]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_aio.c
xnu-3789.60.24.tar.gz
[apple/xnu.git] / bsd / kern / kern_aio.c
1 /*
2 * Copyright (c) 2003-2016 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29
30 /*
31 * todo:
32 * 1) ramesh is looking into how to replace taking a reference on
33 * the user's map (vm_map_reference()) since it is believed that
34 * would not hold the process for us.
35 * 2) david is looking into a way for us to set the priority of the
36 * worker threads to match that of the user's thread when the
37 * async IO was queued.
38 */
39
40
41 /*
42 * This file contains support for the POSIX 1003.1B AIO/LIO facility.
43 */
44
45 #include <sys/systm.h>
46 #include <sys/fcntl.h>
47 #include <sys/file_internal.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/vnode_internal.h>
51 #include <sys/malloc.h>
52 #include <sys/mount_internal.h>
53 #include <sys/param.h>
54 #include <sys/proc_internal.h>
55 #include <sys/sysctl.h>
56 #include <sys/unistd.h>
57 #include <sys/user.h>
58
59 #include <sys/aio_kern.h>
60 #include <sys/sysproto.h>
61
62 #include <machine/limits.h>
63
64 #include <mach/mach_types.h>
65 #include <kern/kern_types.h>
66 #include <kern/waitq.h>
67 #include <kern/zalloc.h>
68 #include <kern/task.h>
69 #include <kern/sched_prim.h>
70
71 #include <vm/vm_map.h>
72
73 #include <libkern/OSAtomic.h>
74
75 #include <sys/kdebug.h>
76 #define AIO_work_queued 1
77 #define AIO_worker_wake 2
78 #define AIO_completion_sig 3
79 #define AIO_completion_cleanup_wait 4
80 #define AIO_completion_cleanup_wake 5
81 #define AIO_completion_suspend_wake 6
82 #define AIO_fsync_delay 7
83 #define AIO_cancel 10
84 #define AIO_cancel_async_workq 11
85 #define AIO_cancel_sync_workq 12
86 #define AIO_cancel_activeq 13
87 #define AIO_cancel_doneq 14
88 #define AIO_fsync 20
89 #define AIO_read 30
90 #define AIO_write 40
91 #define AIO_listio 50
92 #define AIO_error 60
93 #define AIO_error_val 61
94 #define AIO_error_activeq 62
95 #define AIO_error_workq 63
96 #define AIO_return 70
97 #define AIO_return_val 71
98 #define AIO_return_activeq 72
99 #define AIO_return_workq 73
100 #define AIO_exec 80
101 #define AIO_exit 90
102 #define AIO_exit_sleep 91
103 #define AIO_close 100
104 #define AIO_close_sleep 101
105 #define AIO_suspend 110
106 #define AIO_suspend_sleep 111
107 #define AIO_worker_thread 120
108
109 #if 0
110 #undef KERNEL_DEBUG
111 #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
112 #endif
113
114 /*
115 * aio requests queue up on the aio_async_workq or lio_sync_workq (for
116 * lio_listio LIO_WAIT). Requests then move to the per process aio_activeq
117 * (proc.aio_activeq) when one of our worker threads start the IO.
118 * And finally, requests move to the per process aio_doneq (proc.aio_doneq)
119 * when the IO request completes. The request remains on aio_doneq until
120 * user process calls aio_return or the process exits, either way that is our
121 * trigger to release aio resources.
122 */
123 typedef struct aio_workq {
124 TAILQ_HEAD(, aio_workq_entry) aioq_entries;
125 int aioq_count;
126 lck_mtx_t aioq_mtx;
127 struct waitq aioq_waitq;
128 } *aio_workq_t;
129
130 #define AIO_NUM_WORK_QUEUES 1
131 struct aio_anchor_cb
132 {
133 volatile int32_t aio_inflight_count; /* entries that have been taken from a workq */
134 volatile int32_t aio_done_count; /* entries on all done queues (proc.aio_doneq) */
135 volatile int32_t aio_total_count; /* total extant entries */
136
137 /* Hash table of queues here */
138 int aio_num_workqs;
139 struct aio_workq aio_async_workqs[AIO_NUM_WORK_QUEUES];
140 };
141 typedef struct aio_anchor_cb aio_anchor_cb;
142
143 struct aio_lio_context
144 {
145 int io_waiter;
146 int io_issued;
147 int io_completed;
148 };
149 typedef struct aio_lio_context aio_lio_context;
150
151
152 /*
153 * Notes on aio sleep / wake channels.
154 * We currently pick a couple fields within the proc structure that will allow
155 * us sleep channels that currently do not collide with any other kernel routines.
156 * At this time, for binary compatibility reasons, we cannot create new proc fields.
157 */
158 #define AIO_SUSPEND_SLEEP_CHAN p_aio_active_count
159 #define AIO_CLEANUP_SLEEP_CHAN p_aio_total_count
160
161 #define ASSERT_AIO_FROM_PROC(aiop, theproc) \
162 if ((aiop)->procp != (theproc)) { \
163 panic("AIO on a proc list that does not belong to that proc.\n"); \
164 }
165
166 /*
167 * LOCAL PROTOTYPES
168 */
169 static void aio_proc_lock(proc_t procp);
170 static void aio_proc_lock_spin(proc_t procp);
171 static void aio_proc_unlock(proc_t procp);
172 static lck_mtx_t* aio_proc_mutex(proc_t procp);
173 static void aio_proc_move_done_locked(proc_t procp, aio_workq_entry *entryp);
174 static void aio_proc_remove_done_locked(proc_t procp, aio_workq_entry *entryp);
175 static int aio_get_process_count(proc_t procp );
176 static int aio_active_requests_for_process(proc_t procp );
177 static int aio_proc_active_requests_for_file(proc_t procp, int fd);
178 static boolean_t is_already_queued(proc_t procp, user_addr_t aiocbp );
179 static boolean_t should_cancel(aio_workq_entry *entryp, user_addr_t aiocbp, int fd);
180
181 static void aio_entry_lock(aio_workq_entry *entryp);
182 static void aio_entry_lock_spin(aio_workq_entry *entryp);
183 static aio_workq_t aio_entry_workq(aio_workq_entry *entryp);
184 static lck_mtx_t* aio_entry_mutex(__unused aio_workq_entry *entryp);
185 static void aio_workq_remove_entry_locked(aio_workq_t queue, aio_workq_entry *entryp);
186 static void aio_workq_add_entry_locked(aio_workq_t queue, aio_workq_entry *entryp);
187 static void aio_entry_ref_locked(aio_workq_entry *entryp);
188 static void aio_entry_unref_locked(aio_workq_entry *entryp);
189 static void aio_entry_ref(aio_workq_entry *entryp);
190 static void aio_entry_unref(aio_workq_entry *entryp);
191 static void aio_entry_update_for_cancel(aio_workq_entry *entryp, boolean_t cancelled,
192 int wait_for_completion, boolean_t disable_notification);
193 static int aio_entry_try_workq_remove(aio_workq_entry *entryp);
194 static boolean_t aio_delay_fsync_request( aio_workq_entry *entryp );
195 static int aio_free_request(aio_workq_entry *entryp);
196
197 static void aio_workq_init(aio_workq_t wq);
198 static void aio_workq_lock_spin(aio_workq_t wq);
199 static void aio_workq_unlock(aio_workq_t wq);
200 static lck_mtx_t* aio_workq_mutex(aio_workq_t wq);
201
202 static void aio_work_thread( void );
203 static aio_workq_entry *aio_get_some_work( void );
204
205 static int aio_get_all_queues_count( void );
206 static int aio_queue_async_request(proc_t procp, user_addr_t aiocbp, int kindOfIO );
207 static int aio_validate( aio_workq_entry *entryp );
208 static int aio_increment_total_count(void);
209 static int aio_decrement_total_count(void);
210
211 static int do_aio_cancel_locked(proc_t p, int fd, user_addr_t aiocbp, int wait_for_completion, boolean_t disable_notification );
212 static void do_aio_completion( aio_workq_entry *entryp );
213 static int do_aio_fsync( aio_workq_entry *entryp );
214 static int do_aio_read( aio_workq_entry *entryp );
215 static int do_aio_write( aio_workq_entry *entryp );
216 static void do_munge_aiocb_user32_to_user( struct user32_aiocb *my_aiocbp, struct user_aiocb *the_user_aiocbp );
217 static void do_munge_aiocb_user64_to_user( struct user64_aiocb *my_aiocbp, struct user_aiocb *the_user_aiocbp );
218 static int lio_create_entry(proc_t procp,
219 user_addr_t aiocbp,
220 void *group_tag,
221 aio_workq_entry **entrypp );
222 static aio_workq_entry *aio_create_queue_entry(proc_t procp,
223 user_addr_t aiocbp,
224 void *group_tag,
225 int kindOfIO);
226 static user_addr_t *aio_copy_in_list(proc_t procp, user_addr_t aiocblist, int nent);
227 static void free_lio_context(aio_lio_context* context);
228 static void aio_enqueue_work( proc_t procp, aio_workq_entry *entryp, int proc_locked);
229
230 #define ASSERT_AIO_PROC_LOCK_OWNED(p) lck_mtx_assert(aio_proc_mutex((p)), LCK_MTX_ASSERT_OWNED)
231 #define ASSERT_AIO_WORKQ_LOCK_OWNED(q) lck_mtx_assert(aio_workq_mutex((q)), LCK_MTX_ASSERT_OWNED)
232 #define ASSERT_AIO_ENTRY_LOCK_OWNED(e) lck_mtx_assert(aio_entry_mutex((e)), LCK_MTX_ASSERT_OWNED)
233
234 /*
235 * EXTERNAL PROTOTYPES
236 */
237
238 /* in ...bsd/kern/sys_generic.c */
239 extern int dofileread(vfs_context_t ctx, struct fileproc *fp,
240 user_addr_t bufp, user_size_t nbyte,
241 off_t offset, int flags, user_ssize_t *retval );
242 extern int dofilewrite(vfs_context_t ctx, struct fileproc *fp,
243 user_addr_t bufp, user_size_t nbyte, off_t offset,
244 int flags, user_ssize_t *retval );
245 #if DEBUG
246 static uint32_t lio_contexts_alloced = 0;
247 #endif /* DEBUG */
248
249 /*
250 * aio external global variables.
251 */
252 extern int aio_max_requests; /* AIO_MAX - configurable */
253 extern int aio_max_requests_per_process; /* AIO_PROCESS_MAX - configurable */
254 extern int aio_worker_threads; /* AIO_THREAD_COUNT - configurable */
255
256
257 /*
258 * aio static variables.
259 */
260 static aio_anchor_cb aio_anchor;
261 static lck_grp_t *aio_proc_lock_grp;
262 static lck_grp_t *aio_entry_lock_grp;
263 static lck_grp_t *aio_queue_lock_grp;
264 static lck_attr_t *aio_lock_attr;
265 static lck_grp_attr_t *aio_lock_grp_attr;
266 static struct zone *aio_workq_zonep;
267 static lck_mtx_t aio_entry_mtx;
268 static lck_mtx_t aio_proc_mtx;
269
270 static void
271 aio_entry_lock(__unused aio_workq_entry *entryp)
272 {
273 lck_mtx_lock(&aio_entry_mtx);
274 }
275
276 static void
277 aio_entry_lock_spin(__unused aio_workq_entry *entryp)
278 {
279 lck_mtx_lock_spin(&aio_entry_mtx);
280 }
281
282 static void
283 aio_entry_unlock(__unused aio_workq_entry *entryp)
284 {
285 lck_mtx_unlock(&aio_entry_mtx);
286 }
287
288 /* Hash */
289 static aio_workq_t
290 aio_entry_workq(__unused aio_workq_entry *entryp)
291 {
292 return &aio_anchor.aio_async_workqs[0];
293 }
294
295 static lck_mtx_t*
296 aio_entry_mutex(__unused aio_workq_entry *entryp)
297 {
298 return &aio_entry_mtx;
299 }
300
301 static void
302 aio_workq_init(aio_workq_t wq)
303 {
304 TAILQ_INIT(&wq->aioq_entries);
305 wq->aioq_count = 0;
306 lck_mtx_init(&wq->aioq_mtx, aio_queue_lock_grp, aio_lock_attr);
307 waitq_init(&wq->aioq_waitq, SYNC_POLICY_FIFO);
308 }
309
310
311 /*
312 * Can be passed a queue which is locked spin.
