if ((evq
->ee_eventmask
& EV_RE
)) {
2371 mask
|= EV_RE
|EV_RCLOSED
;
2373 if ((evq
->ee_eventmask
& EV_WR
)) {
2374 mask
|= EV_WR
|EV_WCLOSED
;
2383 * disarm... postevents are nops until this event is 'read' via
2384 * waitevent and then re-armed via modwatch
2386 evq
->ee_eventmask
= 0;
2389 * since events are disarmed until after the waitevent
2390 * the ee_req.er_xxxx fields can't change once we've
2391 * inserted this event into the proc queue...
2392 * therefore, the waitevent will see a 'consistent'
2393 * snapshot of the event, even though it won't hold
2394 * the pipe lock, and we're updating the event outside
2395 * of the proc lock, which it will hold
2397 evq
->ee_req
.er_eventbits
|= mask
;
2399 KERNEL_DEBUG(DBG_MISC_POST
, (uint32_t)evq
, evq
->ee_req
.er_eventbits
, mask
, 1,0);
2404 KERNEL_DEBUG(DBG_MISC_POST
|DBG_FUNC_END
, 0,0,0,1,0);
2409 * given either a sockbuf or a socket run down the
2410 * event list and queue ready events found...
2411 * the socket must be locked by the caller
2414 postevent(struct socket
*sp
, struct sockbuf
*sb
, int event
)
2417 struct eventqelt
*evq
;
2425 KERNEL_DEBUG(DBG_MISC_POST
|DBG_FUNC_START
, (int)sp
, event
, 0, 0, 0);
2427 for (evq
= sp
->so_evlist
.tqh_first
;
2428 evq
!= NULL
; evq
= evq
->ee_slist
.tqe_next
) {
2430 if (evq
->ee_eventmask
== 0)
2434 /* ready for reading:
2435 - byte cnt >= receive low water mark
2436 - read-half of conn closed
2437 - conn pending for listening sock
2438 - socket error pending
2441 - byte cnt avail >= send low water mark
2442 - write half of conn closed
2443 - socket error pending
2444 - non-blocking conn completed successfully
2448 - sock at out of band mark
2451 switch (event
& EV_DMASK
) {
2454 if ((evq
->ee_eventmask
& EV_EX
)) {
2455 if (sp
->so_oobmark
|| ((sp
->so_state
& SS_RCVATMARK
)))
2456 mask
|= EV_EX
|EV_OOB
;
2460 case EV_RWBYTES
|EV_OOB
:
2461 if ((evq
->ee_eventmask
& EV_EX
)) {
2462 if (sp
->so_oobmark
|| ((sp
->so_state
& SS_RCVATMARK
)))
2463 mask
|= EV_EX
|EV_OOB
;
2466 * fall into the next case
2469 if ((evq
->ee_eventmask
& EV_RE
) && soreadable(sp
)) {
2470 /* for AFP/OT purposes; may go away in future */
2471 if ((SOCK_DOM(sp
) == PF_INET
||
2472 SOCK_DOM(sp
) == PF_INET6
) &&
2473 SOCK_PROTO(sp
) == IPPROTO_TCP
&&
2474 (sp
->so_error
== ECONNREFUSED
||
2475 sp
->so_error
== ECONNRESET
)) {
2476 if (sp
->so_pcb
== NULL
||
2477 sotoinpcb(sp
)->inp_state
==
2479 (tp
= sototcpcb(sp
)) == NULL
||
2480 tp
->t_state
== TCPS_CLOSED
) {
2481 mask
|= EV_RE
|EV_RESET
;
2486 evq
->ee_req
.er_rcnt
= sp
->so_rcv
.sb_cc
;
2488 if (sp
->so_state
& SS_CANTRCVMORE
) {
2493 if ((evq
->ee_eventmask
& EV_WR
) && sowriteable(sp
)) {
2494 /* for AFP/OT purposes; may go away in future */
2495 if ((SOCK_DOM(sp
) == PF_INET
||
2496 SOCK_DOM(sp
) == PF_INET6
) &&
2497 SOCK_PROTO(sp
) == IPPROTO_TCP
&&
2498 (sp
->so_error
== ECONNREFUSED
||
2499 sp
->so_error
== ECONNRESET
)) {
2500 if (sp
->so_pcb
== NULL
||
2501 sotoinpcb(sp
)->inp_state
==
2503 (tp
= sototcpcb(sp
)) == NULL
||
2504 tp
->t_state
== TCPS_CLOSED
) {
2505 mask
|= EV_WR
|EV_RESET
;
2510 evq
->ee_req
.er_wcnt
= sbspace(&sp
->so_snd
);
2515 if ((evq
->ee_eventmask
& EV_RE
)) {
2516 mask
|= EV_RE
|EV_RCONN
;
2517 evq
->ee_req
.er_rcnt
= sp
->so_qlen
+ 1; // incl this one
2522 if ((evq
->ee_eventmask
& EV_WR
)) {
2523 mask
|= EV_WR
|EV_WCONN
;
2528 if ((evq
->ee_eventmask
& EV_RE
)) {
2529 mask
|= EV_RE
|EV_RCLOSED
;
2534 if ((evq
->ee_eventmask
& EV_WR
)) {
2535 mask
|= EV_WR
|EV_WCLOSED
;
2540 if (evq
->ee_eventmask
& EV_RE
) {
2541 mask
|= EV_RE
|EV_FIN
;
2547 if (evq
->ee_eventmask
& EV_RE
) {
2548 mask
|= EV_RE
| event
;
2550 if (evq
->ee_eventmask
& EV_WR
) {
2551 mask
|= EV_WR
| event
;
2556 KERNEL_DEBUG(DBG_MISC_POST
|DBG_FUNC_END
, (int)sp
, -1, 0, 0, 0);
2560 KERNEL_DEBUG(DBG_MISC_POST
, (int)evq
, evq
->ee_eventmask
, evq
->ee_req
.er_eventbits
, mask
, 0);
2564 * disarm... postevents are nops until this event is 'read' via
2565 * waitevent and then re-armed via modwatch
2567 evq
->ee_eventmask
= 0;
2570 * since events are disarmed until after the waitevent
2571 * the ee_req.er_xxxx fields can't change once we've
2572 * inserted this event into the proc queue...
