]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2019-2020 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | /* | |
58 | * Compressor Pager. | |
59 | * Memory Object Management. | |
60 | */ | |
61 | ||
62 | #include <kern/host_statistics.h> | |
63 | #include <kern/kalloc.h> | |
64 | #include <kern/ipc_kobject.h> | |
65 | ||
66 | #include <machine/atomic.h> | |
67 | ||
68 | #include <mach/memory_object_control.h> | |
69 | #include <mach/memory_object_types.h> | |
70 | #include <mach/upl.h> | |
71 | ||
72 | #include <vm/memory_object.h> | |
73 | #include <vm/vm_compressor_pager.h> | |
74 | #include <vm/vm_external.h> | |
75 | #include <vm/vm_pageout.h> | |
76 | #include <vm/vm_protos.h> | |
77 | ||
78 | /* memory_object interfaces */ | |
79 | void compressor_memory_object_reference(memory_object_t mem_obj); | |
80 | void compressor_memory_object_deallocate(memory_object_t mem_obj); | |
81 | kern_return_t compressor_memory_object_init( | |
82 | memory_object_t mem_obj, | |
83 | memory_object_control_t control, | |
84 | memory_object_cluster_size_t pager_page_size); | |
85 | kern_return_t compressor_memory_object_terminate(memory_object_t mem_obj); | |
86 | kern_return_t compressor_memory_object_data_request( | |
87 | memory_object_t mem_obj, | |
88 | memory_object_offset_t offset, | |
89 | memory_object_cluster_size_t length, | |
90 | __unused vm_prot_t protection_required, | |
91 | memory_object_fault_info_t fault_info); | |
92 | kern_return_t compressor_memory_object_data_return( | |
93 | memory_object_t mem_obj, | |
94 | memory_object_offset_t offset, | |
95 | memory_object_cluster_size_t size, | |
96 | __unused memory_object_offset_t *resid_offset, | |
97 | __unused int *io_error, | |
98 | __unused boolean_t dirty, | |
99 | __unused boolean_t kernel_copy, | |
100 | __unused int upl_flags); | |
101 | kern_return_t compressor_memory_object_data_initialize( | |
102 | memory_object_t mem_obj, | |
103 | memory_object_offset_t offset, | |
104 | memory_object_cluster_size_t size); | |
105 | kern_return_t compressor_memory_object_data_unlock( | |
106 | __unused memory_object_t mem_obj, | |
107 | __unused memory_object_offset_t offset, | |
108 | __unused memory_object_size_t size, | |
109 | __unused vm_prot_t desired_access); | |
110 | kern_return_t compressor_memory_object_synchronize( | |
111 | memory_object_t mem_obj, | |
112 | memory_object_offset_t offset, | |
113 | memory_object_size_t length, | |
114 | __unused vm_sync_t flags); | |
115 | kern_return_t compressor_memory_object_map( | |
116 | __unused memory_object_t mem_obj, | |
117 | __unused vm_prot_t prot); | |
118 | kern_return_t compressor_memory_object_last_unmap(memory_object_t mem_obj); | |
119 | kern_return_t compressor_memory_object_data_reclaim( | |
120 | __unused memory_object_t mem_obj, | |
121 | __unused boolean_t reclaim_backing_store); | |
122 | ||
123 | const struct memory_object_pager_ops compressor_pager_ops = { | |
124 | .memory_object_reference = compressor_memory_object_reference, | |
125 | .memory_object_deallocate = compressor_memory_object_deallocate, | |
126 | .memory_object_init = compressor_memory_object_init, | |
127 | .memory_object_terminate = compressor_memory_object_terminate, | |
128 | .memory_object_data_request = compressor_memory_object_data_request, | |
129 | .memory_object_data_return = compressor_memory_object_data_return, | |
130 | .memory_object_data_initialize = compressor_memory_object_data_initialize, | |
131 | .memory_object_data_unlock = compressor_memory_object_data_unlock, | |
132 | .memory_object_synchronize = compressor_memory_object_synchronize, | |
133 | .memory_object_map = compressor_memory_object_map, | |
134 | .memory_object_last_unmap = compressor_memory_object_last_unmap, | |
135 | .memory_object_data_reclaim = compressor_memory_object_data_reclaim, | |
136 | .memory_object_pager_name = "compressor pager" | |
137 | }; | |
138 | ||
139 | /* internal data structures */ | |
140 | ||
141 | struct { | |
142 | uint64_t data_returns; | |
143 | uint64_t data_requests; | |
144 | uint64_t put; | |
145 | uint64_t get; | |
146 | uint64_t state_clr; | |
147 | uint64_t state_get; | |
148 | uint64_t transfer; | |
149 | } compressor_pager_stats; | |
150 | ||
151 | typedef int compressor_slot_t; | |
152 | ||
153 | typedef struct compressor_pager { | |
154 | /* mandatory generic header */ | |
155 | struct memory_object cpgr_hdr; | |
156 | ||
157 | /* pager-specific data */ | |
158 | lck_mtx_t cpgr_lock; | |
159 | unsigned int cpgr_references; | |
160 | unsigned int cpgr_num_slots; | |
161 | unsigned int cpgr_num_slots_occupied; | |
162 | union { | |
163 | compressor_slot_t cpgr_eslots[2]; /* embedded slots */ | |
164 | compressor_slot_t *cpgr_dslots; /* direct slots */ | |
165 | compressor_slot_t **cpgr_islots; /* indirect slots */ | |
166 | } cpgr_slots; | |
167 | } *compressor_pager_t; | |
168 | ||
169 | #define compressor_pager_lookup(_mem_obj_, _cpgr_) \ | |
170 | MACRO_BEGIN \ | |
171 | if (_mem_obj_ == NULL || \ | |
172 | _mem_obj_->mo_pager_ops != &compressor_pager_ops) { \ | |
173 | _cpgr_ = NULL; \ | |
174 | } else { \ | |
175 | _cpgr_ = (compressor_pager_t) _mem_obj_; \ | |
176 | } \ | |
177 | MACRO_END | |
178 | ||
179 | zone_t compressor_pager_zone; | |
180 | ||
