]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
39037602 | 2 | * Copyright (c) 2000-2016 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
0a7de745 | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
0a7de745 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
0a7de745 | 17 | * |
2d21ac55 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
0a7de745 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_FREE_COPYRIGHT@ | |
30 | */ | |
0a7de745 | 31 | /* |
1c79356b A |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
0a7de745 | 35 | * |
1c79356b A |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
0a7de745 | 41 | * |
1c79356b A |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
0a7de745 | 45 | * |
1c79356b | 46 | * Carnegie Mellon requests users of this software to return to |
0a7de745 | 47 | * |
1c79356b A |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
0a7de745 | 52 | * |
1c79356b A |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: sched_prim.c | |
60 | * Author: Avadis Tevanian, Jr. | |
61 | * Date: 1986 | |
62 | * | |
63 | * Scheduling primitives | |
64 | * | |
65 | */ | |
66 | ||
67 | #include <debug.h> | |
91447636 A |
68 | |
69 | #include <mach/mach_types.h> | |
1c79356b | 70 | #include <mach/machine.h> |
91447636 A |
71 | #include <mach/policy.h> |
72 | #include <mach/sync_policy.h> | |
6d2010ae | 73 | #include <mach/thread_act.h> |
91447636 | 74 | |
1c79356b A |
75 | #include <machine/machine_routines.h> |
76 | #include <machine/sched_param.h> | |
0c530ab8 | 77 | #include <machine/machine_cpu.h> |
cb323159 | 78 | #include <machine/limits.h> |
5ba3f43e | 79 | #include <machine/atomic.h> |
91447636 | 80 | |
fe8ab488 | 81 | #include <machine/commpage.h> |
fe8ab488 | 82 | |
91447636 | 83 | #include <kern/kern_types.h> |
39037602 | 84 | #include <kern/backtrace.h> |
1c79356b | 85 | #include <kern/clock.h> |
1c79356b A |
86 | #include <kern/cpu_number.h> |
87 | #include <kern/cpu_data.h> | |
3e170ce0 | 88 | #include <kern/smp.h> |
91447636 | 89 | #include <kern/debug.h> |
1c79356b A |
90 | #include <kern/macro_help.h> |
91 | #include <kern/machine.h> | |
92 | #include <kern/misc_protos.h> | |
5ba3f43e A |
93 | #if MONOTONIC |
94 | #include <kern/monotonic.h> | |
95 | #endif /* MONOTONIC */ | |
1c79356b A |
96 | #include <kern/processor.h> |
97 | #include <kern/queue.h> | |
98 | #include <kern/sched.h> | |
99 | #include <kern/sched_prim.h> | |
fe8ab488 | 100 | #include <kern/sfi.h> |
1c79356b A |
101 | #include <kern/syscall_subr.h> |
102 | #include <kern/task.h> | |
103 | #include <kern/thread.h> | |
316670eb | 104 | #include <kern/ledger.h> |
39236c6e | 105 | #include <kern/timer_queue.h> |
3e170ce0 | 106 | #include <kern/waitq.h> |
39037602 | 107 | #include <kern/policy_internal.h> |
d9a64523 | 108 | #include <kern/cpu_quiesce.h> |
91447636 | 109 | |
1c79356b A |
110 | #include <vm/pmap.h> |
111 | #include <vm/vm_kern.h> | |
112 | #include <vm/vm_map.h> | |
5ba3f43e | 113 | #include <vm/vm_pageout.h> |
91447636 | 114 | |
b0d623f7 | 115 | #include <mach/sdt.h> |
5ba3f43e A |
116 | #include <mach/mach_host.h> |
117 | #include <mach/host_info.h> | |
b0d623f7 | 118 | |
1c79356b | 119 | #include <sys/kdebug.h> |
39037602 A |
120 | #include <kperf/kperf.h> |
121 | #include <kern/kpc.h> | |
5ba3f43e | 122 | #include <san/kasan.h> |
0c530ab8 | 123 | #include <kern/pms.h> |
5ba3f43e A |
124 | #include <kern/host.h> |
125 | #include <stdatomic.h> | |
3a60a9f5 | 126 | |
f427ee49 A |
127 | struct sched_statistics PERCPU_DATA(sched_stats); |
128 | bool sched_stats_active; | |
129 | ||
0a7de745 A |
130 | int |
131 | rt_runq_count(processor_set_t pset) | |
5ba3f43e | 132 | { |
0a7de745 | 133 | return atomic_load_explicit(&SCHED(rt_runq)(pset)->count, memory_order_relaxed); |
5ba3f43e | 134 | } |
2d21ac55 | 135 | |
0a7de745 A |
136 | void |
137 | rt_runq_count_incr(processor_set_t pset) | |
5ba3f43e | 138 | { |
0a7de745 | 139 | atomic_fetch_add_explicit(&SCHED(rt_runq)(pset)->count, 1, memory_order_relaxed); |
5ba3f43e | 140 | } |
3e170ce0 | 141 | |
0a7de745 A |
142 | void |
143 | rt_runq_count_decr(processor_set_t pset) | |
5ba3f43e | 144 | { |
0a7de745 | 145 | atomic_fetch_sub_explicit(&SCHED(rt_runq)(pset)->count, 1, memory_order_relaxed); |
5ba3f43e | 146 | } |
6d2010ae | 147 | |
0a7de745 | 148 | #define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */ |
f427ee49 | 149 | TUNABLE(int, default_preemption_rate, "preempt", DEFAULT_PREEMPTION_RATE); |
1c79356b | 150 | |
0a7de745 | 151 | #define DEFAULT_BG_PREEMPTION_RATE 400 /* (1/s) */ |
f427ee49 | 152 | TUNABLE(int, default_bg_preemption_rate, "bg_preempt", DEFAULT_BG_PREEMPTION_RATE); |
316670eb | 153 | |
f427ee49 A |
154 | #define MAX_UNSAFE_QUANTA 800 |
155 | TUNABLE(int, max_unsafe_quanta, "unsafe", MAX_UNSAFE_QUANTA); | |
0b4e3aa0 | 156 | |
f427ee49 A |
157 | #define MAX_POLL_QUANTA 2 |
158 | TUNABLE(int, max_poll_quanta, "poll", MAX_POLL_QUANTA); | |
0b4e3aa0 | 159 | |
0a7de745 | 160 | #define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */ |
f427ee49 | 161 | int sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT; |
0b4e3aa0 | 162 | |
0a7de745 | 163 | uint64_t max_poll_computation; |
55e303ae | 164 | |
0a7de745 A |
165 | uint64_t max_unsafe_computation; |
166 | uint64_t sched_safe_duration; | |
6d2010ae | 167 | |
fe8ab488 | 168 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 169 | |
0a7de745 A |
170 | uint32_t std_quantum; |
171 | uint32_t min_std_quantum; | |
172 | uint32_t bg_quantum; | |
55e303ae | 173 | |
0a7de745 A |
174 | uint32_t std_quantum_us; |
175 | uint32_t bg_quantum_us; | |
91447636 | 176 | |
fe8ab488 | 177 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
6d2010ae | 178 | |
0a7de745 A |
179 | uint32_t thread_depress_time; |
180 | uint32_t default_timeshare_computation; | |
181 | uint32_t default_timeshare_constraint; | |
6d2010ae | 182 | |
0a7de745 A |
183 | uint32_t max_rt_quantum; |
184 | uint32_t min_rt_quantum; | |
55e303ae | 185 | |
f427ee49 A |
186 | uint32_t rt_constraint_threshold; |
187 | ||
fe8ab488 | 188 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 189 | |
0a7de745 A |
190 | unsigned sched_tick; |
191 | uint32_t sched_tick_interval; | |
d9a64523 A |
192 | |
193 | /* Timeshare load calculation interval (15ms) */ | |
0a7de745 A |
194 | uint32_t sched_load_compute_interval_us = 15000; |
195 | uint64_t sched_load_compute_interval_abs; | |
196 | static _Atomic uint64_t sched_load_compute_deadline; | |
1c79356b | 197 | |
0a7de745 A |
198 | uint32_t sched_pri_shifts[TH_BUCKET_MAX]; |
199 | uint32_t sched_fixed_shift; | |
39236c6e | 200 | |
0a7de745 | 201 | uint32_t sched_decay_usage_age_factor = 1; /* accelerate 5/8^n usage aging */ |
2d21ac55 | 202 | |
fe8ab488 A |
203 | /* Allow foreground to decay past default to resolve inversions */ |
204 | #define DEFAULT_DECAY_BAND_LIMIT ((BASEPRI_FOREGROUND - BASEPRI_DEFAULT) + 2) | |
0a7de745 | 205 | int sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT; |
6d2010ae | 206 | |
4b17d6b6 A |
207 | /* Defaults for timer deadline profiling */ |
208 | #define TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT 2000000 /* Timers with deadlines <= | |
0a7de745 | 209 | * 2ms */ |
4b17d6b6 | 210 | #define TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT 5000000 /* Timers with deadlines |
0a7de745 | 211 | * <= 5ms */ |
39236c6e | 212 | |
4b17d6b6 A |
213 | uint64_t timer_deadline_tracking_bin_1; |
214 | uint64_t timer_deadline_tracking_bin_2; | |
215 | ||
490019cf A |
216 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
217 | ||
39236c6e A |
218 | thread_t sched_maintenance_thread; |
219 | ||
5ba3f43e | 220 | /* interrupts disabled lock to guard recommended cores state */ |
0a7de745 A |
221 | decl_simple_lock_data(static, sched_recommended_cores_lock); |
222 | static uint64_t usercontrol_requested_recommended_cores = ALL_CORES_RECOMMENDED; | |
223 | static void sched_update_recommended_cores(uint64_t recommended_cores); | |
5ba3f43e | 224 | |
0a7de745 A |
225 | #if __arm__ || __arm64__ |
226 | static void sched_recommended_cores_maintenance(void); | |
5ba3f43e A |
227 | uint64_t perfcontrol_failsafe_starvation_threshold; |
228 | extern char *proc_name_address(struct proc *p); | |
5ba3f43e | 229 | #endif /* __arm__ || __arm64__ */ |
fe8ab488 | 230 | |
0a7de745 | 231 | uint64_t sched_one_second_interval; |
f427ee49 | 232 | boolean_t allow_direct_handoff = TRUE; |
6d2010ae | 233 | |
1c79356b | 234 | /* Forwards */ |
6d2010ae | 235 | |
fe8ab488 | 236 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 237 | |
39236c6e A |
238 | static void load_shift_init(void); |
239 | static void preempt_pri_init(void); | |
2d21ac55 | 240 | |
fe8ab488 | 241 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
c910b4d9 | 242 | |
0a7de745 A |
243 | thread_t processor_idle( |
244 | thread_t thread, | |
245 | processor_t processor); | |
91447636 | 246 | |
0a7de745 A |
247 | static ast_t |
248 | csw_check_locked( | |
249 | thread_t thread, | |
250 | processor_t processor, | |
251 | processor_set_t pset, | |
252 | ast_t check_reason); | |
39236c6e | 253 | |
6d2010ae | 254 | static void processor_setrun( |
0a7de745 A |
255 | processor_t processor, |
256 | thread_t thread, | |
257 | integer_t options); | |
6d2010ae | 258 | |
6d2010ae A |
259 | static void |
260 | sched_realtime_timebase_init(void); | |
261 | ||
4b17d6b6 A |
262 | static void |
263 | sched_timer_deadline_tracking_init(void); | |
264 | ||
0a7de745 | 265 | #if DEBUG |
2d21ac55 A |
266 | extern int debug_task; |
267 | #define TLOG(a, fmt, args...) if(debug_task & a) kprintf(fmt, ## args) | |
268 | #else | |
269 | #define TLOG(a, fmt, args...) do {} while (0) | |
270 | #endif | |
271 | ||
3e170ce0 A |
272 | static processor_t |
273 | thread_bind_internal( | |
0a7de745 A |
274 | thread_t thread, |
275 | processor_t processor); | |
1c79356b | 276 | |
3e170ce0 A |
277 | static void |
278 | sched_vm_group_maintenance(void); | |
1c79356b | 279 | |
fe8ab488 | 280 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
0a7de745 | 281 | int8_t sched_load_shifts[NRQS]; |
cb323159 | 282 | bitmap_t sched_preempt_pri[BITMAP_LEN(NRQS_MAX)]; |
fe8ab488 | 283 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
6d2010ae | 284 | |
6d2010ae A |
285 | /* |
286 | * Statically allocate a buffer to hold the longest possible | |
287 | * scheduler description string, as currently implemented. | |
288 | * bsd/kern/kern_sysctl.c has a corresponding definition in bsd/ | |
289 | * to export to userspace via sysctl(3). If either version | |
290 | * changes, update the other. | |
291 | * | |
292 | * Note that in addition to being an upper bound on the strings | |
293 | * in the kernel, it's also an exact parameter to PE_get_default(), | |
294 | * which interrogates the device tree on some platforms. That | |
295 | * API requires the caller know the exact size of the device tree | |
296 | * property, so we need both a legacy size (32) and the current size | |
297 | * (48) to deal with old and new device trees. The device tree property | |
298 | * is similarly padded to a fixed size so that the same kernel image | |
299 | * can run on multiple devices with different schedulers configured | |
300 | * in the device tree. | |
301 | */ | |
6d2010ae | 302 | char sched_string[SCHED_STRING_MAX_LENGTH]; |
3e170ce0 | 303 | |
5ba3f43e | 304 | uint32_t sched_debug_flags = SCHED_DEBUG_FLAG_CHOOSE_PROCESSOR_TRACEPOINTS; |
39236c6e A |
305 | |
306 | /* Global flag which indicates whether Background Stepper Context is enabled */ | |
307 | static int cpu_throttle_enabled = 1; | |
91447636 | 308 | |
5ba3f43e A |
309 | void |
310 | sched_init(void) | |
311 | { | |
f427ee49 | 312 | boolean_t direct_handoff = FALSE; |
5ba3f43e | 313 | kprintf("Scheduler: Default of %s\n", SCHED(sched_name)); |
5ba3f43e A |
314 | |
315 | if (!PE_parse_boot_argn("sched_pri_decay_limit", &sched_pri_decay_band_limit, sizeof(sched_pri_decay_band_limit))) { | |
316 | /* No boot-args, check in device tree */ | |
317 | if (!PE_get_default("kern.sched_pri_decay_limit", | |
0a7de745 A |
318 | &sched_pri_decay_band_limit, |
319 | sizeof(sched_pri_decay_band_limit))) { | |
5ba3f43e A |
320 | /* Allow decay all the way to normal limits */ |
321 | sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT; | |
322 | } | |
323 | } | |
324 | ||
325 | kprintf("Setting scheduler priority decay band limit %d\n", sched_pri_decay_band_limit); | |
0a7de745 | 326 | |
3e170ce0 A |
327 | if (PE_parse_boot_argn("sched_debug", &sched_debug_flags, sizeof(sched_debug_flags))) { |
328 | kprintf("Scheduler: Debug flags 0x%08x\n", sched_debug_flags); | |
6d2010ae | 329 | } |
5ba3f43e A |
330 | strlcpy(sched_string, SCHED(sched_name), sizeof(sched_string)); |
331 | ||
d9a64523 A |
332 | cpu_quiescent_counter_init(); |
333 | ||
6d2010ae | 334 | SCHED(init)(); |
5ba3f43e | 335 | SCHED(rt_init)(&pset0); |
4b17d6b6 | 336 | sched_timer_deadline_tracking_init(); |
39236c6e | 337 | |
6d2010ae A |
338 | SCHED(pset_init)(&pset0); |
339 | SCHED(processor_init)(master_processor); | |
f427ee49 A |
340 | |
341 | if (PE_parse_boot_argn("direct_handoff", &direct_handoff, sizeof(direct_handoff))) { | |
342 | allow_direct_handoff = direct_handoff; | |
343 | } | |
6d2010ae A |
344 | } |
345 | ||
346 | void | |
347 | sched_timebase_init(void) | |
348 | { | |
0a7de745 A |
349 | uint64_t abstime; |
350 | ||
6d2010ae A |
351 | clock_interval_to_absolutetime_interval(1, NSEC_PER_SEC, &abstime); |
352 | sched_one_second_interval = abstime; | |
0a7de745 | 353 | |
6d2010ae A |
354 | SCHED(timebase_init)(); |
355 | sched_realtime_timebase_init(); | |
356 | } | |
357 | ||
fe8ab488 | 358 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 359 | |
fe8ab488 | 360 | void |
3e170ce0 | 361 | sched_timeshare_init(void) |
1c79356b A |
362 | { |
363 | /* | |
0b4e3aa0 A |
364 | * Calculate the timeslicing quantum |
365 | * in us. | |
1c79356b | 366 | */ |
0a7de745 | 367 | if (default_preemption_rate < 1) { |
1c79356b | 368 | default_preemption_rate = DEFAULT_PREEMPTION_RATE; |
0a7de745 | 369 | } |
0b4e3aa0 | 370 | std_quantum_us = (1000 * 1000) / default_preemption_rate; |
1c79356b | 371 | |
0b4e3aa0 | 372 | printf("standard timeslicing quantum is %d us\n", std_quantum_us); |
1c79356b | 373 | |
0a7de745 | 374 | if (default_bg_preemption_rate < 1) { |
316670eb | 375 | default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE; |
0a7de745 | 376 | } |
316670eb A |
377 | bg_quantum_us = (1000 * 1000) / default_bg_preemption_rate; |
378 | ||
379 | printf("standard background quantum is %d us\n", bg_quantum_us); | |
380 | ||
91447636 | 381 | load_shift_init(); |
4a3eedf9 | 382 | preempt_pri_init(); |
1c79356b | 383 | sched_tick = 0; |
1c79356b A |
384 | } |
385 | ||
fe8ab488 | 386 | void |
3e170ce0 | 387 | sched_timeshare_timebase_init(void) |
55e303ae | 388 | { |
0a7de745 A |
389 | uint64_t abstime; |
390 | uint32_t shift; | |
55e303ae | 391 | |
91447636 | 392 | /* standard timeslicing quantum */ |
55e303ae | 393 | clock_interval_to_absolutetime_interval( |
0a7de745 | 394 | std_quantum_us, NSEC_PER_USEC, &abstime); |
55e303ae | 395 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
b0d623f7 | 396 | std_quantum = (uint32_t)abstime; |
55e303ae | 397 | |
91447636 | 398 | /* smallest remaining quantum (250 us) */ |
55e303ae A |
399 | clock_interval_to_absolutetime_interval(250, NSEC_PER_USEC, &abstime); |
400 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
b0d623f7 | 401 | min_std_quantum = (uint32_t)abstime; |
55e303ae | 402 | |
316670eb A |
403 | /* quantum for background tasks */ |
404 | clock_interval_to_absolutetime_interval( | |
0a7de745 | 405 | bg_quantum_us, NSEC_PER_USEC, &abstime); |
316670eb A |
406 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
407 | bg_quantum = (uint32_t)abstime; | |
408 | ||
91447636 A |
409 | /* scheduler tick interval */ |
410 | clock_interval_to_absolutetime_interval(USEC_PER_SEC >> SCHED_TICK_SHIFT, | |
0a7de745 | 411 | NSEC_PER_USEC, &abstime); |
cf7d32b8 | 412 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
b0d623f7 | 413 | sched_tick_interval = (uint32_t)abstime; |
55e303ae | 414 | |
d9a64523 A |
415 | /* timeshare load calculation interval & deadline initialization */ |
416 | clock_interval_to_absolutetime_interval(sched_load_compute_interval_us, NSEC_PER_USEC, &sched_load_compute_interval_abs); | |
f427ee49 | 417 | os_atomic_init(&sched_load_compute_deadline, sched_load_compute_interval_abs); |
0a7de745 | 418 | |
91447636 A |
419 | /* |
420 | * Compute conversion factor from usage to | |
421 | * timesharing priorities with 5/8 ** n aging. | |
422 | */ | |
423 | abstime = (abstime * 5) / 3; | |
0a7de745 | 424 | for (shift = 0; abstime > BASEPRI_DEFAULT; ++shift) { |
91447636 | 425 | abstime >>= 1; |
0a7de745 | 426 | } |
2d21ac55 | 427 | sched_fixed_shift = shift; |
91447636 | 428 | |
0a7de745 | 429 | for (uint32_t i = 0; i < TH_BUCKET_MAX; i++) { |
39037602 | 430 | sched_pri_shifts[i] = INT8_MAX; |
0a7de745 | 431 | } |
39037602 | 432 | |
fe8ab488 A |
433 | max_unsafe_computation = ((uint64_t)max_unsafe_quanta) * std_quantum; |
434 | sched_safe_duration = 2 * ((uint64_t)max_unsafe_quanta) * std_quantum; | |
39037602 | 435 | |
fe8ab488 | 436 | max_poll_computation = ((uint64_t)max_poll_quanta) * std_quantum; |
6d2010ae A |
437 | thread_depress_time = 1 * std_quantum; |
438 | default_timeshare_computation = std_quantum / 2; | |
439 | default_timeshare_constraint = std_quantum; | |
440 | ||
5ba3f43e | 441 | #if __arm__ || __arm64__ |
0a7de745 | 442 | perfcontrol_failsafe_starvation_threshold = (2 * sched_tick_interval); |
5ba3f43e | 443 | #endif /* __arm__ || __arm64__ */ |
6d2010ae A |
444 | } |
445 | ||
fe8ab488 A |
446 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
447 | ||
5ba3f43e A |
448 | void |
449 | pset_rt_init(processor_set_t pset) | |
450 | { | |
cb323159 | 451 | os_atomic_init(&pset->rt_runq.count, 0); |
5ba3f43e A |
452 | queue_init(&pset->rt_runq.queue); |
453 | memset(&pset->rt_runq.runq_stats, 0, sizeof pset->rt_runq.runq_stats); | |
454 | } | |
455 | ||
6d2010ae A |
456 | static void |
457 | sched_realtime_timebase_init(void) | |
458 | { | |
459 | uint64_t abstime; | |
460 | ||
461 | /* smallest rt computaton (50 us) */ | |
462 | clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime); | |
463 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
464 | min_rt_quantum = (uint32_t)abstime; | |
465 | ||
466 | /* maximum rt computation (50 ms) */ | |
467 | clock_interval_to_absolutetime_interval( | |
0a7de745 | 468 | 50, 1000 * NSEC_PER_USEC, &abstime); |
6d2010ae A |
469 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
470 | max_rt_quantum = (uint32_t)abstime; | |
f427ee49 A |
471 | |
472 | /* constraint threshold for sending backup IPIs (4 ms) */ | |
473 | clock_interval_to_absolutetime_interval(4, NSEC_PER_MSEC, &abstime); | |
474 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
475 | rt_constraint_threshold = (uint32_t)abstime; | |
6d2010ae A |
476 | } |
477 | ||
5ba3f43e A |
478 | void |
479 | sched_check_spill(processor_set_t pset, thread_t thread) | |
480 | { | |
481 | (void)pset; | |
482 | (void)thread; | |
483 | ||
484 | return; | |
485 | } | |
486 | ||
487 | bool | |
488 | sched_thread_should_yield(processor_t processor, thread_t thread) | |
489 | { | |
490 | (void)thread; | |
491 | ||
0a7de745 A |
492 | return !SCHED(processor_queue_empty)(processor) || rt_runq_count(processor->processor_set) > 0; |
493 | } | |
494 | ||
495 | /* Default implementations of .steal_thread_enabled */ | |
496 | bool | |
497 | sched_steal_thread_DISABLED(processor_set_t pset) | |
498 | { | |
499 | (void)pset; | |
500 | return false; | |
501 | } | |
502 | ||
503 | bool | |
504 | sched_steal_thread_enabled(processor_set_t pset) | |
505 | { | |
f427ee49 | 506 | return bit_count(pset->node->pset_map) > 1; |
5ba3f43e A |
507 | } |
508 | ||
fe8ab488 | 509 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 510 | |
91447636 A |
511 | /* |
512 | * Set up values for timeshare | |
513 | * loading factors. | |
514 | */ | |
515 | static void | |
516 | load_shift_init(void) | |
517 | { | |
0a7de745 A |
518 | int8_t k, *p = sched_load_shifts; |
519 | uint32_t i, j; | |
91447636 | 520 | |
0a7de745 | 521 | uint32_t sched_decay_penalty = 1; |
39236c6e | 522 | |
0a7de745 | 523 | if (PE_parse_boot_argn("sched_decay_penalty", &sched_decay_penalty, sizeof(sched_decay_penalty))) { |
39236c6e A |
524 | kprintf("Overriding scheduler decay penalty %u\n", sched_decay_penalty); |
525 | } | |
526 | ||
0a7de745 | 527 | if (PE_parse_boot_argn("sched_decay_usage_age_factor", &sched_decay_usage_age_factor, sizeof(sched_decay_usage_age_factor))) { |
39236c6e A |
528 | kprintf("Overriding scheduler decay usage age factor %u\n", sched_decay_usage_age_factor); |
529 | } | |
530 | ||
39236c6e A |
531 | if (sched_decay_penalty == 0) { |
532 | /* | |
533 | * There is no penalty for timeshare threads for using too much | |
534 | * CPU, so set all load shifts to INT8_MIN. Even under high load, | |
535 | * sched_pri_shift will be >INT8_MAX, and there will be no | |
536 | * penalty applied to threads (nor will sched_usage be updated per | |
537 | * thread). | |
538 | */ | |
539 | for (i = 0; i < NRQS; i++) { | |
540 | sched_load_shifts[i] = INT8_MIN; | |
541 | } | |
542 | ||
543 | return; | |
544 | } | |
545 | ||
91447636 A |
546 | *p++ = INT8_MIN; *p++ = 0; |
547 | ||
39236c6e A |
548 | /* |
549 | * For a given system load "i", the per-thread priority | |
550 | * penalty per quantum of CPU usage is ~2^k priority | |
551 | * levels. "sched_decay_penalty" can cause more | |
552 | * array entries to be filled with smaller "k" values | |
553 | */ | |
554 | for (i = 2, j = 1 << sched_decay_penalty, k = 1; i < NRQS; ++k) { | |
0a7de745 | 555 | for (j <<= 1; (i < j) && (i < NRQS); ++i) { |
91447636 | 556 | *p++ = k; |
0a7de745 | 557 | } |
91447636 A |
558 | } |
559 | } | |
560 | ||
4a3eedf9 A |
561 | static void |
562 | preempt_pri_init(void) | |
563 | { | |
39037602 | 564 | bitmap_t *p = sched_preempt_pri; |
4a3eedf9 | 565 | |
0a7de745 | 566 | for (int i = BASEPRI_FOREGROUND; i < MINPRI_KERNEL; ++i) { |
39037602 | 567 | bitmap_set(p, i); |
0a7de745 | 568 | } |
4a3eedf9 | 569 | |
0a7de745 | 570 | for (int i = BASEPRI_PREEMPT; i <= MAXPRI; ++i) { |
39037602 | 571 | bitmap_set(p, i); |
0a7de745 | 572 | } |
4a3eedf9 A |
573 | } |
574 | ||
fe8ab488 | 575 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
6d2010ae | 576 | |
1c79356b | 577 | /* |
0b4e3aa0 | 578 | * Thread wait timer expiration. |
1c79356b A |
579 | */ |
580 | void | |
581 | thread_timer_expire( | |
0a7de745 A |
582 | void *p0, |
583 | __unused void *p1) | |
1c79356b | 584 | { |
0a7de745 A |
585 | thread_t thread = p0; |
586 | spl_t s; | |
1c79356b | 587 | |
39037602 A |
588 | assert_thread_magic(thread); |
589 | ||
1c79356b | 590 | s = splsched(); |
55e303ae | 591 | thread_lock(thread); |
91447636 | 592 | if (--thread->wait_timer_active == 0) { |
0b4e3aa0 A |
593 | if (thread->wait_timer_is_set) { |
594 | thread->wait_timer_is_set = FALSE; | |
55e303ae | 595 | clear_wait_internal(thread, THREAD_TIMED_OUT); |
0b4e3aa0 | 596 | } |
1c79356b | 597 | } |
55e303ae | 598 | thread_unlock(thread); |
1c79356b A |
599 | splx(s); |
600 | } | |
601 | ||
1c79356b | 602 | /* |
91447636 A |
603 | * thread_unblock: |
604 | * | |
605 | * Unblock thread on wake up. | |
606 | * | |
3e170ce0 | 607 | * Returns TRUE if the thread should now be placed on the runqueue. |
91447636 A |
608 | * |
609 | * Thread must be locked. | |
3e170ce0 A |
610 | * |
611 | * Called at splsched(). | |
1c79356b | 612 | */ |
91447636 A |
613 | boolean_t |
614 | thread_unblock( | |
0a7de745 A |
615 | thread_t thread, |
616 | wait_result_t wresult) | |
1c79356b | 617 | { |
0a7de745 A |
618 | boolean_t ready_for_runq = FALSE; |
619 | thread_t cthread = current_thread(); | |
620 | uint32_t new_run_count; | |
621 | int old_thread_state; | |
0b4e3aa0 | 622 | |
91447636 | 623 | /* |
2d21ac55 | 624 | * Set wait_result. |
91447636 A |
625 | */ |
626 | thread->wait_result = wresult; | |
1c79356b | 627 | |
91447636 | 628 | /* |
2d21ac55 | 629 | * Cancel pending wait timer. |
91447636 | 630 | */ |
1c79356b | 631 | if (thread->wait_timer_is_set) { |
0a7de745 | 632 | if (timer_call_cancel(&thread->wait_timer)) { |
1c79356b | 633 | thread->wait_timer_active--; |
0a7de745 | 634 | } |
1c79356b A |
635 | thread->wait_timer_is_set = FALSE; |
636 | } | |
637 | ||
f427ee49 A |
638 | boolean_t aticontext, pidle; |
639 | ml_get_power_state(&aticontext, &pidle); | |
640 | ||
91447636 | 641 | /* |
2d21ac55 A |
642 | * Update scheduling state: not waiting, |
643 | * set running. | |
91447636 | 644 | */ |
d9a64523 A |
645 | old_thread_state = thread->state; |
646 | thread->state = (old_thread_state | TH_RUN) & | |
0a7de745 | 647 | ~(TH_WAIT | TH_UNINT | TH_WAIT_REPORT); |
1c79356b | 648 | |
d9a64523 A |
649 | if ((old_thread_state & TH_RUN) == 0) { |
650 | uint64_t ctime = mach_approximate_time(); | |
651 | thread->last_made_runnable_time = thread->last_basepri_change_time = ctime; | |
652 | timer_start(&thread->runnable_timer, ctime); | |
3e170ce0 A |
653 | |
654 | ready_for_runq = TRUE; | |
1c79356b | 655 | |
d9a64523 A |
656 | if (old_thread_state & TH_WAIT_REPORT) { |
657 | (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread); | |
658 | } | |
1c79356b | 659 | |
39037602 | 660 | /* Update the runnable thread count */ |
cb323159 | 661 | new_run_count = SCHED(run_count_incr)(thread); |
f427ee49 A |
662 | |
663 | #if CONFIG_SCHED_AUTO_JOIN | |
664 | if (aticontext == FALSE && work_interval_should_propagate(cthread, thread)) { | |
665 | work_interval_auto_join_propagate(cthread, thread); | |
666 | } | |
667 | #endif /*CONFIG_SCHED_AUTO_JOIN */ | |
3e170ce0 | 668 | } else { |
2d21ac55 | 669 | /* |
39037602 A |
670 | * Either the thread is idling in place on another processor, |
671 | * or it hasn't finished context switching yet. | |
2d21ac55 | 672 | */ |
6d2010ae | 673 | assert((thread->state & TH_IDLE) == 0); |
39037602 A |
674 | /* |
675 | * The run count is only dropped after the context switch completes | |
676 | * and the thread is still waiting, so we should not run_incr here | |
677 | */ | |
cb323159 | 678 | new_run_count = os_atomic_load(&sched_run_buckets[TH_BUCKET_RUN], relaxed); |
2d21ac55 | 679 | } |
1c79356b | 680 | |
91447636 A |
681 | /* |
682 | * Calculate deadline for real-time threads. | |
683 | */ | |
6d2010ae | 684 | if (thread->sched_mode == TH_MODE_REALTIME) { |
3e170ce0 | 685 | uint64_t ctime; |
fe8ab488 A |
686 | |
687 | ctime = mach_absolute_time(); | |
688 | thread->realtime.deadline = thread->realtime.constraint + ctime; | |
c3c9b80d A |
689 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SET_RT_DEADLINE) | DBG_FUNC_NONE, |
690 | (uintptr_t)thread_tid(thread), thread->realtime.deadline, thread->realtime.computation, 0); | |
0b4e3aa0 A |
691 | } |
692 | ||
91447636 A |
693 | /* |
694 | * Clear old quantum, fail-safe computation, etc. | |
695 | */ | |
fe8ab488 | 696 | thread->quantum_remaining = 0; |
91447636 A |
697 | thread->computation_metered = 0; |
698 | thread->reason = AST_NONE; | |
813fb2f6 | 699 | thread->block_hint = kThreadWaitNone; |
1c79356b | 700 | |
4b17d6b6 A |
701 | /* Obtain power-relevant interrupt and "platform-idle exit" statistics. |
702 | * We also account for "double hop" thread signaling via | |
703 | * the thread callout infrastructure. | |
704 | * DRK: consider removing the callout wakeup counters in the future | |
705 | * they're present for verification at the moment. | |
706 | */ | |
39236c6e A |
707 | |
708 | if (__improbable(aticontext && !(thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT))) { | |
39236c6e A |
709 | DTRACE_SCHED2(iwakeup, struct thread *, thread, struct proc *, thread->task->bsd_info); |
710 | ||
f427ee49 | 711 | uint64_t ttd = current_processor()->timer_call_ttd; |
39236c6e | 712 | |
4b17d6b6 | 713 | if (ttd) { |
0a7de745 | 714 | if (ttd <= timer_deadline_tracking_bin_1) { |
4b17d6b6 | 715 | thread->thread_timer_wakeups_bin_1++; |
0a7de745 A |
716 | } else if (ttd <= timer_deadline_tracking_bin_2) { |
717 | thread->thread_timer_wakeups_bin_2++; | |
718 | } | |
4b17d6b6 | 719 | } |
39236c6e | 720 | |
5c9f4661 | 721 | ledger_credit_thread(thread, thread->t_ledger, |
0a7de745 | 722 | task_ledgers.interrupt_wakeups, 1); |
4b17d6b6 | 723 | if (pidle) { |
5c9f4661 | 724 | ledger_credit_thread(thread, thread->t_ledger, |
0a7de745 | 725 | task_ledgers.platform_idle_wakeups, 1); |
4b17d6b6 A |
726 | } |
727 | } else if (thread_get_tag_internal(cthread) & THREAD_TAG_CALLOUT) { | |
5c9f4661 | 728 | /* TODO: what about an interrupt that does a wake taken on a callout thread? */ |
4b17d6b6 | 729 | if (cthread->callout_woken_from_icontext) { |
5c9f4661 | 730 | ledger_credit_thread(thread, thread->t_ledger, |
0a7de745 | 731 | task_ledgers.interrupt_wakeups, 1); |
4b17d6b6 | 732 | thread->thread_callout_interrupt_wakeups++; |
5c9f4661 | 733 | |
4b17d6b6 | 734 | if (cthread->callout_woken_from_platform_idle) { |
5c9f4661 | 735 | ledger_credit_thread(thread, thread->t_ledger, |
0a7de745 | 736 | task_ledgers.platform_idle_wakeups, 1); |
4b17d6b6 A |
737 | thread->thread_callout_platform_idle_wakeups++; |
738 | } | |
5c9f4661 | 739 | |
39236c6e | 740 | cthread->callout_woke_thread = TRUE; |
4b17d6b6 A |
741 | } |
742 | } | |
5c9f4661 | 743 | |
4b17d6b6 | 744 | if (thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT) { |
f427ee49 A |
745 | thread->callout_woken_from_icontext = !!aticontext; |
746 | thread->callout_woken_from_platform_idle = !!pidle; | |
39236c6e | 747 | thread->callout_woke_thread = FALSE; |
4b17d6b6 A |
748 | } |
749 | ||
d9a64523 A |
750 | #if KPERF |
751 | if (ready_for_runq) { | |
752 | kperf_make_runnable(thread, aticontext); | |
753 | } | |
754 | #endif /* KPERF */ | |
755 | ||
fe8ab488 | 756 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
757 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE, |
758 | (uintptr_t)thread_tid(thread), thread->sched_pri, thread->wait_result, | |
759 | sched_run_buckets[TH_BUCKET_RUN], 0); | |
b0d623f7 A |
760 | |
761 | DTRACE_SCHED2(wakeup, struct thread *, thread, struct proc *, thread->task->bsd_info); | |
91447636 | 762 | |
0a7de745 | 763 | return ready_for_runq; |
1c79356b A |
764 | } |
765 | ||
f427ee49 A |
766 | /* |
767 | * Routine: thread_allowed_for_handoff | |
768 | * Purpose: | |
769 | * Check if the thread is allowed for handoff operation | |
770 | * Conditions: | |
771 | * thread lock held, IPC locks may be held. | |
772 | * TODO: In future, do not allow handoff if threads have different cluster | |
773 | * recommendations. | |
774 | */ | |
775 | boolean_t | |
776 | thread_allowed_for_handoff( | |
777 | thread_t thread) | |
778 | { | |
779 | thread_t self = current_thread(); | |
780 | ||
781 | if (allow_direct_handoff && | |
782 | thread->sched_mode == TH_MODE_REALTIME && | |
783 | self->sched_mode == TH_MODE_REALTIME) { | |
784 | return TRUE; | |
785 | } | |
786 | ||
787 | return FALSE; | |
788 | } | |
789 | ||
1c79356b | 790 | /* |
91447636 | 791 | * Routine: thread_go |
1c79356b | 792 | * Purpose: |
91447636 | 793 | * Unblock and dispatch thread. |
1c79356b A |
794 | * Conditions: |
795 | * thread lock held, IPC locks may be held. | |
796 | * thread must have been pulled from wait queue under same lock hold. | |
3e170ce0 A |
797 | * thread must have been waiting |
798 | * Returns: | |
9bccf70c | 799 | * KERN_SUCCESS - Thread was set running |
3e170ce0 A |
800 | * |
801 | * TODO: This should return void | |
1c79356b | 802 | */ |
9bccf70c | 803 | kern_return_t |
91447636 | 804 | thread_go( |
0a7de745 | 805 | thread_t thread, |
f427ee49 A |
806 | wait_result_t wresult, |
807 | waitq_options_t option) | |
1c79356b | 808 | { |
f427ee49 A |
809 | thread_t self = current_thread(); |
810 | ||
39037602 A |
811 | assert_thread_magic(thread); |
812 | ||
1c79356b | 813 | assert(thread->at_safe_point == FALSE); |
9bccf70c | 814 | assert(thread->wait_event == NO_EVENT64); |
3e170ce0 | 815 | assert(thread->waitq == NULL); |
1c79356b | 816 | |
0a7de745 | 817 | assert(!(thread->state & (TH_TERMINATE | TH_TERMINATE2))); |
3e170ce0 | 818 | assert(thread->state & TH_WAIT); |
55e303ae | 819 | |
55e303ae | 820 | |
39037602 | 821 | if (thread_unblock(thread, wresult)) { |
0a7de745 | 822 | #if SCHED_TRACE_THREAD_WAKEUPS |
39037602 | 823 | backtrace(&thread->thread_wakeup_bt[0], |
cb323159 | 824 | (sizeof(thread->thread_wakeup_bt) / sizeof(uintptr_t)), NULL); |
39037602 | 825 | #endif |
f427ee49 A |
826 | if ((option & WQ_OPTION_HANDOFF) && |
827 | thread_allowed_for_handoff(thread)) { | |
828 | thread_reference(thread); | |
829 | assert(self->handoff_thread == NULL); | |
830 | self->handoff_thread = thread; | |
831 | } else { | |
832 | thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
833 | } | |
39037602 | 834 | } |
3e170ce0 | 835 | |
0a7de745 | 836 | return KERN_SUCCESS; |
1c79356b A |
837 | } |
838 | ||
9bccf70c A |
839 | /* |
840 | * Routine: thread_mark_wait_locked | |
841 | * Purpose: | |
842 | * Mark a thread as waiting. If, given the circumstances, | |
843 | * it doesn't want to wait (i.e. already aborted), then | |
844 | * indicate that in the return value. | |
845 | * Conditions: | |
846 | * at splsched() and thread is locked. | |
847 | */ | |
848 | __private_extern__ | |
849 | wait_result_t | |
1c79356b | 850 | thread_mark_wait_locked( |
0a7de745 A |
851 | thread_t thread, |
852 | wait_interrupt_t interruptible_orig) | |
1c79356b | 853 | { |
0a7de745 A |
854 | boolean_t at_safe_point; |
855 | wait_interrupt_t interruptible = interruptible_orig; | |
1c79356b | 856 | |
cb323159 A |
857 | if (thread->state & TH_IDLE) { |
858 | panic("Invalid attempt to wait while running the idle thread"); | |
859 | } | |
860 | ||
0a7de745 | 861 | assert(!(thread->state & (TH_WAIT | TH_IDLE | TH_UNINT | TH_TERMINATE2 | TH_WAIT_REPORT))); |
b0d623f7 | 862 | |
9bccf70c A |
863 | /* |
864 | * The thread may have certain types of interrupts/aborts masked | |
865 | * off. Even if the wait location says these types of interrupts | |
866 | * are OK, we have to honor mask settings (outer-scoped code may | |
867 | * not be able to handle aborts at the moment). | |
868 | */ | |
d9a64523 | 869 | interruptible &= TH_OPT_INTMASK; |
0a7de745 | 870 | if (interruptible > (thread->options & TH_OPT_INTMASK)) { |
91447636 | 871 | interruptible = thread->options & TH_OPT_INTMASK; |
0a7de745 | 872 | } |
9bccf70c A |
873 | |
874 | at_safe_point = (interruptible == THREAD_ABORTSAFE); | |
875 | ||
0a7de745 A |
876 | if (interruptible == THREAD_UNINT || |
877 | !(thread->sched_flags & TH_SFLAG_ABORT) || | |
878 | (!at_safe_point && | |
879 | (thread->sched_flags & TH_SFLAG_ABORTSAFELY))) { | |
880 | if (!(thread->state & TH_TERMINATE)) { | |
316670eb | 881 | DTRACE_SCHED(sleep); |
0a7de745 | 882 | } |
b0d623f7 | 883 | |
d9a64523 A |
884 | int state_bits = TH_WAIT; |
885 | if (!interruptible) { | |
886 | state_bits |= TH_UNINT; | |
887 | } | |
888 | if (thread->sched_call) { | |
889 | wait_interrupt_t mask = THREAD_WAIT_NOREPORT_USER; | |
890 | if (is_kerneltask(thread->task)) { | |
891 | mask = THREAD_WAIT_NOREPORT_KERNEL; | |
892 | } | |
893 | if ((interruptible_orig & mask) == 0) { | |
894 | state_bits |= TH_WAIT_REPORT; | |
895 | } | |
896 | } | |
897 | thread->state |= state_bits; | |
9bccf70c | 898 | thread->at_safe_point = at_safe_point; |
813fb2f6 A |
899 | |
900 | /* TODO: pass this through assert_wait instead, have | |
901 | * assert_wait just take a struct as an argument */ | |
902 | assert(!thread->block_hint); | |
903 | thread->block_hint = thread->pending_block_hint; | |
904 | thread->pending_block_hint = kThreadWaitNone; | |
905 | ||
0a7de745 | 906 | return thread->wait_result = THREAD_WAITING; |
d9a64523 | 907 | } else { |
0a7de745 | 908 | if (thread->sched_flags & TH_SFLAG_ABORTSAFELY) { |
d9a64523 | 909 | thread->sched_flags &= ~TH_SFLAG_ABORTED_MASK; |
0a7de745 | 910 | } |
9bccf70c | 911 | } |
813fb2f6 | 912 | thread->pending_block_hint = kThreadWaitNone; |
