]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2009 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <unistd.h> | |
29 | #include <stdio.h> | |
30 | #include <math.h> | |
31 | #include <sys/kdebug.h> | |
32 | #include <stdlib.h> | |
33 | #include <pthread.h> | |
34 | #include <errno.h> | |
35 | #include <err.h> | |
36 | #include <string.h> | |
37 | #include <assert.h> | |
38 | #include <sysexits.h> | |
39 | #include <sys/sysctl.h> | |
40 | #include <getopt.h> | |
41 | ||
42 | #include <spawn.h> | |
43 | #include <spawn_private.h> | |
44 | #include <sys/spawn_internal.h> | |
45 | #include <mach-o/dyld.h> | |
46 | ||
47 | #include <mach/mach_time.h> | |
48 | #include <mach/mach.h> | |
49 | #include <mach/task.h> | |
50 | #include <mach/semaphore.h> | |
51 | ||
52 | #include <pthread/qos_private.h> | |
53 | ||
54 | #include <sys/resource.h> | |
55 | ||
56 | #include <stdatomic.h> | |
57 | ||
58 | #include <os/tsd.h> | |
59 | ||
60 | typedef enum wake_type { WAKE_BROADCAST_ONESEM, WAKE_BROADCAST_PERTHREAD, WAKE_CHAIN, WAKE_HOP } wake_type_t; | |
61 | typedef enum my_policy_type { MY_POLICY_REALTIME, MY_POLICY_TIMESHARE, MY_POLICY_FIXEDPRI } my_policy_type_t; | |
62 | ||
63 | #define mach_assert_zero(error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] error %d (%s) ", (error), mach_error_string(error)); assert(error == 0); } } while (0) | |
64 | #define mach_assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d (%s) ", (tid), (error), mach_error_string(error)); assert(error == 0); } } while (0) | |
65 | #define assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d ", (tid), (error)); assert(error == 0); } } while (0) | |
66 | ||
67 | #define CONSTRAINT_NANOS (20000000ll) /* 20 ms */ | |
68 | #define COMPUTATION_NANOS (10000000ll) /* 10 ms */ | |
69 | #define RT_CHURN_COMP_NANOS ( 1000000ll) /* 1 ms */ | |
70 | #define TRACEWORTHY_NANOS (10000000ll) /* 10 ms */ | |
71 | #define TRACEWORTHY_NANOS_TEST ( 2000000ll) /* 2 ms */ | |
72 | ||
73 | #if DEBUG | |
74 | #define debug_log(args ...) printf(args) | |
75 | #else | |
76 | #define debug_log(args ...) do { } while(0) | |
77 | #endif | |
78 | ||
79 | /* Declarations */ | |
80 | static void* worker_thread(void *arg); | |
81 | static void usage(); | |
82 | static int thread_setup(uint32_t my_id); | |
83 | static my_policy_type_t parse_thread_policy(const char *str); | |
84 | static void selfexec_with_apptype(int argc, char *argv[]); | |
85 | static void parse_args(int argc, char *argv[]); | |
86 | ||
87 | static __attribute__((aligned(128))) _Atomic uint32_t g_done_threads; | |
88 | static __attribute__((aligned(128))) _Atomic boolean_t g_churn_stop = FALSE; | |
89 | static __attribute__((aligned(128))) _Atomic uint64_t g_churn_stopped_at = 0; | |
90 | ||
91 | /* Global variables (general) */ | |
92 | static uint32_t g_numcpus; | |
93 | static uint32_t g_nphysicalcpu; | |
94 | static uint32_t g_nlogicalcpu; | |
95 | static uint32_t g_numthreads; | |
96 | static wake_type_t g_waketype; | |
97 | static policy_t g_policy; | |
98 | static uint32_t g_iterations; | |
99 | static struct mach_timebase_info g_mti; | |
100 | static semaphore_t g_main_sem; | |
101 | static uint64_t *g_thread_endtimes_abs; | |
102 | static boolean_t g_verbose = FALSE; | |
103 | static boolean_t g_do_affinity = FALSE; | |
104 | static uint64_t g_starttime_abs; | |
105 | static uint32_t g_iteration_sleeptime_us = 0; | |
106 | static uint32_t g_priority = 0; | |
107 | static uint32_t g_churn_pri = 0; | |
108 | static uint32_t g_churn_count = 0; | |
109 | static uint32_t g_rt_churn_count = 0; | |
110 | ||
111 | static pthread_t* g_churn_threads = NULL; | |
112 | static pthread_t* g_rt_churn_threads = NULL; | |
113 | ||
114 | /* Threshold for dropping a 'bad run' tracepoint */ | |
115 | static uint64_t g_traceworthy_latency_ns = TRACEWORTHY_NANOS; | |
116 | ||
117 | /* Have we re-execed to set apptype? */ | |
118 | static boolean_t g_seen_apptype = FALSE; | |
119 | ||
120 | /* usleep in betweeen iterations */ | |
121 | static boolean_t g_do_sleep = TRUE; | |
122 | ||
123 | /* Every thread spins until all threads have checked in */ | |
124 | static boolean_t g_do_all_spin = FALSE; | |
125 | ||
126 | /* Every thread backgrounds temporarily before parking */ | |
127 | static boolean_t g_drop_priority = FALSE; | |
128 | ||
129 | /* Test whether realtime threads are scheduled on the separate CPUs */ | |
130 | static boolean_t g_test_rt = FALSE; | |
131 | ||
132 | static boolean_t g_rt_churn = FALSE; | |
133 | ||
134 | /* On SMT machines, test whether realtime threads are scheduled on the correct CPUs */ | |
135 | static boolean_t g_test_rt_smt = FALSE; | |
136 | ||
137 | /* Test whether realtime threads are successfully avoiding CPU 0 on Intel */ | |
138 | static boolean_t g_test_rt_avoid0 = FALSE; | |
139 | ||
140 | /* Print a histgram showing how many threads ran on each CPU */ | |
141 | static boolean_t g_histogram = FALSE; | |
142 | ||
143 | /* One randomly chosen thread holds up the train for a certain duration. */ | |
144 | static boolean_t g_do_one_long_spin = FALSE; | |
145 | static uint32_t g_one_long_spin_id = 0; | |
146 | static uint64_t g_one_long_spin_length_abs = 0; | |
147 | static uint64_t g_one_long_spin_length_ns = 0; | |
148 | ||
149 | /* Each thread spins for a certain duration after waking up before blocking again. */ | |
150 | static boolean_t g_do_each_spin = FALSE; | |
151 | static uint64_t g_each_spin_duration_abs = 0; | |
152 | static uint64_t g_each_spin_duration_ns = 0; | |
153 | ||
154 | /* Global variables (broadcast) */ | |
155 | static semaphore_t g_broadcastsem; | |
156 | static semaphore_t g_leadersem; | |
157 | static semaphore_t g_readysem; | |
158 | static semaphore_t g_donesem; | |
159 | static semaphore_t g_rt_churn_sem; | |
160 | static semaphore_t g_rt_churn_start_sem; | |
161 | ||
162 | /* Global variables (chain) */ | |
163 | static semaphore_t *g_semarr; | |
164 | ||
165 | typedef struct { | |
