]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
39037602 | 2 | * Copyright (c) 2000-2016 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_FREE_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: sched_prim.c | |
60 | * Author: Avadis Tevanian, Jr. | |
61 | * Date: 1986 | |
62 | * | |
63 | * Scheduling primitives | |
64 | * | |
65 | */ | |
66 | ||
67 | #include <debug.h> | |
91447636 A |
68 | |
69 | #include <mach/mach_types.h> | |
1c79356b | 70 | #include <mach/machine.h> |
91447636 A |
71 | #include <mach/policy.h> |
72 | #include <mach/sync_policy.h> | |
6d2010ae | 73 | #include <mach/thread_act.h> |
91447636 | 74 | |
1c79356b A |
75 | #include <machine/machine_routines.h> |
76 | #include <machine/sched_param.h> | |
0c530ab8 | 77 | #include <machine/machine_cpu.h> |
6d2010ae | 78 | #include <machine/machlimits.h> |
91447636 | 79 | |
fe8ab488 A |
80 | #ifdef CONFIG_MACH_APPROXIMATE_TIME |
81 | #include <machine/commpage.h> | |
82 | #endif | |
83 | ||
91447636 | 84 | #include <kern/kern_types.h> |
39037602 | 85 | #include <kern/backtrace.h> |
1c79356b A |
86 | #include <kern/clock.h> |
87 | #include <kern/counters.h> | |
88 | #include <kern/cpu_number.h> | |
89 | #include <kern/cpu_data.h> | |
3e170ce0 | 90 | #include <kern/smp.h> |
91447636 | 91 | #include <kern/debug.h> |
1c79356b A |
92 | #include <kern/macro_help.h> |
93 | #include <kern/machine.h> | |
94 | #include <kern/misc_protos.h> | |
95 | #include <kern/processor.h> | |
96 | #include <kern/queue.h> | |
97 | #include <kern/sched.h> | |
98 | #include <kern/sched_prim.h> | |
fe8ab488 | 99 | #include <kern/sfi.h> |
1c79356b A |
100 | #include <kern/syscall_subr.h> |
101 | #include <kern/task.h> | |
102 | #include <kern/thread.h> | |
316670eb | 103 | #include <kern/ledger.h> |
39236c6e | 104 | #include <kern/timer_queue.h> |
3e170ce0 | 105 | #include <kern/waitq.h> |
39037602 | 106 | #include <kern/policy_internal.h> |
91447636 | 107 | |
1c79356b A |
108 | #include <vm/pmap.h> |
109 | #include <vm/vm_kern.h> | |
110 | #include <vm/vm_map.h> | |
91447636 | 111 | |
b0d623f7 A |
112 | #include <mach/sdt.h> |
113 | ||
1c79356b | 114 | #include <sys/kdebug.h> |
39037602 A |
115 | #include <kperf/kperf.h> |
116 | #include <kern/kpc.h> | |
1c79356b | 117 | |
0c530ab8 | 118 | #include <kern/pms.h> |
3a60a9f5 | 119 | |
6d2010ae | 120 | struct rt_queue rt_runq; |
2d21ac55 | 121 | |
3e170ce0 A |
122 | uintptr_t sched_thread_on_rt_queue = (uintptr_t)0xDEAFBEE0; |
123 | ||
124 | /* Lock RT runq, must be done with interrupts disabled (under splsched()) */ | |
125 | #if __SMP__ | |
126 | decl_simple_lock_data(static,rt_lock); | |
127 | #define rt_lock_init() simple_lock_init(&rt_lock, 0) | |
128 | #define rt_lock_lock() simple_lock(&rt_lock) | |
129 | #define rt_lock_unlock() simple_unlock(&rt_lock) | |
130 | #else | |
131 | #define rt_lock_init() do { } while(0) | |
132 | #define rt_lock_lock() do { } while(0) | |
133 | #define rt_lock_unlock() do { } while(0) | |
134 | #endif | |
6d2010ae | 135 | |
0b4e3aa0 | 136 | #define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */ |
1c79356b A |
137 | int default_preemption_rate = DEFAULT_PREEMPTION_RATE; |
138 | ||
316670eb A |
139 | #define DEFAULT_BG_PREEMPTION_RATE 400 /* (1/s) */ |
140 | int default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE; | |
141 | ||
0b4e3aa0 A |
142 | #define MAX_UNSAFE_QUANTA 800 |
143 | int max_unsafe_quanta = MAX_UNSAFE_QUANTA; | |
144 | ||
145 | #define MAX_POLL_QUANTA 2 | |
146 | int max_poll_quanta = MAX_POLL_QUANTA; | |
147 | ||
148 | #define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */ | |
149 | int sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT; | |
150 | ||
55e303ae A |
151 | uint64_t max_poll_computation; |
152 | ||
6d2010ae A |
153 | uint64_t max_unsafe_computation; |
154 | uint64_t sched_safe_duration; | |
155 | ||
fe8ab488 | 156 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 157 | |
55e303ae A |
158 | uint32_t std_quantum; |
159 | uint32_t min_std_quantum; | |
316670eb | 160 | uint32_t bg_quantum; |
55e303ae | 161 | |
91447636 | 162 | uint32_t std_quantum_us; |
316670eb | 163 | uint32_t bg_quantum_us; |
91447636 | 164 | |
fe8ab488 | 165 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
6d2010ae A |
166 | |
167 | uint32_t thread_depress_time; | |
168 | uint32_t default_timeshare_computation; | |
169 | uint32_t default_timeshare_constraint; | |
170 | ||
55e303ae A |
171 | uint32_t max_rt_quantum; |
172 | uint32_t min_rt_quantum; | |
173 | ||
fe8ab488 | 174 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 175 | |
1c79356b | 176 | unsigned sched_tick; |
91447636 | 177 | uint32_t sched_tick_interval; |
1c79356b | 178 | |
39037602 | 179 | uint32_t sched_pri_shifts[TH_BUCKET_MAX]; |
2d21ac55 | 180 | uint32_t sched_fixed_shift; |
39236c6e A |
181 | |
182 | uint32_t sched_decay_usage_age_factor = 1; /* accelerate 5/8^n usage aging */ | |
2d21ac55 | 183 | |
fe8ab488 A |
184 | /* Allow foreground to decay past default to resolve inversions */ |
185 | #define DEFAULT_DECAY_BAND_LIMIT ((BASEPRI_FOREGROUND - BASEPRI_DEFAULT) + 2) | |
186 | int sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT; | |
6d2010ae | 187 | |
4b17d6b6 A |
188 | /* Defaults for timer deadline profiling */ |
189 | #define TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT 2000000 /* Timers with deadlines <= | |
39236c6e | 190 | * 2ms */ |
4b17d6b6 | 191 | #define TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT 5000000 /* Timers with deadlines |
39236c6e A |
192 | <= 5ms */ |
193 | ||
4b17d6b6 A |
194 | uint64_t timer_deadline_tracking_bin_1; |
195 | uint64_t timer_deadline_tracking_bin_2; | |
196 | ||
490019cf A |
197 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