313 */
314 static void
315 aio_workq_remove_entry_locked(aio_workq_t queue, aio_workq_entry *entryp)
316 {
317 ASSERT_AIO_WORKQ_LOCK_OWNED(queue);
318
319 if (entryp->aio_workq_link.tqe_prev == NULL) {
320 panic("Trying to remove an entry from a work queue, but it is not on a queue\n");
321 }
322
323 TAILQ_REMOVE(&queue->aioq_entries, entryp, aio_workq_link);
324 queue->aioq_count--;
325 entryp->aio_workq_link.tqe_prev = NULL; /* Not on a workq */
326
327 if (queue->aioq_count < 0) {
328 panic("Negative count on a queue.\n");
329 }
330 }
331
332 static void
333 aio_workq_add_entry_locked(aio_workq_t queue, aio_workq_entry *entryp)
334 {
335 ASSERT_AIO_WORKQ_LOCK_OWNED(queue);
336
337 TAILQ_INSERT_TAIL(&queue->aioq_entries, entryp, aio_workq_link);
338 if (queue->aioq_count < 0) {
339 panic("Negative count on a queue.\n");
340 }
341 queue->aioq_count++;
342 }
343
344 static void
345 aio_proc_lock(proc_t procp)
346 {
347 lck_mtx_lock(aio_proc_mutex(procp));
348 }
349
350 static void
351 aio_proc_lock_spin(proc_t procp)
352 {
353 lck_mtx_lock_spin(aio_proc_mutex(procp));
354 }
355
356 static void
357 aio_proc_move_done_locked(proc_t procp, aio_workq_entry *entryp)
358 {
359 ASSERT_AIO_PROC_LOCK_OWNED(procp);
360
361 TAILQ_REMOVE(&procp->p_aio_activeq, entryp, aio_proc_link );
362 TAILQ_INSERT_TAIL( &procp->p_aio_doneq, entryp, aio_proc_link);
363 procp->p_aio_active_count--;
364 OSIncrementAtomic(&aio_anchor.aio_done_count);
365 }
366
367 static void
368 aio_proc_remove_done_locked(proc_t procp, aio_workq_entry *entryp)
369 {
370 TAILQ_REMOVE(&procp->p_aio_doneq, entryp, aio_proc_link);
371 OSDecrementAtomic(&aio_anchor.aio_done_count);
372 aio_decrement_total_count();
373 procp->p_aio_total_count--;
374 }
375
376 static void
377 aio_proc_unlock(proc_t procp)
378 {
379 lck_mtx_unlock(aio_proc_mutex(procp));
380 }
381
382 static lck_mtx_t*
383 aio_proc_mutex(proc_t procp)
384 {
385 return &procp->p_mlock;
386 }
387
388 static void
389 aio_entry_ref_locked(aio_workq_entry *entryp)
390 {
391 ASSERT_AIO_ENTRY_LOCK_OWNED(entryp);
392
393 if (entryp->aio_refcount < 0) {
394 panic("AIO workq entry with a negative refcount.\n");
395 }
396 entryp->aio_refcount++;
397 }
398
399
400 /* Return 1 if you've freed it */
401 static void
402 aio_entry_unref_locked(aio_workq_entry *entryp)
403 {
404 ASSERT_AIO_ENTRY_LOCK_OWNED(entryp);
405
406 entryp->aio_refcount--;
407 if (entryp->aio_refcount < 0) {
408 panic("AIO workq entry with a negative refcount.\n");
409 }
410 }
411
412 static void
413 aio_entry_ref(aio_workq_entry *entryp)
414 {
415 aio_entry_lock_spin(entryp);
416 aio_entry_ref_locked(entryp);
417 aio_entry_unlock(entryp);
418 }
419 static void
420 aio_entry_unref(aio_workq_entry *entryp)
421 {
422 aio_entry_lock_spin(entryp);
423 aio_entry_unref_locked(entryp);
424
425 if ((entryp->aio_refcount == 0) && ((entryp->flags & AIO_DO_FREE) != 0)) {
426 aio_entry_unlock(entryp);
427 aio_free_request(entryp);
428 } else {
429 aio_entry_unlock(entryp);
430 }
431
432 return;
433 }
434
435 static void
436 aio_entry_update_for_cancel(aio_workq_entry *entryp, boolean_t cancelled, int wait_for_completion, boolean_t disable_notification)
437 {
438 aio_entry_lock_spin(entryp);
439
440 if (cancelled) {
441 aio_entry_ref_locked(entryp);
442 entryp->errorval = ECANCELED;
443 entryp->returnval = -1;
444 }
445
446 if ( wait_for_completion ) {
447 entryp->flags |= wait_for_completion; /* flag for special completion processing */
448 }
449
450 if ( disable_notification ) {
451 entryp->flags |= AIO_DISABLE; /* Don't want a signal */
452 }
453
454 aio_entry_unlock(entryp);
455 }
456
457 static int
458 aio_entry_try_workq_remove(aio_workq_entry *entryp)
459 {
460 /* Can only be cancelled if it's still on a work queue */
461 if (entryp->aio_workq_link.tqe_prev != NULL) {
462 aio_workq_t queue;
463
464 /* Will have to check again under the lock */
465 queue = aio_entry_workq(entryp);
466 aio_workq_lock_spin(queue);
467 if (entryp->aio_workq_link.tqe_prev != NULL) {
468 aio_workq_remove_entry_locked(queue, entryp);
469 aio_workq_unlock(queue);
470 return 1;
471 } else {
472 aio_workq_unlock(queue);
473 }
474 }
475
476 return 0;
477 }
478
479 static void
480 aio_workq_lock_spin(aio_workq_t wq)
481 {
482 lck_mtx_lock_spin(aio_workq_mutex(wq));
483 }
484
485 static void
486 aio_workq_unlock(aio_workq_t wq)
487 {
488 lck_mtx_unlock(aio_workq_mutex(wq));
489 }
490
491 static lck_mtx_t*
492 aio_workq_mutex(aio_workq_t wq)
493 {
494 return &wq->aioq_mtx;
495 }
496
497 /*
498 * aio_cancel - attempt to cancel one or more async IO requests currently
499 * outstanding against file descriptor uap->fd. If uap->aiocbp is not
500 * NULL then only one specific IO is cancelled (if possible). If uap->aiocbp
501 * is NULL then all outstanding async IO request for the given file
502 * descriptor are cancelled (if possible).
503 */
504 int
505 aio_cancel(proc_t p, struct aio_cancel_args *uap, int *retval )
506 {
507 struct user_aiocb my_aiocb;
508 int result;
509
510 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_cancel)) | DBG_FUNC_START,
511 (int)p, (int)uap->aiocbp, 0, 0, 0 );
512
513 /* quick check to see if there are any async IO requests queued up */
514 if (aio_get_all_queues_count() < 1) {
515 result = 0;
516 *retval = AIO_ALLDONE;
517 goto ExitRoutine;
518 }
519
520 *retval = -1;
521 if ( uap->aiocbp != USER_ADDR_NULL ) {
522 if ( proc_is64bit(p) ) {
523 struct user64_aiocb aiocb64;
524
525 result = copyin( uap->aiocbp, &aiocb64, sizeof(aiocb64) );
526 if (result == 0 )
527 do_munge_aiocb_user64_to_user(&aiocb64, &my_aiocb);
528
529 } else {
530 struct user32_aiocb aiocb32;
531
532 result = copyin( uap->aiocbp, &aiocb32, sizeof(aiocb32) );
533 if ( result == 0 )
534 do_munge_aiocb_user32_to_user( &aiocb32, &my_aiocb );
535 }
536
537 if ( result != 0 ) {
538 result = EAGAIN;
539 goto ExitRoutine;
540 }
541
542 /* NOTE - POSIX standard says a mismatch between the file */
543 /* descriptor passed in and the file descriptor embedded in */
544 /* the aiocb causes unspecified results. We return EBADF in */
545 /* that situation. */
546 if ( uap->fd != my_aiocb.aio_fildes ) {
547 result = EBADF;
548 goto ExitRoutine;
549 }
550 }
551
552 aio_proc_lock(p);
553 result = do_aio_cancel_locked( p, uap->fd, uap->aiocbp, 0, FALSE );
554 ASSERT_AIO_PROC_LOCK_OWNED(p);
555 aio_proc_unlock(p);
556
557 if ( result != -1 ) {
558 *retval = result;
559 result = 0;
560 goto ExitRoutine;
561 }
562
563 result = EBADF;
564
565 ExitRoutine:
566 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_cancel)) | DBG_FUNC_END,
567 (int)p, (int)uap->aiocbp, result, 0, 0 );
568
569 return( result );
570
571 } /* aio_cancel */
572
573
574 /*
575 * _aio_close - internal function used to clean up async IO requests for
576 * a file descriptor that is closing.
577 * THIS MAY BLOCK.
578 */
579 __private_extern__ void
580 _aio_close(proc_t p, int fd )
581 {
582 int error;
583
584 /* quick check to see if there are any async IO requests queued up */
585 if (aio_get_all_queues_count() < 1) {
586 return;
587 }
588
589 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_close)) | DBG_FUNC_START,
590 (int)p, fd, 0, 0, 0 );
591
592 /* cancel all async IO requests on our todo queues for this file descriptor */
593 aio_proc_lock(p);
594 error = do_aio_cancel_locked( p, fd, 0, AIO_CLOSE_WAIT, FALSE );
595 ASSERT_AIO_PROC_LOCK_OWNED(p);
596 if ( error == AIO_NOTCANCELED ) {
597 /*
598 * AIO_NOTCANCELED is returned when we find an aio request for this process
599 * and file descriptor on the active async IO queue. Active requests cannot
600 * be cancelled so we must wait for them to complete. We will get a special
601 * wake up call on our channel used to sleep for ALL active requests to
602 * complete. This sleep channel (proc.AIO_CLEANUP_SLEEP_CHAN) is only used
603 * when we must wait for all active aio requests.
604 */
605
606 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_close_sleep)) | DBG_FUNC_NONE,
607 (int)p, fd, 0, 0, 0 );
608
609 while (aio_proc_active_requests_for_file(p, fd) > 0) {
610 msleep(&p->AIO_CLEANUP_SLEEP_CHAN, aio_proc_mutex(p), PRIBIO, "aio_close", 0 );
611 }
612
613 }
614
615 aio_proc_unlock(p);
616
617 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_close)) | DBG_FUNC_END,
618 (int)p, fd, 0, 0, 0 );
619
620 return;
621
622 } /* _aio_close */
623
624
625 /*
626 * aio_error - return the error status associated with the async IO
627 * request referred to by uap->aiocbp. The error status is the errno
628 * value that would be set by the corresponding IO request (read, wrtie,
629 * fdatasync, or sync).
630 */
631 int
632 aio_error(proc_t p, struct aio_error_args *uap, int *retval )
633 {
634 aio_workq_entry *entryp;
635 int error;
636
637 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_error)) | DBG_FUNC_START,
638 (int)p, (int)uap->aiocbp, 0, 0, 0 );
639
640 /* see if there are any aios to check */
641 if (aio_get_all_queues_count() < 1) {
642 return EINVAL;
643 }
644
645 aio_proc_lock(p);
646
647 /* look for a match on our queue of async IO requests that have completed */
648 TAILQ_FOREACH( entryp, &p->p_aio_doneq, aio_proc_link) {
649 if ( entryp->uaiocbp == uap->aiocbp ) {
650 ASSERT_AIO_FROM_PROC(entryp, p);
651
652 aio_entry_lock_spin(entryp);
653 *retval = entryp->errorval;
654 error = 0;
655 aio_entry_unlock(entryp);
656 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_error_val)) | DBG_FUNC_NONE,
657 (int)p, (int)uap->aiocbp, *retval, 0, 0 );
658 goto ExitRoutine;
659 }
660 }
661
662 /* look for a match on our queue of active async IO requests */
663 TAILQ_FOREACH( entryp, &p->p_aio_activeq, aio_proc_link) {
664 if ( entryp->uaiocbp == uap->aiocbp ) {
665 ASSERT_AIO_FROM_PROC(entryp, p);
666 *retval = EINPROGRESS;
667 error = 0;
668 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_error_activeq)) | DBG_FUNC_NONE,
669 (int)p, (int)uap->aiocbp, *retval, 0, 0 );
670 goto ExitRoutine;
671 }
672 }
673
674 error = EINVAL;
675
676 ExitRoutine:
677 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_error)) | DBG_FUNC_END,
678 (int)p, (int)uap->aiocbp, error, 0, 0 );
679 aio_proc_unlock(p);
680
681 return( error );
682
683 } /* aio_error */
684
685
686 /*
687 * aio_fsync - asynchronously force all IO operations associated
688 * with the file indicated by the file descriptor (uap->aiocbp->aio_fildes) and
689 * queued at the time of the call to the synchronized completion state.