55e303ae | 913 | |
0a7de745 | 914 | return thread->wait_result = THREAD_INTERRUPTED; |
1c79356b A |
915 | } |
916 | ||
9bccf70c A |
917 | /* |
918 | * Routine: thread_interrupt_level | |
919 | * Purpose: | |
920 | * Set the maximum interruptible state for the | |
921 | * current thread. The effective value of any | |
922 | * interruptible flag passed into assert_wait | |
923 | * will never exceed this. | |
924 | * | |
925 | * Useful for code that must not be interrupted, | |
926 | * but which calls code that doesn't know that. | |
927 | * Returns: | |
928 | * The old interrupt level for the thread. | |
929 | */ | |
0a7de745 | 930 | __private_extern__ |
9bccf70c A |
931 | wait_interrupt_t |
932 | thread_interrupt_level( | |
933 | wait_interrupt_t new_level) | |
934 | { | |
935 | thread_t thread = current_thread(); | |
91447636 | 936 | wait_interrupt_t result = thread->options & TH_OPT_INTMASK; |
1c79356b | 937 | |
91447636 | 938 | thread->options = (thread->options & ~TH_OPT_INTMASK) | (new_level & TH_OPT_INTMASK); |
1c79356b | 939 | |
91447636 | 940 | return result; |
1c79356b A |
941 | } |
942 | ||
1c79356b A |
943 | /* |
944 | * assert_wait: | |
945 | * | |
946 | * Assert that the current thread is about to go to | |
947 | * sleep until the specified event occurs. | |
948 | */ | |
9bccf70c | 949 | wait_result_t |
1c79356b | 950 | assert_wait( |
0a7de745 A |
951 | event_t event, |
952 | wait_interrupt_t interruptible) | |
1c79356b | 953 | { |
0a7de745 | 954 | if (__improbable(event == NO_EVENT)) { |
3e170ce0 | 955 | panic("%s() called with NO_EVENT", __func__); |
0a7de745 | 956 | } |
1c79356b | 957 | |
316670eb | 958 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
959 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT) | DBG_FUNC_NONE, |
960 | VM_KERNEL_UNSLIDE_OR_PERM(event), 0, 0, 0, 0); | |
316670eb | 961 | |
3e170ce0 A |
962 | struct waitq *waitq; |
963 | waitq = global_eventq(event); | |
964 | return waitq_assert_wait64(waitq, CAST_EVENT64_T(event), interruptible, TIMEOUT_WAIT_FOREVER); | |
9bccf70c A |
965 | } |
966 | ||
39037602 A |
967 | /* |
968 | * assert_wait_queue: | |
969 | * | |
970 | * Return the global waitq for the specified event | |
971 | */ | |
972 | struct waitq * | |
973 | assert_wait_queue( | |
0a7de745 | 974 | event_t event) |
39037602 A |
975 | { |
976 | return global_eventq(event); | |
977 | } | |
978 | ||
91447636 A |
979 | wait_result_t |
980 | assert_wait_timeout( | |
0a7de745 A |
981 | event_t event, |
982 | wait_interrupt_t interruptible, | |
983 | uint32_t interval, | |
984 | uint32_t scale_factor) | |
55e303ae | 985 | { |
0a7de745 A |
986 | thread_t thread = current_thread(); |
987 | wait_result_t wresult; | |
988 | uint64_t deadline; | |
989 | spl_t s; | |
91447636 | 990 | |
0a7de745 | 991 | if (__improbable(event == NO_EVENT)) { |
3e170ce0 | 992 | panic("%s() called with NO_EVENT", __func__); |
0a7de745 | 993 | } |
fe8ab488 | 994 | |
3e170ce0 A |
995 | struct waitq *waitq; |
996 | waitq = global_eventq(event); | |
91447636 A |
997 | |
998 | s = splsched(); | |
3e170ce0 | 999 | waitq_lock(waitq); |
91447636 A |
1000 | |
1001 | clock_interval_to_deadline(interval, scale_factor, &deadline); | |
3e170ce0 | 1002 | |
316670eb | 1003 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
1004 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT) | DBG_FUNC_NONE, |
1005 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); | |
3e170ce0 A |
1006 | |
1007 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), | |
0a7de745 A |
1008 | interruptible, |
1009 | TIMEOUT_URGENCY_SYS_NORMAL, | |
1010 | deadline, TIMEOUT_NO_LEEWAY, | |
1011 | thread); | |
39236c6e | 1012 | |
3e170ce0 | 1013 | waitq_unlock(waitq); |
39236c6e | 1014 | splx(s); |
3e170ce0 | 1015 | return wresult; |
39236c6e A |
1016 | } |
1017 | ||
1018 | wait_result_t | |
1019 | assert_wait_timeout_with_leeway( | |
0a7de745 A |
1020 | event_t event, |
1021 | wait_interrupt_t interruptible, | |
1022 | wait_timeout_urgency_t urgency, | |
1023 | uint32_t interval, | |
1024 | uint32_t leeway, | |
1025 | uint32_t scale_factor) | |
1026 | { | |
1027 | thread_t thread = current_thread(); | |
1028 | wait_result_t wresult; | |
1029 | uint64_t deadline; | |
1030 | uint64_t abstime; | |
1031 | uint64_t slop; | |
1032 | uint64_t now; | |
1033 | spl_t s; | |
1034 | ||
1035 | if (__improbable(event == NO_EVENT)) { | |
3e170ce0 | 1036 | panic("%s() called with NO_EVENT", __func__); |
0a7de745 | 1037 | } |
3e170ce0 | 1038 | |
39236c6e A |
1039 | now = mach_absolute_time(); |
1040 | clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime); | |
1041 | deadline = now + abstime; | |
1042 | ||
1043 | clock_interval_to_absolutetime_interval(leeway, scale_factor, &slop); | |
1044 | ||
3e170ce0 A |
1045 | struct waitq *waitq; |
1046 | waitq = global_eventq(event); | |
39236c6e A |
1047 | |
1048 | s = splsched(); | |
3e170ce0 | 1049 | waitq_lock(waitq); |
39236c6e A |
1050 | |
1051 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
0a7de745 A |
1052 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT) | DBG_FUNC_NONE, |
1053 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); | |
3e170ce0 A |
1054 | |
1055 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), | |
0a7de745 A |
1056 | interruptible, |
1057 | urgency, deadline, slop, | |
1058 | thread); | |
91447636 | 1059 | |
3e170ce0 | 1060 | waitq_unlock(waitq); |
91447636 | 1061 | splx(s); |
3e170ce0 | 1062 | return wresult; |
55e303ae A |
1063 | } |
1064 | ||
1065 | wait_result_t | |
91447636 | 1066 | assert_wait_deadline( |
0a7de745 A |
1067 | event_t event, |
1068 | wait_interrupt_t interruptible, | |
1069 | uint64_t deadline) | |
55e303ae | 1070 | { |
0a7de745 A |
1071 | thread_t thread = current_thread(); |
1072 | wait_result_t wresult; | |
1073 | spl_t s; | |
55e303ae | 1074 | |
0a7de745 | 1075 | if (__improbable(event == NO_EVENT)) { |
3e170ce0 | 1076 | panic("%s() called with NO_EVENT", __func__); |
0a7de745 | 1077 | } |
3e170ce0 A |
1078 | |
1079 | struct waitq *waitq; | |
1080 | waitq = global_eventq(event); | |
55e303ae A |
1081 | |
1082 | s = splsched(); | |
3e170ce0 | 1083 | waitq_lock(waitq); |
55e303ae | 1084 | |
316670eb | 1085 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
1086 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT) | DBG_FUNC_NONE, |
1087 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); | |
39236c6e | 1088 | |
3e170ce0 | 1089 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), |
0a7de745 A |
1090 | interruptible, |
1091 | TIMEOUT_URGENCY_SYS_NORMAL, deadline, | |
1092 | TIMEOUT_NO_LEEWAY, thread); | |
3e170ce0 | 1093 | waitq_unlock(waitq); |
39236c6e | 1094 | splx(s); |
3e170ce0 | 1095 | return wresult; |
39236c6e A |
1096 | } |
1097 | ||
1098 | wait_result_t | |
1099 | assert_wait_deadline_with_leeway( | |
0a7de745 A |
1100 | event_t event, |
1101 | wait_interrupt_t interruptible, | |
1102 | wait_timeout_urgency_t urgency, | |
1103 | uint64_t deadline, | |
1104 | uint64_t leeway) | |
39236c6e | 1105 | { |
0a7de745 A |
1106 | thread_t thread = current_thread(); |
1107 | wait_result_t wresult; | |
1108 | spl_t s; | |
39236c6e | 1109 | |
0a7de745 | 1110 | if (__improbable(event == NO_EVENT)) { |
3e170ce0 | 1111 | panic("%s() called with NO_EVENT", __func__); |
0a7de745 | 1112 | } |
fe8ab488 | 1113 | |
3e170ce0 A |
1114 | struct waitq *waitq; |
1115 | waitq = global_eventq(event); | |
39236c6e A |
1116 | |
1117 | s = splsched(); | |
3e170ce0 | 1118 | waitq_lock(waitq); |
39236c6e A |
1119 | |
1120 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
0a7de745 A |
1121 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT) | DBG_FUNC_NONE, |
1122 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); | |
39236c6e | 1123 | |
3e170ce0 | 1124 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), |
0a7de745 A |
1125 | interruptible, |
1126 | urgency, deadline, leeway, | |
1127 | thread); | |
3e170ce0 | 1128 | waitq_unlock(waitq); |
55e303ae | 1129 | splx(s); |
3e170ce0 | 1130 | return wresult; |
55e303ae | 1131 | } |
9bccf70c | 1132 | |
39236c6e A |
1133 | /* |
1134 | * thread_isoncpu: | |
1135 | * | |
1136 | * Return TRUE if a thread is running on a processor such that an AST | |
1137 | * is needed to pull it out of userspace execution, or if executing in | |
1138 | * the kernel, bring to a context switch boundary that would cause | |
1139 | * thread state to be serialized in the thread PCB. | |
0a7de745 | 1140 | * |
39236c6e | 1141 | * Thread locked, returns the same way. While locked, fields |
fe8ab488 | 1142 | * like "state" cannot change. "runq" can change only from set to unset. |
39236c6e A |
1143 | */ |
1144 | static inline boolean_t | |
1145 | thread_isoncpu(thread_t thread) | |
1146 | { | |
1147 | /* Not running or runnable */ | |
0a7de745 A |
1148 | if (!(thread->state & TH_RUN)) { |
1149 | return FALSE; | |
1150 | } | |
39236c6e A |
1151 | |
1152 | /* Waiting on a runqueue, not currently running */ | |
fe8ab488 | 1153 | /* TODO: This is invalid - it can get dequeued without thread lock, but not context switched. */ |
0a7de745 A |
1154 | if (thread->runq != PROCESSOR_NULL) { |
1155 | return FALSE; | |
1156 | } | |
39236c6e | 1157 | |
3e170ce0 A |
1158 | /* |
1159 | * Thread does not have a stack yet | |
1160 | * It could be on the stack alloc queue or preparing to be invoked | |
1161 | */ | |
0a7de745 A |
1162 | if (!thread->kernel_stack) { |
1163 | return FALSE; | |
1164 | } | |
3e170ce0 | 1165 | |
39236c6e A |
1166 | /* |
1167 | * Thread must be running on a processor, or | |
1168 | * about to run, or just did run. In all these | |
1169 | * cases, an AST to the processor is needed | |
1170 | * to guarantee that the thread is kicked out | |
1171 | * of userspace and the processor has | |
1172 | * context switched (and saved register state). | |
1173 | */ | |
0a7de745 | 1174 | return TRUE; |
39236c6e A |
1175 | } |
1176 | ||
1c79356b | 1177 | /* |
91447636 | 1178 | * thread_stop: |
1c79356b | 1179 | * |
91447636 | 1180 | * Force a preemption point for a thread and wait |
39236c6e A |
1181 | * for it to stop running on a CPU. If a stronger |
1182 | * guarantee is requested, wait until no longer | |
1183 | * runnable. Arbitrates access among | |
91447636 | 1184 | * multiple stop requests. (released by unstop) |
1c79356b | 1185 | * |
91447636 A |
1186 | * The thread must enter a wait state and stop via a |
1187 | * separate means. | |
1c79356b | 1188 | * |
91447636 | 1189 | * Returns FALSE if interrupted. |
1c79356b A |
1190 | */ |
1191 | boolean_t | |
1192 | thread_stop( | |
0a7de745 A |
1193 | thread_t thread, |
1194 | boolean_t until_not_runnable) | |
1c79356b | 1195 | { |
0a7de745 A |
1196 | wait_result_t wresult; |
1197 | spl_t s = splsched(); | |
1198 | boolean_t oncpu; | |
1c79356b | 1199 | |
1c79356b | 1200 | wake_lock(thread); |
2d21ac55 | 1201 | thread_lock(thread); |
1c79356b A |
1202 | |
1203 | while (thread->state & TH_SUSP) { | |
1204 | thread->wake_active = TRUE; | |
2d21ac55 A |
1205 | thread_unlock(thread); |
1206 | ||
91447636 | 1207 | wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
1c79356b A |
1208 | wake_unlock(thread); |
1209 | splx(s); | |
1210 | ||
0a7de745 | 1211 | if (wresult == THREAD_WAITING) { |
91447636 | 1212 | wresult = thread_block(THREAD_CONTINUE_NULL); |
0a7de745 | 1213 | } |
9bccf70c | 1214 | |
0a7de745 A |
1215 | if (wresult != THREAD_AWAKENED) { |
1216 | return FALSE; | |
1217 | } | |
1c79356b A |
1218 | |
1219 | s = splsched(); | |
1220 | wake_lock(thread); | |
2d21ac55 | 1221 | thread_lock(thread); |
1c79356b | 1222 | } |
9bccf70c | 1223 | |
1c79356b | 1224 | thread->state |= TH_SUSP; |
1c79356b | 1225 | |
39236c6e | 1226 | while ((oncpu = thread_isoncpu(thread)) || |
0a7de745 A |
1227 | (until_not_runnable && (thread->state & TH_RUN))) { |
1228 | processor_t processor; | |
1229 | ||
39236c6e A |
1230 | if (oncpu) { |
1231 | assert(thread->state & TH_RUN); | |
1232 | processor = thread->chosen_processor; | |
9bccf70c | 1233 | cause_ast_check(processor); |
39236c6e | 1234 | } |
9bccf70c A |
1235 | |
1236 | thread->wake_active = TRUE; | |
2d21ac55 A |
1237 | thread_unlock(thread); |
1238 | ||
91447636 | 1239 | wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
9bccf70c A |
1240 | wake_unlock(thread); |
1241 | splx(s); | |
1242 | ||
0a7de745 | 1243 | if (wresult == THREAD_WAITING) { |
91447636 | 1244 | wresult = thread_block(THREAD_CONTINUE_NULL); |
0a7de745 | 1245 | } |
9bccf70c | 1246 | |
91447636 | 1247 | if (wresult != THREAD_AWAKENED) { |
9bccf70c | 1248 | thread_unstop(thread); |
0a7de745 | 1249 | return FALSE; |
9bccf70c A |
1250 | } |
1251 | ||
1252 | s = splsched(); | |
1253 | wake_lock(thread); | |
1254 | thread_lock(thread); | |
1255 | } | |
1256 | ||
1257 | thread_unlock(thread); | |
1c79356b A |
1258 | wake_unlock(thread); |
1259 | splx(s); | |
0a7de745 | 1260 | |
39236c6e A |
1261 | /* |
1262 | * We return with the thread unlocked. To prevent it from | |
1263 | * transitioning to a runnable state (or from TH_RUN to | |
1264 | * being on the CPU), the caller must ensure the thread | |
1265 | * is stopped via an external means (such as an AST) | |
1266 | */ | |
1c79356b | 1267 | |
0a7de745 | 1268 | return TRUE; |
1c79356b A |
1269 | } |
1270 | ||
1271 | /* | |
91447636 A |
1272 | * thread_unstop: |
1273 | * | |
1274 | * Release a previous stop request and set | |
1275 | * the thread running if appropriate. | |
1276 | * | |
1277 | * Use only after a successful stop operation. | |
1c79356b A |
1278 | */ |
1279 | void | |
1280 | thread_unstop( | |
0a7de745 | 1281 | thread_t thread) |
1c79356b | 1282 | { |
0a7de745 | 1283 | spl_t s = splsched(); |
1c79356b | 1284 | |
1c79356b A |
1285 | wake_lock(thread); |
1286 | thread_lock(thread); | |
1287 | ||
0a7de745 | 1288 | assert((thread->state & (TH_RUN | TH_WAIT | TH_SUSP)) != TH_SUSP); |
55e303ae | 1289 | |
1c79356b A |
1290 | if (thread->state & TH_SUSP) { |
1291 | thread->state &= ~TH_SUSP; | |
1292 | ||
1293 | if (thread->wake_active) { | |
1294 | thread->wake_active = FALSE; | |
1295 | thread_unlock(thread); | |
2d21ac55 A |
1296 | |
1297 | thread_wakeup(&thread->wake_active); | |
1c79356b A |
1298 | wake_unlock(thread); |
1299 | splx(s); | |
1c79356b A |
1300 | |
1301 | return; | |
1302 | } | |
1303 | } | |
1304 | ||
1305 | thread_unlock(thread); | |
1306 | wake_unlock(thread); | |
1307 | splx(s); | |
1308 | } | |
1309 | ||
1310 | /* | |
91447636 A |
1311 | * thread_wait: |
1312 | * | |
1313 | * Wait for a thread to stop running. (non-interruptible) | |
1314 | * | |
1c79356b | 1315 | */ |
91447636 | 1316 | void |
1c79356b | 1317 | thread_wait( |
0a7de745 A |
1318 | thread_t thread, |
1319 | boolean_t until_not_runnable) | |
1c79356b | 1320 | { |
0a7de745 A |
1321 | wait_result_t wresult; |
1322 | boolean_t oncpu; | |
1323 | processor_t processor; | |
1324 | spl_t s = splsched(); | |
1c79356b | 1325 | |
1c79356b | 1326 | wake_lock(thread); |
9bccf70c | 1327 | thread_lock(thread); |
1c79356b | 1328 | |
316670eb A |
1329 | /* |
1330 | * Wait until not running on a CPU. If stronger requirement | |
1331 | * desired, wait until not runnable. Assumption: if thread is | |
1332 | * on CPU, then TH_RUN is set, so we're not waiting in any case | |
0a7de745 | 1333 | * where the original, pure "TH_RUN" check would have let us |
316670eb A |
1334 | * finish. |
1335 | */ | |
39236c6e | 1336 | while ((oncpu = thread_isoncpu(thread)) || |
0a7de745 | 1337 | (until_not_runnable && (thread->state & TH_RUN))) { |
316670eb A |
1338 | if (oncpu) { |
1339 | assert(thread->state & TH_RUN); | |
39236c6e | 1340 | processor = thread->chosen_processor; |
9bccf70c | 1341 | cause_ast_check(processor); |
316670eb | 1342 | } |
1c79356b A |
1343 | |
1344 | thread->wake_active = TRUE; | |
2d21ac55 A |
1345 | thread_unlock(thread); |
1346 | ||
91447636 | 1347 | wresult = assert_wait(&thread->wake_active, THREAD_UNINT); |
1c79356b A |
1348 | wake_unlock(thread); |
1349 | splx(s); | |
1350 | ||
0a7de745 | 1351 | if (wresult == THREAD_WAITING) { |
91447636 | 1352 | thread_block(THREAD_CONTINUE_NULL); |
0a7de745 | 1353 | } |
1c79356b A |
1354 | |
1355 | s = splsched(); | |
1356 | wake_lock(thread); | |
9bccf70c | 1357 | thread_lock(thread); |
1c79356b | 1358 | } |
0b4e3aa0 | 1359 | |
9bccf70c | 1360 | thread_unlock(thread); |
1c79356b A |
1361 | wake_unlock(thread); |
1362 | splx(s); | |
1c79356b A |
1363 | } |
1364 | ||
1c79356b A |
1365 | /* |
1366 | * Routine: clear_wait_internal | |
1367 | * | |
1368 | * Clear the wait condition for the specified thread. | |
1369 | * Start the thread executing if that is appropriate. | |
1370 | * Arguments: | |
1371 | * thread thread to awaken | |
1372 | * result Wakeup result the thread should see | |
1373 | * Conditions: | |
1374 | * At splsched | |
1375 | * the thread is locked. | |
9bccf70c A |
1376 | * Returns: |
1377 | * KERN_SUCCESS thread was rousted out a wait | |
1378 | * KERN_FAILURE thread was waiting but could not be rousted | |
1379 | * KERN_NOT_WAITING thread was not waiting | |
1c79356b | 1380 | */ |
9bccf70c | 1381 | __private_extern__ kern_return_t |
1c79356b | 1382 | clear_wait_internal( |
0a7de745 A |
1383 | thread_t thread, |
1384 | wait_result_t wresult) | |
1c79356b | 1385 | { |
0a7de745 | 1386 | uint32_t i = LockTimeOutUsec; |
3e170ce0 | 1387 | struct waitq *waitq = thread->waitq; |
0a7de745 | 1388 | |
9bccf70c | 1389 | do { |
0a7de745 A |
1390 | if (wresult == THREAD_INTERRUPTED && (thread->state & TH_UNINT)) { |
1391 | return KERN_FAILURE; | |
1392 | } | |
9bccf70c | 1393 | |
3e170ce0 | 1394 | if (waitq != NULL) { |
39037602 | 1395 | if (!waitq_pull_thread_locked(waitq, thread)) { |
9bccf70c A |
1396 | thread_unlock(thread); |
1397 | delay(1); | |
0a7de745 | 1398 | if (i > 0 && !machine_timeout_suspended()) { |
39037602 | 1399 | i--; |
0a7de745 | 1400 | } |
9bccf70c | 1401 | thread_lock(thread); |
0a7de745 | 1402 | if (waitq != thread->waitq) { |
3e170ce0 | 1403 | return KERN_NOT_WAITING; |
0a7de745 | 1404 | } |
9bccf70c A |
1405 | continue; |
1406 | } | |
1c79356b | 1407 | } |
55e303ae | 1408 | |
3e170ce0 | 1409 | /* TODO: Can we instead assert TH_TERMINATE is not set? */ |
0a7de745 | 1410 | if ((thread->state & (TH_WAIT | TH_TERMINATE)) == TH_WAIT) { |
f427ee49 | 1411 | return thread_go(thread, wresult, WQ_OPTION_NONE); |
0a7de745 A |
1412 | } else { |
1413 | return KERN_NOT_WAITING; | |
1414 | } | |
39037602 | 1415 | } while (i > 0); |
55e303ae | 1416 | |
2d21ac55 | 1417 | panic("clear_wait_internal: deadlock: thread=%p, wq=%p, cpu=%d\n", |
0a7de745 | 1418 | thread, waitq, cpu_number()); |
55e303ae | 1419 | |
0a7de745 | 1420 | return KERN_FAILURE; |
1c79356b A |
1421 | } |
1422 | ||
1423 | ||
1424 | /* | |
1425 | * clear_wait: | |
1426 | * | |
1427 | * Clear the wait condition for the specified thread. Start the thread | |
1428 | * executing if that is appropriate. | |
1429 | * | |
1430 | * parameters: | |
1431 | * thread thread to awaken | |
1432 | * result Wakeup result the thread should see | |
1433 | */ | |
9bccf70c | 1434 | kern_return_t |
1c79356b | 1435 | clear_wait( |
0a7de745 A |
1436 | thread_t thread, |
1437 | wait_result_t result) | |
1c79356b | 1438 | { |
9bccf70c | 1439 | kern_return_t ret; |
0a7de745 | 1440 | spl_t s; |
1c79356b A |
1441 | |
1442 | s = splsched(); | |
1443 | thread_lock(thread); | |
9bccf70c | 1444 | ret = clear_wait_internal(thread, result); |
1c79356b A |
1445 | thread_unlock(thread); |
1446 | splx(s); | |
9bccf70c | 1447 | return ret; |
1c79356b A |
1448 | } |
1449 | ||
1450 | ||
1451 | /* | |
1452 | * thread_wakeup_prim: | |
1453 | * | |
1454 | * Common routine for thread_wakeup, thread_wakeup_with_result, | |
1455 | * and thread_wakeup_one. | |
1456 | * | |
1457 | */ | |
9bccf70c | 1458 | kern_return_t |
1c79356b | 1459 | thread_wakeup_prim( |
0a7de745 A |
1460 | event_t event, |
1461 | boolean_t one_thread, | |
1462 | wait_result_t result) | |
6d2010ae | 1463 | { |
0a7de745 | 1464 | if (__improbable(event == NO_EVENT)) { |
39037602 | 1465 | panic("%s() called with NO_EVENT", __func__); |
0a7de745 | 1466 | } |
39037602 A |
1467 | |
1468 | struct waitq *wq = global_eventq(event); | |
1469 | ||
0a7de745 | 1470 | if (one_thread) { |
39037602 | 1471 | return waitq_wakeup64_one(wq, CAST_EVENT64_T(event), result, WAITQ_ALL_PRIORITIES); |
0a7de745 | 1472 | } else { |
39037602 | 1473 | return waitq_wakeup64_all(wq, CAST_EVENT64_T(event), result, WAITQ_ALL_PRIORITIES); |
0a7de745 | 1474 | } |
6d2010ae A |
1475 | } |
1476 | ||
39037602 A |
1477 | /* |
1478 | * Wakeup a specified thread if and only if it's waiting for this event | |
1479 | */ | |
1480 | kern_return_t | |
1481 | thread_wakeup_thread( | |
0a7de745 A |
1482 | event_t event, |
1483 | thread_t thread) | |
39037602 | 1484 | { |
0a7de745 | 1485 | if (__improbable(event == NO_EVENT)) { |
39037602 | 1486 | panic("%s() called with NO_EVENT", __func__); |
0a7de745 | 1487 | } |
39037602 | 1488 | |
0a7de745 | 1489 | if (__improbable(thread == THREAD_NULL)) { |
5ba3f43e | 1490 | panic("%s() called with THREAD_NULL", __func__); |
0a7de745 | 1491 | } |
5ba3f43e | 1492 | |
39037602 A |
1493 | struct waitq *wq = global_eventq(event); |
1494 | ||
1495 | return waitq_wakeup64_thread(wq, CAST_EVENT64_T(event), thread, THREAD_AWAKENED); | |
1496 | } | |
6d2010ae | 1497 | |
39037602 A |
1498 | /* |
1499 | * Wakeup a thread waiting on an event and promote it to a priority. | |
1500 | * | |
1501 | * Requires woken thread to un-promote itself when done. | |
1502 | */ | |
6d2010ae | 1503 | kern_return_t |
39037602 | 1504 | thread_wakeup_one_with_pri( |
0a7de745 A |
1505 | event_t event, |
1506 | int priority) | |
1c79356b | 1507 | { |
0a7de745 | 1508 | if (__improbable(event == NO_EVENT)) { |
3e170ce0 | 1509 | panic("%s() called with NO_EVENT", __func__); |
0a7de745 | 1510 | } |
3e170ce0 | 1511 | |
39037602 | 1512 | struct waitq *wq = global_eventq(event); |
1c79356b | 1513 | |
39037602 A |
1514 | return waitq_wakeup64_one(wq, CAST_EVENT64_T(event), THREAD_AWAKENED, priority); |
1515 | } | |
fe8ab488 | 1516 | |
39037602 A |
1517 | /* |
1518 | * Wakeup a thread waiting on an event, | |
1519 | * promote it to a priority, | |
1520 | * and return a reference to the woken thread. | |
1521 | * | |
1522 | * Requires woken thread to un-promote itself when done. | |
1523 | */ | |
1524 | thread_t | |
1525 | thread_wakeup_identify(event_t event, | |
0a7de745 | 1526 | int priority) |
39037602 | 1527 | { |
0a7de745 | 1528 | if (__improbable(event == NO_EVENT)) { |
39037602 | 1529 | panic("%s() called with NO_EVENT", __func__); |
0a7de745 | 1530 | } |
39037602 A |
1531 | |
1532 | struct waitq *wq = global_eventq(event); | |
1533 | ||
1534 | return waitq_wakeup64_identify(wq, CAST_EVENT64_T(event), THREAD_AWAKENED, priority); | |
1c79356b A |
1535 | } |
1536 | ||
1537 | /* | |
1538 | * thread_bind: | |
1539 | * | |
2d21ac55 | 1540 | * Force the current thread to execute on the specified processor. |
fe8ab488 | 1541 | * Takes effect after the next thread_block(). |
1c79356b | 1542 | * |
55e303ae A |
1543 | * Returns the previous binding. PROCESSOR_NULL means |
1544 | * not bound. | |
1545 | * | |
1546 | * XXX - DO NOT export this to users - XXX | |
1c79356b | 1547 | */ |
55e303ae | 1548 | processor_t |
1c79356b | 1549 | thread_bind( |
0a7de745 | 1550 | processor_t processor) |
1c79356b | 1551 | { |
0a7de745 A |
1552 | thread_t self = current_thread(); |
1553 | processor_t prev; | |
1554 | spl_t s; | |
1c79356b A |
1555 | |
1556 | s = splsched(); | |
2d21ac55 | 1557 | thread_lock(self); |
55e303ae | 1558 | |
3e170ce0 | 1559 | prev = thread_bind_internal(self, processor); |
55e303ae | 1560 | |
2d21ac55 | 1561 | thread_unlock(self); |
1c79356b | 1562 | splx(s); |
55e303ae | 1563 | |
0a7de745 | 1564 | return prev; |
1c79356b A |
1565 | } |
1566 | ||
3e170ce0 A |
1567 | /* |
1568 | * thread_bind_internal: | |
1569 | * | |
1570 | * If the specified thread is not the current thread, and it is currently | |
1571 | * running on another CPU, a remote AST must be sent to that CPU to cause | |
1572 | * the thread to migrate to its bound processor. Otherwise, the migration | |
1573 | * will occur at the next quantum expiration or blocking point. | |
1574 | * | |
1575 | * When the thread is the current thread, and explicit thread_block() should | |
1576 | * be used to force the current processor to context switch away and | |
1577 | * let the thread migrate to the bound processor. | |
1578 | * | |
1579 | * Thread must be locked, and at splsched. | |
1580 | */ | |
1581 | ||
1582 | static processor_t | |
1583 | thread_bind_internal( | |
0a7de745 A |
1584 | thread_t thread, |
1585 | processor_t processor) | |
3e170ce0 | 1586 | { |
0a7de745 | 1587 | processor_t prev; |
3e170ce0 A |
1588 | |
1589 | /* <rdar://problem/15102234> */ | |
1590 | assert(thread->sched_pri < BASEPRI_RTQUEUES); | |
1591 | /* A thread can't be bound if it's sitting on a (potentially incorrect) runqueue */ | |
1592 | assert(thread->runq == PROCESSOR_NULL); | |
1593 | ||
1594 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_THREAD_BIND), thread_tid(thread), processor ? (uintptr_t)processor->cpu_id : (uintptr_t)-1, 0, 0, 0); | |
1595 | ||
1596 | prev = thread->bound_processor; | |
1597 | thread->bound_processor = processor; | |
1598 | ||
0a7de745 | 1599 | return prev; |
3e170ce0 A |
1600 | } |
1601 | ||
1602 | /* | |
1603 | * thread_vm_bind_group_add: | |
1604 | * | |
1605 | * The "VM bind group" is a special mechanism to mark a collection | |
1606 | * of threads from the VM subsystem that, in general, should be scheduled | |
1607 | * with only one CPU of parallelism. To accomplish this, we initially | |
1608 | * bind all the threads to the master processor, which has the effect | |
1609 | * that only one of the threads in the group can execute at once, including | |
1610 | * preempting threads in the group that are a lower priority. Future | |
1611 | * mechanisms may use more dynamic mechanisms to prevent the collection | |
1612 | * of VM threads from using more CPU time than desired. | |
1613 | * | |
1614 | * The current implementation can result in priority inversions where | |
1615 | * compute-bound priority 95 or realtime threads that happen to have | |
1616 | * landed on the master processor prevent the VM threads from running. | |
1617 | * When this situation is detected, we unbind the threads for one | |
1618 | * scheduler tick to allow the scheduler to run the threads an | |
1619 | * additional CPUs, before restoring the binding (assuming high latency | |
1620 | * is no longer a problem). | |
1621 | */ | |
1622 | ||
1623 | /* | |
1624 | * The current max is provisioned for: | |
1625 | * vm_compressor_swap_trigger_thread (92) | |
1626 | * 2 x vm_pageout_iothread_internal (92) when vm_restricted_to_single_processor==TRUE | |
1627 | * vm_pageout_continue (92) | |
1628 | * memorystatus_thread (95) | |
1629 | */ | |
1630 | #define MAX_VM_BIND_GROUP_COUNT (5) | |
0a7de745 | 1631 | decl_simple_lock_data(static, sched_vm_group_list_lock); |
3e170ce0 A |
1632 | static thread_t sched_vm_group_thread_list[MAX_VM_BIND_GROUP_COUNT]; |
1633 | static int sched_vm_group_thread_count; | |
1634 | static boolean_t sched_vm_group_temporarily_unbound = FALSE; | |
1635 | ||
1636 | void | |
1637 | thread_vm_bind_group_add(void) | |
1638 | { | |
1639 | thread_t self = current_thread(); | |
1640 | ||
1641 | thread_reference_internal(self); | |
1642 | self->options |= TH_OPT_SCHED_VM_GROUP; | |
1643 | ||
0a7de745 | 1644 | simple_lock(&sched_vm_group_list_lock, LCK_GRP_NULL); |
3e170ce0 A |
1645 | assert(sched_vm_group_thread_count < MAX_VM_BIND_GROUP_COUNT); |
1646 | sched_vm_group_thread_list[sched_vm_group_thread_count++] = self; | |
1647 | simple_unlock(&sched_vm_group_list_lock); | |
1648 | ||
1649 | thread_bind(master_processor); | |
1650 | ||
1651 | /* Switch to bound processor if not already there */ | |
1652 | thread_block(THREAD_CONTINUE_NULL); | |
1653 | } | |
1654 | ||
1655 | static void | |
1656 | sched_vm_group_maintenance(void) | |
1657 | { | |
1658 | uint64_t ctime = mach_absolute_time(); | |
1659 | uint64_t longtime = ctime - sched_tick_interval; | |
1660 | int i; | |
1661 | spl_t s; | |
1662 | boolean_t high_latency_observed = FALSE; | |
1663 | boolean_t runnable_and_not_on_runq_observed = FALSE; | |
1664 | boolean_t bind_target_changed = FALSE; | |
1665 | processor_t bind_target = PROCESSOR_NULL; | |
1666 | ||
1667 | /* Make sure nobody attempts to add new threads while we are enumerating them */ | |
0a7de745 | 1668 | simple_lock(&sched_vm_group_list_lock, LCK_GRP_NULL); |
3e170ce0 A |
1669 | |
1670 | s = splsched(); | |
1671 | ||
0a7de745 | 1672 | for (i = 0; i < sched_vm_group_thread_count; i++) { |
3e170ce0 A |
1673 | thread_t thread = sched_vm_group_thread_list[i]; |
1674 | assert(thread != THREAD_NULL); | |
1675 | thread_lock(thread); | |
0a7de745 | 1676 | if ((thread->state & (TH_RUN | TH_WAIT)) == TH_RUN) { |
3e170ce0 A |
1677 | if (thread->runq != PROCESSOR_NULL && thread->last_made_runnable_time < longtime) { |
1678 | high_latency_observed = TRUE; | |
1679 | } else if (thread->runq == PROCESSOR_NULL) { | |
1680 | /* There are some cases where a thread be transitiong that also fall into this case */ | |
1681 | runnable_and_not_on_runq_observed = TRUE; | |
1682 | } | |
1683 | } | |
1684 | thread_unlock(thread); | |
1685 | ||
1686 | if (high_latency_observed && runnable_and_not_on_runq_observed) { | |
1687 | /* All the things we are looking for are true, stop looking */ | |
1688 | break; | |
1689 | } | |
1690 | } | |
1691 | ||
1692 | splx(s); | |
1693 | ||
1694 | if (sched_vm_group_temporarily_unbound) { | |
1695 | /* If we turned off binding, make sure everything is OK before rebinding */ | |
1696 | if (!high_latency_observed) { | |
1697 | /* rebind */ | |
1698 | bind_target_changed = TRUE; | |
1699 | bind_target = master_processor; | |
1700 | sched_vm_group_temporarily_unbound = FALSE; /* might be reset to TRUE if change cannot be completed */ | |
1701 | } | |
1702 | } else { | |
1703 | /* | |
1704 | * Check if we're in a bad state, which is defined by high | |
1705 | * latency with no core currently executing a thread. If a | |
1706 | * single thread is making progress on a CPU, that means the | |
1707 | * binding concept to reduce parallelism is working as | |
1708 | * designed. | |
1709 | */ | |
1710 | if (high_latency_observed && !runnable_and_not_on_runq_observed) { | |
1711 | /* unbind */ | |
1712 | bind_target_changed = TRUE; | |
1713 | bind_target = PROCESSOR_NULL; | |
1714 | sched_vm_group_temporarily_unbound = TRUE; | |
1715 | } | |
1716 | } | |
1717 | ||
1718 | if (bind_target_changed) { | |
1719 | s = splsched(); | |
0a7de745 | 1720 | for (i = 0; i < sched_vm_group_thread_count; i++) { |
3e170ce0 A |
1721 | thread_t thread = sched_vm_group_thread_list[i]; |
1722 | boolean_t removed; | |
1723 | assert(thread != THREAD_NULL); | |
1724 | ||
1725 | thread_lock(thread); | |
1726 | removed = thread_run_queue_remove(thread); | |
1727 | if (removed || ((thread->state & (TH_RUN | TH_WAIT)) == TH_WAIT)) { | |
1728 | thread_bind_internal(thread, bind_target); | |
1729 | } else { | |
1730 | /* | |
1731 | * Thread was in the middle of being context-switched-to, | |
1732 | * or was in the process of blocking. To avoid switching the bind | |
1733 | * state out mid-flight, defer the change if possible. | |
1734 | */ | |
1735 | if (bind_target == PROCESSOR_NULL) { | |
1736 | thread_bind_internal(thread, bind_target); | |
1737 | } else { | |
1738 | sched_vm_group_temporarily_unbound = TRUE; /* next pass will try again */ | |
1739 | } | |
1740 | } | |
1741 | ||
1742 | if (removed) { | |
1743 | thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
1744 | } | |
1745 | thread_unlock(thread); | |
1746 | } | |
1747 | splx(s); | |
1748 | } | |
1749 | ||
1750 | simple_unlock(&sched_vm_group_list_lock); | |
1751 | } | |
1752 | ||
fe8ab488 A |
1753 | /* Invoked prior to idle entry to determine if, on SMT capable processors, an SMT |
1754 | * rebalancing opportunity exists when a core is (instantaneously) idle, but | |
1755 | * other SMT-capable cores may be over-committed. TODO: some possible negatives: | |
1756 | * IPI thrash if this core does not remain idle following the load balancing ASTs | |
1757 | * Idle "thrash", when IPI issue is followed by idle entry/core power down | |
1758 | * followed by a wakeup shortly thereafter. | |
1759 | */ | |
1760 | ||
fe8ab488 A |
1761 | #if (DEVELOPMENT || DEBUG) |
1762 | int sched_smt_balance = 1; | |
1763 | #endif | |
1764 | ||
3e170ce0 | 1765 | /* Invoked with pset locked, returns with pset unlocked */ |
5ba3f43e | 1766 | void |
0a7de745 A |
1767 | sched_SMT_balance(processor_t cprocessor, processor_set_t cpset) |
1768 | { | |
fe8ab488 A |
1769 | processor_t ast_processor = NULL; |
1770 | ||
1771 | #if (DEVELOPMENT || DEBUG) | |
0a7de745 | 1772 | if (__improbable(sched_smt_balance == 0)) { |
fe8ab488 | 1773 | goto smt_balance_exit; |
0a7de745 | 1774 | } |
fe8ab488 | 1775 | #endif |
0a7de745 | 1776 | |
fe8ab488 | 1777 | assert(cprocessor == current_processor()); |
0a7de745 | 1778 | if (cprocessor->is_SMT == FALSE) { |
fe8ab488 | 1779 | goto smt_balance_exit; |
0a7de745 | 1780 | } |
fe8ab488 A |
1781 | |
1782 | processor_t sib_processor = cprocessor->processor_secondary ? cprocessor->processor_secondary : cprocessor->processor_primary; | |
1783 | ||
1784 | /* Determine if both this processor and its sibling are idle, | |
1785 | * indicating an SMT rebalancing opportunity. | |
1786 | */ | |
0a7de745 | 1787 | if (sib_processor->state != PROCESSOR_IDLE) { |
fe8ab488 | 1788 | goto smt_balance_exit; |
0a7de745 | 1789 | } |
fe8ab488 A |
1790 | |
1791 | processor_t sprocessor; | |
1792 | ||
5ba3f43e | 1793 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
d9a64523 | 1794 | uint64_t running_secondary_map = (cpset->cpu_state_map[PROCESSOR_RUNNING] & |
0a7de745 | 1795 | ~cpset->primary_map); |
d9a64523 A |
1796 | for (int cpuid = lsb_first(running_secondary_map); cpuid >= 0; cpuid = lsb_next(running_secondary_map, cpuid)) { |
1797 | sprocessor = processor_array[cpuid]; | |
1798 | if ((sprocessor->processor_primary->state == PROCESSOR_RUNNING) && | |
5ba3f43e | 1799 | (sprocessor->current_pri < BASEPRI_RTQUEUES)) { |
d9a64523 A |
1800 | ipi_type = sched_ipi_action(sprocessor, NULL, false, SCHED_IPI_EVENT_SMT_REBAL); |
1801 | if (ipi_type != SCHED_IPI_NONE) { | |
1802 | assert(sprocessor != cprocessor); | |
1803 | ast_processor = sprocessor; | |
1804 | break; | |
1805 | } | |
fe8ab488 | 1806 | } |
fe8ab488 A |
1807 | } |
1808 | ||
1809 | smt_balance_exit: | |
1810 | pset_unlock(cpset); | |
1811 | ||
1812 | if (ast_processor) { | |
1813 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_SMT_BALANCE), ast_processor->cpu_id, ast_processor->state, ast_processor->processor_primary->state, 0, 0); | |
5ba3f43e | 1814 | sched_ipi_perform(ast_processor, ipi_type); |
fe8ab488 A |
1815 | } |
1816 | } | |
f427ee49 A |
1817 | |
1818 | static cpumap_t | |
1819 | pset_available_cpumap(processor_set_t pset) | |
5ba3f43e | 1820 | { |
f427ee49 A |
1821 | return (pset->cpu_state_map[PROCESSOR_IDLE] | pset->cpu_state_map[PROCESSOR_DISPATCHING] | pset->cpu_state_map[PROCESSOR_RUNNING]) & |
1822 | pset->recommended_bitmask; | |
1823 | } | |
1824 | ||
1825 | static cpumap_t | |
1826 | pset_available_but_not_running_cpumap(processor_set_t pset) | |
1827 | { | |
1828 | return (pset->cpu_state_map[PROCESSOR_IDLE] | pset->cpu_state_map[PROCESSOR_DISPATCHING]) & | |
1829 | pset->recommended_bitmask; | |
1830 | } | |
1831 | ||
1832 | bool | |
1833 | pset_has_stealable_threads(processor_set_t pset) | |
1834 | { | |
1835 | pset_assert_locked(pset); | |
1836 | ||
1837 | cpumap_t avail_map = pset_available_but_not_running_cpumap(pset); | |
1838 | /* | |
1839 | * Secondary CPUs never steal, so allow stealing of threads if there are more threads than | |
1840 | * available primary CPUs | |
1841 | */ | |
1842 | avail_map &= pset->primary_map; | |
1843 | ||
1844 | return (pset->pset_runq.count > 0) && ((pset->pset_runq.count + rt_runq_count(pset)) > bit_count(avail_map)); | |