198 | ||
39236c6e A |
199 | thread_t sched_maintenance_thread; |
200 | ||
fe8ab488 | 201 | |
6d2010ae A |
202 | uint64_t sched_one_second_interval; |
203 | ||
1c79356b | 204 | /* Forwards */ |
6d2010ae | 205 | |
fe8ab488 | 206 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 207 | |
39236c6e A |
208 | static void load_shift_init(void); |
209 | static void preempt_pri_init(void); | |
2d21ac55 | 210 | |
fe8ab488 | 211 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
c910b4d9 | 212 | |
6d2010ae A |
213 | static thread_t thread_select( |
214 | thread_t thread, | |
fe8ab488 A |
215 | processor_t processor, |
216 | ast_t reason); | |
b0d623f7 | 217 | |
6d2010ae | 218 | #if CONFIG_SCHED_IDLE_IN_PLACE |
2d21ac55 A |
219 | static thread_t thread_select_idle( |
220 | thread_t thread, | |
221 | processor_t processor); | |
6d2010ae | 222 | #endif |
1c79356b | 223 | |
6d2010ae | 224 | thread_t processor_idle( |
2d21ac55 A |
225 | thread_t thread, |
226 | processor_t processor); | |
91447636 | 227 | |
39236c6e A |
228 | ast_t |
229 | csw_check_locked( processor_t processor, | |
fe8ab488 A |
230 | processor_set_t pset, |
231 | ast_t check_reason); | |
39236c6e | 232 | |
6d2010ae A |
233 | static void processor_setrun( |
234 | processor_t processor, | |
235 | thread_t thread, | |
236 | integer_t options); | |
237 | ||
6d2010ae | 238 | static void |
39236c6e | 239 | sched_realtime_init(void); |
6d2010ae A |
240 | |
241 | static void | |
242 | sched_realtime_timebase_init(void); | |
243 | ||
4b17d6b6 A |
244 | static void |
245 | sched_timer_deadline_tracking_init(void); | |
246 | ||
2d21ac55 A |
247 | #if DEBUG |
248 | extern int debug_task; | |
249 | #define TLOG(a, fmt, args...) if(debug_task & a) kprintf(fmt, ## args) | |
250 | #else | |
251 | #define TLOG(a, fmt, args...) do {} while (0) | |
252 | #endif | |
253 | ||
3e170ce0 A |
254 | static processor_t |
255 | thread_bind_internal( | |
256 | thread_t thread, | |
257 | processor_t processor); | |
1c79356b | 258 | |
3e170ce0 A |
259 | static void |
260 | sched_vm_group_maintenance(void); | |
1c79356b | 261 | |
fe8ab488 | 262 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
91447636 | 263 | int8_t sched_load_shifts[NRQS]; |
39037602 | 264 | bitmap_t sched_preempt_pri[BITMAP_LEN(NRQS)]; |
fe8ab488 | 265 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
6d2010ae | 266 | |
6d2010ae A |
267 | const struct sched_dispatch_table *sched_current_dispatch = NULL; |
268 | ||
269 | /* | |
270 | * Statically allocate a buffer to hold the longest possible | |
271 | * scheduler description string, as currently implemented. | |
272 | * bsd/kern/kern_sysctl.c has a corresponding definition in bsd/ | |
273 | * to export to userspace via sysctl(3). If either version | |
274 | * changes, update the other. | |
275 | * | |
276 | * Note that in addition to being an upper bound on the strings | |
277 | * in the kernel, it's also an exact parameter to PE_get_default(), | |
278 | * which interrogates the device tree on some platforms. That | |
279 | * API requires the caller know the exact size of the device tree | |
280 | * property, so we need both a legacy size (32) and the current size | |
281 | * (48) to deal with old and new device trees. The device tree property | |
282 | * is similarly padded to a fixed size so that the same kernel image | |
283 | * can run on multiple devices with different schedulers configured | |
284 | * in the device tree. | |
285 | */ | |
6d2010ae | 286 | char sched_string[SCHED_STRING_MAX_LENGTH]; |
3e170ce0 A |
287 | |
288 | uint32_t sched_debug_flags; | |
39236c6e A |
289 | |
290 | /* Global flag which indicates whether Background Stepper Context is enabled */ | |
291 | static int cpu_throttle_enabled = 1; | |
91447636 | 292 | |
1c79356b A |
293 | void |
294 | sched_init(void) | |
6d2010ae A |
295 | { |
296 | char sched_arg[SCHED_STRING_MAX_LENGTH] = { '\0' }; | |
297 | ||
298 | /* Check for runtime selection of the scheduler algorithm */ | |
299 | if (!PE_parse_boot_argn("sched", sched_arg, sizeof (sched_arg))) { | |
300 | /* If no boot-args override, look in device tree */ | |
301 | if (!PE_get_default("kern.sched", sched_arg, | |
302 | SCHED_STRING_MAX_LENGTH)) { | |
303 | sched_arg[0] = '\0'; | |
304 | } | |
305 | } | |
306 | ||
fe8ab488 A |
307 | |
308 | if (!PE_parse_boot_argn("sched_pri_decay_limit", &sched_pri_decay_band_limit, sizeof(sched_pri_decay_band_limit))) { | |
309 | /* No boot-args, check in device tree */ | |
310 | if (!PE_get_default("kern.sched_pri_decay_limit", | |
311 | &sched_pri_decay_band_limit, | |
312 | sizeof(sched_pri_decay_band_limit))) { | |
313 | /* Allow decay all the way to normal limits */ | |
314 | sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT; | |
315 | } | |
316 | } | |
317 | ||
318 | kprintf("Setting scheduler priority decay band limit %d\n", sched_pri_decay_band_limit); | |
319 | ||
6d2010ae A |
320 | if (strlen(sched_arg) > 0) { |
321 | if (0) { | |
322 | /* Allow pattern below */ | |
323 | #if defined(CONFIG_SCHED_TRADITIONAL) | |
3e170ce0 | 324 | } else if (0 == strcmp(sched_arg, sched_traditional_dispatch.sched_name)) { |
6d2010ae | 325 | sched_current_dispatch = &sched_traditional_dispatch; |
3e170ce0 | 326 | } else if (0 == strcmp(sched_arg, sched_traditional_with_pset_runqueue_dispatch.sched_name)) { |
6d2010ae | 327 | sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch; |
6d2010ae A |
328 | #endif |
329 | #if defined(CONFIG_SCHED_PROTO) | |
3e170ce0 | 330 | } else if (0 == strcmp(sched_arg, sched_proto_dispatch.sched_name)) { |
6d2010ae | 331 | sched_current_dispatch = &sched_proto_dispatch; |
6d2010ae A |
332 | #endif |
333 | #if defined(CONFIG_SCHED_GRRR) | |