181 | LCK_GRP_DECLARE(compressor_pager_lck_grp, "compressor_pager"); | |
182 | ||
183 | #define compressor_pager_lock(_cpgr_) \ | |
184 | lck_mtx_lock(&(_cpgr_)->cpgr_lock) | |
185 | #define compressor_pager_unlock(_cpgr_) \ | |
186 | lck_mtx_unlock(&(_cpgr_)->cpgr_lock) | |
187 | #define compressor_pager_lock_init(_cpgr_) \ | |
188 | lck_mtx_init(&(_cpgr_)->cpgr_lock, &compressor_pager_lck_grp, LCK_ATTR_NULL) | |
189 | #define compressor_pager_lock_destroy(_cpgr_) \ | |
190 | lck_mtx_destroy(&(_cpgr_)->cpgr_lock, &compressor_pager_lck_grp) | |
191 | ||
192 | #define COMPRESSOR_SLOTS_CHUNK_SIZE (512) | |
193 | #define COMPRESSOR_SLOTS_PER_CHUNK (COMPRESSOR_SLOTS_CHUNK_SIZE / sizeof (compressor_slot_t)) | |
194 | ||
195 | /* forward declarations */ | |
196 | unsigned int compressor_pager_slots_chunk_free(compressor_slot_t *chunk, | |
197 | int num_slots, | |
198 | int flags, | |
199 | int *failures); | |
200 | void compressor_pager_slot_lookup( | |
201 | compressor_pager_t pager, | |
202 | boolean_t do_alloc, | |
203 | memory_object_offset_t offset, | |
204 | compressor_slot_t **slot_pp); | |
205 | ||
206 | #if defined(__LP64__) | |
207 | ||
208 | /* restricted VA zones for slots */ | |
209 | ||
210 | #define NUM_SLOTS_ZONES 3 | |
211 | ||
212 | static const size_t compressor_slots_zones_sizes[NUM_SLOTS_ZONES] = { | |
213 | 16, | |
214 | 64, | |
215 | COMPRESSOR_SLOTS_CHUNK_SIZE | |
216 | }; | |
217 | ||
218 | static const char * compressor_slots_zones_names[NUM_SLOTS_ZONES] = { | |
219 | "compressor_slots.16", | |
220 | "compressor_slots.64", | |
221 | "compressor_slots.512" | |
222 | }; | |
223 | ||
224 | static zone_t | |
225 | compressor_slots_zones[NUM_SLOTS_ZONES]; | |
226 | ||
227 | #endif /* defined(__LP64__) */ | |
228 | ||
229 | static void | |
230 | zfree_slot_array(compressor_slot_t *slots, size_t size); | |
231 | static compressor_slot_t * | |
232 | zalloc_slot_array(size_t size, zalloc_flags_t); | |
233 | ||
234 | ||
235 | kern_return_t | |
236 | compressor_memory_object_init( | |
237 | memory_object_t mem_obj, | |
238 | memory_object_control_t control, | |
239 | __unused memory_object_cluster_size_t pager_page_size) | |
240 | { | |
241 | compressor_pager_t pager; | |
242 | ||
243 | assert(pager_page_size == PAGE_SIZE); | |
244 | ||
245 | memory_object_control_reference(control); | |
246 | ||
247 | compressor_pager_lookup(mem_obj, pager); | |
248 | compressor_pager_lock(pager); | |
249 | ||
250 | if (pager->cpgr_hdr.mo_control != MEMORY_OBJECT_CONTROL_NULL) { | |
251 | panic("compressor_memory_object_init: bad request"); | |
252 | } | |
253 | pager->cpgr_hdr.mo_control = control; | |
254 | ||
255 | compressor_pager_unlock(pager); | |
256 | ||
257 | return KERN_SUCCESS; | |
258 | } | |
259 | ||
260 | kern_return_t | |
261 | compressor_memory_object_synchronize( | |
262 | __unused memory_object_t mem_obj, | |
263 | __unused memory_object_offset_t offset, | |
264 | __unused memory_object_size_t length, | |
265 | __unused vm_sync_t flags) | |
266 | { | |
267 | panic("compressor_memory_object_synchronize: memory_object_synchronize no longer supported\n"); | |
268 | return KERN_FAILURE; | |
269 | } | |
270 | ||
271 | kern_return_t | |
272 | compressor_memory_object_map( | |
273 | __unused memory_object_t mem_obj, | |
274 | __unused vm_prot_t prot) | |
275 | { | |
276 | panic("compressor_memory_object_map"); | |
277 | return KERN_FAILURE; | |
278 | } | |
279 | ||
280 | kern_return_t | |
281 | compressor_memory_object_last_unmap( | |
282 | __unused memory_object_t mem_obj) | |
283 | { | |
284 | panic("compressor_memory_object_last_unmap"); | |
285 | return KERN_FAILURE; | |
286 | } | |
287 | ||
288 | kern_return_t | |
289 | compressor_memory_object_data_reclaim( | |
290 | __unused memory_object_t mem_obj, | |
291 | __unused boolean_t reclaim_backing_store) | |
292 | { | |
293 | panic("compressor_memory_object_data_reclaim"); | |
294 | return KERN_FAILURE; | |
295 | } | |
296 | ||
297 | kern_return_t | |
298 | compressor_memory_object_terminate( | |
299 | memory_object_t mem_obj) | |
300 | { | |
301 | memory_object_control_t control; | |
302 | compressor_pager_t pager; | |
303 | ||
304 | /* | |
305 | * control port is a receive right, not a send right. | |
306 | */ | |
307 | ||
308 | compressor_pager_lookup(mem_obj, pager); | |
309 | compressor_pager_lock(pager); | |
310 | ||
311 | /* | |
312 | * After memory_object_terminate both memory_object_init | |
313 | * and a no-senders notification are possible, so we need | |
314 | * to clean up our reference to the memory_object_control | |
315 | * to prepare for a new init. | |
316 | */ | |
317 | ||
318 | control = pager->cpgr_hdr.mo_control; | |
319 | pager->cpgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL; | |
320 | ||
321 | compressor_pager_unlock(pager); | |
322 | ||
323 | /* | |
324 | * Now we deallocate our reference on the control. | |
325 | */ | |
326 | memory_object_control_deallocate(control); | |
327 | return KERN_SUCCESS; | |
328 | } | |
329 | ||
330 | void | |
331 | compressor_memory_object_reference( | |
332 | memory_object_t mem_obj) | |
333 | { | |
334 | compressor_pager_t pager; | |
335 | ||
336 | compressor_pager_lookup(mem_obj, pager); | |
337 | if (pager == NULL) { | |
338 | return; | |
339 | } | |
340 | ||
