]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993 | |
30 | * The Regents of the University of California. All rights reserved. | |
31 | * | |
32 | * Redistribution and use in source and binary forms, with or without | |
33 | * modification, are permitted provided that the following conditions | |
34 | * are met: | |
35 | * 1. Redistributions of source code must retain the above copyright | |
36 | * notice, this list of conditions and the following disclaimer. | |
37 | * 2. Redistributions in binary form must reproduce the above copyright | |
38 | * notice, this list of conditions and the following disclaimer in the | |
39 | * documentation and/or other materials provided with the distribution. | |
40 | * 3. All advertising materials mentioning features or use of this software | |
41 | * must display the following acknowledgement: | |
42 | * This product includes software developed by the University of | |
43 | * California, Berkeley and its contributors. | |
44 | * 4. Neither the name of the University nor the names of its contributors | |
45 | * may be used to endorse or promote products derived from this software | |
46 | * without specific prior written permission. | |
47 | * | |
48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
58 | * SUCH DAMAGE. | |
59 | * | |
60 | * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 | |
61 | */ | |
62 | /* | |
63 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce | |
64 | * support for mandatory and extensible security protections. This notice | |
65 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
66 | * Version 2.0. | |
67 | */ | |
68 | ||
69 | #define _IP_VHL | |
70 | ||
71 | #include <sys/param.h> | |
72 | #include <sys/systm.h> | |
73 | #include <sys/kernel.h> | |
74 | #include <sys/malloc.h> | |
75 | #include <sys/mbuf.h> | |
76 | #include <sys/protosw.h> | |
77 | #include <sys/socket.h> | |
78 | #include <sys/socketvar.h> | |
79 | #include <kern/locks.h> | |
80 | #include <sys/sysctl.h> | |
81 | #include <sys/mcache.h> | |
82 | #include <sys/kdebug.h> | |
83 | ||
84 | #include <machine/endian.h> | |
85 | #include <pexpert/pexpert.h> | |
86 | #include <mach/sdt.h> | |
87 | ||
88 | #include <libkern/OSAtomic.h> | |
89 | #include <libkern/OSByteOrder.h> | |
90 | ||
91 | #include <net/if.h> | |
92 | #include <net/if_dl.h> | |
93 | #include <net/if_types.h> | |
94 | #include <net/route.h> | |
95 | #include <net/ntstat.h> | |
96 | #include <net/net_osdep.h> | |
97 | #include <net/dlil.h> | |
98 | #include <net/net_perf.h> | |
99 | ||
100 | #include <netinet/in.h> | |
101 | #include <netinet/in_systm.h> | |
102 | #include <netinet/ip.h> | |
103 | #include <netinet/in_pcb.h> | |
104 | #include <netinet/in_var.h> | |
105 | #include <netinet/ip_var.h> | |
106 | #include <netinet/kpi_ipfilter_var.h> | |
107 | #include <netinet/in_tclass.h> | |
108 | #include <netinet/udp.h> | |
109 | ||
110 | #include <netinet6/nd6.h> | |
111 | ||
112 | #if CONFIG_MACF_NET | |
113 | #include <security/mac_framework.h> | |
114 | #endif /* CONFIG_MACF_NET */ | |
115 | ||
116 | #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1) | |
117 | #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3) | |
118 | #define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1) | |
119 | #define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1) | |
120 | ||
121 | #if IPSEC | |
122 | #include <netinet6/ipsec.h> | |
123 | #include <netkey/key.h> | |
124 | #if IPSEC_DEBUG | |
125 | #include <netkey/key_debug.h> | |
126 | #else | |
127 | #define KEYDEBUG(lev, arg) | |
128 | #endif | |
129 | #endif /* IPSEC */ | |
130 | ||
131 | #if NECP | |
132 | #include <net/necp.h> | |
133 | #endif /* NECP */ | |
134 | ||
135 | #if IPFIREWALL | |
136 | #include <netinet/ip_fw.h> | |
137 | #if IPDIVERT | |
138 | #include <netinet/ip_divert.h> | |
139 | #endif /* IPDIVERT */ | |
140 | #endif /* IPFIREWALL */ | |
141 | ||
142 | #if DUMMYNET | |
143 | #include <netinet/ip_dummynet.h> | |
144 | #endif | |
145 | ||
146 | #if PF | |
147 | #include <net/pfvar.h> | |
148 | #endif /* PF */ | |
149 | ||
150 | #if IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG | |
151 | #define print_ip(a) \ | |
152 | printf("%ld.%ld.%ld.%ld", (ntohl(a.s_addr) >> 24) & 0xFF, \ | |
153 | (ntohl(a.s_addr) >> 16) & 0xFF, \ | |
154 | (ntohl(a.s_addr) >> 8) & 0xFF, \ | |
155 | (ntohl(a.s_addr)) & 0xFF); | |
156 | #endif /* IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG */ | |
157 | ||
158 | u_short ip_id; | |
159 | ||
160 | static int sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS; | |
161 | static int sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS; | |
162 | static int sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS; | |
163 | static void ip_out_cksum_stats(int, u_int32_t); | |
164 | static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *); | |
165 | static int ip_optcopy(struct ip *, struct ip *); | |
166 | static int ip_pcbopts(int, struct mbuf **, struct mbuf *); | |
167 | static void imo_trace(struct ip_moptions *, int); | |
168 | static void ip_mloopback(struct ifnet *, struct ifnet *, struct mbuf *, | |
169 | struct sockaddr_in *, int); | |
170 | static struct ifaddr *in_selectsrcif(struct ip *, struct route *, unsigned int); | |
171 | ||
172 | extern struct ip_linklocal_stat ip_linklocal_stat; | |
173 | ||
174 | /* temporary: for testing */ | |
175 | #if IPSEC | |
176 | extern int ipsec_bypass; | |
177 | #endif | |
178 | ||
179 | static int ip_maxchainsent = 0; | |
180 | SYSCTL_INT(_net_inet_ip, OID_AUTO, maxchainsent, | |
181 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_maxchainsent, 0, | |
182 | "use dlil_output_list"); | |
183 | #if DEBUG | |
184 | static int forge_ce = 0; | |
185 | SYSCTL_INT(_net_inet_ip, OID_AUTO, forge_ce, | |
186 | CTLFLAG_RW | CTLFLAG_LOCKED, &forge_ce, 0, | |
187 | "Forge ECN CE"); | |
188 | #endif /* DEBUG */ | |
189 | ||
190 | static int ip_select_srcif_debug = 0; | |
191 | SYSCTL_INT(_net_inet_ip, OID_AUTO, select_srcif_debug, | |
192 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_select_srcif_debug, 0, | |
193 | "log source interface selection debug info"); | |
194 | ||
195 | static int ip_output_measure = 0; | |
196 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf, | |
197 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, | |
198 | &ip_output_measure, 0, sysctl_reset_ip_output_stats, "I", | |
199 | "Do time measurement"); | |
200 | ||
201 | static uint64_t ip_output_measure_bins = 0; | |
202 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf_bins, | |
203 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_output_measure_bins, 0, | |
204 | sysctl_ip_output_measure_bins, "I", | |
205 | "bins for chaining performance data histogram"); | |
206 | ||
207 | static net_perf_t net_perf; | |
208 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf_data, | |
209 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, | |
210 | 0, 0, sysctl_ip_output_getperf, "S,net_perf", | |
211 | "IP output performance data (struct net_perf, net/net_perf.h)"); | |
212 | ||
213 | __private_extern__ int rfc6864 = 1; | |
214 | SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_RW | CTLFLAG_LOCKED, | |
215 | &rfc6864, 0, "updated ip id field behavior"); | |
216 | ||
217 | #define IMO_TRACE_HIST_SIZE 32 /* size of trace history */ | |
218 | ||
219 | /* For gdb */ | |
220 | __private_extern__ unsigned int imo_trace_hist_size = IMO_TRACE_HIST_SIZE; | |
221 | ||
222 | struct ip_moptions_dbg { | |
223 | struct ip_moptions imo; /* ip_moptions */ | |
224 | u_int16_t imo_refhold_cnt; /* # of IMO_ADDREF */ | |
225 | u_int16_t imo_refrele_cnt; /* # of IMO_REMREF */ | |
226 | /* | |
227 | * Alloc and free callers. | |
228 | */ | |
229 | ctrace_t imo_alloc; | |
230 | ctrace_t imo_free; | |
231 | /* | |
232 | * Circular lists of IMO_ADDREF and IMO_REMREF callers. | |
233 | */ | |
234 | ctrace_t imo_refhold[IMO_TRACE_HIST_SIZE]; | |
235 | ctrace_t imo_refrele[IMO_TRACE_HIST_SIZE]; | |
236 | }; | |
237 | ||
238 | #if DEBUG | |
239 | static unsigned int imo_debug = 1; /* debugging (enabled) */ | |
240 | #else | |
241 | static unsigned int imo_debug; /* debugging (disabled) */ | |
242 | #endif /* !DEBUG */ | |
243 | static unsigned int imo_size; /* size of zone element */ | |
244 | static struct zone *imo_zone; /* zone for ip_moptions */ | |
245 | ||
246 | #define IMO_ZONE_MAX 64 /* maximum elements in zone */ | |
247 | #define IMO_ZONE_NAME "ip_moptions" /* zone name */ | |
248 | ||
249 | /* | |
250 | * IP output. The packet in mbuf chain m contains a skeletal IP | |
251 | * header (with len, off, ttl, proto, tos, src, dst). | |
252 | * The mbuf chain containing the packet will be freed. | |
253 | * The mbuf opt, if present, will not be freed. | |
254 | */ | |
255 | int | |
256 | ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags, | |
257 | struct ip_moptions *imo, struct ip_out_args *ipoa) | |
258 | { | |
259 | return (ip_output_list(m0, 0, opt, ro, flags, imo, ipoa)); | |
260 | } | |
261 | ||
262 | /* | |
263 | * IP output. The packet in mbuf chain m contains a skeletal IP | |
264 | * header (with len, off, ttl, proto, tos, src, dst). | |
265 | * The mbuf chain containing the packet will be freed. | |
266 | * The mbuf opt, if present, will not be freed. | |
267 | * | |
268 | * Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be | |
269 | * skipped and ro->ro_rt would be used. Otherwise the result of route | |
270 | * lookup is stored in ro->ro_rt. | |
271 | * | |
272 | * In the IP forwarding case, the packet will arrive with options already | |
273 | * inserted, so must have a NULL opt pointer. | |
274 | */ | |
275 | int | |
276 | ip_output_list(struct mbuf *m0, int packetchain, struct mbuf *opt, | |
277 | struct route *ro, int flags, struct ip_moptions *imo, | |
278 | struct ip_out_args *ipoa) | |
279 | { | |
280 | struct ip *ip; | |
281 | struct ifnet *ifp = NULL; /* not refcnt'd */ | |
282 | struct mbuf *m = m0, *prevnxt = NULL, **mppn = &prevnxt; | |
283 | int hlen = sizeof (struct ip); | |
284 | int len = 0, error = 0; | |
285 | struct sockaddr_in *dst = NULL; | |
286 | struct in_ifaddr *ia = NULL, *src_ia = NULL; | |
287 | struct in_addr pkt_dst; | |
288 | struct ipf_pktopts *ippo = NULL; | |
289 | ipfilter_t inject_filter_ref = NULL; | |
290 | struct mbuf *packetlist; | |
291 | uint32_t sw_csum, pktcnt = 0, scnt = 0, bytecnt = 0; | |
292 | uint32_t packets_processed = 0; | |
293 | unsigned int ifscope = IFSCOPE_NONE; | |
294 | struct flowadv *adv = NULL; | |
295 | struct timeval start_tv; | |
296 | #if IPSEC | |
297 | struct socket *so = NULL; | |
298 | struct secpolicy *sp = NULL; | |
299 | #endif /* IPSEC */ | |
300 | #if NECP | |
301 | necp_kernel_policy_result necp_result = 0; | |
302 | necp_kernel_policy_result_parameter necp_result_parameter; | |
303 | necp_kernel_policy_id necp_matched_policy_id = 0; | |
304 | #endif /* NECP */ | |
305 | #if IPFIREWALL | |
306 | int ipfwoff; | |
307 | struct sockaddr_in *next_hop_from_ipfwd_tag = NULL; | |
308 | #endif /* IPFIREWALL */ | |
309 | #if IPFIREWALL || DUMMYNET | |
310 | struct m_tag *tag; | |
311 | #endif /* IPFIREWALL || DUMMYNET */ | |
312 | #if DUMMYNET | |
313 | struct ip_out_args saved_ipoa; | |
314 | struct sockaddr_in dst_buf; | |
315 | #endif /* DUMMYNET */ | |
316 | struct { | |
317 | #if IPSEC | |
318 | struct ipsec_output_state ipsec_state; | |
319 | #endif /* IPSEC */ | |
320 | #if NECP | |
321 | struct route necp_route; | |
322 | #endif /* NECP */ | |
323 | #if IPFIREWALL || DUMMYNET | |
324 | struct ip_fw_args args; | |
325 | #endif /* IPFIREWALL || DUMMYNET */ | |
326 | #if IPFIREWALL_FORWARD | |
327 | struct route sro_fwd; | |
328 | #endif /* IPFIREWALL_FORWARD */ | |
329 | #if DUMMYNET | |
330 | struct route saved_route; | |
331 | #endif /* DUMMYNET */ | |
332 | struct ipf_pktopts ipf_pktopts; | |
333 | } ipobz; | |
334 | #define ipsec_state ipobz.ipsec_state | |
335 | #define necp_route ipobz.necp_route | |
336 | #define args ipobz.args | |
337 | #define sro_fwd ipobz.sro_fwd | |
338 | #define saved_route ipobz.saved_route | |
339 | #define ipf_pktopts ipobz.ipf_pktopts | |
340 | union { | |
341 | struct { | |
342 | boolean_t select_srcif : 1; /* set once */ | |
343 | boolean_t srcbound : 1; /* set once */ | |
344 | boolean_t nocell : 1; /* set once */ | |
345 | boolean_t isbroadcast : 1; | |
346 | boolean_t didfilter : 1; | |
347 | boolean_t noexpensive : 1; /* set once */ | |
348 | boolean_t awdl_unrestricted : 1; /* set once */ | |
349 | #if IPFIREWALL_FORWARD | |
350 | boolean_t fwd_rewrite_src : 1; | |
351 | #endif /* IPFIREWALL_FORWARD */ | |
352 | }; | |
353 | uint32_t raw; | |
354 | } ipobf = { .raw = 0 }; | |
355 | ||
356 | int interface_mtu = 0; | |
357 | ||
358 | /* | |
359 | * Here we check for restrictions when sending frames. | |
360 | * N.B.: IPv4 over internal co-processor interfaces is not allowed. | |
361 | */ | |
362 | #define IP_CHECK_RESTRICTIONS(_ifp, _ipobf) \ | |
363 | (((_ipobf).nocell && IFNET_IS_CELLULAR(_ifp)) || \ | |
364 | ((_ipobf).noexpensive && IFNET_IS_EXPENSIVE(_ifp)) || \ | |
365 | (IFNET_IS_INTCOPROC(_ifp)) || \ | |
366 | (!(_ipobf).awdl_unrestricted && IFNET_IS_AWDL_RESTRICTED(_ifp))) | |
367 | ||
368 | if (ip_output_measure) | |
369 | net_perf_start_time(&net_perf, &start_tv); | |
370 | KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
371 | ||
372 | VERIFY(m0->m_flags & M_PKTHDR); | |
373 | packetlist = m0; | |
374 | ||
375 | /* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */ | |
376 | bzero(&ipobz, sizeof (ipobz)); | |
377 | ippo = &ipf_pktopts; | |
378 | ||
379 | #if IPFIREWALL || DUMMYNET | |
380 | if (SLIST_EMPTY(&m0->m_pkthdr.tags)) | |
381 | goto ipfw_tags_done; | |
382 | ||
383 | /* Grab info from mtags prepended to the chain */ | |
384 | #if DUMMYNET | |
385 | if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID, | |
386 | KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) { | |
387 | struct dn_pkt_tag *dn_tag; | |
388 | ||
389 | dn_tag = (struct dn_pkt_tag *)(tag+1); | |
390 | args.fwa_ipfw_rule = dn_tag->dn_ipfw_rule; | |
391 | args.fwa_pf_rule = dn_tag->dn_pf_rule; | |
392 | opt = NULL; | |
393 | saved_route = dn_tag->dn_ro; | |
394 | ro = &saved_route; | |
395 | ||
396 | imo = NULL; | |
397 | bcopy(&dn_tag->dn_dst, &dst_buf, sizeof (dst_buf)); | |
398 | dst = &dst_buf; | |
399 | ifp = dn_tag->dn_ifp; | |
400 | flags = dn_tag->dn_flags; | |
401 | if ((dn_tag->dn_flags & IP_OUTARGS)) { | |
402 | saved_ipoa = dn_tag->dn_ipoa; | |
403 | ipoa = &saved_ipoa; | |
404 | } | |
405 | ||
406 | m_tag_delete(m0, tag); | |
407 | } | |
408 | #endif /* DUMMYNET */ | |
409 | ||
410 | #if IPDIVERT | |
411 | if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID, | |
412 | KERNEL_TAG_TYPE_DIVERT, NULL)) != NULL) { | |
413 | struct divert_tag *div_tag; | |
414 | ||
415 | div_tag = (struct divert_tag *)(tag+1); | |
416 | args.fwa_divert_rule = div_tag->cookie; | |
417 | ||
418 | m_tag_delete(m0, tag); | |
419 | } | |
420 | #endif /* IPDIVERT */ | |
421 | ||
422 | #if IPFIREWALL | |
423 | if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID, | |
424 | KERNEL_TAG_TYPE_IPFORWARD, NULL)) != NULL) { | |
425 | struct ip_fwd_tag *ipfwd_tag; | |
426 | ||
427 | ipfwd_tag = (struct ip_fwd_tag *)(tag+1); | |
428 | next_hop_from_ipfwd_tag = ipfwd_tag->next_hop; | |
429 | ||
430 | m_tag_delete(m0, tag); | |
431 | } | |
432 | #endif /* IPFIREWALL */ | |
433 | ||
434 | ipfw_tags_done: | |
435 | #endif /* IPFIREWALL || DUMMYNET */ | |
436 | ||
437 | m = m0; | |
438 | m->m_pkthdr.pkt_flags &= ~(PKTF_LOOP|PKTF_IFAINFO); | |
439 | ||
440 | #if IPSEC | |
441 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) { | |
442 | /* If packet is bound to an interface, check bound policies */ | |
443 | if ((flags & IP_OUTARGS) && (ipoa != NULL) && | |
444 | (ipoa->ipoa_flags & IPOAF_BOUND_IF) && | |
445 | ipoa->ipoa_boundif != IFSCOPE_NONE) { | |
446 | if (ipsec4_getpolicybyinterface(m, IPSEC_DIR_OUTBOUND, | |