166 | __attribute__((aligned(128))) uint32_t current; | |
167 | uint32_t accum; | |
168 | } histogram_t; | |
169 | ||
170 | static histogram_t *g_cpu_histogram; | |
171 | static _Atomic uint64_t *g_cpu_map; | |
172 | ||
173 | static uint64_t | |
174 | abs_to_nanos(uint64_t abstime) | |
175 | { | |
176 | return (uint64_t)(abstime * (((double)g_mti.numer) / ((double)g_mti.denom))); | |
177 | } | |
178 | ||
179 | static uint64_t | |
180 | nanos_to_abs(uint64_t ns) | |
181 | { | |
182 | return (uint64_t)(ns * (((double)g_mti.denom) / ((double)g_mti.numer))); | |
183 | } | |
184 | ||
185 | inline static void | |
186 | yield(void) | |
187 | { | |
188 | #if defined(__arm__) || defined(__arm64__) | |
189 | asm volatile ("yield"); | |
190 | #elif defined(__x86_64__) || defined(__i386__) | |
191 | asm volatile ("pause"); | |
192 | #else | |
193 | #error Unrecognized architecture | |
194 | #endif | |
195 | } | |
196 | ||
197 | static void * | |
198 | churn_thread(__unused void *arg) | |
199 | { | |
200 | uint64_t spin_count = 0; | |
201 | ||
202 | /* | |
203 | * As a safety measure to avoid wedging, we will bail on the spin if | |
204 | * it's been more than 1s after the most recent run start | |
205 | */ | |
206 | ||
207 | while (g_churn_stop == FALSE && | |
208 | mach_absolute_time() < (g_starttime_abs + NSEC_PER_SEC)) { | |
209 | spin_count++; | |
210 | yield(); | |
211 | } | |
212 | ||
213 | /* This is totally racy, but only here to detect if anyone stops early */ | |
214 | atomic_fetch_add_explicit(&g_churn_stopped_at, spin_count, memory_order_relaxed); | |
215 | ||
216 | return NULL; | |
217 | } | |
218 | ||
219 | static void | |
220 | create_churn_threads() | |
221 | { | |
222 | if (g_churn_count == 0) { | |
223 | g_churn_count = g_numcpus - 1; | |
224 | } | |
225 | ||
226 | errno_t err; | |
227 | ||
228 | struct sched_param param = { .sched_priority = (int)g_churn_pri }; | |
229 | pthread_attr_t attr; | |
230 | ||
231 | /* Array for churn threads */ | |
232 | g_churn_threads = (pthread_t*) valloc(sizeof(pthread_t) * g_churn_count); | |
233 | assert(g_churn_threads); | |
234 | ||
235 | if ((err = pthread_attr_init(&attr))) { | |
236 | errc(EX_OSERR, err, "pthread_attr_init"); | |
237 | } | |
238 | ||
239 | if ((err = pthread_attr_setschedparam(&attr, ¶m))) { | |
240 | errc(EX_OSERR, err, "pthread_attr_setschedparam"); | |
241 | } | |
242 | ||
243 | if ((err = pthread_attr_setschedpolicy(&attr, SCHED_RR))) { | |
244 | errc(EX_OSERR, err, "pthread_attr_setschedpolicy"); | |
245 | } | |
246 | ||
247 | for (uint32_t i = 0; i < g_churn_count; i++) { | |
248 | pthread_t new_thread; | |
249 | ||
250 | if ((err = pthread_create(&new_thread, &attr, churn_thread, NULL))) { | |
251 | errc(EX_OSERR, err, "pthread_create"); | |
252 | } | |
253 | g_churn_threads[i] = new_thread; | |
254 | } | |
255 | ||
256 | if ((err = pthread_attr_destroy(&attr))) { | |
257 | errc(EX_OSERR, err, "pthread_attr_destroy"); | |
258 | } | |
259 | } | |
260 | ||
261 | static void | |
262 | join_churn_threads(void) | |
263 | { | |
264 | if (atomic_load_explicit(&g_churn_stopped_at, memory_order_seq_cst) != 0) { | |
265 | printf("Warning: Some of the churn threads may have stopped early: %lld\n", | |
266 | g_churn_stopped_at); | |
267 | } | |
268 | ||
269 | atomic_store_explicit(&g_churn_stop, TRUE, memory_order_seq_cst); | |
270 | ||
271 | /* Rejoin churn threads */ | |
272 | for (uint32_t i = 0; i < g_churn_count; i++) { | |
273 | errno_t err = pthread_join(g_churn_threads[i], NULL); | |
274 | if (err) { | |
275 | errc(EX_OSERR, err, "pthread_join %d", i); | |
276 | } | |
277 | } | |
278 | } | |
279 | ||
280 | /* | |
281 | * Set policy | |
282 | */ | |
283 | static int | |
284 | rt_churn_thread_setup(void) | |
285 | { | |
286 | kern_return_t kr; | |
287 | thread_time_constraint_policy_data_t pol; | |
288 | ||
289 | /* Hard-coded realtime parameters (similar to what Digi uses) */ | |
290 | pol.period = 100000; | |
291 | pol.constraint = (uint32_t) nanos_to_abs(CONSTRAINT_NANOS * 2); | |
292 | pol.computation = (uint32_t) nanos_to_abs(RT_CHURN_COMP_NANOS * 2); | |
293 | pol.preemptible = 0; /* Ignored by OS */ | |
294 | ||
295 | kr = thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY, | |
296 | (thread_policy_t) &pol, THREAD_TIME_CONSTRAINT_POLICY_COUNT); | |
297 | mach_assert_zero_t(0, kr); | |
298 | ||
299 | return 0; | |
300 | } | |
301 | ||
302 | static void * | |
303 | rt_churn_thread(__unused void *arg) | |
304 | { | |
305 | rt_churn_thread_setup(); | |
306 | ||
307 | for (uint32_t i = 0; i < g_iterations; i++) { | |
308 | kern_return_t kr = semaphore_wait_signal(g_rt_churn_start_sem, g_rt_churn_sem); | |
309 | mach_assert_zero_t(0, kr); | |
310 | ||
311 | volatile double x = 0.0; | |
312 | volatile double y = 0.0; | |
313 | ||
314 | uint64_t endspin = mach_absolute_time() + nanos_to_abs(RT_CHURN_COMP_NANOS); | |
315 | while (mach_absolute_time() < endspin) { | |
316 | y = y + 1.5 + x; | |
317 | x = sqrt(y); | |
318 | } | |
319 | } | |
320 | ||
321 | kern_return_t kr = semaphore_signal(g_rt_churn_sem); | |
322 | mach_assert_zero_t(0, kr); | |
323 | ||
324 | return NULL; | |
325 | } | |
326 | ||
327 | static void | |
328 | wait_for_rt_churn_threads(void) | |
329 | { | |
330 | for (uint32_t i = 0; i < g_rt_churn_count; i++) { | |
331 | kern_return_t kr = semaphore_wait(g_rt_churn_sem); | |
332 | mach_assert_zero_t(0, kr); | |
333 | } | |
334 | } | |
335 | ||
336 | static void | |
337 | start_rt_churn_threads(void) | |
338 | { | |
339 | for (uint32_t i = 0; i < g_rt_churn_count; i++) { | |
340 | kern_return_t kr = semaphore_signal(g_rt_churn_start_sem); | |
341 | mach_assert_zero_t(0, kr); | |
342 | } | |
343 | } | |
344 | ||
345 | static void | |
346 | create_rt_churn_threads(void) | |
347 | { | |
348 | if (g_rt_churn_count == 0) { | |
349 | /* Leave 1 CPU to ensure that the main thread can make progress */ | |
350 | g_rt_churn_count = g_numcpus - 1; | |
351 | } | |
352 | ||
353 | errno_t err; | |
354 | ||