690 * NOTE - we do not support op O_DSYNC at this point since we do not support the
691 * fdatasync() call.
692 */
693 int
694 aio_fsync(proc_t p, struct aio_fsync_args *uap, int *retval )
695 {
696 int error;
697 int fsync_kind;
698
699 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_fsync)) | DBG_FUNC_START,
700 (int)p, (int)uap->aiocbp, uap->op, 0, 0 );
701
702 *retval = 0;
703 /* 0 := O_SYNC for binary backward compatibility with Panther */
704 if (uap->op == O_SYNC || uap->op == 0)
705 fsync_kind = AIO_FSYNC;
706 else if ( uap->op == O_DSYNC )
707 fsync_kind = AIO_DSYNC;
708 else {
709 *retval = -1;
710 error = EINVAL;
711 goto ExitRoutine;
712 }
713
714 error = aio_queue_async_request( p, uap->aiocbp, fsync_kind );
715 if ( error != 0 )
716 *retval = -1;
717
718 ExitRoutine:
719 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_fsync)) | DBG_FUNC_END,
720 (int)p, (int)uap->aiocbp, error, 0, 0 );
721
722 return( error );
723
724 } /* aio_fsync */
725
726
727 /* aio_read - asynchronously read uap->aiocbp->aio_nbytes bytes from the
728 * file descriptor (uap->aiocbp->aio_fildes) into the buffer
729 * (uap->aiocbp->aio_buf).
730 */
731 int
732 aio_read(proc_t p, struct aio_read_args *uap, int *retval )
733 {
734 int error;
735
736 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_read)) | DBG_FUNC_START,
737 (int)p, (int)uap->aiocbp, 0, 0, 0 );
738
739 *retval = 0;
740
741 error = aio_queue_async_request( p, uap->aiocbp, AIO_READ );
742 if ( error != 0 )
743 *retval = -1;
744
745 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_read)) | DBG_FUNC_END,
746 (int)p, (int)uap->aiocbp, error, 0, 0 );
747
748 return( error );
749
750 } /* aio_read */
751
752
753 /*
754 * aio_return - return the return status associated with the async IO
755 * request referred to by uap->aiocbp. The return status is the value
756 * that would be returned by corresponding IO request (read, write,
757 * fdatasync, or sync). This is where we release kernel resources
758 * held for async IO call associated with the given aiocb pointer.
759 */
760 int
761 aio_return(proc_t p, struct aio_return_args *uap, user_ssize_t *retval )
762 {
763 aio_workq_entry *entryp;
764 int error;
765 boolean_t proc_lock_held = FALSE;
766
767 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_return)) | DBG_FUNC_START,
768 (int)p, (int)uap->aiocbp, 0, 0, 0 );
769
770 /* See if there are any entries to check */
771 if (aio_get_all_queues_count() < 1) {
772 error = EINVAL;
773 goto ExitRoutine;
774 }
775
776 aio_proc_lock(p);
777 proc_lock_held = TRUE;
778 *retval = 0;
779
780 /* look for a match on our queue of async IO requests that have completed */
781 TAILQ_FOREACH( entryp, &p->p_aio_doneq, aio_proc_link) {
782 ASSERT_AIO_FROM_PROC(entryp, p);
783 if ( entryp->uaiocbp == uap->aiocbp ) {
784 /* Done and valid for aio_return(), pull it off the list */
785 aio_proc_remove_done_locked(p, entryp);
786
787 /* Drop the proc lock, but keep the entry locked */
788 aio_entry_lock(entryp);
789 aio_proc_unlock(p);
790 proc_lock_held = FALSE;
791
792 *retval = entryp->returnval;
793 error = 0;
794
795 /* No references and off all lists, safe to free */
796 if (entryp->aio_refcount == 0) {
797 aio_entry_unlock(entryp);
798 aio_free_request(entryp);
799 }
800 else {
801 /* Whoever has the refcount will have to free it */
802 entryp->flags |= AIO_DO_FREE;
803 aio_entry_unlock(entryp);
804 }
805
806
807 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_return_val)) | DBG_FUNC_NONE,
808 (int)p, (int)uap->aiocbp, *retval, 0, 0 );
809 goto ExitRoutine;
810 }
811 }
812
813 /* look for a match on our queue of active async IO requests */
814 TAILQ_FOREACH( entryp, &p->p_aio_activeq, aio_proc_link) {
815 ASSERT_AIO_FROM_PROC(entryp, p);
816 if ( entryp->uaiocbp == uap->aiocbp ) {
817 error = EINPROGRESS;
818 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_return_activeq)) | DBG_FUNC_NONE,
819 (int)p, (int)uap->aiocbp, *retval, 0, 0 );
820 goto ExitRoutine;
821 }
822 }
823
824 error = EINVAL;
825
826 ExitRoutine:
827 if (proc_lock_held)
828 aio_proc_unlock(p);
829 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_return)) | DBG_FUNC_END,
830 (int)p, (int)uap->aiocbp, error, 0, 0 );
831
832 return( error );
833
834 } /* aio_return */
835
836
837 /*
838 * _aio_exec - internal function used to clean up async IO requests for
839 * a process that is going away due to exec(). We cancel any async IOs
840 * we can and wait for those already active. We also disable signaling
841 * for cancelled or active aio requests that complete.
842 * This routine MAY block!
843 */
844 __private_extern__ void
845 _aio_exec(proc_t p )
846 {
847
848 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_exec)) | DBG_FUNC_START,
849 (int)p, 0, 0, 0, 0 );
850
851 _aio_exit( p );
852
853 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_exec)) | DBG_FUNC_END,
854 (int)p, 0, 0, 0, 0 );
855
856 return;
857
858 } /* _aio_exec */
859
860
861 /*
862 * _aio_exit - internal function used to clean up async IO requests for
863 * a process that is terminating (via exit() or exec() ). We cancel any async IOs
864 * we can and wait for those already active. We also disable signaling
865 * for cancelled or active aio requests that complete. This routine MAY block!
866 */
867 __private_extern__ void
868 _aio_exit(proc_t p )
869 {
870 int error;
871 aio_workq_entry *entryp;
872
873
874 /* quick check to see if there are any async IO requests queued up */
875 if (aio_get_all_queues_count() < 1) {
876 return;
877 }
878
879 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_exit)) | DBG_FUNC_START,
880 (int)p, 0, 0, 0, 0 );
881
882 aio_proc_lock(p);
883
884 /*
885 * cancel async IO requests on the todo work queue and wait for those
886 * already active to complete.
887 */
888 error = do_aio_cancel_locked( p, 0, 0, AIO_EXIT_WAIT, TRUE );
889 ASSERT_AIO_PROC_LOCK_OWNED(p);
890 if ( error == AIO_NOTCANCELED ) {
891 /*
892 * AIO_NOTCANCELED is returned when we find an aio request for this process
893 * on the active async IO queue. Active requests cannot be cancelled so we
894 * must wait for them to complete. We will get a special wake up call on
895 * our channel used to sleep for ALL active requests to complete. This sleep
896 * channel (proc.AIO_CLEANUP_SLEEP_CHAN) is only used when we must wait for all
897 * active aio requests.
898 */
899
900 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_exit_sleep)) | DBG_FUNC_NONE,
901 (int)p, 0, 0, 0, 0 );
902
903 while (p->p_aio_active_count != 0) {
904 msleep(&p->AIO_CLEANUP_SLEEP_CHAN, aio_proc_mutex(p), PRIBIO, "aio_exit", 0 );
905 }
906 }
907
908 if (p->p_aio_active_count != 0) {
909 panic("Exiting process has %d active AIOs after cancellation has completed.\n", p->p_aio_active_count);
910 }
911
912 /* release all aio resources used by this process */
913 entryp = TAILQ_FIRST( &p->p_aio_doneq );
914 while ( entryp != NULL ) {
915 ASSERT_AIO_FROM_PROC(entryp, p);
916 aio_workq_entry *next_entryp;
917
918 next_entryp = TAILQ_NEXT( entryp, aio_proc_link);
919 aio_proc_remove_done_locked(p, entryp);
920
921 /* we cannot free requests that are still completing */
922 aio_entry_lock_spin(entryp);
923 if (entryp->aio_refcount == 0) {
924 aio_proc_unlock(p);
925 aio_entry_unlock(entryp);
926 aio_free_request(entryp);
927
928 /* need to start over since aio_doneq may have been */
929 /* changed while we were away. */
930 aio_proc_lock(p);
931 entryp = TAILQ_FIRST( &p->p_aio_doneq );
932 continue;
933 }
934 else {
935 /* whoever has the reference will have to do the free */
936 entryp->flags |= AIO_DO_FREE;
937 }
938
939 aio_entry_unlock(entryp);
940 entryp = next_entryp;
941 }
942
943 aio_proc_unlock(p);
944
945 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_exit)) | DBG_FUNC_END,
946 (int)p, 0, 0, 0, 0 );
947 return;
948
949 } /* _aio_exit */
950
951
952 static boolean_t
953 should_cancel(aio_workq_entry *entryp, user_addr_t aiocbp, int fd)
954 {
955 if ( (aiocbp == USER_ADDR_NULL && fd == 0) ||
956 (aiocbp != USER_ADDR_NULL && entryp->uaiocbp == aiocbp) ||
957 (aiocbp == USER_ADDR_NULL && fd == entryp->aiocb.aio_fildes) ) {
958 return TRUE;
959 }
960
961 return FALSE;
962 }
963
964 /*
965 * do_aio_cancel_locked - cancel async IO requests (if possible). We get called by
966 * aio_cancel, close, and at exit.
967 * There are three modes of operation: 1) cancel all async IOs for a process -
968 * fd is 0 and aiocbp is NULL 2) cancel all async IOs for file descriptor - fd
969 * is > 0 and aiocbp is NULL 3) cancel one async IO associated with the given
970 * aiocbp.
971 * Returns -1 if no matches were found, AIO_CANCELED when we cancelled all
972 * target async IO requests, AIO_NOTCANCELED if we could not cancel all
973 * target async IO requests, and AIO_ALLDONE if all target async IO requests
974 * were already complete.
975 * WARNING - do not deference aiocbp in this routine, it may point to user
976 * land data that has not been copied in (when called from aio_cancel() )
977 *
978 * Called with proc locked, and returns the same way.
979 */
980 static int
981 do_aio_cancel_locked(proc_t p, int fd, user_addr_t aiocbp,
982 int wait_for_completion, boolean_t disable_notification )
983 {
984 ASSERT_AIO_PROC_LOCK_OWNED(p);
985
986 aio_workq_entry *entryp;
987 int result;
988
989 result = -1;
990
991 /* look for a match on our queue of async todo work. */
992 entryp = TAILQ_FIRST(&p->p_aio_activeq);
993 while ( entryp != NULL ) {
994 ASSERT_AIO_FROM_PROC(entryp, p);
995 aio_workq_entry *next_entryp;
996
997 next_entryp = TAILQ_NEXT( entryp, aio_proc_link);
998 if (!should_cancel(entryp, aiocbp, fd)) {
999 entryp = next_entryp;
1000 continue;
1001 }
1002
1003 /* Can only be cancelled if it's still on a work queue */
1004 if (aio_entry_try_workq_remove(entryp) != 0) {
1005 /* Have removed from workq. Update entry state and take a ref */
1006 aio_entry_update_for_cancel(entryp, TRUE, 0, disable_notification);
1007
1008 /* Put on the proc done queue and update counts, then unlock the proc */
1009 aio_proc_move_done_locked(p, entryp);
1010 aio_proc_unlock(p);
1011
1012 /* Now it's officially cancelled. Do the completion */
1013 result = AIO_CANCELED;
1014 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_cancel_async_workq)) | DBG_FUNC_NONE,
1015 (int)entryp->procp, (int)entryp->uaiocbp, fd, 0, 0 );
1016 do_aio_completion(entryp);
1017
1018 /* This will free if the aio_return() has already happened ... */
1019 aio_entry_unref(entryp);
1020 aio_proc_lock(p);
1021
1022 if ( aiocbp != USER_ADDR_NULL ) {
1023 return( result );
1024 }
1025
1026 /*
1027 * Restart from the head of the proc active queue since it
1028 * may have been changed while we were away doing completion
1029 * processing.
1030 *
1031 * Note that if we found an uncancellable AIO before, we will
1032 * either find it again or discover that it's been completed,
1033 * so resetting the result will not cause us to return success
1034 * despite outstanding AIOs.