447 | &flags, ipoa, &sp) != 0) | |
448 | goto bad; | |
449 | } | |
450 | } | |
451 | #endif /* IPSEC */ | |
452 | ||
453 | VERIFY(ro != NULL); | |
454 | ||
455 | if (flags & IP_OUTARGS) { | |
456 | /* | |
457 | * In the forwarding case, only the ifscope value is used, | |
458 | * as source interface selection doesn't take place. | |
459 | */ | |
460 | if ((ipobf.select_srcif = (!(flags & IP_FORWARDING) && | |
461 | (ipoa->ipoa_flags & IPOAF_SELECT_SRCIF)))) { | |
462 | ipf_pktopts.ippo_flags |= IPPOF_SELECT_SRCIF; | |
463 | } | |
464 | ||
465 | if ((ipoa->ipoa_flags & IPOAF_BOUND_IF) && | |
466 | ipoa->ipoa_boundif != IFSCOPE_NONE) { | |
467 | ifscope = ipoa->ipoa_boundif; | |
468 | ipf_pktopts.ippo_flags |= | |
469 | (IPPOF_BOUND_IF | (ifscope << IPPOF_SHIFT_IFSCOPE)); | |
470 | } | |
471 | ||
472 | /* double negation needed for bool bit field */ | |
473 | ipobf.srcbound = !!(ipoa->ipoa_flags & IPOAF_BOUND_SRCADDR); | |
474 | if (ipobf.srcbound) | |
475 | ipf_pktopts.ippo_flags |= IPPOF_BOUND_SRCADDR; | |
476 | } else { | |
477 | ipobf.select_srcif = FALSE; | |
478 | ipobf.srcbound = FALSE; | |
479 | ifscope = IFSCOPE_NONE; | |
480 | if (flags & IP_OUTARGS) { | |
481 | ipoa->ipoa_boundif = IFSCOPE_NONE; | |
482 | ipoa->ipoa_flags &= ~(IPOAF_SELECT_SRCIF | | |
483 | IPOAF_BOUND_IF | IPOAF_BOUND_SRCADDR); | |
484 | } | |
485 | } | |
486 | ||
487 | if (flags & IP_OUTARGS) { | |
488 | if (ipoa->ipoa_flags & IPOAF_NO_CELLULAR) { | |
489 | ipobf.nocell = TRUE; | |
490 | ipf_pktopts.ippo_flags |= IPPOF_NO_IFT_CELLULAR; | |
491 | } | |
492 | if (ipoa->ipoa_flags & IPOAF_NO_EXPENSIVE) { | |
493 | ipobf.noexpensive = TRUE; | |
494 | ipf_pktopts.ippo_flags |= IPPOF_NO_IFF_EXPENSIVE; | |
495 | } | |
496 | if (ipoa->ipoa_flags & IPOAF_AWDL_UNRESTRICTED) | |
497 | ipobf.awdl_unrestricted = TRUE; | |
498 | adv = &ipoa->ipoa_flowadv; | |
499 | adv->code = FADV_SUCCESS; | |
500 | ipoa->ipoa_retflags = 0; | |
501 | } | |
502 | ||
503 | #if IPSEC | |
504 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) { | |
505 | so = ipsec_getsocket(m); | |
506 | if (so != NULL) { | |
507 | (void) ipsec_setsocket(m, NULL); | |
508 | } | |
509 | } | |
510 | #endif /* IPSEC */ | |
511 | ||
512 | #if DUMMYNET | |
513 | if (args.fwa_ipfw_rule != NULL || args.fwa_pf_rule != NULL) { | |
514 | /* dummynet already saw us */ | |
515 | ip = mtod(m, struct ip *); | |
516 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; | |
517 | pkt_dst = ip->ip_dst; | |
518 | if (ro->ro_rt != NULL) { | |
519 | RT_LOCK_SPIN(ro->ro_rt); | |
520 | ia = (struct in_ifaddr *)ro->ro_rt->rt_ifa; | |
521 | if (ia) { | |
522 | /* Become a regular mutex */ | |
523 | RT_CONVERT_LOCK(ro->ro_rt); | |
524 | IFA_ADDREF(&ia->ia_ifa); | |
525 | } | |
526 | RT_UNLOCK(ro->ro_rt); | |
527 | } | |
528 | ||
529 | #if IPFIREWALL | |
530 | if (args.fwa_ipfw_rule != NULL) | |
531 | goto skip_ipsec; | |
532 | #endif /* IPFIREWALL */ | |
533 | if (args.fwa_pf_rule != NULL) | |
534 | goto sendit; | |
535 | } | |
536 | #endif /* DUMMYNET */ | |
537 | ||
538 | loopit: | |
539 | packets_processed++; | |
540 | ipobf.isbroadcast = FALSE; | |
541 | ipobf.didfilter = FALSE; | |
542 | #if IPFIREWALL_FORWARD | |
543 | ipobf.fwd_rewrite_src = FALSE; | |
544 | #endif /* IPFIREWALL_FORWARD */ | |
545 | ||
546 | VERIFY(m->m_flags & M_PKTHDR); | |
547 | /* | |
548 | * No need to proccess packet twice if we've already seen it. | |
549 | */ | |
550 | if (!SLIST_EMPTY(&m->m_pkthdr.tags)) | |
551 | inject_filter_ref = ipf_get_inject_filter(m); | |
552 | else | |
553 | inject_filter_ref = NULL; | |
554 | ||
555 | if (opt) { | |
556 | m = ip_insertoptions(m, opt, &len); | |
557 | hlen = len; | |
558 | /* Update the chain */ | |
559 | if (m != m0) { | |
560 | if (m0 == packetlist) | |
561 | packetlist = m; | |
562 | m0 = m; | |
563 | } | |
564 | } | |
565 | ip = mtod(m, struct ip *); | |
566 | ||
567 | #if IPFIREWALL | |
568 | /* | |
569 | * rdar://8542331 | |
570 | * | |
571 | * When dealing with a packet chain, we need to reset "next_hop" | |
572 | * because "dst" may have been changed to the gateway address below | |
573 | * for the previous packet of the chain. This could cause the route | |
574 | * to be inavertandly changed to the route to the gateway address | |
575 | * (instead of the route to the destination). | |
576 | */ | |
577 | args.fwa_next_hop = next_hop_from_ipfwd_tag; | |
578 | pkt_dst = args.fwa_next_hop ? args.fwa_next_hop->sin_addr : ip->ip_dst; | |
579 | #else /* !IPFIREWALL */ | |
580 | pkt_dst = ip->ip_dst; | |
581 | #endif /* !IPFIREWALL */ | |
582 | ||
583 | /* | |
584 | * We must not send if the packet is destined to network zero. | |
585 | * RFC1122 3.2.1.3 (a) and (b). | |
586 | */ | |
587 | if (IN_ZERONET(ntohl(pkt_dst.s_addr))) { | |
588 | error = EHOSTUNREACH; | |
589 | goto bad; | |
590 | } | |
591 | ||
592 | /* | |
593 | * Fill in IP header. | |
594 | */ | |
595 | if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) { | |
596 | ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2); | |
597 | ip->ip_off &= IP_DF; | |
598 | if (rfc6864 && IP_OFF_IS_ATOMIC(ip->ip_off)) { | |
599 | // Per RFC6864, value of ip_id is undefined for atomic ip packets | |
600 | ip->ip_id = 0; | |
601 | } else { | |
602 | ip->ip_id = ip_randomid(); | |
603 | } | |
604 | OSAddAtomic(1, &ipstat.ips_localout); | |
605 | } else { | |
606 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; | |
607 | } | |
608 | ||
609 | #if DEBUG | |
610 | /* For debugging, we let the stack forge congestion */ | |
611 | if (forge_ce != 0 && | |
612 | ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT1 || | |
613 | (ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT0)) { | |
614 | ip->ip_tos = (ip->ip_tos & ~IPTOS_ECN_MASK) | IPTOS_ECN_CE; | |
615 | forge_ce--; | |
616 | } | |
617 | #endif /* DEBUG */ | |
618 | ||
619 | KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr, | |
620 | ip->ip_p, ip->ip_off, ip->ip_len); | |
621 | ||
622 | dst = SIN(&ro->ro_dst); | |
623 | ||
624 | /* | |
625 | * If there is a cached route, | |
626 | * check that it is to the same destination | |
627 | * and is still up. If not, free it and try again. | |
628 | * The address family should also be checked in case of sharing the | |
629 | * cache with IPv6. | |
630 | */ | |
631 | ||
632 | if (ro->ro_rt != NULL) { | |
633 | if (ROUTE_UNUSABLE(ro) && ip->ip_src.s_addr != INADDR_ANY && | |
634 | !(flags & (IP_ROUTETOIF | IP_FORWARDING))) { | |
635 | src_ia = ifa_foraddr(ip->ip_src.s_addr); | |
636 | if (src_ia == NULL) { | |
637 | error = EADDRNOTAVAIL; | |
638 | goto bad; | |
639 | } | |
640 | IFA_REMREF(&src_ia->ia_ifa); | |
641 | src_ia = NULL; | |
642 | } | |
643 | /* | |
644 | * Test rt_flags without holding rt_lock for performance | |
645 | * reasons; if the route is down it will hopefully be | |
646 | * caught by the layer below (since it uses this route | |
647 | * as a hint) or during the next transmit. | |
648 | */ | |
649 | if (ROUTE_UNUSABLE(ro) || dst->sin_family != AF_INET || | |
650 | dst->sin_addr.s_addr != pkt_dst.s_addr) | |
651 | ROUTE_RELEASE(ro); | |
652 | ||
653 | /* | |
654 | * If we're doing source interface selection, we may not | |
655 | * want to use this route; only synch up the generation | |
656 | * count otherwise. | |
657 | */ | |
658 | if (!ipobf.select_srcif && ro->ro_rt != NULL && | |
659 | RT_GENID_OUTOFSYNC(ro->ro_rt)) | |
660 | RT_GENID_SYNC(ro->ro_rt); | |
661 | } | |
662 | if (ro->ro_rt == NULL) { | |
663 | bzero(dst, sizeof (*dst)); | |
664 | dst->sin_family = AF_INET; | |
665 | dst->sin_len = sizeof (*dst); | |
666 | dst->sin_addr = pkt_dst; | |
667 | } | |
668 | /* | |
669 | * If routing to interface only, | |
670 | * short circuit routing lookup. | |
671 | */ | |
672 | if (flags & IP_ROUTETOIF) { | |
673 | if (ia != NULL) | |
674 | IFA_REMREF(&ia->ia_ifa); | |
675 | if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) { | |
676 | ia = ifatoia(ifa_ifwithnet(sintosa(dst))); | |
677 | if (ia == NULL) { | |
678 | OSAddAtomic(1, &ipstat.ips_noroute); | |
679 | error = ENETUNREACH; | |
680 | /* XXX IPv6 APN fallback notification?? */ | |
681 | goto bad; | |
682 | } | |
683 | } | |
684 | ifp = ia->ia_ifp; | |
685 | ip->ip_ttl = 1; | |
686 | ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp); | |
687 | /* | |
688 | * For consistency with other cases below. Loopback | |
689 | * multicast case is handled separately by ip_mloopback(). | |
690 | */ | |
691 | if ((ifp->if_flags & IFF_LOOPBACK) && | |
692 | !IN_MULTICAST(ntohl(pkt_dst.s_addr))) { | |
693 | m->m_pkthdr.rcvif = ifp; | |
694 | ip_setsrcifaddr_info(m, ifp->if_index, NULL); | |
695 | ip_setdstifaddr_info(m, ifp->if_index, NULL); | |
696 | } | |
697 | } else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) && | |
698 | imo != NULL && (ifp = imo->imo_multicast_ifp) != NULL) { | |
699 | /* | |
700 | * Bypass the normal routing lookup for multicast | |
701 | * packets if the interface is specified. | |
702 | */ | |
703 | ipobf.isbroadcast = FALSE; | |
704 | if (ia != NULL) | |
705 | IFA_REMREF(&ia->ia_ifa); | |
706 | ||
707 | /* Macro takes reference on ia */ | |
708 | IFP_TO_IA(ifp, ia); | |
709 | } else { | |
710 | struct ifaddr *ia0 = NULL; | |
711 | boolean_t cloneok = FALSE; | |
712 | /* | |
713 | * Perform source interface selection; the source IP address | |
714 | * must belong to one of the addresses of the interface used | |
715 | * by the route. For performance reasons, do this only if | |
716 | * there is no route, or if the routing table has changed, | |
717 | * or if we haven't done source interface selection on this | |
718 | * route (for this PCB instance) before. | |
719 | */ | |
720 | if (ipobf.select_srcif && | |
721 | ip->ip_src.s_addr != INADDR_ANY && (ROUTE_UNUSABLE(ro) || | |
722 | !(ro->ro_flags & ROF_SRCIF_SELECTED))) { | |
723 | /* Find the source interface */ | |
724 | ia0 = in_selectsrcif(ip, ro, ifscope); | |
725 | ||
726 | /* | |
727 | * If the source address belongs to a restricted | |
728 | * interface and the caller forbids our using | |
729 | * interfaces of such type, pretend that there is no | |
730 | * route. | |
731 | */ | |
732 | if (ia0 != NULL && | |
733 | IP_CHECK_RESTRICTIONS(ia0->ifa_ifp, ipobf)) { | |
734 | IFA_REMREF(ia0); | |
735 | ia0 = NULL; | |
736 | error = EHOSTUNREACH; | |
737 | if (flags & IP_OUTARGS) | |
738 | ipoa->ipoa_retflags |= IPOARF_IFDENIED; | |
739 | goto bad; | |
740 | } | |
741 | ||
742 | /* | |
743 | * If the source address is spoofed (in the case of | |
744 | * IP_RAWOUTPUT on an unbounded socket), or if this | |
745 | * is destined for local/loopback, just let it go out | |
746 | * using the interface of the route. Otherwise, | |
747 | * there's no interface having such an address, | |
748 | * so bail out. | |
749 | */ | |
750 | if (ia0 == NULL && (!(flags & IP_RAWOUTPUT) || | |
751 | ipobf.srcbound) && ifscope != lo_ifp->if_index) { | |
752 | error = EADDRNOTAVAIL; | |
753 | goto bad; | |
754 | } | |
755 | ||
756 | /* | |
757 | * If the caller didn't explicitly specify the scope, | |
758 | * pick it up from the source interface. If the cached | |
759 | * route was wrong and was blown away as part of source | |
760 | * interface selection, don't mask out RTF_PRCLONING | |
761 | * since that route may have been allocated by the ULP, | |
762 | * unless the IP header was created by the caller or | |
763 | * the destination is IPv4 LLA. The check for the | |
764 | * latter is needed because IPv4 LLAs are never scoped | |
765 | * in the current implementation, and we don't want to | |
766 | * replace the resolved IPv4 LLA route with one whose | |
767 | * gateway points to that of the default gateway on | |
768 | * the primary interface of the system. | |
769 | */ | |
770 | if (ia0 != NULL) { | |
771 | if (ifscope == IFSCOPE_NONE) | |
772 | ifscope = ia0->ifa_ifp->if_index; | |
773 | cloneok = (!(flags & IP_RAWOUTPUT) && | |
774 | !(IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)))); | |
775 | } | |
776 | } | |
777 | ||
778 | /* | |
779 | * If this is the case, we probably don't want to allocate | |
780 | * a protocol-cloned route since we didn't get one from the | |
781 | * ULP. This lets TCP do its thing, while not burdening | |
782 | * forwarding or ICMP with the overhead of cloning a route. | |
783 | * Of course, we still want to do any cloning requested by | |
784 | * the link layer, as this is probably required in all cases | |
785 | * for correct operation (as it is for ARP). | |
786 | */ | |
787 | if (ro->ro_rt == NULL) { | |
788 | unsigned long ign = RTF_PRCLONING; | |
789 | /* | |
790 | * We make an exception here: if the destination | |
791 | * address is INADDR_BROADCAST, allocate a protocol- | |
792 | * cloned host route so that we end up with a route | |
793 | * marked with the RTF_BROADCAST flag. Otherwise, | |
794 | * we would end up referring to the default route, | |
795 | * instead of creating a cloned host route entry. | |
796 | * That would introduce inconsistencies between ULPs | |
797 | * that allocate a route and those that don't. The | |
798 | * RTF_BROADCAST route is important since we'd want | |
799 | * to send out undirected IP broadcast packets using | |
800 | * link-level broadcast address. Another exception | |
801 | * is for ULP-created routes that got blown away by | |
802 | * source interface selection (see above). | |
803 | * | |
804 | * These exceptions will no longer be necessary when | |
805 | * the RTF_PRCLONING scheme is no longer present. | |
806 | */ | |
807 | if (cloneok || dst->sin_addr.s_addr == INADDR_BROADCAST) | |
808 | ign &= ~RTF_PRCLONING; | |
809 | ||
810 | /* | |
811 | * Loosen the route lookup criteria if the ifscope | |
812 | * corresponds to the loopback interface; this is | |
813 | * needed to support Application Layer Gateways | |
814 | * listening on loopback, in conjunction with packet | |
815 | * filter redirection rules. The final source IP | |
816 | * address will be rewritten by the packet filter | |
817 | * prior to the RFC1122 loopback check below. | |
818 | */ | |
819 | if (ifscope == lo_ifp->if_index) | |
820 | rtalloc_ign(ro, ign); | |
821 | else | |
822 | rtalloc_scoped_ign(ro, ign, ifscope); | |
823 | ||
824 | /* | |
825 | * If the route points to a cellular/expensive interface | |
826 | * and the caller forbids our using interfaces of such type, | |
827 | * pretend that there is no route. | |
828 | */ | |
829 | if (ro->ro_rt != NULL) { | |
830 | RT_LOCK_SPIN(ro->ro_rt); | |
831 | if (IP_CHECK_RESTRICTIONS(ro->ro_rt->rt_ifp, | |
832 | ipobf)) { | |
833 | RT_UNLOCK(ro->ro_rt); | |
834 | ROUTE_RELEASE(ro); | |
835 | if (flags & IP_OUTARGS) { | |
836 | ipoa->ipoa_retflags |= | |
837 | IPOARF_IFDENIED; | |
838 | } | |
839 | } else { | |
840 | RT_UNLOCK(ro->ro_rt); | |
841 | } | |
842 | } | |
843 | } | |
844 | ||
845 | if (ro->ro_rt == NULL) { | |
846 | OSAddAtomic(1, &ipstat.ips_noroute); | |
847 | error = EHOSTUNREACH; | |
848 | if (ia0 != NULL) { | |
849 | IFA_REMREF(ia0); | |
850 | ia0 = NULL; | |
851 | } | |
852 | goto bad; | |
853 | } | |
854 | ||
855 | if (ia != NULL) | |
856 | IFA_REMREF(&ia->ia_ifa); | |
857 | RT_LOCK_SPIN(ro->ro_rt); | |
858 | ia = ifatoia(ro->ro_rt->rt_ifa); | |
859 | if (ia != NULL) { | |
860 | /* Become a regular mutex */ | |
861 | RT_CONVERT_LOCK(ro->ro_rt); | |
862 | IFA_ADDREF(&ia->ia_ifa); | |
863 | } | |
864 | /* | |
865 | * Note: ia_ifp may not be the same as rt_ifp; the latter | |
866 | * is what we use for determining outbound i/f, mtu, etc. | |
867 | */ | |
868 | ifp = ro->ro_rt->rt_ifp; | |
869 | ro->ro_rt->rt_use++; | |
870 | if (ro->ro_rt->rt_flags & RTF_GATEWAY) { | |
871 | dst = SIN(ro->ro_rt->rt_gateway); | |
872 | } | |
873 | if (ro->ro_rt->rt_flags & RTF_HOST) { | |
874 | /* double negation needed for bool bit field */ | |
875 | ipobf.isbroadcast = | |
876 | !!(ro->ro_rt->rt_flags & RTF_BROADCAST); | |
877 | } else { | |
878 | /* Become a regular mutex */ | |
879 | RT_CONVERT_LOCK(ro->ro_rt); | |
880 | ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp); | |