341 | compressor_pager_lock(pager); | |
342 | assert(pager->cpgr_references > 0); | |
343 | pager->cpgr_references++; | |
344 | compressor_pager_unlock(pager); | |
345 | } | |
346 | ||
347 | void | |
348 | compressor_memory_object_deallocate( | |
349 | memory_object_t mem_obj) | |
350 | { | |
351 | compressor_pager_t pager; | |
352 | unsigned int num_slots_freed; | |
353 | ||
354 | /* | |
355 | * Because we don't give out multiple first references | |
356 | * for a memory object, there can't be a race | |
357 | * between getting a deallocate call and creating | |
358 | * a new reference for the object. | |
359 | */ | |
360 | ||
361 | compressor_pager_lookup(mem_obj, pager); | |
362 | if (pager == NULL) { | |
363 | return; | |
364 | } | |
365 | ||
366 | compressor_pager_lock(pager); | |
367 | if (--pager->cpgr_references > 0) { | |
368 | compressor_pager_unlock(pager); | |
369 | return; | |
370 | } | |
371 | ||
372 | /* | |
373 | * We shouldn't get a deallocation call | |
374 | * when the kernel has the object cached. | |
375 | */ | |
376 | if (pager->cpgr_hdr.mo_control != MEMORY_OBJECT_CONTROL_NULL) { | |
377 | panic("compressor_memory_object_deallocate(): bad request"); | |
378 | } | |
379 | ||
380 | /* | |
381 | * Unlock the pager (though there should be no one | |
382 | * waiting for it). | |
383 | */ | |
384 | compressor_pager_unlock(pager); | |
385 | ||
386 | /* free the compressor slots */ | |
387 | int num_chunks; | |
388 | int i; | |
389 | compressor_slot_t *chunk; | |
390 | ||
391 | num_chunks = (pager->cpgr_num_slots + COMPRESSOR_SLOTS_PER_CHUNK - 1) / COMPRESSOR_SLOTS_PER_CHUNK; | |
392 | if (num_chunks > 1) { | |
393 | /* we have an array of chunks */ | |
394 | for (i = 0; i < num_chunks; i++) { | |
395 | chunk = pager->cpgr_slots.cpgr_islots[i]; | |
396 | if (chunk != NULL) { | |
397 | num_slots_freed = | |
398 | compressor_pager_slots_chunk_free( | |
399 | chunk, | |
400 | COMPRESSOR_SLOTS_PER_CHUNK, | |
401 | 0, | |
402 | NULL); | |
403 | pager->cpgr_slots.cpgr_islots[i] = NULL; | |
404 | zfree_slot_array(chunk, COMPRESSOR_SLOTS_CHUNK_SIZE); | |
405 | } | |
406 | } | |
407 | kheap_free(KHEAP_DEFAULT, pager->cpgr_slots.cpgr_islots, | |
408 | num_chunks * sizeof(pager->cpgr_slots.cpgr_islots[0])); | |
409 | pager->cpgr_slots.cpgr_islots = NULL; | |
410 | } else if (pager->cpgr_num_slots > 2) { | |
411 | chunk = pager->cpgr_slots.cpgr_dslots; | |
412 | num_slots_freed = | |
413 | compressor_pager_slots_chunk_free( | |
414 | chunk, | |
415 | pager->cpgr_num_slots, | |
416 | 0, | |
417 | NULL); | |
418 | pager->cpgr_slots.cpgr_dslots = NULL; | |
419 | zfree_slot_array(chunk, | |
420 | (pager->cpgr_num_slots * | |
421 | sizeof(pager->cpgr_slots.cpgr_dslots[0]))); | |
422 | } else { | |
423 | chunk = &pager->cpgr_slots.cpgr_eslots[0]; | |
424 | num_slots_freed = | |
425 | compressor_pager_slots_chunk_free( | |
426 | chunk, | |
427 | pager->cpgr_num_slots, | |
428 | 0, | |
429 | NULL); | |
430 | } | |
431 | ||
432 | compressor_pager_lock_destroy(pager); | |
433 | zfree(compressor_pager_zone, pager); | |
434 | } | |
435 | ||
436 | kern_return_t | |
437 | compressor_memory_object_data_request( | |
438 | memory_object_t mem_obj, | |
439 | memory_object_offset_t offset, | |
440 | memory_object_cluster_size_t length, | |
441 | __unused vm_prot_t protection_required, | |
442 | __unused memory_object_fault_info_t fault_info) | |
443 | { | |
444 | compressor_pager_t pager; | |
445 | kern_return_t kr; | |
446 | compressor_slot_t *slot_p; | |
447 | ||
448 | compressor_pager_stats.data_requests++; | |
449 | ||
450 | /* | |
451 | * Request must be on a page boundary and a multiple of pages. | |
452 | */ | |
453 | if ((offset & PAGE_MASK) != 0 || (length & PAGE_MASK) != 0) { | |
454 | panic("compressor_memory_object_data_request(): bad alignment"); | |
455 | } | |
456 | ||
457 | if ((uint32_t)(offset / PAGE_SIZE) != (offset / PAGE_SIZE)) { | |
458 | panic("%s: offset 0x%llx overflow\n", | |
459 | __FUNCTION__, (uint64_t) offset); | |
460 | return KERN_FAILURE; | |
461 | } | |
462 | ||
463 | compressor_pager_lookup(mem_obj, pager); | |
464 | ||
465 | if (length == 0) { | |
466 | /* we're only querying the pager for this page */ | |
467 | } else { | |
468 | panic("compressor: data_request"); | |
469 | } | |
470 | ||
471 | /* find the compressor slot for that page */ | |
472 | compressor_pager_slot_lookup(pager, FALSE, offset, &slot_p); | |
473 | ||
474 | if (offset / PAGE_SIZE >= pager->cpgr_num_slots) { | |
475 | /* out of range */ | |
476 | kr = KERN_FAILURE; | |
477 | } else if (slot_p == NULL || *slot_p == 0) { | |
478 | /* compressor does not have this page */ | |
479 | kr = KERN_FAILURE; | |
480 | } else { | |
481 | /* compressor does have this page */ | |
482 | kr = KERN_SUCCESS; | |
483 | } | |
484 | return kr; | |
485 | } | |
486 | ||
487 | /* | |
488 | * memory_object_data_initialize: check whether we already have each page, and | |
489 | * write it if we do not. The implementation is far from optimized, and | |
490 | * also assumes that the default_pager is single-threaded. | |
491 | */ | |
492 | /* It is questionable whether or not a pager should decide what is relevant */ | |
493 | /* and what is not in data sent from the kernel. Data initialize has been */ | |