5ba3f43e | 1845 | } |
fe8ab488 | 1846 | |
0a7de745 A |
1847 | /* |
1848 | * Called with pset locked, on a processor that is committing to run a new thread | |
1849 | * Will transition an idle or dispatching processor to running as it picks up | |
1850 | * the first new thread from the idle thread. | |
1851 | */ | |
1852 | static void | |
1853 | pset_commit_processor_to_new_thread(processor_set_t pset, processor_t processor, thread_t new_thread) | |
1854 | { | |
f427ee49 A |
1855 | pset_assert_locked(pset); |
1856 | ||
0a7de745 A |
1857 | if (processor->state == PROCESSOR_DISPATCHING || processor->state == PROCESSOR_IDLE) { |
1858 | assert(current_thread() == processor->idle_thread); | |
1859 | ||
1860 | /* | |
1861 | * Dispatching processor is now committed to running new_thread, | |
1862 | * so change its state to PROCESSOR_RUNNING. | |
1863 | */ | |
1864 | pset_update_processor_state(pset, processor, PROCESSOR_RUNNING); | |
1865 | } else { | |
1866 | assert((processor->state == PROCESSOR_RUNNING) || (processor->state == PROCESSOR_SHUTDOWN)); | |
1867 | } | |
1868 | ||
1869 | processor_state_update_from_thread(processor, new_thread); | |
f427ee49 A |
1870 | |
1871 | if (new_thread->sched_pri >= BASEPRI_RTQUEUES) { | |
1872 | bit_set(pset->realtime_map, processor->cpu_id); | |
1873 | } else { | |
1874 | bit_clear(pset->realtime_map, processor->cpu_id); | |
1875 | } | |
1876 | ||
1877 | pset_node_t node = pset->node; | |
1878 | ||
1879 | if (bit_count(node->pset_map) == 1) { | |
1880 | /* Node has only a single pset, so skip node pset map updates */ | |
1881 | return; | |
1882 | } | |
1883 | ||
1884 | cpumap_t avail_map = pset_available_cpumap(pset); | |
1885 | ||
1886 | if (new_thread->sched_pri >= BASEPRI_RTQUEUES) { | |
1887 | if ((avail_map & pset->realtime_map) == avail_map) { | |
1888 | /* No more non-RT CPUs in this pset */ | |
1889 | atomic_bit_clear(&node->pset_non_rt_map, pset->pset_id, memory_order_relaxed); | |
1890 | } | |
1891 | avail_map &= pset->primary_map; | |
1892 | if ((avail_map & pset->realtime_map) == avail_map) { | |
1893 | /* No more non-RT primary CPUs in this pset */ | |
1894 | atomic_bit_clear(&node->pset_non_rt_primary_map, pset->pset_id, memory_order_relaxed); | |
1895 | } | |
1896 | } else { | |
1897 | if ((avail_map & pset->realtime_map) != avail_map) { | |
1898 | if (!bit_test(atomic_load(&node->pset_non_rt_map), pset->pset_id)) { | |
1899 | atomic_bit_set(&node->pset_non_rt_map, pset->pset_id, memory_order_relaxed); | |
1900 | } | |
1901 | } | |
1902 | avail_map &= pset->primary_map; | |
1903 | if ((avail_map & pset->realtime_map) != avail_map) { | |
1904 | if (!bit_test(atomic_load(&node->pset_non_rt_primary_map), pset->pset_id)) { | |
1905 | atomic_bit_set(&node->pset_non_rt_primary_map, pset->pset_id, memory_order_relaxed); | |
1906 | } | |
1907 | } | |
1908 | } | |
0a7de745 A |
1909 | } |
1910 | ||
f427ee49 | 1911 | static processor_t choose_processor_for_realtime_thread(processor_set_t pset, processor_t skip_processor, bool consider_secondaries); |
a39ff7e2 | 1912 | static bool all_available_primaries_are_running_realtime_threads(processor_set_t pset); |
f427ee49 | 1913 | #if defined(__x86_64__) |
0a7de745 | 1914 | static bool these_processors_are_running_realtime_threads(processor_set_t pset, uint64_t these_map); |
f427ee49 | 1915 | #endif |
0a7de745 | 1916 | static bool sched_ok_to_run_realtime_thread(processor_set_t pset, processor_t processor); |
f427ee49 | 1917 | static bool processor_is_fast_track_candidate_for_realtime_thread(processor_set_t pset, processor_t processor); |
a39ff7e2 | 1918 | int sched_allow_rt_smt = 1; |
0a7de745 | 1919 | int sched_avoid_cpu0 = 1; |
a39ff7e2 | 1920 | |
1c79356b | 1921 | /* |
2d21ac55 A |
1922 | * thread_select: |
1923 | * | |
1924 | * Select a new thread for the current processor to execute. | |
55e303ae A |
1925 | * |
1926 | * May select the current thread, which must be locked. | |
1c79356b | 1927 | */ |
2d21ac55 | 1928 | static thread_t |
5ba3f43e | 1929 | thread_select(thread_t thread, |
0a7de745 A |
1930 | processor_t processor, |
1931 | ast_t *reason) | |
1c79356b | 1932 | { |
0a7de745 A |
1933 | processor_set_t pset = processor->processor_set; |
1934 | thread_t new_thread = THREAD_NULL; | |
1c79356b | 1935 | |
6d2010ae | 1936 | assert(processor == current_processor()); |
0a7de745 | 1937 | assert((thread->state & (TH_RUN | TH_TERMINATE2)) == TH_RUN); |
6d2010ae | 1938 | |
2d21ac55 A |
1939 | do { |
1940 | /* | |
1941 | * Update the priority. | |
1942 | */ | |
0a7de745 | 1943 | if (SCHED(can_update_priority)(thread)) { |
6d2010ae | 1944 | SCHED(update_priority)(thread); |
0a7de745 | 1945 | } |
1c79356b | 1946 | |
2d21ac55 A |
1947 | pset_lock(pset); |
1948 | ||
0a7de745 A |
1949 | processor_state_update_from_thread(processor, thread); |
1950 | ||
1951 | restart: | |
1952 | /* Acknowledge any pending IPIs here with pset lock held */ | |
1953 | bit_clear(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id); | |
1954 | bit_clear(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); | |
1955 | ||
1956 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
1957 | bit_clear(pset->pending_deferred_AST_cpu_mask, processor->cpu_id); | |
1958 | #endif | |
1959 | ||
1960 | bool secondary_can_only_run_realtime_thread = false; | |
1961 | ||
fe8ab488 | 1962 | assert(processor->state != PROCESSOR_OFF_LINE); |
6d2010ae | 1963 | |
3e170ce0 A |
1964 | if (!processor->is_recommended) { |
1965 | /* | |
1966 | * The performance controller has provided a hint to not dispatch more threads, | |
1967 | * unless they are bound to us (and thus we are the only option | |
1968 | */ | |
1969 | if (!SCHED(processor_bound_count)(processor)) { | |
1970 | goto idle; | |
1971 | } | |
1972 | } else if (processor->processor_primary != processor) { | |
39236c6e A |
1973 | /* |
1974 | * Should this secondary SMT processor attempt to find work? For pset runqueue systems, | |
1975 | * we should look for work only under the same conditions that choose_processor() | |
1976 | * would have assigned work, which is when all primary processors have been assigned work. | |
1977 | * | |
1978 | * An exception is that bound threads are dispatched to a processor without going through | |
1979 | * choose_processor(), so in those cases we should continue trying to dequeue work. | |
1980 | */ | |
a39ff7e2 | 1981 | if (!SCHED(processor_bound_count)(processor)) { |
d9a64523 | 1982 | if ((pset->recommended_bitmask & pset->primary_map & pset->cpu_state_map[PROCESSOR_IDLE]) != 0) { |
a39ff7e2 A |
1983 | goto idle; |
1984 | } | |
0a7de745 A |
1985 | |
1986 | /* | |
1987 | * TODO: What if a secondary core beat an idle primary to waking up from an IPI? | |
1988 | * Should it dequeue immediately, or spin waiting for the primary to wake up? | |
1989 | */ | |
1990 | ||
a39ff7e2 A |
1991 | /* There are no idle primaries */ |
1992 | ||
1993 | if (processor->processor_primary->current_pri >= BASEPRI_RTQUEUES) { | |
1994 | bool secondary_can_run_realtime_thread = sched_allow_rt_smt && rt_runq_count(pset) && all_available_primaries_are_running_realtime_threads(pset); | |
1995 | if (!secondary_can_run_realtime_thread) { | |
1996 | goto idle; | |
1997 | } | |
0a7de745 | 1998 | secondary_can_only_run_realtime_thread = true; |
a39ff7e2 | 1999 | } |
39236c6e A |
2000 | } |
2001 | } | |
2002 | ||
2d21ac55 A |
2003 | /* |
2004 | * Test to see if the current thread should continue | |
3e170ce0 | 2005 | * to run on this processor. Must not be attempting to wait, and not |
2d21ac55 | 2006 | * bound to a different processor, nor be in the wrong |
3e170ce0 A |
2007 | * processor set, nor be forced to context switch by TH_SUSP. |
2008 | * | |
2009 | * Note that there are never any RT threads in the regular runqueue. | |
2010 | * | |
2011 | * This code is very insanely tricky. | |
2d21ac55 | 2012 | */ |
3e170ce0 | 2013 | |
5ba3f43e | 2014 | /* i.e. not waiting, not TH_SUSP'ed */ |
0a7de745 | 2015 | bool still_running = ((thread->state & (TH_TERMINATE | TH_IDLE | TH_WAIT | TH_RUN | TH_SUSP)) == TH_RUN); |
5ba3f43e A |
2016 | |
2017 | /* | |
2018 | * Threads running on SMT processors are forced to context switch. Don't rebalance realtime threads. | |
2019 | * TODO: This should check if it's worth it to rebalance, i.e. 'are there any idle primary processors' | |
0a7de745 A |
2020 | * <rdar://problem/47907700> |
2021 | * | |
2022 | * A yielding thread shouldn't be forced to context switch. | |
5ba3f43e | 2023 | */ |
5ba3f43e | 2024 | |
0a7de745 A |
2025 | bool is_yielding = (*reason & AST_YIELD) == AST_YIELD; |
2026 | ||
2027 | bool needs_smt_rebalance = !is_yielding && thread->sched_pri < BASEPRI_RTQUEUES && processor->processor_primary != processor; | |
5ba3f43e | 2028 | |
0a7de745 | 2029 | bool affinity_mismatch = thread->affinity_set != AFFINITY_SET_NULL && thread->affinity_set->aset_pset != pset; |
5ba3f43e | 2030 | |
0a7de745 A |
2031 | bool bound_elsewhere = thread->bound_processor != PROCESSOR_NULL && thread->bound_processor != processor; |
2032 | ||
2033 | bool avoid_processor = !is_yielding && SCHED(avoid_processor_enabled) && SCHED(thread_avoid_processor)(processor, thread); | |
5ba3f43e A |
2034 | |
2035 | if (still_running && !needs_smt_rebalance && !affinity_mismatch && !bound_elsewhere && !avoid_processor) { | |
3e170ce0 | 2036 | /* |
5ba3f43e A |
2037 | * This thread is eligible to keep running on this processor. |
2038 | * | |
3e170ce0 A |
2039 | * RT threads with un-expired quantum stay on processor, |
2040 | * unless there's a valid RT thread with an earlier deadline. | |
2041 | */ | |
2042 | if (thread->sched_pri >= BASEPRI_RTQUEUES && processor->first_timeslice) { | |
5ba3f43e | 2043 | if (rt_runq_count(pset) > 0) { |
f427ee49 | 2044 | thread_t next_rt = qe_queue_first(&SCHED(rt_runq)(pset)->queue, struct thread, runq_links); |
0a7de745 | 2045 | |
f427ee49 A |
2046 | if (next_rt->realtime.deadline < processor->deadline && |
2047 | (next_rt->bound_processor == PROCESSOR_NULL || | |
2048 | next_rt->bound_processor == processor)) { | |
2049 | /* The next RT thread is better, so pick it off the runqueue. */ | |
2050 | goto pick_new_rt_thread; | |
55e303ae A |
2051 | } |
2052 | } | |
2d21ac55 | 2053 | |
3e170ce0 | 2054 | /* This is still the best RT thread to run. */ |
2d21ac55 A |
2055 | processor->deadline = thread->realtime.deadline; |
2056 | ||
f427ee49 | 2057 | sched_update_pset_load_average(pset, 0); |
a39ff7e2 A |
2058 | |
2059 | processor_t next_rt_processor = PROCESSOR_NULL; | |
2060 | sched_ipi_type_t next_rt_ipi_type = SCHED_IPI_NONE; | |
2061 | ||
f427ee49 A |
2062 | if (rt_runq_count(pset) - bit_count(pset->pending_AST_URGENT_cpu_mask) > 0) { |
2063 | next_rt_processor = choose_processor_for_realtime_thread(pset, processor, true); | |
a39ff7e2 | 2064 | if (next_rt_processor) { |
f427ee49 A |
2065 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR) | DBG_FUNC_NONE, |
2066 | (uintptr_t)0, (uintptr_t)-4, next_rt_processor->cpu_id, next_rt_processor->state, 0); | |
0a7de745 A |
2067 | if (next_rt_processor->state == PROCESSOR_IDLE) { |
2068 | pset_update_processor_state(pset, next_rt_processor, PROCESSOR_DISPATCHING); | |
2069 | } | |
a39ff7e2 A |
2070 | next_rt_ipi_type = sched_ipi_action(next_rt_processor, NULL, false, SCHED_IPI_EVENT_PREEMPT); |
2071 | } | |
2072 | } | |
2d21ac55 A |
2073 | pset_unlock(pset); |
2074 | ||
a39ff7e2 A |
2075 | if (next_rt_processor) { |
2076 | sched_ipi_perform(next_rt_processor, next_rt_ipi_type); | |
2077 | } | |
2078 | ||
0a7de745 | 2079 | return thread; |
55e303ae A |
2080 | } |
2081 | ||
5ba3f43e | 2082 | if ((rt_runq_count(pset) == 0) && |
3e170ce0 | 2083 | SCHED(processor_queue_has_priority)(processor, thread->sched_pri, TRUE) == FALSE) { |
fe8ab488 | 2084 | /* This thread is still the highest priority runnable (non-idle) thread */ |
2d21ac55 | 2085 | processor->deadline = UINT64_MAX; |
55e303ae | 2086 | |
f427ee49 | 2087 | sched_update_pset_load_average(pset, 0); |
2d21ac55 | 2088 | pset_unlock(pset); |
55e303ae | 2089 | |
0a7de745 | 2090 | return thread; |
2d21ac55 | 2091 | } |
5ba3f43e A |
2092 | } else { |
2093 | /* | |
2094 | * This processor must context switch. | |
2095 | * If it's due to a rebalance, we should aggressively find this thread a new home. | |
2096 | */ | |
0a7de745 A |
2097 | if (needs_smt_rebalance || affinity_mismatch || bound_elsewhere || avoid_processor) { |
2098 | *reason |= AST_REBALANCE; | |
2099 | } | |
2d21ac55 A |
2100 | } |
2101 | ||
c3c9b80d A |
2102 | bool secondary_forced_idle = ((processor->processor_secondary != PROCESSOR_NULL) && |
2103 | (thread_no_smt(thread) || (thread->sched_pri >= BASEPRI_RTQUEUES)) && | |
2104 | (processor->processor_secondary->state == PROCESSOR_IDLE)); | |
2105 | ||
3e170ce0 | 2106 | /* OK, so we're not going to run the current thread. Look at the RT queue. */ |
0a7de745 A |
2107 | bool ok_to_run_realtime_thread = sched_ok_to_run_realtime_thread(pset, processor); |
2108 | if ((rt_runq_count(pset) > 0) && ok_to_run_realtime_thread) { | |
f427ee49 | 2109 | thread_t next_rt = qe_queue_first(&SCHED(rt_runq)(pset)->queue, struct thread, runq_links); |
a39ff7e2 | 2110 | |
f427ee49 A |
2111 | if (__probable((next_rt->bound_processor == PROCESSOR_NULL || |
2112 | (next_rt->bound_processor == processor)))) { | |
3e170ce0 | 2113 | pick_new_rt_thread: |
f427ee49 | 2114 | new_thread = qe_dequeue_head(&SCHED(rt_runq)(pset)->queue, struct thread, runq_links); |
6d2010ae | 2115 | |
f427ee49 A |
2116 | new_thread->runq = PROCESSOR_NULL; |
2117 | SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq)(pset)->runq_stats, rt_runq_count(pset)); | |
2118 | rt_runq_count_decr(pset); | |
6d2010ae | 2119 | |
f427ee49 | 2120 | processor->deadline = new_thread->realtime.deadline; |
0a7de745 | 2121 | |
f427ee49 | 2122 | pset_commit_processor_to_new_thread(pset, processor, new_thread); |
c910b4d9 | 2123 | |
f427ee49 | 2124 | sched_update_pset_load_average(pset, 0); |
a39ff7e2 | 2125 | |
f427ee49 A |
2126 | processor_t ast_processor = PROCESSOR_NULL; |
2127 | processor_t next_rt_processor = PROCESSOR_NULL; | |
2128 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; | |
2129 | sched_ipi_type_t next_rt_ipi_type = SCHED_IPI_NONE; | |
a39ff7e2 | 2130 | |
f427ee49 A |
2131 | if (processor->processor_secondary != NULL) { |
2132 | processor_t sprocessor = processor->processor_secondary; | |
2133 | if ((sprocessor->state == PROCESSOR_RUNNING) || (sprocessor->state == PROCESSOR_DISPATCHING)) { | |
2134 | ipi_type = sched_ipi_action(sprocessor, NULL, false, SCHED_IPI_EVENT_SMT_REBAL); | |
2135 | ast_processor = sprocessor; | |
a39ff7e2 | 2136 | } |
f427ee49 A |
2137 | } |
2138 | if (rt_runq_count(pset) - bit_count(pset->pending_AST_URGENT_cpu_mask) > 0) { | |
2139 | next_rt_processor = choose_processor_for_realtime_thread(pset, processor, true); | |
2140 | if (next_rt_processor) { | |
2141 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR) | DBG_FUNC_NONE, | |
2142 | (uintptr_t)0, (uintptr_t)-5, next_rt_processor->cpu_id, next_rt_processor->state, 0); | |
2143 | if (next_rt_processor->state == PROCESSOR_IDLE) { | |
2144 | pset_update_processor_state(pset, next_rt_processor, PROCESSOR_DISPATCHING); | |
a39ff7e2 | 2145 | } |
f427ee49 | 2146 | next_rt_ipi_type = sched_ipi_action(next_rt_processor, NULL, false, SCHED_IPI_EVENT_PREEMPT); |
a39ff7e2 | 2147 | } |
f427ee49 A |
2148 | } |
2149 | pset_unlock(pset); | |
c910b4d9 | 2150 | |
f427ee49 A |
2151 | if (ast_processor) { |
2152 | sched_ipi_perform(ast_processor, ipi_type); | |
2153 | } | |
a39ff7e2 | 2154 | |
f427ee49 A |
2155 | if (next_rt_processor) { |
2156 | sched_ipi_perform(next_rt_processor, next_rt_ipi_type); | |
a39ff7e2 | 2157 | } |
5ba3f43e | 2158 | |
f427ee49 A |
2159 | return new_thread; |
2160 | } | |
c910b4d9 | 2161 | } |
0a7de745 A |
2162 | if (secondary_can_only_run_realtime_thread) { |
2163 | goto idle; | |
2164 | } | |
2d21ac55 | 2165 | |
3e170ce0 | 2166 | processor->deadline = UINT64_MAX; |
6d2010ae | 2167 | |
3e170ce0 | 2168 | /* No RT threads, so let's look at the regular threads. */ |
5ba3f43e | 2169 | if ((new_thread = SCHED(choose_thread)(processor, MINPRI, *reason)) != THREAD_NULL) { |
0a7de745 | 2170 | pset_commit_processor_to_new_thread(pset, processor, new_thread); |
f427ee49 | 2171 | sched_update_pset_load_average(pset, 0); |
0a7de745 A |
2172 | |
2173 | processor_t ast_processor = PROCESSOR_NULL; | |
2174 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; | |
2175 | ||
2176 | processor_t sprocessor = processor->processor_secondary; | |
2177 | if ((sprocessor != NULL) && (sprocessor->state == PROCESSOR_RUNNING)) { | |
2178 | if (thread_no_smt(new_thread)) { | |
2179 | ipi_type = sched_ipi_action(sprocessor, NULL, false, SCHED_IPI_EVENT_SMT_REBAL); | |
2180 | ast_processor = sprocessor; | |
2181 | } | |
c3c9b80d A |
2182 | } else if (secondary_forced_idle && !thread_no_smt(new_thread) && pset_has_stealable_threads(pset)) { |
2183 | pset_update_processor_state(pset, sprocessor, PROCESSOR_DISPATCHING); | |
2184 | ipi_type = sched_ipi_action(sprocessor, NULL, true, SCHED_IPI_EVENT_PREEMPT); | |
2185 | ast_processor = sprocessor; | |
0a7de745 | 2186 | } |
6d2010ae | 2187 | pset_unlock(pset); |
0a7de745 A |
2188 | |
2189 | if (ast_processor) { | |
2190 | sched_ipi_perform(ast_processor, ipi_type); | |
2191 | } | |
2192 | return new_thread; | |
2193 | } | |
2194 | ||
2195 | if (processor->must_idle) { | |
2196 | processor->must_idle = false; | |
2197 | goto idle; | |
6d2010ae | 2198 | } |
c910b4d9 | 2199 | |
f427ee49 | 2200 | if (SCHED(steal_thread_enabled)(pset) && (processor->processor_primary == processor)) { |
3e170ce0 A |
2201 | /* |
2202 | * No runnable threads, attempt to steal | |
2203 | * from other processors. Returns with pset lock dropped. | |
2204 | */ | |
2d21ac55 | 2205 | |
3e170ce0 | 2206 | if ((new_thread = SCHED(steal_thread)(pset)) != THREAD_NULL) { |
0a7de745 A |
2207 | /* |
2208 | * Avoid taking the pset_lock unless it is necessary to change state. | |
2209 | * It's safe to read processor->state here, as only the current processor can change state | |
2210 | * from this point (interrupts are disabled and this processor is committed to run new_thread). | |
2211 | */ | |
2212 | if (processor->state == PROCESSOR_DISPATCHING || processor->state == PROCESSOR_IDLE) { | |
2213 | pset_lock(pset); | |
2214 | pset_commit_processor_to_new_thread(pset, processor, new_thread); | |
2215 | pset_unlock(pset); | |
2216 | } else { | |
2217 | assert((processor->state == PROCESSOR_RUNNING) || (processor->state == PROCESSOR_SHUTDOWN)); | |
2218 | processor_state_update_from_thread(processor, new_thread); | |
2219 | } | |
2220 | ||
2221 | return new_thread; | |
3e170ce0 | 2222 | } |
cf7d32b8 | 2223 | |
3e170ce0 A |
2224 | /* |
2225 | * If other threads have appeared, shortcut | |
2226 | * around again. | |
2227 | */ | |
0a7de745 | 2228 | if (!SCHED(processor_queue_empty)(processor) || (ok_to_run_realtime_thread && (rt_runq_count(pset) > 0))) { |
3e170ce0 | 2229 | continue; |
0a7de745 | 2230 | } |
3e170ce0 A |
2231 | |
2232 | pset_lock(pset); | |
0a7de745 A |
2233 | |
2234 | /* Someone selected this processor while we had dropped the lock */ | |
2235 | if (bit_test(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { | |
2236 | goto restart; | |
2237 | } | |
3e170ce0 | 2238 | } |
55e303ae | 2239 | |
0a7de745 | 2240 | idle: |
1c79356b A |
2241 | /* |
2242 | * Nothing is runnable, so set this processor idle if it | |
2d21ac55 | 2243 | * was running. |
1c79356b | 2244 | */ |
0a7de745 | 2245 | if ((processor->state == PROCESSOR_RUNNING) || (processor->state == PROCESSOR_DISPATCHING)) { |
d9a64523 | 2246 | pset_update_processor_state(pset, processor, PROCESSOR_IDLE); |
0a7de745 | 2247 | processor_state_update_idle(processor); |
1c79356b | 2248 | } |
1c79356b | 2249 | |
fe8ab488 | 2250 | /* Invoked with pset locked, returns with pset unlocked */ |
5ba3f43e | 2251 | SCHED(processor_balance)(processor, pset); |
2d21ac55 | 2252 | |
3e170ce0 | 2253 | new_thread = processor->idle_thread; |
2d21ac55 A |
2254 | } while (new_thread == THREAD_NULL); |
2255 | ||
0a7de745 | 2256 | return new_thread; |
2d21ac55 A |
2257 | } |
2258 | ||
b0d623f7 | 2259 | /* |
3e170ce0 | 2260 | * thread_invoke |
b0d623f7 | 2261 | * |
3e170ce0 | 2262 | * Called at splsched with neither thread locked. |
b0d623f7 | 2263 | * |
3e170ce0 | 2264 | * Perform a context switch and start executing the new thread. |
55e303ae | 2265 | * |
3e170ce0 A |
2266 | * Returns FALSE when the context switch didn't happen. |
2267 | * The reference to the new thread is still consumed. | |
39236c6e A |
2268 | * |
2269 | * "self" is what is currently running on the processor, | |
2270 | * "thread" is the new thread to context switch to | |
2271 | * (which may be the same thread in some cases) | |
2272 | */ | |
2d21ac55 | 2273 | static boolean_t |
1c79356b | 2274 | thread_invoke( |
0a7de745 A |
2275 | thread_t self, |
2276 | thread_t thread, | |
2277 | ast_t reason) | |
1c79356b | 2278 | { |
39236c6e | 2279 | if (__improbable(get_preemption_level() != 0)) { |
b0d623f7 A |
2280 | int pl = get_preemption_level(); |
2281 | panic("thread_invoke: preemption_level %d, possible cause: %s", | |
2282 | pl, (pl < 0 ? "unlocking an unlocked mutex or spinlock" : | |
0a7de745 | 2283 | "blocking while holding a spinlock, or within interrupt context")); |
b0d623f7 | 2284 | } |
0b4e3aa0 | 2285 | |
3e170ce0 A |
2286 | thread_continue_t continuation = self->continuation; |
2287 | void *parameter = self->parameter; | |
2288 | processor_t processor; | |
2289 | ||
2290 | uint64_t ctime = mach_absolute_time(); | |
2291 | ||
2292 | #ifdef CONFIG_MACH_APPROXIMATE_TIME | |
2293 | commpage_update_mach_approximate_time(ctime); | |
2294 | #endif | |
2295 | ||
2296 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
f427ee49 A |
2297 | if (!((thread->state & TH_IDLE) != 0 || |
2298 | ((reason & AST_HANDOFF) && self->sched_mode == TH_MODE_REALTIME))) { | |
5ba3f43e | 2299 | sched_timeshare_consider_maintenance(ctime); |
0a7de745 | 2300 | } |
3e170ce0 A |
2301 | #endif |
2302 | ||
5ba3f43e A |
2303 | #if MONOTONIC |
2304 | mt_sched_update(self); | |
2305 | #endif /* MONOTONIC */ | |
2306 | ||
39037602 | 2307 | assert_thread_magic(self); |
2d21ac55 | 2308 | assert(self == current_thread()); |
fe8ab488 | 2309 | assert(self->runq == PROCESSOR_NULL); |
0a7de745 | 2310 | assert((self->state & (TH_RUN | TH_TERMINATE2)) == TH_RUN); |
91447636 | 2311 | |
2d21ac55 | 2312 | thread_lock(thread); |
1c79356b | 2313 | |
39037602 | 2314 | assert_thread_magic(thread); |
0a7de745 | 2315 | assert((thread->state & (TH_RUN | TH_WAIT | TH_UNINT | TH_TERMINATE | TH_TERMINATE2)) == TH_RUN); |
fe8ab488 A |
2316 | assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == current_processor()); |
2317 | assert(thread->runq == PROCESSOR_NULL); | |
1c79356b | 2318 | |
316670eb A |
2319 | /* Reload precise timing global policy to thread-local policy */ |
2320 | thread->precise_user_kernel_time = use_precise_user_kernel_time(thread); | |
3e170ce0 | 2321 | |
fe8ab488 A |
2322 | /* Update SFI class based on other factors */ |
2323 | thread->sfi_class = sfi_thread_classify(thread); | |
0a7de745 | 2324 | |
5ba3f43e A |
2325 | /* Update the same_pri_latency for the thread (used by perfcontrol callouts) */ |
2326 | thread->same_pri_latency = ctime - thread->last_basepri_change_time; | |
0a7de745 A |
2327 | /* |
2328 | * In case a base_pri update happened between the timestamp and | |
2329 | * taking the thread lock | |
5ba3f43e | 2330 | */ |
0a7de745 | 2331 | if (ctime <= thread->last_basepri_change_time) { |
5ba3f43e | 2332 | thread->same_pri_latency = ctime - thread->last_made_runnable_time; |
0a7de745 | 2333 | } |
fe8ab488 | 2334 | |
3e170ce0 | 2335 | /* Allow realtime threads to hang onto a stack. */ |
0a7de745 | 2336 | if ((self->sched_mode == TH_MODE_REALTIME) && !self->reserved_stack) { |
2d21ac55 | 2337 | self->reserved_stack = self->kernel_stack; |
0a7de745 | 2338 | } |
1c79356b | 2339 | |
0a7de745 | 2340 | /* Prepare for spin debugging */ |
5ba3f43e | 2341 | #if INTERRUPT_MASKED_DEBUG |
d9a64523 | 2342 | ml_spin_debug_clear(thread); |
5ba3f43e A |
2343 | #endif |
2344 | ||
91447636 | 2345 | if (continuation != NULL) { |
2d21ac55 | 2346 | if (!thread->kernel_stack) { |
9bccf70c | 2347 | /* |
2d21ac55 | 2348 | * If we are using a privileged stack, |
9bccf70c | 2349 | * check to see whether we can exchange it with |
2d21ac55 | 2350 | * that of the other thread. |
9bccf70c | 2351 | */ |
0a7de745 | 2352 | if (self->kernel_stack == self->reserved_stack && !thread->reserved_stack) { |
9bccf70c | 2353 | goto need_stack; |
0a7de745 | 2354 | } |
1c79356b | 2355 | |
91447636 A |
2356 | /* |
2357 | * Context switch by performing a stack handoff. | |
cb323159 | 2358 | * Requires both threads to be parked in a continuation. |
91447636 | 2359 | */ |
2d21ac55 A |
2360 | continuation = thread->continuation; |
2361 | parameter = thread->parameter; | |
1c79356b | 2362 | |
9bccf70c | 2363 | processor = current_processor(); |
2d21ac55 | 2364 | processor->active_thread = thread; |
5ba3f43e A |
2365 | processor_state_update_from_thread(processor, thread); |
2366 | ||
2d21ac55 | 2367 | if (thread->last_processor != processor && thread->last_processor != NULL) { |
0a7de745 | 2368 | if (thread->last_processor->processor_set != processor->processor_set) { |
2d21ac55 | 2369 | thread->ps_switch++; |
0a7de745 | 2370 | } |
2d21ac55 A |
2371 | thread->p_switch++; |
2372 | } | |
2373 | thread->last_processor = processor; | |
2374 | thread->c_switch++; | |
2375 | ast_context(thread); | |
3e170ce0 | 2376 | |
2d21ac55 | 2377 | thread_unlock(thread); |
1c79356b | 2378 | |
2d21ac55 | 2379 | self->reason = reason; |
91447636 | 2380 | |
39236c6e A |
2381 | processor->last_dispatch = ctime; |
2382 | self->last_run_time = ctime; | |
d9a64523 A |
2383 | processor_timer_switch_thread(ctime, &thread->system_timer); |
2384 | timer_update(&thread->runnable_timer, ctime); | |
f427ee49 | 2385 | processor->kernel_timer = &thread->system_timer; |
316670eb A |
2386 | |
2387 | /* | |
2388 | * Since non-precise user/kernel time doesn't update the state timer | |
2389 | * during privilege transitions, synthesize an event now. | |
2390 | */ | |
2391 | if (!thread->precise_user_kernel_time) { | |
f427ee49 | 2392 | timer_update(processor->current_state, ctime); |
316670eb | 2393 | } |
d9a64523 | 2394 | |
316670eb | 2395 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
2396 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_HANDOFF) | DBG_FUNC_NONE, |
2397 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
1c79356b | 2398 | |
39236c6e | 2399 | if ((thread->chosen_processor != processor) && (thread->chosen_processor != PROCESSOR_NULL)) { |
0a7de745 A |
2400 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED) | DBG_FUNC_NONE, |
2401 | (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0); | |
6d2010ae A |
2402 | } |
2403 | ||
b0d623f7 A |
2404 | DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info); |
2405 | ||
6d2010ae A |
2406 | SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri); |
2407 | ||
d9a64523 A |
2408 | #if KPERF |
2409 | kperf_off_cpu(self); | |
2410 | #endif /* KPERF */ | |
2411 | ||
cb323159 A |
2412 | /* |
2413 | * This is where we actually switch thread identity, | |
2414 | * and address space if required. However, register | |
2415 | * state is not switched - this routine leaves the | |
2416 | * stack and register state active on the current CPU. | |
2417 | */ | |
6d2010ae A |
2418 | TLOG(1, "thread_invoke: calling stack_handoff\n"); |
2419 | stack_handoff(self, thread); | |
9bccf70c | 2420 | |
3e170ce0 | 2421 | /* 'self' is now off core */ |
d9a64523 | 2422 | assert(thread == current_thread_volatile()); |
3e170ce0 | 2423 | |
b0d623f7 A |
2424 | DTRACE_SCHED(on__cpu); |
2425 | ||
39037602 A |
2426 | #if KPERF |
2427 | kperf_on_cpu(thread, continuation, NULL); | |
2428 | #endif /* KPERF */ | |
2429 | ||
d9a64523 A |
2430 | thread_dispatch(self, thread); |
2431 | ||
5ba3f43e | 2432 | #if KASAN |
d9a64523 A |
2433 | /* Old thread's stack has been moved to the new thread, so explicitly |
2434 | * unpoison it. */ | |
5ba3f43e A |
2435 | kasan_unpoison_stack(thread->kernel_stack, kernel_stack_size); |
2436 | #endif | |
2437 | ||
2d21ac55 | 2438 | thread->continuation = thread->parameter = NULL; |
1c79356b | 2439 | |
cb323159 A |
2440 | boolean_t enable_interrupts = TRUE; |
2441 | ||
2442 | /* idle thread needs to stay interrupts-disabled */ | |
2443 | if ((thread->state & TH_IDLE)) { | |
2444 | enable_interrupts = FALSE; | |
2445 | } | |
2446 | ||
2d21ac55 | 2447 | assert(continuation); |
cb323159 A |
2448 | call_continuation(continuation, parameter, |
2449 | thread->wait_result, enable_interrupts); | |
9bccf70c | 2450 | /*NOTREACHED*/ |
0a7de745 | 2451 | } else if (thread == self) { |
9bccf70c | 2452 | /* same thread but with continuation */ |
2d21ac55 | 2453 | ast_context(self); |
3e170ce0 | 2454 | |
2d21ac55 | 2455 | thread_unlock(self); |
9bccf70c | 2456 | |
39037602 A |
2457 | #if KPERF |
2458 | kperf_on_cpu(thread, continuation, NULL); | |
2459 | #endif /* KPERF */ | |
2460 | ||
316670eb | 2461 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
2462 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED) | DBG_FUNC_NONE, |
2463 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
6d2010ae | 2464 | |
5ba3f43e | 2465 | #if KASAN |
d9a64523 A |
2466 | /* stack handoff to self - no thread_dispatch(), so clear the stack |
2467 | * and free the fakestack directly */ | |
2468 | kasan_fakestack_drop(self); | |
2469 | kasan_fakestack_gc(self); | |
5ba3f43e A |
2470 | kasan_unpoison_stack(self->kernel_stack, kernel_stack_size); |
2471 | #endif | |
2472 | ||
2d21ac55 A |
2473 | self->continuation = self->parameter = NULL; |
2474 | ||
cb323159 A |
2475 | boolean_t enable_interrupts = TRUE; |
2476 | ||
2477 | /* idle thread needs to stay interrupts-disabled */ | |
2478 | if ((self->state & TH_IDLE)) { | |
2479 | enable_interrupts = FALSE; | |
2480 | } | |
2481 | ||
2482 | call_continuation(continuation, parameter, | |
2483 | self->wait_result, enable_interrupts); | |
9bccf70c A |
2484 | /*NOTREACHED*/ |
2485 | } | |
3e170ce0 | 2486 | } else { |
9bccf70c | 2487 | /* |
2d21ac55 | 2488 | * Check that the other thread has a stack |
9bccf70c | 2489 | */ |
2d21ac55 | 2490 | if (!thread->kernel_stack) { |
9bccf70c | 2491 | need_stack: |
2d21ac55 | 2492 | if (!stack_alloc_try(thread)) { |
2d21ac55 A |
2493 | thread_unlock(thread); |
2494 | thread_stack_enqueue(thread); | |
0a7de745 | 2495 | return FALSE; |
9bccf70c | 2496 | } |
3e170ce0 | 2497 | } else if (thread == self) { |
2d21ac55 | 2498 | ast_context(self); |
2d21ac55 | 2499 | thread_unlock(self); |
6d2010ae | 2500 | |
316670eb | 2501 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
2502 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED) | DBG_FUNC_NONE, |
2503 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
6d2010ae | 2504 | |
0a7de745 | 2505 | return TRUE; |
9bccf70c A |
2506 | } |
2507 | } | |
1c79356b A |
2508 | |
2509 | /* | |
91447636 | 2510 | * Context switch by full context save. |
1c79356b | 2511 | */ |
9bccf70c | 2512 | processor = current_processor(); |
2d21ac55 | 2513 | processor->active_thread = thread; |
5ba3f43e | 2514 | processor_state_update_from_thread(processor, thread); |
0a7de745 | 2515 | |
2d21ac55 | 2516 | if (thread->last_processor != processor && thread->last_processor != NULL) { |
0a7de745 | 2517 | if (thread->last_processor->processor_set != processor->processor_set) { |
2d21ac55 | 2518 | thread->ps_switch++; |
0a7de745 | 2519 | } |
2d21ac55 A |
2520 | thread->p_switch++; |
2521 | } | |
2522 | thread->last_processor = processor; | |
2523 | thread->c_switch++; | |
2524 | ast_context(thread); | |
3e170ce0 | 2525 | |
2d21ac55 | 2526 | thread_unlock(thread); |
1c79356b | 2527 | |
2d21ac55 | 2528 | self->reason = reason; |
1c79356b | 2529 | |
39236c6e A |
2530 | processor->last_dispatch = ctime; |
2531 | self->last_run_time = ctime; | |
d9a64523 A |
2532 | processor_timer_switch_thread(ctime, &thread->system_timer); |
2533 | timer_update(&thread->runnable_timer, ctime); | |
f427ee49 | 2534 | processor->kernel_timer = &thread->system_timer; |
91447636 | 2535 | |
316670eb A |
2536 | /* |
2537 | * Since non-precise user/kernel time doesn't update the state timer | |
2538 | * during privilege transitions, synthesize an event now. | |
2539 | */ | |
2540 | if (!thread->precise_user_kernel_time) { | |
f427ee49 | 2541 | timer_update(processor->current_state, ctime); |
316670eb | 2542 | } |
3e170ce0 | 2543 | |
316670eb | 2544 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
2545 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED) | DBG_FUNC_NONE, |
2546 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
b0d623f7 | 2547 | |
6d2010ae | 2548 | if ((thread->chosen_processor != processor) && (thread->chosen_processor != NULL)) { |
0a7de745 A |
2549 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED) | DBG_FUNC_NONE, |
2550 | (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0); | |
6d2010ae A |
2551 | } |
2552 | ||
b0d623f7 | 2553 | DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info); |
1c79356b | 2554 | |
6d2010ae A |
2555 | SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri); |
2556 | ||
d9a64523 A |
2557 | #if KPERF |
2558 | kperf_off_cpu(self); | |
2559 | #endif /* KPERF */ | |
2560 | ||
1c79356b | 2561 | /* |
91447636 | 2562 | * This is where we actually switch register context, |
2d21ac55 A |
2563 | * and address space if required. We will next run |
2564 | * as a result of a subsequent context switch. | |
3e170ce0 A |
2565 | * |
2566 | * Once registers are switched and the processor is running "thread", | |
2567 | * the stack variables and non-volatile registers will contain whatever | |
2568 | * was there the last time that thread blocked. No local variables should | |
2569 | * be used after this point, except for the special case of "thread", which | |
2570 | * the platform layer returns as the previous thread running on the processor | |
2571 | * via the function call ABI as a return register, and "self", which may have | |
2572 | * been stored on the stack or a non-volatile register, but a stale idea of | |
2573 | * what was on the CPU is newly-accurate because that thread is again | |
2574 | * running on the CPU. | |
cb323159 A |
2575 | * |
2576 | * If one of the threads is using a continuation, thread_continue | |
2577 | * is used to stitch up its context. | |
2578 | * | |
2579 | * If we are invoking a thread which is resuming from a continuation, | |
2580 | * the CPU will invoke thread_continue next. | |
2581 | * | |
2582 | * If the current thread is parking in a continuation, then its state | |
2583 | * won't be saved and the stack will be discarded. When the stack is | |
2584 | * re-allocated, it will be configured to resume from thread_continue. | |
91447636 | 2585 | */ |
316670eb | 2586 | assert(continuation == self->continuation); |
2d21ac55 | 2587 | thread = machine_switch_context(self, continuation, thread); |
d9a64523 | 2588 | assert(self == current_thread_volatile()); |
0a7de745 | 2589 | TLOG(1, "thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n", self, continuation, thread); |
b0d623f7 | 2590 | |
cb323159 A |
2591 | assert(continuation == NULL && self->continuation == NULL); |
2592 | ||
b0d623f7 | 2593 | DTRACE_SCHED(on__cpu); |
1c79356b | 2594 | |
39037602 A |
2595 | #if KPERF |
2596 | kperf_on_cpu(self, NULL, __builtin_frame_address(0)); | |
2597 | #endif /* KPERF */ | |
2598 | ||
cb323159 | 2599 | /* We have been resumed and are set to run. */ |
2d21ac55 | 2600 | thread_dispatch(thread, self); |
9bccf70c | 2601 | |
0a7de745 | 2602 | return TRUE; |
1c79356b A |
2603 | } |
2604 | ||
3e170ce0 A |
2605 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
2606 | /* | |
2607 | * pset_cancel_deferred_dispatch: | |
2608 | * | |
2609 | * Cancels all ASTs that we can cancel for the given processor set | |