881 | } | |
882 | /* | |
883 | * For consistency with IPv6, as well as to ensure that | |
884 | * IP_RECVIF is set correctly for packets that are sent | |
885 | * to one of the local addresses. ia (rt_ifa) would have | |
886 | * been fixed up by rt_setif for local routes. This | |
887 | * would make it appear as if the packet arrives on the | |
888 | * interface which owns the local address. Loopback | |
889 | * multicast case is handled separately by ip_mloopback(). | |
890 | */ | |
891 | if (ia != NULL && (ifp->if_flags & IFF_LOOPBACK) && | |
892 | !IN_MULTICAST(ntohl(pkt_dst.s_addr))) { | |
893 | uint32_t srcidx; | |
894 | ||
895 | m->m_pkthdr.rcvif = ia->ia_ifa.ifa_ifp; | |
896 | ||
897 | if (ia0 != NULL) | |
898 | srcidx = ia0->ifa_ifp->if_index; | |
899 | else if ((ro->ro_flags & ROF_SRCIF_SELECTED) && | |
900 | ro->ro_srcia != NULL) | |
901 | srcidx = ro->ro_srcia->ifa_ifp->if_index; | |
902 | else | |
903 | srcidx = 0; | |
904 | ||
905 | ip_setsrcifaddr_info(m, srcidx, NULL); | |
906 | ip_setdstifaddr_info(m, 0, ia); | |
907 | } | |
908 | RT_UNLOCK(ro->ro_rt); | |
909 | if (ia0 != NULL) { | |
910 | IFA_REMREF(ia0); | |
911 | ia0 = NULL; | |
912 | } | |
913 | } | |
914 | ||
915 | if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) { | |
916 | struct ifnet *srcifp = NULL; | |
917 | struct in_multi *inm; | |
918 | u_int32_t vif = 0; | |
919 | u_int8_t ttl = IP_DEFAULT_MULTICAST_TTL; | |
920 | u_int8_t loop = IP_DEFAULT_MULTICAST_LOOP; | |
921 | ||
922 | m->m_flags |= M_MCAST; | |
923 | /* | |
924 | * IP destination address is multicast. Make sure "dst" | |
925 | * still points to the address in "ro". (It may have been | |
926 | * changed to point to a gateway address, above.) | |
927 | */ | |
928 | dst = SIN(&ro->ro_dst); | |
929 | /* | |
930 | * See if the caller provided any multicast options | |
931 | */ | |
932 | if (imo != NULL) { | |
933 | IMO_LOCK(imo); | |
934 | vif = imo->imo_multicast_vif; | |
935 | ttl = imo->imo_multicast_ttl; | |
936 | loop = imo->imo_multicast_loop; | |
937 | if (!(flags & IP_RAWOUTPUT)) | |
938 | ip->ip_ttl = ttl; | |
939 | if (imo->imo_multicast_ifp != NULL) | |
940 | ifp = imo->imo_multicast_ifp; | |
941 | IMO_UNLOCK(imo); | |
942 | } else if (!(flags & IP_RAWOUTPUT)) { | |
943 | vif = -1; | |
944 | ip->ip_ttl = ttl; | |
945 | } | |
946 | /* | |
947 | * Confirm that the outgoing interface supports multicast. | |
948 | */ | |
949 | if (imo == NULL || vif == -1) { | |
950 | if (!(ifp->if_flags & IFF_MULTICAST)) { | |
951 | OSAddAtomic(1, &ipstat.ips_noroute); | |
952 | error = ENETUNREACH; | |
953 | goto bad; | |
954 | } | |
955 | } | |
956 | /* | |
957 | * If source address not specified yet, use address | |
958 | * of outgoing interface. | |
959 | */ | |
960 | if (ip->ip_src.s_addr == INADDR_ANY) { | |
961 | struct in_ifaddr *ia1; | |
962 | lck_rw_lock_shared(in_ifaddr_rwlock); | |
963 | TAILQ_FOREACH(ia1, &in_ifaddrhead, ia_link) { | |
964 | IFA_LOCK_SPIN(&ia1->ia_ifa); | |
965 | if (ia1->ia_ifp == ifp) { | |
966 | ip->ip_src = IA_SIN(ia1)->sin_addr; | |
967 | srcifp = ifp; | |
968 | IFA_UNLOCK(&ia1->ia_ifa); | |
969 | break; | |
970 | } | |
971 | IFA_UNLOCK(&ia1->ia_ifa); | |
972 | } | |
973 | lck_rw_done(in_ifaddr_rwlock); | |
974 | if (ip->ip_src.s_addr == INADDR_ANY) { | |
975 | error = ENETUNREACH; | |
976 | goto bad; | |
977 | } | |
978 | } | |
979 | ||
980 | in_multihead_lock_shared(); | |
981 | IN_LOOKUP_MULTI(&pkt_dst, ifp, inm); | |
982 | in_multihead_lock_done(); | |
983 | if (inm != NULL && (imo == NULL || loop)) { | |
984 | /* | |
985 | * If we belong to the destination multicast group | |
986 | * on the outgoing interface, and the caller did not | |
987 | * forbid loopback, loop back a copy. | |
988 | */ | |
989 | if (!TAILQ_EMPTY(&ipv4_filters)) { | |
990 | struct ipfilter *filter; | |
991 | int seen = (inject_filter_ref == NULL); | |
992 | ||
993 | if (imo != NULL) { | |
994 | ipf_pktopts.ippo_flags |= | |
995 | IPPOF_MCAST_OPTS; | |
996 | ipf_pktopts.ippo_mcast_ifnet = ifp; | |
997 | ipf_pktopts.ippo_mcast_ttl = ttl; | |
998 | ipf_pktopts.ippo_mcast_loop = loop; | |
999 | } | |
1000 | ||
1001 | ipf_ref(); | |
1002 | ||
1003 | /* | |
1004 | * 4135317 - always pass network byte | |
1005 | * order to filter | |
1006 | */ | |
1007 | #if BYTE_ORDER != BIG_ENDIAN | |
1008 | HTONS(ip->ip_len); | |
1009 | HTONS(ip->ip_off); | |
1010 | #endif | |
1011 | TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) { | |
1012 | if (seen == 0) { | |
1013 | if ((struct ipfilter *) | |
1014 | inject_filter_ref == filter) | |
1015 | seen = 1; | |
1016 | } else if (filter->ipf_filter. | |
1017 | ipf_output != NULL) { | |
1018 | errno_t result; | |
1019 | result = filter->ipf_filter. | |
1020 | ipf_output(filter-> | |
1021 | ipf_filter.cookie, | |
1022 | (mbuf_t *)&m, ippo); | |
1023 | if (result == EJUSTRETURN) { | |
1024 | ipf_unref(); | |
1025 | INM_REMREF(inm); | |
1026 | goto done; | |
1027 | } | |
1028 | if (result != 0) { | |
1029 | ipf_unref(); | |
1030 | INM_REMREF(inm); | |
1031 | goto bad; | |
1032 | } | |
1033 | } | |
1034 | } | |
1035 | ||
1036 | /* set back to host byte order */ | |
1037 | ip = mtod(m, struct ip *); | |
1038 | #if BYTE_ORDER != BIG_ENDIAN | |
1039 | NTOHS(ip->ip_len); | |
1040 | NTOHS(ip->ip_off); | |
1041 | #endif | |
1042 | ipf_unref(); | |
1043 | ipobf.didfilter = TRUE; | |
1044 | } | |
1045 | ip_mloopback(srcifp, ifp, m, dst, hlen); | |
1046 | } | |
1047 | if (inm != NULL) | |
1048 | INM_REMREF(inm); | |
1049 | /* | |
1050 | * Multicasts with a time-to-live of zero may be looped- | |
1051 | * back, above, but must not be transmitted on a network. | |
1052 | * Also, multicasts addressed to the loopback interface | |
1053 | * are not sent -- the above call to ip_mloopback() will | |
1054 | * loop back a copy if this host actually belongs to the | |
1055 | * destination group on the loopback interface. | |
1056 | */ | |
1057 | if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { | |
1058 | m_freem(m); | |
1059 | goto done; | |
1060 | } | |
1061 | ||
1062 | goto sendit; | |
1063 | } | |
1064 | /* | |
1065 | * If source address not specified yet, use address | |
1066 | * of outgoing interface. | |
1067 | */ | |
1068 | if (ip->ip_src.s_addr == INADDR_ANY) { | |
1069 | IFA_LOCK_SPIN(&ia->ia_ifa); | |
1070 | ip->ip_src = IA_SIN(ia)->sin_addr; | |
1071 | IFA_UNLOCK(&ia->ia_ifa); | |
1072 | #if IPFIREWALL_FORWARD | |
1073 | /* | |
1074 | * Keep note that we did this - if the firewall changes | |
1075 | * the next-hop, our interface may change, changing the | |
1076 | * default source IP. It's a shame so much effort happens | |
1077 | * twice. Oh well. | |
1078 | */ | |
1079 | ipobf.fwd_rewrite_src = TRUE; | |
1080 | #endif /* IPFIREWALL_FORWARD */ | |
1081 | } | |
1082 | ||
1083 | /* | |
1084 | * Look for broadcast address and | |
1085 | * and verify user is allowed to send | |
1086 | * such a packet. | |
1087 | */ | |
1088 | if (ipobf.isbroadcast) { | |
1089 | if (!(ifp->if_flags & IFF_BROADCAST)) { | |
1090 | error = EADDRNOTAVAIL; | |
1091 | goto bad; | |
1092 | } | |
1093 | if (!(flags & IP_ALLOWBROADCAST)) { | |
1094 | error = EACCES; | |
1095 | goto bad; | |
1096 | } | |
1097 | /* don't allow broadcast messages to be fragmented */ | |
1098 | if ((u_short)ip->ip_len > ifp->if_mtu) { | |
1099 | error = EMSGSIZE; | |
1100 | goto bad; | |
1101 | } | |
1102 | m->m_flags |= M_BCAST; | |
1103 | } else { | |
1104 | m->m_flags &= ~M_BCAST; | |
1105 | } | |
1106 | ||
1107 | sendit: | |
1108 | #if PF | |
1109 | /* Invoke outbound packet filter */ | |
1110 | if (PF_IS_ENABLED) { | |
1111 | int rc; | |
1112 | ||
1113 | m0 = m; /* Save for later */ | |
1114 | #if DUMMYNET | |
1115 | args.fwa_m = m; | |
1116 | args.fwa_next_hop = dst; | |
1117 | args.fwa_oif = ifp; | |
1118 | args.fwa_ro = ro; | |
1119 | args.fwa_dst = dst; | |
1120 | args.fwa_oflags = flags; | |
1121 | if (flags & IP_OUTARGS) | |
1122 | args.fwa_ipoa = ipoa; | |
1123 | rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, &args); | |
1124 | #else /* DUMMYNET */ | |
1125 | rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, NULL); | |
1126 | #endif /* DUMMYNET */ | |
1127 | if (rc != 0 || m == NULL) { | |
1128 | /* Move to the next packet */ | |
1129 | m = *mppn; | |
1130 | ||
1131 | /* Skip ahead if first packet in list got dropped */ | |
1132 | if (packetlist == m0) | |
1133 | packetlist = m; | |
1134 | ||
1135 | if (m != NULL) { | |
1136 | m0 = m; | |
1137 | /* Next packet in the chain */ | |
1138 | goto loopit; | |
1139 | } else if (packetlist != NULL) { | |
1140 | /* No more packet; send down the chain */ | |
1141 | goto sendchain; | |
1142 | } | |
1143 | /* Nothing left; we're done */ | |
1144 | goto done; | |
1145 | } | |
1146 | m0 = m; | |
1147 | ip = mtod(m, struct ip *); | |
1148 | pkt_dst = ip->ip_dst; | |
1149 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; | |
1150 | } | |
1151 | #endif /* PF */ | |
1152 | /* | |
1153 | * Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt | |
1154 | */ | |
1155 | if (IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)) || | |
1156 | IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { | |
1157 | ip_linklocal_stat.iplls_out_total++; | |
1158 | if (ip->ip_ttl != MAXTTL) { | |
1159 | ip_linklocal_stat.iplls_out_badttl++; | |
1160 | ip->ip_ttl = MAXTTL; | |
1161 | } | |
1162 | } | |
1163 | ||
1164 | if (!ipobf.didfilter && !TAILQ_EMPTY(&ipv4_filters)) { | |
1165 | struct ipfilter *filter; | |
1166 | int seen = (inject_filter_ref == NULL); | |
1167 | ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS; | |
1168 | ||
1169 | /* | |
1170 | * Check that a TSO frame isn't passed to a filter. | |
1171 | * This could happen if a filter is inserted while | |
1172 | * TCP is sending the TSO packet. | |
1173 | */ | |
1174 | if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) { | |
1175 | error = EMSGSIZE; | |
1176 | goto bad; | |
1177 | } | |
1178 | ||
1179 | ipf_ref(); | |
1180 | ||
1181 | /* 4135317 - always pass network byte order to filter */ | |
1182 | #if BYTE_ORDER != BIG_ENDIAN | |
1183 | HTONS(ip->ip_len); | |
1184 | HTONS(ip->ip_off); | |
1185 | #endif | |
1186 | TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) { | |
1187 | if (seen == 0) { | |
1188 | if ((struct ipfilter *)inject_filter_ref == | |
1189 | filter) | |
1190 | seen = 1; | |
1191 | } else if (filter->ipf_filter.ipf_output) { | |
1192 | errno_t result; | |
1193 | result = filter->ipf_filter. | |
1194 | ipf_output(filter->ipf_filter.cookie, | |
1195 | (mbuf_t *)&m, ippo); | |
1196 | if (result == EJUSTRETURN) { | |
1197 | ipf_unref(); | |
1198 | goto done; | |
1199 | } | |
1200 | if (result != 0) { | |
1201 | ipf_unref(); | |
1202 | goto bad; | |
1203 | } | |
1204 | } | |
1205 | } | |
1206 | /* set back to host byte order */ | |
1207 | ip = mtod(m, struct ip *); | |
1208 | #if BYTE_ORDER != BIG_ENDIAN | |
1209 | NTOHS(ip->ip_len); | |
1210 | NTOHS(ip->ip_off); | |
1211 | #endif | |
1212 | ipf_unref(); | |
1213 | } | |
1214 | ||
1215 | #if NECP | |
1216 | /* Process Network Extension Policy. Will Pass, Drop, or Rebind packet. */ | |
1217 | necp_matched_policy_id = necp_ip_output_find_policy_match (m, | |
1218 | flags, (flags & IP_OUTARGS) ? ipoa : NULL, &necp_result, &necp_result_parameter); | |
1219 | if (necp_matched_policy_id) { | |
1220 | necp_mark_packet_from_ip(m, necp_matched_policy_id); | |
1221 | switch (necp_result) { | |
1222 | case NECP_KERNEL_POLICY_RESULT_PASS: | |
1223 | /* Check if the interface is allowed */ | |
1224 | if (!necp_packet_is_allowed_over_interface(m, ifp)) { | |
1225 | error = EHOSTUNREACH; | |
1226 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); | |
1227 | goto bad; | |
1228 | } | |
1229 | goto skip_ipsec; | |
1230 | case NECP_KERNEL_POLICY_RESULT_DROP: | |
1231 | case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT: | |
1232 | /* Flow divert packets should be blocked at the IP layer */ | |
1233 | error = EHOSTUNREACH; | |
1234 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); | |
1235 | goto bad; | |
1236 | case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL: { | |
1237 | /* Verify that the packet is being routed to the tunnel */ | |
1238 | struct ifnet *policy_ifp = necp_get_ifnet_from_result_parameter(&necp_result_parameter); | |
1239 | if (policy_ifp == ifp) { | |
1240 | /* Check if the interface is allowed */ | |
1241 | if (!necp_packet_is_allowed_over_interface(m, ifp)) { | |
1242 | error = EHOSTUNREACH; | |
1243 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); | |
1244 | goto bad; | |
1245 | } | |
1246 | goto skip_ipsec; | |
1247 | } else { | |
1248 | if (necp_packet_can_rebind_to_ifnet(m, policy_ifp, &necp_route, AF_INET)) { | |
1249 | /* Check if the interface is allowed */ | |
1250 | if (!necp_packet_is_allowed_over_interface(m, policy_ifp)) { | |
1251 | error = EHOSTUNREACH; | |
1252 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); | |
1253 | goto bad; | |
1254 | } | |
1255 | ||
1256 | /* Set ifp to the tunnel interface, since it is compatible with the packet */ | |
1257 | ifp = policy_ifp; | |
1258 | ro = &necp_route; | |
1259 | goto skip_ipsec; | |
1260 | } else { | |
1261 | error = ENETUNREACH; | |
1262 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); | |
1263 | goto bad; | |
1264 | } | |
1265 | } | |
1266 | } | |
1267 | default: | |
1268 | break; | |
1269 | } | |
1270 | } | |
1271 | /* Catch-all to check if the interface is allowed */ | |
1272 | if (!necp_packet_is_allowed_over_interface(m, ifp)) { | |
1273 | error = EHOSTUNREACH; | |
1274 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); | |
1275 | goto bad; | |
1276 | } | |
1277 | #endif /* NECP */ | |
1278 | ||
1279 | #if IPSEC | |
1280 | if (ipsec_bypass != 0 || (flags & IP_NOIPSEC)) | |
1281 | goto skip_ipsec; | |
1282 | ||
1283 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
1284 | ||
1285 | if (sp == NULL) { | |
1286 | /* get SP for this packet */ | |
1287 | if (so != NULL) { | |
1288 | sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, | |
1289 | so, &error); | |
1290 | } else { | |
1291 | sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, | |
1292 | flags, &error); | |
1293 | } | |
1294 | if (sp == NULL) { | |
1295 | IPSEC_STAT_INCREMENT(ipsecstat.out_inval); | |
1296 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, | |
1297 | 0, 0, 0, 0, 0); | |
1298 | goto bad; | |
1299 | } | |
1300 | } | |
1301 | ||
1302 | error = 0; | |
1303 | ||
1304 | /* check policy */ | |
1305 | switch (sp->policy) { | |
1306 | case IPSEC_POLICY_DISCARD: | |
1307 | case IPSEC_POLICY_GENERATE: | |
1308 | /* | |
1309 | * This packet is just discarded. | |
1310 | */ | |
1311 | IPSEC_STAT_INCREMENT(ipsecstat.out_polvio); | |
1312 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, | |
1313 | 1, 0, 0, 0, 0); | |
1314 | goto bad; | |
1315 | ||
1316 | case IPSEC_POLICY_BYPASS: | |
1317 | case IPSEC_POLICY_NONE: | |
1318 | /* no need to do IPsec. */ | |
1319 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, | |
1320 | 2, 0, 0, 0, 0); | |
1321 | goto skip_ipsec; | |
1322 | ||
1323 | case IPSEC_POLICY_IPSEC: | |
1324 | if (sp->req == NULL) { | |
1325 | /* acquire a policy */ | |
1326 | error = key_spdacquire(sp); | |
1327 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, | |
1328 | 3, 0, 0, 0, 0); | |
1329 | goto bad; | |
1330 | } | |
1331 | if (sp->ipsec_if) { | |
1332 | /* Verify the redirect to ipsec interface */ | |
1333 | if (sp->ipsec_if == ifp) { | |
1334 | goto skip_ipsec; | |
1335 | } | |
1336 | goto bad; | |
1337 | } | |
1338 | break; | |
1339 | ||
1340 | case IPSEC_POLICY_ENTRUST: | |
1341 | default: | |
1342 | printf("ip_output: Invalid policy found. %d\n", sp->policy); | |
1343 | } | |
1344 | { | |
1345 | ipsec_state.m = m; | |
1346 | if (flags & IP_ROUTETOIF) { | |
1347 | bzero(&ipsec_state.ro, sizeof (ipsec_state.ro)); | |
1348 | } else { | |
1349 | route_copyout((struct route *)&ipsec_state.ro, ro, sizeof (struct route)); | |
1350 | } | |