1035 */
1036 entryp = TAILQ_FIRST(&p->p_aio_activeq);
1037 result = -1; /* As if beginning anew */
1038 } else {
1039 /*
1040 * It's been taken off the active queue already, i.e. is in flight.
1041 * All we can do is ask for notification.
1042 */
1043 result = AIO_NOTCANCELED;
1044
1045 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_cancel_activeq)) | DBG_FUNC_NONE,
1046 (int)entryp->procp, (int)entryp->uaiocbp, fd, 0, 0 );
1047
1048 /* Mark for waiting and such; will not take a ref if "cancelled" arg is FALSE */
1049 aio_entry_update_for_cancel(entryp, FALSE, wait_for_completion, disable_notification);
1050
1051 if ( aiocbp != USER_ADDR_NULL ) {
1052 return( result );
1053 }
1054 entryp = next_entryp;
1055 }
1056 } /* while... */
1057
1058 /*
1059 * if we didn't find any matches on the todo or active queues then look for a
1060 * match on our queue of async IO requests that have completed and if found
1061 * return AIO_ALLDONE result.
1062 *
1063 * Proc AIO lock is still held.
1064 */
1065 if ( result == -1 ) {
1066 TAILQ_FOREACH(entryp, &p->p_aio_doneq, aio_proc_link) {
1067 ASSERT_AIO_FROM_PROC(entryp, p);
1068 if (should_cancel(entryp, aiocbp, fd)) {
1069 result = AIO_ALLDONE;
1070 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_cancel_doneq)) | DBG_FUNC_NONE,
1071 (int)entryp->procp, (int)entryp->uaiocbp, fd, 0, 0 );
1072
1073 if ( aiocbp != USER_ADDR_NULL ) {
1074 return( result );
1075 }
1076 }
1077 }
1078 }
1079
1080 return( result );
1081
1082 }
1083 /* do_aio_cancel_locked */
1084
1085
1086 /*
1087 * aio_suspend - suspend the calling thread until at least one of the async
1088 * IO operations referenced by uap->aiocblist has completed, until a signal
1089 * interrupts the function, or uap->timeoutp time interval (optional) has
1090 * passed.
1091 * Returns 0 if one or more async IOs have completed else -1 and errno is
1092 * set appropriately - EAGAIN if timeout elapses or EINTR if an interrupt
1093 * woke us up.
1094 */
1095 int
1096 aio_suspend(proc_t p, struct aio_suspend_args *uap, int *retval )
1097 {
1098 __pthread_testcancel(1);
1099 return(aio_suspend_nocancel(p, (struct aio_suspend_nocancel_args *)uap, retval));
1100 }
1101
1102
1103 int
1104 aio_suspend_nocancel(proc_t p, struct aio_suspend_nocancel_args *uap, int *retval )
1105 {
1106 int error;
1107 int i, count;
1108 uint64_t abstime;
1109 struct user_timespec ts;
1110 aio_workq_entry *entryp;
1111 user_addr_t *aiocbpp;
1112
1113 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_suspend)) | DBG_FUNC_START,
1114 (int)p, uap->nent, 0, 0, 0 );
1115
1116 *retval = -1;
1117 abstime = 0;
1118 aiocbpp = NULL;
1119
1120 count = aio_get_all_queues_count( );
1121 if ( count < 1 ) {
1122 error = EINVAL;
1123 goto ExitThisRoutine;
1124 }
1125
1126 if ( uap->nent < 1 || uap->nent > aio_max_requests_per_process ) {
1127 error = EINVAL;
1128 goto ExitThisRoutine;
1129 }
1130
1131 if ( uap->timeoutp != USER_ADDR_NULL ) {
1132 if ( proc_is64bit(p) ) {
1133 struct user64_timespec temp;
1134 error = copyin( uap->timeoutp, &temp, sizeof(temp) );
1135 if ( error == 0 ) {
1136 ts.tv_sec = temp.tv_sec;
1137 ts.tv_nsec = temp.tv_nsec;
1138 }
1139 }
1140 else {
1141 struct user32_timespec temp;
1142 error = copyin( uap->timeoutp, &temp, sizeof(temp) );
1143 if ( error == 0 ) {
1144 ts.tv_sec = temp.tv_sec;
1145 ts.tv_nsec = temp.tv_nsec;
1146 }
1147 }
1148 if ( error != 0 ) {
1149 error = EAGAIN;
1150 goto ExitThisRoutine;
1151 }
1152
1153 if ( ts.tv_sec < 0 || ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000 ) {
1154 error = EINVAL;
1155 goto ExitThisRoutine;
1156 }
1157
1158 nanoseconds_to_absolutetime( (uint64_t)ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec,
1159 &abstime );
1160 clock_absolutetime_interval_to_deadline( abstime, &abstime );
1161 }
1162
1163 aiocbpp = aio_copy_in_list(p, uap->aiocblist, uap->nent);
1164 if ( aiocbpp == NULL ) {
1165 error = EAGAIN;
1166 goto ExitThisRoutine;
1167 }
1168
1169 /* check list of aio requests to see if any have completed */
1170 check_for_our_aiocbp:
1171 aio_proc_lock_spin(p);
1172 for ( i = 0; i < uap->nent; i++ ) {
1173 user_addr_t aiocbp;
1174
1175 /* NULL elements are legal so check for 'em */
1176 aiocbp = *(aiocbpp + i);
1177 if ( aiocbp == USER_ADDR_NULL )
1178 continue;
1179
1180 /* return immediately if any aio request in the list is done */
1181 TAILQ_FOREACH( entryp, &p->p_aio_doneq, aio_proc_link) {
1182 ASSERT_AIO_FROM_PROC(entryp, p);
1183 if ( entryp->uaiocbp == aiocbp ) {
1184 aio_proc_unlock(p);
1185 *retval = 0;
1186 error = 0;
1187 goto ExitThisRoutine;
1188 }
1189 }
1190 } /* for ( ; i < uap->nent; ) */
1191
1192 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_suspend_sleep)) | DBG_FUNC_NONE,
1193 (int)p, uap->nent, 0, 0, 0 );
1194
1195 /*
1196 * wait for an async IO to complete or a signal fires or timeout expires.
1197 * we return EAGAIN (35) for timeout expiration and EINTR (4) when a signal
1198 * interrupts us. If an async IO completes before a signal fires or our
1199 * timeout expires, we get a wakeup call from aio_work_thread().
1200 */
1201
1202 error = msleep1(&p->AIO_SUSPEND_SLEEP_CHAN, aio_proc_mutex(p), PCATCH | PWAIT | PDROP, "aio_suspend", abstime); /* XXX better priority? */
1203 if ( error == 0 ) {
1204 /*
1205 * got our wakeup call from aio_work_thread().
1206 * Since we can get a wakeup on this channel from another thread in the
1207 * same process we head back up to make sure this is for the correct aiocbp.
1208 * If it is the correct aiocbp we will return from where we do the check
1209 * (see entryp->uaiocbp == aiocbp after check_for_our_aiocbp label)
1210 * else we will fall out and just sleep again.
1211 */
1212 goto check_for_our_aiocbp;
1213 }
1214 else if ( error == EWOULDBLOCK ) {
1215 /* our timeout expired */
1216 error = EAGAIN;
1217 }
1218 else {
1219 /* we were interrupted */
1220 error = EINTR;
1221 }
1222
1223 ExitThisRoutine:
1224 if ( aiocbpp != NULL )
1225 FREE( aiocbpp, M_TEMP );
1226
1227 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_suspend)) | DBG_FUNC_END,
1228 (int)p, uap->nent, error, 0, 0 );
1229
1230 return( error );
1231
1232 } /* aio_suspend */
1233
1234
1235 /* aio_write - asynchronously write uap->aiocbp->aio_nbytes bytes to the
1236 * file descriptor (uap->aiocbp->aio_fildes) from the buffer
1237 * (uap->aiocbp->aio_buf).
1238 */
1239
1240 int
1241 aio_write(proc_t p, struct aio_write_args *uap, int *retval )
1242 {
1243 int error;
1244
1245 *retval = 0;
1246
1247 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_write)) | DBG_FUNC_START,
1248 (int)p, (int)uap->aiocbp, 0, 0, 0 );
1249
1250 error = aio_queue_async_request( p, uap->aiocbp, AIO_WRITE );
1251 if ( error != 0 )
1252 *retval = -1;
1253
1254 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_write)) | DBG_FUNC_END,
1255 (int)p, (int)uap->aiocbp, error, 0, 0 );
1256
1257 return( error );
1258
1259 } /* aio_write */
1260
1261
1262 static user_addr_t *
1263 aio_copy_in_list(proc_t procp, user_addr_t aiocblist, int nent)
1264 {
1265 user_addr_t *aiocbpp;
1266 int i, result;
1267
1268 /* we reserve enough space for largest possible pointer size */
1269 MALLOC( aiocbpp, user_addr_t *, (nent * sizeof(user_addr_t)), M_TEMP, M_WAITOK );
1270 if ( aiocbpp == NULL )
1271 goto err;
1272
1273 /* copyin our aiocb pointers from list */
1274 result = copyin( aiocblist, aiocbpp,
1275 proc_is64bit(procp) ? (nent * sizeof(user64_addr_t))
1276 : (nent * sizeof(user32_addr_t)) );
1277 if ( result) {
1278 FREE( aiocbpp, M_TEMP );
1279 aiocbpp = NULL;
1280 goto err;
1281 }
1282
1283 /*
1284 * We depend on a list of user_addr_t's so we need to
1285 * munge and expand when these pointers came from a
1286 * 32-bit process
1287 */
1288 if ( !proc_is64bit(procp) ) {
1289 /* copy from last to first to deal with overlap */
1290 user32_addr_t *my_ptrp = ((user32_addr_t *)aiocbpp) + (nent - 1);
1291 user_addr_t *my_addrp = aiocbpp + (nent - 1);
1292
1293 for (i = 0; i < nent; i++, my_ptrp--, my_addrp--) {
1294 *my_addrp = (user_addr_t) (*my_ptrp);
1295 }
1296 }
1297
1298 err:
1299 return (aiocbpp);
1300 }
1301
1302
1303 static int
1304 aio_copy_in_sigev(proc_t procp, user_addr_t sigp, struct user_sigevent *sigev)
1305 {
1306 int result = 0;
1307
1308 if (sigp == USER_ADDR_NULL)
1309 goto out;
1310
1311 /*
1312 * We need to munge aio_sigevent since it contains pointers.
1313 * Since we do not know if sigev_value is an int or a ptr we do
1314 * NOT cast the ptr to a user_addr_t. This means if we send
1315 * this info back to user space we need to remember sigev_value
1316 * was not expanded for the 32-bit case.
1317 *
1318 * Notes: This does NOT affect us since we don't support
1319 * sigev_value yet in the aio context.
1320 */
1321 if ( proc_is64bit(procp) ) {
1322 struct user64_sigevent sigevent64;
1323
1324 result = copyin( sigp, &sigevent64, sizeof(sigevent64) );
1325 if ( result == 0 ) {
1326 sigev->sigev_notify = sigevent64.sigev_notify;
1327 sigev->sigev_signo = sigevent64.sigev_signo;
1328 sigev->sigev_value.size_equivalent.sival_int = sigevent64.sigev_value.size_equivalent.sival_int;
1329 sigev->sigev_notify_function = sigevent64.sigev_notify_function;
1330 sigev->sigev_notify_attributes = sigevent64.sigev_notify_attributes;
1331 }
1332
1333 } else {
1334 struct user32_sigevent sigevent32;
1335
1336 result = copyin( sigp, &sigevent32, sizeof(sigevent32) );
1337 if ( result == 0 ) {
1338 sigev->sigev_notify = sigevent32.sigev_notify;
1339 sigev->sigev_signo = sigevent32.sigev_signo;
1340 sigev->sigev_value.size_equivalent.sival_int = sigevent32.sigev_value.sival_int;
1341 sigev->sigev_notify_function = CAST_USER_ADDR_T(sigevent32.sigev_notify_function);
1342 sigev->sigev_notify_attributes = CAST_USER_ADDR_T(sigevent32.sigev_notify_attributes);
1343 }
1344 }
1345
1346 if ( result != 0 ) {
1347 result = EAGAIN;
1348 }
1349
1350 out:
1351 return (result);
1352 }
1353
1354 /*
1355 * aio_enqueue_work
1356 *
1357 * Queue up the entry on the aio asynchronous work queue in priority order
1358 * based on the relative priority of the request. We calculate the relative
1359 * priority using the nice value of the caller and the value
1360 *
1361 * Parameters: procp Process queueing the I/O
1362 * entryp The work queue entry being queued
1363 *
1364 * Returns: (void) No failure modes
1365 *
1366 * Notes: This function is used for both lio_listio and aio
1367 *
1368 * XXX: At some point, we may have to consider thread priority
1369 * rather than process priority, but we don't maintain the
1370 * adjusted priority for threads the POSIX way.