2610 | * if the current processor is running the last runnable thread in the | |
2611 | * system. | |
2612 | * | |
2613 | * This function assumes the current thread is runnable. This must | |
2614 | * be called with the pset unlocked. | |
2615 | */ | |
2616 | static void | |
2617 | pset_cancel_deferred_dispatch( | |
0a7de745 A |
2618 | processor_set_t pset, |
2619 | processor_t processor) | |
3e170ce0 | 2620 | { |
0a7de745 A |
2621 | processor_t active_processor = NULL; |
2622 | uint32_t sampled_sched_run_count; | |
3e170ce0 A |
2623 | |
2624 | pset_lock(pset); | |
cb323159 | 2625 | sampled_sched_run_count = os_atomic_load(&sched_run_buckets[TH_BUCKET_RUN], relaxed); |
3e170ce0 A |
2626 | |
2627 | /* | |
2628 | * If we have emptied the run queue, and our current thread is runnable, we | |
2629 | * should tell any processors that are still DISPATCHING that they will | |
2630 | * probably not have any work to do. In the event that there are no | |
2631 | * pending signals that we can cancel, this is also uninteresting. | |
2632 | * | |
2633 | * In the unlikely event that another thread becomes runnable while we are | |
2634 | * doing this (sched_run_count is atomically updated, not guarded), the | |
2635 | * codepath making it runnable SHOULD (a dangerous word) need the pset lock | |
2636 | * in order to dispatch it to a processor in our pset. So, the other | |
2637 | * codepath will wait while we squash all cancelable ASTs, get the pset | |
2638 | * lock, and then dispatch the freshly runnable thread. So this should be | |
2639 | * correct (we won't accidentally have a runnable thread that hasn't been | |
2640 | * dispatched to an idle processor), if not ideal (we may be restarting the | |
2641 | * dispatch process, which could have some overhead). | |
3e170ce0 | 2642 | */ |
d9a64523 A |
2643 | |
2644 | if ((sampled_sched_run_count == 1) && (pset->pending_deferred_AST_cpu_mask)) { | |
2645 | uint64_t dispatching_map = (pset->cpu_state_map[PROCESSOR_DISPATCHING] & | |
0a7de745 A |
2646 | pset->pending_deferred_AST_cpu_mask & |
2647 | ~pset->pending_AST_URGENT_cpu_mask); | |
d9a64523 A |
2648 | for (int cpuid = lsb_first(dispatching_map); cpuid >= 0; cpuid = lsb_next(dispatching_map, cpuid)) { |
2649 | active_processor = processor_array[cpuid]; | |
3e170ce0 A |
2650 | /* |
2651 | * If a processor is DISPATCHING, it could be because of | |
2652 | * a cancelable signal. | |
2653 | * | |
2654 | * IF the processor is not our | |
2655 | * current processor (the current processor should not | |
2656 | * be DISPATCHING, so this is a bit paranoid), AND there | |
2657 | * is a cancelable signal pending on the processor, AND | |
2658 | * there is no non-cancelable signal pending (as there is | |
2659 | * no point trying to backtrack on bringing the processor | |
2660 | * up if a signal we cannot cancel is outstanding), THEN | |
2661 | * it should make sense to roll back the processor state | |
2662 | * to the IDLE state. | |
2663 | * | |
2664 | * If the racey nature of this approach (as the signal | |
2665 | * will be arbitrated by hardware, and can fire as we | |
2666 | * roll back state) results in the core responding | |
2667 | * despite being pushed back to the IDLE state, it | |
2668 | * should be no different than if the core took some | |
2669 | * interrupt while IDLE. | |
2670 | */ | |
d9a64523 | 2671 | if (active_processor != processor) { |
3e170ce0 A |
2672 | /* |
2673 | * Squash all of the processor state back to some | |
2674 | * reasonable facsimile of PROCESSOR_IDLE. | |
3e170ce0 | 2675 | */ |
3e170ce0 | 2676 | |
5ba3f43e | 2677 | processor_state_update_idle(active_processor); |
3e170ce0 | 2678 | active_processor->deadline = UINT64_MAX; |
d9a64523 | 2679 | pset_update_processor_state(pset, active_processor, PROCESSOR_IDLE); |
5ba3f43e | 2680 | bit_clear(pset->pending_deferred_AST_cpu_mask, active_processor->cpu_id); |
3e170ce0 A |
2681 | machine_signal_idle_cancel(active_processor); |
2682 | } | |
3e170ce0 A |
2683 | } |
2684 | } | |
2685 | ||
2686 | pset_unlock(pset); | |
2687 | } | |
2688 | #else | |
2689 | /* We don't support deferred ASTs; everything is candycanes and sunshine. */ | |
2690 | #endif | |
2691 | ||
5ba3f43e A |
2692 | static void |
2693 | thread_csw_callout( | |
0a7de745 A |
2694 | thread_t old, |
2695 | thread_t new, | |
2696 | uint64_t timestamp) | |
5ba3f43e A |
2697 | { |
2698 | perfcontrol_event event = (new->state & TH_IDLE) ? IDLE : CONTEXT_SWITCH; | |
2699 | uint64_t same_pri_latency = (new->state & TH_IDLE) ? 0 : new->same_pri_latency; | |
0a7de745 A |
2700 | machine_switch_perfcontrol_context(event, timestamp, 0, |
2701 | same_pri_latency, old, new); | |
5ba3f43e A |
2702 | } |
2703 | ||
2704 | ||
1c79356b | 2705 | /* |
2d21ac55 | 2706 | * thread_dispatch: |
1c79356b | 2707 | * |
2d21ac55 A |
2708 | * Handle threads at context switch. Re-dispatch other thread |
2709 | * if still running, otherwise update run state and perform | |
2710 | * special actions. Update quantum for other thread and begin | |
2711 | * the quantum for ourselves. | |
91447636 | 2712 | * |
3e170ce0 A |
2713 | * "thread" is the old thread that we have switched away from. |
2714 | * "self" is the new current thread that we have context switched to | |
39236c6e | 2715 | * |
91447636 | 2716 | * Called at splsched. |
cb323159 | 2717 | * |
1c79356b A |
2718 | */ |
2719 | void | |
2d21ac55 | 2720 | thread_dispatch( |
0a7de745 A |
2721 | thread_t thread, |
2722 | thread_t self) | |
1c79356b | 2723 | { |
0a7de745 | 2724 | processor_t processor = self->last_processor; |
f427ee49 | 2725 | bool was_idle = false; |
2d21ac55 | 2726 | |
3e170ce0 | 2727 | assert(processor == current_processor()); |
d9a64523 | 2728 | assert(self == current_thread_volatile()); |
3e170ce0 A |
2729 | assert(thread != self); |
2730 | ||
2d21ac55 | 2731 | if (thread != THREAD_NULL) { |
0a7de745 A |
2732 | /* |
2733 | * Do the perfcontrol callout for context switch. | |
5ba3f43e | 2734 | * The reason we do this here is: |
0a7de745 | 2735 | * - thread_dispatch() is called from various places that are not |
5ba3f43e A |
2736 | * the direct context switch path for eg. processor shutdown etc. |
2737 | * So adding the callout here covers all those cases. | |
0a7de745 | 2738 | * - We want this callout as early as possible to be close |
5ba3f43e | 2739 | * to the timestamp taken in thread_invoke() |
0a7de745 | 2740 | * - We want to avoid holding the thread lock while doing the |
5ba3f43e A |
2741 | * callout |
2742 | * - We do not want to callout if "thread" is NULL. | |
2743 | */ | |
0a7de745 | 2744 | thread_csw_callout(thread, self, processor->last_dispatch); |
d9a64523 A |
2745 | |
2746 | #if KASAN | |
2747 | if (thread->continuation != NULL) { | |
2748 | /* | |
2749 | * Thread has a continuation and the normal stack is going away. | |
2750 | * Unpoison the stack and mark all fakestack objects as unused. | |
2751 | */ | |
2752 | kasan_fakestack_drop(thread); | |
2753 | if (thread->kernel_stack) { | |
2754 | kasan_unpoison_stack(thread->kernel_stack, kernel_stack_size); | |
2755 | } | |
2756 | } | |
2757 | ||
2758 | /* | |
2759 | * Free all unused fakestack objects. | |
2760 | */ | |
2761 | kasan_fakestack_gc(thread); | |
2762 | #endif | |
2763 | ||
91447636 | 2764 | /* |
2d21ac55 A |
2765 | * If blocked at a continuation, discard |
2766 | * the stack. | |
91447636 | 2767 | */ |
0a7de745 | 2768 | if (thread->continuation != NULL && thread->kernel_stack != 0) { |
2d21ac55 | 2769 | stack_free(thread); |
0a7de745 | 2770 | } |
2d21ac55 | 2771 | |
3e170ce0 | 2772 | if (thread->state & TH_IDLE) { |
f427ee49 | 2773 | was_idle = true; |
3e170ce0 | 2774 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
2775 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_DISPATCH) | DBG_FUNC_NONE, |
2776 | (uintptr_t)thread_tid(thread), 0, thread->state, | |
2777 | sched_run_buckets[TH_BUCKET_RUN], 0); | |
3e170ce0 | 2778 | } else { |
316670eb A |
2779 | int64_t consumed; |
2780 | int64_t remainder = 0; | |
2781 | ||
0a7de745 | 2782 | if (processor->quantum_end > processor->last_dispatch) { |
316670eb A |
2783 | remainder = processor->quantum_end - |
2784 | processor->last_dispatch; | |
0a7de745 | 2785 | } |
316670eb | 2786 | |
fe8ab488 | 2787 | consumed = thread->quantum_remaining - remainder; |
316670eb | 2788 | |
39236c6e | 2789 | if ((thread->reason & AST_LEDGER) == 0) { |
316670eb | 2790 | /* |
39236c6e A |
2791 | * Bill CPU time to both the task and |
2792 | * the individual thread. | |
316670eb | 2793 | */ |
5c9f4661 | 2794 | ledger_credit_thread(thread, thread->t_ledger, |
0a7de745 | 2795 | task_ledgers.cpu_time, consumed); |
5c9f4661 | 2796 | ledger_credit_thread(thread, thread->t_threadledger, |
0a7de745 | 2797 | thread_ledgers.cpu_time, consumed); |
fe8ab488 | 2798 | if (thread->t_bankledger) { |
5c9f4661 | 2799 | ledger_credit_thread(thread, thread->t_bankledger, |
0a7de745 A |
2800 | bank_ledgers.cpu_time, |
2801 | (consumed - thread->t_deduct_bank_ledger_time)); | |
fe8ab488 | 2802 | } |
5c9f4661 | 2803 | thread->t_deduct_bank_ledger_time = 0; |
f427ee49 A |
2804 | if (consumed > 0) { |
2805 | /* | |
2806 | * This should never be negative, but in traces we are seeing some instances | |
2807 | * of consumed being negative. | |
2808 | * <rdar://problem/57782596> thread_dispatch() thread CPU consumed calculation sometimes results in negative value | |
2809 | */ | |
2810 | sched_update_pset_avg_execution_time(current_processor()->processor_set, consumed, processor->last_dispatch, thread->th_sched_bucket); | |
2811 | } | |
39236c6e | 2812 | } |
316670eb | 2813 | |
2d21ac55 A |
2814 | wake_lock(thread); |
2815 | thread_lock(thread); | |
9bccf70c | 2816 | |
91447636 | 2817 | /* |
39037602 A |
2818 | * Apply a priority floor if the thread holds a kernel resource |
2819 | * Do this before checking starting_pri to avoid overpenalizing | |
2820 | * repeated rwlock blockers. | |
2821 | */ | |
0a7de745 | 2822 | if (__improbable(thread->rwlock_count != 0)) { |
39037602 | 2823 | lck_rw_set_promotion_locked(thread); |
0a7de745 | 2824 | } |
39037602 A |
2825 | |
2826 | boolean_t keep_quantum = processor->first_timeslice; | |
2827 | ||
2828 | /* | |
2829 | * Treat a thread which has dropped priority since it got on core | |
2830 | * as having expired its quantum. | |
91447636 | 2831 | */ |
0a7de745 | 2832 | if (processor->starting_pri > thread->sched_pri) { |
39037602 | 2833 | keep_quantum = FALSE; |
0a7de745 | 2834 | } |
39037602 A |
2835 | |
2836 | /* Compute remainder of current quantum. */ | |
2837 | if (keep_quantum && | |
0a7de745 | 2838 | processor->quantum_end > processor->last_dispatch) { |
fe8ab488 | 2839 | thread->quantum_remaining = (uint32_t)remainder; |
0a7de745 | 2840 | } else { |
fe8ab488 | 2841 | thread->quantum_remaining = 0; |
0a7de745 | 2842 | } |
2d21ac55 | 2843 | |
6d2010ae | 2844 | if (thread->sched_mode == TH_MODE_REALTIME) { |
2d21ac55 A |
2845 | /* |
2846 | * Cancel the deadline if the thread has | |
2847 | * consumed the entire quantum. | |
2848 | */ | |
fe8ab488 | 2849 | if (thread->quantum_remaining == 0) { |
c3c9b80d A |
2850 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_CANCEL_RT_DEADLINE) | DBG_FUNC_NONE, |
2851 | (uintptr_t)thread_tid(thread), thread->realtime.deadline, thread->realtime.computation, 0); | |
2d21ac55 | 2852 | thread->realtime.deadline = UINT64_MAX; |
2d21ac55 | 2853 | } |
b7266188 | 2854 | } else { |
3e170ce0 | 2855 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
2d21ac55 A |
2856 | /* |
2857 | * For non-realtime threads treat a tiny | |
2858 | * remaining quantum as an expired quantum | |
2859 | * but include what's left next time. | |
2860 | */ | |
fe8ab488 | 2861 | if (thread->quantum_remaining < min_std_quantum) { |
2d21ac55 | 2862 | thread->reason |= AST_QUANTUM; |
fe8ab488 | 2863 | thread->quantum_remaining += SCHED(initial_quantum_size)(thread); |
2d21ac55 | 2864 | } |
3e170ce0 | 2865 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
2d21ac55 A |
2866 | } |
2867 | ||
91447636 | 2868 | /* |
2d21ac55 A |
2869 | * If we are doing a direct handoff then |
2870 | * take the remainder of the quantum. | |
91447636 | 2871 | */ |
0a7de745 | 2872 | if ((thread->reason & (AST_HANDOFF | AST_QUANTUM)) == AST_HANDOFF) { |
fe8ab488 | 2873 | self->quantum_remaining = thread->quantum_remaining; |
2d21ac55 | 2874 | thread->reason |= AST_QUANTUM; |
fe8ab488 A |
2875 | thread->quantum_remaining = 0; |
2876 | } else { | |
2877 | #if defined(CONFIG_SCHED_MULTIQ) | |
3e170ce0 A |
2878 | if (SCHED(sched_groups_enabled) && |
2879 | thread->sched_group == self->sched_group) { | |
fe8ab488 | 2880 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
3e170ce0 | 2881 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_QUANTUM_HANDOFF), |
fe8ab488 A |
2882 | self->reason, (uintptr_t)thread_tid(thread), |
2883 | self->quantum_remaining, thread->quantum_remaining, 0); | |
2884 | ||
2885 | self->quantum_remaining = thread->quantum_remaining; | |
2886 | thread->quantum_remaining = 0; | |
3e170ce0 | 2887 | /* Don't set AST_QUANTUM here - old thread might still want to preempt someone else */ |
fe8ab488 A |
2888 | } |
2889 | #endif /* defined(CONFIG_SCHED_MULTIQ) */ | |
91447636 | 2890 | } |
91447636 | 2891 | |
b0d623f7 | 2892 | thread->computation_metered += (processor->last_dispatch - thread->computation_epoch); |
2d21ac55 A |
2893 | |
2894 | if (!(thread->state & TH_WAIT)) { | |
2895 | /* | |
3e170ce0 | 2896 | * Still runnable. |
2d21ac55 | 2897 | */ |
5ba3f43e | 2898 | thread->last_made_runnable_time = thread->last_basepri_change_time = processor->last_dispatch; |
3e170ce0 | 2899 | |
0a7de745 | 2900 | machine_thread_going_off_core(thread, FALSE, processor->last_dispatch, TRUE); |
3e170ce0 | 2901 | |
5ba3f43e A |
2902 | ast_t reason = thread->reason; |
2903 | sched_options_t options = SCHED_NONE; | |
2904 | ||
2905 | if (reason & AST_REBALANCE) { | |
2906 | options |= SCHED_REBALANCE; | |
2907 | if (reason & AST_QUANTUM) { | |
d9a64523 A |
2908 | /* |
2909 | * Having gone to the trouble of forcing this thread off a less preferred core, | |
2910 | * we should force the preferable core to reschedule immediately to give this | |
5ba3f43e A |
2911 | * thread a chance to run instead of just sitting on the run queue where |
2912 | * it may just be stolen back by the idle core we just forced it off. | |
2913 | * But only do this at the end of a quantum to prevent cascading effects. | |
2914 | */ | |
2915 | options |= SCHED_PREEMPT; | |
2916 | } | |
2917 | } | |
2918 | ||
0a7de745 | 2919 | if (reason & AST_QUANTUM) { |
5ba3f43e | 2920 | options |= SCHED_TAILQ; |
0a7de745 | 2921 | } else if (reason & AST_PREEMPT) { |
5ba3f43e | 2922 | options |= SCHED_HEADQ; |
0a7de745 | 2923 | } else { |
5ba3f43e | 2924 | options |= (SCHED_PREEMPT | SCHED_TAILQ); |
0a7de745 | 2925 | } |
5ba3f43e A |
2926 | |
2927 | thread_setrun(thread, options); | |
2d21ac55 | 2928 | |
fe8ab488 | 2929 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
2930 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_DISPATCH) | DBG_FUNC_NONE, |
2931 | (uintptr_t)thread_tid(thread), thread->reason, thread->state, | |
2932 | sched_run_buckets[TH_BUCKET_RUN], 0); | |
3e170ce0 | 2933 | |
316670eb A |
2934 | if (thread->wake_active) { |
2935 | thread->wake_active = FALSE; | |
2936 | thread_unlock(thread); | |
2937 | ||
2938 | thread_wakeup(&thread->wake_active); | |
3e170ce0 | 2939 | } else { |
316670eb | 2940 | thread_unlock(thread); |
3e170ce0 | 2941 | } |
316670eb | 2942 | |
2d21ac55 | 2943 | wake_unlock(thread); |
3e170ce0 | 2944 | } else { |
2d21ac55 A |
2945 | /* |
2946 | * Waiting. | |
2947 | */ | |
b7266188 | 2948 | boolean_t should_terminate = FALSE; |
fe8ab488 | 2949 | uint32_t new_run_count; |
d9a64523 | 2950 | int thread_state = thread->state; |
b7266188 A |
2951 | |
2952 | /* Only the first call to thread_dispatch | |
2953 | * after explicit termination should add | |
2954 | * the thread to the termination queue | |
2955 | */ | |
0a7de745 | 2956 | if ((thread_state & (TH_TERMINATE | TH_TERMINATE2)) == TH_TERMINATE) { |
b7266188 | 2957 | should_terminate = TRUE; |
d9a64523 | 2958 | thread_state |= TH_TERMINATE2; |
b7266188 A |
2959 | } |
2960 | ||
d9a64523 A |
2961 | timer_stop(&thread->runnable_timer, processor->last_dispatch); |
2962 | ||
2963 | thread_state &= ~TH_RUN; | |
2964 | thread->state = thread_state; | |
2965 | ||
5ba3f43e | 2966 | thread->last_made_runnable_time = thread->last_basepri_change_time = THREAD_NOT_RUNNABLE; |
39236c6e A |
2967 | thread->chosen_processor = PROCESSOR_NULL; |
2968 | ||
cb323159 | 2969 | new_run_count = SCHED(run_count_decr)(thread); |
2d21ac55 | 2970 | |
f427ee49 A |
2971 | #if CONFIG_SCHED_AUTO_JOIN |
2972 | if ((thread->sched_flags & TH_SFLAG_THREAD_GROUP_AUTO_JOIN) != 0) { | |
2973 | work_interval_auto_join_unwind(thread); | |
2974 | } | |
2975 | #endif /* CONFIG_SCHED_AUTO_JOIN */ | |
2976 | ||
3e170ce0 | 2977 | #if CONFIG_SCHED_SFI |
d9a64523 A |
2978 | if (thread->reason & AST_SFI) { |
2979 | thread->wait_sfi_begin_time = processor->last_dispatch; | |
39236c6e | 2980 | } |
3e170ce0 | 2981 | #endif |
0a7de745 | 2982 | machine_thread_going_off_core(thread, should_terminate, processor->last_dispatch, FALSE); |
fe8ab488 A |
2983 | |
2984 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
0a7de745 A |
2985 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_DISPATCH) | DBG_FUNC_NONE, |
2986 | (uintptr_t)thread_tid(thread), thread->reason, thread_state, | |
2987 | new_run_count, 0); | |
2d21ac55 | 2988 | |
d9a64523 A |
2989 | if (thread_state & TH_WAIT_REPORT) { |
2990 | (*thread->sched_call)(SCHED_CALL_BLOCK, thread); | |
2991 | } | |
b7266188 | 2992 | |
2d21ac55 A |
2993 | if (thread->wake_active) { |
2994 | thread->wake_active = FALSE; | |
2995 | thread_unlock(thread); | |
2996 | ||
2997 | thread_wakeup(&thread->wake_active); | |
3e170ce0 | 2998 | } else { |
2d21ac55 | 2999 | thread_unlock(thread); |
3e170ce0 | 3000 | } |
91447636 | 3001 | |
2d21ac55 | 3002 | wake_unlock(thread); |
91447636 | 3003 | |
0a7de745 | 3004 | if (should_terminate) { |
2d21ac55 | 3005 | thread_terminate_enqueue(thread); |
0a7de745 | 3006 | } |
2d21ac55 A |
3007 | } |
3008 | } | |
f427ee49 A |
3009 | /* |
3010 | * The thread could have been added to the termination queue, so it's | |
3011 | * unsafe to use after this point. | |
3012 | */ | |
3013 | thread = THREAD_NULL; | |
91447636 | 3014 | } |
91447636 | 3015 | |
5ba3f43e A |
3016 | int urgency = THREAD_URGENCY_NONE; |
3017 | uint64_t latency = 0; | |
3018 | ||
f427ee49 | 3019 | /* Update (new) current thread and reprogram running timers */ |
3e170ce0 | 3020 | thread_lock(self); |
0a7de745 | 3021 | |
2d21ac55 | 3022 | if (!(self->state & TH_IDLE)) { |
39236c6e | 3023 | uint64_t arg1, arg2; |
3e170ce0 A |
3024 | |
3025 | #if CONFIG_SCHED_SFI | |
0a7de745 | 3026 | ast_t new_ast; |
fe8ab488 | 3027 | |
fe8ab488 | 3028 | new_ast = sfi_thread_needs_ast(self, NULL); |
fe8ab488 A |
3029 | |
3030 | if (new_ast != AST_NONE) { | |
3031 | ast_on(new_ast); | |
3032 | } | |
3e170ce0 A |
3033 | #endif |
3034 | ||
5ba3f43e | 3035 | assertf(processor->last_dispatch >= self->last_made_runnable_time, |
0a7de745 A |
3036 | "Non-monotonic time? dispatch at 0x%llx, runnable at 0x%llx", |
3037 | processor->last_dispatch, self->last_made_runnable_time); | |
5ba3f43e A |
3038 | |
3039 | assert(self->last_made_runnable_time <= self->last_basepri_change_time); | |
3040 | ||
3e170ce0 | 3041 | latency = processor->last_dispatch - self->last_made_runnable_time; |
5ba3f43e | 3042 | assert(latency >= self->same_pri_latency); |
6d2010ae | 3043 | |
39236c6e A |
3044 | urgency = thread_get_urgency(self, &arg1, &arg2); |
3045 | ||
3e170ce0 A |
3046 | thread_tell_urgency(urgency, arg1, arg2, latency, self); |
3047 | ||
91447636 | 3048 | /* |
2d21ac55 | 3049 | * Get a new quantum if none remaining. |
91447636 | 3050 | */ |
fe8ab488 | 3051 | if (self->quantum_remaining == 0) { |
2d21ac55 | 3052 | thread_quantum_init(self); |
6d2010ae | 3053 | } |
91447636 A |
3054 | |
3055 | /* | |
2d21ac55 | 3056 | * Set up quantum timer and timeslice. |
91447636 | 3057 | */ |
f427ee49 A |
3058 | processor->quantum_end = processor->last_dispatch + |
3059 | self->quantum_remaining; | |
91447636 | 3060 | |
f427ee49 A |
3061 | running_timer_setup(processor, RUNNING_TIMER_QUANTUM, self, |
3062 | processor->quantum_end, processor->last_dispatch); | |
3063 | if (was_idle) { | |
3064 | /* | |
3065 | * kperf's running timer is active whenever the idle thread for a | |
3066 | * CPU is not running. | |
3067 | */ | |
3068 | kperf_running_setup(processor, processor->last_dispatch); | |
3069 | } | |
3070 | running_timers_activate(processor); | |
3e170ce0 A |
3071 | processor->first_timeslice = TRUE; |
3072 | } else { | |
f427ee49 | 3073 | running_timers_deactivate(processor); |
3e170ce0 | 3074 | processor->first_timeslice = FALSE; |
3e170ce0 | 3075 | thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, self); |
91447636 | 3076 | } |
6d2010ae | 3077 | |
813fb2f6 | 3078 | assert(self->block_hint == kThreadWaitNone); |
3e170ce0 A |
3079 | self->computation_epoch = processor->last_dispatch; |
3080 | self->reason = AST_NONE; | |
39037602 | 3081 | processor->starting_pri = self->sched_pri; |
3e170ce0 A |
3082 | |
3083 | thread_unlock(self); | |
3084 | ||
5ba3f43e | 3085 | machine_thread_going_on_core(self, urgency, latency, self->same_pri_latency, |
0a7de745 | 3086 | processor->last_dispatch); |
5ba3f43e | 3087 | |
3e170ce0 A |
3088 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
3089 | /* | |
3090 | * TODO: Can we state that redispatching our old thread is also | |
3091 | * uninteresting? | |
3092 | */ | |
cb323159 | 3093 | if ((os_atomic_load(&sched_run_buckets[TH_BUCKET_RUN], relaxed) == 1) && !(self->state & TH_IDLE)) { |
3e170ce0 | 3094 | pset_cancel_deferred_dispatch(processor->processor_set, processor); |
91447636 | 3095 | } |
3e170ce0 | 3096 | #endif |
91447636 A |
3097 | } |
3098 | ||
3099 | /* | |
2d21ac55 | 3100 | * thread_block_reason: |
91447636 | 3101 | * |
2d21ac55 A |
3102 | * Forces a reschedule, blocking the caller if a wait |
3103 | * has been asserted. | |
91447636 | 3104 | * |
2d21ac55 A |
3105 | * If a continuation is specified, then thread_invoke will |
3106 | * attempt to discard the thread's kernel stack. When the | |
3107 | * thread resumes, it will execute the continuation function | |
3108 | * on a new kernel stack. | |
91447636 | 3109 | */ |
2d21ac55 A |
3110 | wait_result_t |
3111 | thread_block_reason( | |
0a7de745 A |
3112 | thread_continue_t continuation, |
3113 | void *parameter, | |
3114 | ast_t reason) | |
91447636 | 3115 | { |
3e170ce0 A |
3116 | thread_t self = current_thread(); |
3117 | processor_t processor; | |
3118 | thread_t new_thread; | |
3119 | spl_t s; | |
1c79356b | 3120 | |
1c79356b A |
3121 | s = splsched(); |
3122 | ||
55e303ae | 3123 | processor = current_processor(); |
1c79356b | 3124 | |
9bccf70c | 3125 | /* If we're explicitly yielding, force a subsequent quantum */ |
0a7de745 | 3126 | if (reason & AST_YIELD) { |
3e170ce0 | 3127 | processor->first_timeslice = FALSE; |
0a7de745 | 3128 | } |
0b4e3aa0 | 3129 | |
9bccf70c A |
3130 | /* We're handling all scheduling AST's */ |
3131 | ast_off(AST_SCHEDULING); | |
1c79356b | 3132 | |
490019cf A |
3133 | #if PROC_REF_DEBUG |
3134 | if ((continuation != NULL) && (self->task != kernel_task)) { | |
3135 | if (uthread_get_proc_refcount(self->uthread) != 0) { | |
3136 | panic("thread_block_reason with continuation uthread %p with uu_proc_refcount != 0", self->uthread); | |
3137 | } | |
3138 | } | |
3139 | #endif | |
3140 | ||
91447636 A |
3141 | self->continuation = continuation; |
3142 | self->parameter = parameter; | |
3143 | ||
fe8ab488 | 3144 | if (self->state & ~(TH_RUN | TH_IDLE)) { |
316670eb | 3145 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
3146 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_BLOCK), |
3147 | reason, VM_KERNEL_UNSLIDE(continuation), 0, 0, 0); | |
b0d623f7 A |
3148 | } |
3149 | ||
2d21ac55 | 3150 | do { |
91447636 | 3151 | thread_lock(self); |
5ba3f43e | 3152 | new_thread = thread_select(self, processor, &reason); |
91447636 | 3153 | thread_unlock(self); |
2d21ac55 | 3154 | } while (!thread_invoke(self, new_thread, reason)); |
1c79356b | 3155 | |
1c79356b A |
3156 | splx(s); |
3157 | ||
0a7de745 | 3158 | return self->wait_result; |
1c79356b A |
3159 | } |
3160 | ||
3161 | /* | |
3162 | * thread_block: | |
3163 | * | |
9bccf70c | 3164 | * Block the current thread if a wait has been asserted. |
1c79356b | 3165 | */ |
91447636 | 3166 | wait_result_t |
1c79356b | 3167 | thread_block( |
0a7de745 | 3168 | thread_continue_t continuation) |
1c79356b | 3169 | { |
91447636 A |
3170 | return thread_block_reason(continuation, NULL, AST_NONE); |
3171 | } | |
3172 | ||
3173 | wait_result_t | |
3174 | thread_block_parameter( | |
0a7de745 A |
3175 | thread_continue_t continuation, |
3176 | void *parameter) | |
91447636 A |
3177 | { |
3178 | return thread_block_reason(continuation, parameter, AST_NONE); | |
1c79356b A |
3179 | } |
3180 | ||
3181 | /* | |
3182 | * thread_run: | |
3183 | * | |
91447636 | 3184 | * Switch directly from the current thread to the |
55e303ae | 3185 | * new thread, handing off our quantum if appropriate. |
9bccf70c A |
3186 | * |
3187 | * New thread must be runnable, and not on a run queue. | |
1c79356b | 3188 | * |
55e303ae | 3189 | * Called at splsched. |
1c79356b A |
3190 | */ |
3191 | int | |
3192 | thread_run( | |
0a7de745 A |
3193 | thread_t self, |
3194 | thread_continue_t continuation, | |
3195 | void *parameter, | |
3196 | thread_t new_thread) | |
1c79356b | 3197 | { |
0a7de745 A |
3198 | ast_t reason = AST_NONE; |
3199 | ||
3200 | if ((self->state & TH_IDLE) == 0) { | |
3201 | reason = AST_HANDOFF; | |
3202 | } | |
9bccf70c | 3203 | |
f427ee49 A |
3204 | /* |
3205 | * If this thread hadn't been setrun'ed, it | |
3206 | * might not have a chosen processor, so give it one | |
3207 | */ | |
3208 | if (new_thread->chosen_processor == NULL) { | |
3209 | new_thread->chosen_processor = current_processor(); | |
3210 | } | |
3211 | ||
91447636 A |
3212 | self->continuation = continuation; |
3213 | self->parameter = parameter; | |
9bccf70c | 3214 | |
5ba3f43e A |
3215 | while (!thread_invoke(self, new_thread, reason)) { |
3216 | /* the handoff failed, so we have to fall back to the normal block path */ | |
3217 | processor_t processor = current_processor(); | |
3218 | ||
3219 | reason = AST_NONE; | |
9bccf70c | 3220 | |
91447636 | 3221 | thread_lock(self); |
5ba3f43e | 3222 | new_thread = thread_select(self, processor, &reason); |
91447636 | 3223 | thread_unlock(self); |
9bccf70c A |
3224 | } |
3225 | ||
0a7de745 | 3226 | return self->wait_result; |
1c79356b A |
3227 | } |
3228 | ||
3229 | /* | |
91447636 | 3230 | * thread_continue: |
55e303ae | 3231 | * |
91447636 A |
3232 | * Called at splsched when a thread first receives |
3233 | * a new stack after a continuation. | |
cb323159 A |
3234 | * |
3235 | * Called with THREAD_NULL as the old thread when | |
3236 | * invoked by machine_load_context. | |
1c79356b A |
3237 | */ |
3238 | void | |
91447636 | 3239 | thread_continue( |
0a7de745 | 3240 | thread_t thread) |
1c79356b | 3241 | { |
3e170ce0 A |
3242 | thread_t self = current_thread(); |
3243 | thread_continue_t continuation; | |
3244 | void *parameter; | |
b0d623f7 A |
3245 | |
3246 | DTRACE_SCHED(on__cpu); | |
3247 | ||
91447636 | 3248 | continuation = self->continuation; |
91447636 | 3249 | parameter = self->parameter; |
9bccf70c | 3250 | |
cb323159 A |
3251 | assert(continuation != NULL); |
3252 | ||
39037602 A |
3253 | #if KPERF |
3254 | kperf_on_cpu(self, continuation, NULL); | |
3255 | #endif | |
3256 | ||
2d21ac55 | 3257 | thread_dispatch(thread, self); |
9bccf70c | 3258 | |
2d21ac55 | 3259 | self->continuation = self->parameter = NULL; |
1c79356b | 3260 | |
5ba3f43e | 3261 | #if INTERRUPT_MASKED_DEBUG |
0a7de745 A |
3262 | /* Reset interrupt-masked spin debugging timeout */ |
3263 | ml_spin_debug_clear(self); | |
5ba3f43e A |
3264 | #endif |
3265 | ||
d9a64523 | 3266 | TLOG(1, "thread_continue: calling call_continuation\n"); |
0a7de745 | 3267 | |
cb323159 A |
3268 | boolean_t enable_interrupts = TRUE; |
3269 | ||
3270 | /* bootstrap thread, idle thread need to stay interrupts-disabled */ | |
3271 | if (thread == THREAD_NULL || (self->state & TH_IDLE)) { | |
3272 | enable_interrupts = FALSE; | |
3273 | } | |
3274 | ||
d9a64523 | 3275 | call_continuation(continuation, parameter, self->wait_result, enable_interrupts); |
91447636 | 3276 | /*NOTREACHED*/ |
1c79356b A |
3277 | } |
3278 | ||
2d21ac55 | 3279 | void |
6d2010ae | 3280 | thread_quantum_init(thread_t thread) |
2d21ac55 | 3281 | { |
6d2010ae | 3282 | if (thread->sched_mode == TH_MODE_REALTIME) { |
fe8ab488 | 3283 | thread->quantum_remaining = thread->realtime.computation; |
6d2010ae | 3284 | } else { |
fe8ab488 | 3285 | thread->quantum_remaining = SCHED(initial_quantum_size)(thread); |
6d2010ae A |
3286 | } |
3287 | } | |
2d21ac55 | 3288 | |
fe8ab488 | 3289 | uint32_t |
3e170ce0 | 3290 | sched_timeshare_initial_quantum_size(thread_t thread) |
6d2010ae | 3291 | { |
0a7de745 | 3292 | if ((thread != THREAD_NULL) && thread->th_sched_bucket == TH_BUCKET_SHARE_BG) { |
316670eb | 3293 | return bg_quantum; |
0a7de745 | 3294 | } else { |
39037602 | 3295 | return std_quantum; |
0a7de745 | 3296 | } |
6d2010ae A |
3297 | } |
3298 | ||
6d2010ae A |
3299 | /* |
3300 | * run_queue_init: | |
3301 | * | |
3302 | * Initialize a run queue before first use. | |
3303 | */ | |
3304 | void | |
3305 | run_queue_init( | |
0a7de745 | 3306 | run_queue_t rq) |
6d2010ae | 3307 | { |
39037602 | 3308 | rq->highq = NOPRI; |
0a7de745 | 3309 | for (u_int i = 0; i < BITMAP_LEN(NRQS); i++) { |
2d21ac55 | 3310 | rq->bitmap[i] = 0; |
0a7de745 | 3311 | } |
2d21ac55 | 3312 | rq->urgency = rq->count = 0; |
0a7de745 | 3313 | for (int i = 0; i < NRQS; i++) { |
cb323159 | 3314 | circle_queue_init(&rq->queues[i]); |
0a7de745 | 3315 | } |
2d21ac55 | 3316 | } |
1c79356b | 3317 | |
2d21ac55 A |
3318 | /* |
3319 | * run_queue_dequeue: | |
3320 | * | |
3321 | * Perform a dequeue operation on a run queue, | |
3322 | * and return the resulting thread. | |
3323 | * | |
6d2010ae | 3324 | * The run queue must be locked (see thread_run_queue_remove() |
2d21ac55 A |
3325 | * for more info), and not empty. |
3326 | */ | |
6d2010ae | 3327 | thread_t |
2d21ac55 | 3328 | run_queue_dequeue( |
cb323159 A |
3329 | run_queue_t rq, |
3330 | sched_options_t options) | |
2d21ac55 | 3331 | { |
cb323159 A |
3332 | thread_t thread; |
3333 | circle_queue_t queue = &rq->queues[rq->highq]; | |
0a7de745 | 3334 | |
2d21ac55 | 3335 | if (options & SCHED_HEADQ) { |
cb323159 | 3336 | thread = cqe_dequeue_head(queue, struct thread, runq_links); |
39037602 | 3337 | } else { |
cb323159 | 3338 | thread = cqe_dequeue_tail(queue, struct thread, runq_links); |
9bccf70c | 3339 | } |
1c79356b | 3340 | |
39037602 A |
3341 | assert(thread != THREAD_NULL); |
3342 | assert_thread_magic(thread); | |
3343 | ||
2d21ac55 | 3344 | thread->runq = PROCESSOR_NULL; |
6d2010ae | 3345 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); |
2d21ac55 | 3346 | rq->count--; |
6d2010ae | 3347 | if (SCHED(priority_is_urgent)(rq->highq)) { |
4a3eedf9 A |
3348 | rq->urgency--; assert(rq->urgency >= 0); |
3349 | } | |
cb323159 | 3350 | if (circle_queue_empty(queue)) { |
39037602 A |
3351 | bitmap_clear(rq->bitmap, rq->highq); |
3352 | rq->highq = bitmap_first(rq->bitmap, NRQS); | |
2d21ac55 | 3353 | } |
1c79356b | 3354 | |
39037602 | 3355 | return thread; |
1c79356b A |
3356 | } |
3357 | ||
6d2010ae A |
3358 | /* |
3359 | * run_queue_enqueue: | |
3360 | * | |
3361 | * Perform a enqueue operation on a run queue. | |
3362 | * | |
3363 | * The run queue must be locked (see thread_run_queue_remove() | |
3364 | * for more info). | |
3365 | */ | |
3366 | boolean_t | |
3367 | run_queue_enqueue( | |
cb323159 A |
3368 | run_queue_t rq, |
3369 | thread_t thread, | |
3370 | sched_options_t options) | |
6d2010ae | 3371 | { |
cb323159 A |
3372 | circle_queue_t queue = &rq->queues[thread->sched_pri]; |
3373 | boolean_t result = FALSE; | |
39037602 A |
3374 | |
3375 | assert_thread_magic(thread); | |
3376 | ||
cb323159 A |
3377 | if (circle_queue_empty(queue)) { |
3378 | circle_enqueue_tail(queue, &thread->runq_links); | |
39037602 A |
3379 | |
3380 | rq_bitmap_set(rq->bitmap, thread->sched_pri); | |
6d2010ae A |
3381 | if (thread->sched_pri > rq->highq) { |
3382 | rq->highq = thread->sched_pri; | |
3383 | result = TRUE; | |
3384 | } | |
fe8ab488 | 3385 | } else { |
0a7de745 | 3386 | if (options & SCHED_TAILQ) { |
cb323159 | 3387 | circle_enqueue_tail(queue, &thread->runq_links); |
0a7de745 | 3388 | } else { |
cb323159 | 3389 | circle_enqueue_head(queue, &thread->runq_links); |
0a7de745 | 3390 | } |
fe8ab488 | 3391 | } |
0a7de745 | 3392 | if (SCHED(priority_is_urgent)(thread->sched_pri)) { |
6d2010ae | 3393 | rq->urgency++; |
0a7de745 | 3394 | } |
6d2010ae A |
3395 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); |
3396 | rq->count++; | |
39037602 | 3397 | |
0a7de745 | 3398 | return result; |
6d2010ae A |
3399 | } |
3400 | ||
3401 | /* | |
3402 | * run_queue_remove: | |
3403 | * | |
3404 | * Remove a specific thread from a runqueue. | |
3405 | * | |
3406 | * The run queue must be locked. | |
3407 | */ | |
3408 | void | |
3409 | run_queue_remove( | |
0a7de745 A |
3410 | run_queue_t rq, |
3411 | thread_t thread) | |
6d2010ae | 3412 | { |
cb323159 A |
3413 | circle_queue_t queue = &rq->queues[thread->sched_pri]; |
3414 | ||
39037602 A |
3415 | assert(thread->runq != PROCESSOR_NULL); |
3416 | assert_thread_magic(thread); | |
6d2010ae | 3417 | |
cb323159 | 3418 | circle_dequeue(queue, &thread->runq_links); |
6d2010ae A |
3419 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); |
3420 | rq->count--; | |
3421 | if (SCHED(priority_is_urgent)(thread->sched_pri)) { | |
3422 | rq->urgency--; assert(rq->urgency >= 0); | |
3423 | } | |
39037602 | 3424 | |
cb323159 | 3425 | if (circle_queue_empty(queue)) { |
6d2010ae | 3426 | /* update run queue status */ |
39037602 A |
3427 | bitmap_clear(rq->bitmap, thread->sched_pri); |
3428 | rq->highq = bitmap_first(rq->bitmap, NRQS); | |
6d2010ae | 3429 | } |
39037602 | 3430 | |
6d2010ae A |
3431 | thread->runq = PROCESSOR_NULL; |
3432 | } | |
3433 | ||
cb323159 A |
3434 | /* |
3435 | * run_queue_peek | |
3436 | * | |
3437 | * Peek at the runq and return the highest | |
3438 | * priority thread from the runq. | |
3439 | * | |
3440 | * The run queue must be locked. | |
3441 | */ | |
3442 | thread_t | |
3443 | run_queue_peek( | |
3444 | run_queue_t rq) | |
3445 | { | |
3446 | if (rq->count > 0) { | |
3447 | circle_queue_t queue = &rq->queues[rq->highq]; | |
3448 | thread_t thread = cqe_queue_first(queue, struct thread, runq_links); | |
3449 | assert_thread_magic(thread); | |
3450 | return thread; | |
3451 | } else { | |
3452 | return THREAD_NULL; | |
3453 | } | |
3454 | } | |
3455 | ||
f427ee49 A |
3456 | rt_queue_t |
3457 | sched_rtlocal_runq(processor_set_t pset) | |
3458 | { | |
3459 | return &pset->rt_runq; | |
3460 | } | |
3461 | ||
3e170ce0 | 3462 | void |
f427ee49 | 3463 | sched_rtlocal_init(processor_set_t pset) |
6d2010ae | 3464 | { |
f427ee49 A |
3465 | pset_rt_init(pset); |
3466 | } | |
3467 | ||
3468 | void | |
3469 | sched_rtlocal_queue_shutdown(processor_t processor) | |
3470 | { | |
3471 | processor_set_t pset = processor->processor_set; | |
0a7de745 | 3472 | thread_t thread; |
f427ee49 | 3473 | queue_head_t tqueue; |
fe8ab488 | 3474 | |
f427ee49 | 3475 | pset_lock(pset); |
5ba3f43e | 3476 | |
f427ee49 A |
3477 | /* We only need to migrate threads if this is the last active or last recommended processor in the pset */ |
3478 | if ((pset->online_processor_count > 0) && pset_is_recommended(pset)) { | |
3479 | pset_unlock(pset); | |
3480 | return; | |
3481 | } | |
6d2010ae | 3482 | |
f427ee49 A |
3483 | queue_init(&tqueue); |
3484 | ||
3485 | while (rt_runq_count(pset) > 0) { | |
3486 | thread = qe_dequeue_head(&pset->rt_runq.queue, struct thread, runq_links); | |
