]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_time.c
xnu-3789.60.24.tar.gz
[apple/xnu.git] / bsd / kern / kern_time.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1989, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/resourcevar.h>
72 #include <sys/kernel.h>
73 #include <sys/systm.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/vnode.h>
77 #include <sys/time.h>
78 #include <sys/priv.h>
79
80 #include <sys/mount_internal.h>
81 #include <sys/sysproto.h>
82 #include <sys/signalvar.h>
83 #include <sys/protosw.h> /* for net_uptime2timeval() */
84
85 #include <kern/clock.h>
86 #include <kern/task.h>
87 #include <kern/thread_call.h>
88 #if CONFIG_MACF
89 #include <security/mac_framework.h>
90 #endif
91
92 #define HZ 100 /* XXX */
93
94 /* simple lock used to access timezone, tz structure */
95 lck_spin_t * tz_slock;
96 lck_grp_t * tz_slock_grp;
97 lck_attr_t * tz_slock_attr;
98 lck_grp_attr_t *tz_slock_grp_attr;
99
100 static void setthetime(
101 struct timeval *tv);
102
103 void time_zone_slock_init(void);
104
105 /*
106 * Time of day and interval timer support.
107 *
108 * These routines provide the kernel entry points to get and set
109 * the time-of-day and per-process interval timers. Subroutines
110 * here provide support for adding and subtracting timeval structures
111 * and decrementing interval timers, optionally reloading the interval
112 * timers when they expire.
113 */
114 /* ARGSUSED */
115 int
116 gettimeofday(
117 struct proc *p,
118 struct gettimeofday_args *uap,
119 __unused int32_t *retval)
120 {
121 int error = 0;
122 struct timezone ltz; /* local copy */
123 clock_sec_t secs;
124 clock_usec_t usecs;
125 uint64_t mach_time;
126
127 if (uap->tp || uap->mach_absolute_time) {
128 clock_gettimeofday_and_absolute_time(&secs, &usecs, &mach_time);
129 }
130
131 if (uap->tp) {
132 /* Casting secs through a uint32_t to match arm64 commpage */
133 if (IS_64BIT_PROCESS(p)) {
134 struct user64_timeval user_atv = {};
135 user_atv.tv_sec = (uint32_t)secs;
136 user_atv.tv_usec = usecs;
137 error = copyout(&user_atv, uap->tp, sizeof(user_atv));
138 } else {
139 struct user32_timeval user_atv = {};
140 user_atv.tv_sec = (uint32_t)secs;
141 user_atv.tv_usec = usecs;
142 error = copyout(&user_atv, uap->tp, sizeof(user_atv));
143 }
144 if (error) {
145 return error;
146 }
147 }
148
149 if (uap->tzp) {
150 lck_spin_lock(tz_slock);
151 ltz = tz;
152 lck_spin_unlock(tz_slock);
153
154 error = copyout((caddr_t)&ltz, CAST_USER_ADDR_T(uap->tzp), sizeof(tz));
155 }
156
157 if (error == 0 && uap->mach_absolute_time) {
158 error = copyout(&mach_time, uap->mach_absolute_time, sizeof(mach_time));
159 }
160
161 return error;
162 }
163
164 /*
165 * XXX Y2038 bug because of setthetime() argument
166 */
167 /* ARGSUSED */
168 int
169 settimeofday(__unused struct proc *p, struct settimeofday_args *uap, __unused int32_t *retval)
170 {
171 struct timeval atv;
172 struct timezone atz;
173 int error;
174
175 bzero(&atv, sizeof(atv));
176
177 #if CONFIG_MACF
178 error = mac_system_check_settime(kauth_cred_get());
179 if (error)
180 return (error);
181 #endif
182 if ((error = suser(kauth_cred_get(), &p->p_acflag)))
183 return (error);
184 /* Verify all parameters before changing time */
185 if (uap->tv) {
186 if (IS_64BIT_PROCESS(p)) {
187 struct user64_timeval user_atv;
188 error = copyin(uap->tv, &user_atv, sizeof(user_atv));
189 atv.tv_sec = user_atv.tv_sec;
190 atv.tv_usec = user_atv.tv_usec;
191 } else {
192 struct user32_timeval user_atv;
193 error = copyin(uap->tv, &user_atv, sizeof(user_atv));
194 atv.tv_sec = user_atv.tv_sec;
195 atv.tv_usec = user_atv.tv_usec;
196 }
197 if (error)
198 return (error);
199 }
200 if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz))))
201 return (error);
202 if (uap->tv) {