494 | /* changed to copy back all data sent to it in preparation for its eventual */ | |
495 | /* merge with data return. It is the kernel that should decide what pages */ | |
496 | /* to write back. As of the writing of this note, this is indeed the case */ | |
497 | /* the kernel writes back one page at a time through this interface */ | |
498 | ||
499 | kern_return_t | |
500 | compressor_memory_object_data_initialize( | |
501 | memory_object_t mem_obj, | |
502 | memory_object_offset_t offset, | |
503 | memory_object_cluster_size_t size) | |
504 | { | |
505 | compressor_pager_t pager; | |
506 | memory_object_offset_t cur_offset; | |
507 | ||
508 | compressor_pager_lookup(mem_obj, pager); | |
509 | compressor_pager_lock(pager); | |
510 | ||
511 | for (cur_offset = offset; | |
512 | cur_offset < offset + size; | |
513 | cur_offset += PAGE_SIZE) { | |
514 | panic("do a data_return() if slot for this page is empty"); | |
515 | } | |
516 | ||
517 | compressor_pager_unlock(pager); | |
518 | ||
519 | return KERN_SUCCESS; | |
520 | } | |
521 | ||
522 | kern_return_t | |
523 | compressor_memory_object_data_unlock( | |
524 | __unused memory_object_t mem_obj, | |
525 | __unused memory_object_offset_t offset, | |
526 | __unused memory_object_size_t size, | |
527 | __unused vm_prot_t desired_access) | |
528 | { | |
529 | panic("compressor_memory_object_data_unlock()"); | |
530 | return KERN_FAILURE; | |
531 | } | |
532 | ||
533 | ||
534 | /*ARGSUSED*/ | |
535 | kern_return_t | |
536 | compressor_memory_object_data_return( | |
537 | __unused memory_object_t mem_obj, | |
538 | __unused memory_object_offset_t offset, | |
539 | __unused memory_object_cluster_size_t size, | |
540 | __unused memory_object_offset_t *resid_offset, | |
541 | __unused int *io_error, | |
542 | __unused boolean_t dirty, | |
543 | __unused boolean_t kernel_copy, | |
544 | __unused int upl_flags) | |
545 | { | |
546 | panic("compressor: data_return"); | |
547 | return KERN_FAILURE; | |
548 | } | |
549 | ||
550 | /* | |
551 | * Routine: default_pager_memory_object_create | |
552 | * Purpose: | |
553 | * Handle requests for memory objects from the | |
554 | * kernel. | |
555 | * Notes: | |
556 | * Because we only give out the default memory | |
557 | * manager port to the kernel, we don't have to | |
558 | * be so paranoid about the contents. | |
559 | */ | |
560 | kern_return_t | |
561 | compressor_memory_object_create( | |
562 | memory_object_size_t new_size, | |
563 | memory_object_t *new_mem_obj) | |
564 | { | |
565 | compressor_pager_t pager; | |
566 | int num_chunks; | |
567 | ||
568 | if ((uint32_t)(new_size / PAGE_SIZE) != (new_size / PAGE_SIZE)) { | |
569 | /* 32-bit overflow for number of pages */ | |
570 | panic("%s: size 0x%llx overflow\n", | |
571 | __FUNCTION__, (uint64_t) new_size); | |
572 | return KERN_INVALID_ARGUMENT; | |
573 | } | |
574 | ||
575 | pager = (compressor_pager_t) zalloc(compressor_pager_zone); | |
576 | if (pager == NULL) { | |
577 | return KERN_RESOURCE_SHORTAGE; | |
578 | } | |
579 | ||
580 | compressor_pager_lock_init(pager); | |
581 | pager->cpgr_references = 1; | |
582 | pager->cpgr_num_slots = (uint32_t)(new_size / PAGE_SIZE); | |
583 | pager->cpgr_num_slots_occupied = 0; | |
584 | ||
585 | num_chunks = (pager->cpgr_num_slots + COMPRESSOR_SLOTS_PER_CHUNK - 1) / COMPRESSOR_SLOTS_PER_CHUNK; | |
586 | if (num_chunks > 1) { | |
587 | pager->cpgr_slots.cpgr_islots = kheap_alloc(KHEAP_DEFAULT, | |
588 | num_chunks * sizeof(pager->cpgr_slots.cpgr_islots[0]), | |
589 | Z_WAITOK | Z_ZERO); | |
590 | } else if (pager->cpgr_num_slots > 2) { | |
591 | pager->cpgr_slots.cpgr_dslots = zalloc_slot_array(pager->cpgr_num_slots * | |
592 | sizeof(pager->cpgr_slots.cpgr_dslots[0]), Z_WAITOK | Z_ZERO); | |
593 | } else { | |
594 | pager->cpgr_slots.cpgr_eslots[0] = 0; | |
595 | pager->cpgr_slots.cpgr_eslots[1] = 0; | |
596 | } | |
597 | ||
598 | /* | |
599 | * Set up associations between this memory object | |
600 | * and this compressor_pager structure | |
601 | */ | |
602 | pager->cpgr_hdr.mo_ikot = IKOT_MEMORY_OBJECT; | |
603 | pager->cpgr_hdr.mo_pager_ops = &compressor_pager_ops; | |
604 | pager->cpgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL; | |
605 | ||
606 | *new_mem_obj = (memory_object_t) pager; | |
607 | return KERN_SUCCESS; | |
608 | } | |
609 | ||
610 | ||
611 | unsigned int | |
612 | compressor_pager_slots_chunk_free( | |
613 | compressor_slot_t *chunk, | |
614 | int num_slots, | |
615 | int flags, | |
616 | int *failures) | |
617 | { | |
618 | int i; | |
619 | int retval; | |
620 | unsigned int num_slots_freed; | |
621 | ||
622 | if (failures) { | |
623 | *failures = 0; | |
624 | } | |
625 | num_slots_freed = 0; | |
626 | for (i = 0; i < num_slots; i++) { | |
627 | if (chunk[i] != 0) { | |
628 | retval = vm_compressor_free(&chunk[i], flags); | |
629 | ||
630 | if (retval == 0) { | |
631 | num_slots_freed++; | |
632 | } else { | |
633 | if (retval == -2) { | |
634 | assert(flags & C_DONT_BLOCK); | |
635 | } | |
636 | ||
637 | if (failures) { | |
638 | *failures += 1; | |
639 | } | |
640 | } | |
641 | } | |
642 | } | |
643 | return num_slots_freed; | |
644 | } | |
645 | ||
646 | void | |
647 | compressor_pager_slot_lookup( | |
648 | compressor_pager_t pager, | |
649 | boolean_t do_alloc, | |
650 | memory_object_offset_t offset, | |