3487 | thread->runq = PROCESSOR_NULL; | |
3488 | SCHED_STATS_RUNQ_CHANGE(&pset->rt_runq.runq_stats, rt_runq_count(pset)); | |
3489 | rt_runq_count_decr(pset); | |
3490 | enqueue_tail(&tqueue, &thread->runq_links); | |
3491 | } | |
3492 | sched_update_pset_load_average(pset, 0); | |
3493 | pset_unlock(pset); | |
3494 | ||
3495 | qe_foreach_element_safe(thread, &tqueue, runq_links) { | |
3496 | remqueue(&thread->runq_links); | |
3497 | ||
3498 | thread_lock(thread); | |
3499 | ||
3500 | thread_setrun(thread, SCHED_TAILQ); | |
3501 | ||
3502 | thread_unlock(thread); | |
3e170ce0 | 3503 | } |
f427ee49 A |
3504 | } |
3505 | ||
3506 | /* Assumes RT lock is not held, and acquires splsched/rt_lock itself */ | |
3507 | void | |
3508 | sched_rtlocal_runq_scan(sched_update_scan_context_t scan_context) | |
3509 | { | |
3510 | thread_t thread; | |
3511 | ||
3512 | pset_node_t node = &pset_node0; | |
3513 | processor_set_t pset = node->psets; | |
3514 | ||
3515 | spl_t s = splsched(); | |
3516 | do { | |
3517 | while (pset != NULL) { | |
3518 | pset_lock(pset); | |
3519 | ||
3520 | qe_foreach_element_safe(thread, &pset->rt_runq.queue, runq_links) { | |
3521 | if (thread->last_made_runnable_time < scan_context->earliest_rt_make_runnable_time) { | |
3522 | scan_context->earliest_rt_make_runnable_time = thread->last_made_runnable_time; | |
3523 | } | |
3524 | } | |
6d2010ae | 3525 | |
f427ee49 A |
3526 | pset_unlock(pset); |
3527 | ||
3528 | pset = pset->pset_list; | |
3529 | } | |
3530 | } while (((node = node->node_list) != NULL) && ((pset = node->psets) != NULL)); | |
3e170ce0 | 3531 | splx(s); |
6d2010ae A |
3532 | } |
3533 | ||
5ba3f43e | 3534 | int64_t |
f427ee49 | 3535 | sched_rtlocal_runq_count_sum(void) |
5ba3f43e | 3536 | { |
f427ee49 A |
3537 | pset_node_t node = &pset_node0; |
3538 | processor_set_t pset = node->psets; | |
3539 | int64_t count = 0; | |
3540 | ||
3541 | do { | |
3542 | while (pset != NULL) { | |
3543 | count += pset->rt_runq.runq_stats.count_sum; | |
3544 | ||
3545 | pset = pset->pset_list; | |
3546 | } | |
3547 | } while (((node = node->node_list) != NULL) && ((pset = node->psets) != NULL)); | |
3548 | ||
3549 | return count; | |
5ba3f43e | 3550 | } |
3e170ce0 | 3551 | |
1c79356b | 3552 | /* |
2d21ac55 A |
3553 | * realtime_queue_insert: |
3554 | * | |
3555 | * Enqueue a thread for realtime execution. | |
1c79356b | 3556 | */ |
2d21ac55 | 3557 | static boolean_t |
5ba3f43e | 3558 | realtime_queue_insert(processor_t processor, processor_set_t pset, thread_t thread) |
1c79356b | 3559 | { |
5ba3f43e | 3560 | queue_t queue = &SCHED(rt_runq)(pset)->queue; |
39037602 A |
3561 | uint64_t deadline = thread->realtime.deadline; |
3562 | boolean_t preempt = FALSE; | |
1c79356b | 3563 | |
f427ee49 | 3564 | pset_assert_locked(pset); |
1c79356b | 3565 | |
55e303ae | 3566 | if (queue_empty(queue)) { |
39037602 | 3567 | enqueue_tail(queue, &thread->runq_links); |
2d21ac55 | 3568 | preempt = TRUE; |
39037602 A |
3569 | } else { |
3570 | /* Insert into rt_runq in thread deadline order */ | |
3571 | queue_entry_t iter; | |
3572 | qe_foreach(iter, queue) { | |
3573 | thread_t iter_thread = qe_element(iter, struct thread, runq_links); | |
3574 | assert_thread_magic(iter_thread); | |
3575 | ||
3576 | if (deadline < iter_thread->realtime.deadline) { | |
0a7de745 | 3577 | if (iter == queue_first(queue)) { |
39037602 | 3578 | preempt = TRUE; |
0a7de745 | 3579 | } |
39037602 A |
3580 | insque(&thread->runq_links, queue_prev(iter)); |
3581 | break; | |
3582 | } else if (iter == queue_last(queue)) { | |
3583 | enqueue_tail(queue, &thread->runq_links); | |
55e303ae A |
3584 | break; |
3585 | } | |
55e303ae | 3586 | } |
55e303ae A |
3587 | } |
3588 | ||
5ba3f43e A |
3589 | thread->runq = processor; |
3590 | SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq)(pset)->runq_stats, rt_runq_count(pset)); | |
3591 | rt_runq_count_incr(pset); | |
55e303ae | 3592 | |
0a7de745 | 3593 | return preempt; |
2d21ac55 | 3594 | } |
55e303ae | 3595 | |
f427ee49 A |
3596 | #define MAX_BACKUP_PROCESSORS 7 |
3597 | #if defined(__x86_64__) | |
3598 | #define DEFAULT_BACKUP_PROCESSORS 1 | |
3599 | #else | |
3600 | #define DEFAULT_BACKUP_PROCESSORS 0 | |
3601 | #endif | |
3602 | ||
3603 | int sched_rt_n_backup_processors = DEFAULT_BACKUP_PROCESSORS; | |
3604 | ||
3605 | int | |
3606 | sched_get_rt_n_backup_processors(void) | |
3607 | { | |
3608 | return sched_rt_n_backup_processors; | |
3609 | } | |
3610 | ||
3611 | void | |
3612 | sched_set_rt_n_backup_processors(int n) | |
3613 | { | |
3614 | if (n < 0) { | |
3615 | n = 0; | |
3616 | } else if (n > MAX_BACKUP_PROCESSORS) { | |
3617 | n = MAX_BACKUP_PROCESSORS; | |
3618 | } | |
3619 | ||
3620 | sched_rt_n_backup_processors = n; | |
3621 | } | |
3622 | ||
2d21ac55 A |
3623 | /* |
3624 | * realtime_setrun: | |
3625 | * | |
3626 | * Dispatch a thread for realtime execution. | |
3627 | * | |
3628 | * Thread must be locked. Associated pset must | |
3629 | * be locked, and is returned unlocked. | |
3630 | */ | |
3631 | static void | |
3632 | realtime_setrun( | |
f427ee49 | 3633 | processor_t chosen_processor, |
0a7de745 | 3634 | thread_t thread) |
2d21ac55 | 3635 | { |
f427ee49 | 3636 | processor_set_t pset = chosen_processor->processor_set; |
d9a64523 A |
3637 | pset_assert_locked(pset); |
3638 | ast_t preempt; | |
55e303ae | 3639 | |
f427ee49 | 3640 | int n_backup = 0; |
fe8ab488 | 3641 | |
f427ee49 A |
3642 | if (thread->realtime.constraint <= rt_constraint_threshold) { |
3643 | n_backup = sched_rt_n_backup_processors; | |
3644 | } | |
3645 | assert((n_backup >= 0) && (n_backup <= MAX_BACKUP_PROCESSORS)); | |
3646 | ||
3647 | sched_ipi_type_t ipi_type[MAX_BACKUP_PROCESSORS + 1] = {}; | |
3648 | processor_t ipi_processor[MAX_BACKUP_PROCESSORS + 1] = {}; | |
3649 | ||
3650 | thread->chosen_processor = chosen_processor; | |
6d2010ae | 3651 | |
fe8ab488 A |
3652 | /* <rdar://problem/15102234> */ |
3653 | assert(thread->bound_processor == PROCESSOR_NULL); | |
3654 | ||
f427ee49 | 3655 | realtime_queue_insert(chosen_processor, pset, thread); |
39236c6e | 3656 | |
f427ee49 A |
3657 | processor_t processor = chosen_processor; |
3658 | bool chosen_process_is_secondary = chosen_processor->processor_primary != chosen_processor; | |
39236c6e | 3659 | |
f427ee49 A |
3660 | int count = 0; |
3661 | for (int i = 0; i <= n_backup; i++) { | |
3662 | if (i > 0) { | |
3663 | processor = choose_processor_for_realtime_thread(pset, chosen_processor, chosen_process_is_secondary); | |
3664 | if ((processor == PROCESSOR_NULL) || (sched_avoid_cpu0 && (processor->cpu_id == 0))) { | |
3665 | break; | |
fe8ab488 | 3666 | } |
f427ee49 A |
3667 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR) | DBG_FUNC_NONE, |
3668 | (uintptr_t)thread_tid(thread), (uintptr_t)-3, processor->cpu_id, processor->state, 0); | |
3669 | } | |
3670 | ipi_type[i] = SCHED_IPI_NONE; | |
3671 | ipi_processor[i] = processor; | |
3672 | count++; | |
3673 | ||
3674 | if (processor->current_pri < BASEPRI_RTQUEUES) { | |
3675 | preempt = (AST_PREEMPT | AST_URGENT); | |
3676 | } else if (thread->realtime.deadline < processor->deadline) { | |
3677 | preempt = (AST_PREEMPT | AST_URGENT); | |
3678 | } else { | |
3679 | preempt = AST_NONE; | |
3680 | } | |
3681 | ||
3682 | if (preempt != AST_NONE) { | |
3683 | if (processor->state == PROCESSOR_IDLE) { | |
5ba3f43e | 3684 | processor_state_update_from_thread(processor, thread); |
39236c6e | 3685 | processor->deadline = thread->realtime.deadline; |
f427ee49 A |
3686 | pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING); |
3687 | if (processor == current_processor()) { | |
3688 | ast_on(preempt); | |
0a7de745 | 3689 | |
f427ee49 A |
3690 | if ((preempt & AST_URGENT) == AST_URGENT) { |
3691 | bit_set(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id); | |
3692 | } | |
0a7de745 | 3693 | |
f427ee49 A |
3694 | if ((preempt & AST_PREEMPT) == AST_PREEMPT) { |
3695 | bit_set(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); | |
3696 | } | |
3697 | } else { | |
3698 | ipi_type[i] = sched_ipi_action(processor, thread, true, SCHED_IPI_EVENT_PREEMPT); | |
3699 | } | |
3700 | } else if (processor->state == PROCESSOR_DISPATCHING) { | |
3701 | if ((processor->current_pri < thread->sched_pri) || (processor->deadline > thread->realtime.deadline)) { | |
3702 | processor_state_update_from_thread(processor, thread); | |
3703 | processor->deadline = thread->realtime.deadline; | |
0a7de745 | 3704 | } |
39236c6e | 3705 | } else { |
f427ee49 A |
3706 | if (processor == current_processor()) { |
3707 | ast_on(preempt); | |
3708 | ||
3709 | if ((preempt & AST_URGENT) == AST_URGENT) { | |
3710 | bit_set(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id); | |
3711 | } | |
3712 | ||
3713 | if ((preempt & AST_PREEMPT) == AST_PREEMPT) { | |
3714 | bit_set(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); | |
3715 | } | |
3716 | } else { | |
3717 | ipi_type[i] = sched_ipi_action(processor, thread, false, SCHED_IPI_EVENT_PREEMPT); | |
3718 | } | |
39236c6e | 3719 | } |
f427ee49 A |
3720 | } else { |
3721 | /* Selected processor was too busy, just keep thread enqueued and let other processors drain it naturally. */ | |
39236c6e | 3722 | } |
2d21ac55 A |
3723 | } |
3724 | ||
3725 | pset_unlock(pset); | |
f427ee49 A |
3726 | |
3727 | assert((count > 0) && (count <= (n_backup + 1))); | |
3728 | for (int i = 0; i < count; i++) { | |
3729 | assert(ipi_processor[i] != PROCESSOR_NULL); | |
3730 | sched_ipi_perform(ipi_processor[i], ipi_type[i]); | |
3731 | } | |
5ba3f43e | 3732 | } |
fe8ab488 | 3733 | |
5ba3f43e | 3734 | |
0a7de745 A |
3735 | sched_ipi_type_t |
3736 | sched_ipi_deferred_policy(processor_set_t pset, processor_t dst, | |
3737 | __unused sched_ipi_event_t event) | |
5ba3f43e A |
3738 | { |
3739 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
0a7de745 A |
3740 | if (!bit_test(pset->pending_deferred_AST_cpu_mask, dst->cpu_id)) { |
3741 | return SCHED_IPI_DEFERRED; | |
3742 | } | |
5ba3f43e | 3743 | #else /* CONFIG_SCHED_DEFERRED_AST */ |
0a7de745 | 3744 | panic("Request for deferred IPI on an unsupported platform; pset: %p CPU: %d", pset, dst->cpu_id); |
5ba3f43e | 3745 | #endif /* CONFIG_SCHED_DEFERRED_AST */ |
0a7de745 | 3746 | return SCHED_IPI_NONE; |
5ba3f43e A |
3747 | } |
3748 | ||
0a7de745 A |
3749 | sched_ipi_type_t |
3750 | sched_ipi_action(processor_t dst, thread_t thread, boolean_t dst_idle, sched_ipi_event_t event) | |
5ba3f43e | 3751 | { |
0a7de745 A |
3752 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
3753 | assert(dst != NULL); | |
5ba3f43e | 3754 | |
0a7de745 A |
3755 | processor_set_t pset = dst->processor_set; |
3756 | if (current_processor() == dst) { | |
3757 | return SCHED_IPI_NONE; | |
3758 | } | |
5ba3f43e | 3759 | |
0a7de745 A |
3760 | if (bit_test(pset->pending_AST_URGENT_cpu_mask, dst->cpu_id)) { |
3761 | return SCHED_IPI_NONE; | |
3762 | } | |
5ba3f43e | 3763 | |
0a7de745 A |
3764 | ipi_type = SCHED(ipi_policy)(dst, thread, dst_idle, event); |
3765 | switch (ipi_type) { | |
5ba3f43e | 3766 | case SCHED_IPI_NONE: |
0a7de745 A |
3767 | return SCHED_IPI_NONE; |
3768 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
5ba3f43e | 3769 | case SCHED_IPI_DEFERRED: |
0a7de745 A |
3770 | bit_set(pset->pending_deferred_AST_cpu_mask, dst->cpu_id); |
3771 | break; | |
5ba3f43e A |
3772 | #endif /* CONFIG_SCHED_DEFERRED_AST */ |
3773 | default: | |
0a7de745 A |
3774 | bit_set(pset->pending_AST_URGENT_cpu_mask, dst->cpu_id); |
3775 | bit_set(pset->pending_AST_PREEMPT_cpu_mask, dst->cpu_id); | |
3776 | break; | |
3777 | } | |
3778 | return ipi_type; | |
5ba3f43e A |
3779 | } |
3780 | ||
0a7de745 A |
3781 | sched_ipi_type_t |
3782 | sched_ipi_policy(processor_t dst, thread_t thread, boolean_t dst_idle, sched_ipi_event_t event) | |
5ba3f43e | 3783 | { |
0a7de745 A |
3784 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
3785 | boolean_t deferred_ipi_supported = false; | |
3786 | processor_set_t pset = dst->processor_set; | |
5ba3f43e A |
3787 | |
3788 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
0a7de745 | 3789 | deferred_ipi_supported = true; |
5ba3f43e A |
3790 | #endif /* CONFIG_SCHED_DEFERRED_AST */ |
3791 | ||
0a7de745 | 3792 | switch (event) { |
5ba3f43e A |
3793 | case SCHED_IPI_EVENT_SPILL: |
3794 | case SCHED_IPI_EVENT_SMT_REBAL: | |
3795 | case SCHED_IPI_EVENT_REBALANCE: | |
3796 | case SCHED_IPI_EVENT_BOUND_THR: | |
0a7de745 A |
3797 | /* |
3798 | * The spill, SMT rebalance, rebalance and the bound thread | |
3799 | * scenarios use immediate IPIs always. | |
3800 | */ | |
3801 | ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; | |
3802 | break; | |
5ba3f43e | 3803 | case SCHED_IPI_EVENT_PREEMPT: |
0a7de745 A |
3804 | /* In the preemption case, use immediate IPIs for RT threads */ |
3805 | if (thread && (thread->sched_pri >= BASEPRI_RTQUEUES)) { | |
3806 | ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; | |
3807 | break; | |
3808 | } | |
3809 | ||
3810 | /* | |
3811 | * For Non-RT threads preemption, | |
3812 | * If the core is active, use immediate IPIs. | |
3813 | * If the core is idle, use deferred IPIs if supported; otherwise immediate IPI. | |
3814 | */ | |
3815 | if (deferred_ipi_supported && dst_idle) { | |
3816 | return sched_ipi_deferred_policy(pset, dst, event); | |
3817 | } | |
3818 | ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; | |
3819 | break; | |
5ba3f43e | 3820 | default: |
0a7de745 A |
3821 | panic("Unrecognized scheduler IPI event type %d", event); |
3822 | } | |
3823 | assert(ipi_type != SCHED_IPI_NONE); | |
3824 | return ipi_type; | |
2d21ac55 A |
3825 | } |
3826 | ||
0a7de745 A |
3827 | void |
3828 | sched_ipi_perform(processor_t dst, sched_ipi_type_t ipi) | |
5ba3f43e | 3829 | { |
0a7de745 | 3830 | switch (ipi) { |
5ba3f43e | 3831 | case SCHED_IPI_NONE: |
0a7de745 | 3832 | break; |
5ba3f43e | 3833 | case SCHED_IPI_IDLE: |
0a7de745 A |
3834 | machine_signal_idle(dst); |
3835 | break; | |
5ba3f43e | 3836 | case SCHED_IPI_IMMEDIATE: |
0a7de745 A |
3837 | cause_ast_check(dst); |
3838 | break; | |
5ba3f43e | 3839 | case SCHED_IPI_DEFERRED: |
0a7de745 A |
3840 | machine_signal_idle_deferred(dst); |
3841 | break; | |
5ba3f43e | 3842 | default: |
0a7de745 A |
3843 | panic("Unrecognized scheduler IPI type: %d", ipi); |
3844 | } | |
5ba3f43e | 3845 | } |
6d2010ae | 3846 | |
fe8ab488 A |
3847 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
3848 | ||
3849 | boolean_t | |
6d2010ae A |
3850 | priority_is_urgent(int priority) |
3851 | { | |
39037602 | 3852 | return bitmap_test(sched_preempt_pri, priority) ? TRUE : FALSE; |
6d2010ae A |
3853 | } |
3854 | ||
fe8ab488 A |
3855 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
3856 | ||
55e303ae | 3857 | /* |
2d21ac55 | 3858 | * processor_setrun: |
55e303ae | 3859 | * |
2d21ac55 A |
3860 | * Dispatch a thread for execution on a |
3861 | * processor. | |
55e303ae | 3862 | * |
2d21ac55 A |
3863 | * Thread must be locked. Associated pset must |
3864 | * be locked, and is returned unlocked. | |
55e303ae | 3865 | */ |
2d21ac55 A |
3866 | static void |
3867 | processor_setrun( | |
0a7de745 A |
3868 | processor_t processor, |
3869 | thread_t thread, | |
3870 | integer_t options) | |
55e303ae | 3871 | { |
d9a64523 A |
3872 | processor_set_t pset = processor->processor_set; |
3873 | pset_assert_locked(pset); | |
3874 | ast_t preempt; | |
39236c6e | 3875 | enum { eExitIdle, eInterruptRunning, eDoNothing } ipi_action = eDoNothing; |
55e303ae | 3876 | |
5ba3f43e | 3877 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
fe8ab488 | 3878 | |
6d2010ae A |
3879 | thread->chosen_processor = processor; |
3880 | ||
55e303ae | 3881 | /* |
2d21ac55 | 3882 | * Set preemption mode. |
1c79356b | 3883 | */ |
3e170ce0 A |
3884 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
3885 | /* TODO: Do we need to care about urgency (see rdar://problem/20136239)? */ | |
3886 | #endif | |
0a7de745 | 3887 | if (SCHED(priority_is_urgent)(thread->sched_pri) && thread->sched_pri > processor->current_pri) { |
6d2010ae | 3888 | preempt = (AST_PREEMPT | AST_URGENT); |
2a1bd2d3 | 3889 | } else if (processor->current_is_eagerpreempt) { |
55e303ae | 3890 | preempt = (AST_PREEMPT | AST_URGENT); |
0a7de745 A |
3891 | } else if ((thread->sched_mode == TH_MODE_TIMESHARE) && (thread->sched_pri < thread->base_pri)) { |
3892 | if (SCHED(priority_is_urgent)(thread->base_pri) && thread->sched_pri > processor->current_pri) { | |
39236c6e A |
3893 | preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE; |
3894 | } else { | |
3895 | preempt = AST_NONE; | |
3896 | } | |
0a7de745 | 3897 | } else { |
2d21ac55 | 3898 | preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE; |
0a7de745 | 3899 | } |
9bccf70c | 3900 | |
0a7de745 | 3901 | if ((options & (SCHED_PREEMPT | SCHED_REBALANCE)) == (SCHED_PREEMPT | SCHED_REBALANCE)) { |
d9a64523 A |
3902 | /* |
3903 | * Having gone to the trouble of forcing this thread off a less preferred core, | |
3904 | * we should force the preferable core to reschedule immediately to give this | |
3905 | * thread a chance to run instead of just sitting on the run queue where | |
3906 | * it may just be stolen back by the idle core we just forced it off. | |
3907 | */ | |
3908 | preempt |= AST_PREEMPT; | |
3909 | } | |
3910 | ||
39236c6e | 3911 | SCHED(processor_enqueue)(processor, thread, options); |
f427ee49 | 3912 | sched_update_pset_load_average(pset, 0); |
9bccf70c | 3913 | |
2d21ac55 | 3914 | if (preempt != AST_NONE) { |
39236c6e | 3915 | if (processor->state == PROCESSOR_IDLE) { |
5ba3f43e | 3916 | processor_state_update_from_thread(processor, thread); |
39236c6e | 3917 | processor->deadline = UINT64_MAX; |
d9a64523 | 3918 | pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING); |
39236c6e | 3919 | ipi_action = eExitIdle; |
0a7de745 | 3920 | } else if (processor->state == PROCESSOR_DISPATCHING) { |
cb323159 | 3921 | if (processor->current_pri < thread->sched_pri) { |
5ba3f43e | 3922 | processor_state_update_from_thread(processor, thread); |
39236c6e A |
3923 | processor->deadline = UINT64_MAX; |
3924 | } | |
0a7de745 A |
3925 | } else if ((processor->state == PROCESSOR_RUNNING || |
3926 | processor->state == PROCESSOR_SHUTDOWN) && | |
3927 | (thread->sched_pri >= processor->current_pri)) { | |
39236c6e | 3928 | ipi_action = eInterruptRunning; |
2d21ac55 | 3929 | } |
39236c6e A |
3930 | } else { |
3931 | /* | |
3932 | * New thread is not important enough to preempt what is running, but | |
3933 | * special processor states may need special handling | |
3934 | */ | |
0a7de745 A |
3935 | if (processor->state == PROCESSOR_SHUTDOWN && |
3936 | thread->sched_pri >= processor->current_pri) { | |
39236c6e | 3937 | ipi_action = eInterruptRunning; |
d190cdc3 | 3938 | } else if (processor->state == PROCESSOR_IDLE) { |
5ba3f43e | 3939 | processor_state_update_from_thread(processor, thread); |
39236c6e | 3940 | processor->deadline = UINT64_MAX; |
d9a64523 | 3941 | pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING); |
39236c6e A |
3942 | |
3943 | ipi_action = eExitIdle; | |
3944 | } | |
2d21ac55 | 3945 | } |
39236c6e | 3946 | |
5ba3f43e | 3947 | if (ipi_action != eDoNothing) { |
0a7de745 A |
3948 | if (processor == current_processor()) { |
3949 | if ((preempt = csw_check_locked(processor->active_thread, processor, pset, AST_NONE)) != AST_NONE) { | |
3950 | ast_on(preempt); | |
3951 | } | |
6d2010ae | 3952 | |
0a7de745 A |
3953 | if ((preempt & AST_URGENT) == AST_URGENT) { |
3954 | bit_set(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id); | |
3955 | } else { | |
3956 | bit_clear(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id); | |
3957 | } | |
3958 | ||
3959 | if ((preempt & AST_PREEMPT) == AST_PREEMPT) { | |
3960 | bit_set(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); | |
3961 | } else { | |
3962 | bit_clear(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); | |
3963 | } | |
3964 | } else { | |
3965 | sched_ipi_event_t event = (options & SCHED_REBALANCE) ? SCHED_IPI_EVENT_REBALANCE : SCHED_IPI_EVENT_PREEMPT; | |
3966 | ipi_type = sched_ipi_action(processor, thread, (ipi_action == eExitIdle), event); | |
3967 | } | |
3968 | } | |
3969 | pset_unlock(pset); | |
3970 | sched_ipi_perform(processor, ipi_type); | |
3971 | } | |
3972 | ||
3973 | /* | |
2d21ac55 A |
3974 | * choose_next_pset: |
3975 | * | |
3976 | * Return the next sibling pset containing | |
3977 | * available processors. | |
3978 | * | |
3979 | * Returns the original pset if none other is | |
3980 | * suitable. | |
3981 | */ | |
3982 | static processor_set_t | |
3983 | choose_next_pset( | |
0a7de745 | 3984 | processor_set_t pset) |
2d21ac55 | 3985 | { |
0a7de745 | 3986 | processor_set_t nset = pset; |
2d21ac55 A |
3987 | |
3988 | do { | |
3989 | nset = next_pset(nset); | |
6d2010ae | 3990 | } while (nset->online_processor_count < 1 && nset != pset); |
2d21ac55 | 3991 | |
0a7de745 | 3992 | return nset; |
2d21ac55 A |
3993 | } |
3994 | ||
f427ee49 A |
3995 | inline static processor_set_t |
3996 | change_locked_pset(processor_set_t current_pset, processor_set_t new_pset) | |
3997 | { | |
3998 | if (current_pset != new_pset) { | |
3999 | pset_unlock(current_pset); | |
4000 | pset_lock(new_pset); | |
4001 | } | |
4002 | ||
4003 | return new_pset; | |
4004 | } | |
4005 | ||
4006 | /* | |
4007 | * choose_processor: | |
2d21ac55 A |
4008 | * |
4009 | * Choose a processor for the thread, beginning at | |
b7266188 | 4010 | * the pset. Accepts an optional processor hint in |
2d21ac55 A |
4011 | * the pset. |
4012 | * | |
4013 | * Returns a processor, possibly from a different pset. | |
4014 | * | |
4015 | * The thread must be locked. The pset must be locked, | |
4016 | * and the resulting pset is locked on return. | |
4017 | */ | |
6d2010ae | 4018 | processor_t |
2d21ac55 | 4019 | choose_processor( |
d9a64523 A |
4020 | processor_set_t starting_pset, |
4021 | processor_t processor, | |
4022 | thread_t thread) | |
2d21ac55 | 4023 | { |
d9a64523 A |
4024 | processor_set_t pset = starting_pset; |
4025 | processor_set_t nset; | |
39037602 A |
4026 | |
4027 | assert(thread->sched_pri <= BASEPRI_RTQUEUES); | |
4028 | ||
cf7d32b8 | 4029 | /* |
fe8ab488 | 4030 | * Prefer the hinted processor, when appropriate. |
cf7d32b8 | 4031 | */ |
b7266188 | 4032 | |
fe8ab488 | 4033 | /* Fold last processor hint from secondary processor to its primary */ |
0b4c1975 | 4034 | if (processor != PROCESSOR_NULL) { |
fe8ab488 | 4035 | processor = processor->processor_primary; |
0b4c1975 | 4036 | } |
b0d623f7 | 4037 | |
fe8ab488 A |
4038 | /* |
4039 | * Only consult platform layer if pset is active, which | |
4040 | * it may not be in some cases when a multi-set system | |
4041 | * is going to sleep. | |
4042 | */ | |
4043 | if (pset->online_processor_count) { | |
4044 | if ((processor == PROCESSOR_NULL) || (processor->processor_set == pset && processor->state == PROCESSOR_IDLE)) { | |
4045 | processor_t mc_processor = machine_choose_processor(pset, processor); | |
0a7de745 | 4046 | if (mc_processor != PROCESSOR_NULL) { |
fe8ab488 | 4047 | processor = mc_processor->processor_primary; |
0a7de745 | 4048 | } |
fe8ab488 A |
4049 | } |
4050 | } | |
b7266188 | 4051 | |
fe8ab488 A |
4052 | /* |
4053 | * At this point, we may have a processor hint, and we may have | |
4054 | * an initial starting pset. If the hint is not in the pset, or | |
4055 | * if the hint is for a processor in an invalid state, discard | |
4056 | * the hint. | |
4057 | */ | |
0b4c1975 | 4058 | if (processor != PROCESSOR_NULL) { |
fe8ab488 | 4059 | if (processor->processor_set != pset) { |
cf7d32b8 | 4060 | processor = PROCESSOR_NULL; |
3e170ce0 A |
4061 | } else if (!processor->is_recommended) { |
4062 | processor = PROCESSOR_NULL; | |
fe8ab488 A |
4063 | } else { |
4064 | switch (processor->state) { | |
0a7de745 A |
4065 | case PROCESSOR_START: |
4066 | case PROCESSOR_SHUTDOWN: | |
4067 | case PROCESSOR_OFF_LINE: | |
4068 | /* | |
4069 | * Hint is for a processor that cannot support running new threads. | |
4070 | */ | |
4071 | processor = PROCESSOR_NULL; | |
4072 | break; | |
4073 | case PROCESSOR_IDLE: | |
4074 | /* | |
4075 | * Hint is for an idle processor. Assume it is no worse than any other | |
4076 | * idle processor. The platform layer had an opportunity to provide | |
4077 | * the "least cost idle" processor above. | |
4078 | */ | |
f427ee49 A |
4079 | if ((thread->sched_pri < BASEPRI_RTQUEUES) || processor_is_fast_track_candidate_for_realtime_thread(pset, processor)) { |
4080 | return processor; | |
4081 | } | |
4082 | processor = PROCESSOR_NULL; | |
4083 | break; | |
0a7de745 A |
4084 | case PROCESSOR_RUNNING: |
4085 | case PROCESSOR_DISPATCHING: | |
4086 | /* | |
4087 | * Hint is for an active CPU. This fast-path allows | |
4088 | * realtime threads to preempt non-realtime threads | |
4089 | * to regain their previous executing processor. | |
4090 | */ | |
4091 | if ((thread->sched_pri >= BASEPRI_RTQUEUES) && | |
f427ee49 | 4092 | processor_is_fast_track_candidate_for_realtime_thread(pset, processor)) { |
0a7de745 A |
4093 | return processor; |
4094 | } | |
4095 | ||
4096 | /* Otherwise, use hint as part of search below */ | |
4097 | break; | |
4098 | default: | |
4099 | processor = PROCESSOR_NULL; | |
4100 | break; | |
fe8ab488 A |
4101 | } |
4102 | } | |
b7266188 | 4103 | } |
2d21ac55 A |
4104 | |
4105 | /* | |
fe8ab488 A |
4106 | * Iterate through the processor sets to locate |
4107 | * an appropriate processor. Seed results with | |
4108 | * a last-processor hint, if available, so that | |
4109 | * a search must find something strictly better | |
4110 | * to replace it. | |
4111 | * | |
4112 | * A primary/secondary pair of SMT processors are | |
4113 | * "unpaired" if the primary is busy but its | |
4114 | * corresponding secondary is idle (so the physical | |
4115 | * core has full use of its resources). | |
2d21ac55 | 4116 | */ |
fe8ab488 A |
4117 | |
4118 | integer_t lowest_priority = MAXPRI + 1; | |
a39ff7e2 | 4119 | integer_t lowest_secondary_priority = MAXPRI + 1; |
fe8ab488 | 4120 | integer_t lowest_unpaired_primary_priority = MAXPRI + 1; |
0a7de745 | 4121 | integer_t lowest_idle_secondary_priority = MAXPRI + 1; |
fe8ab488 A |
4122 | integer_t lowest_count = INT_MAX; |
4123 | uint64_t furthest_deadline = 1; | |
4124 | processor_t lp_processor = PROCESSOR_NULL; | |
4125 | processor_t lp_unpaired_primary_processor = PROCESSOR_NULL; | |
0a7de745 | 4126 | processor_t lp_idle_secondary_processor = PROCESSOR_NULL; |
a39ff7e2 | 4127 | processor_t lp_paired_secondary_processor = PROCESSOR_NULL; |
fe8ab488 A |
4128 | processor_t lc_processor = PROCESSOR_NULL; |
4129 | processor_t fd_processor = PROCESSOR_NULL; | |
4130 | ||
4131 | if (processor != PROCESSOR_NULL) { | |
4132 | /* All other states should be enumerated above. */ | |
4133 | assert(processor->state == PROCESSOR_RUNNING || processor->state == PROCESSOR_DISPATCHING); | |
4134 | ||
4135 | lowest_priority = processor->current_pri; | |
4136 | lp_processor = processor; | |
4137 | ||
4138 | if (processor->current_pri >= BASEPRI_RTQUEUES) { | |
4139 | furthest_deadline = processor->deadline; | |
4140 | fd_processor = processor; | |
4141 | } | |
4142 | ||
4143 | lowest_count = SCHED(processor_runq_count)(processor); | |
4144 | lc_processor = processor; | |
4145 | } | |
4146 | ||
f427ee49 A |
4147 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
4148 | pset_node_t node = pset->node; | |
4149 | int consider_secondaries = (!pset->is_SMT) || (bit_count(node->pset_map) == 1) || (node->pset_non_rt_primary_map == 0); | |
4150 | for (; consider_secondaries < 2; consider_secondaries++) { | |
4151 | pset = change_locked_pset(pset, starting_pset); | |
4152 | do { | |
4153 | processor = choose_processor_for_realtime_thread(pset, PROCESSOR_NULL, consider_secondaries); | |
4154 | if (processor) { | |
4155 | return processor; | |
4156 | } | |
d9a64523 | 4157 | |
f427ee49 | 4158 | /* NRG Collect processor stats for furthest deadline etc. here */ |
d9a64523 | 4159 | |
f427ee49 | 4160 | nset = next_pset(pset); |
0a7de745 | 4161 | |
f427ee49 A |
4162 | if (nset != starting_pset) { |
4163 | pset = change_locked_pset(pset, nset); | |
4164 | } | |
4165 | } while (nset != starting_pset); | |
4166 | } | |
4167 | /* Or we could just let it change to starting_pset in the loop above */ | |
4168 | pset = change_locked_pset(pset, starting_pset); | |
4169 | } | |
0a7de745 | 4170 | |
f427ee49 A |
4171 | do { |
4172 | /* | |
4173 | * Choose an idle processor, in pset traversal order | |
4174 | */ | |
4175 | ||
4176 | uint64_t idle_primary_map = (pset->cpu_state_map[PROCESSOR_IDLE] & | |
4177 | pset->primary_map & | |
4178 | pset->recommended_bitmask); | |
4179 | ||
4180 | /* there shouldn't be a pending AST if the processor is idle */ | |
4181 | assert((idle_primary_map & pset->pending_AST_URGENT_cpu_mask) == 0); | |
4182 | ||
4183 | int cpuid = lsb_first(idle_primary_map); | |
4184 | if (cpuid >= 0) { | |
4185 | processor = processor_array[cpuid]; | |
4186 | return processor; | |
3e170ce0 | 4187 | } |
1c79356b | 4188 | |
fe8ab488 | 4189 | /* |
a39ff7e2 | 4190 | * Otherwise, enumerate active and idle processors to find primary candidates |
fe8ab488 A |
4191 | * with lower priority/etc. |
4192 | */ | |
0b4c1975 | 4193 | |
d9a64523 | 4194 | uint64_t active_map = ((pset->cpu_state_map[PROCESSOR_RUNNING] | pset->cpu_state_map[PROCESSOR_DISPATCHING]) & |
0a7de745 A |
4195 | pset->recommended_bitmask & |
4196 | ~pset->pending_AST_URGENT_cpu_mask); | |
4197 | ||
4198 | if (SCHED(priority_is_urgent)(thread->sched_pri) == FALSE) { | |
4199 | active_map &= ~pset->pending_AST_PREEMPT_cpu_mask; | |
4200 | } | |
4201 | ||
d9a64523 A |
4202 | active_map = bit_ror64(active_map, (pset->last_chosen + 1)); |
4203 | for (int rotid = lsb_first(active_map); rotid >= 0; rotid = lsb_next(active_map, rotid)) { | |
4204 | cpuid = ((rotid + pset->last_chosen + 1) & 63); | |
4205 | processor = processor_array[cpuid]; | |
2d21ac55 | 4206 | |
fe8ab488 | 4207 | integer_t cpri = processor->current_pri; |
0a7de745 A |
4208 | processor_t primary = processor->processor_primary; |
4209 | if (primary != processor) { | |
4210 | /* If primary is running a NO_SMT thread, don't choose its secondary */ | |
4211 | if (!((primary->state == PROCESSOR_RUNNING) && processor_active_thread_no_smt(primary))) { | |
4212 | if (cpri < lowest_secondary_priority) { | |
4213 | lowest_secondary_priority = cpri; | |
4214 | lp_paired_secondary_processor = processor; | |
4215 | } | |
a39ff7e2 A |
4216 | } |
4217 | } else { | |
4218 | if (cpri < lowest_priority) { | |
4219 | lowest_priority = cpri; | |
4220 | lp_processor = processor; | |
4221 | } | |
fe8ab488 | 4222 | } |
b0d623f7 | 4223 | |
fe8ab488 A |
4224 | if ((cpri >= BASEPRI_RTQUEUES) && (processor->deadline > furthest_deadline)) { |
4225 | furthest_deadline = processor->deadline; | |
4226 | fd_processor = processor; | |
4227 | } | |
0b4c1975 | 4228 | |
fe8ab488 A |
4229 | integer_t ccount = SCHED(processor_runq_count)(processor); |
4230 | if (ccount < lowest_count) { | |
4231 | lowest_count = ccount; | |
4232 | lc_processor = processor; | |
4233 | } | |
fe8ab488 A |
4234 | } |
4235 | ||
4236 | /* | |
4237 | * For SMT configs, these idle secondary processors must have active primary. Otherwise | |
4238 | * the idle primary would have short-circuited the loop above | |
4239 | */ | |
d9a64523 | 4240 | uint64_t idle_secondary_map = (pset->cpu_state_map[PROCESSOR_IDLE] & |
0a7de745 A |
4241 | ~pset->primary_map & |
4242 | pset->recommended_bitmask); | |
4243 | ||
4244 | /* there shouldn't be a pending AST if the processor is idle */ | |
4245 | assert((idle_secondary_map & pset->pending_AST_URGENT_cpu_mask) == 0); | |
4246 | assert((idle_secondary_map & pset->pending_AST_PREEMPT_cpu_mask) == 0); | |
3e170ce0 | 4247 | |
d9a64523 A |
4248 | for (cpuid = lsb_first(idle_secondary_map); cpuid >= 0; cpuid = lsb_next(idle_secondary_map, cpuid)) { |
4249 | processor = processor_array[cpuid]; | |
3e170ce0 | 4250 | |
fe8ab488 A |
4251 | processor_t cprimary = processor->processor_primary; |
4252 | ||
0a7de745 A |
4253 | integer_t primary_pri = cprimary->current_pri; |
4254 | ||
4255 | /* | |
4256 | * TODO: This should also make the same decisions | |
4257 | * as secondary_can_run_realtime_thread | |
4258 | * | |
4259 | * TODO: Keep track of the pending preemption priority | |
4260 | * of the primary to make this more accurate. | |
4261 | */ | |
4262 | ||
4263 | /* If the primary is running a no-smt thread, then don't choose its secondary */ | |
4264 | if (cprimary->state == PROCESSOR_RUNNING && | |
4265 | processor_active_thread_no_smt(cprimary)) { | |
d9a64523 A |
4266 | continue; |
4267 | } | |
0a7de745 A |
4268 | |
4269 | /* | |
4270 | * Find the idle secondary processor with the lowest priority primary | |
4271 | * | |
4272 | * We will choose this processor as a fallback if we find no better | |
4273 | * primary to preempt. | |
4274 | */ | |
4275 | if (primary_pri < lowest_idle_secondary_priority) { | |
4276 | lp_idle_secondary_processor = processor; | |
4277 | lowest_idle_secondary_priority = primary_pri; | |
a39ff7e2 A |
4278 | } |
4279 | ||
0a7de745 A |
4280 | /* Find the the lowest priority active primary with idle secondary */ |
4281 | if (primary_pri < lowest_unpaired_primary_priority) { | |
4282 | /* If the primary processor is offline or starting up, it's not a candidate for this path */ | |
4283 | if (cprimary->state != PROCESSOR_RUNNING && | |
4284 | cprimary->state != PROCESSOR_DISPATCHING) { | |
4285 | continue; | |
4286 | } | |
fe8ab488 | 4287 | |
0a7de745 A |
4288 | if (!cprimary->is_recommended) { |
4289 | continue; | |
0b4c1975 | 4290 | } |
0a7de745 A |
4291 | |
4292 | /* if the primary is pending preemption, don't try to re-preempt it */ | |
4293 | if (bit_test(pset->pending_AST_URGENT_cpu_mask, cprimary->cpu_id)) { | |
4294 | continue; | |
4295 | } | |
4296 | ||
4297 | if (SCHED(priority_is_urgent)(thread->sched_pri) == FALSE && | |
4298 | bit_test(pset->pending_AST_PREEMPT_cpu_mask, cprimary->cpu_id)) { | |
4299 | continue; | |
4300 | } | |
4301 | ||
4302 | lowest_unpaired_primary_priority = primary_pri; | |
4303 | lp_unpaired_primary_processor = cprimary; | |
2d21ac55 | 4304 | } |
fe8ab488 A |
4305 | } |
4306 | ||
0a7de745 A |
4307 | /* |
4308 | * We prefer preempting a primary processor over waking up its secondary. | |
4309 | * The secondary will then be woken up by the preempted thread. | |
4310 | */ | |
4311 | if (thread->sched_pri > lowest_unpaired_primary_priority) { | |
4312 | pset->last_chosen = lp_unpaired_primary_processor->cpu_id; | |
4313 | return lp_unpaired_primary_processor; | |
4314 | } | |
0b4c1975 | 4315 | |
0a7de745 A |
4316 | /* |
4317 | * We prefer preempting a lower priority active processor over directly | |
4318 | * waking up an idle secondary. | |
4319 | * The preempted thread will then find the idle secondary. | |
4320 | */ | |
4321 | if (thread->sched_pri > lowest_priority) { | |
4322 | pset->last_chosen = lp_processor->cpu_id; | |
4323 | return lp_processor; | |
4324 | } | |
fe8ab488 | 4325 | |
0a7de745 | 4326 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
fe8ab488 A |
4327 | /* |
4328 | * For realtime threads, the most important aspect is | |
0a7de745 A |
4329 | * scheduling latency, so we will pick an active |
4330 | * secondary processor in this pset, or preempt | |
4331 | * another RT thread with a further deadline before | |
4332 | * going to the next pset. | |
fe8ab488 A |
4333 | */ |
4334 | ||
a39ff7e2 | 4335 | if (sched_allow_rt_smt && (thread->sched_pri > lowest_secondary_priority)) { |
d9a64523 | 4336 | pset->last_chosen = lp_paired_secondary_processor->cpu_id; |
a39ff7e2 A |
4337 | return lp_paired_secondary_processor; |
4338 | } | |
fe8ab488 | 4339 | |
0a7de745 A |
4340 | if (thread->realtime.deadline < furthest_deadline) { |
4341 | return fd_processor; | |
cf7d32b8 | 4342 | } |
2d21ac55 A |
4343 | } |
4344 | ||
4345 | /* | |
cb323159 A |
4346 | * lc_processor is used to indicate the best processor set run queue |