203 timevalfix(&atv);
204 if (atv.tv_sec < 0 || (atv.tv_sec == 0 && atv.tv_usec < 0))
205 return (EPERM);
206 setthetime(&atv);
207 }
208 if (uap->tzp) {
209 lck_spin_lock(tz_slock);
210 tz = atz;
211 lck_spin_unlock(tz_slock);
212 }
213 return (0);
214 }
215
216 static void
217 setthetime(
218 struct timeval *tv)
219 {
220 clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec);
221 }
222
223 /*
224 * XXX Y2038 bug because of clock_adjtime() first argument
225 */
226 /* ARGSUSED */
227 int
228 adjtime(struct proc *p, struct adjtime_args *uap, __unused int32_t *retval)
229 {
230 struct timeval atv;
231 int error;
232
233 #if CONFIG_MACF
234 error = mac_system_check_settime(kauth_cred_get());
235 if (error)
236 return (error);
237 #endif
238 if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0)))
239 return (error);
240 if (IS_64BIT_PROCESS(p)) {
241 struct user64_timeval user_atv;
242 error = copyin(uap->delta, &user_atv, sizeof(user_atv));
243 atv.tv_sec = user_atv.tv_sec;
244 atv.tv_usec = user_atv.tv_usec;
245 } else {
246 struct user32_timeval user_atv;
247 error = copyin(uap->delta, &user_atv, sizeof(user_atv));
248 atv.tv_sec = user_atv.tv_sec;
249 atv.tv_usec = user_atv.tv_usec;
250 }
251 if (error)
252 return (error);
253
254 /*
255 * Compute the total correction and the rate at which to apply it.
256 */
257 clock_adjtime(&atv.tv_sec, &atv.tv_usec);
258
259 if (uap->olddelta) {
260 if (IS_64BIT_PROCESS(p)) {
261 struct user64_timeval user_atv;
262 user_atv.tv_sec = atv.tv_sec;
263 user_atv.tv_usec = atv.tv_usec;
264 error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
265 } else {
266 struct user32_timeval user_atv;
267 user_atv.tv_sec = atv.tv_sec;
268 user_atv.tv_usec = atv.tv_usec;
269 error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
270 }
271 }
272
273 return (0);
274 }
275
276 /*
277 * Verify the calendar value. If negative,
278 * reset to zero (the epoch).
279 */
280 void
281 inittodr(
282 __unused time_t base)
283 {
284 struct timeval tv;
285
286 /*
287 * Assertion:
288 * The calendar has already been
289 * set up from the platform clock.
290 *
291 * The value returned by microtime()
292 * is gotten from the calendar.
293 */
294 microtime(&tv);
295
296 if (tv.tv_sec < 0 || tv.tv_usec < 0) {
297 printf ("WARNING: preposterous time in Real Time Clock");
298 tv.tv_sec = 0; /* the UNIX epoch */
299 tv.tv_usec = 0;
300 setthetime(&tv);
301 printf(" -- CHECK AND RESET THE DATE!\n");
302 }
303 }
304
305 time_t
306 boottime_sec(void)
307 {
308 clock_sec_t secs;
309 clock_nsec_t nanosecs;
310
311 clock_get_boottime_nanotime(&secs, &nanosecs);
312 return (secs);
313 }
314
315 void
316 boottime_timeval(struct timeval *tv)
317 {
318 clock_sec_t secs;
319 clock_usec_t microsecs;
320
321 clock_get_boottime_microtime(&secs, &microsecs);
322
323 tv->tv_sec = secs;
324 tv->tv_usec = microsecs;
325 }
326
327 /*
328 * Get value of an interval timer. The process virtual and
329 * profiling virtual time timers are kept internally in the
330 * way they are specified externally: in time until they expire.
331 *
332 * The real time interval timer expiration time (p_rtime)
333 * is kept as an absolute time rather than as a delta, so that
334 * it is easy to keep periodic real-time signals from drifting.
335 *
336 * The real time timer is processed by a callout routine.
337 * Since a callout may be delayed in real time due to
338 * other processing in the system, it is possible for the real
339 * time callout routine (realitexpire, given below), to be delayed
340 * in real time past when it is supposed to occur. It does not
341 * suffice, therefore, to reload the real time .it_value from the
342 * real time .it_interval. Rather, we compute the next time in
343 * absolute time when the timer should go off.