651 | compressor_slot_t **slot_pp) | |
652 | { | |
653 | int num_chunks; | |
654 | uint32_t page_num; | |
655 | int chunk_idx; | |
656 | int slot_idx; | |
657 | compressor_slot_t *chunk; | |
658 | compressor_slot_t *t_chunk; | |
659 | ||
660 | page_num = (uint32_t)(offset / PAGE_SIZE); | |
661 | if (page_num != (offset / PAGE_SIZE)) { | |
662 | /* overflow */ | |
663 | panic("%s: offset 0x%llx overflow\n", | |
664 | __FUNCTION__, (uint64_t) offset); | |
665 | *slot_pp = NULL; | |
666 | return; | |
667 | } | |
668 | if (page_num >= pager->cpgr_num_slots) { | |
669 | /* out of range */ | |
670 | *slot_pp = NULL; | |
671 | return; | |
672 | } | |
673 | num_chunks = (pager->cpgr_num_slots + COMPRESSOR_SLOTS_PER_CHUNK - 1) / COMPRESSOR_SLOTS_PER_CHUNK; | |
674 | if (num_chunks > 1) { | |
675 | /* we have an array of chunks */ | |
676 | chunk_idx = page_num / COMPRESSOR_SLOTS_PER_CHUNK; | |
677 | chunk = pager->cpgr_slots.cpgr_islots[chunk_idx]; | |
678 | ||
679 | if (chunk == NULL && do_alloc) { | |
680 | t_chunk = zalloc_slot_array(COMPRESSOR_SLOTS_CHUNK_SIZE, | |
681 | Z_WAITOK | Z_ZERO); | |
682 | ||
683 | compressor_pager_lock(pager); | |
684 | ||
685 | if ((chunk = pager->cpgr_slots.cpgr_islots[chunk_idx]) == NULL) { | |
686 | /* | |
687 | * On some platforms, the memory stores from | |
688 | * the bzero(t_chunk) above might not have been | |
689 | * made visible and another thread might see | |
690 | * the contents of this new chunk before it's | |
691 | * been fully zero-filled. | |
692 | * This memory barrier should take care of this | |
693 | * according to the platform requirements. | |
694 | */ | |
695 | os_atomic_thread_fence(release); | |
696 | ||
697 | chunk = pager->cpgr_slots.cpgr_islots[chunk_idx] = t_chunk; | |
698 | t_chunk = NULL; | |
699 | } | |
700 | compressor_pager_unlock(pager); | |
701 | ||
702 | if (t_chunk) { | |
703 | zfree_slot_array(t_chunk, COMPRESSOR_SLOTS_CHUNK_SIZE); | |
704 | } | |
705 | } | |
706 | if (chunk == NULL) { | |
707 | *slot_pp = NULL; | |
708 | } else { | |
709 | slot_idx = page_num % COMPRESSOR_SLOTS_PER_CHUNK; | |
710 | *slot_pp = &chunk[slot_idx]; | |
711 | } | |
712 | } else if (pager->cpgr_num_slots > 2) { | |
713 | slot_idx = page_num; | |
714 | *slot_pp = &pager->cpgr_slots.cpgr_dslots[slot_idx]; | |
715 | } else { | |
716 | slot_idx = page_num; | |
717 | *slot_pp = &pager->cpgr_slots.cpgr_eslots[slot_idx]; | |
718 | } | |
719 | } | |
720 | ||
721 | void | |
722 | vm_compressor_pager_init(void) | |
723 | { | |
724 | /* embedded slot pointers in compressor_pager get packed, so VA restricted */ | |
725 | compressor_pager_zone = zone_create_ext("compressor_pager", | |
726 | sizeof(struct compressor_pager), ZC_NOENCRYPT, | |
727 | ZONE_ID_ANY, ^(zone_t z){ | |
728 | #if defined(__LP64__) | |
729 | zone_set_submap_idx(z, Z_SUBMAP_IDX_VA_RESTRICTED_MAP); | |
730 | #else | |
731 | (void)z; | |
732 | #endif /* defined(__LP64__) */ | |
733 | }); | |
734 | ||
735 | #if defined(__LP64__) | |
736 | for (unsigned int idx = 0; idx < NUM_SLOTS_ZONES; idx++) { | |
737 | compressor_slots_zones[idx] = zone_create_ext( | |
738 | compressor_slots_zones_names[idx], | |
739 | compressor_slots_zones_sizes[idx], ZC_NONE, | |
740 | ZONE_ID_ANY, ^(zone_t z){ | |
741 | zone_set_submap_idx(z, Z_SUBMAP_IDX_VA_RESTRICTED_MAP); | |
742 | }); | |
743 | } | |
744 | #endif /* defined(__LP64__) */ | |
745 | ||
746 | vm_compressor_init(); | |
747 | } | |
748 | ||
749 | static compressor_slot_t * | |
750 | zalloc_slot_array(size_t size, zalloc_flags_t flags) | |
751 | { | |
752 | #if defined(__LP64__) | |
753 | compressor_slot_t *slots = NULL; | |
754 | ||
755 | assert(size <= COMPRESSOR_SLOTS_CHUNK_SIZE); | |
756 | for (unsigned int idx = 0; idx < NUM_SLOTS_ZONES; idx++) { | |
757 | if (size > compressor_slots_zones_sizes[idx]) { | |
758 | continue; | |
759 | } | |
760 | slots = zalloc_flags(compressor_slots_zones[idx], flags); | |
761 | break; | |
762 | } | |
763 | return slots; | |
764 | #else /* defined(__LP64__) */ | |
765 | return kheap_alloc(KHEAP_DATA_BUFFERS, size, flags); | |
766 | #endif /* !defined(__LP64__) */ | |
767 | } | |
768 | ||
769 | static void | |
770 | zfree_slot_array(compressor_slot_t *slots, size_t size) | |
771 | { | |
772 | #if defined(__LP64__) | |
773 | assert(size <= COMPRESSOR_SLOTS_CHUNK_SIZE); | |
774 | for (unsigned int idx = 0; idx < NUM_SLOTS_ZONES; idx++) { | |
775 | if (size > compressor_slots_zones_sizes[idx]) { | |
776 | continue; | |
777 | } | |
778 | zfree(compressor_slots_zones[idx], slots); | |
779 | break; | |
780 | } | |
781 | #else /* defined(__LP64__) */ | |
782 | kheap_free(KHEAP_DATA_BUFFERS, slots, size); | |
783 | #endif /* !defined(__LP64__) */ | |
784 | } | |
785 | ||
786 | kern_return_t | |
787 | vm_compressor_pager_put( | |
788 | memory_object_t mem_obj, | |
789 | memory_object_offset_t offset, | |
790 | ppnum_t ppnum, | |
791 | void **current_chead, | |
792 | char *scratch_buf, | |
793 | int *compressed_count_delta_p) | |
794 | { | |
795 | compressor_pager_t pager; | |
796 | compressor_slot_t *slot_p; | |
797 | ||
798 | compressor_pager_stats.put++; | |
799 | ||
800 | *compressed_count_delta_p = 0; | |
801 | ||
802 | /* This routine is called by the pageout thread. The pageout thread */ | |
