]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2019 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <libkern/crypto/sha2.h> | |
30 | #include <libkern/crypto/crypto_internal.h> | |
31 | #include <os/atomic_private.h> | |
32 | #include <kern/assert.h> | |
33 | #include <kern/percpu.h> | |
34 | #include <kern/zalloc.h> | |
35 | #include <kern/lock_group.h> | |
36 | #include <kern/locks.h> | |
37 | #include <kern/misc_protos.h> | |
38 | #include <pexpert/pexpert.h> | |
39 | #include <prng/entropy.h> | |
40 | #include <machine/machine_routines.h> | |
41 | #include <libkern/section_keywords.h> | |
42 | #include <sys/cdefs.h> | |
43 | ||
44 | // The number of samples we can hold in an entropy buffer. | |
45 | #define ENTROPY_MAX_SAMPLE_COUNT (2048) | |
46 | ||
47 | // The state for a per-CPU entropy buffer. | |
48 | typedef struct entropy_cpu_data { | |
49 | // A buffer to hold entropy samples. | |
50 | entropy_sample_t samples[ENTROPY_MAX_SAMPLE_COUNT]; | |
51 | ||
52 | // A count of samples resident in the buffer. It also functions as | |
53 | // an index to the buffer. All entries at indices less than the | |
54 | // sample count are considered valid for consumption by the | |
55 | // reader. The reader resets this to zero after consuming the | |
56 | // available entropy. | |
57 | uint32_t _Atomic sample_count; | |
58 | } entropy_cpu_data_t; | |
59 | ||
60 | // This structure holds the state for an instance of a FIPS continuous | |
61 | // health test. In practice, we do not expect these tests to fail. | |
62 | typedef struct entropy_health_test { | |
63 | // The initial sample observed in this test instance. Tests look | |
64 | // for some repetition of the sample, either consecutively or | |
65 | // within a window. | |
66 | entropy_sample_t init_observation; | |
67 | ||
68 | // The count of times the initial observation has recurred within | |
69 | // the span of the current test. | |
70 | uint64_t observation_count; | |
71 | ||
72 | // The statistics are only relevant for telemetry and parameter | |
73 | // tuning. They do not drive any actual logic in the module. | |
74 | entropy_health_stats_t *stats; | |
75 | } entropy_health_test_t; | |
76 | ||
77 | typedef enum health_test_result { | |
78 | health_test_failure, | |
79 | health_test_success | |
80 | } health_test_result_t; | |
81 | ||
82 | // Along with various counters and the buffer itself, this includes | |
83 | // the state for two FIPS continuous health tests. | |
84 | typedef struct entropy_data { | |
85 | // State for a SHA256 computation. This is used to accumulate | |
86 | // entropy samples from across all CPUs. It is finalized when | |
87 | // entropy is provided to the consumer of this module. | |
88 | SHA256_CTX sha256_ctx; | |
89 | ||
90 | // Since the corecrypto kext is not loaded when this module is | |
91 | // initialized, we cannot initialize the SHA256 state at that | |
92 | // time. Instead, we initialize it lazily during entropy | |
93 | // consumption. This flag tracks whether initialization is | |
94 | // complete. | |
95 | bool sha256_ctx_init; | |
96 | ||
97 | // A total count of entropy samples that have passed through this | |
98 | // structure. It is incremented as new samples are accumulated | |
99 | // from the various per-CPU structures. The "current" count of | |
100 | // samples is the difference between this field and the "read" | |
101 | // sample count below (which see). | |
102 | uint64_t total_sample_count; | |
103 | ||
104 | // Initially zero, this flag is reset to the current sample count | |
105 | // if and when we fail a health test. We consider the startup | |
106 | // health tests to be complete when the difference between the | |
107 | // total sample count and this field is at least 1024. In other | |