4347 | * on which to enqueue a thread when all available CPUs are busy with | |
4348 | * higher priority threads, so try to make sure it is initialized. | |
4349 | */ | |
4350 | if (lc_processor == PROCESSOR_NULL) { | |
4351 | cpumap_t available_map = ((pset->cpu_state_map[PROCESSOR_IDLE] | | |
4352 | pset->cpu_state_map[PROCESSOR_RUNNING] | | |
4353 | pset->cpu_state_map[PROCESSOR_DISPATCHING]) & | |
4354 | pset->recommended_bitmask); | |
4355 | cpuid = lsb_first(available_map); | |
4356 | if (cpuid >= 0) { | |
4357 | lc_processor = processor_array[cpuid]; | |
4358 | lowest_count = SCHED(processor_runq_count)(lc_processor); | |
4359 | } | |
4360 | } | |
4361 | ||
4362 | /* | |
4363 | * Move onto the next processor set. | |
4364 | * | |
0a7de745 A |
4365 | * If all primary processors in this pset are running a higher |
4366 | * priority thread, move on to next pset. Only when we have | |
4367 | * exhausted the search for primary processors do we | |
4368 | * fall back to secondaries. | |
2d21ac55 | 4369 | */ |
d9a64523 | 4370 | nset = next_pset(pset); |
2d21ac55 | 4371 | |
d9a64523 | 4372 | if (nset != starting_pset) { |
f427ee49 | 4373 | pset = change_locked_pset(pset, nset); |
2d21ac55 | 4374 | } |
d9a64523 | 4375 | } while (nset != starting_pset); |
2d21ac55 A |
4376 | |
4377 | /* | |
fe8ab488 A |
4378 | * Make sure that we pick a running processor, |
4379 | * and that the correct processor set is locked. | |
0a7de745 | 4380 | * Since we may have unlocked the candidate processor's |
fe8ab488 A |
4381 | * pset, it may have changed state. |
4382 | * | |
4383 | * All primary processors are running a higher priority | |
4384 | * thread, so the only options left are enqueuing on | |
4385 | * the secondary processor that would perturb the least priority | |
4386 | * primary, or the least busy primary. | |
2d21ac55 | 4387 | */ |
cb323159 | 4388 | boolean_t fallback_processor = false; |
cf7d32b8 | 4389 | do { |
fe8ab488 | 4390 | /* lowest_priority is evaluated in the main loops above */ |
0a7de745 A |
4391 | if (lp_idle_secondary_processor != PROCESSOR_NULL) { |
4392 | processor = lp_idle_secondary_processor; | |
4393 | lp_idle_secondary_processor = PROCESSOR_NULL; | |
a39ff7e2 A |
4394 | } else if (lp_paired_secondary_processor != PROCESSOR_NULL) { |
4395 | processor = lp_paired_secondary_processor; | |
4396 | lp_paired_secondary_processor = PROCESSOR_NULL; | |
fe8ab488 A |
4397 | } else if (lc_processor != PROCESSOR_NULL) { |
4398 | processor = lc_processor; | |
4399 | lc_processor = PROCESSOR_NULL; | |
4400 | } else { | |
cf7d32b8 | 4401 | /* |
cb323159 A |
4402 | * All processors are executing higher priority threads, and |
4403 | * the lowest_count candidate was not usable. | |
0a7de745 | 4404 | * |
cb323159 A |
4405 | * For AMP platforms running the clutch scheduler always |
4406 | * return a processor from the requested pset to allow the | |
4407 | * thread to be enqueued in the correct runq. For non-AMP | |
4408 | * platforms, simply return the master_processor. | |
cf7d32b8 | 4409 | */ |
cb323159 | 4410 | fallback_processor = true; |
f427ee49 | 4411 | #if CONFIG_SCHED_EDGE |
c6bf4f31 | 4412 | processor = processor_array[lsb_first(starting_pset->primary_map)]; |
f427ee49 | 4413 | #else /* CONFIG_SCHED_EDGE */ |
fe8ab488 | 4414 | processor = master_processor; |
f427ee49 | 4415 | #endif /* CONFIG_SCHED_EDGE */ |
cf7d32b8 A |
4416 | } |
4417 | ||
4418 | /* | |
fe8ab488 A |
4419 | * Check that the correct processor set is |
4420 | * returned locked. | |
cf7d32b8 | 4421 | */ |
f427ee49 | 4422 | pset = change_locked_pset(pset, processor->processor_set); |
cf7d32b8 A |
4423 | |
4424 | /* | |
fe8ab488 | 4425 | * We must verify that the chosen processor is still available. |
cb323159 A |
4426 | * The cases where we pick the master_processor or the fallback |
4427 | * processor are execptions, since we may need enqueue a thread | |
4428 | * on its runqueue if this is the last remaining processor | |
4429 | * during pset shutdown. | |
4430 | * | |
4431 | * <rdar://problem/47559304> would really help here since it | |
4432 | * gets rid of the weird last processor SHUTDOWN case where | |
4433 | * the pset is still schedulable. | |
cf7d32b8 | 4434 | */ |
cb323159 | 4435 | if (processor != master_processor && (fallback_processor == false) && (processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE)) { |
cf7d32b8 | 4436 | processor = PROCESSOR_NULL; |
0a7de745 | 4437 | } |
cf7d32b8 | 4438 | } while (processor == PROCESSOR_NULL); |
2d21ac55 | 4439 | |
d9a64523 A |
4440 | pset->last_chosen = processor->cpu_id; |
4441 | return processor; | |
2d21ac55 A |
4442 | } |
4443 | ||
f427ee49 A |
4444 | /* |
4445 | * Default implementation of SCHED(choose_node)() | |
4446 | * for single node systems | |
4447 | */ | |
4448 | pset_node_t | |
4449 | sched_choose_node(__unused thread_t thread) | |
4450 | { | |
4451 | return &pset_node0; | |
4452 | } | |
4453 | ||
4454 | /* | |
4455 | * choose_starting_pset: | |
4456 | * | |
4457 | * Choose a starting processor set for the thread. | |
4458 | * May return a processor hint within the pset. | |
4459 | * | |
4460 | * Returns a starting processor set, to be used by | |
4461 | * choose_processor. | |
4462 | * | |
4463 | * The thread must be locked. The resulting pset is unlocked on return, | |
4464 | * and is chosen without taking any pset locks. | |
4465 | */ | |
4466 | processor_set_t | |
4467 | choose_starting_pset(pset_node_t node, thread_t thread, processor_t *processor_hint) | |
4468 | { | |
4469 | processor_set_t pset; | |
4470 | processor_t processor = PROCESSOR_NULL; | |
4471 | ||
4472 | if (thread->affinity_set != AFFINITY_SET_NULL) { | |
4473 | /* | |
4474 | * Use affinity set policy hint. | |
4475 | */ | |
4476 | pset = thread->affinity_set->aset_pset; | |
4477 | } else if (thread->last_processor != PROCESSOR_NULL) { | |
4478 | /* | |
4479 | * Simple (last processor) affinity case. | |
4480 | */ | |
4481 | processor = thread->last_processor; | |
4482 | pset = processor->processor_set; | |
4483 | } else { | |
4484 | /* | |
4485 | * No Affinity case: | |
4486 | * | |
4487 | * Utilitize a per task hint to spread threads | |
4488 | * among the available processor sets. | |
4489 | * NRG this seems like the wrong thing to do. | |
4490 | * See also task->pset_hint = pset in thread_setrun() | |
4491 | */ | |
4492 | task_t task = thread->task; | |
4493 | ||
4494 | pset = task->pset_hint; | |
4495 | if (pset == PROCESSOR_SET_NULL) { | |
4496 | pset = current_processor()->processor_set; | |
4497 | } | |
4498 | ||
4499 | pset = choose_next_pset(pset); | |
4500 | } | |
4501 | ||
4502 | if (!bit_test(node->pset_map, pset->pset_id)) { | |
4503 | /* pset is not from this node so choose one that is */ | |
4504 | int id = lsb_first(node->pset_map); | |
4505 | assert(id >= 0); | |
4506 | pset = pset_array[id]; | |
4507 | } | |
4508 | ||
4509 | if (bit_count(node->pset_map) == 1) { | |
4510 | /* Only a single pset in this node */ | |
4511 | goto out; | |
4512 | } | |
4513 | ||
4514 | bool avoid_cpu0 = false; | |
4515 | ||
4516 | #if defined(__x86_64__) | |
4517 | if ((thread->sched_pri >= BASEPRI_RTQUEUES) && sched_avoid_cpu0) { | |
4518 | /* Avoid the pset containing cpu0 */ | |
4519 | avoid_cpu0 = true; | |
4520 | /* Assert that cpu0 is in pset0. I expect this to be true on __x86_64__ */ | |
4521 | assert(bit_test(pset_array[0]->cpu_bitmask, 0)); | |
4522 | } | |
4523 | #endif | |
4524 | ||
4525 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { | |
4526 | pset_map_t rt_target_map = atomic_load(&node->pset_non_rt_primary_map); | |
4527 | if ((avoid_cpu0 && pset->pset_id == 0) || !bit_test(rt_target_map, pset->pset_id)) { | |
4528 | if (avoid_cpu0) { | |
4529 | rt_target_map = bit_ror64(rt_target_map, 1); | |
4530 | } | |
4531 | int rotid = lsb_first(rt_target_map); | |
4532 | if (rotid >= 0) { | |
4533 | int id = avoid_cpu0 ? ((rotid + 1) & 63) : rotid; | |
4534 | pset = pset_array[id]; | |
4535 | goto out; | |
4536 | } | |
4537 | } | |
4538 | if (!pset->is_SMT || !sched_allow_rt_smt) { | |
4539 | /* All psets are full of RT threads - fall back to choose processor to find the furthest deadline RT thread */ | |
4540 | goto out; | |
4541 | } | |
4542 | rt_target_map = atomic_load(&node->pset_non_rt_map); | |
4543 | if ((avoid_cpu0 && pset->pset_id == 0) || !bit_test(rt_target_map, pset->pset_id)) { | |
4544 | if (avoid_cpu0) { | |
4545 | rt_target_map = bit_ror64(rt_target_map, 1); | |
4546 | } | |
4547 | int rotid = lsb_first(rt_target_map); | |
4548 | if (rotid >= 0) { | |
4549 | int id = avoid_cpu0 ? ((rotid + 1) & 63) : rotid; | |
4550 | pset = pset_array[id]; | |
4551 | goto out; | |
4552 | } | |
4553 | } | |
4554 | /* All psets are full of RT threads - fall back to choose processor to find the furthest deadline RT thread */ | |
4555 | } else { | |
4556 | pset_map_t idle_map = atomic_load(&node->pset_idle_map); | |
4557 | if (!bit_test(idle_map, pset->pset_id)) { | |
4558 | int next_idle_pset_id = lsb_first(idle_map); | |
4559 | if (next_idle_pset_id >= 0) { | |
4560 | pset = pset_array[next_idle_pset_id]; | |
4561 | } | |
4562 | } | |
4563 | } | |
4564 | ||
4565 | out: | |
4566 | if ((processor != PROCESSOR_NULL) && (processor->processor_set != pset)) { | |
4567 | processor = PROCESSOR_NULL; | |
4568 | } | |
4569 | if (processor != PROCESSOR_NULL) { | |
4570 | *processor_hint = processor; | |
4571 | } | |
4572 | ||
4573 | return pset; | |
4574 | } | |
4575 | ||
2d21ac55 A |
4576 | /* |
4577 | * thread_setrun: | |
4578 | * | |
4579 | * Dispatch thread for execution, onto an idle | |
4580 | * processor or run queue, and signal a preemption | |
4581 | * as appropriate. | |
4582 | * | |
4583 | * Thread must be locked. | |
4584 | */ | |
4585 | void | |
4586 | thread_setrun( | |
0a7de745 | 4587 | thread_t thread, |
cb323159 | 4588 | sched_options_t options) |
2d21ac55 | 4589 | { |
0a7de745 A |
4590 | processor_t processor; |
4591 | processor_set_t pset; | |
2d21ac55 | 4592 | |
0a7de745 | 4593 | assert((thread->state & (TH_RUN | TH_WAIT | TH_UNINT | TH_TERMINATE | TH_TERMINATE2)) == TH_RUN); |
3e170ce0 A |
4594 | assert(thread->runq == PROCESSOR_NULL); |
4595 | ||
2d21ac55 A |
4596 | /* |
4597 | * Update priority if needed. | |
4598 | */ | |
0a7de745 | 4599 | if (SCHED(can_update_priority)(thread)) { |
6d2010ae | 4600 | SCHED(update_priority)(thread); |
0a7de745 | 4601 | } |
2d21ac55 | 4602 | |
fe8ab488 A |
4603 | thread->sfi_class = sfi_thread_classify(thread); |
4604 | ||
2d21ac55 A |
4605 | assert(thread->runq == PROCESSOR_NULL); |
4606 | ||
4607 | if (thread->bound_processor == PROCESSOR_NULL) { | |
4608 | /* | |
4609 | * Unbound case. | |
4610 | */ | |
f427ee49 A |
4611 | processor_t processor_hint = PROCESSOR_NULL; |
4612 | pset_node_t node = SCHED(choose_node)(thread); | |
4613 | processor_set_t starting_pset = choose_starting_pset(node, thread, &processor_hint); | |
2d21ac55 | 4614 | |
f427ee49 | 4615 | pset_lock(starting_pset); |
39236c6e | 4616 | |
f427ee49 A |
4617 | processor = SCHED(choose_processor)(starting_pset, processor_hint, thread); |
4618 | pset = processor->processor_set; | |
4619 | task_t task = thread->task; | |
4620 | task->pset_hint = pset; /* NRG this is done without holding the task lock */ | |
39236c6e | 4621 | |
f427ee49 A |
4622 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR) | DBG_FUNC_NONE, |
4623 | (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0); | |
3e170ce0 | 4624 | } else { |
2d21ac55 A |
4625 | /* |
4626 | * Bound case: | |
4627 | * | |
4628 | * Unconditionally dispatch on the processor. | |
4629 | */ | |
4630 | processor = thread->bound_processor; | |
55e303ae | 4631 | pset = processor->processor_set; |
2d21ac55 | 4632 | pset_lock(pset); |
39236c6e | 4633 | |
0a7de745 A |
4634 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR) | DBG_FUNC_NONE, |
4635 | (uintptr_t)thread_tid(thread), (uintptr_t)-2, processor->cpu_id, processor->state, 0); | |
2d21ac55 A |
4636 | } |
4637 | ||
4638 | /* | |
3e170ce0 | 4639 | * Dispatch the thread on the chosen processor. |
fe8ab488 | 4640 | * TODO: This should be based on sched_mode, not sched_pri |
2d21ac55 | 4641 | */ |
5ba3f43e | 4642 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
2d21ac55 | 4643 | realtime_setrun(processor, thread); |
5ba3f43e | 4644 | } else { |
2d21ac55 | 4645 | processor_setrun(processor, thread, options); |
a39ff7e2 A |
4646 | } |
4647 | /* pset is now unlocked */ | |
4648 | if (thread->bound_processor == PROCESSOR_NULL) { | |
4649 | SCHED(check_spill)(pset, thread); | |
5ba3f43e | 4650 | } |
2d21ac55 A |
4651 | } |
4652 | ||
b0d623f7 A |
4653 | processor_set_t |
4654 | task_choose_pset( | |
0a7de745 | 4655 | task_t task) |
b0d623f7 | 4656 | { |
0a7de745 | 4657 | processor_set_t pset = task->pset_hint; |
b0d623f7 | 4658 | |
0a7de745 | 4659 | if (pset != PROCESSOR_SET_NULL) { |
b0d623f7 | 4660 | pset = choose_next_pset(pset); |
0a7de745 | 4661 | } |
b0d623f7 | 4662 | |
0a7de745 | 4663 | return pset; |
b0d623f7 A |
4664 | } |
4665 | ||
9bccf70c | 4666 | /* |
c910b4d9 A |
4667 | * Check for a preemption point in |
4668 | * the current context. | |
55e303ae | 4669 | * |
fe8ab488 | 4670 | * Called at splsched with thread locked. |
9bccf70c A |
4671 | */ |
4672 | ast_t | |
4673 | csw_check( | |
0a7de745 A |
4674 | thread_t thread, |
4675 | processor_t processor, | |
4676 | ast_t check_reason) | |
39236c6e | 4677 | { |
0a7de745 A |
4678 | processor_set_t pset = processor->processor_set; |
4679 | ||
4680 | assert(thread == processor->active_thread); | |
39236c6e A |
4681 | |
4682 | pset_lock(pset); | |
4683 | ||
0a7de745 A |
4684 | processor_state_update_from_thread(processor, thread); |
4685 | ||
4686 | ast_t preempt = csw_check_locked(thread, processor, pset, check_reason); | |
4687 | ||
4688 | /* Acknowledge the IPI if we decided not to preempt */ | |
4689 | ||
4690 | if ((preempt & AST_URGENT) == 0) { | |
4691 | bit_clear(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id); | |
4692 | } | |
39236c6e | 4693 | |
0a7de745 A |
4694 | if ((preempt & AST_PREEMPT) == 0) { |
4695 | bit_clear(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); | |
4696 | } | |
39236c6e A |
4697 | |
4698 | pset_unlock(pset); | |
4699 | ||
0a7de745 | 4700 | return preempt; |
39236c6e A |
4701 | } |
4702 | ||
4703 | /* | |
4704 | * Check for preemption at splsched with | |
fe8ab488 | 4705 | * pset and thread locked |
39236c6e A |
4706 | */ |
4707 | ast_t | |
4708 | csw_check_locked( | |
0a7de745 A |
4709 | thread_t thread, |
4710 | processor_t processor, | |
4711 | processor_set_t pset, | |
4712 | ast_t check_reason) | |
9bccf70c | 4713 | { |
0a7de745 | 4714 | ast_t result; |
9bccf70c | 4715 | |
3e170ce0 | 4716 | if (processor->first_timeslice) { |
5ba3f43e | 4717 | if (rt_runq_count(pset) > 0) { |
0a7de745 A |
4718 | return check_reason | AST_PREEMPT | AST_URGENT; |
4719 | } | |
4720 | } else { | |
4721 | if (rt_runq_count(pset) > 0) { | |
4722 | if (BASEPRI_RTQUEUES > processor->current_pri) { | |
4723 | return check_reason | AST_PREEMPT | AST_URGENT; | |
4724 | } else { | |
4725 | return check_reason | AST_PREEMPT; | |
4726 | } | |
39236c6e | 4727 | } |
1c79356b | 4728 | } |
9bccf70c | 4729 | |
3e170ce0 | 4730 | /* |
d9a64523 A |
4731 | * If the current thread is running on a processor that is no longer recommended, |
4732 | * urgently preempt it, at which point thread_select() should | |
3e170ce0 A |
4733 | * try to idle the processor and re-dispatch the thread to a recommended processor. |
4734 | */ | |
5ba3f43e | 4735 | if (!processor->is_recommended) { |
0a7de745 | 4736 | return check_reason | AST_PREEMPT | AST_URGENT; |
5ba3f43e A |
4737 | } |
4738 | ||
d9a64523 | 4739 | result = SCHED(processor_csw_check)(processor); |
0a7de745 | 4740 | if (result != AST_NONE) { |
2a1bd2d3 | 4741 | return check_reason | result | (thread_is_eager_preempt(thread) ? AST_URGENT : AST_NONE); |
0a7de745 | 4742 | } |
d9a64523 | 4743 | |
5ba3f43e A |
4744 | /* |
4745 | * Same for avoid-processor | |
4746 | * | |
4747 | * TODO: Should these set AST_REBALANCE? | |
4748 | */ | |
4749 | if (SCHED(avoid_processor_enabled) && SCHED(thread_avoid_processor)(processor, thread)) { | |
0a7de745 | 4750 | return check_reason | AST_PREEMPT; |
5ba3f43e | 4751 | } |
3e170ce0 A |
4752 | |
4753 | /* | |
4754 | * Even though we could continue executing on this processor, a | |
4755 | * secondary SMT core should try to shed load to another primary core. | |
4756 | * | |
4757 | * TODO: Should this do the same check that thread_select does? i.e. | |
4758 | * if no bound threads target this processor, and idle primaries exist, preempt | |
4759 | * The case of RT threads existing is already taken care of above | |
3e170ce0 A |
4760 | */ |
4761 | ||
4762 | if (processor->current_pri < BASEPRI_RTQUEUES && | |
0a7de745 A |
4763 | processor->processor_primary != processor) { |
4764 | return check_reason | AST_PREEMPT; | |
4765 | } | |
3e170ce0 | 4766 | |
0a7de745 A |
4767 | if (thread->state & TH_SUSP) { |
4768 | return check_reason | AST_PREEMPT; | |
4769 | } | |
fe8ab488 | 4770 | |
3e170ce0 | 4771 | #if CONFIG_SCHED_SFI |
fe8ab488 A |
4772 | /* |
4773 | * Current thread may not need to be preempted, but maybe needs | |
4774 | * an SFI wait? | |
4775 | */ | |
4776 | result = sfi_thread_needs_ast(thread, NULL); | |
0a7de745 A |
4777 | if (result != AST_NONE) { |
4778 | return check_reason | result; | |
4779 | } | |
3e170ce0 | 4780 | #endif |
c910b4d9 | 4781 | |
0a7de745 | 4782 | return AST_NONE; |
1c79356b A |
4783 | } |
4784 | ||
0a7de745 A |
4785 | /* |
4786 | * Handle preemption IPI or IPI in response to setting an AST flag | |
4787 | * Triggered by cause_ast_check | |
4788 | * Called at splsched | |
4789 | */ | |
4790 | void | |
4791 | ast_check(processor_t processor) | |
4792 | { | |
4793 | if (processor->state != PROCESSOR_RUNNING && | |
4794 | processor->state != PROCESSOR_SHUTDOWN) { | |
4795 | return; | |
4796 | } | |
4797 | ||
4798 | thread_t thread = processor->active_thread; | |
4799 | ||
4800 | assert(thread == current_thread()); | |
4801 | ||
4802 | thread_lock(thread); | |
4803 | ||
4804 | /* | |
4805 | * Propagate thread ast to processor. | |
4806 | * (handles IPI in response to setting AST flag) | |
4807 | */ | |
4808 | ast_propagate(thread); | |
4809 | ||
4810 | /* | |
4811 | * Stash the old urgency and perfctl values to find out if | |
4812 | * csw_check updates them. | |
4813 | */ | |
4814 | thread_urgency_t old_urgency = processor->current_urgency; | |
4815 | perfcontrol_class_t old_perfctl_class = processor->current_perfctl_class; | |
4816 | ||
4817 | ast_t preempt; | |
4818 | ||
4819 | if ((preempt = csw_check(thread, processor, AST_NONE)) != AST_NONE) { | |
4820 | ast_on(preempt); | |
4821 | } | |
4822 | ||
4823 | if (old_urgency != processor->current_urgency) { | |
4824 | /* | |
4825 | * Urgency updates happen with the thread lock held (ugh). | |
4826 | * TODO: This doesn't notice QoS changes... | |
4827 | */ | |
4828 | uint64_t urgency_param1, urgency_param2; | |
4829 | ||
4830 | thread_urgency_t urgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2); | |
4831 | thread_tell_urgency(urgency, urgency_param1, urgency_param2, 0, thread); | |
4832 | } | |
4833 | ||
4834 | thread_unlock(thread); | |
4835 | ||
4836 | if (old_perfctl_class != processor->current_perfctl_class) { | |
4837 | /* | |
4838 | * We updated the perfctl class of this thread from another core. | |
4839 | * Let CLPC know that the currently running thread has a new | |
4840 | * class. | |
4841 | */ | |
4842 | ||
4843 | machine_switch_perfcontrol_state_update(PERFCONTROL_ATTR_UPDATE, | |
4844 | mach_approximate_time(), 0, thread); | |
4845 | } | |
4846 | } | |
4847 | ||
4848 | ||
1c79356b | 4849 | /* |
9bccf70c | 4850 | * set_sched_pri: |
1c79356b | 4851 | * |
55e303ae A |
4852 | * Set the scheduled priority of the specified thread. |
4853 | * | |
9bccf70c | 4854 | * This may cause the thread to change queues. |
1c79356b | 4855 | * |
55e303ae | 4856 | * Thread must be locked. |
1c79356b A |
4857 | */ |
4858 | void | |
9bccf70c | 4859 | set_sched_pri( |
0a7de745 | 4860 | thread_t thread, |
f427ee49 | 4861 | int16_t new_priority, |
0a7de745 | 4862 | set_sched_pri_options_t options) |
1c79356b | 4863 | { |
0a7de745 A |
4864 | bool is_current_thread = (thread == current_thread()); |
4865 | bool removed_from_runq = false; | |
d9a64523 A |
4866 | bool lazy_update = ((options & SETPRI_LAZY) == SETPRI_LAZY); |
4867 | ||
f427ee49 | 4868 | int16_t old_priority = thread->sched_pri; |
5ba3f43e | 4869 | |
3e170ce0 | 4870 | /* If we're already at this priority, no need to mess with the runqueue */ |
0a7de745 | 4871 | if (new_priority == old_priority) { |
cb323159 A |
4872 | #if CONFIG_SCHED_CLUTCH |
4873 | /* For the first thread in the system, the priority is correct but | |
4874 | * th_sched_bucket is still TH_BUCKET_RUN. Since the clutch | |
4875 | * scheduler relies on the bucket being set for all threads, update | |
4876 | * its bucket here. | |
4877 | */ | |
4878 | if (thread->th_sched_bucket == TH_BUCKET_RUN) { | |
4879 | assert(is_current_thread); | |
4880 | SCHED(update_thread_bucket)(thread); | |
4881 | } | |
4882 | #endif /* CONFIG_SCHED_CLUTCH */ | |
4883 | ||
3e170ce0 | 4884 | return; |
0a7de745 | 4885 | } |
3e170ce0 A |
4886 | |
4887 | if (is_current_thread) { | |
0a7de745 | 4888 | assert(thread->state & TH_RUN); |
3e170ce0 | 4889 | assert(thread->runq == PROCESSOR_NULL); |
3e170ce0 A |
4890 | } else { |
4891 | removed_from_runq = thread_run_queue_remove(thread); | |
fe8ab488 | 4892 | } |
3e170ce0 | 4893 | |
5ba3f43e | 4894 | thread->sched_pri = new_priority; |
490019cf | 4895 | |
cb323159 A |
4896 | #if CONFIG_SCHED_CLUTCH |
4897 | /* | |
4898 | * Since for the clutch scheduler, the thread's bucket determines its runq | |
4899 | * in the hierarchy it is important to update the bucket when the thread | |
4900 | * lock is held and the thread has been removed from the runq hierarchy. | |
4901 | */ | |
4902 | SCHED(update_thread_bucket)(thread); | |
4903 | ||
4904 | #endif /* CONFIG_SCHED_CLUTCH */ | |
4905 | ||
3e170ce0 | 4906 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHANGE_PRIORITY), |
0a7de745 A |
4907 | (uintptr_t)thread_tid(thread), |
4908 | thread->base_pri, | |
4909 | thread->sched_pri, | |
4910 | thread->sched_usage, | |
4911 | 0); | |
4912 | ||
4913 | if (removed_from_runq) { | |
4914 | thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
4915 | } else if (is_current_thread) { | |
4916 | processor_t processor = thread->last_processor; | |
4917 | assert(processor == current_processor()); | |
4918 | ||
4919 | thread_urgency_t old_urgency = processor->current_urgency; | |
4920 | ||
4921 | /* | |
4922 | * When dropping in priority, check if the thread no longer belongs on core. | |
4923 | * If a thread raises its own priority, don't aggressively rebalance it. | |
4924 | * <rdar://problem/31699165> | |
4925 | * | |
4926 | * csw_check does a processor_state_update_from_thread, but | |
4927 | * we should do our own if we're being lazy. | |
4928 | */ | |
4929 | if (!lazy_update && new_priority < old_priority) { | |
4930 | ast_t preempt; | |
4931 | ||
4932 | if ((preempt = csw_check(thread, processor, AST_NONE)) != AST_NONE) { | |
4933 | ast_on(preempt); | |
4934 | } | |
4935 | } else { | |
4936 | processor_state_update_from_thread(processor, thread); | |
4937 | } | |
3e170ce0 | 4938 | |
3e170ce0 A |
4939 | /* |
4940 | * set_sched_pri doesn't alter RT params. We expect direct base priority/QoS | |
4941 | * class alterations from user space to occur relatively infrequently, hence | |
4942 | * those are lazily handled. QoS classes have distinct priority bands, and QoS | |
4943 | * inheritance is expected to involve priority changes. | |
4944 | */ | |
0a7de745 A |
4945 | if (processor->current_urgency != old_urgency) { |
4946 | uint64_t urgency_param1, urgency_param2; | |
fe8ab488 | 4947 | |
0a7de745 A |
4948 | thread_urgency_t new_urgency = thread_get_urgency(thread, |
4949 | &urgency_param1, &urgency_param2); | |
9bccf70c | 4950 | |
0a7de745 A |
4951 | thread_tell_urgency(new_urgency, urgency_param1, |
4952 | urgency_param2, 0, thread); | |
4953 | } | |
9bccf70c | 4954 | |
0a7de745 A |
4955 | /* TODO: only call this if current_perfctl_class changed */ |
4956 | uint64_t ctime = mach_approximate_time(); | |
4957 | machine_thread_going_on_core(thread, processor->current_urgency, 0, 0, ctime); | |
4958 | } else if (thread->state & TH_RUN) { | |
4959 | processor_t processor = thread->last_processor; | |
5ba3f43e | 4960 | |
0a7de745 A |
4961 | if (!lazy_update && |
4962 | processor != PROCESSOR_NULL && | |
4963 | processor != current_processor() && | |
4964 | processor->active_thread == thread) { | |
9bccf70c | 4965 | cause_ast_check(processor); |
5ba3f43e | 4966 | } |
1c79356b A |
4967 | } |
4968 | } | |
4969 | ||
3e170ce0 A |
4970 | /* |
4971 | * thread_run_queue_remove_for_handoff | |
4972 | * | |
4973 | * Pull a thread or its (recursive) push target out of the runqueue | |
4974 | * so that it is ready for thread_run() | |
4975 | * | |
4976 | * Called at splsched | |
4977 | * | |
4978 | * Returns the thread that was pulled or THREAD_NULL if no thread could be pulled. | |
4979 | * This may be different than the thread that was passed in. | |
4980 | */ | |
4981 | thread_t | |
0a7de745 A |
4982 | thread_run_queue_remove_for_handoff(thread_t thread) |
4983 | { | |
3e170ce0 | 4984 | thread_t pulled_thread = THREAD_NULL; |
91447636 | 4985 | |
3e170ce0 | 4986 | thread_lock(thread); |
91447636 | 4987 | |
3e170ce0 | 4988 | /* |
f427ee49 A |
4989 | * Check that the thread is not bound to a different processor, |
4990 | * NO_SMT flag is not set on the thread, cluster type of | |
4991 | * processor matches with thread if the thread is pinned to a | |
4992 | * particular cluster and that realtime is not involved. | |
3e170ce0 | 4993 | * |
f427ee49 | 4994 | * Next, pull it off its run queue. If it doesn't come, it's not eligible. |
3e170ce0 | 4995 | */ |
3e170ce0 | 4996 | processor_t processor = current_processor(); |
f427ee49 A |
4997 | if ((thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor) |
4998 | && (!thread_no_smt(thread)) | |
4999 | && (processor->current_pri < BASEPRI_RTQUEUES) | |
5000 | && (thread->sched_pri < BASEPRI_RTQUEUES) | |
5001 | #if __AMP__ | |
5002 | && ((!(thread->sched_flags & TH_SFLAG_PCORE_ONLY)) || | |
5003 | processor->processor_set->pset_cluster_type == PSET_AMP_P) | |
5004 | && ((!(thread->sched_flags & TH_SFLAG_ECORE_ONLY)) || | |
5005 | processor->processor_set->pset_cluster_type == PSET_AMP_E) | |
5006 | #endif /* __AMP__ */ | |
5007 | ) { | |
0a7de745 A |
5008 | if (thread_run_queue_remove(thread)) { |
5009 | pulled_thread = thread; | |
5010 | } | |
91447636 A |
5011 | } |
5012 | ||
3e170ce0 | 5013 | thread_unlock(thread); |
6d2010ae | 5014 | |
3e170ce0 | 5015 | return pulled_thread; |
6d2010ae A |
5016 | } |
5017 | ||
f427ee49 A |
5018 | /* |
5019 | * thread_prepare_for_handoff | |
5020 | * | |
5021 | * Make the thread ready for handoff. | |
5022 | * If the thread was runnable then pull it off the runq, if the thread could | |
5023 | * not be pulled, return NULL. | |
5024 | * | |
5025 | * If the thread was woken up from wait for handoff, make sure it is not bound to | |
5026 | * different processor. | |
5027 | * | |
5028 | * Called at splsched | |
5029 | * | |
5030 | * Returns the thread that was pulled or THREAD_NULL if no thread could be pulled. | |
5031 | * This may be different than the thread that was passed in. | |
5032 | */ | |
5033 | thread_t | |
5034 | thread_prepare_for_handoff(thread_t thread, thread_handoff_option_t option) | |
5035 | { | |
5036 | thread_t pulled_thread = THREAD_NULL; | |
5037 | ||
5038 | if (option & THREAD_HANDOFF_SETRUN_NEEDED) { | |
5039 | processor_t processor = current_processor(); | |
5040 | thread_lock(thread); | |
5041 | ||
5042 | /* | |
5043 | * Check that the thread is not bound to a different processor, | |
5044 | * NO_SMT flag is not set on the thread and cluster type of | |
5045 | * processor matches with thread if the thread is pinned to a | |
5046 | * particular cluster. Call setrun instead if above conditions | |
5047 | * are not satisfied. | |
5048 | */ | |
5049 | if ((thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor) | |
5050 | && (!thread_no_smt(thread)) | |
5051 | #if __AMP__ | |
5052 | && ((!(thread->sched_flags & TH_SFLAG_PCORE_ONLY)) || | |
5053 | processor->processor_set->pset_cluster_type == PSET_AMP_P) | |
5054 | && ((!(thread->sched_flags & TH_SFLAG_ECORE_ONLY)) || | |
5055 | processor->processor_set->pset_cluster_type == PSET_AMP_E) | |
5056 | #endif /* __AMP__ */ | |
5057 | ) { | |
5058 | pulled_thread = thread; | |
5059 | } else { | |
5060 | thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
5061 | } | |
5062 | thread_unlock(thread); | |
5063 | } else { | |
5064 | pulled_thread = thread_run_queue_remove_for_handoff(thread); | |
5065 | } | |
5066 | ||
5067 | return pulled_thread; | |
5068 | } | |
5069 | ||
1c79356b | 5070 | /* |
6d2010ae | 5071 | * thread_run_queue_remove: |
1c79356b | 5072 | * |
fe8ab488 | 5073 | * Remove a thread from its current run queue and |
2d21ac55 | 5074 | * return TRUE if successful. |
55e303ae A |
5075 | * |
5076 | * Thread must be locked. | |
fe8ab488 A |
5077 | * |
5078 | * If thread->runq is PROCESSOR_NULL, the thread will not re-enter the | |
5079 | * run queues because the caller locked the thread. Otherwise | |
5080 | * the thread is on a run queue, but could be chosen for dispatch | |
5081 | * and removed by another processor under a different lock, which | |
5082 | * will set thread->runq to PROCESSOR_NULL. | |
5083 | * | |
5084 | * Hence the thread select path must not rely on anything that could | |
5085 | * be changed under the thread lock after calling this function, | |
5086 | * most importantly thread->sched_pri. | |
1c79356b | 5087 | */ |
2d21ac55 | 5088 | boolean_t |
6d2010ae | 5089 | thread_run_queue_remove( |
0a7de745 | 5090 | thread_t thread) |
1c79356b | 5091 | { |
fe8ab488 A |
5092 | boolean_t removed = FALSE; |
5093 | processor_t processor = thread->runq; | |
1c79356b | 5094 | |
0a7de745 | 5095 | if ((thread->state & (TH_RUN | TH_WAIT)) == TH_WAIT) { |
fe8ab488 A |
5096 | /* Thread isn't runnable */ |
5097 | assert(thread->runq == PROCESSOR_NULL); | |
5098 | return FALSE; | |
5099 | } | |
55e303ae | 5100 | |
fe8ab488 | 5101 | if (processor == PROCESSOR_NULL) { |
55e303ae | 5102 | /* |
fe8ab488 A |
5103 | * The thread is either not on the runq, |
5104 | * or is in the midst of being removed from the runq. | |
5105 | * | |
5106 | * runq is set to NULL under the pset lock, not the thread | |
5107 | * lock, so the thread may still be in the process of being dequeued | |
5108 | * from the runq. It will wait in invoke for the thread lock to be | |
5109 | * dropped. | |
55e303ae | 5110 | */ |
55e303ae | 5111 | |
fe8ab488 A |
5112 | return FALSE; |
5113 | } | |
55e303ae | 5114 | |
fe8ab488 A |
5115 | if (thread->sched_pri < BASEPRI_RTQUEUES) { |
5116 | return SCHED(processor_queue_remove)(processor, thread); | |
5117 | } | |
55e303ae | 5118 | |
5ba3f43e A |
5119 | processor_set_t pset = processor->processor_set; |
5120 | ||
f427ee49 | 5121 | pset_lock(pset); |
55e303ae | 5122 | |
fe8ab488 A |
5123 | if (thread->runq != PROCESSOR_NULL) { |
5124 | /* | |
3e170ce0 | 5125 | * Thread is on the RT run queue and we have a lock on |
fe8ab488 A |
5126 | * that run queue. |
5127 | */ | |
5128 | ||
39037602 | 5129 | remqueue(&thread->runq_links); |
5ba3f43e A |
5130 | SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq)(pset)->runq_stats, rt_runq_count(pset)); |
5131 | rt_runq_count_decr(pset); | |
fe8ab488 A |
5132 | |
5133 | thread->runq = PROCESSOR_NULL; | |
5134 | ||
5135 | removed = TRUE; | |
1c79356b A |
5136 | } |
5137 | ||
f427ee49 | 5138 | pset_unlock(pset); |
fe8ab488 | 5139 | |
0a7de745 | 5140 | return removed; |
1c79356b A |
5141 | } |
5142 | ||
cf7d32b8 | 5143 | /* |
3e170ce0 | 5144 | * Put the thread back where it goes after a thread_run_queue_remove |
cf7d32b8 | 5145 | * |
3e170ce0 | 5146 | * Thread must have been removed under the same thread lock hold |
cf7d32b8 | 5147 | * |
3e170ce0 | 5148 | * thread locked, at splsched |
cf7d32b8 | 5149 | */ |
3e170ce0 | 5150 | void |
cb323159 | 5151 | thread_run_queue_reinsert(thread_t thread, sched_options_t options) |
cf7d32b8 | 5152 | { |
3e170ce0 | 5153 | assert(thread->runq == PROCESSOR_NULL); |
5ba3f43e | 5154 | assert(thread->state & (TH_RUN)); |
cf7d32b8 | 5155 | |
5ba3f43e | 5156 | thread_setrun(thread, options); |
6d2010ae A |
5157 | } |
5158 | ||
39236c6e | 5159 | void |
d9a64523 | 5160 | sys_override_cpu_throttle(boolean_t enable_override) |
6d2010ae | 5161 | { |
0a7de745 | 5162 | if (enable_override) { |
39236c6e | 5163 | cpu_throttle_enabled = 0; |
0a7de745 | 5164 | } else { |
d9a64523 | 5165 | cpu_throttle_enabled = 1; |
0a7de745 | 5166 | } |
39236c6e | 5167 | } |
6d2010ae | 5168 | |
0a7de745 | 5169 | thread_urgency_t |
39236c6e A |
5170 | thread_get_urgency(thread_t thread, uint64_t *arg1, uint64_t *arg2) |
5171 | { | |
0a7de745 A |
5172 | uint64_t urgency_param1 = 0, urgency_param2 = 0; |
5173 | ||
5174 | thread_urgency_t urgency; | |
5175 | ||
39236c6e | 5176 | if (thread == NULL || (thread->state & TH_IDLE)) { |
0a7de745 A |
5177 | urgency_param1 = 0; |
5178 | urgency_param2 = 0; | |
39236c6e | 5179 | |
0a7de745 | 5180 | urgency = THREAD_URGENCY_NONE; |
39236c6e | 5181 | } else if (thread->sched_mode == TH_MODE_REALTIME) { |
0a7de745 A |
5182 | urgency_param1 = thread->realtime.period; |
5183 | urgency_param2 = thread->realtime.deadline; | |
39236c6e | 5184 | |
0a7de745 | 5185 | urgency = THREAD_URGENCY_REAL_TIME; |
39236c6e | 5186 | } else if (cpu_throttle_enabled && |
0a7de745 A |
5187 | (thread->sched_pri <= MAXPRI_THROTTLE) && |
5188 | (thread->base_pri <= MAXPRI_THROTTLE)) { | |
39236c6e | 5189 | /* |
0a7de745 A |
5190 | * Threads that are running at low priority but are not |
5191 | * tagged with a specific QoS are separated out from | |
5192 | * the "background" urgency. Performance management | |
5193 | * subsystem can decide to either treat these threads | |
5194 | * as normal threads or look at other signals like thermal | |
5195 | * levels for optimal power/perf tradeoffs for a platform. | |
39236c6e | 5196 | */ |
0a7de745 A |
5197 | boolean_t thread_lacks_qos = (proc_get_effective_thread_policy(thread, TASK_POLICY_QOS) == THREAD_QOS_UNSPECIFIED); //thread_has_qos_policy(thread); |
5198 | boolean_t task_is_suppressed = (proc_get_effective_task_policy(thread->task, TASK_POLICY_SUP_ACTIVE) == 0x1); | |
6d2010ae | 5199 | |
0a7de745 A |
5200 | /* |
5201 | * Background urgency applied when thread priority is | |
5202 | * MAXPRI_THROTTLE or lower and thread is not promoted | |
5203 | * and thread has a QoS specified | |
fe8ab488 | 5204 | */ |
0a7de745 A |
5205 | urgency_param1 = thread->sched_pri; |
5206 | urgency_param2 = thread->base_pri; | |
5207 | ||
5208 | if (thread_lacks_qos && !task_is_suppressed) { | |
5209 | urgency = THREAD_URGENCY_LOWPRI; | |
5210 | } else { | |
5211 | urgency = THREAD_URGENCY_BACKGROUND; | |
5212 | } | |
5213 | } else { | |
5214 | /* For otherwise unclassified threads, report throughput QoS parameters */ | |
5215 | urgency_param1 = proc_get_effective_thread_policy(thread, TASK_POLICY_THROUGH_QOS); | |
5216 | urgency_param2 = proc_get_effective_task_policy(thread->task, TASK_POLICY_THROUGH_QOS); | |
5217 | urgency = THREAD_URGENCY_NORMAL; | |
5218 | } | |
39037602 | 5219 | |
0a7de745 A |
5220 | if (arg1 != NULL) { |
5221 | *arg1 = urgency_param1; | |
5222 | } | |
5223 | if (arg2 != NULL) { | |
5224 | *arg2 = urgency_param2; | |
6d2010ae | 5225 | } |
0a7de745 A |
5226 | |
5227 | return urgency; | |
6d2010ae A |
5228 | } |
5229 | ||
5ba3f43e A |
5230 | perfcontrol_class_t |
5231 | thread_get_perfcontrol_class(thread_t thread) | |
5232 | { | |
0a7de745 A |
5233 | /* Special case handling */ |
5234 | if (thread->state & TH_IDLE) { | |
5235 | return PERFCONTROL_CLASS_IDLE; | |
5236 | } | |