3e170ce0 | 334 | } else if (0 == strcmp(sched_arg, sched_grrr_dispatch.sched_name)) { |
6d2010ae | 335 | sched_current_dispatch = &sched_grrr_dispatch; |
6d2010ae | 336 | #endif |
fe8ab488 | 337 | #if defined(CONFIG_SCHED_MULTIQ) |
3e170ce0 | 338 | } else if (0 == strcmp(sched_arg, sched_multiq_dispatch.sched_name)) { |
fe8ab488 | 339 | sched_current_dispatch = &sched_multiq_dispatch; |
3e170ce0 | 340 | } else if (0 == strcmp(sched_arg, sched_dualq_dispatch.sched_name)) { |
fe8ab488 | 341 | sched_current_dispatch = &sched_dualq_dispatch; |
6d2010ae A |
342 | #endif |
343 | } else { | |
fe8ab488 A |
344 | #if defined(CONFIG_SCHED_TRADITIONAL) |
345 | printf("Unrecognized scheduler algorithm: %s\n", sched_arg); | |
3e170ce0 | 346 | printf("Scheduler: Using instead: %s\n", sched_traditional_with_pset_runqueue_dispatch.sched_name); |
fe8ab488 | 347 | sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch; |
fe8ab488 | 348 | #else |
6d2010ae | 349 | panic("Unrecognized scheduler algorithm: %s", sched_arg); |
fe8ab488 | 350 | #endif |
6d2010ae | 351 | } |
3e170ce0 | 352 | kprintf("Scheduler: Runtime selection of %s\n", SCHED(sched_name)); |
6d2010ae | 353 | } else { |
fe8ab488 A |
354 | #if defined(CONFIG_SCHED_MULTIQ) |
355 | sched_current_dispatch = &sched_multiq_dispatch; | |
fe8ab488 | 356 | #elif defined(CONFIG_SCHED_TRADITIONAL) |
39236c6e | 357 | sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch; |
6d2010ae A |
358 | #elif defined(CONFIG_SCHED_PROTO) |
359 | sched_current_dispatch = &sched_proto_dispatch; | |
6d2010ae A |
360 | #elif defined(CONFIG_SCHED_GRRR) |
361 | sched_current_dispatch = &sched_grrr_dispatch; | |
6d2010ae A |
362 | #else |
363 | #error No default scheduler implementation | |
364 | #endif | |
3e170ce0 A |
365 | kprintf("Scheduler: Default of %s\n", SCHED(sched_name)); |
366 | } | |
367 | ||
368 | strlcpy(sched_string, SCHED(sched_name), sizeof(sched_string)); | |
369 | ||
370 | if (PE_parse_boot_argn("sched_debug", &sched_debug_flags, sizeof(sched_debug_flags))) { | |
371 | kprintf("Scheduler: Debug flags 0x%08x\n", sched_debug_flags); | |
6d2010ae A |
372 | } |
373 | ||
374 | SCHED(init)(); | |
6d2010ae A |
375 | sched_realtime_init(); |
376 | ast_init(); | |
4b17d6b6 | 377 | sched_timer_deadline_tracking_init(); |
39236c6e | 378 | |
6d2010ae A |
379 | SCHED(pset_init)(&pset0); |
380 | SCHED(processor_init)(master_processor); | |
381 | } | |
382 | ||
383 | void | |
384 | sched_timebase_init(void) | |
385 | { | |
386 | uint64_t abstime; | |
387 | ||
388 | clock_interval_to_absolutetime_interval(1, NSEC_PER_SEC, &abstime); | |
389 | sched_one_second_interval = abstime; | |
390 | ||
391 | SCHED(timebase_init)(); | |
392 | sched_realtime_timebase_init(); | |
393 | } | |
394 | ||
fe8ab488 | 395 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 396 | |
fe8ab488 | 397 | void |
3e170ce0 | 398 | sched_timeshare_init(void) |
1c79356b A |
399 | { |
400 | /* | |
0b4e3aa0 A |
401 | * Calculate the timeslicing quantum |
402 | * in us. | |
1c79356b A |
403 | */ |
404 | if (default_preemption_rate < 1) | |
405 | default_preemption_rate = DEFAULT_PREEMPTION_RATE; | |
0b4e3aa0 | 406 | std_quantum_us = (1000 * 1000) / default_preemption_rate; |
1c79356b | 407 | |
0b4e3aa0 | 408 | printf("standard timeslicing quantum is %d us\n", std_quantum_us); |
1c79356b | 409 | |
316670eb A |
410 | if (default_bg_preemption_rate < 1) |
411 | default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE; | |
412 | bg_quantum_us = (1000 * 1000) / default_bg_preemption_rate; | |
413 | ||
414 | printf("standard background quantum is %d us\n", bg_quantum_us); | |
415 | ||
91447636 | 416 | load_shift_init(); |
4a3eedf9 | 417 | preempt_pri_init(); |
1c79356b | 418 | sched_tick = 0; |
1c79356b A |
419 | } |
420 | ||
fe8ab488 | 421 | void |
3e170ce0 | 422 | sched_timeshare_timebase_init(void) |
55e303ae | 423 | { |
91447636 A |
424 | uint64_t abstime; |
425 | uint32_t shift; | |
55e303ae | 426 | |
91447636 | 427 | /* standard timeslicing quantum */ |
55e303ae A |
428 | clock_interval_to_absolutetime_interval( |
429 | std_quantum_us, NSEC_PER_USEC, &abstime); | |
430 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
b0d623f7 | 431 | std_quantum = (uint32_t)abstime; |
55e303ae | 432 | |
91447636 | 433 | /* smallest remaining quantum (250 us) */ |
55e303ae A |
434 | clock_interval_to_absolutetime_interval(250, NSEC_PER_USEC, &abstime); |
435 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
b0d623f7 | 436 | min_std_quantum = (uint32_t)abstime; |
55e303ae | 437 | |
316670eb A |
438 | /* quantum for background tasks */ |
439 | clock_interval_to_absolutetime_interval( | |
440 | bg_quantum_us, NSEC_PER_USEC, &abstime); | |
441 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
442 | bg_quantum = (uint32_t)abstime; | |
443 | ||
91447636 A |
444 | /* scheduler tick interval */ |
445 | clock_interval_to_absolutetime_interval(USEC_PER_SEC >> SCHED_TICK_SHIFT, | |
446 | NSEC_PER_USEC, &abstime); | |
cf7d32b8 | 447 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
b0d623f7 | 448 | sched_tick_interval = (uint32_t)abstime; |
55e303ae | 449 | |
91447636 A |
450 | /* |
451 | * Compute conversion factor from usage to | |
452 | * timesharing priorities with 5/8 ** n aging. | |
453 | */ | |
454 | abstime = (abstime * 5) / 3; | |
455 | for (shift = 0; abstime > BASEPRI_DEFAULT; ++shift) | |
456 | abstime >>= 1; | |
2d21ac55 | 457 | sched_fixed_shift = shift; |
91447636 | 458 | |
39037602 A |
459 | for (uint32_t i = 0 ; i < TH_BUCKET_MAX ; i++) |
460 | sched_pri_shifts[i] = INT8_MAX; | |
461 | ||
fe8ab488 A |
462 | max_unsafe_computation = ((uint64_t)max_unsafe_quanta) * std_quantum; |
463 | sched_safe_duration = 2 * ((uint64_t)max_unsafe_quanta) * std_quantum; | |