803 | /* cannot be blocked by read activities unless the read activities */ | |
804 | /* Therefore the grant of vs lock must be done on a try versus a */ | |
805 | /* blocking basis. The code below relies on the fact that the */ | |
806 | /* interface is synchronous. Should this interface be again async */ | |
807 | /* for some type of pager in the future the pages will have to be */ | |
808 | /* returned through a separate, asynchronous path. */ | |
809 | ||
810 | compressor_pager_lookup(mem_obj, pager); | |
811 | ||
812 | if ((uint32_t)(offset / PAGE_SIZE) != (offset / PAGE_SIZE)) { | |
813 | /* overflow */ | |
814 | panic("%s: offset 0x%llx overflow\n", | |
815 | __FUNCTION__, (uint64_t) offset); | |
816 | return KERN_RESOURCE_SHORTAGE; | |
817 | } | |
818 | ||
819 | compressor_pager_slot_lookup(pager, TRUE, offset, &slot_p); | |
820 | ||
821 | if (slot_p == NULL) { | |
822 | /* out of range ? */ | |
823 | panic("vm_compressor_pager_put: out of range"); | |
824 | } | |
825 | if (*slot_p != 0) { | |
826 | /* | |
827 | * Already compressed: forget about the old one. | |
828 | * | |
829 | * This can happen after a vm_object_do_collapse() when | |
830 | * the "backing_object" had some pages paged out and the | |
831 | * "object" had an equivalent page resident. | |
832 | */ | |
833 | vm_compressor_free(slot_p, 0); | |
834 | *compressed_count_delta_p -= 1; | |
835 | } | |
836 | ||
837 | /* | |
838 | * If the compressor operation succeeds, we presumably don't need to | |
839 | * undo any previous WIMG update, as all live mappings should be | |
840 | * disconnected. | |
841 | */ | |
842 | ||
843 | if (vm_compressor_put(ppnum, slot_p, current_chead, scratch_buf)) { | |
844 | return KERN_RESOURCE_SHORTAGE; | |
845 | } | |
846 | *compressed_count_delta_p += 1; | |
847 | ||
848 | return KERN_SUCCESS; | |
849 | } | |
850 | ||
851 | ||
852 | kern_return_t | |
853 | vm_compressor_pager_get( | |
854 | memory_object_t mem_obj, | |
855 | memory_object_offset_t offset, | |
856 | ppnum_t ppnum, | |
857 | int *my_fault_type, | |
858 | int flags, | |
859 | int *compressed_count_delta_p) | |
860 | { | |
861 | compressor_pager_t pager; | |
862 | kern_return_t kr; | |
863 | compressor_slot_t *slot_p; | |
864 | ||
865 | compressor_pager_stats.get++; | |
866 | ||
867 | *compressed_count_delta_p = 0; | |
868 | ||
869 | if ((uint32_t)(offset / PAGE_SIZE) != (offset / PAGE_SIZE)) { | |
870 | panic("%s: offset 0x%llx overflow\n", | |
871 | __FUNCTION__, (uint64_t) offset); | |
872 | return KERN_MEMORY_ERROR; | |
873 | } | |
874 | ||
875 | compressor_pager_lookup(mem_obj, pager); | |
876 | ||
877 | /* find the compressor slot for that page */ | |
878 | compressor_pager_slot_lookup(pager, FALSE, offset, &slot_p); | |
879 | ||
880 | if (offset / PAGE_SIZE >= pager->cpgr_num_slots) { | |
881 | /* out of range */ | |
882 | kr = KERN_MEMORY_FAILURE; | |
883 | } else if (slot_p == NULL || *slot_p == 0) { | |
884 | /* compressor does not have this page */ | |
885 | kr = KERN_MEMORY_ERROR; | |
886 | } else { | |
887 | /* compressor does have this page */ | |
888 | kr = KERN_SUCCESS; | |
889 | } | |
890 | *my_fault_type = DBG_COMPRESSOR_FAULT; | |
891 | ||
892 | if (kr == KERN_SUCCESS) { | |
893 | int retval; | |
894 | ||
895 | /* get the page from the compressor */ | |
896 | retval = vm_compressor_get(ppnum, slot_p, flags); | |
897 | if (retval == -1) { | |
898 | kr = KERN_MEMORY_FAILURE; | |
899 | } else if (retval == 1) { | |
900 | *my_fault_type = DBG_COMPRESSOR_SWAPIN_FAULT; | |
901 | } else if (retval == -2) { | |
902 | assert((flags & C_DONT_BLOCK)); | |
903 | kr = KERN_FAILURE; | |
904 | } | |
905 | } | |
906 | ||
907 | if (kr == KERN_SUCCESS) { | |
908 | assert(slot_p != NULL); | |
909 | if (*slot_p != 0) { | |
910 | /* | |
911 | * We got the page for a copy-on-write fault | |
912 | * and we kept the original in place. Slot | |
913 | * is still occupied. | |
914 | */ | |
915 | } else { | |
916 | *compressed_count_delta_p -= 1; | |
917 | } | |
918 | } | |
919 | ||
920 | return kr; | |
921 | } | |
922 | ||
923 | unsigned int | |
924 | vm_compressor_pager_state_clr( | |
925 | memory_object_t mem_obj, | |
926 | memory_object_offset_t offset) | |
927 | { | |
928 | compressor_pager_t pager; | |
929 | compressor_slot_t *slot_p; | |
930 | unsigned int num_slots_freed; | |
931 | ||
932 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); | |
933 | ||
934 | compressor_pager_stats.state_clr++; | |
935 | ||
936 | if ((uint32_t)(offset / PAGE_SIZE) != (offset / PAGE_SIZE)) { | |
937 | /* overflow */ | |
938 | panic("%s: offset 0x%llx overflow\n", | |
939 | __FUNCTION__, (uint64_t) offset); | |
940 | return 0; | |
941 | } | |
942 | ||
943 | compressor_pager_lookup(mem_obj, pager); | |
944 | ||
945 | /* find the compressor slot for that page */ | |
946 | compressor_pager_slot_lookup(pager, FALSE, offset, &slot_p); | |
947 | ||
948 | num_slots_freed = 0; | |
949 | if (slot_p && *slot_p != 0) { | |
950 | vm_compressor_free(slot_p, 0); | |
951 | num_slots_freed++; | |
952 | assert(*slot_p == 0); | |
953 | } | |
954 | ||
955 | return num_slots_freed; | |
956 | } | |
957 | ||
958 | vm_external_state_t | |
959 | vm_compressor_pager_state_get( | |
960 | memory_object_t mem_obj, | |
961 | memory_object_offset_t offset) | |
962 | { | |