5237 | if (thread->task == kernel_task) { | |
5238 | return PERFCONTROL_CLASS_KERNEL; | |
5239 | } | |
5240 | if (thread->sched_mode == TH_MODE_REALTIME) { | |
5241 | return PERFCONTROL_CLASS_REALTIME; | |
5242 | } | |
5243 | ||
5244 | /* perfcontrol_class based on base_pri */ | |
5245 | if (thread->base_pri <= MAXPRI_THROTTLE) { | |
5246 | return PERFCONTROL_CLASS_BACKGROUND; | |
5247 | } else if (thread->base_pri <= BASEPRI_UTILITY) { | |
5248 | return PERFCONTROL_CLASS_UTILITY; | |
5249 | } else if (thread->base_pri <= BASEPRI_DEFAULT) { | |
5250 | return PERFCONTROL_CLASS_NONUI; | |
5251 | } else if (thread->base_pri <= BASEPRI_FOREGROUND) { | |
5252 | return PERFCONTROL_CLASS_UI; | |
5253 | } else { | |
5254 | return PERFCONTROL_CLASS_ABOVEUI; | |
5255 | } | |
5ba3f43e | 5256 | } |
6d2010ae | 5257 | |
1c79356b | 5258 | /* |
2d21ac55 A |
5259 | * This is the processor idle loop, which just looks for other threads |
5260 | * to execute. Processor idle threads invoke this without supplying a | |
5261 | * current thread to idle without an asserted wait state. | |
5262 | * | |
5263 | * Returns a the next thread to execute if dispatched directly. | |
1c79356b | 5264 | */ |
6d2010ae A |
5265 | |
5266 | #if 0 | |
5267 | #define IDLE_KERNEL_DEBUG_CONSTANT(...) KERNEL_DEBUG_CONSTANT(__VA_ARGS__) | |
5268 | #else | |
5269 | #define IDLE_KERNEL_DEBUG_CONSTANT(...) do { } while(0) | |
5270 | #endif | |
5271 | ||
5272 | thread_t | |
2d21ac55 | 5273 | processor_idle( |
0a7de745 A |
5274 | thread_t thread, |
5275 | processor_t processor) | |
1c79356b | 5276 | { |
0a7de745 A |
5277 | processor_set_t pset = processor->processor_set; |
5278 | ||
2d21ac55 | 5279 | (void)splsched(); |
1c79356b | 5280 | |
316670eb | 5281 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
5282 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_IDLE) | DBG_FUNC_START, |
5283 | (uintptr_t)thread_tid(thread), 0, 0, 0, 0); | |
3a60a9f5 | 5284 | |
f427ee49 A |
5285 | SCHED_STATS_INC(idle_transitions); |
5286 | assert(processor->running_timers_active == false); | |
6d2010ae | 5287 | |
d9a64523 A |
5288 | uint64_t ctime = mach_absolute_time(); |
5289 | ||
f427ee49 A |
5290 | timer_switch(&processor->system_state, ctime, &processor->idle_state); |
5291 | processor->current_state = &processor->idle_state; | |
3a60a9f5 | 5292 | |
d9a64523 A |
5293 | cpu_quiescent_counter_leave(ctime); |
5294 | ||
39236c6e | 5295 | while (1) { |
5ba3f43e A |
5296 | /* |
5297 | * Ensure that updates to my processor and pset state, | |
5298 | * made by the IPI source processor before sending the IPI, | |
5299 | * are visible on this processor now (even though we don't | |
5300 | * take the pset lock yet). | |
5301 | */ | |
5302 | atomic_thread_fence(memory_order_acquire); | |
5303 | ||
0a7de745 | 5304 | if (processor->state != PROCESSOR_IDLE) { |
5ba3f43e | 5305 | break; |
0a7de745 A |
5306 | } |
5307 | if (bit_test(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { | |
39236c6e | 5308 | break; |
0a7de745 | 5309 | } |
5ba3f43e | 5310 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
0a7de745 | 5311 | if (bit_test(pset->pending_deferred_AST_cpu_mask, processor->cpu_id)) { |
39236c6e | 5312 | break; |
0a7de745 | 5313 | } |
5ba3f43e | 5314 | #endif |
a39ff7e2 | 5315 | if (processor->is_recommended && (processor->processor_primary == processor)) { |
0a7de745 | 5316 | if (rt_runq_count(pset)) { |
3e170ce0 | 5317 | break; |
0a7de745 | 5318 | } |
3e170ce0 | 5319 | } else { |
0a7de745 | 5320 | if (SCHED(processor_bound_count)(processor)) { |
3e170ce0 | 5321 | break; |
0a7de745 | 5322 | } |
3e170ce0 A |
5323 | } |
5324 | ||
6d2010ae | 5325 | IDLE_KERNEL_DEBUG_CONSTANT( |
0a7de745 | 5326 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq_count(pset), SCHED(processor_runq_count)(processor), -1, 0); |
6d2010ae | 5327 | |
4b17d6b6 A |
5328 | machine_track_platform_idle(TRUE); |
5329 | ||
2d21ac55 | 5330 | machine_idle(); |
cb323159 | 5331 | /* returns with interrupts enabled */ |
55e303ae | 5332 | |
4b17d6b6 A |
5333 | machine_track_platform_idle(FALSE); |
5334 | ||
55e303ae | 5335 | (void)splsched(); |
c910b4d9 | 5336 | |
0a7de745 A |
5337 | /* |
5338 | * Check if we should call sched_timeshare_consider_maintenance() here. | |
5339 | * The CPU was woken out of idle due to an interrupt and we should do the | |
5340 | * call only if the processor is still idle. If the processor is non-idle, | |
5341 | * the threads running on the processor would do the call as part of | |
d9a64523 A |
5342 | * context swithing. |
5343 | */ | |
5344 | if (processor->state == PROCESSOR_IDLE) { | |
5345 | sched_timeshare_consider_maintenance(mach_absolute_time()); | |
5346 | } | |
5347 | ||
6d2010ae | 5348 | IDLE_KERNEL_DEBUG_CONSTANT( |
0a7de745 | 5349 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq_count(pset), SCHED(processor_runq_count)(processor), -2, 0); |
6d2010ae | 5350 | |
fe8ab488 A |
5351 | if (!SCHED(processor_queue_empty)(processor)) { |
5352 | /* Secondary SMT processors respond to directed wakeups | |
5353 | * exclusively. Some platforms induce 'spurious' SMT wakeups. | |
5354 | */ | |
0a7de745 A |
5355 | if (processor->processor_primary == processor) { |
5356 | break; | |
5357 | } | |
fe8ab488 | 5358 | } |
55e303ae A |
5359 | } |
5360 | ||
d9a64523 A |
5361 | ctime = mach_absolute_time(); |
5362 | ||
f427ee49 A |
5363 | timer_switch(&processor->idle_state, ctime, &processor->system_state); |
5364 | processor->current_state = &processor->system_state; | |
1c79356b | 5365 | |
d9a64523 A |
5366 | cpu_quiescent_counter_join(ctime); |
5367 | ||
0a7de745 | 5368 | ast_t reason = AST_NONE; |
55e303ae | 5369 | |
0a7de745 A |
5370 | /* We're handling all scheduling AST's */ |
5371 | ast_off(AST_SCHEDULING); | |
55e303ae | 5372 | |
0a7de745 A |
5373 | /* |
5374 | * thread_select will move the processor from dispatching to running, | |
5375 | * or put it in idle if there's nothing to do. | |
5376 | */ | |
5377 | thread_t current_thread = current_thread(); | |
55e303ae | 5378 | |
0a7de745 A |
5379 | thread_lock(current_thread); |
5380 | thread_t new_thread = thread_select(current_thread, processor, &reason); | |
5381 | thread_unlock(current_thread); | |
2d21ac55 | 5382 | |
f427ee49 A |
5383 | assert(processor->running_timers_active == false); |
5384 | ||
316670eb | 5385 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
5386 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_IDLE) | DBG_FUNC_END, |
5387 | (uintptr_t)thread_tid(thread), processor->state, (uintptr_t)thread_tid(new_thread), reason, 0); | |
5388 | ||
5389 | return new_thread; | |
2d21ac55 A |
5390 | } |
5391 | ||
cf7d32b8 A |
5392 | /* |
5393 | * Each processor has a dedicated thread which | |
5394 | * executes the idle loop when there is no suitable | |
5395 | * previous context. | |
cb323159 A |
5396 | * |
5397 | * This continuation is entered with interrupts disabled. | |
cf7d32b8 | 5398 | */ |
2d21ac55 | 5399 | void |
cb323159 A |
5400 | idle_thread(__assert_only void* parameter, |
5401 | __unused wait_result_t result) | |
2d21ac55 | 5402 | { |
cb323159 A |
5403 | assert(ml_get_interrupts_enabled() == FALSE); |
5404 | assert(parameter == NULL); | |
5405 | ||
5406 | processor_t processor = current_processor(); | |
5407 | ||
5408 | /* | |
5409 | * Ensure that anything running in idle context triggers | |
5410 | * preemption-disabled checks. | |
5411 | */ | |
5412 | disable_preemption(); | |
5413 | ||
5414 | /* | |
5415 | * Enable interrupts temporarily to handle any pending interrupts | |
5416 | * or IPIs before deciding to sleep | |
5417 | */ | |
5418 | spllo(); | |
5419 | ||
5420 | thread_t new_thread = processor_idle(THREAD_NULL, processor); | |
5421 | /* returns with interrupts disabled */ | |
5422 | ||
5423 | enable_preemption(); | |
2d21ac55 | 5424 | |
2d21ac55 | 5425 | if (new_thread != THREAD_NULL) { |
cb323159 A |
5426 | thread_run(processor->idle_thread, |
5427 | idle_thread, NULL, new_thread); | |
2d21ac55 A |
5428 | /*NOTREACHED*/ |
5429 | } | |
55e303ae | 5430 | |
cb323159 | 5431 | thread_block(idle_thread); |
55e303ae | 5432 | /*NOTREACHED*/ |
1c79356b A |
5433 | } |
5434 | ||
91447636 A |
5435 | kern_return_t |
5436 | idle_thread_create( | |
0a7de745 | 5437 | processor_t processor) |
1c79356b | 5438 | { |
0a7de745 A |
5439 | kern_return_t result; |
5440 | thread_t thread; | |
5441 | spl_t s; | |
5442 | char name[MAXTHREADNAMESIZE]; | |
91447636 | 5443 | |
cb323159 | 5444 | result = kernel_thread_create(idle_thread, NULL, MAXPRI_KERNEL, &thread); |
0a7de745 A |
5445 | if (result != KERN_SUCCESS) { |
5446 | return result; | |
5447 | } | |
91447636 | 5448 | |
5ba3f43e A |
5449 | snprintf(name, sizeof(name), "idle #%d", processor->cpu_id); |
5450 | thread_set_thread_name(thread, name); | |
5451 | ||
91447636 A |
5452 | s = splsched(); |
5453 | thread_lock(thread); | |
5454 | thread->bound_processor = processor; | |
5455 | processor->idle_thread = thread; | |
3e170ce0 | 5456 | thread->sched_pri = thread->base_pri = IDLEPRI; |
91447636 | 5457 | thread->state = (TH_RUN | TH_IDLE); |
39236c6e | 5458 | thread->options |= TH_OPT_IDLE_THREAD; |
91447636 A |
5459 | thread_unlock(thread); |
5460 | splx(s); | |
5461 | ||
5462 | thread_deallocate(thread); | |
5463 | ||
0a7de745 | 5464 | return KERN_SUCCESS; |
1c79356b A |
5465 | } |
5466 | ||
91447636 A |
5467 | /* |
5468 | * sched_startup: | |
5469 | * | |
5470 | * Kicks off scheduler services. | |
5471 | * | |
5472 | * Called at splsched. | |
5473 | */ | |
0b4e3aa0 | 5474 | void |
91447636 | 5475 | sched_startup(void) |
0b4e3aa0 | 5476 | { |
0a7de745 A |
5477 | kern_return_t result; |
5478 | thread_t thread; | |
91447636 | 5479 | |
3e170ce0 A |
5480 | simple_lock_init(&sched_vm_group_list_lock, 0); |
5481 | ||
5ba3f43e A |
5482 | #if __arm__ || __arm64__ |
5483 | simple_lock_init(&sched_recommended_cores_lock, 0); | |
5484 | #endif /* __arm__ || __arm64__ */ | |
490019cf | 5485 | |
6d2010ae | 5486 | result = kernel_thread_start_priority((thread_continue_t)sched_init_thread, |
f427ee49 | 5487 | NULL, MAXPRI_KERNEL, &thread); |
0a7de745 | 5488 | if (result != KERN_SUCCESS) { |
91447636 | 5489 | panic("sched_startup"); |
0a7de745 | 5490 | } |
91447636 A |
5491 | |
5492 | thread_deallocate(thread); | |
5493 | ||
39037602 A |
5494 | assert_thread_magic(thread); |
5495 | ||
91447636 | 5496 | /* |
316670eb A |
5497 | * Yield to the sched_init_thread once, to |
5498 | * initialize our own thread after being switched | |
5499 | * back to. | |
91447636 A |
5500 | * |
5501 | * The current thread is the only other thread | |
5502 | * active at this point. | |
5503 | */ | |
316670eb | 5504 | thread_block(THREAD_CONTINUE_NULL); |
6d2010ae | 5505 | } |
91447636 | 5506 | |
5ba3f43e A |
5507 | #if __arm64__ |
5508 | static _Atomic uint64_t sched_perfcontrol_callback_deadline; | |
5509 | #endif /* __arm64__ */ | |
5510 | ||
5511 | ||
fe8ab488 | 5512 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
91447636 | 5513 | |
0a7de745 A |
5514 | static volatile uint64_t sched_maintenance_deadline; |
5515 | static uint64_t sched_tick_last_abstime; | |
5516 | static uint64_t sched_tick_delta; | |
5517 | uint64_t sched_tick_max_delta; | |
5ba3f43e A |
5518 | |
5519 | ||
1c79356b | 5520 | /* |
6d2010ae | 5521 | * sched_init_thread: |
1c79356b | 5522 | * |
55e303ae A |
5523 | * Perform periodic bookkeeping functions about ten |
5524 | * times per second. | |
1c79356b | 5525 | */ |
fe8ab488 | 5526 | void |
3e170ce0 | 5527 | sched_timeshare_maintenance_continue(void) |
1c79356b | 5528 | { |
0a7de745 | 5529 | uint64_t sched_tick_ctime, late_time; |
fe8ab488 | 5530 | |
3e170ce0 A |
5531 | struct sched_update_scan_context scan_context = { |
5532 | .earliest_bg_make_runnable_time = UINT64_MAX, | |
5533 | .earliest_normal_make_runnable_time = UINT64_MAX, | |
5534 | .earliest_rt_make_runnable_time = UINT64_MAX | |
5535 | }; | |
5536 | ||
0a7de745 | 5537 | sched_tick_ctime = mach_absolute_time(); |
1c79356b | 5538 | |
39236c6e A |
5539 | if (__improbable(sched_tick_last_abstime == 0)) { |
5540 | sched_tick_last_abstime = sched_tick_ctime; | |
fe8ab488 | 5541 | late_time = 0; |
39236c6e A |
5542 | sched_tick_delta = 1; |
5543 | } else { | |
fe8ab488 A |
5544 | late_time = sched_tick_ctime - sched_tick_last_abstime; |
5545 | sched_tick_delta = late_time / sched_tick_interval; | |
39236c6e A |
5546 | /* Ensure a delta of 1, since the interval could be slightly |
5547 | * smaller than the sched_tick_interval due to dispatch | |
5548 | * latencies. | |
5549 | */ | |
5550 | sched_tick_delta = MAX(sched_tick_delta, 1); | |
5551 | ||
5552 | /* In the event interrupt latencies or platform | |
5553 | * idle events that advanced the timebase resulted | |
5554 | * in periods where no threads were dispatched, | |
5555 | * cap the maximum "tick delta" at SCHED_TICK_MAX_DELTA | |
5556 | * iterations. | |
5557 | */ | |
5558 | sched_tick_delta = MIN(sched_tick_delta, SCHED_TICK_MAX_DELTA); | |
5559 | ||
5560 | sched_tick_last_abstime = sched_tick_ctime; | |
5561 | sched_tick_max_delta = MAX(sched_tick_delta, sched_tick_max_delta); | |
5562 | } | |
5563 | ||
f427ee49 | 5564 | scan_context.sched_tick_last_abstime = sched_tick_last_abstime; |
0a7de745 A |
5565 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE) | DBG_FUNC_START, |
5566 | sched_tick_delta, late_time, 0, 0, 0); | |
fe8ab488 | 5567 | |
39236c6e A |
5568 | /* Add a number of pseudo-ticks corresponding to the elapsed interval |
5569 | * This could be greater than 1 if substantial intervals where | |
5570 | * all processors are idle occur, which rarely occurs in practice. | |
5571 | */ | |
39037602 | 5572 | |
39236c6e | 5573 | sched_tick += sched_tick_delta; |
1c79356b | 5574 | |
5ba3f43e A |
5575 | update_vm_info(); |
5576 | ||
1c79356b | 5577 | /* |
91447636 | 5578 | * Compute various averages. |
1c79356b | 5579 | */ |
39236c6e | 5580 | compute_averages(sched_tick_delta); |
1c79356b A |
5581 | |
5582 | /* | |
91447636 | 5583 | * Scan the run queues for threads which |
39037602 A |
5584 | * may need to be updated, and find the earliest runnable thread on the runqueue |
5585 | * to report its latency. | |
1c79356b | 5586 | */ |
3e170ce0 A |
5587 | SCHED(thread_update_scan)(&scan_context); |
5588 | ||
5ba3f43e | 5589 | SCHED(rt_runq_scan)(&scan_context); |
3e170ce0 A |
5590 | |
5591 | uint64_t ctime = mach_absolute_time(); | |
5592 | ||
39037602 | 5593 | uint64_t bg_max_latency = (ctime > scan_context.earliest_bg_make_runnable_time) ? |
0a7de745 | 5594 | ctime - scan_context.earliest_bg_make_runnable_time : 0; |
39037602 A |
5595 | |
5596 | uint64_t default_max_latency = (ctime > scan_context.earliest_normal_make_runnable_time) ? | |
0a7de745 | 5597 | ctime - scan_context.earliest_normal_make_runnable_time : 0; |
39037602 A |
5598 | |
5599 | uint64_t realtime_max_latency = (ctime > scan_context.earliest_rt_make_runnable_time) ? | |
0a7de745 | 5600 | ctime - scan_context.earliest_rt_make_runnable_time : 0; |
39037602 A |
5601 | |
5602 | machine_max_runnable_latency(bg_max_latency, default_max_latency, realtime_max_latency); | |
3e170ce0 A |
5603 | |
5604 | /* | |
5605 | * Check to see if the special sched VM group needs attention. | |
5606 | */ | |
5607 | sched_vm_group_maintenance(); | |
fe8ab488 | 5608 | |
5ba3f43e A |
5609 | #if __arm__ || __arm64__ |
5610 | /* Check to see if the recommended cores failsafe is active */ | |
5611 | sched_recommended_cores_maintenance(); | |
5612 | #endif /* __arm__ || __arm64__ */ | |
5613 | ||
0a7de745 | 5614 | |
5ba3f43e A |
5615 | #if DEBUG || DEVELOPMENT |
5616 | #if __x86_64__ | |
5617 | #include <i386/misc_protos.h> | |
5618 | /* Check for long-duration interrupts */ | |
5619 | mp_interrupt_watchdog(); | |
5620 | #endif /* __x86_64__ */ | |
5621 | #endif /* DEBUG || DEVELOPMENT */ | |
490019cf | 5622 | |
39037602 | 5623 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE) | DBG_FUNC_END, |
0a7de745 A |
5624 | sched_pri_shifts[TH_BUCKET_SHARE_FG], sched_pri_shifts[TH_BUCKET_SHARE_BG], |
5625 | sched_pri_shifts[TH_BUCKET_SHARE_UT], sched_pri_shifts[TH_BUCKET_SHARE_DF], 0); | |
1c79356b | 5626 | |
3e170ce0 A |
5627 | assert_wait((event_t)sched_timeshare_maintenance_continue, THREAD_UNINT); |
5628 | thread_block((thread_continue_t)sched_timeshare_maintenance_continue); | |
1c79356b A |
5629 | /*NOTREACHED*/ |
5630 | } | |
5631 | ||
39236c6e A |
5632 | static uint64_t sched_maintenance_wakeups; |
5633 | ||
5634 | /* | |
5635 | * Determine if the set of routines formerly driven by a maintenance timer | |
5636 | * must be invoked, based on a deadline comparison. Signals the scheduler | |
5637 | * maintenance thread on deadline expiration. Must be invoked at an interval | |
5638 | * lower than the "sched_tick_interval", currently accomplished by | |
5639 | * invocation via the quantum expiration timer and at context switch time. | |
5640 | * Performance matters: this routine reuses a timestamp approximating the | |
5641 | * current absolute time received from the caller, and should perform | |
5642 | * no more than a comparison against the deadline in the common case. | |
5643 | */ | |
5644 | void | |
0a7de745 A |
5645 | sched_timeshare_consider_maintenance(uint64_t ctime) |
5646 | { | |
d9a64523 A |
5647 | cpu_quiescent_counter_checkin(ctime); |
5648 | ||
5649 | uint64_t deadline = sched_maintenance_deadline; | |
39236c6e A |
5650 | |
5651 | if (__improbable(ctime >= deadline)) { | |
0a7de745 | 5652 | if (__improbable(current_thread() == sched_maintenance_thread)) { |
39236c6e | 5653 | return; |
0a7de745 | 5654 | } |
39236c6e A |
5655 | OSMemoryBarrier(); |
5656 | ||
d9a64523 | 5657 | uint64_t ndeadline = ctime + sched_tick_interval; |
39236c6e | 5658 | |
cb323159 | 5659 | if (__probable(os_atomic_cmpxchg(&sched_maintenance_deadline, deadline, ndeadline, seq_cst))) { |
3e170ce0 | 5660 | thread_wakeup((event_t)sched_timeshare_maintenance_continue); |
39236c6e A |
5661 | sched_maintenance_wakeups++; |
5662 | } | |
5663 | } | |
5ba3f43e | 5664 | |
cb323159 A |
5665 | #if !CONFIG_SCHED_CLUTCH |
5666 | /* | |
5667 | * Only non-clutch schedulers use the global load calculation EWMA algorithm. For clutch | |
5668 | * scheduler, the load is maintained at the thread group and bucket level. | |
5669 | */ | |
5670 | uint64_t load_compute_deadline = os_atomic_load_wide(&sched_load_compute_deadline, relaxed); | |
d9a64523 A |
5671 | |
5672 | if (__improbable(load_compute_deadline && ctime >= load_compute_deadline)) { | |
5673 | uint64_t new_deadline = 0; | |
cb323159 | 5674 | if (os_atomic_cmpxchg(&sched_load_compute_deadline, load_compute_deadline, new_deadline, relaxed)) { |
d9a64523 A |
5675 | compute_sched_load(); |
5676 | new_deadline = ctime + sched_load_compute_interval_abs; | |
cb323159 | 5677 | os_atomic_store_wide(&sched_load_compute_deadline, new_deadline, relaxed); |
d9a64523 A |
5678 | } |
5679 | } | |
cb323159 | 5680 | #endif /* CONFIG_SCHED_CLUTCH */ |
d9a64523 | 5681 | |
5ba3f43e | 5682 | #if __arm64__ |
cb323159 | 5683 | uint64_t perf_deadline = os_atomic_load(&sched_perfcontrol_callback_deadline, relaxed); |
5ba3f43e A |
5684 | |
5685 | if (__improbable(perf_deadline && ctime >= perf_deadline)) { | |
5686 | /* CAS in 0, if success, make callback. Otherwise let the next context switch check again. */ | |
cb323159 | 5687 | if (os_atomic_cmpxchg(&sched_perfcontrol_callback_deadline, perf_deadline, 0, relaxed)) { |
5ba3f43e A |
5688 | machine_perfcontrol_deadline_passed(perf_deadline); |
5689 | } | |
5690 | } | |
5691 | #endif /* __arm64__ */ | |
39236c6e A |
5692 | } |
5693 | ||
fe8ab488 | 5694 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
6d2010ae | 5695 | |
1c79356b | 5696 | void |
f427ee49 | 5697 | sched_init_thread(void) |
1c79356b | 5698 | { |
316670eb | 5699 | thread_block(THREAD_CONTINUE_NULL); |
91447636 | 5700 | |
490019cf A |
5701 | thread_t thread = current_thread(); |
5702 | ||
39037602 A |
5703 | thread_set_thread_name(thread, "sched_maintenance_thread"); |
5704 | ||
490019cf A |
5705 | sched_maintenance_thread = thread; |
5706 | ||
f427ee49 | 5707 | SCHED(maintenance_continuation)(); |
1c79356b | 5708 | |
1c79356b A |
5709 | /*NOTREACHED*/ |
5710 | } | |
5711 | ||
fe8ab488 | 5712 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 5713 | |
1c79356b | 5714 | /* |
91447636 | 5715 | * thread_update_scan / runq_scan: |
55e303ae | 5716 | * |
0a7de745 | 5717 | * Scan the run queues to account for timesharing threads |
91447636 | 5718 | * which need to be updated. |
1c79356b A |
5719 | * |
5720 | * Scanner runs in two passes. Pass one squirrels likely | |
91447636 | 5721 | * threads away in an array, pass two does the update. |
1c79356b | 5722 | * |
91447636 A |
5723 | * This is necessary because the run queue is locked for |
5724 | * the candidate scan, but the thread is locked for the update. | |
1c79356b | 5725 | * |
91447636 A |
5726 | * Array should be sized to make forward progress, without |
5727 | * disabling preemption for long periods. | |
1c79356b | 5728 | */ |
55e303ae | 5729 | |
0a7de745 | 5730 | #define THREAD_UPDATE_SIZE 128 |
55e303ae | 5731 | |
39037602 A |
5732 | static thread_t thread_update_array[THREAD_UPDATE_SIZE]; |
5733 | static uint32_t thread_update_count = 0; | |
1c79356b | 5734 | |
fe8ab488 A |
5735 | /* Returns TRUE if thread was added, FALSE if thread_update_array is full */ |
5736 | boolean_t | |
5737 | thread_update_add_thread(thread_t thread) | |
5738 | { | |
0a7de745 A |
5739 | if (thread_update_count == THREAD_UPDATE_SIZE) { |
5740 | return FALSE; | |
5741 | } | |
fe8ab488 A |
5742 | |
5743 | thread_update_array[thread_update_count++] = thread; | |
5744 | thread_reference_internal(thread); | |
0a7de745 | 5745 | return TRUE; |
fe8ab488 A |
5746 | } |
5747 | ||
5748 | void | |
5749 | thread_update_process_threads(void) | |
5750 | { | |
39037602 | 5751 | assert(thread_update_count <= THREAD_UPDATE_SIZE); |
fe8ab488 | 5752 | |
0a7de745 | 5753 | for (uint32_t i = 0; i < thread_update_count; i++) { |
39037602 A |
5754 | thread_t thread = thread_update_array[i]; |
5755 | assert_thread_magic(thread); | |
5756 | thread_update_array[i] = THREAD_NULL; | |
5757 | ||
5758 | spl_t s = splsched(); | |
fe8ab488 | 5759 | thread_lock(thread); |
39037602 | 5760 | if (!(thread->state & (TH_WAIT)) && thread->sched_stamp != sched_tick) { |
fe8ab488 A |
5761 | SCHED(update_priority)(thread); |
5762 | } | |
5763 | thread_unlock(thread); | |
5764 | splx(s); | |
5765 | ||
5766 | thread_deallocate(thread); | |
5767 | } | |
39037602 A |
5768 | |
5769 | thread_update_count = 0; | |
fe8ab488 A |
5770 | } |
5771 | ||
f427ee49 A |
5772 | static boolean_t |
5773 | runq_scan_thread( | |
5774 | thread_t thread, | |
5775 | sched_update_scan_context_t scan_context) | |
5776 | { | |
5777 | assert_thread_magic(thread); | |
5778 | ||
5779 | if (thread->sched_stamp != sched_tick && | |
5780 | thread->sched_mode == TH_MODE_TIMESHARE) { | |
5781 | if (thread_update_add_thread(thread) == FALSE) { | |
5782 | return TRUE; | |
5783 | } | |
5784 | } | |
5785 | ||
5786 | if (cpu_throttle_enabled && ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) { | |
5787 | if (thread->last_made_runnable_time < scan_context->earliest_bg_make_runnable_time) { | |
5788 | scan_context->earliest_bg_make_runnable_time = thread->last_made_runnable_time; | |
5789 | } | |
5790 | } else { | |
5791 | if (thread->last_made_runnable_time < scan_context->earliest_normal_make_runnable_time) { | |
5792 | scan_context->earliest_normal_make_runnable_time = thread->last_made_runnable_time; | |
5793 | } | |
5794 | } | |
5795 | ||
5796 | return FALSE; | |
5797 | } | |
5798 | ||
1c79356b | 5799 | /* |
91447636 A |
5800 | * Scan a runq for candidate threads. |
5801 | * | |
5802 | * Returns TRUE if retry is needed. | |
1c79356b | 5803 | */ |
fe8ab488 | 5804 | boolean_t |
91447636 | 5805 | runq_scan( |
0a7de745 A |
5806 | run_queue_t runq, |
5807 | sched_update_scan_context_t scan_context) | |
1c79356b | 5808 | { |
39037602 A |
5809 | int count = runq->count; |
5810 | int queue_index; | |
1c79356b | 5811 | |
39037602 A |
5812 | assert(count >= 0); |
5813 | ||
0a7de745 | 5814 | if (count == 0) { |
39037602 | 5815 | return FALSE; |
0a7de745 | 5816 | } |
39037602 A |
5817 | |
5818 | for (queue_index = bitmap_first(runq->bitmap, NRQS); | |
0a7de745 A |
5819 | queue_index >= 0; |
5820 | queue_index = bitmap_next(runq->bitmap, queue_index)) { | |
39037602 | 5821 | thread_t thread; |
cb323159 | 5822 | circle_queue_t queue = &runq->queues[queue_index]; |
3e170ce0 | 5823 | |
cb323159 | 5824 | cqe_foreach_element(thread, queue, runq_links) { |
39037602 | 5825 | assert(count > 0); |
f427ee49 A |
5826 | if (runq_scan_thread(thread, scan_context) == TRUE) { |
5827 | return TRUE; | |
39037602 A |
5828 | } |
5829 | count--; | |
1c79356b A |
5830 | } |
5831 | } | |
1c79356b | 5832 | |
39037602 | 5833 | return FALSE; |
1c79356b A |
5834 | } |
5835 | ||
f427ee49 A |
5836 | #if CONFIG_SCHED_CLUTCH |
5837 | ||
5838 | boolean_t | |
5839 | sched_clutch_timeshare_scan( | |
5840 | queue_t thread_queue, | |
5841 | uint16_t thread_count, | |
5842 | sched_update_scan_context_t scan_context) | |
5843 | { | |
5844 | if (thread_count == 0) { | |
5845 | return FALSE; | |
5846 | } | |
5847 | ||
5848 | thread_t thread; | |
5849 | qe_foreach_element_safe(thread, thread_queue, th_clutch_timeshare_link) { | |
5850 | if (runq_scan_thread(thread, scan_context) == TRUE) { | |
5851 | return TRUE; | |
5852 | } | |
5853 | thread_count--; | |
5854 | } | |
5855 | ||
5856 | assert(thread_count == 0); | |
5857 | return FALSE; | |
5858 | } | |
5859 | ||
5860 | ||
5861 | #endif /* CONFIG_SCHED_CLUTCH */ | |
5862 | ||
fe8ab488 A |
5863 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
5864 | ||
2a1bd2d3 A |
5865 | bool |
5866 | thread_is_eager_preempt(thread_t thread) | |
6d2010ae | 5867 | { |
2a1bd2d3 | 5868 | return thread->sched_flags & TH_SFLAG_EAGERPREEMPT; |
6d2010ae A |
5869 | } |
5870 | ||
5871 | void | |
0a7de745 | 5872 | thread_set_eager_preempt(thread_t thread) |
6d2010ae | 5873 | { |
2a1bd2d3 A |
5874 | spl_t s = splsched(); |
5875 | thread_lock(thread); | |
6d2010ae | 5876 | |
2a1bd2d3 | 5877 | assert(!thread_is_eager_preempt(thread)); |
6d2010ae | 5878 | |
6d2010ae A |
5879 | thread->sched_flags |= TH_SFLAG_EAGERPREEMPT; |
5880 | ||
5881 | if (thread == current_thread()) { | |
2a1bd2d3 A |
5882 | /* csw_check updates current_is_eagerpreempt on the processor */ |
5883 | ast_t ast = csw_check(thread, current_processor(), AST_NONE); | |
5884 | ||
fe8ab488 | 5885 | thread_unlock(thread); |
2a1bd2d3 | 5886 | |
6d2010ae | 5887 | if (ast != AST_NONE) { |
2a1bd2d3 | 5888 | thread_block_reason(THREAD_CONTINUE_NULL, NULL, ast); |
6d2010ae A |
5889 | } |
5890 | } else { | |
2a1bd2d3 | 5891 | processor_t last_processor = thread->last_processor; |
6d2010ae | 5892 | |
2a1bd2d3 A |
5893 | if (last_processor != PROCESSOR_NULL && |
5894 | last_processor->state == PROCESSOR_RUNNING && | |
5895 | last_processor->active_thread == thread) { | |
5896 | cause_ast_check(last_processor); | |
6d2010ae | 5897 | } |
0a7de745 | 5898 | |
6d2010ae A |
5899 | thread_unlock(thread); |
5900 | } | |
5901 | ||
2a1bd2d3 | 5902 | splx(s); |
6d2010ae A |
5903 | } |
5904 | ||
5905 | void | |
0a7de745 | 5906 | thread_clear_eager_preempt(thread_t thread) |
6d2010ae | 5907 | { |
2a1bd2d3 | 5908 | spl_t s = splsched(); |
6d2010ae A |
5909 | thread_lock(thread); |
5910 | ||
2a1bd2d3 A |
5911 | assert(thread_is_eager_preempt(thread)); |
5912 | ||
6d2010ae | 5913 | thread->sched_flags &= ~TH_SFLAG_EAGERPREEMPT; |
0a7de745 | 5914 | |
2a1bd2d3 A |
5915 | if (thread == current_thread()) { |
5916 | current_processor()->current_is_eagerpreempt = false; | |
5917 | } | |
5918 | ||
6d2010ae | 5919 | thread_unlock(thread); |
2a1bd2d3 | 5920 | splx(s); |
6d2010ae | 5921 | } |
3e170ce0 | 5922 | |
6d2010ae A |
5923 | /* |
5924 | * Scheduling statistics | |
5925 | */ | |
5926 | void | |
5927 | sched_stats_handle_csw(processor_t processor, int reasons, int selfpri, int otherpri) | |
5928 | { | |
f427ee49 | 5929 | struct sched_statistics *stats; |
6d2010ae | 5930 | boolean_t to_realtime = FALSE; |
0a7de745 | 5931 | |
f427ee49 | 5932 | stats = PERCPU_GET_RELATIVE(sched_stats, processor, processor); |
6d2010ae A |
5933 | stats->csw_count++; |
5934 | ||
5935 | if (otherpri >= BASEPRI_REALTIME) { | |
5936 | stats->rt_sched_count++; | |
5937 | to_realtime = TRUE; | |
5938 | } | |
5939 | ||
5940 | if ((reasons & AST_PREEMPT) != 0) { | |
5941 | stats->preempt_count++; | |
5942 | ||
5943 | if (selfpri >= BASEPRI_REALTIME) { | |
5944 | stats->preempted_rt_count++; | |
0a7de745 | 5945 | } |
6d2010ae A |
5946 | |
5947 | if (to_realtime) { | |
5948 | stats->preempted_by_rt_count++; | |
5949 | } | |
6d2010ae A |
5950 | } |
5951 | } | |
5952 | ||
5953 | void | |
0a7de745 | 5954 | sched_stats_handle_runq_change(struct runq_stats *stats, int old_count) |
6d2010ae A |
5955 | { |
5956 | uint64_t timestamp = mach_absolute_time(); | |
5957 | ||
5958 | stats->count_sum += (timestamp - stats->last_change_timestamp) * old_count; | |
5959 | stats->last_change_timestamp = timestamp; | |
5960 | } | |
5961 | ||
1c79356b | 5962 | /* |
6d2010ae | 5963 | * For calls from assembly code |
1c79356b | 5964 | */ |
6d2010ae | 5965 | #undef thread_wakeup |
1c79356b A |
5966 | void |
5967 | thread_wakeup( | |
0a7de745 | 5968 | event_t x); |
1c79356b A |
5969 | |
5970 | void | |
5971 | thread_wakeup( | |
0a7de745 | 5972 | event_t x) |
1c79356b | 5973 | { |
0a7de745 | 5974 | thread_wakeup_with_result(x, THREAD_AWAKENED); |
1c79356b A |
5975 | } |
5976 | ||
91447636 A |
5977 | boolean_t |
5978 | preemption_enabled(void) | |
5979 | { | |
0a7de745 | 5980 | return get_preemption_level() == 0 && ml_get_interrupts_enabled(); |
91447636 | 5981 | } |
9bccf70c | 5982 | |
4b17d6b6 | 5983 | static void |
0a7de745 A |
5984 | sched_timer_deadline_tracking_init(void) |
5985 | { | |
4b17d6b6 A |
5986 | nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT, &timer_deadline_tracking_bin_1); |
5987 | nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT, &timer_deadline_tracking_bin_2); | |
5988 | } | |
3e170ce0 | 5989 | |
5ba3f43e | 5990 | #if __arm__ || __arm64__ |
3e170ce0 | 5991 | |
5ba3f43e A |
5992 | uint32_t perfcontrol_requested_recommended_cores = ALL_CORES_RECOMMENDED; |
5993 | uint32_t perfcontrol_requested_recommended_core_count = MAX_CPUS; | |
d9a64523 A |
5994 | bool perfcontrol_failsafe_active = false; |
5995 | bool perfcontrol_sleep_override = false; | |
5ba3f43e A |
5996 | |
5997 | uint64_t perfcontrol_failsafe_maintenance_runnable_time; | |
5998 | uint64_t perfcontrol_failsafe_activation_time; | |
5999 | uint64_t perfcontrol_failsafe_deactivation_time; | |
6000 | ||
6001 | /* data covering who likely caused it and how long they ran */ | |
6002 | #define FAILSAFE_NAME_LEN 33 /* (2*MAXCOMLEN)+1 from size of p_name */ | |
6003 | char perfcontrol_failsafe_name[FAILSAFE_NAME_LEN]; | |
6004 | int perfcontrol_failsafe_pid; | |
6005 | uint64_t perfcontrol_failsafe_tid; | |
6006 | uint64_t perfcontrol_failsafe_thread_timer_at_start; | |
6007 | uint64_t perfcontrol_failsafe_thread_timer_last_seen; | |
6008 | uint32_t perfcontrol_failsafe_recommended_at_trigger; | |
6009 | ||
6010 | /* | |
6011 | * Perf controller calls here to update the recommended core bitmask. | |
6012 | * If the failsafe is active, we don't immediately apply the new value. | |
6013 | * Instead, we store the new request and use it after the failsafe deactivates. | |
6014 | * | |
6015 | * If the failsafe is not active, immediately apply the update. | |
6016 | * | |
6017 | * No scheduler locks are held, no other locks are held that scheduler might depend on, | |
6018 | * interrupts are enabled | |
6019 | * | |
6020 | * currently prototype is in osfmk/arm/machine_routines.h | |
6021 | */ | |
6022 | void | |
6023 | sched_perfcontrol_update_recommended_cores(uint32_t recommended_cores) | |
3e170ce0 | 6024 | { |
5ba3f43e A |
6025 | assert(preemption_enabled()); |
6026 | ||
6027 | spl_t s = splsched(); | |
0a7de745 | 6028 | simple_lock(&sched_recommended_cores_lock, LCK_GRP_NULL); |
3e170ce0 | 6029 | |
5ba3f43e A |
6030 | perfcontrol_requested_recommended_cores = recommended_cores; |
6031 | perfcontrol_requested_recommended_core_count = __builtin_popcountll(recommended_cores); | |
6032 | ||
0a7de745 A |
6033 | if ((perfcontrol_failsafe_active == false) && (perfcontrol_sleep_override == false)) { |
6034 | sched_update_recommended_cores(perfcontrol_requested_recommended_cores & usercontrol_requested_recommended_cores); | |
6035 | } else { | |
5ba3f43e | 6036 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
6037 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_REC_CORES_FAILSAFE) | DBG_FUNC_NONE, |
6038 | perfcontrol_requested_recommended_cores, | |
6039 | sched_maintenance_thread->last_made_runnable_time, 0, 0, 0); | |
6040 | } | |
5ba3f43e A |
6041 | |
6042 | simple_unlock(&sched_recommended_cores_lock); | |
6043 | splx(s); | |
6044 | } | |
6045 | ||
d9a64523 A |
6046 | void |
6047 | sched_override_recommended_cores_for_sleep(void) | |
6048 | { | |
6049 | spl_t s = splsched(); | |
0a7de745 | 6050 | simple_lock(&sched_recommended_cores_lock, LCK_GRP_NULL); |
d9a64523 A |
6051 | |
6052 | if (perfcontrol_sleep_override == false) { | |
6053 | perfcontrol_sleep_override = true; | |
6054 | sched_update_recommended_cores(ALL_CORES_RECOMMENDED); | |
6055 | } | |
6056 | ||
6057 | simple_unlock(&sched_recommended_cores_lock); | |
6058 | splx(s); | |
6059 | } | |
6060 | ||
6061 | void | |
6062 | sched_restore_recommended_cores_after_sleep(void) | |
6063 | { | |
6064 | spl_t s = splsched(); | |
0a7de745 | 6065 | simple_lock(&sched_recommended_cores_lock, LCK_GRP_NULL); |
d9a64523 A |
6066 | |
6067 | if (perfcontrol_sleep_override == true) { | |
6068 | perfcontrol_sleep_override = false; | |
0a7de745 | 6069 | sched_update_recommended_cores(perfcontrol_requested_recommended_cores & usercontrol_requested_recommended_cores); |
d9a64523 A |
6070 | } |
6071 | ||
6072 | simple_unlock(&sched_recommended_cores_lock); | |
6073 | splx(s); | |
6074 | } | |
6075 | ||
5ba3f43e A |
6076 | /* |
6077 | * Consider whether we need to activate the recommended cores failsafe | |
6078 | * | |
6079 | * Called from quantum timer interrupt context of a realtime thread | |
6080 | * No scheduler locks are held, interrupts are disabled | |
6081 | */ | |
6082 | void | |
6083 | sched_consider_recommended_cores(uint64_t ctime, thread_t cur_thread) | |
6084 | { | |
6085 | /* | |
6086 | * Check if a realtime thread is starving the system | |
6087 | * and bringing up non-recommended cores would help | |
6088 | * | |
6089 | * TODO: Is this the correct check for recommended == possible cores? | |
6090 | * TODO: Validate the checks without the relevant lock are OK. | |
6091 | */ | |
6092 | ||
6093 | if (__improbable(perfcontrol_failsafe_active == TRUE)) { | |
6094 | /* keep track of how long the responsible thread runs */ | |
6095 | ||
0a7de745 | 6096 | simple_lock(&sched_recommended_cores_lock, LCK_GRP_NULL); |
5ba3f43e A |
6097 | |
6098 | if (perfcontrol_failsafe_active == TRUE && | |
6099 | cur_thread->thread_id == perfcontrol_failsafe_tid) { | |
6100 | perfcontrol_failsafe_thread_timer_last_seen = timer_grab(&cur_thread->user_timer) + | |
0a7de745 | 6101 | timer_grab(&cur_thread->system_timer); |
5ba3f43e A |
6102 | } |
6103 | ||
6104 | simple_unlock(&sched_recommended_cores_lock); | |
6105 | ||
6106 | /* we're already trying to solve the problem, so bail */ | |
6107 | return; | |
3e170ce0 A |
6108 | } |
6109 | ||
5ba3f43e | 6110 | /* The failsafe won't help if there are no more processors to enable */ |
0a7de745 | 6111 | if (__probable(perfcontrol_requested_recommended_core_count >= processor_count)) { |
5ba3f43e | 6112 | return; |
0a7de745 | 6113 | } |
3e170ce0 | 6114 | |
5ba3f43e A |
6115 | uint64_t too_long_ago = ctime - perfcontrol_failsafe_starvation_threshold; |
6116 | ||
6117 | /* Use the maintenance thread as our canary in the coal mine */ | |
6118 | thread_t m_thread = sched_maintenance_thread; | |
6119 | ||
6120 | /* If it doesn't look bad, nothing to see here */ | |