2573 * since waitevent can't see this event until we
2574 * enqueue it, waitevent will see a 'consistent'
2575 * snapshot of the event, even though it won't hold
2576 * the socket lock, and we're updating the event outside
2577 * of the proc lock, which it will hold
2579 evq
->ee_req
.er_eventbits
|= mask
;
2584 KERNEL_DEBUG(DBG_MISC_POST
|DBG_FUNC_END
, (int)sp
, 0, 0, 0, 0);
2586 #endif /* SOCKETS */
2590 * watchevent system call. user passes us an event to watch
2591 * for. we malloc an event object, initialize it, and queue
2592 * it to the open socket. when the event occurs, postevent()
2593 * will enque it back to our proc where we can retrieve it
2596 * should this prevent duplicate events on same socket?
2599 * ENOMEM No memory for operation
2603 watchevent(proc_t p
, struct watchevent_args
*uap
, __unused
int *retval
)
2605 struct eventqelt
*evq
= (struct eventqelt
*)0;
2606 struct eventqelt
*np
= NULL
;
2607 struct eventreq64
*erp
;
2608 struct fileproc
*fp
= NULL
;
2611 KERNEL_DEBUG(DBG_MISC_WATCH
|DBG_FUNC_START
, 0,0,0,0,0);
2613 // get a qelt and fill with users req
2614 MALLOC(evq
, struct eventqelt
*, sizeof(struct eventqelt
), M_TEMP
, M_WAITOK
);
2620 // get users request pkt
2622 if (IS_64BIT_PROCESS(p
)) {
2623 error
= copyin(uap
->u_req
, (caddr_t
)erp
, sizeof(struct eventreq64
));
2625 struct eventreq32 er32
;
2627 error
= copyin(uap
->u_req
, (caddr_t
)&er32
, sizeof(struct eventreq32
));
2630 * the user only passes in the
2631 * er_type, er_handle and er_data...
2632 * the other fields are initialized
2633 * below, so don't bother to copy
2635 erp
->er_type
= er32
.er_type
;
2636 erp
->er_handle
= er32
.er_handle
;
2637 erp
->er_data
= (user_addr_t
)er32
.er_data
;
2642 KERNEL_DEBUG(DBG_MISC_WATCH
|DBG_FUNC_END
, error
,0,0,0,0);
2646 KERNEL_DEBUG(DBG_MISC_WATCH
, erp
->er_handle
,uap
->u_eventmask
,(uint32_t)evq
,0,0);
2648 // validate, freeing qelt if errors
2652 if (erp
->er_type
!= EV_FD
) {
2654 } else if ((error
= fp_lookup(p
, erp
->er_handle
, &fp
, 1)) != 0) {
2657 } else if (fp
->f_type
== DTYPE_SOCKET
) {
2658 socket_lock((struct socket
*)fp
->f_data
, 1);
2659 np
= ((struct socket
*)fp
->f_data
)->so_evlist
.tqh_first
;
2660 #endif /* SOCKETS */
2661 } else if (fp
->f_type
== DTYPE_PIPE
) {
2662 PIPE_LOCK((struct pipe
*)fp
->f_data
);
2663 np
= ((struct pipe
*)fp
->f_data
)->pipe_evlist
.tqh_first
;
2665 fp_drop(p
, erp
->er_handle
, fp
, 1);
2673 KERNEL_DEBUG(DBG_MISC_WATCH
|DBG_FUNC_END
, error
,0,0,0,0);
2678 * only allow one watch per file per proc
2680 for ( ; np
!= NULL
; np
= np
->ee_slist
.tqe_next
) {
2681 if (np
->ee_proc
== p
) {
2683 if (fp
->f_type
== DTYPE_SOCKET
)
2684 socket_unlock((struct socket
*)fp
->f_data
, 1);
2686 #endif /* SOCKETS */
2687 PIPE_UNLOCK((struct pipe
*)fp
->f_data
);
2688 fp_drop(p
, erp
->er_handle
, fp
, 0);
2691 KERNEL_DEBUG(DBG_MISC_WATCH
|DBG_FUNC_END
, EINVAL
,0,0,0,0);
2695 erp
->er_ecnt
= erp
->er_rcnt
= erp
->er_wcnt
= erp
->er_eventbits
= 0;
2697 evq
->ee_eventmask
= uap
->u_eventmask
& EV_MASK
;
2701 if (fp
->f_type
== DTYPE_SOCKET
) {
2702 TAILQ_INSERT_TAIL(&((struct socket
*)fp
->f_data
)->so_evlist
, evq
, ee_slist
);
2703 postevent((struct socket
*)fp
->f_data
, 0, EV_RWBYTES
); // catch existing events
2705 socket_unlock((struct socket
*)fp
->f_data
, 1);
2707 #endif /* SOCKETS */
2709 TAILQ_INSERT_TAIL(&((struct pipe
*)fp
->f_data
)->pipe_evlist
, evq
, ee_slist
);
2710 postpipeevent((struct pipe
*)fp
->f_data
, EV_RWBYTES
);
2712 PIPE_UNLOCK((struct pipe
*)fp
->f_data
);
2714 fp_drop_event(p
, erp
->er_handle
, fp
);
2716 KERNEL_DEBUG(DBG_MISC_WATCH
|DBG_FUNC_END
, 0,0,0,0,0);
2723 * waitevent system call.