1371 *
1372 *
1373 * Called with proc locked.
1374 */
1375 static void
1376 aio_enqueue_work( proc_t procp, aio_workq_entry *entryp, int proc_locked)
1377 {
1378 #if 0
1379 aio_workq_entry *my_entryp; /* used for insertion sort */
1380 #endif /* 0 */
1381 aio_workq_t queue = aio_entry_workq(entryp);
1382
1383 if (proc_locked == 0) {
1384 aio_proc_lock(procp);
1385 }
1386
1387 ASSERT_AIO_PROC_LOCK_OWNED(procp);
1388
1389 /* Onto proc queue */
1390 TAILQ_INSERT_TAIL(&procp->p_aio_activeq, entryp, aio_proc_link);
1391 procp->p_aio_active_count++;
1392 procp->p_aio_total_count++;
1393
1394 /* And work queue */
1395 aio_workq_lock_spin(queue);
1396 aio_workq_add_entry_locked(queue, entryp);
1397 waitq_wakeup64_one(&queue->aioq_waitq, CAST_EVENT64_T(queue),
1398 THREAD_AWAKENED, WAITQ_ALL_PRIORITIES);
1399 aio_workq_unlock(queue);
1400
1401 if (proc_locked == 0) {
1402 aio_proc_unlock(procp);
1403 }
1404
1405 #if 0
1406 /*
1407 * Procedure:
1408 *
1409 * (1) The nice value is in the range PRIO_MIN..PRIO_MAX [-20..20]
1410 * (2) The normalized nice value is in the range 0..((2 * NZERO) - 1)
1411 * which is [0..39], with 0 not being used. In nice values, the
1412 * lower the nice value, the higher the priority.
1413 * (3) The normalized scheduling prioritiy is the highest nice value
1414 * minus the current nice value. In I/O scheduling priority, the
1415 * higher the value the lower the priority, so it is the inverse
1416 * of the nice value (the higher the number, the higher the I/O
1417 * priority).
1418 * (4) From the normalized scheduling priority, we subtract the
1419 * request priority to get the request priority value number;
1420 * this means that requests are only capable of depressing their
1421 * priority relative to other requests,
1422 */
1423 entryp->priority = (((2 * NZERO) - 1) - procp->p_nice);
1424
1425 /* only premit depressing the priority */
1426 if (entryp->aiocb.aio_reqprio < 0)
1427 entryp->aiocb.aio_reqprio = 0;
1428 if (entryp->aiocb.aio_reqprio > 0) {
1429 entryp->priority -= entryp->aiocb.aio_reqprio;
1430 if (entryp->priority < 0)
1431 entryp->priority = 0;
1432 }
1433
1434 /* Insertion sort the entry; lowest ->priority to highest */
1435 TAILQ_FOREACH(my_entryp, &aio_anchor.aio_async_workq, aio_workq_link) {
1436 if ( entryp->priority <= my_entryp->priority) {
1437 TAILQ_INSERT_BEFORE(my_entryp, entryp, aio_workq_link);
1438 break;
1439 }
1440 }
1441 if (my_entryp == NULL)
1442 TAILQ_INSERT_TAIL( &aio_anchor.aio_async_workq, entryp, aio_workq_link );
1443 #endif /* 0 */
1444 }
1445
1446
1447 /*
1448 * lio_listio - initiate a list of IO requests. We process the list of
1449 * aiocbs either synchronously (mode == LIO_WAIT) or asynchronously
1450 * (mode == LIO_NOWAIT).
1451 *
1452 * The caller gets error and return status for each aiocb in the list
1453 * via aio_error and aio_return. We must keep completed requests until
1454 * released by the aio_return call.
1455 */
1456 int
1457 lio_listio(proc_t p, struct lio_listio_args *uap, int *retval )
1458 {
1459 int i;
1460 int call_result;
1461 int result;
1462 int old_count;
1463 aio_workq_entry **entryp_listp;
1464 user_addr_t *aiocbpp;
1465 struct user_sigevent aiosigev;
1466 aio_lio_context *lio_context;
1467 boolean_t free_context = FALSE;
1468
1469 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_listio)) | DBG_FUNC_START,
1470 (int)p, uap->nent, uap->mode, 0, 0 );
1471
1472 entryp_listp = NULL;
1473 lio_context = NULL;
1474 aiocbpp = NULL;
1475 call_result = -1;
1476 *retval = -1;
1477 if ( !(uap->mode == LIO_NOWAIT || uap->mode == LIO_WAIT) ) {
1478 call_result = EINVAL;
1479 goto ExitRoutine;
1480 }
1481
1482 if ( uap->nent < 1 || uap->nent > AIO_LISTIO_MAX ) {
1483 call_result = EINVAL;
1484 goto ExitRoutine;
1485 }
1486
1487 /*
1488 * allocate a list of aio_workq_entry pointers that we will use
1489 * to queue up all our requests at once while holding our lock.
1490 */
1491 MALLOC( entryp_listp, void *, (uap->nent * sizeof(aio_workq_entry *)), M_TEMP, M_WAITOK );
1492 if ( entryp_listp == NULL ) {
1493 call_result = EAGAIN;
1494 goto ExitRoutine;
1495 }
1496
1497 MALLOC( lio_context, aio_lio_context*, sizeof(aio_lio_context), M_TEMP, M_WAITOK );
1498 if ( lio_context == NULL ) {
1499 call_result = EAGAIN;
1500 goto ExitRoutine;
1501 }
1502
1503 #if DEBUG
1504 OSIncrementAtomic(&lio_contexts_alloced);
1505 #endif /* DEBUG */
1506
1507 bzero(lio_context, sizeof(aio_lio_context));
1508
1509 aiocbpp = aio_copy_in_list(p, uap->aiocblist, uap->nent);
1510 if ( aiocbpp == NULL ) {
1511 call_result = EAGAIN;
1512 goto ExitRoutine;
1513 }
1514
1515 /*
1516 * Use sigevent passed in to lio_listio for each of our calls, but
1517 * only do completion notification after the last request completes.
1518 */
1519 bzero(&aiosigev, sizeof(aiosigev));
1520 /* Only copy in an sigev if the user supplied one */
1521 if (uap->sigp != USER_ADDR_NULL) {
1522 call_result = aio_copy_in_sigev(p, uap->sigp, &aiosigev);
1523 if ( call_result)
1524 goto ExitRoutine;
1525 }
1526
1527 /* process list of aio requests */
1528 lio_context->io_issued = uap->nent;
1529 lio_context->io_waiter = uap->mode == LIO_WAIT ? 1 : 0; /* Should it be freed by last AIO */
1530 for ( i = 0; i < uap->nent; i++ ) {
1531 user_addr_t my_aiocbp;
1532 aio_workq_entry *entryp;
1533
1534 *(entryp_listp + i) = NULL;
1535 my_aiocbp = *(aiocbpp + i);
1536
1537 /* NULL elements are legal so check for 'em */
1538 if ( my_aiocbp == USER_ADDR_NULL ) {
1539 aio_proc_lock_spin(p);
1540 lio_context->io_issued--;
1541 aio_proc_unlock(p);
1542 continue;
1543 }
1544
1545 /*
1546 * We use lio_context to mark IO requests for delayed completion
1547 * processing which means we wait until all IO requests in the
1548 * group have completed before we either return to the caller
1549 * when mode is LIO_WAIT or signal user when mode is LIO_NOWAIT.
1550 *
1551 * We use the address of the lio_context for this, since it is
1552 * unique in the address space.
1553 */
1554 result = lio_create_entry( p, my_aiocbp, lio_context, (entryp_listp + i) );
1555 if ( result != 0 && call_result == -1 )
1556 call_result = result;
1557
1558 /* NULL elements are legal so check for 'em */
1559 entryp = *(entryp_listp + i);
1560 if ( entryp == NULL ) {
1561 aio_proc_lock_spin(p);
1562 lio_context->io_issued--;
1563 aio_proc_unlock(p);
1564 continue;
1565 }
1566
1567 if ( uap->mode == LIO_NOWAIT ) {
1568 /* Set signal hander, if any */
1569 entryp->aiocb.aio_sigevent = aiosigev;
1570 } else {
1571 /* flag that this thread blocks pending completion */
1572 entryp->flags |= AIO_LIO_NOTIFY;
1573 }
1574
1575 /* check our aio limits to throttle bad or rude user land behavior */
1576 old_count = aio_increment_total_count();
1577
1578 aio_proc_lock_spin(p);
1579 if ( old_count >= aio_max_requests ||
1580 aio_get_process_count( entryp->procp ) >= aio_max_requests_per_process ||
1581 is_already_queued( entryp->procp, entryp->uaiocbp ) == TRUE ) {
1582
1583 lio_context->io_issued--;
1584 aio_proc_unlock(p);
1585
1586 aio_decrement_total_count();
1587
1588 if ( call_result == -1 )
1589 call_result = EAGAIN;
1590 aio_free_request(entryp);
1591 entryp_listp[i] = NULL;
1592 continue;
1593 }
1594
1595 lck_mtx_convert_spin(aio_proc_mutex(p));
1596 aio_enqueue_work(p, entryp, 1);
1597 aio_proc_unlock(p);
1598
1599 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_work_queued)) | DBG_FUNC_NONE,
1600 (int)p, (int)entryp->uaiocbp, 0, 0, 0 );
1601 }
1602
1603 switch(uap->mode) {
1604 case LIO_WAIT:
1605 aio_proc_lock_spin(p);
1606 while (lio_context->io_completed < lio_context->io_issued) {
1607 result = msleep(lio_context, aio_proc_mutex(p), PCATCH | PRIBIO | PSPIN, "lio_listio", 0);
1608
1609 /* If we were interrupted, fail out (even if all finished) */
1610 if (result != 0) {
1611 call_result = EINTR;
1612 lio_context->io_waiter = 0;
1613 break;
1614 }
1615 }
1616
1617 /* If all IOs have finished must free it */
1618 if (lio_context->io_completed == lio_context->io_issued) {
1619 free_context = TRUE;
1620 }
1621
1622 aio_proc_unlock(p);
1623 break;
1624
1625 case LIO_NOWAIT:
1626 break;
1627 }
1628
1629 /* call_result == -1 means we had no trouble queueing up requests */
1630 if ( call_result == -1 ) {
1631 call_result = 0;
1632 *retval = 0;
1633 }
1634
1635 ExitRoutine:
1636 if ( entryp_listp != NULL )
1637 FREE( entryp_listp, M_TEMP );
1638 if ( aiocbpp != NULL )
1639 FREE( aiocbpp, M_TEMP );
1640 if ((lio_context != NULL) && ((lio_context->io_issued == 0) || (free_context == TRUE))) {
1641 free_lio_context(lio_context);
1642 }
1643
1644 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_listio)) | DBG_FUNC_END,
1645 (int)p, call_result, 0, 0, 0 );
1646
1647 return( call_result );
1648
1649 } /* lio_listio */
1650
1651
1652 /*
1653 * aio worker thread. this is where all the real work gets done.
1654 * we get a wake up call on sleep channel &aio_anchor.aio_async_workq
1655 * after new work is queued up.
1656 */
1657 __attribute__((noreturn))
1658 static void
1659 aio_work_thread(void)
1660 {
1661 aio_workq_entry *entryp;
1662 int error;
1663 vm_map_t currentmap;
1664 vm_map_t oldmap = VM_MAP_NULL;
1665 task_t oldaiotask = TASK_NULL;
1666 struct uthread *uthreadp = NULL;
1667
1668 for( ;; ) {
1669 /*
1670 * returns with the entry ref'ed.
1671 * sleeps until work is available.
1672 */
1673 entryp = aio_get_some_work();
1674
1675 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_worker_thread)) | DBG_FUNC_START,
1676 (int)entryp->procp, (int)entryp->uaiocbp, entryp->flags, 0, 0 );
1677
1678 /*
1679 * Assume the target's address space identity for the duration
1680 * of the IO. Note: don't need to have the entryp locked,
1681 * because the proc and map don't change until it's freed.