355 | struct sched_param param = { .sched_priority = (int)g_churn_pri }; | |
356 | pthread_attr_t attr; | |
357 | ||
358 | /* Array for churn threads */ | |
359 | g_rt_churn_threads = (pthread_t*) valloc(sizeof(pthread_t) * g_rt_churn_count); | |
360 | assert(g_rt_churn_threads); | |
361 | ||
362 | if ((err = pthread_attr_init(&attr))) { | |
363 | errc(EX_OSERR, err, "pthread_attr_init"); | |
364 | } | |
365 | ||
366 | if ((err = pthread_attr_setschedparam(&attr, ¶m))) { | |
367 | errc(EX_OSERR, err, "pthread_attr_setschedparam"); | |
368 | } | |
369 | ||
370 | if ((err = pthread_attr_setschedpolicy(&attr, SCHED_RR))) { | |
371 | errc(EX_OSERR, err, "pthread_attr_setschedpolicy"); | |
372 | } | |
373 | ||
374 | for (uint32_t i = 0; i < g_rt_churn_count; i++) { | |
375 | pthread_t new_thread; | |
376 | ||
377 | if ((err = pthread_create(&new_thread, &attr, rt_churn_thread, NULL))) { | |
378 | errc(EX_OSERR, err, "pthread_create"); | |
379 | } | |
380 | g_rt_churn_threads[i] = new_thread; | |
381 | } | |
382 | ||
383 | if ((err = pthread_attr_destroy(&attr))) { | |
384 | errc(EX_OSERR, err, "pthread_attr_destroy"); | |
385 | } | |
386 | ||
387 | /* Wait until all threads have checked in */ | |
388 | wait_for_rt_churn_threads(); | |
389 | } | |
390 | ||
391 | static void | |
392 | join_rt_churn_threads(void) | |
393 | { | |
394 | /* Rejoin rt churn threads */ | |
395 | for (uint32_t i = 0; i < g_rt_churn_count; i++) { | |
396 | errno_t err = pthread_join(g_rt_churn_threads[i], NULL); | |
397 | if (err) { | |
398 | errc(EX_OSERR, err, "pthread_join %d", i); | |
399 | } | |
400 | } | |
401 | } | |
402 | ||
403 | /* | |
404 | * Figure out what thread policy to use | |
405 | */ | |
406 | static my_policy_type_t | |
407 | parse_thread_policy(const char *str) | |
408 | { | |
409 | if (strcmp(str, "timeshare") == 0) { | |
410 | return MY_POLICY_TIMESHARE; | |
411 | } else if (strcmp(str, "realtime") == 0) { | |
412 | return MY_POLICY_REALTIME; | |
413 | } else if (strcmp(str, "fixed") == 0) { | |
414 | return MY_POLICY_FIXEDPRI; | |
415 | } else { | |
416 | errx(EX_USAGE, "Invalid thread policy \"%s\"", str); | |
417 | } | |
418 | } | |
419 | ||
420 | /* | |
421 | * Figure out what wakeup pattern to use | |
422 | */ | |
423 | static wake_type_t | |
424 | parse_wakeup_pattern(const char *str) | |
425 | { | |
426 | if (strcmp(str, "chain") == 0) { | |
427 | return WAKE_CHAIN; | |
428 | } else if (strcmp(str, "hop") == 0) { | |
429 | return WAKE_HOP; | |
430 | } else if (strcmp(str, "broadcast-single-sem") == 0) { | |
431 | return WAKE_BROADCAST_ONESEM; | |
432 | } else if (strcmp(str, "broadcast-per-thread") == 0) { | |
433 | return WAKE_BROADCAST_PERTHREAD; | |
434 | } else { | |
435 | errx(EX_USAGE, "Invalid wakeup pattern \"%s\"", str); | |
436 | } | |
437 | } | |
438 | ||
439 | /* | |
440 | * Set policy | |
441 | */ | |
442 | static int | |
443 | thread_setup(uint32_t my_id) | |
444 | { | |
445 | kern_return_t kr; | |
446 | errno_t ret; | |
447 | thread_time_constraint_policy_data_t pol; | |
448 | ||
449 | if (g_priority) { | |
450 | int policy = SCHED_OTHER; | |
451 | if (g_policy == MY_POLICY_FIXEDPRI) { | |
452 | policy = SCHED_RR; | |
453 | } | |
454 | ||
455 | struct sched_param param = {.sched_priority = (int)g_priority}; | |
456 | if ((ret = pthread_setschedparam(pthread_self(), policy, ¶m))) { | |
457 | errc(EX_OSERR, ret, "pthread_setschedparam: %d", my_id); | |
458 | } | |
459 | } | |
460 | ||
461 | switch (g_policy) { | |
462 | case MY_POLICY_TIMESHARE: | |
463 | break; | |
464 | case MY_POLICY_REALTIME: | |
465 | /* Hard-coded realtime parameters (similar to what Digi uses) */ | |
466 | pol.period = 100000; | |
467 | pol.constraint = (uint32_t) nanos_to_abs(CONSTRAINT_NANOS); | |
468 | pol.computation = (uint32_t) nanos_to_abs(COMPUTATION_NANOS); | |
469 | pol.preemptible = 0; /* Ignored by OS */ | |
470 | ||
471 | kr = thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY, | |
472 | (thread_policy_t) &pol, THREAD_TIME_CONSTRAINT_POLICY_COUNT); | |
473 | mach_assert_zero_t(my_id, kr); | |
474 | break; | |
475 | case MY_POLICY_FIXEDPRI: | |
476 | ret = pthread_set_fixedpriority_self(); | |
477 | if (ret) { | |
478 | errc(EX_OSERR, ret, "pthread_set_fixedpriority_self"); | |
479 | } | |
480 | break; | |
481 | default: | |
482 | errx(EX_USAGE, "invalid policy type %d", g_policy); | |
483 | } | |
484 | ||
485 | if (g_do_affinity) { | |
486 | thread_affinity_policy_data_t affinity; | |
487 | ||
488 | affinity.affinity_tag = my_id % 2; | |
489 | ||
490 | kr = thread_policy_set(mach_thread_self(), THREAD_AFFINITY_POLICY, | |
491 | (thread_policy_t)&affinity, THREAD_AFFINITY_POLICY_COUNT); | |
492 | mach_assert_zero_t(my_id, kr); | |
493 | } | |
494 | ||
495 | return 0; | |
496 | } | |
497 | ||
498 | /* | |
499 | * Wait for a wakeup, potentially wake up another of the "0-N" threads, | |
500 | * and notify the main thread when done. | |
501 | */ | |
502 | static void* | |
503 | worker_thread(void *arg) | |
504 | { | |
505 | uint32_t my_id = (uint32_t)(uintptr_t)arg; | |
506 | kern_return_t kr; | |
507 | ||
508 | volatile double x = 0.0; | |
509 | volatile double y = 0.0; | |
510 | ||
511 | /* Set policy and so forth */ | |
512 | thread_setup(my_id); | |
513 | ||
514 | for (uint32_t i = 0; i < g_iterations; i++) { | |
515 | if (my_id == 0) { | |
516 | /* | |
517 | * Leader thread either wakes everyone up or starts the chain going. | |
518 | */ | |
519 | ||
520 | /* Give the worker threads undisturbed time to finish before waiting on them */ | |
521 | if (g_do_sleep) { | |
522 | usleep(g_iteration_sleeptime_us); | |
523 | } | |
524 | ||
525 | debug_log("%d Leader thread wait for ready\n", i); | |
526 | ||
527 | /* | |
528 | * Wait for everyone else to declare ready | |
529 | * Is there a better way to do this that won't interfere with the rest of the chain? | |
530 | * TODO: Invent 'semaphore wait for N signals' | |
531 | */ | |
532 | ||
533 | for (uint32_t j = 0; j < g_numthreads - 1; j++) { | |