1351 | ipsec_state.dst = SA(dst); | |
1352 | ||
1353 | ip->ip_sum = 0; | |
1354 | ||
1355 | /* | |
1356 | * XXX | |
1357 | * delayed checksums are not currently compatible with IPsec | |
1358 | */ | |
1359 | if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) | |
1360 | in_delayed_cksum(m); | |
1361 | ||
1362 | #if BYTE_ORDER != BIG_ENDIAN | |
1363 | HTONS(ip->ip_len); | |
1364 | HTONS(ip->ip_off); | |
1365 | #endif | |
1366 | ||
1367 | DTRACE_IP6(send, struct mbuf *, m, struct inpcb *, NULL, | |
1368 | struct ip *, ip, struct ifnet *, ifp, | |
1369 | struct ip *, ip, struct ip6_hdr *, NULL); | |
1370 | ||
1371 | error = ipsec4_output(&ipsec_state, sp, flags); | |
1372 | if (ipsec_state.tunneled == 6) { | |
1373 | m0 = m = NULL; | |
1374 | error = 0; | |
1375 | goto bad; | |
1376 | } | |
1377 | ||
1378 | m0 = m = ipsec_state.m; | |
1379 | ||
1380 | #if DUMMYNET | |
1381 | /* | |
1382 | * If we're about to use the route in ipsec_state | |
1383 | * and this came from dummynet, cleaup now. | |
1384 | */ | |
1385 | if (ro == &saved_route && | |
1386 | (!(flags & IP_ROUTETOIF) || ipsec_state.tunneled)) | |
1387 | ROUTE_RELEASE(ro); | |
1388 | #endif /* DUMMYNET */ | |
1389 | ||
1390 | if (flags & IP_ROUTETOIF) { | |
1391 | /* | |
1392 | * if we have tunnel mode SA, we may need to ignore | |
1393 | * IP_ROUTETOIF. | |
1394 | */ | |
1395 | if (ipsec_state.tunneled) { | |
1396 | flags &= ~IP_ROUTETOIF; | |
1397 | ro = (struct route *)&ipsec_state.ro; | |
1398 | } | |
1399 | } else { | |
1400 | ro = (struct route *)&ipsec_state.ro; | |
1401 | } | |
1402 | dst = SIN(ipsec_state.dst); | |
1403 | if (error) { | |
1404 | /* mbuf is already reclaimed in ipsec4_output. */ | |
1405 | m0 = NULL; | |
1406 | switch (error) { | |
1407 | case EHOSTUNREACH: | |
1408 | case ENETUNREACH: | |
1409 | case EMSGSIZE: | |
1410 | case ENOBUFS: | |
1411 | case ENOMEM: | |
1412 | break; | |
1413 | default: | |
1414 | printf("ip4_output (ipsec): error code %d\n", error); | |
1415 | /* FALLTHRU */ | |
1416 | case ENOENT: | |
1417 | /* don't show these error codes to the user */ | |
1418 | error = 0; | |
1419 | break; | |
1420 | } | |
1421 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, | |
1422 | 4, 0, 0, 0, 0); | |
1423 | goto bad; | |
1424 | } | |
1425 | } | |
1426 | ||
1427 | /* be sure to update variables that are affected by ipsec4_output() */ | |
1428 | ip = mtod(m, struct ip *); | |
1429 | ||
1430 | #ifdef _IP_VHL | |
1431 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; | |
1432 | #else /* !_IP_VHL */ | |
1433 | hlen = ip->ip_hl << 2; | |
1434 | #endif /* !_IP_VHL */ | |
1435 | /* Check that there wasn't a route change and src is still valid */ | |
1436 | if (ROUTE_UNUSABLE(ro)) { | |
1437 | ROUTE_RELEASE(ro); | |
1438 | VERIFY(src_ia == NULL); | |
1439 | if (ip->ip_src.s_addr != INADDR_ANY && | |
1440 | !(flags & (IP_ROUTETOIF | IP_FORWARDING)) && | |
1441 | (src_ia = ifa_foraddr(ip->ip_src.s_addr)) == NULL) { | |
1442 | error = EADDRNOTAVAIL; | |
1443 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, | |
1444 | 5, 0, 0, 0, 0); | |
1445 | goto bad; | |
1446 | } | |
1447 | if (src_ia != NULL) { | |
1448 | IFA_REMREF(&src_ia->ia_ifa); | |
1449 | src_ia = NULL; | |
1450 | } | |
1451 | } | |
1452 | ||
1453 | if (ro->ro_rt == NULL) { | |
1454 | if (!(flags & IP_ROUTETOIF)) { | |
1455 | printf("%s: can't update route after " | |
1456 | "IPsec processing\n", __func__); | |
1457 | error = EHOSTUNREACH; /* XXX */ | |
1458 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, | |
1459 | 6, 0, 0, 0, 0); | |
1460 | goto bad; | |
1461 | } | |
1462 | } else { | |
1463 | if (ia != NULL) | |
1464 | IFA_REMREF(&ia->ia_ifa); | |
1465 | RT_LOCK_SPIN(ro->ro_rt); | |
1466 | ia = ifatoia(ro->ro_rt->rt_ifa); | |
1467 | if (ia != NULL) { | |
1468 | /* Become a regular mutex */ | |
1469 | RT_CONVERT_LOCK(ro->ro_rt); | |
1470 | IFA_ADDREF(&ia->ia_ifa); | |
1471 | } | |
1472 | ifp = ro->ro_rt->rt_ifp; | |
1473 | RT_UNLOCK(ro->ro_rt); | |
1474 | } | |
1475 | ||
1476 | /* make it flipped, again. */ | |
1477 | #if BYTE_ORDER != BIG_ENDIAN | |
1478 | NTOHS(ip->ip_len); | |
1479 | NTOHS(ip->ip_off); | |
1480 | #endif | |
1481 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, | |
1482 | 7, 0xff, 0xff, 0xff, 0xff); | |
1483 | ||
1484 | /* Pass to filters again */ | |
1485 | if (!TAILQ_EMPTY(&ipv4_filters)) { | |
1486 | struct ipfilter *filter; | |
1487 | ||
1488 | ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS; | |
1489 | ||
1490 | /* | |
1491 | * Check that a TSO frame isn't passed to a filter. | |
1492 | * This could happen if a filter is inserted while | |
1493 | * TCP is sending the TSO packet. | |
1494 | */ | |
1495 | if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) { | |
1496 | error = EMSGSIZE; | |
1497 | goto bad; | |
1498 | } | |
1499 | ||
1500 | ipf_ref(); | |
1501 | ||
1502 | /* 4135317 - always pass network byte order to filter */ | |
1503 | #if BYTE_ORDER != BIG_ENDIAN | |
1504 | HTONS(ip->ip_len); | |
1505 | HTONS(ip->ip_off); | |
1506 | #endif | |
1507 | TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) { | |
1508 | if (filter->ipf_filter.ipf_output) { | |
1509 | errno_t result; | |
1510 | result = filter->ipf_filter. | |
1511 | ipf_output(filter->ipf_filter.cookie, | |
1512 | (mbuf_t *)&m, ippo); | |
1513 | if (result == EJUSTRETURN) { | |
1514 | ipf_unref(); | |
1515 | goto done; | |
1516 | } | |
1517 | if (result != 0) { | |
1518 | ipf_unref(); | |
1519 | goto bad; | |
1520 | } | |
1521 | } | |
1522 | } | |
1523 | /* set back to host byte order */ | |
1524 | ip = mtod(m, struct ip *); | |
1525 | #if BYTE_ORDER != BIG_ENDIAN | |
1526 | NTOHS(ip->ip_len); | |
1527 | NTOHS(ip->ip_off); | |
1528 | #endif | |
1529 | ipf_unref(); | |
1530 | } | |
1531 | skip_ipsec: | |
1532 | #endif /* IPSEC */ | |
1533 | ||
1534 | #if IPFIREWALL | |
1535 | /* | |
1536 | * Check with the firewall... | |
1537 | * but not if we are already being fwd'd from a firewall. | |
1538 | */ | |
1539 | if (fw_enable && IPFW_LOADED && !args.fwa_next_hop) { | |
1540 | struct sockaddr_in *old = dst; | |
1541 | ||
1542 | args.fwa_m = m; | |
1543 | args.fwa_next_hop = dst; | |
1544 | args.fwa_oif = ifp; | |
1545 | ipfwoff = ip_fw_chk_ptr(&args); | |
1546 | m = args.fwa_m; | |
1547 | dst = args.fwa_next_hop; | |
1548 | ||
1549 | /* | |
1550 | * On return we must do the following: | |
1551 | * IP_FW_PORT_DENY_FLAG -> drop the pkt (XXX new) | |
1552 | * 1<=off<= 0xffff -> DIVERT | |
1553 | * (off & IP_FW_PORT_DYNT_FLAG) -> send to a DUMMYNET pipe | |
1554 | * (off & IP_FW_PORT_TEE_FLAG) -> TEE the packet | |
1555 | * dst != old -> IPFIREWALL_FORWARD | |
1556 | * off==0, dst==old -> accept | |
1557 | * If some of the above modules is not compiled in, then | |
1558 | * we should't have to check the corresponding condition | |
1559 | * (because the ipfw control socket should not accept | |
1560 | * unsupported rules), but better play safe and drop | |
1561 | * packets in case of doubt. | |
1562 | */ | |
1563 | m0 = m; | |
1564 | if ((ipfwoff & IP_FW_PORT_DENY_FLAG) || m == NULL) { | |
1565 | if (m) | |
1566 | m_freem(m); | |
1567 | error = EACCES; | |
1568 | goto done; | |
1569 | } | |
1570 | ip = mtod(m, struct ip *); | |
1571 | ||
1572 | if (ipfwoff == 0 && dst == old) { /* common case */ | |
1573 | goto pass; | |
1574 | } | |
1575 | #if DUMMYNET | |
1576 | if (DUMMYNET_LOADED && (ipfwoff & IP_FW_PORT_DYNT_FLAG) != 0) { | |
1577 | /* | |
1578 | * pass the pkt to dummynet. Need to include | |
1579 | * pipe number, m, ifp, ro, dst because these are | |
1580 | * not recomputed in the next pass. | |
1581 | * All other parameters have been already used and | |
1582 | * so they are not needed anymore. | |
1583 | * XXX note: if the ifp or ro entry are deleted | |
1584 | * while a pkt is in dummynet, we are in trouble! | |
1585 | */ | |
1586 | args.fwa_ro = ro; | |
1587 | args.fwa_dst = dst; | |
1588 | args.fwa_oflags = flags; | |
1589 | if (flags & IP_OUTARGS) | |
1590 | args.fwa_ipoa = ipoa; | |
1591 | ||
1592 | error = ip_dn_io_ptr(m, ipfwoff & 0xffff, DN_TO_IP_OUT, | |
1593 | &args, DN_CLIENT_IPFW); | |
1594 | goto done; | |
1595 | } | |
1596 | #endif /* DUMMYNET */ | |
1597 | #if IPDIVERT | |
1598 | if (ipfwoff != 0 && (ipfwoff & IP_FW_PORT_DYNT_FLAG) == 0) { | |
1599 | struct mbuf *clone = NULL; | |
1600 | ||
1601 | /* Clone packet if we're doing a 'tee' */ | |
1602 | if ((ipfwoff & IP_FW_PORT_TEE_FLAG) != 0) | |
1603 | clone = m_dup(m, M_DONTWAIT); | |
1604 | /* | |
1605 | * XXX | |
1606 | * delayed checksums are not currently compatible | |
1607 | * with divert sockets. | |
1608 | */ | |
1609 | if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) | |
1610 | in_delayed_cksum(m); | |
1611 | ||
1612 | /* Restore packet header fields to original values */ | |
1613 | ||
1614 | #if BYTE_ORDER != BIG_ENDIAN | |
1615 | HTONS(ip->ip_len); | |
1616 | HTONS(ip->ip_off); | |
1617 | #endif | |
1618 | ||
1619 | /* Deliver packet to divert input routine */ | |
1620 | divert_packet(m, 0, ipfwoff & 0xffff, | |
1621 | args.fwa_divert_rule); | |
1622 | ||
1623 | /* If 'tee', continue with original packet */ | |
1624 | if (clone != NULL) { | |
1625 | m0 = m = clone; | |
1626 | ip = mtod(m, struct ip *); | |
1627 | goto pass; | |
1628 | } | |
1629 | goto done; | |
1630 | } | |
1631 | #endif /* IPDIVERT */ | |
1632 | #if IPFIREWALL_FORWARD | |
1633 | /* | |
1634 | * Here we check dst to make sure it's directly reachable on | |
1635 | * the interface we previously thought it was. | |
1636 | * If it isn't (which may be likely in some situations) we have | |
1637 | * to re-route it (ie, find a route for the next-hop and the | |
1638 | * associated interface) and set them here. This is nested | |
1639 | * forwarding which in most cases is undesirable, except where | |
1640 | * such control is nigh impossible. So we do it here. | |
1641 | * And I'm babbling. | |
1642 | */ | |
1643 | if (ipfwoff == 0 && old != dst) { | |
1644 | struct in_ifaddr *ia_fw; | |
1645 | struct route *ro_fwd = &sro_fwd; | |
1646 | ||
1647 | #if IPFIREWALL_FORWARD_DEBUG | |
1648 | printf("IPFIREWALL_FORWARD: New dst ip: "); | |
1649 | print_ip(dst->sin_addr); | |
1650 | printf("\n"); | |
1651 | #endif /* IPFIREWALL_FORWARD_DEBUG */ | |
1652 | /* | |
1653 | * We need to figure out if we have been forwarded | |
1654 | * to a local socket. If so then we should somehow | |
1655 | * "loop back" to ip_input, and get directed to the | |
1656 | * PCB as if we had received this packet. This is | |
1657 | * because it may be dificult to identify the packets | |
1658 | * you want to forward until they are being output | |
1659 | * and have selected an interface. (e.g. locally | |
1660 | * initiated packets) If we used the loopback inteface, | |
1661 | * we would not be able to control what happens | |
1662 | * as the packet runs through ip_input() as | |
1663 | * it is done through a ISR. | |
1664 | */ | |
1665 | lck_rw_lock_shared(in_ifaddr_rwlock); | |
1666 | TAILQ_FOREACH(ia_fw, &in_ifaddrhead, ia_link) { | |
1667 | /* | |
1668 | * If the addr to forward to is one | |
1669 | * of ours, we pretend to | |
1670 | * be the destination for this packet. | |
1671 | */ | |
1672 | IFA_LOCK_SPIN(&ia_fw->ia_ifa); | |
1673 | if (IA_SIN(ia_fw)->sin_addr.s_addr == | |
1674 | dst->sin_addr.s_addr) { | |
1675 | IFA_UNLOCK(&ia_fw->ia_ifa); | |
1676 | break; | |
1677 | } | |
1678 | IFA_UNLOCK(&ia_fw->ia_ifa); | |
1679 | } | |
1680 | lck_rw_done(in_ifaddr_rwlock); | |
1681 | if (ia_fw) { | |
1682 | /* tell ip_input "dont filter" */ | |
1683 | struct m_tag *fwd_tag; | |
1684 | struct ip_fwd_tag *ipfwd_tag; | |
1685 | ||
1686 | fwd_tag = m_tag_create(KERNEL_MODULE_TAG_ID, | |
1687 | KERNEL_TAG_TYPE_IPFORWARD, | |
1688 | sizeof (*ipfwd_tag), M_NOWAIT, m); | |
1689 | if (fwd_tag == NULL) { | |
1690 | error = ENOBUFS; | |
1691 | goto bad; | |
1692 | } | |
1693 | ||
1694 | ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1); | |
1695 | ipfwd_tag->next_hop = args.fwa_next_hop; | |
1696 | ||
1697 | m_tag_prepend(m, fwd_tag); | |
1698 | ||
1699 | if (m->m_pkthdr.rcvif == NULL) | |
1700 | m->m_pkthdr.rcvif = lo_ifp; | |
1701 | ||
1702 | #if BYTE_ORDER != BIG_ENDIAN | |
1703 | HTONS(ip->ip_len); | |
1704 | HTONS(ip->ip_off); | |
1705 | #endif | |
1706 | mbuf_outbound_finalize(m, PF_INET, 0); | |
1707 | ||
1708 | /* | |
1709 | * we need to call dlil_output to run filters | |
1710 | * and resync to avoid recursion loops. | |
1711 | */ | |
1712 | if (lo_ifp) { | |
1713 | dlil_output(lo_ifp, PF_INET, m, NULL, | |
1714 | SA(dst), 0, adv); | |
1715 | } else { | |
1716 | printf("%s: no loopback ifp for " | |
1717 | "forwarding!!!\n", __func__); | |
1718 | } | |
1719 | goto done; | |
1720 | } | |
1721 | /* | |
1722 | * Some of the logic for this was nicked from above. | |
1723 | * | |
1724 | * This rewrites the cached route in a local PCB. | |
1725 | * Is this what we want to do? | |
1726 | */ | |
1727 | ROUTE_RELEASE(ro_fwd); | |
1728 | bcopy(dst, &ro_fwd->ro_dst, sizeof (*dst)); | |
1729 | ||
1730 | rtalloc_ign(ro_fwd, RTF_PRCLONING, false); | |
1731 | ||
1732 | if (ro_fwd->ro_rt == NULL) { | |
1733 | OSAddAtomic(1, &ipstat.ips_noroute); | |
1734 | error = EHOSTUNREACH; | |
1735 | goto bad; | |
1736 | } | |
1737 | ||
1738 | RT_LOCK_SPIN(ro_fwd->ro_rt); | |
1739 | ia_fw = ifatoia(ro_fwd->ro_rt->rt_ifa); | |
1740 | if (ia_fw != NULL) { | |
1741 | /* Become a regular mutex */ | |
1742 | RT_CONVERT_LOCK(ro_fwd->ro_rt); | |
1743 | IFA_ADDREF(&ia_fw->ia_ifa); | |
1744 | } | |
1745 | ifp = ro_fwd->ro_rt->rt_ifp; | |
1746 | ro_fwd->ro_rt->rt_use++; | |
1747 | if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY) | |
1748 | dst = SIN(ro_fwd->ro_rt->rt_gateway); | |
1749 | if (ro_fwd->ro_rt->rt_flags & RTF_HOST) { | |
1750 | /* double negation needed for bool bit field */ | |
1751 | ipobf.isbroadcast = | |
1752 | !!(ro_fwd->ro_rt->rt_flags & RTF_BROADCAST); | |
1753 | } else { | |
1754 | /* Become a regular mutex */ | |
1755 | RT_CONVERT_LOCK(ro_fwd->ro_rt); | |
1756 | ipobf.isbroadcast = | |
1757 | in_broadcast(dst->sin_addr, ifp); | |
1758 | } | |
1759 | RT_UNLOCK(ro_fwd->ro_rt); | |
1760 | ROUTE_RELEASE(ro); | |
1761 | ro->ro_rt = ro_fwd->ro_rt; | |
1762 | ro_fwd->ro_rt = NULL; | |
1763 | dst = SIN(&ro_fwd->ro_dst); | |
1764 | ||
1765 | /* | |
1766 | * If we added a default src ip earlier, | |
1767 | * which would have been gotten from the-then | |
1768 | * interface, do it again, from the new one. | |
1769 | */ | |
1770 | if (ia_fw != NULL) { | |
1771 | if (ipobf.fwd_rewrite_src) { | |
1772 | IFA_LOCK_SPIN(&ia_fw->ia_ifa); | |
1773 | ip->ip_src = IA_SIN(ia_fw)->sin_addr; | |
1774 | IFA_UNLOCK(&ia_fw->ia_ifa); | |
1775 | } | |
1776 | IFA_REMREF(&ia_fw->ia_ifa); | |
1777 | } | |
1778 | goto pass; | |
1779 | } | |
1780 | #endif /* IPFIREWALL_FORWARD */ | |
1781 | /* | |
1782 | * if we get here, none of the above matches, and | |
1783 | * we have to drop the pkt | |
1784 | */ | |
1785 | m_freem(m); | |
1786 | error = EACCES; /* not sure this is the right error msg */ | |
1787 | goto done; | |
1788 | } | |
1789 | ||
1790 | pass: | |
1791 | #endif /* IPFIREWALL */ | |
1792 | ||
1793 | /* 127/8 must not appear on wire - RFC1122 */ | |
1794 | if (!(ifp->if_flags & IFF_LOOPBACK) && | |
1795 | ((ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || | |
1796 | (ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { | |
1797 | OSAddAtomic(1, &ipstat.ips_badaddr); | |
1798 | error = EADDRNOTAVAIL; | |
1799 | goto bad; | |
1800 | } | |
1801 | ||
1802 | if (ipoa != NULL) { | |
1803 | u_int8_t dscp = ip->ip_tos >> IPTOS_DSCP_SHIFT; | |
1804 | ||
1805 | error = set_packet_qos(m, ifp, | |
1806 | ipoa->ipoa_flags & IPOAF_QOSMARKING_ALLOWED ? TRUE : FALSE, | |
1807 | ipoa->ipoa_sotc, ipoa->ipoa_netsvctype, &dscp); | |
1808 | if (error == 0) { | |
1809 | ip->ip_tos &= IPTOS_ECN_MASK; | |
1810 | ip->ip_tos |= dscp << IPTOS_DSCP_SHIFT; | |
1811 | } else { | |
1812 | printf("%s if_dscp_for_mbuf() error %d\n", __func__, error); | |
1813 | error = 0; | |
1814 | } | |