1682 */
1683 currentmap = get_task_map( (current_proc())->task );
1684 if ( currentmap != entryp->aio_map ) {
1685 uthreadp = (struct uthread *) get_bsdthread_info(current_thread());
1686 oldaiotask = uthreadp->uu_aio_task;
1687 uthreadp->uu_aio_task = entryp->procp->task;
1688 oldmap = vm_map_switch( entryp->aio_map );
1689 }
1690
1691 if ( (entryp->flags & AIO_READ) != 0 ) {
1692 error = do_aio_read( entryp );
1693 }
1694 else if ( (entryp->flags & AIO_WRITE) != 0 ) {
1695 error = do_aio_write( entryp );
1696 }
1697 else if ( (entryp->flags & (AIO_FSYNC | AIO_DSYNC)) != 0 ) {
1698 error = do_aio_fsync( entryp );
1699 }
1700 else {
1701 printf( "%s - unknown aio request - flags 0x%02X \n",
1702 __FUNCTION__, entryp->flags );
1703 error = EINVAL;
1704 }
1705
1706 /* Restore old map */
1707 if ( currentmap != entryp->aio_map ) {
1708 (void) vm_map_switch( oldmap );
1709 uthreadp->uu_aio_task = oldaiotask;
1710 }
1711
1712 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_worker_thread)) | DBG_FUNC_END,
1713 (int)entryp->procp, (int)entryp->uaiocbp, entryp->errorval,
1714 entryp->returnval, 0 );
1715
1716
1717 /* XXX COUNTS */
1718 aio_entry_lock_spin(entryp);
1719 entryp->errorval = error;
1720 aio_entry_unlock(entryp);
1721
1722 /* we're done with the IO request so pop it off the active queue and */
1723 /* push it on the done queue */
1724 aio_proc_lock(entryp->procp);
1725 aio_proc_move_done_locked(entryp->procp, entryp);
1726 aio_proc_unlock(entryp->procp);
1727
1728 OSDecrementAtomic(&aio_anchor.aio_inflight_count);
1729
1730 /* remove our reference to the user land map. */
1731 if ( VM_MAP_NULL != entryp->aio_map ) {
1732 vm_map_t my_map;
1733
1734 my_map = entryp->aio_map;
1735 entryp->aio_map = VM_MAP_NULL;
1736 vm_map_deallocate( my_map );
1737 }
1738
1739 /* Provide notifications */
1740 do_aio_completion( entryp );
1741
1742 /* Will free if needed */
1743 aio_entry_unref(entryp);
1744
1745 } /* for ( ;; ) */
1746
1747 /* NOT REACHED */
1748
1749 } /* aio_work_thread */
1750
1751
1752 /*
1753 * aio_get_some_work - get the next async IO request that is ready to be executed.
1754 * aio_fsync complicates matters a bit since we cannot do the fsync until all async
1755 * IO requests at the time the aio_fsync call came in have completed.
1756 * NOTE - AIO_LOCK must be held by caller
1757 */
1758 static aio_workq_entry *
1759 aio_get_some_work( void )
1760 {
1761 aio_workq_entry *entryp = NULL;
1762 aio_workq_t queue = NULL;
1763
1764 /* Just one queue for the moment. In the future there will be many. */
1765 queue = &aio_anchor.aio_async_workqs[0];
1766 aio_workq_lock_spin(queue);
1767 if (queue->aioq_count == 0) {
1768 goto nowork;
1769 }
1770
1771 /*
1772 * Hold the queue lock.
1773 *
1774 * pop some work off the work queue and add to our active queue
1775 * Always start with the queue lock held.
1776 */
1777 for(;;) {
1778 /*
1779 * Pull of of work queue. Once it's off, it can't be cancelled,
1780 * so we can take our ref once we drop the queue lock.
1781 */
1782 entryp = TAILQ_FIRST(&queue->aioq_entries);
1783
1784 /*
1785 * If there's no work or only fsyncs that need delay, go to sleep
1786 * and then start anew from aio_work_thread
1787 */
1788 if (entryp == NULL) {
1789 goto nowork;
1790 }
1791
1792 aio_workq_remove_entry_locked(queue, entryp);
1793
1794 aio_workq_unlock(queue);
1795
1796 /*
1797 * Check if it's an fsync that must be delayed. No need to lock the entry;
1798 * that flag would have been set at initialization.
1799 */
1800 if ( (entryp->flags & AIO_FSYNC) != 0 ) {
1801 /*
1802 * Check for unfinished operations on the same file
1803 * in this proc's queue.
1804 */
1805 aio_proc_lock_spin(entryp->procp);
1806 if ( aio_delay_fsync_request( entryp ) ) {
1807 /* It needs to be delayed. Put it back on the end of the work queue */
1808 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_fsync_delay)) | DBG_FUNC_NONE,
1809 (int)entryp->procp, (int)entryp->uaiocbp, 0, 0, 0 );
1810
1811 aio_proc_unlock(entryp->procp);
1812
1813 aio_workq_lock_spin(queue);
1814 aio_workq_add_entry_locked(queue, entryp);
1815 continue;
1816 }
1817 aio_proc_unlock(entryp->procp);
1818 }
1819
1820 break;
1821 }
1822
1823 aio_entry_ref(entryp);
1824
1825 OSIncrementAtomic(&aio_anchor.aio_inflight_count);
1826 return( entryp );
1827
1828 nowork:
1829 /* We will wake up when someone enqueues something */
1830 waitq_assert_wait64(&queue->aioq_waitq, CAST_EVENT64_T(queue), THREAD_UNINT, 0);
1831 aio_workq_unlock(queue);
1832 thread_block( (thread_continue_t)aio_work_thread );
1833
1834 // notreached
1835 return NULL;
1836 }
1837
1838 /*
1839 * aio_delay_fsync_request - look to see if this aio_fsync request should be delayed.
1840 * A big, simple hammer: only send it off if it's the most recently filed IO which has
1841 * not been completed.
1842 */
1843 static boolean_t
1844 aio_delay_fsync_request( aio_workq_entry *entryp )
1845 {
1846 if (entryp == TAILQ_FIRST(&entryp->procp->p_aio_activeq)) {
1847 return FALSE;
1848 }
1849
1850 return TRUE;
1851 } /* aio_delay_fsync_request */
1852
1853 static aio_workq_entry *
1854 aio_create_queue_entry(proc_t procp, user_addr_t aiocbp, void *group_tag, int kindOfIO)
1855 {
1856 aio_workq_entry *entryp;
1857 int result = 0;
1858
1859 entryp = (aio_workq_entry *) zalloc( aio_workq_zonep );
1860 if ( entryp == NULL ) {
1861 result = EAGAIN;
1862 goto error_exit;
1863 }
1864
1865 bzero( entryp, sizeof(*entryp) );
1866
1867 /* fill in the rest of the aio_workq_entry */
1868 entryp->procp = procp;
1869 entryp->uaiocbp = aiocbp;
1870 entryp->flags |= kindOfIO;
1871 entryp->group_tag = group_tag;
1872 entryp->aio_map = VM_MAP_NULL;
1873 entryp->aio_refcount = 0;
1874
1875 if ( proc_is64bit(procp) ) {
1876 struct user64_aiocb aiocb64;
1877
1878 result = copyin( aiocbp, &aiocb64, sizeof(aiocb64) );
1879 if (result == 0 )
1880 do_munge_aiocb_user64_to_user(&aiocb64, &entryp->aiocb);
1881
1882 } else {
1883 struct user32_aiocb aiocb32;
1884
1885 result = copyin( aiocbp, &aiocb32, sizeof(aiocb32) );
1886 if ( result == 0 )
1887 do_munge_aiocb_user32_to_user( &aiocb32, &entryp->aiocb );
1888 }
1889
1890 if ( result != 0 ) {
1891 result = EAGAIN;
1892 goto error_exit;
1893 }
1894
1895 /* get a reference to the user land map in order to keep it around */
1896 entryp->aio_map = get_task_map( procp->task );
1897 vm_map_reference( entryp->aio_map );
1898
1899 /* do some more validation on the aiocb and embedded file descriptor */
1900 result = aio_validate( entryp );
1901 if ( result != 0 )
1902 goto error_exit_with_ref;
1903
1904 /* get a reference on the current_thread, which is passed in vfs_context. */
1905 entryp->thread = current_thread();
1906 thread_reference( entryp->thread );
1907 return ( entryp );
1908
1909 error_exit_with_ref:
1910 if ( VM_MAP_NULL != entryp->aio_map ) {
1911 vm_map_deallocate( entryp->aio_map );
1912 }
1913 error_exit:
1914 if ( result && entryp != NULL ) {
1915 zfree( aio_workq_zonep, entryp );
1916 entryp = NULL;
1917 }
1918
1919 return ( entryp );
1920 }
1921
1922
1923 /*
1924 * aio_queue_async_request - queue up an async IO request on our work queue then
1925 * wake up one of our worker threads to do the actual work. We get a reference
1926 * to our caller's user land map in order to keep it around while we are
1927 * processing the request.
1928 */
1929 static int
1930 aio_queue_async_request(proc_t procp, user_addr_t aiocbp, int kindOfIO )
1931 {
1932 aio_workq_entry *entryp;
1933 int result;
1934 int old_count;
1935
1936 old_count = aio_increment_total_count();
1937 if (old_count >= aio_max_requests) {
1938 result = EAGAIN;
1939 goto error_noalloc;
1940 }
1941
1942 entryp = aio_create_queue_entry( procp, aiocbp, 0, kindOfIO);
1943 if ( entryp == NULL ) {
1944 result = EAGAIN;
1945 goto error_noalloc;
1946 }
1947
1948
1949 aio_proc_lock_spin(procp);
1950
1951 if ( is_already_queued( entryp->procp, entryp->uaiocbp ) == TRUE ) {
1952 result = EAGAIN;
1953 goto error_exit;
1954 }
1955
1956 /* check our aio limits to throttle bad or rude user land behavior */
1957 if (aio_get_process_count( procp ) >= aio_max_requests_per_process) {
1958 printf("aio_queue_async_request(): too many in flight for proc: %d.\n", procp->p_aio_total_count);
1959 result = EAGAIN;
1960 goto error_exit;
1961 }
1962
1963 /* Add the IO to proc and work queues, wake up threads as appropriate */
1964 lck_mtx_convert_spin(aio_proc_mutex(procp));
1965 aio_enqueue_work(procp, entryp, 1);
1966
1967 aio_proc_unlock(procp);
1968
1969 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_work_queued)) | DBG_FUNC_NONE,
1970 (int)procp, (int)aiocbp, 0, 0, 0 );
1971
1972 return( 0 );
1973
1974 error_exit:
1975 /*
1976 * This entry has not been queued up so no worries about
1977 * unlocked state and aio_map
1978 */
1979 aio_proc_unlock(procp);
1980 aio_free_request(entryp);
1981
1982 error_noalloc:
1983 aio_decrement_total_count();
1984
1985 return( result );
1986
1987 } /* aio_queue_async_request */
1988
1989
1990 /*
1991 * lio_create_entry
1992 *
1993 * Allocate an aio_workq_entry and fill it in. If all goes well return 0
1994 * and pass the aio_workq_entry pointer back to our caller.
1995 *
1996 * Parameters: procp The process makign the request
1997 * aiocbp The aio context buffer pointer
1998 * group_tag The group tag used to indicate a
1999 * group of operations has completed
2000 * entrypp Pointer to the pointer to receive the
2001 * address of the created aio_workq_entry
2002 *
2003 * Returns: 0 Successfully created
2004 * EAGAIN Try again (usually resource shortage)
2005 *
2006 *
2007 * Notes: We get a reference to our caller's user land map in order
2008 * to keep it around while we are processing the request.
2009 *
2010 * lio_listio calls behave differently at completion they do
2011 * completion notification when all async IO requests have
2012 * completed. We use group_tag to tag IO requests that behave
2013 * in the delay notification manner.
2014 *
2015 * All synchronous operations are considered to not have a
2016 * signal routine associated with them (sigp == USER_ADDR_NULL).
2017 */
2018 static int
2019 lio_create_entry(proc_t procp, user_addr_t aiocbp, void *group_tag,
2020 aio_workq_entry **entrypp )
2021 {
2022 aio_workq_entry *entryp;
2023 int result;
2024
2025 entryp = aio_create_queue_entry( procp, aiocbp, group_tag, AIO_LIO);
2026 if ( entryp == NULL ) {
2027 result = EAGAIN;
2028 goto error_exit;
2029 }
2030
2031 /*
2032 * Look for lio_listio LIO_NOP requests and ignore them; this is
2033 * not really an error, but we need to free our aio_workq_entry.