0a7de745 | 6121 | if (__probable(m_thread->last_made_runnable_time >= too_long_ago)) { |
5ba3f43e | 6122 | return; |
0a7de745 | 6123 | } |
5ba3f43e A |
6124 | |
6125 | /* It looks bad, take the lock to be sure */ | |
6126 | thread_lock(m_thread); | |
6127 | ||
6128 | if (m_thread->runq == PROCESSOR_NULL || | |
0a7de745 | 6129 | (m_thread->state & (TH_RUN | TH_WAIT)) != TH_RUN || |
5ba3f43e A |
6130 | m_thread->last_made_runnable_time >= too_long_ago) { |
6131 | /* | |
6132 | * Maintenance thread is either on cpu or blocked, and | |
6133 | * therefore wouldn't benefit from more cores | |
6134 | */ | |
6135 | thread_unlock(m_thread); | |
6136 | return; | |
3e170ce0 | 6137 | } |
3e170ce0 | 6138 | |
5ba3f43e A |
6139 | uint64_t maintenance_runnable_time = m_thread->last_made_runnable_time; |
6140 | ||
6141 | thread_unlock(m_thread); | |
6142 | ||
6143 | /* | |
6144 | * There are cores disabled at perfcontrol's recommendation, but the | |
6145 | * system is so overloaded that the maintenance thread can't run. | |
6146 | * That likely means that perfcontrol can't run either, so it can't fix | |
6147 | * the recommendation. We have to kick in a failsafe to keep from starving. | |
6148 | * | |
6149 | * When the maintenance thread has been starved for too long, | |
6150 | * ignore the recommendation from perfcontrol and light up all the cores. | |
6151 | * | |
6152 | * TODO: Consider weird states like boot, sleep, or debugger | |
6153 | */ | |
6154 | ||
0a7de745 | 6155 | simple_lock(&sched_recommended_cores_lock, LCK_GRP_NULL); |
5ba3f43e A |
6156 | |
6157 | if (perfcontrol_failsafe_active == TRUE) { | |
6158 | simple_unlock(&sched_recommended_cores_lock); | |
6159 | return; | |
6160 | } | |
6161 | ||
6162 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
0a7de745 A |
6163 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_REC_CORES_FAILSAFE) | DBG_FUNC_START, |
6164 | perfcontrol_requested_recommended_cores, maintenance_runnable_time, 0, 0, 0); | |
5ba3f43e A |
6165 | |
6166 | perfcontrol_failsafe_active = TRUE; | |
6167 | perfcontrol_failsafe_activation_time = mach_absolute_time(); | |
6168 | perfcontrol_failsafe_maintenance_runnable_time = maintenance_runnable_time; | |
6169 | perfcontrol_failsafe_recommended_at_trigger = perfcontrol_requested_recommended_cores; | |
6170 | ||
6171 | /* Capture some data about who screwed up (assuming that the thread on core is at fault) */ | |
6172 | task_t task = cur_thread->task; | |
6173 | perfcontrol_failsafe_pid = task_pid(task); | |
6174 | strlcpy(perfcontrol_failsafe_name, proc_name_address(task->bsd_info), sizeof(perfcontrol_failsafe_name)); | |
6175 | ||
6176 | perfcontrol_failsafe_tid = cur_thread->thread_id; | |
6177 | ||
6178 | /* Blame the thread for time it has run recently */ | |
6179 | uint64_t recent_computation = (ctime - cur_thread->computation_epoch) + cur_thread->computation_metered; | |
6180 | ||
6181 | uint64_t last_seen = timer_grab(&cur_thread->user_timer) + timer_grab(&cur_thread->system_timer); | |
6182 | ||
6183 | /* Compute the start time of the bad behavior in terms of the thread's on core time */ | |
6184 | perfcontrol_failsafe_thread_timer_at_start = last_seen - recent_computation; | |
6185 | perfcontrol_failsafe_thread_timer_last_seen = last_seen; | |
6186 | ||
6187 | /* Ignore the previously recommended core configuration */ | |
6188 | sched_update_recommended_cores(ALL_CORES_RECOMMENDED); | |
6189 | ||
6190 | simple_unlock(&sched_recommended_cores_lock); | |
6191 | } | |
6192 | ||
6193 | /* | |
6194 | * Now that our bacon has been saved by the failsafe, consider whether to turn it off | |
6195 | * | |
6196 | * Runs in the context of the maintenance thread, no locks held | |
6197 | */ | |
6198 | static void | |
6199 | sched_recommended_cores_maintenance(void) | |
6200 | { | |
6201 | /* Common case - no failsafe, nothing to be done here */ | |
0a7de745 | 6202 | if (__probable(perfcontrol_failsafe_active == FALSE)) { |
5ba3f43e | 6203 | return; |
0a7de745 | 6204 | } |
5ba3f43e A |
6205 | |
6206 | uint64_t ctime = mach_absolute_time(); | |
6207 | ||
6208 | boolean_t print_diagnostic = FALSE; | |
6209 | char p_name[FAILSAFE_NAME_LEN] = ""; | |
6210 | ||
6211 | spl_t s = splsched(); | |
0a7de745 | 6212 | simple_lock(&sched_recommended_cores_lock, LCK_GRP_NULL); |
5ba3f43e A |
6213 | |
6214 | /* Check again, under the lock, to avoid races */ | |
0a7de745 | 6215 | if (perfcontrol_failsafe_active == FALSE) { |
5ba3f43e | 6216 | goto out; |
0a7de745 | 6217 | } |
5ba3f43e A |
6218 | |
6219 | /* | |
6220 | * Ensure that the other cores get another few ticks to run some threads | |
6221 | * If we don't have this hysteresis, the maintenance thread is the first | |
6222 | * to run, and then it immediately kills the other cores | |
6223 | */ | |
0a7de745 | 6224 | if ((ctime - perfcontrol_failsafe_activation_time) < perfcontrol_failsafe_starvation_threshold) { |
5ba3f43e | 6225 | goto out; |
0a7de745 | 6226 | } |
5ba3f43e A |
6227 | |
6228 | /* Capture some diagnostic state under the lock so we can print it out later */ | |
6229 | ||
6230 | int pid = perfcontrol_failsafe_pid; | |
6231 | uint64_t tid = perfcontrol_failsafe_tid; | |
6232 | ||
6233 | uint64_t thread_usage = perfcontrol_failsafe_thread_timer_last_seen - | |
0a7de745 | 6234 | perfcontrol_failsafe_thread_timer_at_start; |
5ba3f43e A |
6235 | uint32_t rec_cores_before = perfcontrol_failsafe_recommended_at_trigger; |
6236 | uint32_t rec_cores_after = perfcontrol_requested_recommended_cores; | |
6237 | uint64_t failsafe_duration = ctime - perfcontrol_failsafe_activation_time; | |
6238 | strlcpy(p_name, perfcontrol_failsafe_name, sizeof(p_name)); | |
6239 | ||
6240 | print_diagnostic = TRUE; | |
6241 | ||
6242 | /* Deactivate the failsafe and reinstate the requested recommendation settings */ | |
6243 | ||
6244 | perfcontrol_failsafe_deactivation_time = ctime; | |
6245 | perfcontrol_failsafe_active = FALSE; | |
6246 | ||
6247 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
0a7de745 A |
6248 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_REC_CORES_FAILSAFE) | DBG_FUNC_END, |
6249 | perfcontrol_requested_recommended_cores, failsafe_duration, 0, 0, 0); | |
5ba3f43e | 6250 | |
0a7de745 | 6251 | sched_update_recommended_cores(perfcontrol_requested_recommended_cores & usercontrol_requested_recommended_cores); |
5ba3f43e A |
6252 | |
6253 | out: | |
6254 | simple_unlock(&sched_recommended_cores_lock); | |
3e170ce0 A |
6255 | splx(s); |
6256 | ||
5ba3f43e A |
6257 | if (print_diagnostic) { |
6258 | uint64_t failsafe_duration_ms = 0, thread_usage_ms = 0; | |
6259 | ||
6260 | absolutetime_to_nanoseconds(failsafe_duration, &failsafe_duration_ms); | |
6261 | failsafe_duration_ms = failsafe_duration_ms / NSEC_PER_MSEC; | |
6262 | ||
6263 | absolutetime_to_nanoseconds(thread_usage, &thread_usage_ms); | |
6264 | thread_usage_ms = thread_usage_ms / NSEC_PER_MSEC; | |
6265 | ||
6266 | printf("recommended core failsafe kicked in for %lld ms " | |
0a7de745 A |
6267 | "likely due to %s[%d] thread 0x%llx spending " |
6268 | "%lld ms on cpu at realtime priority - " | |
6269 | "new recommendation: 0x%x -> 0x%x\n", | |
6270 | failsafe_duration_ms, p_name, pid, tid, thread_usage_ms, | |
6271 | rec_cores_before, rec_cores_after); | |
6272 | } | |
6273 | } | |
6274 | ||
6275 | #endif /* __arm__ || __arm64__ */ | |
6276 | ||
6277 | kern_return_t | |
6278 | sched_processor_enable(processor_t processor, boolean_t enable) | |
6279 | { | |
6280 | assert(preemption_enabled()); | |
6281 | ||
6282 | spl_t s = splsched(); | |
6283 | simple_lock(&sched_recommended_cores_lock, LCK_GRP_NULL); | |
6284 | ||
6285 | if (enable) { | |
6286 | bit_set(usercontrol_requested_recommended_cores, processor->cpu_id); | |
6287 | } else { | |
6288 | bit_clear(usercontrol_requested_recommended_cores, processor->cpu_id); | |
5ba3f43e | 6289 | } |
0a7de745 A |
6290 | |
6291 | #if __arm__ || __arm64__ | |
6292 | if ((perfcontrol_failsafe_active == false) && (perfcontrol_sleep_override == false)) { | |
6293 | sched_update_recommended_cores(perfcontrol_requested_recommended_cores & usercontrol_requested_recommended_cores); | |
6294 | } else { | |
6295 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
6296 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_REC_CORES_FAILSAFE) | DBG_FUNC_NONE, | |
6297 | perfcontrol_requested_recommended_cores, | |
6298 | sched_maintenance_thread->last_made_runnable_time, 0, 0, 0); | |
6299 | } | |
6300 | #else /* __arm__ || __arm64__ */ | |
6301 | sched_update_recommended_cores(usercontrol_requested_recommended_cores); | |
6302 | #endif /* !__arm__ || __arm64__ */ | |
6303 | ||
6304 | simple_unlock(&sched_recommended_cores_lock); | |
6305 | splx(s); | |
6306 | ||
6307 | return KERN_SUCCESS; | |
5ba3f43e A |
6308 | } |
6309 | ||
0a7de745 | 6310 | |
5ba3f43e A |
6311 | /* |
6312 | * Apply a new recommended cores mask to the processors it affects | |
6313 | * Runs after considering failsafes and such | |
6314 | * | |
6315 | * Iterate over processors and update their ->is_recommended field. | |
6316 | * If a processor is running, we let it drain out at its next | |
6317 | * quantum expiration or blocking point. If a processor is idle, there | |
6318 | * may be more work for it to do, so IPI it. | |
6319 | * | |
6320 | * interrupts disabled, sched_recommended_cores_lock is held | |
6321 | */ | |
6322 | static void | |
0a7de745 | 6323 | sched_update_recommended_cores(uint64_t recommended_cores) |
5ba3f43e A |
6324 | { |
6325 | processor_set_t pset, nset; | |
6326 | processor_t processor; | |
6327 | uint64_t needs_exit_idle_mask = 0x0; | |
0a7de745 | 6328 | uint32_t avail_count; |
5ba3f43e A |
6329 | |
6330 | processor = processor_list; | |
6331 | pset = processor->processor_set; | |
6332 | ||
0a7de745 A |
6333 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_UPDATE_REC_CORES) | DBG_FUNC_START, |
6334 | recommended_cores, | |
6335 | #if __arm__ || __arm64__ | |
6336 | perfcontrol_failsafe_active, 0, 0); | |
6337 | #else /* __arm__ || __arm64__ */ | |
6338 | 0, 0, 0); | |
6339 | #endif /* ! __arm__ || __arm64__ */ | |
5ba3f43e | 6340 | |
0a7de745 | 6341 | if (__builtin_popcountll(recommended_cores) == 0) { |
d9a64523 | 6342 | bit_set(recommended_cores, master_processor->cpu_id); /* add boot processor or we hang */ |
5ba3f43e A |
6343 | } |
6344 | ||
6345 | /* First set recommended cores */ | |
6346 | pset_lock(pset); | |
0a7de745 | 6347 | avail_count = 0; |
5ba3f43e | 6348 | do { |
5ba3f43e A |
6349 | nset = processor->processor_set; |
6350 | if (nset != pset) { | |
6351 | pset_unlock(pset); | |
6352 | pset = nset; | |
6353 | pset_lock(pset); | |
6354 | } | |
6355 | ||
d9a64523 | 6356 | if (bit_test(recommended_cores, processor->cpu_id)) { |
5ba3f43e | 6357 | processor->is_recommended = TRUE; |
d9a64523 | 6358 | bit_set(pset->recommended_bitmask, processor->cpu_id); |
5ba3f43e A |
6359 | |
6360 | if (processor->state == PROCESSOR_IDLE) { | |
5ba3f43e | 6361 | if (processor != current_processor()) { |
d9a64523 | 6362 | bit_set(needs_exit_idle_mask, processor->cpu_id); |
5ba3f43e A |
6363 | } |
6364 | } | |
0a7de745 A |
6365 | if (processor->state != PROCESSOR_OFF_LINE) { |
6366 | avail_count++; | |
cb323159 A |
6367 | SCHED(pset_made_schedulable)(processor, pset, false); |
6368 | } | |
5ba3f43e A |
6369 | } |
6370 | } while ((processor = processor->processor_list) != NULL); | |
6371 | pset_unlock(pset); | |
6372 | ||
6373 | /* Now shutdown not recommended cores */ | |
6374 | processor = processor_list; | |
6375 | pset = processor->processor_set; | |
6376 | ||
6377 | pset_lock(pset); | |
6378 | do { | |
5ba3f43e A |
6379 | nset = processor->processor_set; |
6380 | if (nset != pset) { | |
6381 | pset_unlock(pset); | |
6382 | pset = nset; | |
6383 | pset_lock(pset); | |
6384 | } | |
6385 | ||
d9a64523 A |
6386 | if (!bit_test(recommended_cores, processor->cpu_id)) { |
6387 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; | |
6388 | ||
5ba3f43e | 6389 | processor->is_recommended = FALSE; |
d9a64523 A |
6390 | bit_clear(pset->recommended_bitmask, processor->cpu_id); |
6391 | ||
6392 | if ((processor->state == PROCESSOR_RUNNING) || (processor->state == PROCESSOR_DISPATCHING)) { | |
6393 | ipi_type = SCHED_IPI_IMMEDIATE; | |
5ba3f43e A |
6394 | } |
6395 | SCHED(processor_queue_shutdown)(processor); | |
6396 | /* pset unlocked */ | |
6397 | ||
6398 | SCHED(rt_queue_shutdown)(processor); | |
6399 | ||
d9a64523 A |
6400 | if (ipi_type != SCHED_IPI_NONE) { |
6401 | if (processor == current_processor()) { | |
6402 | ast_on(AST_PREEMPT); | |
6403 | } else { | |
6404 | sched_ipi_perform(processor, ipi_type); | |
6405 | } | |
6406 | } | |
6407 | ||
5ba3f43e A |
6408 | pset_lock(pset); |
6409 | } | |
6410 | } while ((processor = processor->processor_list) != NULL); | |
0a7de745 A |
6411 | |
6412 | processor_avail_count_user = avail_count; | |
6413 | #if defined(__x86_64__) | |
6414 | commpage_update_active_cpus(); | |
6415 | #endif | |
6416 | ||
5ba3f43e A |
6417 | pset_unlock(pset); |
6418 | ||
6419 | /* Issue all pending IPIs now that the pset lock has been dropped */ | |
6420 | for (int cpuid = lsb_first(needs_exit_idle_mask); cpuid >= 0; cpuid = lsb_next(needs_exit_idle_mask, cpuid)) { | |
6421 | processor = processor_array[cpuid]; | |
6422 | machine_signal_idle(processor); | |
6423 | } | |
6424 | ||
0a7de745 A |
6425 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_UPDATE_REC_CORES) | DBG_FUNC_END, |
6426 | needs_exit_idle_mask, 0, 0, 0); | |
3e170ce0 A |
6427 | } |
6428 | ||
0a7de745 A |
6429 | void |
6430 | thread_set_options(uint32_t thopt) | |
6431 | { | |
6432 | spl_t x; | |
6433 | thread_t t = current_thread(); | |
6434 | ||
6435 | x = splsched(); | |
6436 | thread_lock(t); | |
6437 | ||
6438 | t->options |= thopt; | |
6439 | ||
6440 | thread_unlock(t); | |
6441 | splx(x); | |
3e170ce0 | 6442 | } |
813fb2f6 | 6443 | |
0a7de745 A |
6444 | void |
6445 | thread_set_pending_block_hint(thread_t thread, block_hint_t block_hint) | |
6446 | { | |
813fb2f6 A |
6447 | thread->pending_block_hint = block_hint; |
6448 | } | |
5ba3f43e | 6449 | |
0a7de745 A |
6450 | uint32_t |
6451 | qos_max_parallelism(int qos, uint64_t options) | |
5ba3f43e | 6452 | { |
0a7de745 | 6453 | return SCHED(qos_max_parallelism)(qos, options); |
5ba3f43e A |
6454 | } |
6455 | ||
0a7de745 A |
6456 | uint32_t |
6457 | sched_qos_max_parallelism(__unused int qos, uint64_t options) | |
5ba3f43e | 6458 | { |
0a7de745 A |
6459 | host_basic_info_data_t hinfo; |
6460 | mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT; | |
6461 | /* Query the machine layer for core information */ | |
6462 | __assert_only kern_return_t kret = host_info(host_self(), HOST_BASIC_INFO, | |
6463 | (host_info_t)&hinfo, &count); | |
6464 | assert(kret == KERN_SUCCESS); | |
6465 | ||
0a7de745 A |
6466 | if (options & QOS_PARALLELISM_COUNT_LOGICAL) { |
6467 | return hinfo.logical_cpu; | |
6468 | } else { | |
6469 | return hinfo.physical_cpu; | |
6470 | } | |
6471 | } | |
5ba3f43e | 6472 | |
0a7de745 A |
6473 | int sched_allow_NO_SMT_threads = 1; |
6474 | bool | |
6475 | thread_no_smt(thread_t thread) | |
6476 | { | |
0a7de745 | 6477 | return sched_allow_NO_SMT_threads && (thread->bound_processor == PROCESSOR_NULL) && ((thread->sched_flags & TH_SFLAG_NO_SMT) || (thread->task->t_flags & TF_NO_SMT)); |
0a7de745 | 6478 | } |
5ba3f43e | 6479 | |
0a7de745 A |
6480 | bool |
6481 | processor_active_thread_no_smt(processor_t processor) | |
6482 | { | |
6483 | return sched_allow_NO_SMT_threads && !processor->current_is_bound && processor->current_is_NO_SMT; | |
5ba3f43e A |
6484 | } |
6485 | ||
6486 | #if __arm64__ | |
6487 | ||
6488 | /* | |
6489 | * Set up or replace old timer with new timer | |
6490 | * | |
6491 | * Returns true if canceled old timer, false if it did not | |
6492 | */ | |
6493 | boolean_t | |
6494 | sched_perfcontrol_update_callback_deadline(uint64_t new_deadline) | |
6495 | { | |
6496 | /* | |
6497 | * Exchange deadline for new deadline, if old deadline was nonzero, | |
6498 | * then I cancelled the callback, otherwise I didn't | |
6499 | */ | |
6500 | ||
cb323159 A |
6501 | return os_atomic_xchg(&sched_perfcontrol_callback_deadline, new_deadline, |
6502 | relaxed) != 0; | |
5ba3f43e A |
6503 | } |
6504 | ||
6505 | #endif /* __arm64__ */ | |
6506 | ||
f427ee49 A |
6507 | #if CONFIG_SCHED_EDGE |
6508 | ||
6509 | #define SCHED_PSET_LOAD_EWMA_TC_NSECS 10000000u | |
6510 | ||
6511 | /* | |
6512 | * sched_edge_pset_running_higher_bucket() | |
6513 | * | |
6514 | * Routine to calculate cumulative running counts for each scheduling | |
6515 | * bucket. This effectively lets the load calculation calculate if a | |
6516 | * cluster is running any threads at a QoS lower than the thread being | |
6517 | * migrated etc. | |
6518 | */ | |
6519 | ||
6520 | static void | |
6521 | sched_edge_pset_running_higher_bucket(processor_set_t pset, uint32_t *running_higher) | |
6522 | { | |
6523 | bitmap_t *active_map = &pset->cpu_state_map[PROCESSOR_RUNNING]; | |
6524 | ||
6525 | /* Edge Scheduler Optimization */ | |
6526 | for (int cpu = bitmap_first(active_map, MAX_CPUS); cpu >= 0; cpu = bitmap_next(active_map, cpu)) { | |
6527 | sched_bucket_t cpu_bucket = os_atomic_load(&pset->cpu_running_buckets[cpu], relaxed); | |
6528 | for (sched_bucket_t bucket = cpu_bucket; bucket < TH_BUCKET_SCHED_MAX; bucket++) { | |
6529 | running_higher[bucket]++; | |
6530 | } | |
6531 | } | |
6532 | } | |
6533 | ||
6534 | /* | |
6535 | * sched_update_pset_load_average() | |
6536 | * | |
6537 | * Updates the load average for each sched bucket for a cluster. | |
6538 | * This routine must be called with the pset lock held. | |
6539 | */ | |
5ba3f43e | 6540 | void |
f427ee49 | 6541 | sched_update_pset_load_average(processor_set_t pset, uint64_t curtime) |
5ba3f43e | 6542 | { |
f427ee49 A |
6543 | if (pset->online_processor_count == 0) { |
6544 | /* Looks like the pset is not runnable any more; nothing to do here */ | |
6545 | return; | |
6546 | } | |
6547 | ||
6548 | /* | |
6549 | * Edge Scheduler Optimization | |
6550 | * | |
6551 | * See if more callers of this routine can pass in timestamps to avoid the | |
6552 | * mach_absolute_time() call here. | |
6553 | */ | |
6554 | ||
6555 | if (!curtime) { | |
6556 | curtime = mach_absolute_time(); | |
6557 | } | |
6558 | uint64_t last_update = os_atomic_load(&pset->pset_load_last_update, relaxed); | |
6559 | int64_t delta_ticks = curtime - last_update; | |
6560 | if (delta_ticks < 0) { | |
6561 | return; | |
6562 | } | |
6563 | ||
6564 | uint64_t delta_nsecs = 0; | |
6565 | absolutetime_to_nanoseconds(delta_ticks, &delta_nsecs); | |
6566 | ||
6567 | if (__improbable(delta_nsecs > UINT32_MAX)) { | |
6568 | delta_nsecs = UINT32_MAX; | |
6569 | } | |
6570 | ||
6571 | uint32_t running_higher[TH_BUCKET_SCHED_MAX] = {0}; | |
6572 | sched_edge_pset_running_higher_bucket(pset, running_higher); | |
6573 | ||
6574 | for (sched_bucket_t sched_bucket = TH_BUCKET_FIXPRI; sched_bucket < TH_BUCKET_SCHED_MAX; sched_bucket++) { | |
6575 | uint64_t old_load_average = os_atomic_load(&pset->pset_load_average[sched_bucket], relaxed); | |
6576 | uint64_t old_load_average_factor = old_load_average * SCHED_PSET_LOAD_EWMA_TC_NSECS; | |
6577 | uint32_t current_runq_depth = (sched_edge_cluster_cumulative_count(&pset->pset_clutch_root, sched_bucket) + rt_runq_count(pset) + running_higher[sched_bucket]) / pset->online_processor_count; | |
6578 | ||
6579 | /* | |
6580 | * For the new load average multiply current_runq_depth by delta_nsecs (which resuts in a 32.0 value). | |
6581 | * Since we want to maintain the load average as a 24.8 fixed arithmetic value for precision, the | |
6582 | * new load averga needs to be shifted before it can be added to the old load average. | |
6583 | */ | |
6584 | uint64_t new_load_average_factor = (current_runq_depth * delta_nsecs) << SCHED_PSET_LOAD_EWMA_FRACTION_BITS; | |
6585 | ||
6586 | /* | |
6587 | * For extremely parallel workloads, it is important that the load average on a cluster moves zero to non-zero | |
6588 | * instantly to allow threads to be migrated to other (potentially idle) clusters quickly. Hence use the EWMA | |
6589 | * when the system is already loaded; otherwise for an idle system use the latest load average immediately. | |
6590 | */ | |
6591 | int old_load_shifted = (int)((old_load_average + SCHED_PSET_LOAD_EWMA_ROUND_BIT) >> SCHED_PSET_LOAD_EWMA_FRACTION_BITS); | |
6592 | boolean_t load_uptick = (old_load_shifted == 0) && (current_runq_depth != 0); | |
6593 | boolean_t load_downtick = (old_load_shifted != 0) && (current_runq_depth == 0); | |
6594 | uint64_t load_average; | |
6595 | if (load_uptick || load_downtick) { | |
6596 | load_average = (current_runq_depth << SCHED_PSET_LOAD_EWMA_FRACTION_BITS); | |
6597 | } else { | |
6598 | /* Indicates a loaded system; use EWMA for load average calculation */ | |
6599 | load_average = (old_load_average_factor + new_load_average_factor) / (delta_nsecs + SCHED_PSET_LOAD_EWMA_TC_NSECS); | |
6600 | } | |
6601 | os_atomic_store(&pset->pset_load_average[sched_bucket], load_average, relaxed); | |
6602 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_LOAD_AVG) | DBG_FUNC_NONE, pset->pset_cluster_id, (load_average >> SCHED_PSET_LOAD_EWMA_FRACTION_BITS), load_average & SCHED_PSET_LOAD_EWMA_FRACTION_MASK, sched_bucket); | |
6603 | } | |
6604 | os_atomic_store(&pset->pset_load_last_update, curtime, relaxed); | |
6605 | } | |
6606 | ||
6607 | void | |
6608 | sched_update_pset_avg_execution_time(processor_set_t pset, uint64_t execution_time, uint64_t curtime, sched_bucket_t sched_bucket) | |
6609 | { | |
6610 | pset_execution_time_t old_execution_time_packed, new_execution_time_packed; | |
6611 | uint64_t avg_thread_execution_time = 0; | |
6612 | ||
6613 | os_atomic_rmw_loop(&pset->pset_execution_time[sched_bucket].pset_execution_time_packed, | |
6614 | old_execution_time_packed.pset_execution_time_packed, | |
6615 | new_execution_time_packed.pset_execution_time_packed, relaxed, { | |
6616 | uint64_t last_update = old_execution_time_packed.pset_execution_time_last_update; | |
6617 | int64_t delta_ticks = curtime - last_update; | |
6618 | if (delta_ticks < 0) { | |
6619 | /* | |
6620 | * Its possible that another CPU came in and updated the pset_execution_time | |
6621 | * before this CPU could do it. Since the average execution time is meant to | |
6622 | * be an approximate measure per cluster, ignore the older update. | |
6623 | */ | |
6624 | os_atomic_rmw_loop_give_up(return ); | |
6625 | } | |
6626 | uint64_t delta_nsecs = 0; | |
6627 | absolutetime_to_nanoseconds(delta_ticks, &delta_nsecs); | |
6628 | ||
6629 | uint64_t nanotime = 0; | |
6630 | absolutetime_to_nanoseconds(execution_time, &nanotime); | |
6631 | uint64_t execution_time_us = nanotime / NSEC_PER_USEC; | |
6632 | ||
6633 | uint64_t old_execution_time = (old_execution_time_packed.pset_avg_thread_execution_time * SCHED_PSET_LOAD_EWMA_TC_NSECS); | |
6634 | uint64_t new_execution_time = (execution_time_us * delta_nsecs); | |
6635 | ||
6636 | avg_thread_execution_time = (old_execution_time + new_execution_time) / (delta_nsecs + SCHED_PSET_LOAD_EWMA_TC_NSECS); | |
6637 | new_execution_time_packed.pset_avg_thread_execution_time = avg_thread_execution_time; | |
6638 | new_execution_time_packed.pset_execution_time_last_update = curtime; | |
6639 | }); | |
6640 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PSET_AVG_EXEC_TIME) | DBG_FUNC_NONE, pset->pset_cluster_id, avg_thread_execution_time, sched_bucket); | |
6641 | } | |
6642 | ||
6643 | #else /* CONFIG_SCHED_EDGE */ | |
cb323159 | 6644 | |
f427ee49 A |
6645 | void |
6646 | sched_update_pset_load_average(processor_set_t pset, __unused uint64_t curtime) | |
6647 | { | |
6648 | int non_rt_load = pset->pset_runq.count; | |
cb323159 | 6649 | int load = ((bit_count(pset->cpu_state_map[PROCESSOR_RUNNING]) + non_rt_load + rt_runq_count(pset)) << PSET_LOAD_NUMERATOR_SHIFT); |
f427ee49 | 6650 | int new_load_average = ((int)pset->load_average + load) >> 1; |
5ba3f43e A |
6651 | |
6652 | pset->load_average = new_load_average; | |
5ba3f43e | 6653 | #if (DEVELOPMENT || DEBUG) |
c6bf4f31 A |
6654 | #if __AMP__ |
6655 | if (pset->pset_cluster_type == PSET_AMP_P) { | |
f427ee49 | 6656 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PSET_LOAD_AVERAGE) | DBG_FUNC_NONE, sched_get_pset_load_average(pset, 0), (bit_count(pset->cpu_state_map[PROCESSOR_RUNNING]) + pset->pset_runq.count + rt_runq_count(pset))); |
c6bf4f31 A |
6657 | } |
6658 | #endif | |
5ba3f43e A |
6659 | #endif |
6660 | } | |
a39ff7e2 | 6661 | |
f427ee49 A |
6662 | void |
6663 | sched_update_pset_avg_execution_time(__unused processor_set_t pset, __unused uint64_t execution_time, __unused uint64_t curtime, __unused sched_bucket_t sched_bucket) | |
6664 | { | |
6665 | } | |
6666 | #endif /* CONFIG_SCHED_EDGE */ | |
6667 | ||
6668 | /* pset is locked */ | |
6669 | static bool | |
6670 | processor_is_fast_track_candidate_for_realtime_thread(processor_set_t pset, processor_t processor) | |
6671 | { | |
6672 | int cpuid = processor->cpu_id; | |
6673 | #if defined(__x86_64__) | |
6674 | if (sched_avoid_cpu0 && (cpuid == 0)) { | |
6675 | return false; | |
6676 | } | |
6677 | #endif | |
6678 | ||
6679 | cpumap_t fasttrack_map = pset_available_cpumap(pset) & ~pset->pending_AST_URGENT_cpu_mask & ~pset->realtime_map; | |
6680 | ||
6681 | return bit_test(fasttrack_map, cpuid); | |
6682 | } | |
6683 | ||
a39ff7e2 A |
6684 | /* pset is locked */ |
6685 | static processor_t | |
f427ee49 | 6686 | choose_processor_for_realtime_thread(processor_set_t pset, processor_t skip_processor, bool consider_secondaries) |
a39ff7e2 | 6687 | { |
0a7de745 A |
6688 | #if defined(__x86_64__) |
6689 | bool avoid_cpu0 = sched_avoid_cpu0 && bit_test(pset->cpu_bitmask, 0); | |
6690 | #else | |
6691 | const bool avoid_cpu0 = false; | |
6692 | #endif | |
6693 | ||
f427ee49 A |
6694 | cpumap_t cpu_map = pset_available_cpumap(pset) & ~pset->pending_AST_URGENT_cpu_mask & ~pset->realtime_map; |
6695 | if (skip_processor) { | |
6696 | bit_clear(cpu_map, skip_processor->cpu_id); | |
6697 | } | |
6698 | ||
6699 | cpumap_t primary_map = cpu_map & pset->primary_map; | |
0a7de745 | 6700 | if (avoid_cpu0) { |
f427ee49 | 6701 | primary_map = bit_ror64(primary_map, 1); |
0a7de745 A |
6702 | } |
6703 | ||
f427ee49 A |
6704 | int rotid = lsb_first(primary_map); |
6705 | if (rotid >= 0) { | |
6706 | int cpuid = avoid_cpu0 ? ((rotid + 1) & 63) : rotid; | |
a39ff7e2 | 6707 | |
a39ff7e2 A |
6708 | processor_t processor = processor_array[cpuid]; |
6709 | ||
a39ff7e2 | 6710 | return processor; |
a39ff7e2 A |
6711 | } |
6712 | ||
f427ee49 A |
6713 | if (!pset->is_SMT || !sched_allow_rt_smt || !consider_secondaries) { |
6714 | goto out; | |
a39ff7e2 A |
6715 | } |
6716 | ||
6717 | /* Consider secondary processors */ | |
f427ee49 | 6718 | cpumap_t secondary_map = cpu_map & ~pset->primary_map; |
0a7de745 A |
6719 | if (avoid_cpu0) { |
6720 | /* Also avoid cpu1 */ | |
f427ee49 | 6721 | secondary_map = bit_ror64(secondary_map, 2); |
0a7de745 | 6722 | } |
f427ee49 A |
6723 | rotid = lsb_first(secondary_map); |
6724 | if (rotid >= 0) { | |
0a7de745 A |
6725 | int cpuid = avoid_cpu0 ? ((rotid + 2) & 63) : rotid; |
6726 | ||
a39ff7e2 A |
6727 | processor_t processor = processor_array[cpuid]; |
6728 | ||
f427ee49 A |
6729 | return processor; |
6730 | } | |
a39ff7e2 | 6731 | |
f427ee49 A |
6732 | out: |
6733 | if (skip_processor) { | |
6734 | return PROCESSOR_NULL; | |
6735 | } | |
a39ff7e2 | 6736 | |
f427ee49 A |
6737 | /* |
6738 | * If we didn't find an obvious processor to choose, but there are still more CPUs | |
6739 | * not already running realtime threads than realtime threads in the realtime run queue, | |
6740 | * this thread belongs in this pset, so choose some other processor in this pset | |
6741 | * to ensure the thread is enqueued here. | |
6742 | */ | |
6743 | cpumap_t non_realtime_map = pset_available_cpumap(pset) & pset->primary_map & ~pset->realtime_map; | |
6744 | if (bit_count(non_realtime_map) > rt_runq_count(pset)) { | |
6745 | cpu_map = non_realtime_map; | |
6746 | assert(cpu_map != 0); | |
6747 | int cpuid = bit_first(cpu_map); | |
6748 | assert(cpuid >= 0); | |
6749 | return processor_array[cpuid]; | |
6750 | } | |
a39ff7e2 | 6751 | |
f427ee49 A |
6752 | if (!pset->is_SMT || !sched_allow_rt_smt || !consider_secondaries) { |
6753 | goto skip_secondaries; | |
6754 | } | |
a39ff7e2 | 6755 | |
f427ee49 A |
6756 | non_realtime_map = pset_available_cpumap(pset) & ~pset->realtime_map; |
6757 | if (bit_count(non_realtime_map) > rt_runq_count(pset)) { | |
6758 | cpu_map = non_realtime_map; | |
6759 | assert(cpu_map != 0); | |
6760 | int cpuid = bit_first(cpu_map); | |
6761 | assert(cpuid >= 0); | |
6762 | return processor_array[cpuid]; | |
a39ff7e2 A |
6763 | } |
6764 | ||
f427ee49 | 6765 | skip_secondaries: |
a39ff7e2 A |
6766 | return PROCESSOR_NULL; |
6767 | } | |
6768 | ||
6769 | /* pset is locked */ | |
6770 | static bool | |
6771 | all_available_primaries_are_running_realtime_threads(processor_set_t pset) | |
6772 | { | |
f427ee49 A |
6773 | cpumap_t cpu_map = pset_available_cpumap(pset) & pset->primary_map & ~pset->realtime_map; |
6774 | return rt_runq_count(pset) > bit_count(cpu_map); | |
0a7de745 A |
6775 | } |
6776 | ||
f427ee49 | 6777 | #if defined(__x86_64__) |
0a7de745 A |
6778 | /* pset is locked */ |
6779 | static bool | |
6780 | these_processors_are_running_realtime_threads(processor_set_t pset, uint64_t these_map) | |
6781 | { | |
f427ee49 A |
6782 | cpumap_t cpu_map = pset_available_cpumap(pset) & these_map & ~pset->realtime_map; |
6783 | return rt_runq_count(pset) > bit_count(cpu_map); | |
a39ff7e2 | 6784 | } |
f427ee49 | 6785 | #endif |
d9a64523 | 6786 | |
0a7de745 A |
6787 | static bool |
6788 | sched_ok_to_run_realtime_thread(processor_set_t pset, processor_t processor) | |
6789 | { | |
6790 | bool ok_to_run_realtime_thread = true; | |
6791 | #if defined(__x86_64__) | |
6792 | if (sched_avoid_cpu0 && processor->cpu_id == 0) { | |
6793 | ok_to_run_realtime_thread = these_processors_are_running_realtime_threads(pset, pset->primary_map & ~0x1); | |
6794 | } else if (sched_avoid_cpu0 && (processor->cpu_id == 1) && processor->is_SMT) { | |
6795 | ok_to_run_realtime_thread = sched_allow_rt_smt && these_processors_are_running_realtime_threads(pset, ~0x2); | |
6796 | } else if (processor->processor_primary != processor) { | |
f427ee49 | 6797 | ok_to_run_realtime_thread = (sched_allow_rt_smt && all_available_primaries_are_running_realtime_threads(pset)); |
0a7de745 A |
6798 | } |
6799 | #else | |
6800 | (void)pset; | |
6801 | (void)processor; | |
6802 | #endif | |
6803 | return ok_to_run_realtime_thread; | |
6804 | } | |
6805 | ||
cb323159 A |
6806 | void |
6807 | sched_pset_made_schedulable(__unused processor_t processor, processor_set_t pset, boolean_t drop_lock) | |
6808 | { | |
6809 | if (drop_lock) { | |
6810 | pset_unlock(pset); | |
6811 | } | |
6812 | } | |
6813 | ||
0a7de745 A |
6814 | void |
6815 | thread_set_no_smt(bool set) | |
6816 | { | |
f427ee49 A |
6817 | if (!system_is_SMT) { |
6818 | /* Not a machine that supports SMT */ | |
6819 | return; | |
6820 | } | |
6821 | ||
0a7de745 | 6822 | thread_t thread = current_thread(); |
d9a64523 | 6823 | |
0a7de745 A |
6824 | spl_t s = splsched(); |
6825 | thread_lock(thread); | |
6826 | if (set) { | |
6827 | thread->sched_flags |= TH_SFLAG_NO_SMT; | |
0a7de745 A |
6828 | } |
6829 | thread_unlock(thread); | |
6830 | splx(s); | |
6831 | } | |
6832 | ||
6833 | bool | |
6834 | thread_get_no_smt(void) | |
6835 | { | |
6836 | return current_thread()->sched_flags & TH_SFLAG_NO_SMT; | |
6837 | } | |
6838 | ||
f427ee49 A |
6839 | extern void task_set_no_smt(task_t); |
6840 | void | |
6841 | task_set_no_smt(task_t task) | |
6842 | { | |
6843 | if (!system_is_SMT) { | |
6844 | /* Not a machine that supports SMT */ | |
6845 | return; | |
6846 | } | |
6847 | ||
6848 | if (task == TASK_NULL) { | |
6849 | task = current_task(); | |
6850 | } | |
6851 | ||
6852 | task_lock(task); | |
6853 | task->t_flags |= TF_NO_SMT; | |
6854 | task_unlock(task); | |
6855 | } | |
6856 | ||
0a7de745 A |
6857 | #if DEBUG || DEVELOPMENT |
6858 | extern void sysctl_task_set_no_smt(char no_smt); | |
6859 | void | |
6860 | sysctl_task_set_no_smt(char no_smt) | |
6861 | { | |
f427ee49 A |
6862 | if (!system_is_SMT) { |
6863 | /* Not a machine that supports SMT */ | |
6864 | return; | |
6865 | } | |
6866 | ||
6867 | task_t task = current_task(); | |
0a7de745 | 6868 | |
f427ee49 | 6869 | task_lock(task); |
0a7de745 A |
6870 | if (no_smt == '1') { |
6871 | task->t_flags |= TF_NO_SMT; | |
0a7de745 | 6872 | } |
f427ee49 | 6873 | task_unlock(task); |
0a7de745 A |
6874 | } |
6875 | ||
6876 | extern char sysctl_task_get_no_smt(void); | |
6877 | char | |
6878 | sysctl_task_get_no_smt(void) | |
6879 | { | |
f427ee49 | 6880 | task_t task = current_task(); |
0a7de745 A |
6881 | |
6882 | if (task->t_flags & TF_NO_SMT) { | |
6883 | return '1'; | |
6884 | } | |
6885 | return '0'; | |
6886 | } | |
cb323159 | 6887 | #endif /* DEVELOPMENT || DEBUG */ |
94ff46dc A |
6888 | |
6889 | ||
6890 | __private_extern__ void | |
f427ee49 | 6891 | thread_bind_cluster_type(thread_t thread, char cluster_type, bool soft_bound) |
94ff46dc | 6892 | { |
c6bf4f31 | 6893 | #if __AMP__ |
c6bf4f31 A |
6894 | spl_t s = splsched(); |
6895 | thread_lock(thread); | |
f427ee49 A |
6896 | thread->sched_flags &= ~(TH_SFLAG_ECORE_ONLY | TH_SFLAG_PCORE_ONLY | TH_SFLAG_BOUND_SOFT); |
6897 | if (soft_bound) { | |
6898 | thread->sched_flags |= TH_SFLAG_BOUND_SOFT; | |
6899 | } | |
c6bf4f31 A |
6900 | switch (cluster_type) { |
6901 | case 'e': | |
6902 | case 'E': | |
6903 | thread->sched_flags |= TH_SFLAG_ECORE_ONLY; | |
6904 | break; | |
6905 | case 'p': | |
6906 | case 'P': | |
6907 | thread->sched_flags |= TH_SFLAG_PCORE_ONLY; | |
6908 | break; | |
6909 | default: | |
6910 | break; | |
6911 | } | |
6912 | thread_unlock(thread); | |
6913 | splx(s); | |
6914 | ||
f427ee49 A |
6915 | if (thread == current_thread()) { |
6916 | thread_block(THREAD_CONTINUE_NULL); | |
6917 | } | |
c6bf4f31 | 6918 | #else /* __AMP__ */ |
f427ee49 | 6919 | (void)thread; |
94ff46dc | 6920 | (void)cluster_type; |
f427ee49 | 6921 | (void)soft_bound; |
c6bf4f31 | 6922 | #endif /* __AMP__ */ |
94ff46dc | 6923 | } |
c3c9b80d A |
6924 | |
6925 | #if DEVELOPMENT || DEBUG | |
6926 | extern int32_t sysctl_get_bound_cpuid(void); | |
6927 | int32_t | |
6928 | sysctl_get_bound_cpuid(void) | |
6929 | { | |
6930 | int32_t cpuid = -1; | |
6931 | thread_t self = current_thread(); | |
6932 | ||
6933 | processor_t processor = self->bound_processor; | |
6934 | if (processor == NULL) { | |
6935 | cpuid = -1; | |
6936 | } else { | |
6937 | cpuid = processor->cpu_id; | |
6938 | } | |
6939 | ||
6940 | return cpuid; | |
6941 | } | |
6942 | ||
6943 | extern kern_return_t sysctl_thread_bind_cpuid(int32_t cpuid); | |
6944 | kern_return_t | |
6945 | sysctl_thread_bind_cpuid(int32_t cpuid) | |
6946 | { | |
6947 | processor_t processor = PROCESSOR_NULL; | |
6948 | ||
6949 | if (cpuid == -1) { | |
6950 | goto unbind; | |
6951 | } | |
6952 | ||
6953 | if (cpuid < 0 || cpuid >= MAX_SCHED_CPUS) { | |
6954 | return KERN_INVALID_VALUE; | |
6955 | } | |
6956 | ||
6957 | processor = processor_array[cpuid]; | |
6958 | if (processor == PROCESSOR_NULL) { | |
6959 | return KERN_INVALID_VALUE; | |
6960 | } | |
6961 | ||
6962 | #if __AMP__ | |
6963 | ||
6964 | thread_t thread = current_thread(); | |
6965 | ||
6966 | if (thread->sched_flags & (TH_SFLAG_ECORE_ONLY | TH_SFLAG_PCORE_ONLY)) { | |
6967 | if ((thread->sched_flags & TH_SFLAG_BOUND_SOFT) == 0) { | |
6968 | /* Cannot hard-bind an already hard-cluster-bound thread */ | |
6969 | return KERN_NOT_SUPPORTED; | |
6970 | } | |
6971 | } | |
6972 | ||
6973 | #endif /* __AMP__ */ | |
6974 | ||
6975 | unbind: | |
6976 | thread_bind(processor); | |
6977 | ||
6978 | thread_block(THREAD_CONTINUE_NULL); | |
6979 | return KERN_SUCCESS; | |
6980 | } | |
6981 | #endif /* DEVELOPMENT || DEBUG */ |