2724 * grabs the next waiting event for this proc and returns
2725 * it. if no events, user can request to sleep with timeout
2726 * or without or poll mode
2727 * ((tv != NULL && interval == 0) || tv == -1)
2730 waitevent(proc_t p
, struct waitevent_args
*uap
, int *retval
)
2733 struct eventqelt
*evq
;
2734 struct eventreq64
*erp
;
2735 uint64_t abstime
, interval
;
2736 boolean_t fast_poll
= FALSE
;
2738 struct eventreq64 er64
;
2739 struct eventreq32 er32
;
2747 * check for fast poll method
2749 if (IS_64BIT_PROCESS(p
)) {
2750 if (uap
->tv
== (user_addr_t
)-1)
2752 } else if (uap
->tv
== (user_addr_t
)((uint32_t)-1))
2755 if (fast_poll
== TRUE
) {
2756 if (p
->p_evlist
.tqh_first
== NULL
) {
2757 KERNEL_DEBUG(DBG_MISC_WAIT
|DBG_FUNC_NONE
, -1,0,0,0,0);
2767 if (IS_64BIT_PROCESS(p
)) {
2768 struct user64_timeval atv64
;
2769 error
= copyin(uap
->tv
, (caddr_t
)&atv64
, sizeof(atv64
));
2770 /* Loses resolution - assume timeout < 68 years */
2771 atv
.tv_sec
= atv64
.tv_sec
;
2772 atv
.tv_usec
= atv64
.tv_usec
;
2774 struct user32_timeval atv32
;
2775 error
= copyin(uap
->tv
, (caddr_t
)&atv32
, sizeof(atv32
));
2776 atv
.tv_sec
= atv32
.tv_sec
;
2777 atv
.tv_usec
= atv32
.tv_usec
;
2782 if (itimerfix(&atv
)) {
2786 interval
= tvtoabstime(&atv
);
2788 KERNEL_DEBUG(DBG_MISC_WAIT
|DBG_FUNC_START
, 0,0,0,0,0);
2792 if ((evq
= p
->p_evlist
.tqh_first
) != NULL
) {
2794 * found one... make a local copy while it's still on the queue
2795 * to prevent it from changing while in the midst of copying
2796 * don't want to hold the proc lock across a copyout because
2797 * it might block on a page fault at the target in user space
2801 if (IS_64BIT_PROCESS(p
))
2802 bcopy((caddr_t
)erp
, (caddr_t
)&uer
.er64
, sizeof (struct eventreq64
));
2804 uer
.er32
.er_type
= erp
->er_type
;
2805 uer
.er32
.er_handle
= erp
->er_handle
;
2806 uer
.er32
.er_data
= (uint32_t)erp
->er_data
;
2807 uer
.er32
.er_ecnt
= erp
->er_ecnt
;
2808 uer
.er32
.er_rcnt
= erp
->er_rcnt
;
2809 uer
.er32
.er_wcnt
= erp
->er_wcnt
;
2810 uer
.er32
.er_eventbits
= erp
->er_eventbits
;
2812 TAILQ_REMOVE(&p
->p_evlist
, evq
, ee_plist
);
2814 evq
->ee_flags
&= ~EV_QUEUED
;
2818 if (IS_64BIT_PROCESS(p
))
2819 error
= copyout((caddr_t
)&uer
.er64
, uap
->u_req
, sizeof(struct eventreq64
));
2821 error
= copyout((caddr_t
)&uer
.er32
, uap
->u_req
, sizeof(struct eventreq32
));
2823 KERNEL_DEBUG(DBG_MISC_WAIT
|DBG_FUNC_END
, error
,
2824 evq
->ee_req
.er_handle
,evq
->ee_req
.er_eventbits
,(uint32_t)evq
,0);
2828 if (uap
->tv
&& interval
== 0) {
2830 *retval
= 1; // poll failed
2832 KERNEL_DEBUG(DBG_MISC_WAIT
|DBG_FUNC_END
, error
,0,0,0,0);
2836 clock_absolutetime_interval_to_deadline(interval
, &abstime
);
2840 KERNEL_DEBUG(DBG_MISC_WAIT
, 1,(uint32_t)&p
->p_evlist
,0,0,0);
2842 error
= msleep1(&p
->p_evlist
, &p
->p_mlock
, (PSOCK
| PCATCH
), "waitevent", abstime
);
2844 KERNEL_DEBUG(DBG_MISC_WAIT
, 2,(uint32_t)&p
->p_evlist
,0,0,0);
2848 if (error
== ERESTART
)
2850 if (error
== EWOULDBLOCK
) {
2857 KERNEL_DEBUG(DBG_MISC_WAIT
|DBG_FUNC_END
, 0,0,0,0,0);
2863 * modwatch system call. user passes in event to modify.