39037602 | 464 | |
fe8ab488 | 465 | max_poll_computation = ((uint64_t)max_poll_quanta) * std_quantum; |
6d2010ae A |
466 | thread_depress_time = 1 * std_quantum; |
467 | default_timeshare_computation = std_quantum / 2; | |
468 | default_timeshare_constraint = std_quantum; | |
469 | ||
470 | } | |
471 | ||
fe8ab488 A |
472 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
473 | ||
6d2010ae A |
474 | static void |
475 | sched_realtime_init(void) | |
476 | { | |
3e170ce0 | 477 | rt_lock_init(); |
6d2010ae A |
478 | |
479 | rt_runq.count = 0; | |
480 | queue_init(&rt_runq.queue); | |
55e303ae A |
481 | } |
482 | ||
6d2010ae A |
483 | static void |
484 | sched_realtime_timebase_init(void) | |
485 | { | |
486 | uint64_t abstime; | |
487 | ||
488 | /* smallest rt computaton (50 us) */ | |
489 | clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime); | |
490 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
491 | min_rt_quantum = (uint32_t)abstime; | |
492 | ||
493 | /* maximum rt computation (50 ms) */ | |
494 | clock_interval_to_absolutetime_interval( | |
495 | 50, 1000*NSEC_PER_USEC, &abstime); | |
496 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
497 | max_rt_quantum = (uint32_t)abstime; | |
498 | ||
499 | } | |
500 | ||
fe8ab488 | 501 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 502 | |
91447636 A |
503 | /* |
504 | * Set up values for timeshare | |
505 | * loading factors. | |
506 | */ | |
507 | static void | |
508 | load_shift_init(void) | |
509 | { | |
510 | int8_t k, *p = sched_load_shifts; | |
511 | uint32_t i, j; | |
512 | ||
39236c6e A |
513 | uint32_t sched_decay_penalty = 1; |
514 | ||
515 | if (PE_parse_boot_argn("sched_decay_penalty", &sched_decay_penalty, sizeof (sched_decay_penalty))) { | |
516 | kprintf("Overriding scheduler decay penalty %u\n", sched_decay_penalty); | |
517 | } | |
518 | ||
519 | if (PE_parse_boot_argn("sched_decay_usage_age_factor", &sched_decay_usage_age_factor, sizeof (sched_decay_usage_age_factor))) { | |
520 | kprintf("Overriding scheduler decay usage age factor %u\n", sched_decay_usage_age_factor); | |
521 | } | |
522 | ||
39236c6e A |
523 | if (sched_decay_penalty == 0) { |
524 | /* | |
525 | * There is no penalty for timeshare threads for using too much | |
526 | * CPU, so set all load shifts to INT8_MIN. Even under high load, | |
527 | * sched_pri_shift will be >INT8_MAX, and there will be no | |
528 | * penalty applied to threads (nor will sched_usage be updated per | |
529 | * thread). | |
530 | */ | |
531 | for (i = 0; i < NRQS; i++) { | |
532 | sched_load_shifts[i] = INT8_MIN; | |
533 | } | |
534 | ||
535 | return; | |
536 | } | |
537 | ||
91447636 A |
538 | *p++ = INT8_MIN; *p++ = 0; |
539 | ||
39236c6e A |
540 | /* |
541 | * For a given system load "i", the per-thread priority | |
542 | * penalty per quantum of CPU usage is ~2^k priority | |
543 | * levels. "sched_decay_penalty" can cause more | |
544 | * array entries to be filled with smaller "k" values | |
545 | */ | |
546 | for (i = 2, j = 1 << sched_decay_penalty, k = 1; i < NRQS; ++k) { | |
547 | for (j <<= 1; (i < j) && (i < NRQS); ++i) | |
91447636 A |
548 | *p++ = k; |
549 | } | |
550 | } | |
551 | ||
4a3eedf9 A |
552 | static void |
553 | preempt_pri_init(void) | |
554 | { | |
39037602 | 555 | bitmap_t *p = sched_preempt_pri; |
4a3eedf9 | 556 | |
39037602 A |
557 | for (int i = BASEPRI_FOREGROUND; i < MINPRI_KERNEL; ++i) |
558 | bitmap_set(p, i); | |
4a3eedf9 | 559 | |
39037602 A |
560 | for (int i = BASEPRI_PREEMPT; i <= MAXPRI; ++i) |
561 | bitmap_set(p, i); | |
4a3eedf9 A |
562 | } |
563 | ||
fe8ab488 | 564 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
6d2010ae | 565 | |
1c79356b | 566 | /* |
0b4e3aa0 | 567 | * Thread wait timer expiration. |
1c79356b A |
568 | */ |
569 | void | |
570 | thread_timer_expire( | |
91447636 A |
571 | void *p0, |
572 | __unused void *p1) | |
1c79356b A |
573 | { |
574 | thread_t thread = p0; | |
575 | spl_t s; | |
576 | ||
39037602 A |
577 | assert_thread_magic(thread); |
578 | ||
1c79356b | 579 | s = splsched(); |
55e303ae | 580 | thread_lock(thread); |
91447636 | 581 | if (--thread->wait_timer_active == 0) { |
0b4e3aa0 A |
582 | if (thread->wait_timer_is_set) { |
583 | thread->wait_timer_is_set = FALSE; | |
55e303ae | 584 | clear_wait_internal(thread, THREAD_TIMED_OUT); |
0b4e3aa0 | 585 | } |
1c79356b | 586 | } |
55e303ae | 587 | thread_unlock(thread); |
1c79356b A |
588 | splx(s); |
589 | } | |
590 | ||
1c79356b | 591 | /* |
91447636 A |
592 | * thread_unblock: |
593 | * | |
594 | * Unblock thread on wake up. | |
595 | * | |
3e170ce0 | 596 | * Returns TRUE if the thread should now be placed on the runqueue. |
91447636 A |
597 | * |
598 | * Thread must be locked. | |
3e170ce0 A |
599 | * |
600 | * Called at splsched(). | |
1c79356b | 601 | */ |
91447636 A |
602 | boolean_t |
603 | thread_unblock( | |
604 | thread_t thread, | |
605 | wait_result_t wresult) | |
1c79356b | 606 | { |
3e170ce0 | 607 | boolean_t ready_for_runq = FALSE; |
4b17d6b6 | 608 | thread_t cthread = current_thread(); |
fe8ab488 | 609 | uint32_t new_run_count; |
0b4e3aa0 | 610 | |
91447636 | 611 | /* |
2d21ac55 | 612 | * Set wait_result. |
91447636 A |
613 | */ |
614 | thread->wait_result = wresult; | |
1c79356b | 615 | |
91447636 | 616 | /* |
2d21ac55 | 617 | * Cancel pending wait timer. |
91447636 | 618 | */ |
1c79356b A |
619 | if (thread->wait_timer_is_set) { |
620 | if (timer_call_cancel(&thread->wait_timer)) | |
621 | thread->wait_timer_active--; | |
622 | thread->wait_timer_is_set = FALSE; | |
623 | } | |
624 | ||
91447636 | 625 | /* |
2d21ac55 A |
626 | * Update scheduling state: not waiting, |
627 | * set running. | |
91447636 A |
628 | */ |
629 | thread->state &= ~(TH_WAIT|TH_UNINT); | |