534 | kr = semaphore_wait(g_readysem); | |
535 | mach_assert_zero_t(my_id, kr); | |
536 | } | |
537 | ||
538 | debug_log("%d Leader thread wait\n", i); | |
539 | ||
540 | if (i > 0) { | |
541 | for (int cpuid = 0; cpuid < g_numcpus; cpuid++) { | |
542 | if (g_cpu_histogram[cpuid].current == 1) { | |
543 | atomic_fetch_or_explicit(&g_cpu_map[i - 1], (1UL << cpuid), memory_order_relaxed); | |
544 | g_cpu_histogram[cpuid].current = 0; | |
545 | } | |
546 | } | |
547 | } | |
548 | ||
549 | /* Signal main thread and wait for start of iteration */ | |
550 | ||
551 | kr = semaphore_wait_signal(g_leadersem, g_main_sem); | |
552 | mach_assert_zero_t(my_id, kr); | |
553 | ||
554 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
555 | ||
556 | debug_log("%d Leader thread go\n", i); | |
557 | ||
558 | assert_zero_t(my_id, atomic_load_explicit(&g_done_threads, memory_order_relaxed)); | |
559 | ||
560 | switch (g_waketype) { | |
561 | case WAKE_BROADCAST_ONESEM: | |
562 | kr = semaphore_signal_all(g_broadcastsem); | |
563 | mach_assert_zero_t(my_id, kr); | |
564 | break; | |
565 | case WAKE_BROADCAST_PERTHREAD: | |
566 | for (uint32_t j = 1; j < g_numthreads; j++) { | |
567 | kr = semaphore_signal(g_semarr[j]); | |
568 | mach_assert_zero_t(my_id, kr); | |
569 | } | |
570 | break; | |
571 | case WAKE_CHAIN: | |
572 | kr = semaphore_signal(g_semarr[my_id + 1]); | |
573 | mach_assert_zero_t(my_id, kr); | |
574 | break; | |
575 | case WAKE_HOP: | |
576 | kr = semaphore_wait_signal(g_donesem, g_semarr[my_id + 1]); | |
577 | mach_assert_zero_t(my_id, kr); | |
578 | break; | |
579 | } | |
580 | } else { | |
581 | /* | |
582 | * Everyone else waits to be woken up, | |
583 | * records when she wakes up, and possibly | |
584 | * wakes up a friend. | |
585 | */ | |
586 | switch (g_waketype) { | |
587 | case WAKE_BROADCAST_ONESEM: | |
588 | kr = semaphore_wait_signal(g_broadcastsem, g_readysem); | |
589 | mach_assert_zero_t(my_id, kr); | |
590 | ||
591 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
592 | break; | |
593 | ||
594 | case WAKE_BROADCAST_PERTHREAD: | |
595 | kr = semaphore_wait_signal(g_semarr[my_id], g_readysem); | |
596 | mach_assert_zero_t(my_id, kr); | |
597 | ||
598 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
599 | break; | |
600 | ||
601 | case WAKE_CHAIN: | |
602 | kr = semaphore_wait_signal(g_semarr[my_id], g_readysem); | |
603 | mach_assert_zero_t(my_id, kr); | |
604 | ||
605 | /* Signal the next thread *after* recording wake time */ | |
606 | ||
607 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
608 | ||
609 | if (my_id < (g_numthreads - 1)) { | |
610 | kr = semaphore_signal(g_semarr[my_id + 1]); | |
611 | mach_assert_zero_t(my_id, kr); | |
612 | } | |
613 | ||
614 | break; | |
615 | ||
616 | case WAKE_HOP: | |
617 | kr = semaphore_wait_signal(g_semarr[my_id], g_readysem); | |
618 | mach_assert_zero_t(my_id, kr); | |
619 | ||
620 | /* Signal the next thread *after* recording wake time */ | |
621 | ||
622 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
623 | ||
624 | if (my_id < (g_numthreads - 1)) { | |
625 | kr = semaphore_wait_signal(g_donesem, g_semarr[my_id + 1]); | |
626 | mach_assert_zero_t(my_id, kr); | |
627 | } else { | |
628 | kr = semaphore_signal_all(g_donesem); | |
629 | mach_assert_zero_t(my_id, kr); | |
630 | } | |
631 | ||
632 | break; | |
633 | } | |
634 | } | |
635 | ||
636 | unsigned int cpuid = _os_cpu_number(); | |
637 | assert(cpuid < g_numcpus); | |
638 | debug_log("Thread %p woke up on CPU %d for iteration %d.\n", pthread_self(), cpuid, i); | |
639 | g_cpu_histogram[cpuid].current = 1; | |
640 | g_cpu_histogram[cpuid].accum++; | |
641 | ||
642 | if (g_do_one_long_spin && g_one_long_spin_id == my_id) { | |
643 | /* One randomly chosen thread holds up the train for a while. */ | |
644 | ||
645 | uint64_t endspin = g_starttime_abs + g_one_long_spin_length_abs; | |
646 | while (mach_absolute_time() < endspin) { | |
647 | y = y + 1.5 + x; | |
648 | x = sqrt(y); | |
649 | } | |
650 | } | |
651 | ||
652 | if (g_do_each_spin) { | |
653 | /* Each thread spins for a certain duration after waking up before blocking again. */ | |
654 | ||
655 | uint64_t endspin = mach_absolute_time() + g_each_spin_duration_abs; | |
656 | while (mach_absolute_time() < endspin) { | |
657 | y = y + 1.5 + x; | |
658 | x = sqrt(y); | |
659 | } | |
660 | } | |
661 | ||
662 | uint32_t done_threads; | |
663 | done_threads = atomic_fetch_add_explicit(&g_done_threads, 1, memory_order_relaxed) + 1; | |
664 | ||
665 | debug_log("Thread %p new value is %d, iteration %d\n", pthread_self(), done_threads, i); | |
666 | ||
667 | if (g_drop_priority) { | |
668 | /* Drop priority to BG momentarily */ | |
669 | errno_t ret = setpriority(PRIO_DARWIN_THREAD, 0, PRIO_DARWIN_BG); | |
670 | if (ret) { | |
671 | errc(EX_OSERR, ret, "setpriority PRIO_DARWIN_BG"); | |
672 | } | |
673 | } | |
674 | ||
675 | if (g_do_all_spin) { | |
676 | /* Everyone spins until the last thread checks in. */ | |
677 | ||
678 | while (atomic_load_explicit(&g_done_threads, memory_order_relaxed) < g_numthreads) { | |
679 | y = y + 1.5 + x; | |
680 | x = sqrt(y); | |
681 | } | |
682 | } | |
683 | ||
684 | if (g_drop_priority) { | |
685 | /* Restore normal priority */ | |
686 | errno_t ret = setpriority(PRIO_DARWIN_THREAD, 0, 0); | |
687 | if (ret) { | |
688 | errc(EX_OSERR, ret, "setpriority 0"); | |
689 | } | |
690 | } | |
691 | ||
692 | debug_log("Thread %p done spinning, iteration %d\n", pthread_self(), i); | |
693 | } | |
694 | ||
695 | if (my_id == 0) { | |
696 | /* Give the worker threads undisturbed time to finish before waiting on them */ | |
697 | if (g_do_sleep) { | |
698 | usleep(g_iteration_sleeptime_us); | |
699 | } | |
700 | ||
701 | /* Wait for the worker threads to finish */ | |
702 | for (uint32_t i = 0; i < g_numthreads - 1; i++) { | |
703 | kr = semaphore_wait(g_readysem); | |
704 | mach_assert_zero_t(my_id, kr); | |
705 | } | |
706 | ||