2864 * if we find it we reset the event bits and que/deque event
2868 modwatch(proc_t p
, struct modwatch_args
*uap
, __unused
int *retval
)
2870 struct eventreq64 er
;
2871 struct eventreq64
*erp
= &er
;
2872 struct eventqelt
*evq
= NULL
; /* protected by error return */
2874 struct fileproc
*fp
;
2877 KERNEL_DEBUG(DBG_MISC_MOD
|DBG_FUNC_START
, 0,0,0,0,0);
2880 * get user's request pkt
2881 * just need the er_type and er_handle which sit above the
2882 * problematic er_data (32/64 issue)... so only copy in
2885 if ((error
= copyin(uap
->u_req
, (caddr_t
)erp
, sizeof(er
.er_type
) + sizeof(er
.er_handle
)))) {
2886 KERNEL_DEBUG(DBG_MISC_MOD
|DBG_FUNC_END
, error
,0,0,0,0);
2891 if (erp
->er_type
!= EV_FD
) {
2893 } else if ((error
= fp_lookup(p
, erp
->er_handle
, &fp
, 1)) != 0) {
2896 } else if (fp
->f_type
== DTYPE_SOCKET
) {
2897 socket_lock((struct socket
*)fp
->f_data
, 1);
2898 evq
= ((struct socket
*)fp
->f_data
)->so_evlist
.tqh_first
;
2899 #endif /* SOCKETS */
2900 } else if (fp
->f_type
== DTYPE_PIPE
) {
2901 PIPE_LOCK((struct pipe
*)fp
->f_data
);
2902 evq
= ((struct pipe
*)fp
->f_data
)->pipe_evlist
.tqh_first
;
2904 fp_drop(p
, erp
->er_handle
, fp
, 1);
2910 KERNEL_DEBUG(DBG_MISC_MOD
|DBG_FUNC_END
, error
,0,0,0,0);
2914 if ((uap
->u_eventmask
== EV_RM
) && (fp
->f_flags
& FP_WAITEVENT
)) {
2915 fp
->f_flags
&= ~FP_WAITEVENT
;
2919 // locate event if possible
2920 for ( ; evq
!= NULL
; evq
= evq
->ee_slist
.tqe_next
) {
2921 if (evq
->ee_proc
== p
)
2926 if (fp
->f_type
== DTYPE_SOCKET
)
2927 socket_unlock((struct socket
*)fp
->f_data
, 1);
2929 #endif /* SOCKETS */
2930 PIPE_UNLOCK((struct pipe
*)fp
->f_data
);
2931 fp_drop(p
, erp
->er_handle
, fp
, 0);
2932 KERNEL_DEBUG(DBG_MISC_MOD
|DBG_FUNC_END
, EINVAL
,0,0,0,0);
2935 KERNEL_DEBUG(DBG_MISC_MOD
, erp
->er_handle
,uap
->u_eventmask
,(uint32_t)evq
,0,0);
2937 if (uap
->u_eventmask
== EV_RM
) {
2938 EVPROCDEQUE(p
, evq
);
2941 if (fp
->f_type
== DTYPE_SOCKET
) {
2942 TAILQ_REMOVE(&((struct socket
*)fp
->f_data
)->so_evlist
, evq
, ee_slist
);
2943 socket_unlock((struct socket
*)fp
->f_data
, 1);
2945 #endif /* SOCKETS */
2947 TAILQ_REMOVE(&((struct pipe
*)fp
->f_data
)->pipe_evlist
, evq
, ee_slist
);
2948 PIPE_UNLOCK((struct pipe
*)fp
->f_data
);
2950 fp_drop(p
, erp
->er_handle
, fp
, 0);
2952 KERNEL_DEBUG(DBG_MISC_MOD
|DBG_FUNC_END
, 0,0,0,0,0);
2955 switch (uap
->u_eventmask
& EV_MASK
) {
2973 case EV_EX
|EV_RE
|EV_WR
:
2974 flag
= EV_OOB
|EV_RWBYTES
;
2979 if (fp
->f_type
== DTYPE_SOCKET
)
2980 socket_unlock((struct socket
*)fp
->f_data
, 1);
2982 #endif /* SOCKETS */
2983 PIPE_UNLOCK((struct pipe
*)fp
->f_data
);
2984 fp_drop(p
, erp
->er_handle
, fp
, 0);
2985 KERNEL_DEBUG(DBG_MISC_WATCH
|DBG_FUNC_END
, EINVAL
,0,0,0,0);
2989 * since we're holding the socket/pipe lock, the event
2990 * cannot go from the unqueued state to the queued state
2991 * however, it can go from the queued state to the unqueued state
2992 * since that direction is protected by the proc_lock...