963 | compressor_pager_t pager; | |
964 | compressor_slot_t *slot_p; | |
965 | ||
966 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); | |
967 | ||
968 | compressor_pager_stats.state_get++; | |
969 | ||
970 | if ((uint32_t)(offset / PAGE_SIZE) != (offset / PAGE_SIZE)) { | |
971 | /* overflow */ | |
972 | panic("%s: offset 0x%llx overflow\n", | |
973 | __FUNCTION__, (uint64_t) offset); | |
974 | return VM_EXTERNAL_STATE_ABSENT; | |
975 | } | |
976 | ||
977 | compressor_pager_lookup(mem_obj, pager); | |
978 | ||
979 | /* find the compressor slot for that page */ | |
980 | compressor_pager_slot_lookup(pager, FALSE, offset, &slot_p); | |
981 | ||
982 | if (offset / PAGE_SIZE >= pager->cpgr_num_slots) { | |
983 | /* out of range */ | |
984 | return VM_EXTERNAL_STATE_ABSENT; | |
985 | } else if (slot_p == NULL || *slot_p == 0) { | |
986 | /* compressor does not have this page */ | |
987 | return VM_EXTERNAL_STATE_ABSENT; | |
988 | } else { | |
989 | /* compressor does have this page */ | |
990 | return VM_EXTERNAL_STATE_EXISTS; | |
991 | } | |
992 | } | |
993 | ||
994 | unsigned int | |
995 | vm_compressor_pager_reap_pages( | |
996 | memory_object_t mem_obj, | |
997 | int flags) | |
998 | { | |
999 | compressor_pager_t pager; | |
1000 | int num_chunks; | |
1001 | int failures; | |
1002 | int i; | |
1003 | compressor_slot_t *chunk; | |
1004 | unsigned int num_slots_freed; | |
1005 | ||
1006 | compressor_pager_lookup(mem_obj, pager); | |
1007 | if (pager == NULL) { | |
1008 | return 0; | |
1009 | } | |
1010 | ||
1011 | compressor_pager_lock(pager); | |
1012 | ||
1013 | /* reap the compressor slots */ | |
1014 | num_slots_freed = 0; | |
1015 | ||
1016 | num_chunks = (pager->cpgr_num_slots + COMPRESSOR_SLOTS_PER_CHUNK - 1) / COMPRESSOR_SLOTS_PER_CHUNK; | |
1017 | if (num_chunks > 1) { | |
1018 | /* we have an array of chunks */ | |
1019 | for (i = 0; i < num_chunks; i++) { | |
1020 | chunk = pager->cpgr_slots.cpgr_islots[i]; | |
1021 | if (chunk != NULL) { | |
1022 | num_slots_freed += | |
1023 | compressor_pager_slots_chunk_free( | |
1024 | chunk, | |
1025 | COMPRESSOR_SLOTS_PER_CHUNK, | |
1026 | flags, | |
1027 | &failures); | |
1028 | if (failures == 0) { | |
1029 | pager->cpgr_slots.cpgr_islots[i] = NULL; | |
1030 | zfree_slot_array(chunk, COMPRESSOR_SLOTS_CHUNK_SIZE); | |
1031 | } | |
1032 | } | |
1033 | } | |
1034 | } else if (pager->cpgr_num_slots > 2) { | |
1035 | chunk = pager->cpgr_slots.cpgr_dslots; | |
1036 | num_slots_freed += | |
1037 | compressor_pager_slots_chunk_free( | |
1038 | chunk, | |
1039 | pager->cpgr_num_slots, | |
1040 | flags, | |
1041 | NULL); | |
1042 | } else { | |
1043 | chunk = &pager->cpgr_slots.cpgr_eslots[0]; | |
1044 | num_slots_freed += | |
1045 | compressor_pager_slots_chunk_free( | |
1046 | chunk, | |
1047 | pager->cpgr_num_slots, | |
1048 | flags, | |
1049 | NULL); | |
1050 | } | |
1051 | ||
1052 | compressor_pager_unlock(pager); | |
1053 | ||
1054 | return num_slots_freed; | |
1055 | } | |
1056 | ||
1057 | void | |
1058 | vm_compressor_pager_transfer( | |
1059 | memory_object_t dst_mem_obj, | |
1060 | memory_object_offset_t dst_offset, | |
1061 | memory_object_t src_mem_obj, | |
1062 | memory_object_offset_t src_offset) | |
1063 | { | |
1064 | compressor_pager_t src_pager, dst_pager; | |
1065 | compressor_slot_t *src_slot_p, *dst_slot_p; | |
1066 | ||
1067 | compressor_pager_stats.transfer++; | |
1068 | ||
1069 | /* find the compressor slot for the destination */ | |
1070 | assert((uint32_t) dst_offset == dst_offset); | |
1071 | compressor_pager_lookup(dst_mem_obj, dst_pager); | |
1072 | assert(dst_offset / PAGE_SIZE < dst_pager->cpgr_num_slots); | |
1073 | compressor_pager_slot_lookup(dst_pager, TRUE, (uint32_t) dst_offset, | |
1074 | &dst_slot_p); | |
1075 | assert(dst_slot_p != NULL); | |
1076 | assert(*dst_slot_p == 0); | |
1077 | ||
1078 | /* find the compressor slot for the source */ | |
1079 | assert((uint32_t) src_offset == src_offset); | |
1080 | compressor_pager_lookup(src_mem_obj, src_pager); | |
1081 | assert(src_offset / PAGE_SIZE < src_pager->cpgr_num_slots); | |
1082 | compressor_pager_slot_lookup(src_pager, FALSE, (uint32_t) src_offset, | |
1083 | &src_slot_p); | |
1084 | assert(src_slot_p != NULL); | |
1085 | assert(*src_slot_p != 0); | |
1086 | ||
1087 | /* transfer the slot from source to destination */ | |
1088 | vm_compressor_transfer(dst_slot_p, src_slot_p); | |
1089 | OSAddAtomic(-1, &src_pager->cpgr_num_slots_occupied); | |
1090 | OSAddAtomic(+1, &dst_pager->cpgr_num_slots_occupied); | |
1091 | } | |
1092 | ||
1093 | memory_object_offset_t | |
1094 | vm_compressor_pager_next_compressed( | |
1095 | memory_object_t mem_obj, | |
1096 | memory_object_offset_t offset) | |
1097 | { | |
1098 | compressor_pager_t pager; | |
1099 | uint32_t num_chunks; | |
1100 | uint32_t page_num; | |
1101 | uint32_t chunk_idx; | |
1102 | uint32_t slot_idx; | |
1103 | compressor_slot_t *chunk; | |
1104 | ||
1105 | compressor_pager_lookup(mem_obj, pager); | |
1106 | ||
1107 | page_num = (uint32_t)(offset / PAGE_SIZE); | |
1108 | if (page_num != (offset / PAGE_SIZE)) { | |
1109 | /* overflow */ | |
1110 | return (memory_object_offset_t) -1; | |
1111 | } | |
1112 | if (page_num >= pager->cpgr_num_slots) { | |
1113 | /* out of range */ | |