344 *
345 * Returns: 0 Success
346 * EINVAL Invalid argument
347 * copyout:EFAULT Bad address
348 */
349 /* ARGSUSED */
350 int
351 getitimer(struct proc *p, struct getitimer_args *uap, __unused int32_t *retval)
352 {
353 struct itimerval aitv;
354
355 if (uap->which > ITIMER_PROF)
356 return(EINVAL);
357
358 bzero(&aitv, sizeof(aitv));
359
360 proc_spinlock(p);
361 switch (uap->which) {
362
363 case ITIMER_REAL:
364 /*
365 * If time for real time timer has passed return 0,
366 * else return difference between current time and
367 * time for the timer to go off.
368 */
369 aitv = p->p_realtimer;
370 if (timerisset(&p->p_rtime)) {
371 struct timeval now;
372
373 microuptime(&now);
374 if (timercmp(&p->p_rtime, &now, <))
375 timerclear(&aitv.it_value);
376 else {
377 aitv.it_value = p->p_rtime;
378 timevalsub(&aitv.it_value, &now);
379 }
380 }
381 else
382 timerclear(&aitv.it_value);
383 break;
384
385 case ITIMER_VIRTUAL:
386 aitv = p->p_vtimer_user;
387 break;
388
389 case ITIMER_PROF:
390 aitv = p->p_vtimer_prof;
391 break;
392 }
393
394 proc_spinunlock(p);
395
396 if (IS_64BIT_PROCESS(p)) {
397 struct user64_itimerval user_itv;
398 bzero(&user_itv, sizeof (user_itv));
399 user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec;
400 user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
401 user_itv.it_value.tv_sec = aitv.it_value.tv_sec;
402 user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
403 return (copyout((caddr_t)&user_itv, uap->itv, sizeof (user_itv)));
404 } else {
405 struct user32_itimerval user_itv;
406 bzero(&user_itv, sizeof (user_itv));
407 user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec;
408 user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
409 user_itv.it_value.tv_sec = aitv.it_value.tv_sec;
410 user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
411 return (copyout((caddr_t)&user_itv, uap->itv, sizeof (user_itv)));
412 }
413 }
414
415 /*
416 * Returns: 0 Success
417 * EINVAL Invalid argument
418 * copyin:EFAULT Bad address
419 * getitimer:EINVAL Invalid argument
420 * getitimer:EFAULT Bad address
421 */
422 /* ARGSUSED */
423 int
424 setitimer(struct proc *p, struct setitimer_args *uap, int32_t *retval)
425 {
426 struct itimerval aitv;
427 user_addr_t itvp;
428 int error;
429
430 bzero(&aitv, sizeof(aitv));
431
432 if (uap->which > ITIMER_PROF)
433 return (EINVAL);
434 if ((itvp = uap->itv)) {
435 if (IS_64BIT_PROCESS(p)) {
436 struct user64_itimerval user_itv;
437 if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (user_itv))))
438 return (error);
439 aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec;
440 aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
441 aitv.it_value.tv_sec = user_itv.it_value.tv_sec;
442 aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
443 } else {
444 struct user32_itimerval user_itv;
445 if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (user_itv))))
446 return (error);
447 aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec;
448 aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
449 aitv.it_value.tv_sec = user_itv.it_value.tv_sec;
450 aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
451 }
452 }
453 if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval)))
454 return (error);
455 if (itvp == 0)
456 return (0);
457 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
458 return (EINVAL);
459
460 switch (uap->which) {
461
462 case ITIMER_REAL:
463 proc_spinlock(p);
464 if (timerisset(&aitv.it_value)) {
465 microuptime(&p->p_rtime);
466 timevaladd(&p->p_rtime, &aitv.it_value);
467 p->p_realtimer = aitv;
468 if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL,
469 tvtoabstime(&p->p_rtime), 0, THREAD_CALL_DELAY_USER_NORMAL))
470 p->p_ractive++;
471 } else {
472 timerclear(&p->p_rtime);
473 p->p_realtimer = aitv;
474 if (thread_call_cancel(p->p_rcall))
475 p->p_ractive--;
476 }
477 proc_spinunlock(p);
478
479 break;
480
481
482 case ITIMER_VIRTUAL:
483 if (timerisset(&aitv.it_value))
484 task_vtimer_set(p->task, TASK_VTIMER_USER);
485 else
486 task_vtimer_clear(p->task, TASK_VTIMER_USER);
487
488 proc_spinlock(p);
489 p->p_vtimer_user = aitv;
490 proc_spinunlock(p);
491 break;
492
493 case ITIMER_PROF:
494 if (timerisset(&aitv.it_value))
495 task_vtimer_set(p->task, TASK_VTIMER_PROF);
496 else
497 task_vtimer_clear(p->task, TASK_VTIMER_PROF);
498
499 proc_spinlock(p);
500 p->p_vtimer_prof = aitv;
501 proc_spinunlock(p);
502 break;
503 }
504
505 return (0);
506 }
507
508 /*
509 * Real interval timer expired:
510 * send process whose timer expired an alarm signal.