2993 * so do a quick check for EV_QUEUED w/o holding the proc lock
2994 * since by far the common case will be NOT EV_QUEUED, this saves
2995 * us taking the proc_lock the majority of the time
2997 if (evq
->ee_flags
& EV_QUEUED
) {
2999 * EVPROCDEQUE will recheck the state after it grabs the proc_lock
3001 EVPROCDEQUE(p
, evq
);
3004 * while the event is off the proc queue and
3005 * we're holding the socket/pipe lock
3006 * it's safe to update these fields...
3008 evq
->ee_req
.er_eventbits
= 0;
3009 evq
->ee_eventmask
= uap
->u_eventmask
& EV_MASK
;
3012 if (fp
->f_type
== DTYPE_SOCKET
) {
3013 postevent((struct socket
*)fp
->f_data
, 0, flag
);
3014 socket_unlock((struct socket
*)fp
->f_data
, 1);
3016 #endif /* SOCKETS */
3018 postpipeevent((struct pipe
*)fp
->f_data
, flag
);
3019 PIPE_UNLOCK((struct pipe
*)fp
->f_data
);
3021 fp_drop(p
, erp
->er_handle
, fp
, 0);
3022 KERNEL_DEBUG(DBG_MISC_MOD
|DBG_FUNC_END
, evq
->ee_req
.er_handle
,evq
->ee_eventmask
,(uint32_t)fp
->f_data
,flag
,0);
3026 /* this routine is called from the close of fd with proc_fdlock held */
3028 waitevent_close(struct proc
*p
, struct fileproc
*fp
)
3030 struct eventqelt
*evq
;
3033 fp
->f_flags
&= ~FP_WAITEVENT
;
3036 if (fp
->f_type
== DTYPE_SOCKET
) {
3037 socket_lock((struct socket
*)fp
->f_data
, 1);
3038 evq
= ((struct socket
*)fp
->f_data
)->so_evlist
.tqh_first
;
3040 #endif /* SOCKETS */
3041 if (fp
->f_type
== DTYPE_PIPE
) {
3042 PIPE_LOCK((struct pipe
*)fp
->f_data
);
3043 evq
= ((struct pipe
*)fp
->f_data
)->pipe_evlist
.tqh_first
;
3051 // locate event if possible
3052 for ( ; evq
!= NULL
; evq
= evq
->ee_slist
.tqe_next
) {
3053 if (evq
->ee_proc
== p
)
3058 if (fp
->f_type
== DTYPE_SOCKET
)
3059 socket_unlock((struct socket
*)fp
->f_data
, 1);
3061 #endif /* SOCKETS */
3062 PIPE_UNLOCK((struct pipe
*)fp
->f_data
);
3068 EVPROCDEQUE(p
, evq
);
3071 if (fp
->f_type
== DTYPE_SOCKET
) {
3072 TAILQ_REMOVE(&((struct socket
*)fp
->f_data
)->so_evlist
, evq
, ee_slist
);
3073 socket_unlock((struct socket
*)fp
->f_data
, 1);
3075 #endif /* SOCKETS */
3077 TAILQ_REMOVE(&((struct pipe
*)fp
->f_data
)->pipe_evlist
, evq
, ee_slist
);
3078 PIPE_UNLOCK((struct pipe
*)fp
->f_data
);
3091 * Description: Get the host UUID from IOKit and return it to user space.
3093 * Parameters: uuid_buf Pointer to buffer to receive UUID
3094 * timeout Timespec for timout
3095 * spi SPI, skip sandbox check (temporary)
3097 * Returns: 0 Success
3098 * EWOULDBLOCK Timeout is too short
3099 * copyout:EFAULT Bad user buffer
3100 * mac_system_check_info:EPERM Client not allowed to perform this operation
3102 * Notes: A timeout seems redundant, since if it's tolerable to not
3103 * have a system UUID in hand, then why ask for one?