1815 | } | |
1816 | ||
1817 | /* | |
1818 | * Some Wi-Fi AP implementations do not correctly handle multicast IP | |
1819 | * packets with DSCP bits set -- see radr://9331522 -- so as a | |
1820 | * workaround we clear the DSCP bits and set the service class to BE | |
1821 | */ | |
1822 | if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) && IFNET_IS_WIFI_INFRA(ifp)) { | |
1823 | ip->ip_tos &= IPTOS_ECN_MASK; | |
1824 | mbuf_set_service_class(m, MBUF_SC_BE); | |
1825 | } | |
1826 | ||
1827 | ip_output_checksum(ifp, m, (IP_VHL_HL(ip->ip_vhl) << 2), | |
1828 | ip->ip_len, &sw_csum); | |
1829 | ||
1830 | interface_mtu = ifp->if_mtu; | |
1831 | ||
1832 | if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) { | |
1833 | interface_mtu = IN6_LINKMTU(ifp); | |
1834 | /* Further adjust the size for CLAT46 expansion */ | |
1835 | interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD; | |
1836 | } | |
1837 | ||
1838 | /* | |
1839 | * If small enough for interface, or the interface will take | |
1840 | * care of the fragmentation for us, can just send directly. | |
1841 | */ | |
1842 | if ((u_short)ip->ip_len <= interface_mtu || TSO_IPV4_OK(ifp, m) || | |
1843 | (!(ip->ip_off & IP_DF) && (ifp->if_hwassist & CSUM_FRAGMENT))) { | |
1844 | #if BYTE_ORDER != BIG_ENDIAN | |
1845 | HTONS(ip->ip_len); | |
1846 | HTONS(ip->ip_off); | |
1847 | #endif | |
1848 | ||
1849 | ip->ip_sum = 0; | |
1850 | if (sw_csum & CSUM_DELAY_IP) { | |
1851 | ip->ip_sum = ip_cksum_hdr_out(m, hlen); | |
1852 | sw_csum &= ~CSUM_DELAY_IP; | |
1853 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; | |
1854 | } | |
1855 | ||
1856 | #if IPSEC | |
1857 | /* clean ipsec history once it goes out of the node */ | |
1858 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) | |
1859 | ipsec_delaux(m); | |
1860 | #endif /* IPSEC */ | |
1861 | if ((m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) && | |
1862 | (m->m_pkthdr.tso_segsz > 0)) | |
1863 | scnt += m->m_pkthdr.len / m->m_pkthdr.tso_segsz; | |
1864 | else | |
1865 | scnt++; | |
1866 | ||
1867 | if (packetchain == 0) { | |
1868 | if (ro->ro_rt != NULL && nstat_collect) | |
1869 | nstat_route_tx(ro->ro_rt, scnt, | |
1870 | m->m_pkthdr.len, 0); | |
1871 | ||
1872 | error = dlil_output(ifp, PF_INET, m, ro->ro_rt, | |
1873 | SA(dst), 0, adv); | |
1874 | if (dlil_verbose && error) { | |
1875 | printf("dlil_output error on interface %s: %d\n", | |
1876 | ifp->if_xname, error); | |
1877 | } | |
1878 | scnt = 0; | |
1879 | goto done; | |
1880 | } else { | |
1881 | /* | |
1882 | * packet chaining allows us to reuse the | |
1883 | * route for all packets | |
1884 | */ | |
1885 | bytecnt += m->m_pkthdr.len; | |
1886 | mppn = &m->m_nextpkt; | |
1887 | m = m->m_nextpkt; | |
1888 | if (m == NULL) { | |
1889 | #if PF | |
1890 | sendchain: | |
1891 | #endif /* PF */ | |
1892 | if (pktcnt > ip_maxchainsent) | |
1893 | ip_maxchainsent = pktcnt; | |
1894 | if (ro->ro_rt != NULL && nstat_collect) | |
1895 | nstat_route_tx(ro->ro_rt, scnt, | |
1896 | bytecnt, 0); | |
1897 | ||
1898 | error = dlil_output(ifp, PF_INET, packetlist, | |
1899 | ro->ro_rt, SA(dst), 0, adv); | |
1900 | if (dlil_verbose && error) { | |
1901 | printf("dlil_output error on interface %s: %d\n", | |
1902 | ifp->if_xname, error); | |
1903 | } | |
1904 | pktcnt = 0; | |
1905 | scnt = 0; | |
1906 | bytecnt = 0; | |
1907 | goto done; | |
1908 | ||
1909 | } | |
1910 | m0 = m; | |
1911 | pktcnt++; | |
1912 | goto loopit; | |
1913 | } | |
1914 | } | |
1915 | ||
1916 | VERIFY(interface_mtu != 0); | |
1917 | /* | |
1918 | * Too large for interface; fragment if possible. | |
1919 | * Must be able to put at least 8 bytes per fragment. | |
1920 | * Balk when DF bit is set or the interface didn't support TSO. | |
1921 | */ | |
1922 | if ((ip->ip_off & IP_DF) || pktcnt > 0 || | |
1923 | (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) { | |
1924 | error = EMSGSIZE; | |
1925 | /* | |
1926 | * This case can happen if the user changed the MTU | |
1927 | * of an interface after enabling IP on it. Because | |
1928 | * most netifs don't keep track of routes pointing to | |
1929 | * them, there is no way for one to update all its | |
1930 | * routes when the MTU is changed. | |
1931 | */ | |
1932 | if (ro->ro_rt) { | |
1933 | RT_LOCK_SPIN(ro->ro_rt); | |
1934 | if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) && | |
1935 | !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) && | |
1936 | (ro->ro_rt->rt_rmx.rmx_mtu > interface_mtu)) { | |
1937 | ro->ro_rt->rt_rmx.rmx_mtu = interface_mtu; | |
1938 | } | |
1939 | RT_UNLOCK(ro->ro_rt); | |
1940 | } | |
1941 | if (pktcnt > 0) { | |
1942 | m0 = packetlist; | |
1943 | } | |
1944 | OSAddAtomic(1, &ipstat.ips_cantfrag); | |
1945 | goto bad; | |
1946 | } | |
1947 | ||
1948 | /* | |
1949 | * XXX Only TCP seems to be passing a list of packets here. | |
1950 | * The following issue is limited to UDP datagrams with 0 checksum. | |
1951 | * For now limit it to the case when single packet is passed down. | |
1952 | */ | |
1953 | if (packetchain == 0 && IS_INTF_CLAT46(ifp)) { | |
1954 | /* | |
1955 | * If it is a UDP packet that has checksum set to 0 | |
1956 | * and is also not being offloaded, compute a full checksum | |
1957 | * and update the UDP checksum. | |
1958 | */ | |
1959 | if (ip->ip_p == IPPROTO_UDP && | |
1960 | !(m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_PARTIAL))) { | |
1961 | struct udphdr *uh = NULL; | |
1962 | ||
1963 | if (m->m_len < hlen + sizeof (struct udphdr)) { | |
1964 | m = m_pullup(m, hlen + sizeof (struct udphdr)); | |
1965 | if (m == NULL) { | |
1966 | error = ENOBUFS; | |
1967 | m0 = m; | |
1968 | goto bad; | |
1969 | } | |
1970 | m0 = m; | |
1971 | ip = mtod(m, struct ip *); | |
1972 | } | |
1973 | /* | |
1974 | * Get UDP header and if checksum is 0, then compute the full | |
1975 | * checksum. | |
1976 | */ | |
1977 | uh = (struct udphdr *)(void *)((caddr_t)ip + hlen); | |
1978 | if (uh->uh_sum == 0) { | |
1979 | uh->uh_sum = inet_cksum(m, IPPROTO_UDP, hlen, | |
1980 | ip->ip_len - hlen); | |
1981 | if (uh->uh_sum == 0) | |
1982 | uh->uh_sum = 0xffff; | |
1983 | } | |
1984 | } | |
1985 | } | |
1986 | ||
1987 | error = ip_fragment(m, ifp, interface_mtu, sw_csum); | |
1988 | if (error != 0) { | |
1989 | m0 = m = NULL; | |
1990 | goto bad; | |
1991 | } | |
1992 | ||
1993 | KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr, | |
1994 | ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len); | |
1995 | ||
1996 | for (m = m0; m; m = m0) { | |
1997 | m0 = m->m_nextpkt; | |
1998 | m->m_nextpkt = 0; | |
1999 | #if IPSEC | |
2000 | /* clean ipsec history once it goes out of the node */ | |
2001 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) | |
2002 | ipsec_delaux(m); | |
2003 | #endif /* IPSEC */ | |
2004 | if (error == 0) { | |
2005 | if ((packetchain != 0) && (pktcnt > 0)) { | |
2006 | panic("%s: mix of packet in packetlist is " | |
2007 | "wrong=%p", __func__, packetlist); | |
2008 | /* NOTREACHED */ | |
2009 | } | |
2010 | if (ro->ro_rt != NULL && nstat_collect) { | |
2011 | nstat_route_tx(ro->ro_rt, 1, | |
2012 | m->m_pkthdr.len, 0); | |
2013 | } | |
2014 | error = dlil_output(ifp, PF_INET, m, ro->ro_rt, | |
2015 | SA(dst), 0, adv); | |
2016 | if (dlil_verbose && error) { | |
2017 | printf("dlil_output error on interface %s: %d\n", | |
2018 | ifp->if_xname, error); | |
2019 | } | |
2020 | } else { | |
2021 | m_freem(m); | |
2022 | } | |
2023 | } | |
2024 | ||
2025 | if (error == 0) | |
2026 | OSAddAtomic(1, &ipstat.ips_fragmented); | |
2027 | ||
2028 | done: | |
2029 | if (ia != NULL) { | |
2030 | IFA_REMREF(&ia->ia_ifa); | |
2031 | ia = NULL; | |
2032 | } | |
2033 | #if IPSEC | |
2034 | ROUTE_RELEASE(&ipsec_state.ro); | |
2035 | if (sp != NULL) { | |
2036 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, | |
2037 | printf("DP ip_output call free SP:%x\n", sp)); | |
2038 | key_freesp(sp, KEY_SADB_UNLOCKED); | |
2039 | } | |
2040 | #endif /* IPSEC */ | |
2041 | #if NECP | |
2042 | ROUTE_RELEASE(&necp_route); | |
2043 | #endif /* NECP */ | |
2044 | #if DUMMYNET | |
2045 | ROUTE_RELEASE(&saved_route); | |
2046 | #endif /* DUMMYNET */ | |
2047 | #if IPFIREWALL_FORWARD | |
2048 | ROUTE_RELEASE(&sro_fwd); | |
2049 | #endif /* IPFIREWALL_FORWARD */ | |
2050 | ||
2051 | KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0); | |
2052 | if (ip_output_measure) { | |
2053 | net_perf_measure_time(&net_perf, &start_tv, packets_processed); | |
2054 | net_perf_histogram(&net_perf, packets_processed); | |
2055 | } | |
2056 | return (error); | |
2057 | bad: | |
2058 | if (pktcnt > 0) | |
2059 | m0 = packetlist; | |
2060 | m_freem_list(m0); | |
2061 | goto done; | |
2062 | ||
2063 | #undef ipsec_state | |
2064 | #undef args | |
2065 | #undef sro_fwd | |
2066 | #undef saved_route | |
2067 | #undef ipf_pktopts | |
2068 | #undef IP_CHECK_RESTRICTIONS | |
2069 | } | |
2070 | ||
2071 | int | |
2072 | ip_fragment(struct mbuf *m, struct ifnet *ifp, unsigned long mtu, int sw_csum) | |
2073 | { | |
2074 | struct ip *ip, *mhip; | |
2075 | int len, hlen, mhlen, firstlen, off, error = 0; | |
2076 | struct mbuf **mnext = &m->m_nextpkt, *m0; | |
2077 | int nfrags = 1; | |
2078 | ||
2079 | ip = mtod(m, struct ip *); | |
2080 | #ifdef _IP_VHL | |
2081 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; | |
2082 | #else /* !_IP_VHL */ | |
2083 | hlen = ip->ip_hl << 2; | |
2084 | #endif /* !_IP_VHL */ | |
2085 | ||
2086 | #ifdef INET6 | |
2087 | /* | |
2088 | * We need to adjust the fragment sizes to account | |
2089 | * for IPv6 fragment header if it needs to be translated | |
2090 | * from IPv4 to IPv6. | |
2091 | */ | |
2092 | if (IS_INTF_CLAT46(ifp)) | |
2093 | mtu -= sizeof(struct ip6_frag); | |
2094 | ||
2095 | #endif | |
2096 | firstlen = len = (mtu - hlen) &~ 7; | |
2097 | if (len < 8) { | |
2098 | m_freem(m); | |
2099 | return (EMSGSIZE); | |
2100 | } | |
2101 | ||
2102 | /* | |
2103 | * if the interface will not calculate checksums on | |
2104 | * fragmented packets, then do it here. | |
2105 | */ | |
2106 | if ((m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) && | |
2107 | !(ifp->if_hwassist & CSUM_IP_FRAGS)) | |
2108 | in_delayed_cksum(m); | |
2109 | ||
2110 | /* | |
2111 | * Loop through length of segment after first fragment, | |
2112 | * make new header and copy data of each part and link onto chain. | |
2113 | */ | |
2114 | m0 = m; | |
2115 | mhlen = sizeof (struct ip); | |
2116 | for (off = hlen + len; off < (u_short)ip->ip_len; off += len) { | |
2117 | MGETHDR(m, M_DONTWAIT, MT_HEADER); /* MAC-OK */ | |
2118 | if (m == NULL) { | |
2119 | error = ENOBUFS; | |
2120 | OSAddAtomic(1, &ipstat.ips_odropped); | |
2121 | goto sendorfree; | |
2122 | } | |
2123 | m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG; | |
2124 | m->m_data += max_linkhdr; | |
2125 | mhip = mtod(m, struct ip *); | |
2126 | *mhip = *ip; | |
2127 | if (hlen > sizeof (struct ip)) { | |
2128 | mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); | |
2129 | mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2); | |
2130 | } | |
2131 | m->m_len = mhlen; | |
2132 | mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & ~IP_MF); | |
2133 | if (ip->ip_off & IP_MF) | |
2134 | mhip->ip_off |= IP_MF; | |
2135 | if (off + len >= (u_short)ip->ip_len) | |
2136 | len = (u_short)ip->ip_len - off; | |
2137 | else | |
2138 | mhip->ip_off |= IP_MF; | |
2139 | mhip->ip_len = htons((u_short)(len + mhlen)); | |
2140 | m->m_next = m_copy(m0, off, len); | |
2141 | if (m->m_next == NULL) { | |
2142 | (void) m_free(m); | |
2143 | error = ENOBUFS; /* ??? */ | |
2144 | OSAddAtomic(1, &ipstat.ips_odropped); | |
2145 | goto sendorfree; | |
2146 | } | |
2147 | m->m_pkthdr.len = mhlen + len; | |
2148 | m->m_pkthdr.rcvif = NULL; | |
2149 | m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags; | |
2150 | ||
2151 | M_COPY_CLASSIFIER(m, m0); | |
2152 | M_COPY_PFTAG(m, m0); | |
2153 | ||
2154 | #if CONFIG_MACF_NET | |
2155 | mac_netinet_fragment(m0, m); | |
2156 | #endif /* CONFIG_MACF_NET */ | |
2157 | ||
2158 | #if BYTE_ORDER != BIG_ENDIAN | |
2159 | HTONS(mhip->ip_off); | |
2160 | #endif | |
2161 | ||
2162 | mhip->ip_sum = 0; | |
2163 | if (sw_csum & CSUM_DELAY_IP) { | |
2164 | mhip->ip_sum = ip_cksum_hdr_out(m, mhlen); | |
2165 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; | |
2166 | } | |
2167 | *mnext = m; | |
2168 | mnext = &m->m_nextpkt; | |
2169 | nfrags++; | |
2170 | } | |
2171 | OSAddAtomic(nfrags, &ipstat.ips_ofragments); | |
2172 | ||
2173 | /* set first/last markers for fragment chain */ | |
2174 | m->m_flags |= M_LASTFRAG; | |
2175 | m0->m_flags |= M_FIRSTFRAG | M_FRAG; | |
2176 | m0->m_pkthdr.csum_data = nfrags; | |
2177 | ||
2178 | /* | |
2179 | * Update first fragment by trimming what's been copied out | |
2180 | * and updating header, then send each fragment (in order). | |
2181 | */ | |
2182 | m = m0; | |
2183 | m_adj(m, hlen + firstlen - (u_short)ip->ip_len); | |
2184 | m->m_pkthdr.len = hlen + firstlen; | |
2185 | ip->ip_len = htons((u_short)m->m_pkthdr.len); | |
2186 | ip->ip_off |= IP_MF; | |
2187 | ||
2188 | #if BYTE_ORDER != BIG_ENDIAN | |
2189 | HTONS(ip->ip_off); | |
2190 | #endif | |
2191 | ||
2192 | ip->ip_sum = 0; | |
2193 | if (sw_csum & CSUM_DELAY_IP) { | |
2194 | ip->ip_sum = ip_cksum_hdr_out(m, hlen); | |
2195 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; | |
2196 | } | |
2197 | sendorfree: | |
2198 | if (error) | |
2199 | m_freem_list(m0); | |
2200 | ||
2201 | return (error); | |
2202 | } | |
2203 | ||
2204 | static void | |
2205 | ip_out_cksum_stats(int proto, u_int32_t len) | |
2206 | { | |
2207 | switch (proto) { | |
2208 | case IPPROTO_TCP: | |
2209 | tcp_out_cksum_stats(len); | |
2210 | break; | |
2211 | case IPPROTO_UDP: | |
2212 | udp_out_cksum_stats(len); | |
2213 | break; | |
2214 | default: | |
2215 | /* keep only TCP or UDP stats for now */ | |
2216 | break; | |
2217 | } | |
2218 | } | |
2219 | ||
2220 | /* | |
2221 | * Process a delayed payload checksum calculation (outbound path.) | |
2222 | * | |
2223 | * hoff is the number of bytes beyond the mbuf data pointer which | |
2224 | * points to the IP header. | |
2225 | * | |
2226 | * Returns a bitmask representing all the work done in software. | |
2227 | */ | |
2228 | uint32_t | |
2229 | in_finalize_cksum(struct mbuf *m, uint32_t hoff, uint32_t csum_flags) | |
2230 | { | |
2231 | unsigned char buf[15 << 2] __attribute__((aligned(8))); | |
2232 | struct ip *ip; | |
2233 | uint32_t offset, _hlen, mlen, hlen, len, sw_csum; | |
2234 | uint16_t csum, ip_len; | |
2235 | ||
2236 | _CASSERT(sizeof (csum) == sizeof (uint16_t)); | |
2237 | VERIFY(m->m_flags & M_PKTHDR); | |
2238 | ||
2239 | sw_csum = (csum_flags & m->m_pkthdr.csum_flags); | |
2240 | ||
2241 | if ((sw_csum &= (CSUM_DELAY_IP | CSUM_DELAY_DATA)) == 0) | |
2242 | goto done; | |
2243 | ||
2244 | mlen = m->m_pkthdr.len; /* total mbuf len */ | |
2245 | ||
2246 | /* sanity check (need at least simple IP header) */ | |
2247 | if (mlen < (hoff + sizeof (*ip))) { | |
2248 | panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr " | |
2249 | "(%u+%u)\n", __func__, m, mlen, hoff, | |
2250 | (uint32_t)sizeof (*ip)); | |
2251 | /* NOTREACHED */ | |
2252 | } | |
2253 | ||
2254 | /* | |
2255 | * In case the IP header is not contiguous, or not 32-bit aligned, | |
2256 | * or if we're computing the IP header checksum, copy it to a local | |
2257 | * buffer. Copy only the simple IP header here (IP options case | |
2258 | * is handled below.) | |
2259 | */ | |
2260 | if ((sw_csum & CSUM_DELAY_IP) || (hoff + sizeof (*ip)) > m->m_len || | |
2261 | !IP_HDR_ALIGNED_P(mtod(m, caddr_t) + hoff)) { | |
2262 | m_copydata(m, hoff, sizeof (*ip), (caddr_t)buf); | |
2263 | ip = (struct ip *)(void *)buf; | |
2264 | _hlen = sizeof (*ip); | |
2265 | } else { | |
2266 | ip = (struct ip *)(void *)(m->m_data + hoff); | |
2267 | _hlen = 0; | |
2268 | } | |
2269 | ||
2270 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; /* IP header len */ | |