511 * If time is not set up to reload, then just return.
512 * Else compute next time timer should go off which is > current time.
513 * This is where delay in processing this timeout causes multiple
514 * SIGALRM calls to be compressed into one.
515 */
516 void
517 realitexpire(
518 struct proc *p)
519 {
520 struct proc *r;
521 struct timeval t;
522
523 r = proc_find(p->p_pid);
524
525 proc_spinlock(p);
526
527 assert(p->p_ractive > 0);
528
529 if (--p->p_ractive > 0 || r != p) {
530 /*
531 * bail, because either proc is exiting
532 * or there's another active thread call
533 */
534 proc_spinunlock(p);
535
536 if (r != NULL)
537 proc_rele(r);
538 return;
539 }
540
541 if (!timerisset(&p->p_realtimer.it_interval)) {
542 /*
543 * p_realtimer was cleared while this call was pending,
544 * send one last SIGALRM, but don't re-arm
545 */
546 timerclear(&p->p_rtime);
547 proc_spinunlock(p);
548
549 psignal(p, SIGALRM);
550 proc_rele(p);
551 return;
552 }
553
554 proc_spinunlock(p);
555
556 /*
557 * Send the signal before re-arming the next thread call,
558 * so in case psignal blocks, we won't create yet another thread call.
559 */
560
561 psignal(p, SIGALRM);
562
563 proc_spinlock(p);
564
565 /* Should we still re-arm the next thread call? */
566 if (!timerisset(&p->p_realtimer.it_interval)) {
567 timerclear(&p->p_rtime);
568 proc_spinunlock(p);
569
570 proc_rele(p);
571 return;
572 }
573
574 microuptime(&t);
575 timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
576
577 if (timercmp(&p->p_rtime, &t, <=)) {
578 if ((p->p_rtime.tv_sec + 2) >= t.tv_sec) {
579 for (;;) {
580 timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
581 if (timercmp(&p->p_rtime, &t, >))
582 break;
583 }
584 } else {
585 p->p_rtime = p->p_realtimer.it_interval;
586 timevaladd(&p->p_rtime, &t);
587 }
588 }
589
590 assert(p->p_rcall != NULL);
591
592 if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL, tvtoabstime(&p->p_rtime), 0,
593 THREAD_CALL_DELAY_USER_NORMAL)) {
594 p->p_ractive++;
595 }
596
597 proc_spinunlock(p);
598
599 proc_rele(p);
600 }
601
602 /*
603 * Called once in proc_exit to clean up after an armed or pending realitexpire
604 *
605 * This will only be called after the proc refcount is drained,
606 * so realitexpire cannot be currently holding a proc ref.
607 * i.e. it will/has gotten PROC_NULL from proc_find.
608 */
609 void
610 proc_free_realitimer(proc_t p)
611 {
612 proc_spinlock(p);
613
614 assert(p->p_rcall != NULL);
615 assert(p->p_refcount == 0);
616
617 timerclear(&p->p_realtimer.it_interval);
618
619 if (thread_call_cancel(p->p_rcall)) {
620 assert(p->p_ractive > 0);
621 p->p_ractive--;
622 }
623
624 while (p->p_ractive > 0) {
625 proc_spinunlock(p);
626
627 delay(1);
628
629 proc_spinlock(p);
630 }
631
632 thread_call_t call = p->p_rcall;
633 p->p_rcall = NULL;
634
635 proc_spinunlock(p);
636
637 thread_call_free(call);
638 }
639
640 /*
641 * Check that a proposed value to load into the .it_value or
642 * .it_interval part of an interval timer is acceptable.