3106 gethostuuid(struct proc
*p
, struct gethostuuid_args
*uap
, __unused
int32_t *retval
)
3110 mach_timespec_t mach_ts
; /* for IOKit call */
3111 __darwin_uuid_t uuid_kern
; /* for IOKit call */
3116 /* Convert the 32/64 bit timespec into a mach_timespec_t */
3117 if ( proc_is64bit(p
) ) {
3118 struct user64_timespec ts
;
3119 error
= copyin(uap
->timeoutp
, &ts
, sizeof(ts
));
3122 mach_ts
.tv_sec
= ts
.tv_sec
;
3123 mach_ts
.tv_nsec
= ts
.tv_nsec
;
3125 struct user32_timespec ts
;
3126 error
= copyin(uap
->timeoutp
, &ts
, sizeof(ts
) );
3129 mach_ts
.tv_sec
= ts
.tv_sec
;
3130 mach_ts
.tv_nsec
= ts
.tv_nsec
;
3133 /* Call IOKit with the stack buffer to get the UUID */
3134 kret
= IOBSDGetPlatformUUID(uuid_kern
, mach_ts
);
3137 * If we get it, copy out the data to the user buffer; note that a
3138 * uuid_t is an array of characters, so this is size invariant for
3141 if (kret
== KERN_SUCCESS
) {
3142 error
= copyout(uuid_kern
, uap
->uuid_buf
, sizeof(uuid_kern
));
3144 error
= EWOULDBLOCK
;
3153 * Description: Omnibus system call for ledger operations
3156 ledger(struct proc
*p
, struct ledger_args
*args
, __unused
int32_t *retval
)
3161 int rval
, pid
, len
, error
;
3163 struct ledger_limit_args lla
;
3168 /* Finish copying in the necessary args before taking the proc lock */
3171 if (args
->cmd
== LEDGER_ENTRY_INFO
)
3172 error
= copyin(args
->arg3
, (char *)&len
, sizeof (len
));
3173 else if (args
->cmd
== LEDGER_TEMPLATE_INFO
)
3174 error
= copyin(args
->arg2
, (char *)&len
, sizeof (len
));
3175 else if (args
->cmd
== LEDGER_LIMIT
)
3177 error
= copyin(args
->arg2
, (char *)&lla
, sizeof (lla
));
3181 else if ((args
->cmd
< 0) || (args
->cmd
> LEDGER_MAX_CMD
))
3190 if (args
->cmd
!= LEDGER_TEMPLATE_INFO
) {
3192 proc
= proc_find(pid
);
3197 error
= mac_proc_check_ledger(p
, proc
, args
->cmd
);
3207 switch (args
->cmd
) {
3209 case LEDGER_LIMIT
: {
3210 if (!kauth_cred_issuser(kauth_cred_get()))
3212 rval
= ledger_limit(task
, &lla
);
3218 struct ledger_info info
;
3220 rval
= ledger_info(task
, &info
);
3223 rval
= copyout(&info
, args
->arg2
,
3228 case LEDGER_ENTRY_INFO
: {
3232 rval
= ledger_get_task_entry_info_multiple(task
, &buf
, &len
);
3234 if ((rval
== 0) && (len
>= 0)) {
3235 sz
= len
* sizeof (struct ledger_entry_info
);
3236 rval
= copyout(buf
, args
->arg2
, sz
);
3240 rval
= copyout(&len
, args
->arg3
, sizeof (len
));
3244 case LEDGER_TEMPLATE_INFO
: {
3248 rval
= ledger_template_info(&buf
, &len
);
3249 if ((rval
== 0) && (len
>= 0)) {
3250 sz
= len
* sizeof (struct ledger_template_info
);
3251 rval
= copyout(buf
, args
->arg1
, sz
);
3255 rval
= copyout(&len
, args
->arg2
, sizeof (len
));
3260 panic("ledger syscall logic error -- command type %d", args
->cmd
);
3269 telemetry(__unused
struct proc
*p
, struct telemetry_args
*args
, __unused
int32_t *retval
)
3273 switch (args
->cmd
) {
3274 #if CONFIG_TELEMETRY
3275 case TELEMETRY_CMD_TIMER_EVENT
:
3276 error
= telemetry_timer_event(args
->deadline
, args
->interval
, args
->leeway
);
3278 #endif /* CONFIG_TELEMETRY */
3279 case TELEMETRY_CMD_VOUCHER_NAME
:
3280 if (thread_set_voucher_name((mach_port_name_t
)args
->deadline
))
3292 #if defined(DEVELOPMENT) || defined(DEBUG)
3293 #if CONFIG_WAITQ_DEBUG
3294 static uint64_t g_wqset_num
= 0;
3297 struct waitq_set
*wqset
;
3300 static queue_head_t g_wqset_list
;
3301 static struct waitq_set
*g_waitq_set
= NULL
;
3303 static inline struct waitq_set
*sysctl_get_wqset(int idx
)
3305 struct g_wqset
*gwqs
;
3308 queue_init(&g_wqset_list
);
3310 /* don't bother with locks: this is test-only code! */
3311 qe_foreach_element(gwqs
, &g_wqset_list
, link
) {
3312 if ((int)(wqset_id(gwqs
->wqset
) & 0xffffffff) == idx
)
3316 /* allocate a new one */
3318 gwqs
= (struct g_wqset
*)kalloc(sizeof(*gwqs
));
3319 assert(gwqs
!= NULL
);
3321 gwqs
->wqset
= waitq_set_alloc(SYNC_POLICY_FIFO
|SYNC_POLICY_PREPOST
, NULL
);
3322 enqueue_tail(&g_wqset_list
, &gwqs
->link
);
3323 printf("[WQ]: created new waitq set 0x%llx\n", wqset_id(gwqs