2034 */
2035 if ( entryp->aiocb.aio_lio_opcode == LIO_NOP ) {
2036 result = 0;
2037 goto error_exit;
2038 }
2039
2040 *entrypp = entryp;
2041 return( 0 );
2042
2043 error_exit:
2044
2045 if ( entryp != NULL ) {
2046 /*
2047 * This entry has not been queued up so no worries about
2048 * unlocked state and aio_map
2049 */
2050 aio_free_request(entryp);
2051 }
2052
2053 return( result );
2054
2055 } /* lio_create_entry */
2056
2057
2058 /*
2059 * aio_free_request - remove our reference on the user land map and
2060 * free the work queue entry resources. The entry is off all lists
2061 * and has zero refcount, so no one can have a pointer to it.
2062 */
2063
2064 static int
2065 aio_free_request(aio_workq_entry *entryp)
2066 {
2067 /* remove our reference to the user land map. */
2068 if ( VM_MAP_NULL != entryp->aio_map) {
2069 vm_map_deallocate(entryp->aio_map);
2070 }
2071
2072 /* remove our reference to thread which enqueued the request */
2073 if ( NULL != entryp->thread ) {
2074 thread_deallocate( entryp->thread );
2075 }
2076
2077 entryp->aio_refcount = -1; /* A bit of poisoning in case of bad refcounting. */
2078
2079 zfree( aio_workq_zonep, entryp );
2080
2081 return( 0 );
2082
2083 } /* aio_free_request */
2084
2085
2086 /*
2087 * aio_validate
2088 *
2089 * validate the aiocb passed in by one of the aio syscalls.
2090 */
2091 static int
2092 aio_validate( aio_workq_entry *entryp )
2093 {
2094 struct fileproc *fp;
2095 int flag;
2096 int result;
2097
2098 result = 0;
2099
2100 if ( (entryp->flags & AIO_LIO) != 0 ) {
2101 if ( entryp->aiocb.aio_lio_opcode == LIO_READ )
2102 entryp->flags |= AIO_READ;
2103 else if ( entryp->aiocb.aio_lio_opcode == LIO_WRITE )
2104 entryp->flags |= AIO_WRITE;
2105 else if ( entryp->aiocb.aio_lio_opcode == LIO_NOP )
2106 return( 0 );
2107 else
2108 return( EINVAL );
2109 }
2110
2111 flag = FREAD;
2112 if ( (entryp->flags & (AIO_WRITE | AIO_FSYNC | AIO_DSYNC)) != 0 ) {
2113 flag = FWRITE;
2114 }
2115
2116 if ( (entryp->flags & (AIO_READ | AIO_WRITE)) != 0 ) {
2117 if ( entryp->aiocb.aio_nbytes > INT_MAX ||
2118 entryp->aiocb.aio_buf == USER_ADDR_NULL ||
2119 entryp->aiocb.aio_offset < 0 )
2120 return( EINVAL );
2121 }
2122
2123 /*
2124 * validate aiocb.aio_sigevent. at this point we only support
2125 * sigev_notify equal to SIGEV_SIGNAL or SIGEV_NONE. this means
2126 * sigev_value, sigev_notify_function, and sigev_notify_attributes
2127 * are ignored, since SIGEV_THREAD is unsupported. This is consistent
2128 * with no [RTS] (RalTime Signal) option group support.
2129 */
2130 switch ( entryp->aiocb.aio_sigevent.sigev_notify ) {
2131 case SIGEV_SIGNAL:
2132 {
2133 int signum;
2134
2135 /* make sure we have a valid signal number */
2136 signum = entryp->aiocb.aio_sigevent.sigev_signo;
2137 if ( signum <= 0 || signum >= NSIG ||
2138 signum == SIGKILL || signum == SIGSTOP )
2139 return (EINVAL);
2140 }
2141 break;
2142
2143 case SIGEV_NONE:
2144 break;
2145
2146 case SIGEV_THREAD:
2147 /* Unsupported [RTS] */
2148
2149 default:
2150 return (EINVAL);
2151 }
2152
2153 /* validate the file descriptor and that the file was opened
2154 * for the appropriate read / write access.
2155 */
2156 proc_fdlock(entryp->procp);
2157
2158 result = fp_lookup( entryp->procp, entryp->aiocb.aio_fildes, &fp , 1);
2159 if ( result == 0 ) {
2160 if ( (fp->f_fglob->fg_flag & flag) == 0 ) {
2161 /* we don't have read or write access */
2162 result = EBADF;
2163 }
2164 else if ( FILEGLOB_DTYPE(fp->f_fglob) != DTYPE_VNODE ) {
2165 /* this is not a file */
2166 result = ESPIPE;
2167 } else
2168 fp->f_flags |= FP_AIOISSUED;
2169
2170 fp_drop(entryp->procp, entryp->aiocb.aio_fildes, fp , 1);
2171 }
2172 else {
2173 result = EBADF;
2174 }
2175
2176 proc_fdunlock(entryp->procp);
2177
2178 return( result );
2179
2180 } /* aio_validate */
2181
2182 static int
2183 aio_increment_total_count()
2184 {
2185 return OSIncrementAtomic(&aio_anchor.aio_total_count);
2186 }
2187
2188 static int
2189 aio_decrement_total_count()
2190 {
2191 int old = OSDecrementAtomic(&aio_anchor.aio_total_count);
2192 if (old <= 0) {
2193 panic("Negative total AIO count!\n");
2194 }
2195
2196 return old;
2197 }
2198
2199 static int
2200 aio_get_process_count(proc_t procp )
2201 {
2202 return procp->p_aio_total_count;
2203
2204 } /* aio_get_process_count */
2205
2206 static int
2207 aio_get_all_queues_count( void )
2208 {
2209 return aio_anchor.aio_total_count;
2210
2211 } /* aio_get_all_queues_count */
2212
2213
2214 /*
2215 * do_aio_completion. Handle async IO completion.
2216 */
2217 static void
2218 do_aio_completion( aio_workq_entry *entryp )
2219 {
2220
2221 boolean_t lastLioCompleted = FALSE;
2222 aio_lio_context *lio_context = NULL;
2223 int waiter = 0;
2224
2225 lio_context = (aio_lio_context *)entryp->group_tag;
2226
2227 if (lio_context != NULL) {
2228
2229 aio_proc_lock_spin(entryp->procp);
2230
2231 /* Account for this I/O completing. */
2232 lio_context->io_completed++;
2233
2234 /* Are we done with this lio context? */
2235 if (lio_context->io_issued == lio_context->io_completed) {
2236 lastLioCompleted = TRUE;
2237 }
2238
2239 waiter = lio_context->io_waiter;
2240
2241 /* explicit wakeup of lio_listio() waiting in LIO_WAIT */
2242 if ((entryp->flags & AIO_LIO_NOTIFY) && (lastLioCompleted) && (waiter != 0)) {
2243 /* wake up the waiter */
2244 wakeup(lio_context);
2245 }
2246
2247 aio_proc_unlock(entryp->procp);
2248 }
2249
2250 if ( entryp->aiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL &&
2251 (entryp->flags & AIO_DISABLE) == 0 ) {
2252
2253 boolean_t performSignal = FALSE;
2254 if (lio_context == NULL) {
2255 performSignal = TRUE;
2256 }
2257 else {
2258 /*
2259 * If this was the last request in the group and a signal
2260 * is desired, send one.
2261 */
2262 performSignal = lastLioCompleted;
2263 }
2264
2265 if (performSignal) {
2266
2267 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_sig)) | DBG_FUNC_NONE,
2268 (int)entryp->procp, (int)entryp->uaiocbp,
2269 entryp->aiocb.aio_sigevent.sigev_signo, 0, 0 );
2270
2271 psignal( entryp->procp, entryp->aiocb.aio_sigevent.sigev_signo );
2272 }
2273 }
2274
2275 if ((entryp->flags & AIO_EXIT_WAIT) && (entryp->flags & AIO_CLOSE_WAIT)) {
2276 panic("Close and exit flags set at the same time\n");
2277 }
2278
2279 /*
2280 * need to handle case where a process is trying to exit, exec, or
2281 * close and is currently waiting for active aio requests to complete.
2282 * If AIO_CLEANUP_WAIT is set then we need to look to see if there are any
2283 * other requests in the active queue for this process. If there are
2284 * none then wakeup using the AIO_CLEANUP_SLEEP_CHAN tsleep channel.
2285 * If there are some still active then do nothing - we only want to
2286 * wakeup when all active aio requests for the process are complete.
2287 *
2288 * Don't need to lock the entry or proc to check the cleanup flag. It can only be
2289 * set for cancellation, while the entryp is still on a proc list; now it's
2290 * off, so that flag is already set if it's going to be.
2291 */
2292 if ( (entryp->flags & AIO_EXIT_WAIT) != 0 ) {
2293 int active_requests;
2294
2295 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_cleanup_wait)) | DBG_FUNC_NONE,
2296 (int)entryp->procp, (int)entryp->uaiocbp, 0, 0, 0 );
2297
2298 aio_proc_lock_spin(entryp->procp);
2299 active_requests = aio_active_requests_for_process( entryp->procp );
2300 if ( active_requests < 1 ) {
2301 /*
2302 * no active aio requests for this process, continue exiting. In this
2303 * case, there should be no one else waiting ont he proc in AIO...
2304 */
2305 wakeup_one((caddr_t)&entryp->procp->AIO_CLEANUP_SLEEP_CHAN);
2306 aio_proc_unlock(entryp->procp);
2307
2308 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_cleanup_wake)) | DBG_FUNC_NONE,
2309 (int)entryp->procp, (int)entryp->uaiocbp, 0, 0, 0 );
2310 } else {
2311 aio_proc_unlock(entryp->procp);
2312 }
2313 }
2314
2315 if ( (entryp->flags & AIO_CLOSE_WAIT) != 0 ) {
2316 int active_requests;
2317
2318 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_cleanup_wait)) | DBG_FUNC_NONE,
2319 (int)entryp->procp, (int)entryp->uaiocbp, 0, 0, 0 );
2320
2321 aio_proc_lock_spin(entryp->procp);
2322 active_requests = aio_proc_active_requests_for_file( entryp->procp, entryp->aiocb.aio_fildes);
2323 if ( active_requests < 1 ) {
2324 /* Can't wakeup_one(); multiple closes might be in progress. */
2325 wakeup(&entryp->procp->AIO_CLEANUP_SLEEP_CHAN);
2326 aio_proc_unlock(entryp->procp);
2327
2328 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_cleanup_wake)) | DBG_FUNC_NONE,
2329 (int)entryp->procp, (int)entryp->uaiocbp, 0, 0, 0 );
2330 } else {
2331 aio_proc_unlock(entryp->procp);
2332 }
2333 }
2334 /*
2335 * A thread in aio_suspend() wants to known about completed IOs. If it checked
2336 * the done list before we moved our AIO there, then it already asserted its wait,
2337 * and we can wake it up without holding the lock. If it checked the list after
2338 * we did our move, then it already has seen the AIO that we moved. Herego, we
2339 * can do our wakeup without holding the lock.