2271 | ||
2272 | /* sanity check */ | |
2273 | if (mlen < (hoff + hlen)) { | |
2274 | panic("%s: mbuf %p pkt too short (%d) for IP header (%u), " | |
2275 | "hoff %u", __func__, m, mlen, hlen, hoff); | |
2276 | /* NOTREACHED */ | |
2277 | } | |
2278 | ||
2279 | /* | |
2280 | * We could be in the context of an IP or interface filter; in the | |
2281 | * former case, ip_len would be in host (correct) order while for | |
2282 | * the latter it would be in network order. Because of this, we | |
2283 | * attempt to interpret the length field by comparing it against | |
2284 | * the actual packet length. If the comparison fails, byte swap | |
2285 | * the length and check again. If it still fails, use the actual | |
2286 | * packet length. This also covers the trailing bytes case. | |
2287 | */ | |
2288 | ip_len = ip->ip_len; | |
2289 | if (ip_len != (mlen - hoff)) { | |
2290 | ip_len = OSSwapInt16(ip_len); | |
2291 | if (ip_len != (mlen - hoff)) { | |
2292 | printf("%s: mbuf 0x%llx proto %d IP len %d (%x) " | |
2293 | "[swapped %d (%x)] doesn't match actual packet " | |
2294 | "length; %d is used instead\n", __func__, | |
2295 | (uint64_t)VM_KERNEL_ADDRPERM(m), ip->ip_p, | |
2296 | ip->ip_len, ip->ip_len, ip_len, ip_len, | |
2297 | (mlen - hoff)); | |
2298 | ip_len = mlen - hoff; | |
2299 | } | |
2300 | } | |
2301 | ||
2302 | len = ip_len - hlen; /* csum span */ | |
2303 | ||
2304 | if (sw_csum & CSUM_DELAY_DATA) { | |
2305 | uint16_t ulpoff; | |
2306 | ||
2307 | /* | |
2308 | * offset is added to the lower 16-bit value of csum_data, | |
2309 | * which is expected to contain the ULP offset; therefore | |
2310 | * CSUM_PARTIAL offset adjustment must be undone. | |
2311 | */ | |
2312 | if ((m->m_pkthdr.csum_flags & (CSUM_PARTIAL|CSUM_DATA_VALID)) == | |
2313 | (CSUM_PARTIAL|CSUM_DATA_VALID)) { | |
2314 | /* | |
2315 | * Get back the original ULP offset (this will | |
2316 | * undo the CSUM_PARTIAL logic in ip_output.) | |
2317 | */ | |
2318 | m->m_pkthdr.csum_data = (m->m_pkthdr.csum_tx_stuff - | |
2319 | m->m_pkthdr.csum_tx_start); | |
2320 | } | |
2321 | ||
2322 | ulpoff = (m->m_pkthdr.csum_data & 0xffff); /* ULP csum offset */ | |
2323 | offset = hoff + hlen; /* ULP header */ | |
2324 | ||
2325 | if (mlen < (ulpoff + sizeof (csum))) { | |
2326 | panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP " | |
2327 | "cksum offset (%u) cksum flags 0x%x\n", __func__, | |
2328 | m, mlen, ip->ip_p, ulpoff, m->m_pkthdr.csum_flags); | |
2329 | /* NOTREACHED */ | |
2330 | } | |
2331 | ||
2332 | csum = inet_cksum(m, 0, offset, len); | |
2333 | ||
2334 | /* Update stats */ | |
2335 | ip_out_cksum_stats(ip->ip_p, len); | |
2336 | ||
2337 | /* RFC1122 4.1.3.4 */ | |
2338 | if (csum == 0 && | |
2339 | (m->m_pkthdr.csum_flags & (CSUM_UDP|CSUM_ZERO_INVERT))) | |
2340 | csum = 0xffff; | |
2341 | ||
2342 | /* Insert the checksum in the ULP csum field */ | |
2343 | offset += ulpoff; | |
2344 | if (offset + sizeof (csum) > m->m_len) { | |
2345 | m_copyback(m, offset, sizeof (csum), &csum); | |
2346 | } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) { | |
2347 | *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum; | |
2348 | } else { | |
2349 | bcopy(&csum, (mtod(m, char *) + offset), sizeof (csum)); | |
2350 | } | |
2351 | m->m_pkthdr.csum_flags &= ~(CSUM_DELAY_DATA | CSUM_DATA_VALID | | |
2352 | CSUM_PARTIAL | CSUM_ZERO_INVERT); | |
2353 | } | |
2354 | ||
2355 | if (sw_csum & CSUM_DELAY_IP) { | |
2356 | /* IP header must be in the local buffer */ | |
2357 | VERIFY(_hlen == sizeof (*ip)); | |
2358 | if (_hlen != hlen) { | |
2359 | VERIFY(hlen <= sizeof (buf)); | |
2360 | m_copydata(m, hoff, hlen, (caddr_t)buf); | |
2361 | ip = (struct ip *)(void *)buf; | |
2362 | _hlen = hlen; | |
2363 | } | |
2364 | ||
2365 | /* | |
2366 | * Compute the IP header checksum as if the IP length | |
2367 | * is the length which we believe is "correct"; see | |
2368 | * how ip_len gets calculated above. Note that this | |
2369 | * is done on the local copy and not on the real one. | |
2370 | */ | |
2371 | ip->ip_len = htons(ip_len); | |
2372 | ip->ip_sum = 0; | |
2373 | csum = in_cksum_hdr_opt(ip); | |
2374 | ||
2375 | /* Update stats */ | |
2376 | ipstat.ips_snd_swcsum++; | |
2377 | ipstat.ips_snd_swcsum_bytes += hlen; | |
2378 | ||
2379 | /* | |
2380 | * Insert only the checksum in the existing IP header | |
2381 | * csum field; all other fields are left unchanged. | |
2382 | */ | |
2383 | offset = hoff + offsetof(struct ip, ip_sum); | |
2384 | if (offset + sizeof (csum) > m->m_len) { | |
2385 | m_copyback(m, offset, sizeof (csum), &csum); | |
2386 | } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) { | |
2387 | *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum; | |
2388 | } else { | |
2389 | bcopy(&csum, (mtod(m, char *) + offset), sizeof (csum)); | |
2390 | } | |
2391 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; | |
2392 | } | |
2393 | ||
2394 | done: | |
2395 | return (sw_csum); | |
2396 | } | |
2397 | ||
2398 | /* | |
2399 | * Insert IP options into preformed packet. | |
2400 | * Adjust IP destination as required for IP source routing, | |
2401 | * as indicated by a non-zero in_addr at the start of the options. | |
2402 | * | |
2403 | * XXX This routine assumes that the packet has no options in place. | |
2404 | */ | |
2405 | static struct mbuf * | |
2406 | ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen) | |
2407 | { | |
2408 | struct ipoption *p = mtod(opt, struct ipoption *); | |
2409 | struct mbuf *n; | |
2410 | struct ip *ip = mtod(m, struct ip *); | |
2411 | unsigned optlen; | |
2412 | ||
2413 | optlen = opt->m_len - sizeof (p->ipopt_dst); | |
2414 | if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) | |
2415 | return (m); /* XXX should fail */ | |
2416 | if (p->ipopt_dst.s_addr) | |
2417 | ip->ip_dst = p->ipopt_dst; | |
2418 | if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) { | |
2419 | MGETHDR(n, M_DONTWAIT, MT_HEADER); /* MAC-OK */ | |
2420 | if (n == NULL) | |
2421 | return (m); | |
2422 | n->m_pkthdr.rcvif = 0; | |
2423 | #if CONFIG_MACF_NET | |
2424 | mac_mbuf_label_copy(m, n); | |
2425 | #endif /* CONFIG_MACF_NET */ | |
2426 | n->m_pkthdr.len = m->m_pkthdr.len + optlen; | |
2427 | m->m_len -= sizeof (struct ip); | |
2428 | m->m_data += sizeof (struct ip); | |
2429 | n->m_next = m; | |
2430 | m = n; | |
2431 | m->m_len = optlen + sizeof (struct ip); | |
2432 | m->m_data += max_linkhdr; | |
2433 | (void) memcpy(mtod(m, void *), ip, sizeof (struct ip)); | |
2434 | } else { | |
2435 | m->m_data -= optlen; | |
2436 | m->m_len += optlen; | |
2437 | m->m_pkthdr.len += optlen; | |
2438 | ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof (struct ip)); | |
2439 | } | |
2440 | ip = mtod(m, struct ip *); | |
2441 | bcopy(p->ipopt_list, ip + 1, optlen); | |
2442 | *phlen = sizeof (struct ip) + optlen; | |
2443 | ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2); | |
2444 | ip->ip_len += optlen; | |
2445 | return (m); | |
2446 | } | |
2447 | ||
2448 | /* | |
2449 | * Copy options from ip to jp, | |
2450 | * omitting those not copied during fragmentation. | |
2451 | */ | |
2452 | static int | |
2453 | ip_optcopy(struct ip *ip, struct ip *jp) | |
2454 | { | |
2455 | u_char *cp, *dp; | |
2456 | int opt, optlen, cnt; | |
2457 | ||
2458 | cp = (u_char *)(ip + 1); | |
2459 | dp = (u_char *)(jp + 1); | |
2460 | cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); | |
2461 | for (; cnt > 0; cnt -= optlen, cp += optlen) { | |
2462 | opt = cp[0]; | |
2463 | if (opt == IPOPT_EOL) | |
2464 | break; | |
2465 | if (opt == IPOPT_NOP) { | |
2466 | /* Preserve for IP mcast tunnel's LSRR alignment. */ | |
2467 | *dp++ = IPOPT_NOP; | |
2468 | optlen = 1; | |
2469 | continue; | |
2470 | } | |
2471 | #if DIAGNOSTIC | |
2472 | if (cnt < IPOPT_OLEN + sizeof (*cp)) { | |
2473 | panic("malformed IPv4 option passed to ip_optcopy"); | |
2474 | /* NOTREACHED */ | |
2475 | } | |
2476 | #endif | |
2477 | optlen = cp[IPOPT_OLEN]; | |
2478 | #if DIAGNOSTIC | |
2479 | if (optlen < IPOPT_OLEN + sizeof (*cp) || optlen > cnt) { | |
2480 | panic("malformed IPv4 option passed to ip_optcopy"); | |
2481 | /* NOTREACHED */ | |
2482 | } | |
2483 | #endif | |
2484 | /* bogus lengths should have been caught by ip_dooptions */ | |
2485 | if (optlen > cnt) | |
2486 | optlen = cnt; | |
2487 | if (IPOPT_COPIED(opt)) { | |
2488 | bcopy(cp, dp, optlen); | |
2489 | dp += optlen; | |
2490 | } | |
2491 | } | |
2492 | for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++) | |
2493 | *dp++ = IPOPT_EOL; | |
2494 | return (optlen); | |
2495 | } | |
2496 | ||
2497 | /* | |
2498 | * IP socket option processing. | |
2499 | */ | |
2500 | int | |
2501 | ip_ctloutput(struct socket *so, struct sockopt *sopt) | |
2502 | { | |
2503 | struct inpcb *inp = sotoinpcb(so); | |
2504 | int error, optval; | |
2505 | ||
2506 | error = optval = 0; | |
2507 | if (sopt->sopt_level != IPPROTO_IP) | |
2508 | return (EINVAL); | |
2509 | ||
2510 | switch (sopt->sopt_dir) { | |
2511 | case SOPT_SET: | |
2512 | switch (sopt->sopt_name) { | |
2513 | #ifdef notyet | |
2514 | case IP_RETOPTS: | |
2515 | #endif | |
2516 | case IP_OPTIONS: { | |
2517 | struct mbuf *m; | |
2518 | ||
2519 | if (sopt->sopt_valsize > MLEN) { | |
2520 | error = EMSGSIZE; | |
2521 | break; | |
2522 | } | |
2523 | MGET(m, sopt->sopt_p != kernproc ? M_WAIT : M_DONTWAIT, | |
2524 | MT_HEADER); | |
2525 | if (m == NULL) { | |
2526 | error = ENOBUFS; | |
2527 | break; | |
2528 | } | |
2529 | m->m_len = sopt->sopt_valsize; | |
2530 | error = sooptcopyin(sopt, mtod(m, char *), | |
2531 | m->m_len, m->m_len); | |
2532 | if (error) { | |
2533 | m_freem(m); | |
2534 | break; | |
2535 | } | |
2536 | ||
2537 | return (ip_pcbopts(sopt->sopt_name, | |
2538 | &inp->inp_options, m)); | |
2539 | } | |
2540 | ||
2541 | case IP_TOS: | |
2542 | case IP_TTL: | |
2543 | case IP_RECVOPTS: | |
2544 | case IP_RECVRETOPTS: | |
2545 | case IP_RECVDSTADDR: | |
2546 | case IP_RECVIF: | |
2547 | case IP_RECVTTL: | |
2548 | case IP_RECVPKTINFO: | |
2549 | case IP_RECVTOS: | |
2550 | error = sooptcopyin(sopt, &optval, sizeof (optval), | |
2551 | sizeof (optval)); | |
2552 | if (error) | |
2553 | break; | |
2554 | ||
2555 | switch (sopt->sopt_name) { | |
2556 | case IP_TOS: | |
2557 | inp->inp_ip_tos = optval; | |
2558 | break; | |
2559 | ||
2560 | case IP_TTL: | |
2561 | inp->inp_ip_ttl = optval; | |
2562 | break; | |
2563 | #define OPTSET(bit) \ | |
2564 | if (optval) \ | |
2565 | inp->inp_flags |= bit; \ | |
2566 | else \ | |
2567 | inp->inp_flags &= ~bit; | |
2568 | ||
2569 | case IP_RECVOPTS: | |
2570 | OPTSET(INP_RECVOPTS); | |
2571 | break; | |
2572 | ||
2573 | case IP_RECVRETOPTS: | |
2574 | OPTSET(INP_RECVRETOPTS); | |
2575 | break; | |
2576 | ||
2577 | case IP_RECVDSTADDR: | |
2578 | OPTSET(INP_RECVDSTADDR); | |
2579 | break; | |
2580 | ||
2581 | case IP_RECVIF: | |
2582 | OPTSET(INP_RECVIF); | |
2583 | break; | |
2584 | ||
2585 | case IP_RECVTTL: | |
2586 | OPTSET(INP_RECVTTL); | |
2587 | break; | |
2588 | ||
2589 | case IP_RECVPKTINFO: | |
2590 | OPTSET(INP_PKTINFO); | |
2591 | break; | |
2592 | ||
2593 | case IP_RECVTOS: | |
2594 | OPTSET(INP_RECVTOS); | |
2595 | break; | |
2596 | #undef OPTSET | |
2597 | } | |
2598 | break; | |
2599 | /* | |
2600 | * Multicast socket options are processed by the in_mcast | |
2601 | * module. | |
2602 | */ | |
2603 | case IP_MULTICAST_IF: | |
2604 | case IP_MULTICAST_IFINDEX: | |
2605 | case IP_MULTICAST_VIF: | |
2606 | case IP_MULTICAST_TTL: | |
2607 | case IP_MULTICAST_LOOP: | |
2608 | case IP_ADD_MEMBERSHIP: | |
2609 | case IP_DROP_MEMBERSHIP: | |
2610 | case IP_ADD_SOURCE_MEMBERSHIP: | |
2611 | case IP_DROP_SOURCE_MEMBERSHIP: | |
2612 | case IP_BLOCK_SOURCE: | |
2613 | case IP_UNBLOCK_SOURCE: | |
2614 | case IP_MSFILTER: | |
2615 | case MCAST_JOIN_GROUP: | |
2616 | case MCAST_LEAVE_GROUP: | |
2617 | case MCAST_JOIN_SOURCE_GROUP: | |
2618 | case MCAST_LEAVE_SOURCE_GROUP: | |
2619 | case MCAST_BLOCK_SOURCE: | |
2620 | case MCAST_UNBLOCK_SOURCE: | |
2621 | error = inp_setmoptions(inp, sopt); | |
2622 | break; | |
2623 | ||
2624 | case IP_PORTRANGE: | |
2625 | error = sooptcopyin(sopt, &optval, sizeof (optval), | |
2626 | sizeof (optval)); | |
2627 | if (error) | |
2628 | break; | |
2629 | ||
2630 | switch (optval) { | |
2631 | case IP_PORTRANGE_DEFAULT: | |
2632 | inp->inp_flags &= ~(INP_LOWPORT); | |
2633 | inp->inp_flags &= ~(INP_HIGHPORT); | |
2634 | break; | |
2635 | ||
2636 | case IP_PORTRANGE_HIGH: | |
2637 | inp->inp_flags &= ~(INP_LOWPORT); | |
2638 | inp->inp_flags |= INP_HIGHPORT; | |
2639 | break; | |
2640 | ||
2641 | case IP_PORTRANGE_LOW: | |
2642 | inp->inp_flags &= ~(INP_HIGHPORT); | |
2643 | inp->inp_flags |= INP_LOWPORT; | |
2644 | break; | |
2645 | ||
2646 | default: | |
2647 | error = EINVAL; | |
2648 | break; | |
2649 | } | |
2650 | break; | |
2651 | ||
2652 | #if IPSEC | |
2653 | case IP_IPSEC_POLICY: { | |
2654 | caddr_t req = NULL; | |
2655 | size_t len = 0; | |
2656 | int priv; | |
2657 | struct mbuf *m; | |
2658 | int optname; | |
2659 | ||
2660 | if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ | |
2661 | break; | |
2662 | if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ | |
2663 | break; | |
2664 | priv = (proc_suser(sopt->sopt_p) == 0); | |
2665 | if (m) { | |
2666 | req = mtod(m, caddr_t); | |
2667 | len = m->m_len; | |
2668 | } | |
2669 | optname = sopt->sopt_name; | |
2670 | error = ipsec4_set_policy(inp, optname, req, len, priv); | |
2671 | m_freem(m); | |
2672 | break; | |
2673 | } | |
2674 | #endif /* IPSEC */ | |
2675 | ||
2676 | #if TRAFFIC_MGT | |
2677 | case IP_TRAFFIC_MGT_BACKGROUND: { | |
2678 | unsigned background = 0; | |
2679 | ||
2680 | error = sooptcopyin(sopt, &background, | |
2681 | sizeof (background), sizeof (background)); | |
2682 | if (error) | |
2683 | break; | |
2684 | ||
2685 | if (background) { | |
2686 | socket_set_traffic_mgt_flags_locked(so, | |
2687 | TRAFFIC_MGT_SO_BACKGROUND); | |
2688 | } else { | |
2689 | socket_clear_traffic_mgt_flags_locked(so, | |
2690 | TRAFFIC_MGT_SO_BACKGROUND); | |
2691 | } | |
2692 | ||
2693 | break; | |
2694 | } | |
2695 | #endif /* TRAFFIC_MGT */ | |
2696 | ||
2697 | /* | |
2698 | * On a multihomed system, scoped routing can be used to | |
2699 | * restrict the source interface used for sending packets. | |
2700 | * The socket option IP_BOUND_IF binds a particular AF_INET | |
2701 | * socket to an interface such that data sent on the socket | |
2702 | * is restricted to that interface. This is unlike the | |
2703 | * SO_DONTROUTE option where the routing table is bypassed; | |
2704 | * therefore it allows for a greater flexibility and control | |
2705 | * over the system behavior, and does not place any restriction | |
2706 | * on the destination address type (e.g. unicast, multicast, | |
2707 | * or broadcast if applicable) or whether or not the host is | |
2708 | * directly reachable. Note that in the multicast transmit | |
2709 | * case, IP_MULTICAST_{IF,IFINDEX} takes precedence over | |
2710 | * IP_BOUND_IF, since the former practically bypasses the | |
2711 | * routing table; in this case, IP_BOUND_IF sets the default | |
2712 | * interface used for sending multicast packets in the absence | |
2713 | * of an explicit multicast transmit interface. | |
2714 | */ | |
2715 | case IP_BOUND_IF: | |
2716 | /* This option is settable only for IPv4 */ | |
2717 | if (!(inp->inp_vflag & INP_IPV4)) { | |
2718 | error = EINVAL; | |
2719 | break; | |
2720 | } | |
2721 | ||
2722 | error = sooptcopyin(sopt, &optval, sizeof (optval), | |
2723 | sizeof (optval)); | |
2724 | ||
2725 | if (error) | |
2726 | break; | |
2727 | ||
2728 | error = inp_bindif(inp, optval, NULL); | |
2729 | break; | |
2730 | ||
2731 | case IP_NO_IFT_CELLULAR: | |
2732 | /* This option is settable only for IPv4 */ | |
2733 | if (!(inp->inp_vflag & INP_IPV4)) { | |
2734 | error = EINVAL; | |
2735 | break; | |
2736 | } | |
2737 | ||
2738 | error = sooptcopyin(sopt, &optval, sizeof (optval), | |