->wqset
));
3328 #define MAX_GLOBAL_TEST_QUEUES 64
3329 static int g_wq_init
= 0;
3330 static struct waitq g_wq
[MAX_GLOBAL_TEST_QUEUES
];
3332 static inline struct waitq
*global_test_waitq(int idx
)
3339 for (int i
= 0; i
< MAX_GLOBAL_TEST_QUEUES
; i
++)
3340 waitq_init(&g_wq
[i
], SYNC_POLICY_FIFO
);
3343 return &g_wq
[idx
% MAX_GLOBAL_TEST_QUEUES
];
3346 static int sysctl_waitq_wakeup_one SYSCTL_HANDLER_ARGS
3348 #pragma unused(oidp, arg1, arg2)
3351 struct waitq
*waitq
;
3353 int64_t event64
= 0;
3355 error
= SYSCTL_IN(req
, &event64
, sizeof(event64
));
3360 return SYSCTL_OUT(req
, &event64
, sizeof(event64
));
3363 index
= (int)((-event64
) & 0xffffffff);
3364 waitq
= wqset_waitq(sysctl_get_wqset(index
));
3367 index
= (int)event64
;
3368 waitq
= global_test_waitq(index
);
3373 printf("[WQ]: Waking one thread on waitq [%d] event:0x%llx\n",
3375 kr
= waitq_wakeup64_one(waitq
, (event64_t
)event64
, THREAD_AWAKENED
,
3376 WAITQ_ALL_PRIORITIES
);
3377 printf("[WQ]: \tkr=%d\n", kr
);
3379 return SYSCTL_OUT(req
, &kr
, sizeof(kr
));
3381 SYSCTL_PROC(_kern
, OID_AUTO
, waitq_wakeup_one
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
3382 0, 0, sysctl_waitq_wakeup_one
, "Q", "wakeup one thread waiting on given event");
3385 static int sysctl_waitq_wakeup_all SYSCTL_HANDLER_ARGS
3387 #pragma unused(oidp, arg1, arg2)
3390 struct waitq
*waitq
;
3392 int64_t event64
= 0;
3394 error
= SYSCTL_IN(req
, &event64
, sizeof(event64
));
3399 return SYSCTL_OUT(req
, &event64
, sizeof(event64
));
3402 index
= (int)((-event64
) & 0xffffffff);
3403 waitq
= wqset_waitq(sysctl_get_wqset(index
));
3406 index
= (int)event64
;
3407 waitq
= global_test_waitq(index
);
3412 printf("[WQ]: Waking all threads on waitq [%d] event:0x%llx\n",
3414 kr
= waitq_wakeup64_all(waitq
, (event64_t
)event64
,
3415 THREAD_AWAKENED
, WAITQ_ALL_PRIORITIES
);
3416 printf("[WQ]: \tkr=%d\n", kr
);
3418 return SYSCTL_OUT(req
, &kr
, sizeof(kr
));
3420 SYSCTL_PROC(_kern
, OID_AUTO
, waitq_wakeup_all
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
3421 0, 0, sysctl_waitq_wakeup_all
, "Q", "wakeup all threads waiting on given event");
3424 static int sysctl_waitq_wait SYSCTL_HANDLER_ARGS
3426 #pragma unused(oidp, arg1, arg2)
3429 struct waitq
*waitq
;
3431 int64_t event64
= 0;
3433 error
= SYSCTL_IN(req
, &event64
, sizeof(event64
));
3438 return SYSCTL_OUT(req
, &event64
, sizeof(event64
));
3441 index
= (int)((-event64
) & 0xffffffff);
3442 waitq
= wqset_waitq(sysctl_get_wqset(index
));
3445 index
= (int)event64
;
3446 waitq
= global_test_waitq(index
);
3451 printf("[WQ]: Current thread waiting on waitq [%d] event:0x%llx\n",
3453 kr
= waitq_assert_wait64(waitq
, (event64_t
)event64
, THREAD_INTERRUPTIBLE
, 0);
3454 if (kr
== THREAD_WAITING
)
3455 thread_block(THREAD_CONTINUE_NULL
);
3456 printf("[WQ]: \tWoke Up: kr=%d\n", kr
);
3458 return SYSCTL_OUT(req
, &kr
, sizeof(kr
));
3460 SYSCTL_PROC(_kern
, OID_AUTO
, waitq_wait
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
3461 0, 0, sysctl_waitq_wait
, "Q", "start waiting on given event");
3464 static int sysctl_wqset_select SYSCTL_HANDLER_ARGS
3466 #pragma unused(oidp, arg1, arg2)
3468 struct waitq_set
*wqset
;
3469 uint64_t event64
= 0;
3471 error
= SYSCTL_IN(req
, &event64
, sizeof(event64
));
3478 wqset
= sysctl_get_wqset((int)(event64
& 0xffffffff));
3479 g_waitq_set
= wqset
;
3481 event64
= wqset_id(wqset
);
3482 printf("[WQ]: selected wqset 0x%llx\n", event64
);
3486 event64
= wqset_id(g_waitq_set
);
3488 event64
= (uint64_t)(-1);
3490 return SYSCTL_OUT(req
, &event64
, sizeof(event64
));
3492 SYSCTL_PROC(_kern
, OID_AUTO
, wqset_select
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
3493 0, 0, sysctl_wqset_select
, "Q", "select/create a global waitq set");
3496 static int sysctl_waitq_link SYSCTL_HANDLER_ARGS
3498 #pragma unused(oidp, arg1, arg2)
3501 struct waitq
*waitq
;
3502 struct waitq_set
*wqset
;
3504 uint64_t reserved_link
= 0;
3505 int64_t event64
= 0;
3507 error
= SYSCTL_IN(req
, &event64