707 | /* Tell everyone and the main thread that the last iteration is done */ | |
708 | debug_log("%d Leader thread done\n", g_iterations - 1); | |
709 | ||
710 | for (int cpuid = 0; cpuid < g_numcpus; cpuid++) { | |
711 | if (g_cpu_histogram[cpuid].current == 1) { | |
712 | atomic_fetch_or_explicit(&g_cpu_map[g_iterations - 1], (1UL << cpuid), memory_order_relaxed); | |
713 | g_cpu_histogram[cpuid].current = 0; | |
714 | } | |
715 | } | |
716 | ||
717 | kr = semaphore_signal_all(g_main_sem); | |
718 | mach_assert_zero_t(my_id, kr); | |
719 | } else { | |
720 | /* Hold up thread teardown so it doesn't affect the last iteration */ | |
721 | kr = semaphore_wait_signal(g_main_sem, g_readysem); | |
722 | mach_assert_zero_t(my_id, kr); | |
723 | } | |
724 | ||
725 | return 0; | |
726 | } | |
727 | ||
728 | /* | |
729 | * Given an array of uint64_t values, compute average, max, min, and standard deviation | |
730 | */ | |
731 | static void | |
732 | compute_stats(uint64_t *values, uint64_t count, float *averagep, uint64_t *maxp, uint64_t *minp, float *stddevp) | |
733 | { | |
734 | uint32_t i; | |
735 | uint64_t _sum = 0; | |
736 | uint64_t _max = 0; | |
737 | uint64_t _min = UINT64_MAX; | |
738 | float _avg = 0; | |
739 | float _dev = 0; | |
740 | ||
741 | for (i = 0; i < count; i++) { | |
742 | _sum += values[i]; | |
743 | _max = values[i] > _max ? values[i] : _max; | |
744 | _min = values[i] < _min ? values[i] : _min; | |
745 | } | |
746 | ||
747 | _avg = ((float)_sum) / ((float)count); | |
748 | ||
749 | _dev = 0; | |
750 | for (i = 0; i < count; i++) { | |
751 | _dev += powf((((float)values[i]) - _avg), 2); | |
752 | } | |
753 | ||
754 | _dev /= count; | |
755 | _dev = sqrtf(_dev); | |
756 | ||
757 | *averagep = _avg; | |
758 | *maxp = _max; | |
759 | *minp = _min; | |
760 | *stddevp = _dev; | |
761 | } | |
762 | ||
763 | int | |
764 | main(int argc, char **argv) | |
765 | { | |
766 | errno_t ret; | |
767 | kern_return_t kr; | |
768 | ||
769 | pthread_t *threads; | |
770 | uint64_t *worst_latencies_ns; | |
771 | uint64_t *worst_latencies_from_first_ns; | |
772 | uint64_t max, min; | |
773 | float avg, stddev; | |
774 | ||
775 | bool test_fail = false; | |
776 | ||
777 | for (int i = 0; i < argc; i++) { | |
778 | if (strcmp(argv[i], "--switched_apptype") == 0) { | |
779 | g_seen_apptype = TRUE; | |
780 | } | |
781 | } | |
782 | ||
783 | if (!g_seen_apptype) { | |
784 | selfexec_with_apptype(argc, argv); | |
785 | } | |
786 | ||
787 | parse_args(argc, argv); | |
788 | ||
789 | srand((unsigned int)time(NULL)); | |
790 | ||
791 | mach_timebase_info(&g_mti); | |
792 | ||
793 | size_t ncpu_size = sizeof(g_numcpus); | |
794 | ret = sysctlbyname("hw.ncpu", &g_numcpus, &ncpu_size, NULL, 0); | |
795 | if (ret) { | |
796 | err(EX_OSERR, "Failed sysctlbyname(hw.ncpu)"); | |
797 | } | |
798 | assert(g_numcpus <= 64); /* g_cpu_map needs to be extended for > 64 cpus */ | |
799 | ||
800 | size_t physicalcpu_size = sizeof(g_nphysicalcpu); | |
801 | ret = sysctlbyname("hw.physicalcpu", &g_nphysicalcpu, &physicalcpu_size, NULL, 0); | |
802 | if (ret) { | |
803 | err(EX_OSERR, "Failed sysctlbyname(hw.physicalcpu)"); | |
804 | } | |
805 | ||
806 | size_t logicalcpu_size = sizeof(g_nlogicalcpu); | |
807 | ret = sysctlbyname("hw.logicalcpu", &g_nlogicalcpu, &logicalcpu_size, NULL, 0); | |
808 | if (ret) { | |
809 | err(EX_OSERR, "Failed sysctlbyname(hw.logicalcpu)"); | |
810 | } | |
811 | ||
812 | if (g_test_rt) { | |
813 | if (g_numthreads == 0) { | |
814 | g_numthreads = g_numcpus; | |
815 | } | |
816 | g_policy = MY_POLICY_REALTIME; | |
817 | g_do_all_spin = TRUE; | |
818 | g_histogram = true; | |
819 | /* Don't change g_traceworthy_latency_ns if it's explicity been set to something other than the default */ | |
820 | if (g_traceworthy_latency_ns == TRACEWORTHY_NANOS) { | |
821 | g_traceworthy_latency_ns = TRACEWORTHY_NANOS_TEST; | |
822 | } | |
823 | } else if (g_test_rt_smt) { | |
824 | if (g_nlogicalcpu != 2 * g_nphysicalcpu) { | |
825 | /* Not SMT */ | |
826 | printf("Attempt to run --test-rt-smt on a non-SMT device\n"); | |
827 | exit(0); | |
828 | } | |
829 | ||
830 | if (g_numthreads == 0) { | |
831 | g_numthreads = g_nphysicalcpu; | |
832 | } | |
833 | g_policy = MY_POLICY_REALTIME; | |
834 | g_do_all_spin = TRUE; | |
835 | g_histogram = true; | |
836 | } else if (g_test_rt_avoid0) { | |
837 | #if defined(__x86_64__) || defined(__i386__) | |
838 | if (g_numthreads == 0) { | |
839 | g_numthreads = g_nphysicalcpu - 1; | |
840 | } | |
841 | if (g_numthreads == 0) { | |
842 | printf("Attempt to run --test-rt-avoid0 on a uniprocessor\n"); | |
843 | exit(0); | |
844 | } | |
845 | g_policy = MY_POLICY_REALTIME; | |
846 | g_do_all_spin = TRUE; | |
847 | g_histogram = true; | |
848 | #else | |
849 | printf("Attempt to run --test-rt-avoid0 on a non-Intel device\n"); | |
850 | exit(0); | |
851 | #endif | |
852 | } else if (g_numthreads == 0) { | |
853 | g_numthreads = g_numcpus; | |
854 | } | |
855 | ||
856 | if (g_do_each_spin) { | |
857 | g_each_spin_duration_abs = nanos_to_abs(g_each_spin_duration_ns); | |
858 | } | |
859 | ||
860 | /* Configure the long-spin thread to take up half of its computation */ | |
861 | if (g_do_one_long_spin) { | |
862 | g_one_long_spin_length_ns = COMPUTATION_NANOS / 2; | |
863 | g_one_long_spin_length_abs = nanos_to_abs(g_one_long_spin_length_ns); | |
864 | } | |
865 | ||
866 | /* Estimate the amount of time the cleanup phase needs to back off */ | |
867 | g_iteration_sleeptime_us = g_numthreads * 20; | |
868 | ||
869 | uint32_t threads_per_core = (g_numthreads / g_numcpus) + 1; | |
870 | if (g_do_each_spin) { | |
871 | g_iteration_sleeptime_us += threads_per_core * (g_each_spin_duration_ns / NSEC_PER_USEC); | |
872 | } | |
873 | if (g_do_one_long_spin) { | |
874 | g_iteration_sleeptime_us += g_one_long_spin_length_ns / NSEC_PER_USEC; | |
875 | } | |
876 | ||
877 | /* Arrays for threads and their wakeup times */ | |
878 | threads = (pthread_t*) valloc(sizeof(pthread_t) * g_numthreads); | |