1c79356b | 630 | |
91447636 A |
631 | if (!(thread->state & TH_RUN)) { |
632 | thread->state |= TH_RUN; | |
3e170ce0 A |
633 | thread->last_made_runnable_time = mach_approximate_time(); |
634 | ||
635 | ready_for_runq = TRUE; | |
1c79356b | 636 | |
2d21ac55 | 637 | (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread); |
1c79356b | 638 | |
39037602 | 639 | /* Update the runnable thread count */ |
fe8ab488 | 640 | new_run_count = sched_run_incr(thread); |
3e170ce0 | 641 | } else { |
2d21ac55 | 642 | /* |
39037602 A |
643 | * Either the thread is idling in place on another processor, |
644 | * or it hasn't finished context switching yet. | |
2d21ac55 | 645 | */ |
6d2010ae | 646 | #if CONFIG_SCHED_IDLE_IN_PLACE |
2d21ac55 A |
647 | if (thread->state & TH_IDLE) { |
648 | processor_t processor = thread->last_processor; | |
649 | ||
650 | if (processor != current_processor()) | |
651 | machine_signal_idle(processor); | |
652 | } | |
6d2010ae A |
653 | #else |
654 | assert((thread->state & TH_IDLE) == 0); | |
655 | #endif | |
39037602 A |
656 | /* |
657 | * The run count is only dropped after the context switch completes | |
658 | * and the thread is still waiting, so we should not run_incr here | |
659 | */ | |
660 | new_run_count = sched_run_buckets[TH_BUCKET_RUN]; | |
2d21ac55 | 661 | } |
1c79356b | 662 | |
3e170ce0 | 663 | |
91447636 A |
664 | /* |
665 | * Calculate deadline for real-time threads. | |
666 | */ | |
6d2010ae | 667 | if (thread->sched_mode == TH_MODE_REALTIME) { |
3e170ce0 | 668 | uint64_t ctime; |
fe8ab488 A |
669 | |
670 | ctime = mach_absolute_time(); | |
671 | thread->realtime.deadline = thread->realtime.constraint + ctime; | |
0b4e3aa0 A |
672 | } |
673 | ||
91447636 A |
674 | /* |
675 | * Clear old quantum, fail-safe computation, etc. | |
676 | */ | |
fe8ab488 | 677 | thread->quantum_remaining = 0; |
91447636 A |
678 | thread->computation_metered = 0; |
679 | thread->reason = AST_NONE; | |
813fb2f6 | 680 | thread->block_hint = kThreadWaitNone; |
1c79356b | 681 | |
4b17d6b6 A |
682 | /* Obtain power-relevant interrupt and "platform-idle exit" statistics. |
683 | * We also account for "double hop" thread signaling via | |
684 | * the thread callout infrastructure. | |
685 | * DRK: consider removing the callout wakeup counters in the future | |
686 | * they're present for verification at the moment. | |
687 | */ | |
688 | boolean_t aticontext, pidle; | |
689 | ml_get_power_state(&aticontext, &pidle); | |
39236c6e A |
690 | |
691 | if (__improbable(aticontext && !(thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT))) { | |
4b17d6b6 | 692 | ledger_credit(thread->t_ledger, task_ledgers.interrupt_wakeups, 1); |
39236c6e A |
693 | DTRACE_SCHED2(iwakeup, struct thread *, thread, struct proc *, thread->task->bsd_info); |
694 | ||
4b17d6b6 | 695 | uint64_t ttd = PROCESSOR_DATA(current_processor(), timer_call_ttd); |
39236c6e | 696 | |
4b17d6b6 A |
697 | if (ttd) { |
698 | if (ttd <= timer_deadline_tracking_bin_1) | |
699 | thread->thread_timer_wakeups_bin_1++; | |
700 | else | |
701 | if (ttd <= timer_deadline_tracking_bin_2) | |
702 | thread->thread_timer_wakeups_bin_2++; | |
703 | } | |
39236c6e | 704 | |
4b17d6b6 A |
705 | if (pidle) { |
706 | ledger_credit(thread->t_ledger, task_ledgers.platform_idle_wakeups, 1); | |
707 | } | |
39236c6e | 708 | |
4b17d6b6 A |
709 | } else if (thread_get_tag_internal(cthread) & THREAD_TAG_CALLOUT) { |
710 | if (cthread->callout_woken_from_icontext) { | |
711 | ledger_credit(thread->t_ledger, task_ledgers.interrupt_wakeups, 1); | |
712 | thread->thread_callout_interrupt_wakeups++; | |
713 | if (cthread->callout_woken_from_platform_idle) { | |
714 | ledger_credit(thread->t_ledger, task_ledgers.platform_idle_wakeups, 1); | |
715 | thread->thread_callout_platform_idle_wakeups++; | |
716 | } | |
39236c6e A |
717 | |
718 | cthread->callout_woke_thread = TRUE; | |
4b17d6b6 A |
719 | } |
720 | } | |
721 | ||
722 | if (thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT) { | |
39236c6e A |
723 | thread->callout_woken_from_icontext = aticontext; |
724 | thread->callout_woken_from_platform_idle = pidle; | |
725 | thread->callout_woke_thread = FALSE; | |
4b17d6b6 A |
726 | } |
727 | ||
fe8ab488 A |
728 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
729 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE, | |
39037602 A |
730 | (uintptr_t)thread_tid(thread), thread->sched_pri, thread->wait_result, |
731 | sched_run_buckets[TH_BUCKET_RUN], 0); | |
b0d623f7 A |
732 | |
733 | DTRACE_SCHED2(wakeup, struct thread *, thread, struct proc *, thread->task->bsd_info); | |
91447636 | 734 | |
3e170ce0 | 735 | return (ready_for_runq); |
1c79356b A |
736 | } |
737 | ||
738 | /* | |
91447636 | 739 | * Routine: thread_go |
1c79356b | 740 | * Purpose: |
91447636 | 741 | * Unblock and dispatch thread. |
1c79356b A |
742 | * Conditions: |
743 | * thread lock held, IPC locks may be held. | |
744 | * thread must have been pulled from wait queue under same lock hold. | |
3e170ce0 A |
745 | * thread must have been waiting |
746 | * Returns: | |
9bccf70c | 747 | * KERN_SUCCESS - Thread was set running |
3e170ce0 A |
748 | * |
749 | * TODO: This should return void | |
1c79356b | 750 | */ |
9bccf70c | 751 | kern_return_t |
91447636 | 752 | thread_go( |
3e170ce0 A |
753 | thread_t thread, |
754 | wait_result_t wresult) | |
1c79356b | 755 | { |
39037602 A |
756 | assert_thread_magic(thread); |
757 | ||
1c79356b | 758 | assert(thread->at_safe_point == FALSE); |
9bccf70c | 759 | assert(thread->wait_event == NO_EVENT64); |
3e170ce0 | 760 | assert(thread->waitq == NULL); |
1c79356b | 761 | |
3e170ce0 A |
762 | assert(!(thread->state & (TH_TERMINATE|TH_TERMINATE2))); |
763 | assert(thread->state & TH_WAIT); | |