1114 | return (memory_object_offset_t) -1; | |
1115 | } | |
1116 | ||
1117 | num_chunks = ((pager->cpgr_num_slots + COMPRESSOR_SLOTS_PER_CHUNK - 1) / | |
1118 | COMPRESSOR_SLOTS_PER_CHUNK); | |
1119 | ||
1120 | if (num_chunks == 1) { | |
1121 | if (pager->cpgr_num_slots > 2) { | |
1122 | chunk = pager->cpgr_slots.cpgr_dslots; | |
1123 | } else { | |
1124 | chunk = &pager->cpgr_slots.cpgr_eslots[0]; | |
1125 | } | |
1126 | for (slot_idx = page_num; | |
1127 | slot_idx < pager->cpgr_num_slots; | |
1128 | slot_idx++) { | |
1129 | if (chunk[slot_idx] != 0) { | |
1130 | /* found a non-NULL slot in this chunk */ | |
1131 | return (memory_object_offset_t) (slot_idx * | |
1132 | PAGE_SIZE); | |
1133 | } | |
1134 | } | |
1135 | return (memory_object_offset_t) -1; | |
1136 | } | |
1137 | ||
1138 | /* we have an array of chunks; find the next non-NULL chunk */ | |
1139 | chunk = NULL; | |
1140 | for (chunk_idx = page_num / COMPRESSOR_SLOTS_PER_CHUNK, | |
1141 | slot_idx = page_num % COMPRESSOR_SLOTS_PER_CHUNK; | |
1142 | chunk_idx < num_chunks; | |
1143 | chunk_idx++, | |
1144 | slot_idx = 0) { | |
1145 | chunk = pager->cpgr_slots.cpgr_islots[chunk_idx]; | |
1146 | if (chunk == NULL) { | |
1147 | /* no chunk here: try the next one */ | |
1148 | continue; | |
1149 | } | |
1150 | /* search for an occupied slot in this chunk */ | |
1151 | for (; | |
1152 | slot_idx < COMPRESSOR_SLOTS_PER_CHUNK; | |
1153 | slot_idx++) { | |
1154 | if (chunk[slot_idx] != 0) { | |
1155 | /* found an occupied slot in this chunk */ | |
1156 | uint32_t next_slot; | |
1157 | ||
1158 | next_slot = ((chunk_idx * | |
1159 | COMPRESSOR_SLOTS_PER_CHUNK) + | |
1160 | slot_idx); | |
1161 | if (next_slot >= pager->cpgr_num_slots) { | |
1162 | /* went beyond end of object */ | |
1163 | return (memory_object_offset_t) -1; | |
1164 | } | |
1165 | return (memory_object_offset_t) (next_slot * | |
1166 | PAGE_SIZE); | |
1167 | } | |
1168 | } | |
1169 | } | |
1170 | return (memory_object_offset_t) -1; | |
1171 | } | |
1172 | ||
1173 | unsigned int | |
1174 | vm_compressor_pager_get_count( | |
1175 | memory_object_t mem_obj) | |
1176 | { | |
1177 | compressor_pager_t pager; | |
1178 | ||
1179 | compressor_pager_lookup(mem_obj, pager); | |
1180 | if (pager == NULL) { | |
1181 | return 0; | |
1182 | } | |
1183 | ||
1184 | /* | |
1185 | * The caller should have the VM object locked and one | |
1186 | * needs that lock to do a page-in or page-out, so no | |
1187 | * need to lock the pager here. | |
1188 | */ | |
1189 | assert(pager->cpgr_num_slots_occupied >= 0); | |
1190 | ||
1191 | return pager->cpgr_num_slots_occupied; | |
1192 | } | |
1193 | ||
1194 | void | |
1195 | vm_compressor_pager_count( | |
1196 | memory_object_t mem_obj, | |
1197 | int compressed_count_delta, | |
1198 | boolean_t shared_lock, | |
1199 | vm_object_t object __unused) | |
1200 | { | |
1201 | compressor_pager_t pager; | |
1202 | ||
1203 | if (compressed_count_delta == 0) { | |
1204 | return; | |
1205 | } | |
1206 | ||
1207 | compressor_pager_lookup(mem_obj, pager); | |
1208 | if (pager == NULL) { | |
1209 | return; | |
1210 | } | |
1211 | ||
1212 | if (compressed_count_delta < 0) { | |
1213 | assert(pager->cpgr_num_slots_occupied >= | |
1214 | (unsigned int) -compressed_count_delta); | |
1215 | } | |
1216 | ||
1217 | /* | |
1218 | * The caller should have the VM object locked, | |
1219 | * shared or exclusive. | |
1220 | */ | |
1221 | if (shared_lock) { | |
1222 | vm_object_lock_assert_shared(object); | |
1223 | OSAddAtomic(compressed_count_delta, | |
1224 | &pager->cpgr_num_slots_occupied); | |
1225 | } else { | |
1226 | vm_object_lock_assert_exclusive(object); | |
1227 | pager->cpgr_num_slots_occupied += compressed_count_delta; | |
1228 | } | |
1229 | } | |
1230 | ||
1231 | #if CONFIG_FREEZE | |
1232 | kern_return_t | |
1233 | vm_compressor_pager_relocate( | |
1234 | memory_object_t mem_obj, | |
1235 | memory_object_offset_t offset, | |
1236 | void **current_chead) | |
1237 | { | |
1238 | /* | |
1239 | * Has the page at this offset been compressed? | |
1240 | */ | |
1241 | ||
1242 | compressor_slot_t *slot_p; | |
1243 | compressor_pager_t dst_pager; | |
1244 | ||
1245 | assert(mem_obj); | |
1246 | ||
1247 | compressor_pager_lookup(mem_obj, dst_pager); | |
1248 | if (dst_pager == NULL) { | |
1249 | return KERN_FAILURE; | |
1250 | } | |
1251 | ||
1252 | compressor_pager_slot_lookup(dst_pager, FALSE, offset, &slot_p); | |
1253 | return vm_compressor_relocate(current_chead, slot_p); | |
1254 | } | |
1255 | #endif /* CONFIG_FREEZE */ | |
1256 | ||
1257 | #if DEVELOPMENT || DEBUG | |
1258 | ||
1259 | kern_return_t | |
1260 | vm_compressor_pager_inject_error(memory_object_t mem_obj, | |
1261 | memory_object_offset_t offset) | |
1262 | { | |
1263 | kern_return_t result = KERN_FAILURE; | |
1264 | compressor_slot_t *slot_p; | |
1265 | compressor_pager_t pager; | |
1266 | ||
1267 | assert(mem_obj); | |
1268 | ||
1269 | compressor_pager_lookup(mem_obj, pager); | |
1270 | if (pager != NULL) { | |
1271 | compressor_pager_slot_lookup(pager, FALSE, offset, &slot_p); | |
1272 | if (slot_p != NULL && *slot_p != 0) { | |
1273 | vm_compressor_inject_error(slot_p); | |
1274 | result = KERN_SUCCESS; | |
1275 | } | |
1276 | } | |
1277 | ||
1278 | return result; | |
1279 | } | |
1280 | ||
1281 | #endif |