108 | // words, we must accumulate 1024 good samples to demonstrate | |
109 | // viability. We refuse to provide any entropy before that | |
110 | // threshold is reached. | |
111 | uint64_t startup_sample_count; | |
112 | ||
113 | // The count of samples from the last time we provided entropy to | |
114 | // the kernel RNG. We use this to compute how many new samples we | |
115 | // have to contribute. This value is also reset to the current | |
116 | // sample count in case of health test failure. | |
117 | uint64_t read_sample_count; | |
118 | ||
119 | // The lock group for this structure; see below. | |
120 | lck_grp_t lock_group; | |
121 | ||
122 | // This structure accumulates entropy samples from across all CPUs | |
123 | // for a single point of consumption protected by a mutex. | |
124 | lck_mtx_t mutex; | |
125 | ||
126 | // State for the Repetition Count Test. | |
127 | entropy_health_test_t repetition_count_test; | |
128 | ||
129 | // State for the Adaptive Proportion Test. | |
130 | entropy_health_test_t adaptive_proportion_test; | |
131 | } entropy_data_t; | |
132 | ||
133 | static entropy_cpu_data_t PERCPU_DATA(entropy_cpu_data); | |
134 | ||
135 | int entropy_health_startup_done; | |
136 | entropy_health_stats_t entropy_health_rct_stats; | |
137 | entropy_health_stats_t entropy_health_apt_stats; | |
138 | ||
139 | static entropy_data_t entropy_data = { | |
140 | .repetition_count_test = { | |
141 | .init_observation = -1, | |
142 | .stats = &entropy_health_rct_stats, | |
143 | }, | |
144 | .adaptive_proportion_test = { | |
145 | .init_observation = -1, | |
146 | .stats = &entropy_health_apt_stats, | |
147 | }, | |
148 | }; | |
149 | ||
150 | __security_const_late entropy_sample_t *entropy_analysis_buffer; | |
151 | __security_const_late uint32_t entropy_analysis_buffer_size; | |
152 | static __security_const_late uint32_t entropy_analysis_max_sample_count; | |
153 | static uint32_t entropy_analysis_sample_count; | |
154 | ||
155 | __startup_func | |
156 | static void | |
157 | entropy_analysis_init(uint32_t sample_count) | |
158 | { | |
159 | entropy_analysis_max_sample_count = sample_count; | |
160 | entropy_analysis_buffer_size = sample_count * sizeof(entropy_sample_t); | |
161 | entropy_analysis_buffer = zalloc_permanent(entropy_analysis_buffer_size, ZALIGN(entropy_sample_t)); | |
162 | } | |
163 | ||
164 | __startup_func | |
165 | void | |
166 | entropy_init(void) | |
167 | { | |
168 | lck_grp_init(&entropy_data.lock_group, "entropy-data", LCK_GRP_ATTR_NULL); | |
169 | lck_mtx_init(&entropy_data.mutex, &entropy_data.lock_group, LCK_ATTR_NULL); | |
170 | ||
171 | // The below path is used only for testing. This boot arg is used | |
172 | // to collect raw entropy samples for offline analysis. The "ebsz" | |
173 | // name is supported only until dependent tools can be updated to | |
174 | // use the more descriptive "entropy-analysis-sample-count". | |
175 | uint32_t sample_count = 0; | |
176 | if (__improbable(PE_parse_boot_argn("entropy-analysis-sample-count", &sample_count, sizeof(sample_count)))) { | |
177 | entropy_analysis_init(sample_count); | |
178 | } else if (__improbable(PE_parse_boot_argn("ebsz", &sample_count, sizeof(sample_count)))) { | |
179 | entropy_analysis_init(sample_count); | |
180 | } | |
181 | } | |
182 | ||
183 | void | |
184 | entropy_collect(void) | |
185 | { | |
186 | // This function is called from within the interrupt handler, so | |
187 | // we do not need to disable interrupts. | |
188 | ||
189 | entropy_cpu_data_t *e = PERCPU_GET(entropy_cpu_data); | |
190 | ||
191 | uint32_t sample_count = os_atomic_load(&e->sample_count, relaxed); | |
192 | ||
193 | assert(sample_count <= ENTROPY_MAX_SAMPLE_COUNT); | |
194 | ||
195 | // If the buffer is full, we return early without collecting | |