879 | assert(threads); | |
880 | ||
881 | size_t endtimes_size = sizeof(uint64_t) * g_numthreads; | |
882 | ||
883 | g_thread_endtimes_abs = (uint64_t*) valloc(endtimes_size); | |
884 | assert(g_thread_endtimes_abs); | |
885 | ||
886 | /* Ensure the allocation is pre-faulted */ | |
887 | ret = memset_s(g_thread_endtimes_abs, endtimes_size, 0, endtimes_size); | |
888 | if (ret) { | |
889 | errc(EX_OSERR, ret, "memset_s endtimes"); | |
890 | } | |
891 | ||
892 | size_t latencies_size = sizeof(uint64_t) * g_iterations; | |
893 | ||
894 | worst_latencies_ns = (uint64_t*) valloc(latencies_size); | |
895 | assert(worst_latencies_ns); | |
896 | ||
897 | /* Ensure the allocation is pre-faulted */ | |
898 | ret = memset_s(worst_latencies_ns, latencies_size, 0, latencies_size); | |
899 | if (ret) { | |
900 | errc(EX_OSERR, ret, "memset_s latencies"); | |
901 | } | |
902 | ||
903 | worst_latencies_from_first_ns = (uint64_t*) valloc(latencies_size); | |
904 | assert(worst_latencies_from_first_ns); | |
905 | ||
906 | /* Ensure the allocation is pre-faulted */ | |
907 | ret = memset_s(worst_latencies_from_first_ns, latencies_size, 0, latencies_size); | |
908 | if (ret) { | |
909 | errc(EX_OSERR, ret, "memset_s latencies_from_first"); | |
910 | } | |
911 | ||
912 | size_t histogram_size = sizeof(histogram_t) * g_numcpus; | |
913 | g_cpu_histogram = (histogram_t *)valloc(histogram_size); | |
914 | assert(g_cpu_histogram); | |
915 | /* Ensure the allocation is pre-faulted */ | |
916 | ret = memset_s(g_cpu_histogram, histogram_size, 0, histogram_size); | |
917 | if (ret) { | |
918 | errc(EX_OSERR, ret, "memset_s g_cpu_histogram"); | |
919 | } | |
920 | ||
921 | size_t map_size = sizeof(uint64_t) * g_iterations; | |
922 | g_cpu_map = (_Atomic uint64_t *)valloc(map_size); | |
923 | assert(g_cpu_map); | |
924 | /* Ensure the allocation is pre-faulted */ | |
925 | ret = memset_s(g_cpu_map, map_size, 0, map_size); | |
926 | if (ret) { | |
927 | errc(EX_OSERR, ret, "memset_s g_cpu_map"); | |
928 | } | |
929 | ||
930 | kr = semaphore_create(mach_task_self(), &g_main_sem, SYNC_POLICY_FIFO, 0); | |
931 | mach_assert_zero(kr); | |
932 | ||
933 | /* Either one big semaphore or one per thread */ | |
934 | if (g_waketype == WAKE_CHAIN || | |
935 | g_waketype == WAKE_BROADCAST_PERTHREAD || | |
936 | g_waketype == WAKE_HOP) { | |
937 | g_semarr = valloc(sizeof(semaphore_t) * g_numthreads); | |
938 | assert(g_semarr); | |
939 | ||
940 | for (uint32_t i = 0; i < g_numthreads; i++) { | |
941 | kr = semaphore_create(mach_task_self(), &g_semarr[i], SYNC_POLICY_FIFO, 0); | |
942 | mach_assert_zero(kr); | |
943 | } | |
944 | ||
945 | g_leadersem = g_semarr[0]; | |
946 | } else { | |
947 | kr = semaphore_create(mach_task_self(), &g_broadcastsem, SYNC_POLICY_FIFO, 0); | |
948 | mach_assert_zero(kr); | |
949 | kr = semaphore_create(mach_task_self(), &g_leadersem, SYNC_POLICY_FIFO, 0); | |
950 | mach_assert_zero(kr); | |
951 | } | |
952 | ||
953 | if (g_waketype == WAKE_HOP) { | |
954 | kr = semaphore_create(mach_task_self(), &g_donesem, SYNC_POLICY_FIFO, 0); | |
955 | mach_assert_zero(kr); | |
956 | } | |
957 | ||
958 | kr = semaphore_create(mach_task_self(), &g_readysem, SYNC_POLICY_FIFO, 0); | |
959 | mach_assert_zero(kr); | |
960 | ||
961 | kr = semaphore_create(mach_task_self(), &g_rt_churn_sem, SYNC_POLICY_FIFO, 0); | |
962 | mach_assert_zero(kr); | |
963 | ||
964 | kr = semaphore_create(mach_task_self(), &g_rt_churn_start_sem, SYNC_POLICY_FIFO, 0); | |
965 | mach_assert_zero(kr); | |
966 | ||
967 | atomic_store_explicit(&g_done_threads, 0, memory_order_relaxed); | |
968 | ||
969 | /* Create the threads */ | |
970 | for (uint32_t i = 0; i < g_numthreads; i++) { | |
971 | ret = pthread_create(&threads[i], NULL, worker_thread, (void*)(uintptr_t)i); | |
972 | if (ret) { | |
973 | errc(EX_OSERR, ret, "pthread_create %d", i); | |
974 | } | |
975 | } | |
976 | ||
977 | ret = setpriority(PRIO_DARWIN_ROLE, 0, PRIO_DARWIN_ROLE_UI_FOCAL); | |
978 | if (ret) { | |
979 | errc(EX_OSERR, ret, "setpriority"); | |
980 | } | |
981 | ||
982 | thread_setup(0); | |
983 | ||
984 | g_starttime_abs = mach_absolute_time(); | |
985 | ||
986 | if (g_churn_pri) { | |
987 | create_churn_threads(); | |
988 | } | |
989 | if (g_rt_churn) { | |
990 | create_rt_churn_threads(); | |
991 | } | |
992 | ||
993 | /* Let everyone get settled */ | |
994 | kr = semaphore_wait(g_main_sem); | |
995 | mach_assert_zero(kr); | |
996 | ||
997 | /* Give the system a bit more time to settle */ | |
998 | if (g_do_sleep) { | |
999 | usleep(g_iteration_sleeptime_us); | |
1000 | } | |
1001 | ||
1002 | /* Go! */ | |
1003 | for (uint32_t i = 0; i < g_iterations; i++) { | |
1004 | uint32_t j; | |
1005 | uint64_t worst_abs = 0, best_abs = UINT64_MAX; | |
1006 | ||
1007 | if (g_do_one_long_spin) { | |
1008 | g_one_long_spin_id = (uint32_t)rand() % g_numthreads; | |
1009 | } | |
1010 | ||
1011 | if (g_rt_churn) { | |
1012 | start_rt_churn_threads(); | |
1013 | usleep(100); | |
1014 | } | |
1015 | ||
1016 | debug_log("%d Main thread reset\n", i); | |
1017 | ||
1018 | atomic_store_explicit(&g_done_threads, 0, memory_order_seq_cst); | |
1019 | ||
1020 | g_starttime_abs = mach_absolute_time(); | |
1021 | ||
1022 | /* Fire them off and wait for worker threads to finish */ | |
1023 | kr = semaphore_wait_signal(g_main_sem, g_leadersem); | |
1024 | mach_assert_zero(kr); | |
1025 | ||
1026 | debug_log("%d Main thread return\n", i); | |
1027 | ||
1028 | assert(atomic_load_explicit(&g_done_threads, memory_order_relaxed) == g_numthreads); | |
1029 | ||
1030 | if (g_rt_churn) { | |
1031 | wait_for_rt_churn_threads(); | |
1032 | } | |
1033 | ||
1034 | /* | |
1035 | * We report the worst latencies relative to start time | |
1036 | * and relative to the lead worker thread. | |
1037 | */ | |
1038 | for (j = 0; j < g_numthreads; j++) { | |
1039 | uint64_t latency_abs; | |
1040 | ||
1041 | latency_abs = g_thread_endtimes_abs[j] - g_starttime_abs; | |