2739 | sizeof (optval)); | |
2740 | ||
2741 | if (error) | |
2742 | break; | |
2743 | ||
2744 | /* once set, it cannot be unset */ | |
2745 | if (!optval && INP_NO_CELLULAR(inp)) { | |
2746 | error = EINVAL; | |
2747 | break; | |
2748 | } | |
2749 | ||
2750 | error = so_set_restrictions(so, | |
2751 | SO_RESTRICT_DENY_CELLULAR); | |
2752 | break; | |
2753 | ||
2754 | case IP_OUT_IF: | |
2755 | /* This option is not settable */ | |
2756 | error = EINVAL; | |
2757 | break; | |
2758 | ||
2759 | default: | |
2760 | error = ENOPROTOOPT; | |
2761 | break; | |
2762 | } | |
2763 | break; | |
2764 | ||
2765 | case SOPT_GET: | |
2766 | switch (sopt->sopt_name) { | |
2767 | case IP_OPTIONS: | |
2768 | case IP_RETOPTS: | |
2769 | if (inp->inp_options) { | |
2770 | error = sooptcopyout(sopt, | |
2771 | mtod(inp->inp_options, char *), | |
2772 | inp->inp_options->m_len); | |
2773 | } else { | |
2774 | sopt->sopt_valsize = 0; | |
2775 | } | |
2776 | break; | |
2777 | ||
2778 | case IP_TOS: | |
2779 | case IP_TTL: | |
2780 | case IP_RECVOPTS: | |
2781 | case IP_RECVRETOPTS: | |
2782 | case IP_RECVDSTADDR: | |
2783 | case IP_RECVIF: | |
2784 | case IP_RECVTTL: | |
2785 | case IP_PORTRANGE: | |
2786 | case IP_RECVPKTINFO: | |
2787 | case IP_RECVTOS: | |
2788 | switch (sopt->sopt_name) { | |
2789 | case IP_TOS: | |
2790 | optval = inp->inp_ip_tos; | |
2791 | break; | |
2792 | ||
2793 | case IP_TTL: | |
2794 | optval = inp->inp_ip_ttl; | |
2795 | break; | |
2796 | ||
2797 | #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) | |
2798 | ||
2799 | case IP_RECVOPTS: | |
2800 | optval = OPTBIT(INP_RECVOPTS); | |
2801 | break; | |
2802 | ||
2803 | case IP_RECVRETOPTS: | |
2804 | optval = OPTBIT(INP_RECVRETOPTS); | |
2805 | break; | |
2806 | ||
2807 | case IP_RECVDSTADDR: | |
2808 | optval = OPTBIT(INP_RECVDSTADDR); | |
2809 | break; | |
2810 | ||
2811 | case IP_RECVIF: | |
2812 | optval = OPTBIT(INP_RECVIF); | |
2813 | break; | |
2814 | ||
2815 | case IP_RECVTTL: | |
2816 | optval = OPTBIT(INP_RECVTTL); | |
2817 | break; | |
2818 | ||
2819 | case IP_PORTRANGE: | |
2820 | if (inp->inp_flags & INP_HIGHPORT) | |
2821 | optval = IP_PORTRANGE_HIGH; | |
2822 | else if (inp->inp_flags & INP_LOWPORT) | |
2823 | optval = IP_PORTRANGE_LOW; | |
2824 | else | |
2825 | optval = 0; | |
2826 | break; | |
2827 | ||
2828 | case IP_RECVPKTINFO: | |
2829 | optval = OPTBIT(INP_PKTINFO); | |
2830 | break; | |
2831 | ||
2832 | case IP_RECVTOS: | |
2833 | optval = OPTBIT(INP_RECVTOS); | |
2834 | break; | |
2835 | } | |
2836 | error = sooptcopyout(sopt, &optval, sizeof (optval)); | |
2837 | break; | |
2838 | ||
2839 | case IP_MULTICAST_IF: | |
2840 | case IP_MULTICAST_IFINDEX: | |
2841 | case IP_MULTICAST_VIF: | |
2842 | case IP_MULTICAST_TTL: | |
2843 | case IP_MULTICAST_LOOP: | |
2844 | case IP_MSFILTER: | |
2845 | error = inp_getmoptions(inp, sopt); | |
2846 | break; | |
2847 | ||
2848 | #if IPSEC | |
2849 | case IP_IPSEC_POLICY: { | |
2850 | error = 0; /* This option is no longer supported */ | |
2851 | break; | |
2852 | } | |
2853 | #endif /* IPSEC */ | |
2854 | ||
2855 | #if TRAFFIC_MGT | |
2856 | case IP_TRAFFIC_MGT_BACKGROUND: { | |
2857 | unsigned background = (so->so_flags1 & | |
2858 | SOF1_TRAFFIC_MGT_SO_BACKGROUND) ? 1 : 0; | |
2859 | return (sooptcopyout(sopt, &background, | |
2860 | sizeof (background))); | |
2861 | } | |
2862 | #endif /* TRAFFIC_MGT */ | |
2863 | ||
2864 | case IP_BOUND_IF: | |
2865 | if (inp->inp_flags & INP_BOUND_IF) | |
2866 | optval = inp->inp_boundifp->if_index; | |
2867 | error = sooptcopyout(sopt, &optval, sizeof (optval)); | |
2868 | break; | |
2869 | ||
2870 | case IP_NO_IFT_CELLULAR: | |
2871 | optval = INP_NO_CELLULAR(inp) ? 1 : 0; | |
2872 | error = sooptcopyout(sopt, &optval, sizeof (optval)); | |
2873 | break; | |
2874 | ||
2875 | case IP_OUT_IF: | |
2876 | optval = (inp->inp_last_outifp != NULL) ? | |
2877 | inp->inp_last_outifp->if_index : 0; | |
2878 | error = sooptcopyout(sopt, &optval, sizeof (optval)); | |
2879 | break; | |
2880 | ||
2881 | default: | |
2882 | error = ENOPROTOOPT; | |
2883 | break; | |
2884 | } | |
2885 | break; | |
2886 | } | |
2887 | return (error); | |
2888 | } | |
2889 | ||
2890 | /* | |
2891 | * Set up IP options in pcb for insertion in output packets. | |
2892 | * Store in mbuf with pointer in pcbopt, adding pseudo-option | |
2893 | * with destination address if source routed. | |
2894 | */ | |
2895 | static int | |
2896 | ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m) | |
2897 | { | |
2898 | #pragma unused(optname) | |
2899 | int cnt, optlen; | |
2900 | u_char *cp; | |
2901 | u_char opt; | |
2902 | ||
2903 | /* turn off any old options */ | |
2904 | if (*pcbopt) | |
2905 | (void) m_free(*pcbopt); | |
2906 | *pcbopt = 0; | |
2907 | if (m == (struct mbuf *)0 || m->m_len == 0) { | |
2908 | /* | |
2909 | * Only turning off any previous options. | |
2910 | */ | |
2911 | if (m) | |
2912 | (void) m_free(m); | |
2913 | return (0); | |
2914 | } | |
2915 | ||
2916 | if (m->m_len % sizeof (int32_t)) | |
2917 | goto bad; | |
2918 | ||
2919 | /* | |
2920 | * IP first-hop destination address will be stored before | |
2921 | * actual options; move other options back | |
2922 | * and clear it when none present. | |
2923 | */ | |
2924 | if (m->m_data + m->m_len + sizeof (struct in_addr) >= &m->m_dat[MLEN]) | |
2925 | goto bad; | |
2926 | cnt = m->m_len; | |
2927 | m->m_len += sizeof (struct in_addr); | |
2928 | cp = mtod(m, u_char *) + sizeof (struct in_addr); | |
2929 | ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt); | |
2930 | bzero(mtod(m, caddr_t), sizeof (struct in_addr)); | |
2931 | ||
2932 | for (; cnt > 0; cnt -= optlen, cp += optlen) { | |
2933 | opt = cp[IPOPT_OPTVAL]; | |
2934 | if (opt == IPOPT_EOL) | |
2935 | break; | |
2936 | if (opt == IPOPT_NOP) | |
2937 | optlen = 1; | |
2938 | else { | |
2939 | if (cnt < IPOPT_OLEN + sizeof (*cp)) | |
2940 | goto bad; | |
2941 | optlen = cp[IPOPT_OLEN]; | |
2942 | if (optlen < IPOPT_OLEN + sizeof (*cp) || optlen > cnt) | |
2943 | goto bad; | |
2944 | } | |
2945 | switch (opt) { | |
2946 | ||
2947 | default: | |
2948 | break; | |
2949 | ||
2950 | case IPOPT_LSRR: | |
2951 | case IPOPT_SSRR: | |
2952 | /* | |
2953 | * user process specifies route as: | |
2954 | * ->A->B->C->D | |
2955 | * D must be our final destination (but we can't | |
2956 | * check that since we may not have connected yet). | |
2957 | * A is first hop destination, which doesn't appear in | |
2958 | * actual IP option, but is stored before the options. | |
2959 | */ | |
2960 | if (optlen < IPOPT_MINOFF - 1 + sizeof (struct in_addr)) | |
2961 | goto bad; | |
2962 | m->m_len -= sizeof (struct in_addr); | |
2963 | cnt -= sizeof (struct in_addr); | |
2964 | optlen -= sizeof (struct in_addr); | |
2965 | cp[IPOPT_OLEN] = optlen; | |
2966 | /* | |
2967 | * Move first hop before start of options. | |
2968 | */ | |
2969 | bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t), | |
2970 | sizeof (struct in_addr)); | |
2971 | /* | |
2972 | * Then copy rest of options back | |
2973 | * to close up the deleted entry. | |
2974 | */ | |
2975 | ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] + | |
2976 | sizeof (struct in_addr)), | |
2977 | (caddr_t)&cp[IPOPT_OFFSET+1], | |
2978 | (unsigned)cnt + sizeof (struct in_addr)); | |
2979 | break; | |
2980 | } | |
2981 | } | |
2982 | if (m->m_len > MAX_IPOPTLEN + sizeof (struct in_addr)) | |
2983 | goto bad; | |
2984 | *pcbopt = m; | |
2985 | return (0); | |
2986 | ||
2987 | bad: | |
2988 | (void) m_free(m); | |
2989 | return (EINVAL); | |
2990 | } | |
2991 | ||
2992 | void | |
2993 | ip_moptions_init(void) | |
2994 | { | |
2995 | PE_parse_boot_argn("ifa_debug", &imo_debug, sizeof (imo_debug)); | |
2996 | ||
2997 | imo_size = (imo_debug == 0) ? sizeof (struct ip_moptions) : | |
2998 | sizeof (struct ip_moptions_dbg); | |
2999 | ||
3000 | imo_zone = zinit(imo_size, IMO_ZONE_MAX * imo_size, 0, | |
3001 | IMO_ZONE_NAME); | |
3002 | if (imo_zone == NULL) { | |
3003 | panic("%s: failed allocating %s", __func__, IMO_ZONE_NAME); | |
3004 | /* NOTREACHED */ | |
3005 | } | |
3006 | zone_change(imo_zone, Z_EXPAND, TRUE); | |
3007 | } | |
3008 | ||
3009 | void | |
3010 | imo_addref(struct ip_moptions *imo, int locked) | |
3011 | { | |
3012 | if (!locked) | |
3013 | IMO_LOCK(imo); | |
3014 | else | |
3015 | IMO_LOCK_ASSERT_HELD(imo); | |
3016 | ||
3017 | if (++imo->imo_refcnt == 0) { | |
3018 | panic("%s: imo %p wraparound refcnt\n", __func__, imo); | |
3019 | /* NOTREACHED */ | |
3020 | } else if (imo->imo_trace != NULL) { | |
3021 | (*imo->imo_trace)(imo, TRUE); | |
3022 | } | |
3023 | ||
3024 | if (!locked) | |
3025 | IMO_UNLOCK(imo); | |
3026 | } | |
3027 | ||
3028 | void | |
3029 | imo_remref(struct ip_moptions *imo) | |
3030 | { | |
3031 | int i; | |
3032 | ||
3033 | IMO_LOCK(imo); | |
3034 | if (imo->imo_refcnt == 0) { | |
3035 | panic("%s: imo %p negative refcnt", __func__, imo); | |
3036 | /* NOTREACHED */ | |
3037 | } else if (imo->imo_trace != NULL) { | |
3038 | (*imo->imo_trace)(imo, FALSE); | |
3039 | } | |
3040 | ||
3041 | --imo->imo_refcnt; | |
3042 | if (imo->imo_refcnt > 0) { | |
3043 | IMO_UNLOCK(imo); | |
3044 | return; | |
3045 | } | |
3046 | ||
3047 | for (i = 0; i < imo->imo_num_memberships; ++i) { | |
3048 | struct in_mfilter *imf; | |
3049 | ||
3050 | imf = imo->imo_mfilters ? &imo->imo_mfilters[i] : NULL; | |
3051 | if (imf != NULL) | |
3052 | imf_leave(imf); | |
3053 | ||
3054 | (void) in_leavegroup(imo->imo_membership[i], imf); | |
3055 | ||
3056 | if (imf != NULL) | |
3057 | imf_purge(imf); | |
3058 | ||
3059 | INM_REMREF(imo->imo_membership[i]); | |
3060 | imo->imo_membership[i] = NULL; | |
3061 | } | |
3062 | imo->imo_num_memberships = 0; | |
3063 | if (imo->imo_mfilters != NULL) { | |
3064 | FREE(imo->imo_mfilters, M_INMFILTER); | |
3065 | imo->imo_mfilters = NULL; | |
3066 | } | |
3067 | if (imo->imo_membership != NULL) { | |
3068 | FREE(imo->imo_membership, M_IPMOPTS); | |
3069 | imo->imo_membership = NULL; | |
3070 | } | |
3071 | IMO_UNLOCK(imo); | |
3072 | ||
3073 | lck_mtx_destroy(&imo->imo_lock, ifa_mtx_grp); | |
3074 | ||
3075 | if (!(imo->imo_debug & IFD_ALLOC)) { | |
3076 | panic("%s: imo %p cannot be freed", __func__, imo); | |
3077 | /* NOTREACHED */ | |
3078 | } | |
3079 | zfree(imo_zone, imo); | |
3080 | } | |
3081 | ||
3082 | static void | |
3083 | imo_trace(struct ip_moptions *imo, int refhold) | |
3084 | { | |
3085 | struct ip_moptions_dbg *imo_dbg = (struct ip_moptions_dbg *)imo; | |
3086 | ctrace_t *tr; | |
3087 | u_int32_t idx; | |
3088 | u_int16_t *cnt; | |
3089 | ||
3090 | if (!(imo->imo_debug & IFD_DEBUG)) { | |
3091 | panic("%s: imo %p has no debug structure", __func__, imo); | |
3092 | /* NOTREACHED */ | |
3093 | } | |
3094 | if (refhold) { | |
3095 | cnt = &imo_dbg->imo_refhold_cnt; | |
3096 | tr = imo_dbg->imo_refhold; | |
3097 | } else { | |
3098 | cnt = &imo_dbg->imo_refrele_cnt; | |
3099 | tr = imo_dbg->imo_refrele; | |
3100 | } | |
3101 | ||
3102 | idx = atomic_add_16_ov(cnt, 1) % IMO_TRACE_HIST_SIZE; | |
3103 | ctrace_record(&tr[idx]); | |
3104 | } | |
3105 | ||
3106 | struct ip_moptions * | |
3107 | ip_allocmoptions(int how) | |
3108 | { | |
3109 | struct ip_moptions *imo; | |
3110 | ||
3111 | imo = (how == M_WAITOK) ? zalloc(imo_zone) : zalloc_noblock(imo_zone); | |
3112 | if (imo != NULL) { | |
3113 | bzero(imo, imo_size); | |
3114 | lck_mtx_init(&imo->imo_lock, ifa_mtx_grp, ifa_mtx_attr); | |
3115 | imo->imo_debug |= IFD_ALLOC; | |
3116 | if (imo_debug != 0) { | |
3117 | imo->imo_debug |= IFD_DEBUG; | |
3118 | imo->imo_trace = imo_trace; | |
3119 | } | |
3120 | IMO_ADDREF(imo); | |
3121 | } | |
3122 | ||
3123 | return (imo); | |
3124 | } | |
3125 | ||
3126 | /* | |
3127 | * Routine called from ip_output() to loop back a copy of an IP multicast | |
3128 | * packet to the input queue of a specified interface. Note that this | |
3129 | * calls the output routine of the loopback "driver", but with an interface | |
3130 | * pointer that might NOT be a loopback interface -- evil, but easier than | |
3131 | * replicating that code here. | |
3132 | */ | |
3133 | static void | |
3134 | ip_mloopback(struct ifnet *srcifp, struct ifnet *origifp, struct mbuf *m, | |
3135 | struct sockaddr_in *dst, int hlen) | |
3136 | { | |
3137 | struct mbuf *copym; | |
3138 | struct ip *ip; | |
3139 | ||
3140 | if (lo_ifp == NULL) | |
3141 | return; | |
3142 | ||
3143 | /* | |
3144 | * Copy the packet header as it's needed for the checksum | |
3145 | * Make sure to deep-copy IP header portion in case the data | |
3146 | * is in an mbuf cluster, so that we can safely override the IP | |
3147 | * header portion later. | |
3148 | */ | |
3149 | copym = m_copym_mode(m, 0, M_COPYALL, M_DONTWAIT, M_COPYM_COPY_HDR); | |
3150 | if (copym != NULL && ((copym->m_flags & M_EXT) || copym->m_len < hlen)) | |
3151 | copym = m_pullup(copym, hlen); | |
3152 | ||
3153 | if (copym == NULL) | |
3154 | return; | |
3155 | ||
3156 | /* | |
3157 | * We don't bother to fragment if the IP length is greater | |
3158 | * than the interface's MTU. Can this possibly matter? | |
3159 | */ | |
3160 | ip = mtod(copym, struct ip *); | |
3161 | #if BYTE_ORDER != BIG_ENDIAN | |
3162 | HTONS(ip->ip_len); | |
3163 | HTONS(ip->ip_off); | |
3164 | #endif | |
3165 | ip->ip_sum = 0; | |
3166 | ip->ip_sum = ip_cksum_hdr_out(copym, hlen); | |
3167 | ||
3168 | /* | |
3169 | * Mark checksum as valid unless receive checksum offload is | |
3170 | * disabled; if so, compute checksum in software. If the | |
3171 | * interface itself is lo0, this will be overridden by if_loop. | |
3172 | */ | |
3173 | if (hwcksum_rx) { | |
3174 | copym->m_pkthdr.csum_flags &= ~(CSUM_PARTIAL|CSUM_ZERO_INVERT); | |
3175 | copym->m_pkthdr.csum_flags |= | |
3176 | CSUM_DATA_VALID | CSUM_PSEUDO_HDR; | |
3177 | copym->m_pkthdr.csum_data = 0xffff; | |
3178 | } else if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { | |
3179 | #if BYTE_ORDER != BIG_ENDIAN | |
3180 | NTOHS(ip->ip_len); | |
3181 | #endif | |
3182 | in_delayed_cksum(copym); | |
3183 | #if BYTE_ORDER != BIG_ENDIAN | |
3184 | HTONS(ip->ip_len); | |
3185 | #endif | |
3186 | } | |
3187 | ||
3188 | /* | |
3189 | * Stuff the 'real' ifp into the pkthdr, to be used in matching | |
3190 | * in ip_input(); we need the loopback ifp/dl_tag passed as args | |
3191 | * to make the loopback driver compliant with the data link | |
3192 | * requirements. | |
3193 | */ | |
3194 | copym->m_pkthdr.rcvif = origifp; | |
3195 | ||
3196 | /* | |
3197 | * Also record the source interface (which owns the source address). | |
3198 | * This is basically a stripped down version of ifa_foraddr(). | |
3199 | */ | |
3200 | if (srcifp == NULL) { | |
3201 | struct in_ifaddr *ia; | |
3202 | ||
3203 | lck_rw_lock_shared(in_ifaddr_rwlock); | |
3204 | TAILQ_FOREACH(ia, INADDR_HASH(ip->ip_src.s_addr), ia_hash) { | |
3205 | IFA_LOCK_SPIN(&ia->ia_ifa); | |
3206 | if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_src.s_addr) { | |
3207 | srcifp = ia->ia_ifp; | |
3208 | IFA_UNLOCK(&ia->ia_ifa); | |
3209 | break; | |
3210 | } | |
3211 | IFA_UNLOCK(&ia->ia_ifa); | |
3212 | } | |
3213 | lck_rw_done(in_ifaddr_rwlock); | |
3214 | } | |
3215 | if (srcifp != NULL) | |
3216 | ip_setsrcifaddr_info(copym, srcifp->if_index, NULL); | |
3217 | ip_setdstifaddr_info(copym, origifp->if_index, NULL); | |
3218 | ||
3219 | dlil_output(lo_ifp, PF_INET, copym, NULL, SA(dst), 0, NULL); | |
3220 | } | |
3221 | ||
3222 | /* | |
3223 | * Given a source IP address (and route, if available), determine the best | |
3224 | * interface to send the packet from. Checking for (and updating) the | |
3225 | * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done | |
3226 | * without any locks based on the assumption that ip_output() is single- | |
3227 | * threaded per-pcb, i.e. for any given pcb there can only be one thread | |
3228 | * performing output at the IP layer. | |
3229 | * | |
3230 | * This routine is analogous to in6_selectroute() for IPv6. | |
3231 | */ | |