196 | // entropy. | |
197 | if (sample_count == ENTROPY_MAX_SAMPLE_COUNT) { | |
198 | return; | |
199 | } | |
200 | ||
201 | e->samples[sample_count] = (entropy_sample_t)ml_get_timebase_entropy(); | |
202 | ||
203 | // If the consumer has reset the sample count on us, the only | |
204 | // consequence is a dropped sample. We effectively abort the | |
205 | // entropy collection in this case. | |
206 | (void)os_atomic_cmpxchg(&e->sample_count, sample_count, sample_count + 1, release); | |
207 | } | |
208 | ||
209 | // For information on the following tests, see NIST SP 800-90B 4 | |
210 | // Health Tests. These tests are intended to detect catastrophic | |
211 | // degradations in entropy. As noted in that document: | |
212 | // | |
213 | // > Health tests are expected to raise an alarm in three cases: | |
214 | // > 1. When there is a significant decrease in the entropy of the | |
215 | // > outputs, | |
216 | // > 2. When noise source failures occur, or | |
217 | // > 3. When hardware fails, and implementations do not work | |
218 | // > correctly. | |
219 | // | |
220 | // Each entropy accumulator declines to release entropy until the | |
221 | // startup tests required by NIST are complete. In the event that a | |
222 | // health test does fail, all entropy accumulators are reset and | |
223 | // decline to release further entropy until their startup tests can be | |
224 | // repeated. | |
225 | ||
226 | static health_test_result_t | |
227 | add_observation(entropy_health_test_t *t, uint64_t bound) | |
228 | { | |
229 | t->observation_count += 1; | |
230 | t->stats->max_observation_count = MAX(t->stats->max_observation_count, (uint32_t)t->observation_count); | |
231 | if (__improbable(t->observation_count >= bound)) { | |
232 | t->stats->failure_count += 1; | |
233 | return health_test_failure; | |
234 | } | |
235 | ||
236 | return health_test_success; | |
237 | } | |
238 | ||
239 | static void | |
240 | reset_test(entropy_health_test_t *t, entropy_sample_t observation) | |
241 | { | |
242 | t->stats->reset_count += 1; | |
243 | t->init_observation = observation; | |
244 | t->observation_count = 1; | |
245 | t->stats->max_observation_count = MAX(t->stats->max_observation_count, (uint32_t)t->observation_count); | |
246 | } | |
247 | ||
248 | // 4.4.1 Repetition Count Test | |
249 | // | |
250 | // Like the name implies, this test counts consecutive occurrences of | |
251 | // the same value. | |
252 | // | |
253 | // We compute the bound C as: | |
254 | // | |
255 | // A = 2^-128 | |
256 | // H = 1 | |
257 | // C = 1 + ceil(-log(A, 2) / H) = 129 | |
258 | // | |
259 | // With A the acceptable chance of false positive and H a conservative | |
260 | // estimate for the entropy (in bits) of each sample. | |
261 | ||
262 | #define REPETITION_COUNT_BOUND (129) | |
263 | ||
264 | static health_test_result_t | |
265 | repetition_count_test(entropy_sample_t observation) | |
266 | { | |
267 | entropy_health_test_t *t = &entropy_data.repetition_count_test; | |
268 | ||
269 | if (t->init_observation == observation) { | |
270 | return add_observation(t, REPETITION_COUNT_BOUND); | |
271 | } else { | |
272 | reset_test(t, observation); | |
273 | } | |
274 | ||
275 | return health_test_success; | |
276 | } | |
277 | ||
278 | // 4.4.2 Adaptive Proportion Test | |
279 | // | |
280 | // This test counts occurrences of a value within a window of samples. | |
281 | // | |
282 | // We use a non-binary alphabet, giving us a window size of 512. (In | |
283 | // particular, we consider the least-significant byte of each time | |
284 | // sample.) | |
285 | // | |
286 | // Assuming one bit of entropy, we can compute the binomial cumulative | |
287 | // distribution function over 512 trials in SageMath as: | |
288 | // | |