55e303ae | 764 | |
55e303ae | 765 | |
39037602 A |
766 | if (thread_unblock(thread, wresult)) { |
767 | #if SCHED_TRACE_THREAD_WAKEUPS | |
768 | backtrace(&thread->thread_wakeup_bt[0], | |
769 | (sizeof(thread->thread_wakeup_bt)/sizeof(uintptr_t))); | |
770 | #endif | |
3e170ce0 | 771 | thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ); |
39037602 | 772 | } |
3e170ce0 A |
773 | |
774 | return (KERN_SUCCESS); | |
1c79356b A |
775 | } |
776 | ||
9bccf70c A |
777 | /* |
778 | * Routine: thread_mark_wait_locked | |
779 | * Purpose: | |
780 | * Mark a thread as waiting. If, given the circumstances, | |
781 | * it doesn't want to wait (i.e. already aborted), then | |
782 | * indicate that in the return value. | |
783 | * Conditions: | |
784 | * at splsched() and thread is locked. | |
785 | */ | |
786 | __private_extern__ | |
787 | wait_result_t | |
1c79356b | 788 | thread_mark_wait_locked( |
9bccf70c A |
789 | thread_t thread, |
790 | wait_interrupt_t interruptible) | |
1c79356b | 791 | { |
55e303ae | 792 | boolean_t at_safe_point; |
1c79356b | 793 | |
3e170ce0 | 794 | assert(!(thread->state & (TH_WAIT|TH_IDLE|TH_UNINT|TH_TERMINATE2))); |
b0d623f7 | 795 | |
9bccf70c A |
796 | /* |
797 | * The thread may have certain types of interrupts/aborts masked | |
798 | * off. Even if the wait location says these types of interrupts | |
799 | * are OK, we have to honor mask settings (outer-scoped code may | |
800 | * not be able to handle aborts at the moment). | |
801 | */ | |
91447636 A |
802 | if (interruptible > (thread->options & TH_OPT_INTMASK)) |
803 | interruptible = thread->options & TH_OPT_INTMASK; | |
9bccf70c A |
804 | |
805 | at_safe_point = (interruptible == THREAD_ABORTSAFE); | |
806 | ||
55e303ae | 807 | if ( interruptible == THREAD_UNINT || |
6d2010ae | 808 | !(thread->sched_flags & TH_SFLAG_ABORT) || |
55e303ae | 809 | (!at_safe_point && |
6d2010ae | 810 | (thread->sched_flags & TH_SFLAG_ABORTSAFELY))) { |
b0d623f7 | 811 | |
316670eb A |
812 | if ( !(thread->state & TH_TERMINATE)) |
813 | DTRACE_SCHED(sleep); | |
b0d623f7 | 814 | |
9bccf70c A |
815 | thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT); |
816 | thread->at_safe_point = at_safe_point; | |
813fb2f6 A |
817 | |
818 | /* TODO: pass this through assert_wait instead, have | |
819 | * assert_wait just take a struct as an argument */ | |
820 | assert(!thread->block_hint); | |
821 | thread->block_hint = thread->pending_block_hint; | |
822 | thread->pending_block_hint = kThreadWaitNone; | |
823 | ||
9bccf70c | 824 | return (thread->wait_result = THREAD_WAITING); |
9bccf70c | 825 | } |
55e303ae | 826 | else |
6d2010ae A |
827 | if (thread->sched_flags & TH_SFLAG_ABORTSAFELY) |
828 | thread->sched_flags &= ~TH_SFLAG_ABORTED_MASK; | |
813fb2f6 | 829 | thread->pending_block_hint = kThreadWaitNone; |
55e303ae | 830 | |
9bccf70c | 831 | return (thread->wait_result = THREAD_INTERRUPTED); |
1c79356b A |
832 | } |
833 | ||
9bccf70c A |
834 | /* |
835 | * Routine: thread_interrupt_level | |
836 | * Purpose: | |
837 | * Set the maximum interruptible state for the | |
838 | * current thread. The effective value of any | |
839 | * interruptible flag passed into assert_wait | |
840 | * will never exceed this. | |
841 | * | |
842 | * Useful for code that must not be interrupted, | |
843 | * but which calls code that doesn't know that. | |
844 | * Returns: | |
845 | * The old interrupt level for the thread. | |
846 | */ | |
847 | __private_extern__ | |
848 | wait_interrupt_t | |
849 | thread_interrupt_level( | |
850 | wait_interrupt_t new_level) | |
851 | { | |
852 | thread_t thread = current_thread(); | |
91447636 | 853 | wait_interrupt_t result = thread->options & TH_OPT_INTMASK; |
1c79356b | 854 | |
91447636 | 855 | thread->options = (thread->options & ~TH_OPT_INTMASK) | (new_level & TH_OPT_INTMASK); |
1c79356b | 856 | |
91447636 | 857 | return result; |
1c79356b A |
858 | } |
859 | ||
860 | /* | |
861 | * Check to see if an assert wait is possible, without actually doing one. | |
862 | * This is used by debug code in locks and elsewhere to verify that it is | |
863 | * always OK to block when trying to take a blocking lock (since waiting | |
864 | * for the actual assert_wait to catch the case may make it hard to detect | |
865 | * this case. | |
866 | */ | |
867 | boolean_t | |
868 | assert_wait_possible(void) | |
869 | { | |
870 | ||
871 | thread_t thread; | |
1c79356b A |
872 | |
873 | #if DEBUG | |
874 | if(debug_mode) return TRUE; /* Always succeed in debug mode */ | |
875 | #endif | |
876 | ||
877 | thread = current_thread(); | |
878 | ||
3e170ce0 | 879 | return (thread == NULL || waitq_wait_possible(thread)); |
1c79356b A |
880 | } |
881 | ||
882 | /* | |
883 | * assert_wait: | |
884 | * | |
885 | * Assert that the current thread is about to go to | |
886 | * sleep until the specified event occurs. | |
887 | */ | |
9bccf70c | 888 | wait_result_t |
1c79356b A |
889 | assert_wait( |
890 | event_t event, | |
9bccf70c | 891 | wait_interrupt_t interruptible) |
1c79356b | 892 | { |
3e170ce0 A |
893 | if (__improbable(event == NO_EVENT)) |
894 | panic("%s() called with NO_EVENT", __func__); | |
1c79356b | 895 | |
316670eb A |
896 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
897 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, | |
4bd07ac2 | 898 | VM_KERNEL_UNSLIDE_OR_PERM(event), 0, 0, 0, 0); |
316670eb | 899 | |
3e170ce0 A |
900 | struct waitq *waitq; |
901 | waitq = global_eventq(event); | |
902 | return waitq_assert_wait64(waitq, CAST_EVENT64_T(event), interruptible, TIMEOUT_WAIT_FOREVER); | |
9bccf70c A |
903 | } |
904 | ||
39037602 A |
905 | /* |
906 | * assert_wait_queue: | |
907 | * | |
908 | * Return the global waitq for the specified event | |