2340 */
2341 wakeup( (caddr_t) &entryp->procp->AIO_SUSPEND_SLEEP_CHAN );
2342 KERNEL_DEBUG( (BSDDBG_CODE(DBG_BSD_AIO, AIO_completion_suspend_wake)) | DBG_FUNC_NONE,
2343 (int)entryp->procp, (int)entryp->uaiocbp, 0, 0, 0 );
2344
2345 /*
2346 * free the LIO context if the last lio completed and no thread is
2347 * waiting
2348 */
2349 if (lastLioCompleted && (waiter == 0))
2350 free_lio_context (lio_context);
2351
2352
2353 } /* do_aio_completion */
2354
2355
2356 /*
2357 * do_aio_read
2358 */
2359 static int
2360 do_aio_read( aio_workq_entry *entryp )
2361 {
2362 struct fileproc *fp;
2363 int error;
2364 struct vfs_context context;
2365
2366 if ( (error = fp_lookup(entryp->procp, entryp->aiocb.aio_fildes, &fp , 0)) )
2367 return(error);
2368 if ( (fp->f_fglob->fg_flag & FREAD) == 0 ) {
2369 fp_drop(entryp->procp, entryp->aiocb.aio_fildes, fp, 0);
2370 return(EBADF);
2371 }
2372
2373 context.vc_thread = entryp->thread; /* XXX */
2374 context.vc_ucred = fp->f_fglob->fg_cred;
2375
2376 error = dofileread(&context, fp,
2377 entryp->aiocb.aio_buf,
2378 entryp->aiocb.aio_nbytes,
2379 entryp->aiocb.aio_offset, FOF_OFFSET,
2380 &entryp->returnval);
2381 fp_drop(entryp->procp, entryp->aiocb.aio_fildes, fp, 0);
2382
2383 return( error );
2384
2385 } /* do_aio_read */
2386
2387
2388 /*
2389 * do_aio_write
2390 */
2391 static int
2392 do_aio_write( aio_workq_entry *entryp )
2393 {
2394 struct fileproc *fp;
2395 int error, flags;
2396 struct vfs_context context;
2397
2398 if ( (error = fp_lookup(entryp->procp, entryp->aiocb.aio_fildes, &fp , 0)) )
2399 return(error);
2400 if ( (fp->f_fglob->fg_flag & FWRITE) == 0 ) {
2401 fp_drop(entryp->procp, entryp->aiocb.aio_fildes, fp, 0);
2402 return(EBADF);
2403 }
2404
2405 flags = FOF_PCRED;
2406 if ( (fp->f_fglob->fg_flag & O_APPEND) == 0 ) {
2407 flags |= FOF_OFFSET;
2408 }
2409
2410 context.vc_thread = entryp->thread; /* XXX */
2411 context.vc_ucred = fp->f_fglob->fg_cred;
2412
2413 /* NB: tell dofilewrite the offset, and to use the proc cred */
2414 error = dofilewrite(&context,
2415 fp,
2416 entryp->aiocb.aio_buf,
2417 entryp->aiocb.aio_nbytes,
2418 entryp->aiocb.aio_offset,
2419 flags,
2420 &entryp->returnval);
2421
2422 if (entryp->returnval)
2423 fp_drop_written(entryp->procp, entryp->aiocb.aio_fildes, fp);
2424 else
2425 fp_drop(entryp->procp, entryp->aiocb.aio_fildes, fp, 0);
2426
2427 return( error );
2428
2429 } /* do_aio_write */
2430
2431
2432 /*
2433 * aio_active_requests_for_process - return number of active async IO
2434 * requests for the given process.
2435 */
2436 static int
2437 aio_active_requests_for_process(proc_t procp )
2438 {
2439 return( procp->p_aio_active_count );
2440
2441 } /* aio_active_requests_for_process */
2442
2443 /*
2444 * Called with the proc locked.
2445 */
2446 static int
2447 aio_proc_active_requests_for_file(proc_t procp, int fd)
2448 {
2449 int count = 0;
2450 aio_workq_entry *entryp;
2451 TAILQ_FOREACH(entryp, &procp->p_aio_activeq, aio_proc_link) {
2452 if (entryp->aiocb.aio_fildes == fd) {
2453 count++;
2454 }
2455 }
2456
2457 return count;
2458 } /* aio_active_requests_for_process */
2459
2460
2461
2462 /*
2463 * do_aio_fsync
2464 */
2465 static int
2466 do_aio_fsync( aio_workq_entry *entryp )
2467 {
2468 struct vfs_context context;
2469 struct vnode *vp;
2470 struct fileproc *fp;
2471 int sync_flag;
2472 int error;
2473
2474 /*
2475 * We are never called unless either AIO_FSYNC or AIO_DSYNC are set.
2476 *
2477 * If AIO_DSYNC is set, we can tell the lower layers that it is OK
2478 * to mark for update the metadata not strictly necessary for data
2479 * retrieval, rather than forcing it to disk.
2480 *
2481 * If AIO_FSYNC is set, we have to also wait for metadata not really
2482 * necessary to data retrival are committed to stable storage (e.g.
2483 * atime, mtime, ctime, etc.).
2484 *
2485 * Metadata necessary for data retrieval ust be committed to stable
2486 * storage in either case (file length, etc.).
2487 */
2488 if (entryp->flags & AIO_FSYNC)
2489 sync_flag = MNT_WAIT;
2490 else
2491 sync_flag = MNT_DWAIT;
2492
2493 error = fp_getfvp( entryp->procp, entryp->aiocb.aio_fildes, &fp, &vp);
2494 if ( error == 0 ) {
2495 if ( (error = vnode_getwithref(vp)) ) {
2496 fp_drop(entryp->procp, entryp->aiocb.aio_fildes, fp, 0);
2497 entryp->returnval = -1;
2498 return(error);
2499 }
2500 context.vc_thread = current_thread();
2501 context.vc_ucred = fp->f_fglob->fg_cred;
2502
2503 error = VNOP_FSYNC( vp, sync_flag, &context);
2504
2505 (void)vnode_put(vp);
2506
2507 fp_drop(entryp->procp, entryp->aiocb.aio_fildes, fp, 0);
2508 }
2509 if ( error != 0 )
2510 entryp->returnval = -1;
2511
2512 return( error );
2513
2514 } /* do_aio_fsync */
2515
2516
2517 /*
2518 * is_already_queued - runs through our queues to see if the given
2519 * aiocbp / process is there. Returns TRUE if there is a match
2520 * on any of our aio queues.
2521 *
2522 * Called with proc aio lock held (can be held spin)
2523 */
2524 static boolean_t
2525 is_already_queued(proc_t procp,
2526 user_addr_t aiocbp )
2527 {
2528 aio_workq_entry *entryp;
2529 boolean_t result;
2530
2531 result = FALSE;
2532
2533 /* look for matches on our queue of async IO requests that have completed */
2534 TAILQ_FOREACH( entryp, &procp->p_aio_doneq, aio_proc_link ) {
2535 if ( aiocbp == entryp->uaiocbp ) {
2536 result = TRUE;
2537 goto ExitThisRoutine;
2538 }
2539 }
2540
2541 /* look for matches on our queue of active async IO requests */
2542 TAILQ_FOREACH( entryp, &procp->p_aio_activeq, aio_proc_link ) {
2543 if ( aiocbp == entryp->uaiocbp ) {
2544 result = TRUE;
2545 goto ExitThisRoutine;
2546 }
2547 }
2548
2549 ExitThisRoutine:
2550 return( result );
2551
2552 } /* is_already_queued */
2553
2554
2555 static void
2556 free_lio_context(aio_lio_context* context)
2557 {
2558
2559 #if DEBUG
2560 OSDecrementAtomic(&lio_contexts_alloced);
2561 #endif /* DEBUG */
2562
2563 FREE( context, M_TEMP );
2564
2565 } /* free_lio_context */
2566
2567
2568 /*
2569 * aio initialization
2570 */
2571 __private_extern__ void
2572 aio_init( void )
2573 {
2574 int i;
2575
2576 aio_lock_grp_attr = lck_grp_attr_alloc_init();
2577 aio_proc_lock_grp = lck_grp_alloc_init("aio_proc", aio_lock_grp_attr);;
2578 aio_entry_lock_grp = lck_grp_alloc_init("aio_entry", aio_lock_grp_attr);;
2579 aio_queue_lock_grp = lck_grp_alloc_init("aio_queue", aio_lock_grp_attr);;
2580 aio_lock_attr = lck_attr_alloc_init();
2581
2582 lck_mtx_init(&aio_entry_mtx, aio_entry_lock_grp, aio_lock_attr);
2583 lck_mtx_init(&aio_proc_mtx, aio_proc_lock_grp, aio_lock_attr);
2584
2585 aio_anchor.aio_inflight_count = 0;
2586 aio_anchor.aio_done_count = 0;
2587 aio_anchor.aio_total_count = 0;
2588 aio_anchor.aio_num_workqs = AIO_NUM_WORK_QUEUES;
2589
2590 for (i = 0; i < AIO_NUM_WORK_QUEUES; i++) {
2591 aio_workq_init(&aio_anchor.aio_async_workqs[i]);
2592 }
2593
2594
2595 i = sizeof( aio_workq_entry );
2596 aio_workq_zonep = zinit( i, i * aio_max_requests, i * aio_max_requests, "aiowq" );
2597
2598 _aio_create_worker_threads( aio_worker_threads );
2599
2600 } /* aio_init */
2601
2602
2603 /*
2604 * aio worker threads created here.
2605 */
2606 __private_extern__ void
2607 _aio_create_worker_threads( int num )
2608 {
2609 int i;
2610
2611 /* create some worker threads to handle the async IO requests */
2612 for ( i = 0; i < num; i++ ) {
2613 thread_t myThread;
2614
2615 if ( KERN_SUCCESS != kernel_thread_start((thread_continue_t)aio_work_thread, NULL, &myThread) ) {
2616 printf( "%s - failed to create a work thread \n", __FUNCTION__ );
2617 }
2618 else
2619 thread_deallocate(myThread);
2620 }
2621
2622 return;
2623
2624 } /* _aio_create_worker_threads */
2625
2626 /*
2627 * Return the current activation utask
2628 */
2629 task_t
2630 get_aiotask(void)
2631 {
2632 return ((struct uthread *)get_bsdthread_info(current_thread()))->uu_aio_task;
2633 }
2634
2635
2636 /*
2637 * In the case of an aiocb from a
2638 * 32-bit process we need to expand some longs and pointers to the correct
2639 * sizes in order to let downstream code always work on the same type of
2640 * aiocb (in our case that is a user_aiocb)
2641 */
2642 static void
2643 do_munge_aiocb_user32_to_user( struct user32_aiocb *my_aiocbp, struct user_aiocb *the_user_aiocbp )
2644 {
2645 the_user_aiocbp->aio_fildes = my_aiocbp->aio_fildes;
2646 the_user_aiocbp->aio_offset = my_aiocbp->aio_offset;
2647 the_user_aiocbp->aio_buf = CAST_USER_ADDR_T(my_aiocbp->aio_buf);
2648 the_user_aiocbp->aio_nbytes = my_aiocbp->aio_nbytes;
2649 the_user_aiocbp->aio_reqprio = my_aiocbp->aio_reqprio;
2650 the_user_aiocbp->aio_lio_opcode = my_aiocbp->aio_lio_opcode;
2651
2652 /* special case here. since we do not know if sigev_value is an */
2653 /* int or a ptr we do NOT cast the ptr to a user_addr_t. This */
2654 /* means if we send this info back to user space we need to remember */
2655 /* sigev_value was not expanded for the 32-bit case. */
2656 /* NOTE - this does NOT affect us since we don't support sigev_value */
2657 /* yet in the aio context. */
2658 //LP64
2659 the_user_aiocbp->aio_sigevent.sigev_notify = my_aiocbp->aio_sigevent.sigev_notify;
2660 the_user_aiocbp->aio_sigevent.sigev_signo = my_aiocbp->aio_sigevent.sigev_signo;
2661 the_user_aiocbp->aio_sigevent.sigev_value.size_equivalent.sival_int =
2662 my_aiocbp->aio_sigevent.sigev_value.sival_int;
2663 the_user_aiocbp->aio_sigevent.sigev_notify_function =
2664 CAST_USER_ADDR_T(my_aiocbp->aio_sigevent.sigev_notify_function);
2665 the_user_aiocbp->aio_sigevent.sigev_notify_attributes =
2666 CAST_USER_ADDR_T(my_aiocbp->aio_sigevent.sigev_notify_attributes);
2667 }
2668
2669 /* Similar for 64-bit user process, so that we don't need to satisfy
2670 * the alignment constraints of the original user64_aiocb
2671 */
2672 static void
2673 do_munge_aiocb_user64_to_user( struct user64_aiocb *my_aiocbp, struct user_aiocb *the_user_aiocbp )
2674 {
2675 the_user_aiocbp->aio_fildes = my_aiocbp->aio_fildes;
2676 the_user_aiocbp->aio_offset = my_aiocbp->aio_offset;
2677 the_user_aiocbp->aio_buf = my_aiocbp->aio_buf;
2678 the_user_aiocbp->aio_nbytes = my_aiocbp->aio_nbytes;
2679 the_user_aiocbp->aio_reqprio = my_aiocbp->aio_reqprio;
2680 the_user_aiocbp->aio_lio_opcode = my_aiocbp->aio_lio_opcode;
2681
2682 the_user_aiocbp->aio_sigevent.sigev_notify = my_aiocbp->aio_sigevent.sigev_notify;
2683 the_user_aiocbp->aio_sigevent.sigev_signo = my_aiocbp->aio_sigevent.sigev_signo;
2684 the_user_aiocbp->aio_sigevent.sigev_value.size_equivalent.sival_int =
2685 my_aiocbp->aio_sigevent.sigev_value.size_equivalent.sival_int;
2686 the_user_aiocbp->aio_sigevent.sigev_notify_function =
2687 my_aiocbp->aio_sigevent.sigev_notify_function;
2688 the_user_aiocbp->aio_sigevent.sigev_notify_attributes =
2689 my_aiocbp->aio_sigevent.sigev_notify_attributes;
2690 }