289 | // k = var('k') | |
290 | // f(x) = sum(binomial(512, k), k, x, 512) / 2^512 | |
291 | // | |
292 | // We compute the bound C as the minimal x for which: | |
293 | // | |
294 | // f(x) < 2^-128 | |
295 | // | |
296 | // Is true. | |
297 | // | |
298 | // Empirically, we have C = 400. | |
299 | ||
300 | #define ADAPTIVE_PROPORTION_BOUND (400) | |
301 | #define ADAPTIVE_PROPORTION_WINDOW (512) | |
302 | ||
303 | // This mask definition requires the window be a power of two. | |
304 | static_assert(__builtin_popcount(ADAPTIVE_PROPORTION_WINDOW) == 1); | |
305 | #define ADAPTIVE_PROPORTION_INDEX_MASK (ADAPTIVE_PROPORTION_WINDOW - 1) | |
306 | ||
307 | static health_test_result_t | |
308 | adaptive_proportion_test(entropy_sample_t observation, uint32_t offset) | |
309 | { | |
310 | entropy_health_test_t *t = &entropy_data.adaptive_proportion_test; | |
311 | ||
312 | // We work in windows of size ADAPTIVE_PROPORTION_WINDOW, so we | |
313 | // can compute our index by taking the entropy buffer's overall | |
314 | // sample count plus the offset of this observation modulo the | |
315 | // window size. | |
316 | uint32_t index = (entropy_data.total_sample_count + offset) & ADAPTIVE_PROPORTION_INDEX_MASK; | |
317 | ||
318 | if (index == 0) { | |
319 | reset_test(t, observation); | |
320 | } else if (t->init_observation == observation) { | |
321 | return add_observation(t, ADAPTIVE_PROPORTION_BOUND); | |
322 | } | |
323 | ||
324 | return health_test_success; | |
325 | } | |
326 | ||
327 | static health_test_result_t | |
328 | entropy_health_test(uint32_t sample_count, entropy_sample_t *samples) | |
329 | { | |
330 | health_test_result_t result = health_test_success; | |
331 | ||
332 | for (uint32_t i = 0; i < sample_count; i += 1) { | |
333 | // We only consider the low bits of each sample, since that is | |
334 | // where we expect the entropy to be concentrated. | |
335 | entropy_sample_t observation = samples[i] & 0xff; | |
336 | ||
337 | if (__improbable(repetition_count_test(observation) == health_test_failure)) { | |
338 | result = health_test_failure; | |
339 | } | |
340 | ||
341 | if (__improbable(adaptive_proportion_test(observation, i) == health_test_failure)) { | |
342 | result = health_test_failure; | |
343 | } | |
344 | } | |
345 | ||
346 | return result; | |
347 | } | |
348 | ||
349 | static void | |
350 | entropy_analysis_store(uint32_t sample_count, entropy_sample_t *samples) | |
351 | { | |
352 | lck_mtx_assert(&entropy_data.mutex, LCK_MTX_ASSERT_OWNED); | |
353 | ||
354 | sample_count = MIN(sample_count, (entropy_analysis_max_sample_count - entropy_analysis_sample_count)); | |
355 | if (sample_count == 0) { | |
356 | return; | |
357 | } | |
358 | ||
359 | size_t size = sample_count * sizeof(samples[0]); | |
360 | memcpy(&entropy_analysis_buffer[entropy_analysis_sample_count], samples, size); | |
361 | entropy_analysis_sample_count += sample_count; | |
362 | } | |
363 | ||
364 | int32_t | |
365 | entropy_provide(size_t *entropy_size, void *entropy, __unused void *arg) | |
366 | { | |
367 | #if (DEVELOPMENT || DEBUG) | |
368 | if (*entropy_size < SHA256_DIGEST_LENGTH) { | |
369 | panic("[entropy_provide] recipient entropy buffer is too small\n"); | |
370 | } | |
371 | #endif | |
372 | ||
373 | int32_t sample_count = 0; | |
374 | *entropy_size = 0; | |
375 | ||
376 | // The first call to this function comes while the corecrypto kext | |
377 | // is being loaded. We require SHA256 to accumulate entropy | |
378 | // samples. | |
379 | if (__improbable(!g_crypto_funcs)) { | |
380 | return sample_count; | |
381 | } | |
382 | ||
383 | // There is only one consumer (the kernel PRNG), but they could | |
384 | // try to consume entropy from different threads. We simply fail | |
385 | // if a consumption is already in progress. | |