1042 | worst_abs = worst_abs < latency_abs ? latency_abs : worst_abs; | |
1043 | } | |
1044 | ||
1045 | worst_latencies_ns[i] = abs_to_nanos(worst_abs); | |
1046 | ||
1047 | worst_abs = 0; | |
1048 | for (j = 1; j < g_numthreads; j++) { | |
1049 | uint64_t latency_abs; | |
1050 | ||
1051 | latency_abs = g_thread_endtimes_abs[j] - g_thread_endtimes_abs[0]; | |
1052 | worst_abs = worst_abs < latency_abs ? latency_abs : worst_abs; | |
1053 | best_abs = best_abs > latency_abs ? latency_abs : best_abs; | |
1054 | } | |
1055 | ||
1056 | worst_latencies_from_first_ns[i] = abs_to_nanos(worst_abs); | |
1057 | ||
1058 | /* | |
1059 | * In the event of a bad run, cut a trace point. | |
1060 | */ | |
1061 | if (worst_latencies_from_first_ns[i] > g_traceworthy_latency_ns) { | |
1062 | /* Ariadne's ad-hoc test signpost */ | |
1063 | kdebug_trace(ARIADNEDBG_CODE(0, 0), worst_latencies_from_first_ns[i], g_traceworthy_latency_ns, 0, 0); | |
1064 | ||
1065 | if (g_verbose) { | |
1066 | printf("Worst on this round was %.2f us.\n", ((float)worst_latencies_from_first_ns[i]) / 1000.0); | |
1067 | } | |
1068 | } | |
1069 | ||
1070 | /* Give the system a bit more time to settle */ | |
1071 | if (g_do_sleep) { | |
1072 | usleep(g_iteration_sleeptime_us); | |
1073 | } | |
1074 | } | |
1075 | ||
1076 | /* Rejoin threads */ | |
1077 | for (uint32_t i = 0; i < g_numthreads; i++) { | |
1078 | ret = pthread_join(threads[i], NULL); | |
1079 | if (ret) { | |
1080 | errc(EX_OSERR, ret, "pthread_join %d", i); | |
1081 | } | |
1082 | } | |
1083 | ||
1084 | if (g_rt_churn) { | |
1085 | join_rt_churn_threads(); | |
1086 | } | |
1087 | ||
1088 | if (g_churn_pri) { | |
1089 | join_churn_threads(); | |
1090 | } | |
1091 | ||
1092 | compute_stats(worst_latencies_ns, g_iterations, &avg, &max, &min, &stddev); | |
1093 | printf("Results (from a stop):\n"); | |
1094 | printf("Max:\t\t%.2f us\n", ((float)max) / 1000.0); | |
1095 | printf("Min:\t\t%.2f us\n", ((float)min) / 1000.0); | |
1096 | printf("Avg:\t\t%.2f us\n", avg / 1000.0); | |
1097 | printf("Stddev:\t\t%.2f us\n", stddev / 1000.0); | |
1098 | ||
1099 | putchar('\n'); | |
1100 | ||
1101 | compute_stats(worst_latencies_from_first_ns, g_iterations, &avg, &max, &min, &stddev); | |
1102 | printf("Results (relative to first thread):\n"); | |
1103 | printf("Max:\t\t%.2f us\n", ((float)max) / 1000.0); | |
1104 | printf("Min:\t\t%.2f us\n", ((float)min) / 1000.0); | |
1105 | printf("Avg:\t\t%.2f us\n", avg / 1000.0); | |
1106 | printf("Stddev:\t\t%.2f us\n", stddev / 1000.0); | |
1107 | ||
1108 | #if 0 | |
1109 | for (uint32_t i = 0; i < g_iterations; i++) { | |
1110 | printf("Iteration %d: %f us\n", i, worst_latencies_ns[i] / 1000.0); | |
1111 | } | |
1112 | #endif | |
1113 | ||
1114 | if (g_histogram) { | |
1115 | putchar('\n'); | |
1116 | ||
1117 | for (uint32_t i = 0; i < g_numcpus; i++) { | |
1118 | printf("%d\t%d\n", i, g_cpu_histogram[i].accum); | |
1119 | } | |
1120 | } | |
1121 | ||
1122 | if (g_test_rt || g_test_rt_smt || g_test_rt_avoid0) { | |
1123 | #define PRIMARY 0x5555555555555555ULL | |
1124 | #define SECONDARY 0xaaaaaaaaaaaaaaaaULL | |
1125 | ||
1126 | int fail_count = 0; | |
1127 | ||
1128 | for (uint32_t i = 0; i < g_iterations; i++) { | |
1129 | bool secondary = false; | |
1130 | bool fail = false; | |
1131 | uint64_t map = g_cpu_map[i]; | |
1132 | if (g_test_rt_smt) { | |
1133 | /* Test for one or more threads running on secondary cores unexpectedly (WARNING) */ | |
1134 | secondary = (map & SECONDARY); | |
1135 | /* Test for threads running on both primary and secondary cpus of the same core (FAIL) */ | |
1136 | fail = ((map & PRIMARY) & ((map & SECONDARY) >> 1)); | |
1137 | } else if (g_test_rt) { | |
1138 | fail = (__builtin_popcountll(map) != g_numthreads) && (worst_latencies_ns[i] > g_traceworthy_latency_ns); | |
1139 | } else if (g_test_rt_avoid0) { | |
1140 | fail = ((map & 0x1) == 0x1); | |
1141 | } | |
1142 | if (secondary || fail) { | |
1143 | printf("Iteration %d: 0x%llx%s%s\n", i, map, | |
1144 | secondary ? " SECONDARY" : "", | |
1145 | fail ? " FAIL" : ""); | |
1146 | } | |
1147 | test_fail |= fail; | |
1148 | fail_count += fail; | |
1149 | } | |
1150 | ||
1151 | if (test_fail && (g_iterations >= 100) && (fail_count <= g_iterations / 100)) { | |
1152 | printf("99%% or better success rate\n"); | |
1153 | test_fail = 0; | |
1154 | } | |
1155 | } | |
1156 | ||
1157 | free(threads); | |
1158 | free(g_thread_endtimes_abs); | |
1159 | free(worst_latencies_ns); | |
1160 | free(worst_latencies_from_first_ns); | |
1161 | free(g_cpu_histogram); | |
1162 | free(g_cpu_map); | |
1163 | ||
1164 | return test_fail; | |
1165 | } | |
1166 | ||
1167 | /* | |
1168 | * WARNING: This is SPI specifically intended for use by launchd to start UI | |
1169 | * apps. We use it here for a test tool only to opt into QoS using the same | |
1170 | * policies. Do not use this outside xnu or libxpc/launchd. | |
1171 | */ | |
1172 | static void | |
1173 | selfexec_with_apptype(int argc, char *argv[]) | |
1174 | { | |
1175 | int ret; | |
1176 | posix_spawnattr_t attr; | |
1177 | extern char **environ; | |
1178 | char *new_argv[argc + 1 + 1 /* NULL */]; | |
1179 | int i; | |
1180 | char prog[PATH_MAX]; | |
1181 | uint32_t prog_size = PATH_MAX; | |
1182 | ||
1183 | ret = _NSGetExecutablePath(prog, &prog_size); | |
1184 | if (ret) { | |
1185 | err(EX_OSERR, "_NSGetExecutablePath"); | |
1186 | } | |
1187 | ||
1188 | for (i = 0; i < argc; i++) { | |
1189 | new_argv[i] = argv[i]; | |
1190 | } | |
1191 | ||
1192 | new_argv[i] = "--switched_apptype"; | |
1193 | new_argv[i + 1] = NULL; | |
1194 | ||
1195 | ret = posix_spawnattr_init(&attr); | |
1196 | if (ret) { | |
1197 | errc(EX_OSERR, ret, "posix_spawnattr_init"); | |
1198 | } | |
1199 | ||
1200 | ret = posix_spawnattr_setflags(&attr, POSIX_SPAWN_SETEXEC); | |
1201 | if (ret) { | |
1202 | errc(EX_OSERR, ret, "posix_spawnattr_setflags"); | |
1203 | } | |
1204 | ||
1205 | ret = posix_spawnattr_setprocesstype_np(&attr, POSIX_SPAWN_PROC_TYPE_APP_DEFAULT); | |