3232 | static struct ifaddr * | |
3233 | in_selectsrcif(struct ip *ip, struct route *ro, unsigned int ifscope) | |
3234 | { | |
3235 | struct ifaddr *ifa = NULL; | |
3236 | struct in_addr src = ip->ip_src; | |
3237 | struct in_addr dst = ip->ip_dst; | |
3238 | struct ifnet *rt_ifp; | |
3239 | char s_src[MAX_IPv4_STR_LEN], s_dst[MAX_IPv4_STR_LEN]; | |
3240 | ||
3241 | VERIFY(src.s_addr != INADDR_ANY); | |
3242 | ||
3243 | if (ip_select_srcif_debug) { | |
3244 | (void) inet_ntop(AF_INET, &src.s_addr, s_src, sizeof (s_src)); | |
3245 | (void) inet_ntop(AF_INET, &dst.s_addr, s_dst, sizeof (s_dst)); | |
3246 | } | |
3247 | ||
3248 | if (ro->ro_rt != NULL) | |
3249 | RT_LOCK(ro->ro_rt); | |
3250 | ||
3251 | rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL; | |
3252 | ||
3253 | /* | |
3254 | * Given the source IP address, find a suitable source interface | |
3255 | * to use for transmission; if the caller has specified a scope, | |
3256 | * optimize the search by looking at the addresses only for that | |
3257 | * interface. This is still suboptimal, however, as we need to | |
3258 | * traverse the per-interface list. | |
3259 | */ | |
3260 | if (ifscope != IFSCOPE_NONE || ro->ro_rt != NULL) { | |
3261 | unsigned int scope = ifscope; | |
3262 | ||
3263 | /* | |
3264 | * If no scope is specified and the route is stale (pointing | |
3265 | * to a defunct interface) use the current primary interface; | |
3266 | * this happens when switching between interfaces configured | |
3267 | * with the same IP address. Otherwise pick up the scope | |
3268 | * information from the route; the ULP may have looked up a | |
3269 | * correct route and we just need to verify it here and mark | |
3270 | * it with the ROF_SRCIF_SELECTED flag below. | |
3271 | */ | |
3272 | if (scope == IFSCOPE_NONE) { | |
3273 | scope = rt_ifp->if_index; | |
3274 | if (scope != get_primary_ifscope(AF_INET) && | |
3275 | ROUTE_UNUSABLE(ro)) | |
3276 | scope = get_primary_ifscope(AF_INET); | |
3277 | } | |
3278 | ||
3279 | ifa = (struct ifaddr *)ifa_foraddr_scoped(src.s_addr, scope); | |
3280 | ||
3281 | if (ifa == NULL && ip->ip_p != IPPROTO_UDP && | |
3282 | ip->ip_p != IPPROTO_TCP && ipforwarding) { | |
3283 | /* | |
3284 | * If forwarding is enabled, and if the packet isn't | |
3285 | * TCP or UDP, check if the source address belongs | |
3286 | * to one of our own interfaces; if so, demote the | |
3287 | * interface scope and do a route lookup right below. | |
3288 | */ | |
3289 | ifa = (struct ifaddr *)ifa_foraddr(src.s_addr); | |
3290 | if (ifa != NULL) { | |
3291 | IFA_REMREF(ifa); | |
3292 | ifa = NULL; | |
3293 | ifscope = IFSCOPE_NONE; | |
3294 | } | |
3295 | } | |
3296 | ||
3297 | if (ip_select_srcif_debug && ifa != NULL) { | |
3298 | if (ro->ro_rt != NULL) { | |
3299 | printf("%s->%s ifscope %d->%d ifa_if %s " | |
3300 | "ro_if %s\n", s_src, s_dst, ifscope, | |
3301 | scope, if_name(ifa->ifa_ifp), | |
3302 | if_name(rt_ifp)); | |
3303 | } else { | |
3304 | printf("%s->%s ifscope %d->%d ifa_if %s\n", | |
3305 | s_src, s_dst, ifscope, scope, | |
3306 | if_name(ifa->ifa_ifp)); | |
3307 | } | |
3308 | } | |
3309 | } | |
3310 | ||
3311 | /* | |
3312 | * Slow path; search for an interface having the corresponding source | |
3313 | * IP address if the scope was not specified by the caller, and: | |
3314 | * | |
3315 | * 1) There currently isn't any route, or, | |
3316 | * 2) The interface used by the route does not own that source | |
3317 | * IP address; in this case, the route will get blown away | |
3318 | * and we'll do a more specific scoped search using the newly | |
3319 | * found interface. | |
3320 | */ | |
3321 | if (ifa == NULL && ifscope == IFSCOPE_NONE) { | |
3322 | ifa = (struct ifaddr *)ifa_foraddr(src.s_addr); | |
3323 | ||
3324 | /* | |
3325 | * If we have the IP address, but not the route, we don't | |
3326 | * really know whether or not it belongs to the correct | |
3327 | * interface (it could be shared across multiple interfaces.) | |
3328 | * The only way to find out is to do a route lookup. | |
3329 | */ | |
3330 | if (ifa != NULL && ro->ro_rt == NULL) { | |
3331 | struct rtentry *rt; | |
3332 | struct sockaddr_in sin; | |
3333 | struct ifaddr *oifa = NULL; | |
3334 | ||
3335 | bzero(&sin, sizeof (sin)); | |
3336 | sin.sin_family = AF_INET; | |
3337 | sin.sin_len = sizeof (sin); | |
3338 | sin.sin_addr = dst; | |
3339 | ||
3340 | lck_mtx_lock(rnh_lock); | |
3341 | if ((rt = rt_lookup(TRUE, SA(&sin), NULL, | |
3342 | rt_tables[AF_INET], IFSCOPE_NONE)) != NULL) { | |
3343 | RT_LOCK(rt); | |
3344 | /* | |
3345 | * If the route uses a different interface, | |
3346 | * use that one instead. The IP address of | |
3347 | * the ifaddr that we pick up here is not | |
3348 | * relevant. | |
3349 | */ | |
3350 | if (ifa->ifa_ifp != rt->rt_ifp) { | |
3351 | oifa = ifa; | |
3352 | ifa = rt->rt_ifa; | |
3353 | IFA_ADDREF(ifa); | |
3354 | RT_UNLOCK(rt); | |
3355 | } else { | |
3356 | RT_UNLOCK(rt); | |
3357 | } | |
3358 | rtfree_locked(rt); | |
3359 | } | |
3360 | lck_mtx_unlock(rnh_lock); | |
3361 | ||
3362 | if (oifa != NULL) { | |
3363 | struct ifaddr *iifa; | |
3364 | ||
3365 | /* | |
3366 | * See if the interface pointed to by the | |
3367 | * route is configured with the source IP | |
3368 | * address of the packet. | |
3369 | */ | |
3370 | iifa = (struct ifaddr *)ifa_foraddr_scoped( | |
3371 | src.s_addr, ifa->ifa_ifp->if_index); | |
3372 | ||
3373 | if (iifa != NULL) { | |
3374 | /* | |
3375 | * Found it; drop the original one | |
3376 | * as well as the route interface | |
3377 | * address, and use this instead. | |
3378 | */ | |
3379 | IFA_REMREF(oifa); | |
3380 | IFA_REMREF(ifa); | |
3381 | ifa = iifa; | |
3382 | } else if (!ipforwarding || | |
3383 | (rt->rt_flags & RTF_GATEWAY)) { | |
3384 | /* | |
3385 | * This interface doesn't have that | |
3386 | * source IP address; drop the route | |
3387 | * interface address and just use the | |
3388 | * original one, and let the caller | |
3389 | * do a scoped route lookup. | |
3390 | */ | |
3391 | IFA_REMREF(ifa); | |
3392 | ifa = oifa; | |
3393 | } else { | |
3394 | /* | |
3395 | * Forwarding is enabled and the source | |
3396 | * address belongs to one of our own | |
3397 | * interfaces which isn't the outgoing | |
3398 | * interface, and we have a route, and | |
3399 | * the destination is on a network that | |
3400 | * is directly attached (onlink); drop | |
3401 | * the original one and use the route | |
3402 | * interface address instead. | |
3403 | */ | |
3404 | IFA_REMREF(oifa); | |
3405 | } | |
3406 | } | |
3407 | } else if (ifa != NULL && ro->ro_rt != NULL && | |
3408 | !(ro->ro_rt->rt_flags & RTF_GATEWAY) && | |
3409 | ifa->ifa_ifp != ro->ro_rt->rt_ifp && ipforwarding) { | |
3410 | /* | |
3411 | * Forwarding is enabled and the source address belongs | |
3412 | * to one of our own interfaces which isn't the same | |
3413 | * as the interface used by the known route; drop the | |
3414 | * original one and use the route interface address. | |
3415 | */ | |
3416 | IFA_REMREF(ifa); | |
3417 | ifa = ro->ro_rt->rt_ifa; | |
3418 | IFA_ADDREF(ifa); | |
3419 | } | |
3420 | ||
3421 | if (ip_select_srcif_debug && ifa != NULL) { | |
3422 | printf("%s->%s ifscope %d ifa_if %s\n", | |
3423 | s_src, s_dst, ifscope, if_name(ifa->ifa_ifp)); | |
3424 | } | |
3425 | } | |
3426 | ||
3427 | if (ro->ro_rt != NULL) | |
3428 | RT_LOCK_ASSERT_HELD(ro->ro_rt); | |
3429 | /* | |
3430 | * If there is a non-loopback route with the wrong interface, or if | |
3431 | * there is no interface configured with such an address, blow it | |
3432 | * away. Except for local/loopback, we look for one with a matching | |
3433 | * interface scope/index. | |
3434 | */ | |
3435 | if (ro->ro_rt != NULL && | |
3436 | (ifa == NULL || (ifa->ifa_ifp != rt_ifp && rt_ifp != lo_ifp) || | |
3437 | !(ro->ro_rt->rt_flags & RTF_UP))) { | |
3438 | if (ip_select_srcif_debug) { | |
3439 | if (ifa != NULL) { | |
3440 | printf("%s->%s ifscope %d ro_if %s != " | |
3441 | "ifa_if %s (cached route cleared)\n", | |
3442 | s_src, s_dst, ifscope, if_name(rt_ifp), | |
3443 | if_name(ifa->ifa_ifp)); | |
3444 | } else { | |
3445 | printf("%s->%s ifscope %d ro_if %s " | |
3446 | "(no ifa_if found)\n", | |
3447 | s_src, s_dst, ifscope, if_name(rt_ifp)); | |
3448 | } | |
3449 | } | |
3450 | ||
3451 | RT_UNLOCK(ro->ro_rt); | |
3452 | ROUTE_RELEASE(ro); | |
3453 | ||
3454 | /* | |
3455 | * If the destination is IPv4 LLA and the route's interface | |
3456 | * doesn't match the source interface, then the source IP | |
3457 | * address is wrong; it most likely belongs to the primary | |
3458 | * interface associated with the IPv4 LL subnet. Drop the | |
3459 | * packet rather than letting it go out and return an error | |
3460 | * to the ULP. This actually applies not only to IPv4 LL | |
3461 | * but other shared subnets; for now we explicitly test only | |
3462 | * for the former case and save the latter for future. | |
3463 | */ | |
3464 | if (IN_LINKLOCAL(ntohl(dst.s_addr)) && | |
3465 | !IN_LINKLOCAL(ntohl(src.s_addr)) && ifa != NULL) { | |
3466 | IFA_REMREF(ifa); | |
3467 | ifa = NULL; | |
3468 | } | |
3469 | } | |
3470 | ||
3471 | if (ip_select_srcif_debug && ifa == NULL) { | |
3472 | printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n", | |
3473 | s_src, s_dst, ifscope); | |
3474 | } | |
3475 | ||
3476 | /* | |
3477 | * If there is a route, mark it accordingly. If there isn't one, | |
3478 | * we'll get here again during the next transmit (possibly with a | |
3479 | * route) and the flag will get set at that point. For IPv4 LLA | |
3480 | * destination, mark it only if the route has been fully resolved; | |
3481 | * otherwise we want to come back here again when the route points | |
3482 | * to the interface over which the ARP reply arrives on. | |
3483 | */ | |
3484 | if (ro->ro_rt != NULL && (!IN_LINKLOCAL(ntohl(dst.s_addr)) || | |
3485 | (ro->ro_rt->rt_gateway->sa_family == AF_LINK && | |
3486 | SDL(ro->ro_rt->rt_gateway)->sdl_alen != 0))) { | |
3487 | if (ifa != NULL) | |
3488 | IFA_ADDREF(ifa); /* for route */ | |
3489 | if (ro->ro_srcia != NULL) | |
3490 | IFA_REMREF(ro->ro_srcia); | |
3491 | ro->ro_srcia = ifa; | |
3492 | ro->ro_flags |= ROF_SRCIF_SELECTED; | |
3493 | RT_GENID_SYNC(ro->ro_rt); | |
3494 | } | |
3495 | ||
3496 | if (ro->ro_rt != NULL) | |
3497 | RT_UNLOCK(ro->ro_rt); | |
3498 | ||
3499 | return (ifa); | |
3500 | } | |
3501 | ||
3502 | /* | |
3503 | * @brief Given outgoing interface it determines what checksum needs | |
3504 | * to be computed in software and what needs to be offloaded to the | |
3505 | * interface. | |
3506 | * | |
3507 | * @param ifp Pointer to the outgoing interface | |
3508 | * @param m Pointer to the packet | |
3509 | * @param hlen IP header length | |
3510 | * @param ip_len Total packet size i.e. headers + data payload | |
3511 | * @param sw_csum Pointer to a software checksum flag set | |
3512 | * | |
3513 | * @return void | |
3514 | */ | |
3515 | void | |
3516 | ip_output_checksum(struct ifnet *ifp, struct mbuf *m, int hlen, int ip_len, | |
3517 | uint32_t *sw_csum) | |
3518 | { | |
3519 | int tso = TSO_IPV4_OK(ifp, m); | |
3520 | uint32_t hwcap = ifp->if_hwassist; | |
3521 | ||
3522 | m->m_pkthdr.csum_flags |= CSUM_IP; | |
3523 | ||
3524 | if (!hwcksum_tx) { | |
3525 | /* do all in software; hardware checksum offload is disabled */ | |
3526 | *sw_csum = (CSUM_DELAY_DATA | CSUM_DELAY_IP) & | |
3527 | m->m_pkthdr.csum_flags; | |
3528 | } else { | |
3529 | /* do in software what the hardware cannot */ | |
3530 | *sw_csum = m->m_pkthdr.csum_flags & | |
3531 | ~IF_HWASSIST_CSUM_FLAGS(hwcap); | |
3532 | } | |
3533 | ||
3534 | if (hlen != sizeof (struct ip)) { | |
3535 | *sw_csum |= ((CSUM_DELAY_DATA | CSUM_DELAY_IP) & | |
3536 | m->m_pkthdr.csum_flags); | |
3537 | } else if (!(*sw_csum & CSUM_DELAY_DATA) && (hwcap & CSUM_PARTIAL)) { | |
3538 | int interface_mtu = ifp->if_mtu; | |
3539 | ||
3540 | if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) { | |
3541 | interface_mtu = IN6_LINKMTU(ifp); | |
3542 | /* Further adjust the size for CLAT46 expansion */ | |
3543 | interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD; | |
3544 | } | |
3545 | ||
3546 | /* | |
3547 | * Partial checksum offload, if non-IP fragment, and TCP only | |
3548 | * (no UDP support, as the hardware may not be able to convert | |
3549 | * +0 to -0 (0xffff) per RFC1122 4.1.3.4. unless the interface | |
3550 | * supports "invert zero" capability.) | |
3551 | */ | |
3552 | if (hwcksum_tx && !tso && | |
3553 | ((m->m_pkthdr.csum_flags & CSUM_TCP) || | |
3554 | ((hwcap & CSUM_ZERO_INVERT) && | |
3555 | (m->m_pkthdr.csum_flags & CSUM_ZERO_INVERT))) && | |
3556 | ip_len <= interface_mtu) { | |
3557 | uint16_t start = sizeof (struct ip); | |
3558 | uint16_t ulpoff = m->m_pkthdr.csum_data & 0xffff; | |
3559 | m->m_pkthdr.csum_flags |= | |
3560 | (CSUM_DATA_VALID | CSUM_PARTIAL); | |
3561 | m->m_pkthdr.csum_tx_stuff = (ulpoff + start); | |
3562 | m->m_pkthdr.csum_tx_start = start; | |
3563 | /* do IP hdr chksum in software */ | |
3564 | *sw_csum = CSUM_DELAY_IP; | |
3565 | } else { | |
3566 | *sw_csum |= (CSUM_DELAY_DATA & m->m_pkthdr.csum_flags); | |
3567 | } | |
3568 | } | |
3569 | ||
3570 | if (*sw_csum & CSUM_DELAY_DATA) { | |
3571 | in_delayed_cksum(m); | |
3572 | *sw_csum &= ~CSUM_DELAY_DATA; | |
3573 | } | |
3574 | ||
3575 | if (hwcksum_tx) { | |
3576 | /* | |
3577 | * Drop off bits that aren't supported by hardware; | |
3578 | * also make sure to preserve non-checksum related bits. | |
3579 | */ | |
3580 | m->m_pkthdr.csum_flags = | |
3581 | ((m->m_pkthdr.csum_flags & | |
3582 | (IF_HWASSIST_CSUM_FLAGS(hwcap) | CSUM_DATA_VALID)) | | |
3583 | (m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_MASK)); | |
3584 | } else { | |
3585 | /* drop all bits; hardware checksum offload is disabled */ | |
3586 | m->m_pkthdr.csum_flags = 0; | |
3587 | } | |
3588 | } | |
3589 | ||
3590 | /* | |
3591 | * GRE protocol output for PPP/PPTP | |
3592 | */ | |
3593 | int | |
3594 | ip_gre_output(struct mbuf *m) | |
3595 | { | |
3596 | struct route ro; | |
3597 | int error; | |
3598 | ||
3599 | bzero(&ro, sizeof (ro)); | |
3600 | ||
3601 | error = ip_output(m, NULL, &ro, 0, NULL, NULL); | |
3602 | ||
3603 | ROUTE_RELEASE(&ro); | |
3604 | ||
3605 | return (error); | |
3606 | } | |
3607 | ||
3608 | static int | |
3609 | sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS | |
3610 | { | |
3611 | #pragma unused(arg1, arg2) | |
3612 | int error, i; | |
3613 | ||
3614 | i = ip_output_measure; | |
3615 | error = sysctl_handle_int(oidp, &i, 0, req); | |
3616 | if (error || req->newptr == USER_ADDR_NULL) | |
3617 | goto done; | |
3618 | /* impose bounds */ | |
3619 | if (i < 0 || i > 1) { | |
3620 | error = EINVAL; | |
3621 | goto done; | |
3622 | } | |
3623 | if (ip_output_measure != i && i == 1) { | |
3624 | net_perf_initialize(&net_perf, ip_output_measure_bins); | |
3625 | } | |
3626 | ip_output_measure = i; | |
3627 | done: | |
3628 | return (error); | |
3629 | } | |
3630 | ||
3631 | static int | |
3632 | sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS | |
3633 | { | |
3634 | #pragma unused(arg1, arg2) | |
3635 | int error; | |
3636 | uint64_t i; | |
3637 | ||
3638 | i = ip_output_measure_bins; | |
3639 | error = sysctl_handle_quad(oidp, &i, 0, req); | |
3640 | if (error || req->newptr == USER_ADDR_NULL) | |
3641 | goto done; | |
3642 | /* validate data */ | |
3643 | if (!net_perf_validate_bins(i)) { | |
3644 | error = EINVAL; | |
3645 | goto done; | |
3646 | } | |
3647 | ip_output_measure_bins = i; | |
3648 | done: | |
3649 | return (error); | |
3650 | } | |
3651 | ||
3652 | static int | |
3653 | sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS | |
3654 | { | |
3655 | #pragma unused(oidp, arg1, arg2) | |
3656 | if (req->oldptr == USER_ADDR_NULL) | |
3657 | req->oldlen = (size_t)sizeof (struct ipstat); | |
3658 | ||
3659 | return (SYSCTL_OUT(req, &net_perf, MIN(sizeof (net_perf), req->oldlen))); | |
3660 | } |