386 | if (!lck_mtx_try_lock(&entropy_data.mutex)) { | |
387 | return sample_count; | |
388 | } | |
389 | ||
390 | // This only happens on the first call to this function. We cannot | |
391 | // perform this initialization in entropy_init because the | |
392 | // corecrypto kext is not loaded yet. | |
393 | if (__improbable(!entropy_data.sha256_ctx_init)) { | |
394 | SHA256_Init(&entropy_data.sha256_ctx); | |
395 | entropy_data.sha256_ctx_init = true; | |
396 | } | |
397 | ||
398 | health_test_result_t health_test_result = health_test_success; | |
399 | ||
400 | // We accumulate entropy from all CPUs. | |
401 | percpu_foreach(e, entropy_cpu_data) { | |
402 | // On each CPU, the sample count functions as an index into | |
403 | // the entropy buffer. All samples before that index are valid | |
404 | // for consumption. | |
405 | uint32_t cpu_sample_count = os_atomic_load(&e->sample_count, acquire); | |
406 | ||
407 | assert(cpu_sample_count <= ENTROPY_MAX_SAMPLE_COUNT); | |
408 | ||
409 | // The health test depends in part on the current state of | |
410 | // the entropy data, so we test the new sample before | |
411 | // accumulating it. | |
412 | if (__improbable(entropy_health_test(cpu_sample_count, e->samples) == health_test_failure)) { | |
413 | health_test_result = health_test_failure; | |
414 | } | |
415 | ||
416 | // We accumulate the samples regardless of whether the test | |
417 | // failed. It cannot hurt. | |
418 | entropy_data.total_sample_count += cpu_sample_count; | |
419 | SHA256_Update(&entropy_data.sha256_ctx, e->samples, cpu_sample_count * sizeof(e->samples[0])); | |
420 | ||
421 | // This code path is only used for testing. Its use is governed by | |
422 | // a boot arg; see its initialization above. | |
423 | if (__improbable(entropy_analysis_buffer)) { | |
424 | entropy_analysis_store(cpu_sample_count, e->samples); | |
425 | } | |
426 | ||
427 | // "Drain" the per-CPU buffer by resetting its sample count. | |
428 | os_atomic_store(&e->sample_count, 0, relaxed); | |
429 | } | |
430 | ||
431 | // We expect this never to happen. | |
432 | // | |
433 | // But if it does happen, we need to return negative to signal the | |
434 | // consumer (i.e. the kernel PRNG) that there has been a failure. | |
435 | if (__improbable(health_test_result == health_test_failure)) { | |
436 | entropy_health_startup_done = 0; | |
437 | entropy_data.startup_sample_count = entropy_data.total_sample_count; | |
438 | entropy_data.read_sample_count = entropy_data.total_sample_count; | |
439 | sample_count = -1; | |
440 | goto out; | |
441 | } | |
442 | ||
443 | // FIPS requires we pass our startup health tests before providing | |
444 | // any entropy. This condition is only true during startup and in | |
445 | // case of reset due to test failure. | |
446 | if (__improbable((entropy_data.total_sample_count - entropy_data.startup_sample_count) < 1024)) { | |
447 | goto out; | |
448 | } | |
449 | ||
450 | entropy_health_startup_done = 1; | |
451 | ||
452 | // The count of new samples from the consumer's perspective. | |
453 | int32_t n = (int32_t)(entropy_data.total_sample_count - entropy_data.read_sample_count); | |
454 | ||
455 | // For performance reasons, we require a small threshold of | |
456 | // samples to have built up before we provide any to the PRNG. | |
457 | if (n < 32) { | |
458 | goto out; | |
459 | } | |
460 | ||
461 | SHA256_Final(entropy, &entropy_data.sha256_ctx); | |
462 | SHA256_Init(&entropy_data.sha256_ctx); | |
463 | entropy_data.read_sample_count = entropy_data.total_sample_count; | |
464 | ||
465 | sample_count = n; | |
466 | *entropy_size = SHA256_DIGEST_LENGTH; | |
467 | ||
468 | out: | |
469 | lck_mtx_unlock(&entropy_data.mutex); | |
470 | ||
471 | return sample_count; | |
472 | } |