909 | */ | |
910 | struct waitq * | |
911 | assert_wait_queue( | |
912 | event_t event) | |
913 | { | |
914 | return global_eventq(event); | |
915 | } | |
916 | ||
91447636 A |
917 | wait_result_t |
918 | assert_wait_timeout( | |
919 | event_t event, | |
920 | wait_interrupt_t interruptible, | |
921 | uint32_t interval, | |
922 | uint32_t scale_factor) | |
55e303ae | 923 | { |
91447636 A |
924 | thread_t thread = current_thread(); |
925 | wait_result_t wresult; | |
91447636 A |
926 | uint64_t deadline; |
927 | spl_t s; | |
928 | ||
3e170ce0 A |
929 | if (__improbable(event == NO_EVENT)) |
930 | panic("%s() called with NO_EVENT", __func__); | |
fe8ab488 | 931 | |
3e170ce0 A |
932 | struct waitq *waitq; |
933 | waitq = global_eventq(event); | |
91447636 A |
934 | |
935 | s = splsched(); | |
3e170ce0 | 936 | waitq_lock(waitq); |
91447636 A |
937 | |
938 | clock_interval_to_deadline(interval, scale_factor, &deadline); | |
3e170ce0 | 939 | |
316670eb | 940 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
3e170ce0 | 941 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, |
4bd07ac2 | 942 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
3e170ce0 A |
943 | |
944 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), | |
945 | interruptible, | |
946 | TIMEOUT_URGENCY_SYS_NORMAL, | |
947 | deadline, TIMEOUT_NO_LEEWAY, | |
948 | thread); | |
39236c6e | 949 | |
3e170ce0 | 950 | waitq_unlock(waitq); |
39236c6e | 951 | splx(s); |
3e170ce0 | 952 | return wresult; |
39236c6e A |
953 | } |
954 | ||
955 | wait_result_t | |
956 | assert_wait_timeout_with_leeway( | |
957 | event_t event, | |
958 | wait_interrupt_t interruptible, | |
959 | wait_timeout_urgency_t urgency, | |
960 | uint32_t interval, | |
961 | uint32_t leeway, | |
962 | uint32_t scale_factor) | |
963 | { | |
964 | thread_t thread = current_thread(); | |
965 | wait_result_t wresult; | |
39236c6e A |
966 | uint64_t deadline; |
967 | uint64_t abstime; | |
968 | uint64_t slop; | |
969 | uint64_t now; | |
970 | spl_t s; | |
971 | ||
3e170ce0 A |
972 | if (__improbable(event == NO_EVENT)) |
973 | panic("%s() called with NO_EVENT", __func__); | |
974 | ||
39236c6e A |
975 | now = mach_absolute_time(); |
976 | clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime); | |
977 | deadline = now + abstime; | |
978 | ||
979 | clock_interval_to_absolutetime_interval(leeway, scale_factor, &slop); | |
980 | ||
3e170ce0 A |
981 | struct waitq *waitq; |
982 | waitq = global_eventq(event); | |
39236c6e A |
983 | |
984 | s = splsched(); | |
3e170ce0 | 985 | waitq_lock(waitq); |
39236c6e A |
986 | |
987 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
3e170ce0 | 988 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, |
4bd07ac2 | 989 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
3e170ce0 A |
990 | |
991 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), | |
992 | interruptible, | |
993 | urgency, deadline, slop, | |
994 | thread); | |
91447636 | 995 | |
3e170ce0 | 996 | waitq_unlock(waitq); |
91447636 | 997 | splx(s); |
3e170ce0 | 998 | return wresult; |
55e303ae A |
999 | } |
1000 | ||
1001 | wait_result_t | |
91447636 | 1002 | assert_wait_deadline( |
55e303ae | 1003 | event_t event, |
91447636 A |
1004 | wait_interrupt_t interruptible, |
1005 | uint64_t deadline) | |
55e303ae A |
1006 | { |
1007 | thread_t thread = current_thread(); | |
91447636 | 1008 | wait_result_t wresult; |
55e303ae A |
1009 | spl_t s; |
1010 | ||
3e170ce0 A |
1011 | if (__improbable(event == NO_EVENT)) |
1012 | panic("%s() called with NO_EVENT", __func__); | |
1013 | ||
1014 | struct waitq *waitq; | |
1015 | waitq = global_eventq(event); | |
55e303ae A |
1016 | |
1017 | s = splsched(); | |
3e170ce0 | 1018 | waitq_lock(waitq); |
55e303ae | 1019 | |
316670eb | 1020 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
3e170ce0 | 1021 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, |
4bd07ac2 | 1022 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
39236c6e | 1023 | |
3e170ce0 A |
1024 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), |
1025 | interruptible, | |
1026 | TIMEOUT_URGENCY_SYS_NORMAL, deadline, | |
1027 | TIMEOUT_NO_LEEWAY, thread); | |
3e170ce0 | 1028 | waitq_unlock(waitq); |
39236c6e | 1029 | splx(s); |
3e170ce0 | 1030 | return wresult; |
39236c6e A |
1031 | } |
1032 | ||
1033 | wait_result_t | |
1034 | assert_wait_deadline_with_leeway( | |
1035 | event_t event, | |
1036 | wait_interrupt_t interruptible, | |
1037 | wait_timeout_urgency_t urgency, | |
1038 | uint64_t deadline, | |
1039 | uint64_t leeway) | |
1040 | { | |
1041 | thread_t thread = current_thread(); | |
1042 | wait_result_t wresult; | |
39236c6e A |
1043 | spl_t s; |
1044 | ||
3e170ce0 A |
1045 | if (__improbable(event == NO_EVENT)) |
1046 | panic("%s() called with NO_EVENT", __func__); | |
fe8ab488 | 1047 | |
3e170ce0 A |
1048 | struct waitq *waitq; |
1049 | waitq = global_eventq(event); | |
39236c6e A |
1050 | |
1051 | s = splsched(); | |
3e170ce0 | 1052 | waitq_lock(waitq); |
39236c6e A |
1053 | |
1054 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
3e170ce0 | 1055 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE, |
4bd07ac2 | 1056 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
39236c6e | 1057 | |
3e170ce0 A |
1058 | wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event), |
1059 | interruptible, | |
1060 | urgency, deadline, leeway, | |
1061 | thread); | |
3e170ce0 | 1062 | waitq_unlock(waitq); |
55e303ae | 1063 | splx(s); |
3e170ce0 | 1064 | return wresult; |
55e303ae | 1065 | } |
9bccf70c | 1066 | |
39236c6e A |
1067 | /* |
1068 | * thread_isoncpu: | |
1069 | * | |
1070 | * Return TRUE if a thread is running on a processor such that an AST | |