643 */
644 int
645 itimerfix(
646 struct timeval *tv)
647 {
648
649 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
650 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
651 return (EINVAL);
652 return (0);
653 }
654
655 int
656 timespec_is_valid(const struct timespec *ts)
657 {
658 /* The INT32_MAX limit ensures the timespec is safe for clock_*() functions
659 * which accept 32-bit ints. */
660 if (ts->tv_sec < 0 || ts->tv_sec > INT32_MAX ||
661 ts->tv_nsec < 0 || (unsigned long long)ts->tv_nsec > NSEC_PER_SEC) {
662 return 0;
663 }
664 return 1;
665 }
666
667 /*
668 * Decrement an interval timer by a specified number
669 * of microseconds, which must be less than a second,
670 * i.e. < 1000000. If the timer expires, then reload
671 * it. In this case, carry over (usec - old value) to
672 * reduce the value reloaded into the timer so that
673 * the timer does not drift. This routine assumes
674 * that it is called in a context where the timers
675 * on which it is operating cannot change in value.
676 */
677 int
678 itimerdecr(proc_t p,
679 struct itimerval *itp, int usec)
680 {
681
682 proc_spinlock(p);
683
684 if (itp->it_value.tv_usec < usec) {
685 if (itp->it_value.tv_sec == 0) {
686 /* expired, and already in next interval */
687 usec -= itp->it_value.tv_usec;
688 goto expire;
689 }
690 itp->it_value.tv_usec += 1000000;
691 itp->it_value.tv_sec--;
692 }
693 itp->it_value.tv_usec -= usec;
694 usec = 0;
695 if (timerisset(&itp->it_value)) {
696 proc_spinunlock(p);
697 return (1);
698 }
699 /* expired, exactly at end of interval */
700 expire:
701 if (timerisset(&itp->it_interval)) {
702 itp->it_value = itp->it_interval;
703 if (itp->it_value.tv_sec > 0) {
704 itp->it_value.tv_usec -= usec;
705 if (itp->it_value.tv_usec < 0) {
706 itp->it_value.tv_usec += 1000000;
707 itp->it_value.tv_sec--;
708 }
709 }
710 } else
711 itp->it_value.tv_usec = 0; /* sec is already 0 */
712 proc_spinunlock(p);
713 return (0);
714 }
715
716 /*
717 * Add and subtract routines for timevals.
718 * N.B.: subtract routine doesn't deal with
719 * results which are before the beginning,
720 * it just gets very confused in this case.
721 * Caveat emptor.
722 */
723 void
724 timevaladd(
725 struct timeval *t1,
726 struct timeval *t2)
727 {
728
729 t1->tv_sec += t2->tv_sec;
730 t1->tv_usec += t2->tv_usec;
731 timevalfix(t1);
732 }
733 void
734 timevalsub(
735 struct timeval *t1,
736 struct timeval *t2)
737 {
738
739 t1->tv_sec -= t2->tv_sec;
740 t1->tv_usec -= t2->tv_usec;
741 timevalfix(t1);
742 }
743 void
744 timevalfix(
745 struct timeval *t1)
746 {
747
748 if (t1->tv_usec < 0) {
749 t1->tv_sec--;
750 t1->tv_usec += 1000000;
751 }
752 if (t1->tv_usec >= 1000000) {
753 t1->tv_sec++;
754 t1->tv_usec -= 1000000;
755 }
756 }
757
758 /*
759 * Return the best possible estimate of the time in the timeval
760 * to which tvp points.
761 */
762 void
763 microtime(
764 struct timeval *tvp)
765 {
766 clock_sec_t tv_sec;
767 clock_usec_t tv_usec;
768
769 clock_get_calendar_microtime(&tv_sec, &tv_usec);
770
771 tvp->tv_sec = tv_sec;
772 tvp->tv_usec = tv_usec;
773 }
774
775 void
776 microtime_with_abstime(
777 struct timeval *tvp, uint64_t *abstime)
778 {
779 clock_sec_t tv_sec;
780 clock_usec_t tv_usec;
781
782 clock_get_calendar_absolute_and_microtime(&tv_sec, &tv_usec, abstime);
783
784 tvp->tv_sec = tv_sec;
785 tvp->tv_usec = tv_usec;
786 }
787
788 void
789 microuptime(
790 struct timeval *tvp)
791 {
792 clock_sec_t tv_sec;
793 clock_usec_t tv_usec;
794
795 clock_get_system_microtime(&tv_sec, &tv_usec);
796
797 tvp->tv_sec = tv_sec;
798 tvp->tv_usec = tv_usec;
799 }
800
801 /*
802 * Ditto for timespec.