, sizeof(event64
));
3512 return SYSCTL_OUT(req
, &event64
, sizeof(event64
));
3515 g_waitq_set
= sysctl_get_wqset(1);
3516 wqset
= g_waitq_set
;
3519 struct waitq_set
*tmp
;
3520 index
= (int)((-event64
) & 0xffffffff);
3521 tmp
= sysctl_get_wqset(index
);
3524 waitq
= wqset_waitq(tmp
);
3527 index
= (int)event64
;
3528 waitq
= global_test_waitq(index
);
3531 printf("[WQ]: linking waitq [%d] to global wqset (0x%llx)\n",
3532 index
, wqset_id(wqset
));
3533 reserved_link
= waitq_link_reserve(waitq
);
3534 kr
= waitq_link(waitq
, wqset
, WAITQ_SHOULD_LOCK
, &reserved_link
);
3535 waitq_link_release(reserved_link
);
3537 printf("[WQ]: \tkr=%d\n", kr
);
3540 return SYSCTL_OUT(req
, &kr
, sizeof(kr
));
3542 SYSCTL_PROC(_kern
, OID_AUTO
, waitq_link
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
3543 0, 0, sysctl_waitq_link
, "Q", "link global waitq to test waitq set");
3546 static int sysctl_waitq_unlink SYSCTL_HANDLER_ARGS
3548 #pragma unused(oidp, arg1, arg2)
3551 struct waitq
*waitq
;
3552 struct waitq_set
*wqset
;
3554 uint64_t event64
= 0;
3556 error
= SYSCTL_IN(req
, &event64
, sizeof(event64
));
3561 return SYSCTL_OUT(req
, &event64
, sizeof(event64
));
3564 g_waitq_set
= sysctl_get_wqset(1);
3565 wqset
= g_waitq_set
;
3567 index
= (int)event64
;
3568 waitq
= global_test_waitq(index
);
3570 printf("[WQ]: unlinking waitq [%d] from global wqset (0x%llx)\n",
3571 index
, wqset_id(wqset
));
3573 kr
= waitq_unlink(waitq
, wqset
);
3574 printf("[WQ]: \tkr=%d\n", kr
);
3576 return SYSCTL_OUT(req
, &kr
, sizeof(kr
));
3578 SYSCTL_PROC(_kern
, OID_AUTO
, waitq_unlink
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
3579 0, 0, sysctl_waitq_unlink
, "Q", "unlink global waitq from test waitq set");
3582 static int sysctl_waitq_clear_prepost SYSCTL_HANDLER_ARGS
3584 #pragma unused(oidp, arg1, arg2)
3585 struct waitq
*waitq
;
3586 uint64_t event64
= 0;
3589 error
= SYSCTL_IN(req
, &event64
, sizeof(event64
));
3594 return SYSCTL_OUT(req
, &event64
, sizeof(event64
));
3596 index
= (int)event64
;
3597 waitq
= global_test_waitq(index
);
3599 printf("[WQ]: clearing prepost on waitq [%d]\n", index
);
3600 waitq_clear_prepost(waitq
);
3602 return SYSCTL_OUT(req
, &event64
, sizeof(event64
));
3604 SYSCTL_PROC(_kern
, OID_AUTO
, waitq_clear_prepost
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
3605 0, 0, sysctl_waitq_clear_prepost
, "Q", "clear prepost on given waitq");
3608 static int sysctl_wqset_unlink_all SYSCTL_HANDLER_ARGS
3610 #pragma unused(oidp, arg1, arg2)
3612 struct waitq_set
*wqset
;
3614 uint64_t event64
= 0;
3616 error
= SYSCTL_IN(req
, &event64
, sizeof(event64
));
3621 return SYSCTL_OUT(req
, &event64
, sizeof(event64
));
3624 g_waitq_set
= sysctl_get_wqset(1);
3625 wqset
= g_waitq_set
;
3627 printf("[WQ]: unlinking all queues from global wqset (0x%llx)\n",
3630 kr
= waitq_set_unlink_all(wqset
);
3631 printf("[WQ]: \tkr=%d\n", kr
);
3633 return SYSCTL_OUT(req
, &kr
, sizeof(kr
));
3635 SYSCTL_PROC(_kern
, OID_AUTO
, wqset_unlink_all
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
3636 0, 0, sysctl_wqset_unlink_all
, "Q", "unlink all queues from test waitq set");
3639 static int sysctl_wqset_clear_preposts SYSCTL_HANDLER_ARGS
3641 #pragma unused(oidp, arg1, arg2)
3642 struct waitq_set
*wqset
= NULL
;
3643 uint64_t event64
= 0;
3646 error
= SYSCTL_IN(req
, &event64
, sizeof(event64
));
3653 index
= (int)((event64
) & 0xffffffff);
3654 wqset
= sysctl_get_wqset(index
);
3655 assert(wqset
!= NULL
);
3657 printf("[WQ]: clearing preposts on wqset 0x%llx\n", wqset_id(wqset
));
3658 waitq_set_clear_preposts(wqset
);
3662 event64
= wqset_id(wqset
);
3664 event64
= (uint64_t)(-1);
3666 return SYSCTL_OUT(req
, &event64
, sizeof(event64
));
3668 SYSCTL_PROC(_kern
, OID_AUTO
, wqset_clear_preposts
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
3669 0, 0, sysctl_wqset_clear_preposts
, "Q", "clear preposts on given waitq set");
3671 #endif /* CONFIG_WAITQ_DEBUG */
3672 #endif /* defined(DEVELOPMENT) || defined(DEBUG) */