1206 | if (ret) { | |
1207 | errc(EX_OSERR, ret, "posix_spawnattr_setprocesstype_np"); | |
1208 | } | |
1209 | ||
1210 | ret = posix_spawn(NULL, prog, NULL, &attr, new_argv, environ); | |
1211 | if (ret) { | |
1212 | errc(EX_OSERR, ret, "posix_spawn"); | |
1213 | } | |
1214 | } | |
1215 | ||
1216 | /* | |
1217 | * Admittedly not very attractive. | |
1218 | */ | |
1219 | static void __attribute__((noreturn)) | |
1220 | usage() | |
1221 | { | |
1222 | errx(EX_USAGE, "Usage: %s <threads> <chain | hop | broadcast-single-sem | broadcast-per-thread> " | |
1223 | "<realtime | timeshare | fixed> <iterations>\n\t\t" | |
1224 | "[--trace <traceworthy latency in ns>] " | |
1225 | "[--verbose] [--spin-one] [--spin-all] [--spin-time <nanos>] [--affinity]\n\t\t" | |
1226 | "[--no-sleep] [--drop-priority] [--churn-pri <pri>] [--churn-count <n>]", | |
1227 | getprogname()); | |
1228 | } | |
1229 | ||
1230 | static struct option* g_longopts; | |
1231 | static int option_index; | |
1232 | ||
1233 | static uint32_t | |
1234 | read_dec_arg() | |
1235 | { | |
1236 | char *cp; | |
1237 | /* char* optarg is a magic global */ | |
1238 | ||
1239 | uint32_t arg_val = (uint32_t)strtoull(optarg, &cp, 10); | |
1240 | ||
1241 | if (cp == optarg || *cp) { | |
1242 | errx(EX_USAGE, "arg --%s requires a decimal number, found \"%s\"", | |
1243 | g_longopts[option_index].name, optarg); | |
1244 | } | |
1245 | ||
1246 | return arg_val; | |
1247 | } | |
1248 | ||
1249 | static void | |
1250 | parse_args(int argc, char *argv[]) | |
1251 | { | |
1252 | enum { | |
1253 | OPT_GETOPT = 0, | |
1254 | OPT_SPIN_TIME, | |
1255 | OPT_TRACE, | |
1256 | OPT_PRIORITY, | |
1257 | OPT_CHURN_PRI, | |
1258 | OPT_CHURN_COUNT, | |
1259 | OPT_RT_CHURN_COUNT, | |
1260 | }; | |
1261 | ||
1262 | static struct option longopts[] = { | |
1263 | /* BEGIN IGNORE CODESTYLE */ | |
1264 | { "spin-time", required_argument, NULL, OPT_SPIN_TIME }, | |
1265 | { "trace", required_argument, NULL, OPT_TRACE }, | |
1266 | { "priority", required_argument, NULL, OPT_PRIORITY }, | |
1267 | { "churn-pri", required_argument, NULL, OPT_CHURN_PRI }, | |
1268 | { "churn-count", required_argument, NULL, OPT_CHURN_COUNT }, | |
1269 | { "rt-churn-count", required_argument, NULL, OPT_RT_CHURN_COUNT }, | |
1270 | { "switched_apptype", no_argument, (int*)&g_seen_apptype, TRUE }, | |
1271 | { "spin-one", no_argument, (int*)&g_do_one_long_spin, TRUE }, | |
1272 | { "spin-all", no_argument, (int*)&g_do_all_spin, TRUE }, | |
1273 | { "affinity", no_argument, (int*)&g_do_affinity, TRUE }, | |
1274 | { "no-sleep", no_argument, (int*)&g_do_sleep, FALSE }, | |
1275 | { "drop-priority", no_argument, (int*)&g_drop_priority, TRUE }, | |
1276 | { "test-rt", no_argument, (int*)&g_test_rt, TRUE }, | |
1277 | { "test-rt-smt", no_argument, (int*)&g_test_rt_smt, TRUE }, | |
1278 | { "test-rt-avoid0", no_argument, (int*)&g_test_rt_avoid0, TRUE }, | |
1279 | { "rt-churn", no_argument, (int*)&g_rt_churn, TRUE }, | |
1280 | { "histogram", no_argument, (int*)&g_histogram, TRUE }, | |
1281 | { "verbose", no_argument, (int*)&g_verbose, TRUE }, | |
1282 | { "help", no_argument, NULL, 'h' }, | |
1283 | { NULL, 0, NULL, 0 } | |
1284 | /* END IGNORE CODESTYLE */ | |
1285 | }; | |
1286 | ||
1287 | g_longopts = longopts; | |
1288 | int ch = 0; | |
1289 | ||
1290 | while ((ch = getopt_long(argc, argv, "h", longopts, &option_index)) != -1) { | |
1291 | switch (ch) { | |
1292 | case OPT_GETOPT: | |
1293 | /* getopt_long set a variable */ | |
1294 | break; | |
1295 | case OPT_SPIN_TIME: | |
1296 | g_do_each_spin = TRUE; | |
1297 | g_each_spin_duration_ns = read_dec_arg(); | |
1298 | break; | |
1299 | case OPT_TRACE: | |
1300 | g_traceworthy_latency_ns = read_dec_arg(); | |
1301 | break; | |
1302 | case OPT_PRIORITY: | |
1303 | g_priority = read_dec_arg(); | |
1304 | break; | |
1305 | case OPT_CHURN_PRI: | |
1306 | g_churn_pri = read_dec_arg(); | |
1307 | break; | |
1308 | case OPT_CHURN_COUNT: | |
1309 | g_churn_count = read_dec_arg(); | |
1310 | break; | |
1311 | case OPT_RT_CHURN_COUNT: | |
1312 | g_rt_churn_count = read_dec_arg(); | |
1313 | break; | |
1314 | case '?': | |
1315 | case 'h': | |
1316 | default: | |
1317 | usage(); | |
1318 | /* NORETURN */ | |
1319 | } | |
1320 | } | |
1321 | ||
1322 | /* | |
1323 | * getopt_long reorders all the options to the beginning of the argv array. | |
1324 | * Jump past them to the non-option arguments. | |
1325 | */ | |
1326 | ||
1327 | argc -= optind; | |
1328 | argv += optind; | |
1329 | ||
1330 | if (argc > 4) { | |
1331 | warnx("Too many non-option arguments passed"); | |
1332 | usage(); | |
1333 | } | |
1334 | ||
1335 | if (argc != 4) { | |
1336 | warnx("Missing required <threads> <waketype> <policy> <iterations> arguments"); | |
1337 | usage(); | |
1338 | } | |
1339 | ||
1340 | char *cp; | |
1341 | ||
1342 | /* How many threads? */ | |
1343 | g_numthreads = (uint32_t)strtoull(argv[0], &cp, 10); | |
1344 | ||
1345 | if (cp == argv[0] || *cp) { | |
1346 | errx(EX_USAGE, "numthreads requires a decimal number, found \"%s\"", argv[0]); | |
1347 | } | |
1348 | ||
1349 | /* What wakeup pattern? */ | |
1350 | g_waketype = parse_wakeup_pattern(argv[1]); | |
1351 | ||
1352 | /* Policy */ | |
1353 | g_policy = parse_thread_policy(argv[2]); | |
1354 | ||
1355 | /* Iterations */ | |
1356 | g_iterations = (uint32_t)strtoull(argv[3], &cp, 10); | |
1357 | ||
1358 | if (cp == argv[3] || *cp) { | |
1359 | errx(EX_USAGE, "numthreads requires a decimal number, found \"%s\"", argv[3]); | |
1360 | } | |
1361 | ||
1362 | if (g_iterations < 1) { | |
1363 | errx(EX_USAGE, "Must have at least one iteration"); | |
1364 | } | |
1365 | ||
1366 | if (g_numthreads == 1 && g_waketype == WAKE_CHAIN) { | |
1367 | errx(EX_USAGE, "chain mode requires more than one thread"); | |
1368 | } | |
1369 | ||
1370 | if (g_numthreads == 1 && g_waketype == WAKE_HOP) { | |
1371 | errx(EX_USAGE, "hop mode requires more than one thread"); | |
1372 | } | |
1373 | } |