803 */
804 void
805 nanotime(
806 struct timespec *tsp)
807 {
808 clock_sec_t tv_sec;
809 clock_nsec_t tv_nsec;
810
811 clock_get_calendar_nanotime(&tv_sec, &tv_nsec);
812
813 tsp->tv_sec = tv_sec;
814 tsp->tv_nsec = tv_nsec;
815 }
816
817 void
818 nanouptime(
819 struct timespec *tsp)
820 {
821 clock_sec_t tv_sec;
822 clock_nsec_t tv_nsec;
823
824 clock_get_system_nanotime(&tv_sec, &tv_nsec);
825
826 tsp->tv_sec = tv_sec;
827 tsp->tv_nsec = tv_nsec;
828 }
829
830 uint64_t
831 tvtoabstime(
832 struct timeval *tvp)
833 {
834 uint64_t result, usresult;
835
836 clock_interval_to_absolutetime_interval(
837 tvp->tv_sec, NSEC_PER_SEC, &result);
838 clock_interval_to_absolutetime_interval(
839 tvp->tv_usec, NSEC_PER_USEC, &usresult);
840
841 return (result + usresult);
842 }
843
844 uint64_t
845 tstoabstime(struct timespec *ts)
846 {
847 uint64_t abstime_s, abstime_ns;
848 clock_interval_to_absolutetime_interval(ts->tv_sec, NSEC_PER_SEC, &abstime_s);
849 clock_interval_to_absolutetime_interval(ts->tv_nsec, 1, &abstime_ns);
850 return abstime_s + abstime_ns;
851 }
852
853 #if NETWORKING
854 /*
855 * ratecheck(): simple time-based rate-limit checking.
856 */
857 int
858 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
859 {
860 struct timeval tv, delta;
861 int rv = 0;
862
863 net_uptime2timeval(&tv);
864 delta = tv;
865 timevalsub(&delta, lasttime);
866
867 /*
868 * check for 0,0 is so that the message will be seen at least once,
869 * even if interval is huge.
870 */
871 if (timevalcmp(&delta, mininterval, >=) ||
872 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
873 *lasttime = tv;
874 rv = 1;
875 }
876
877 return (rv);
878 }
879
880 /*
881 * ppsratecheck(): packets (or events) per second limitation.
882 */
883 int
884 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
885 {
886 struct timeval tv, delta;
887 int rv;
888
889 net_uptime2timeval(&tv);
890
891 timersub(&tv, lasttime, &delta);
892
893 /*
894 * Check for 0,0 so that the message will be seen at least once.
895 * If more than one second has passed since the last update of
896 * lasttime, reset the counter.
897 *
898 * we do increment *curpps even in *curpps < maxpps case, as some may
899 * try to use *curpps for stat purposes as well.
900 */
901 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
902 delta.tv_sec >= 1) {
903 *lasttime = tv;
904 *curpps = 0;
905 rv = 1;
906 } else if (maxpps < 0)
907 rv = 1;
908 else if (*curpps < maxpps)
909 rv = 1;
910 else
911 rv = 0;
912
913 #if 1 /* DIAGNOSTIC? */
914 /* be careful about wrap-around */
915 if (*curpps + 1 > 0)
916 *curpps = *curpps + 1;
917 #else
918 /*
919 * assume that there's not too many calls to this function.
920 * not sure if the assumption holds, as it depends on *caller's*
921 * behavior, not the behavior of this function.
922 * IMHO it is wrong to make assumption on the caller's behavior,
923 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
924 */
925 *curpps = *curpps + 1;
926 #endif
927
928 return (rv);
929 }
930 #endif /* NETWORKING */
931
932 void
933 time_zone_slock_init(void)
934 {
935 /* allocate lock group attribute and group */
936 tz_slock_grp_attr = lck_grp_attr_alloc_init();
937
938 tz_slock_grp = lck_grp_alloc_init("tzlock", tz_slock_grp_attr);
939
940 /* Allocate lock attribute */
941 tz_slock_attr = lck_attr_alloc_init();
942
943 /* Allocate the spin lock */
944 tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr);
945 }