1071 | * is needed to pull it out of userspace execution, or if executing in | |
1072 | * the kernel, bring to a context switch boundary that would cause | |
1073 | * thread state to be serialized in the thread PCB. | |
1074 | * | |
1075 | * Thread locked, returns the same way. While locked, fields | |
fe8ab488 | 1076 | * like "state" cannot change. "runq" can change only from set to unset. |
39236c6e A |
1077 | */ |
1078 | static inline boolean_t | |
1079 | thread_isoncpu(thread_t thread) | |
1080 | { | |
1081 | /* Not running or runnable */ | |
1082 | if (!(thread->state & TH_RUN)) | |
1083 | return (FALSE); | |
1084 | ||
1085 | /* Waiting on a runqueue, not currently running */ | |
fe8ab488 | 1086 | /* TODO: This is invalid - it can get dequeued without thread lock, but not context switched. */ |
39236c6e A |
1087 | if (thread->runq != PROCESSOR_NULL) |
1088 | return (FALSE); | |
1089 | ||
3e170ce0 A |
1090 | /* |
1091 | * Thread does not have a stack yet | |
1092 | * It could be on the stack alloc queue or preparing to be invoked | |
1093 | */ | |
1094 | if (!thread->kernel_stack) | |
1095 | return (FALSE); | |
1096 | ||
39236c6e A |
1097 | /* |
1098 | * Thread must be running on a processor, or | |
1099 | * about to run, or just did run. In all these | |
1100 | * cases, an AST to the processor is needed | |
1101 | * to guarantee that the thread is kicked out | |
1102 | * of userspace and the processor has | |
1103 | * context switched (and saved register state). | |
1104 | */ | |
1105 | return (TRUE); | |
1106 | } | |
1107 | ||
1c79356b | 1108 | /* |
91447636 | 1109 | * thread_stop: |
1c79356b | 1110 | * |
91447636 | 1111 | * Force a preemption point for a thread and wait |
39236c6e A |
1112 | * for it to stop running on a CPU. If a stronger |
1113 | * guarantee is requested, wait until no longer | |
1114 | * runnable. Arbitrates access among | |
91447636 | 1115 | * multiple stop requests. (released by unstop) |
1c79356b | 1116 | * |
91447636 A |
1117 | * The thread must enter a wait state and stop via a |
1118 | * separate means. | |
1c79356b | 1119 | * |
91447636 | 1120 | * Returns FALSE if interrupted. |
1c79356b A |
1121 | */ |
1122 | boolean_t | |
1123 | thread_stop( | |
39236c6e A |
1124 | thread_t thread, |
1125 | boolean_t until_not_runnable) | |
1c79356b | 1126 | { |
91447636 | 1127 | wait_result_t wresult; |
2d21ac55 | 1128 | spl_t s = splsched(); |
39236c6e | 1129 | boolean_t oncpu; |
1c79356b | 1130 | |
1c79356b | 1131 | wake_lock(thread); |
2d21ac55 | 1132 | thread_lock(thread); |
1c79356b A |
1133 | |
1134 | while (thread->state & TH_SUSP) { | |
1135 | thread->wake_active = TRUE; | |
2d21ac55 A |
1136 | thread_unlock(thread); |
1137 | ||
91447636 | 1138 | wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
1c79356b A |
1139 | wake_unlock(thread); |
1140 | splx(s); | |
1141 | ||
91447636 A |
1142 | if (wresult == THREAD_WAITING) |
1143 | wresult = thread_block(THREAD_CONTINUE_NULL); | |
9bccf70c | 1144 | |
91447636 | 1145 | if (wresult != THREAD_AWAKENED) |
1c79356b A |
1146 | return (FALSE); |
1147 | ||
1148 | s = splsched(); | |
1149 | wake_lock(thread); | |
2d21ac55 | 1150 | thread_lock(thread); |
1c79356b | 1151 | } |
9bccf70c | 1152 | |
1c79356b | 1153 | thread->state |= TH_SUSP; |
1c79356b | 1154 | |
39236c6e A |
1155 | while ((oncpu = thread_isoncpu(thread)) || |
1156 | (until_not_runnable && (thread->state & TH_RUN))) { | |
1157 | processor_t processor; | |
1158 | ||
1159 | if (oncpu) { | |
1160 | assert(thread->state & TH_RUN); | |
1161 | processor = thread->chosen_processor; | |
9bccf70c | 1162 | cause_ast_check(processor); |
39236c6e | 1163 | } |
9bccf70c A |
1164 | |
1165 | thread->wake_active = TRUE; | |
2d21ac55 A |
1166 | thread_unlock(thread); |
1167 | ||
91447636 | 1168 | wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
9bccf70c A |
1169 | wake_unlock(thread); |
1170 | splx(s); | |
1171 | ||
91447636 A |
1172 | if (wresult == THREAD_WAITING) |
1173 | wresult = thread_block(THREAD_CONTINUE_NULL); | |
9bccf70c | 1174 | |
91447636 | 1175 | if (wresult != THREAD_AWAKENED) { |
9bccf70c A |
1176 | thread_unstop(thread); |
1177 | return (FALSE); | |
1178 | } | |
1179 | ||
1180 | s = splsched(); | |
1181 | wake_lock(thread); | |
1182 | thread_lock(thread); | |
1183 | } | |
1184 | ||
1185 | thread_unlock(thread); | |
1c79356b A |
1186 | wake_unlock(thread); |
1187 | splx(s); | |
39236c6e A |
1188 | |
1189 | /* | |
1190 | * We return with the thread unlocked. To prevent it from | |
1191 | * transitioning to a runnable state (or from TH_RUN to | |
1192 | * being on the CPU), the caller must ensure the thread | |
1193 | * is stopped via an external means (such as an AST) | |
1194 | */ | |
1c79356b A |
1195 | |
1196 | return (TRUE); | |
1197 | } | |
1198 | ||
1199 | /* | |
91447636 A |
1200 | * thread_unstop: |
1201 | * | |
1202 | * Release a previous stop request and set | |
1203 | * the thread running if appropriate. | |
1204 | * | |
1205 | * Use only after a successful stop operation. | |
1c79356b A |
1206 | */ |
1207 | void | |
1208 | thread_unstop( | |
9bccf70c | 1209 | thread_t thread) |
1c79356b | 1210 | { |
9bccf70c | 1211 | spl_t s = splsched(); |
1c79356b | 1212 | |
1c79356b A |
1213 | wake_lock(thread); |
1214 | thread_lock(thread); | |
1215 | ||
3e170ce0 | 1216 | assert((thread->state & (TH_RUN|TH_WAIT|TH_SUSP)) != TH_SUSP); |
55e303ae | 1217 | |
1c79356b A |
1218 | if (thread->state & TH_SUSP) { |
1219 | thread->state &= ~TH_SUSP; | |
1220 | ||
1221 | if (thread->wake_active) { | |
1222 | thread->wake_active = FALSE; | |
1223 | thread_unlock(thread); | |
2d21ac55 A |
1224 | |
1225 | thread_wakeup(&thread->wake_active); | |
1c79356b A |
1226 | wake_unlock(thread); |
1227 | splx(s); | |
1c79356b A |
1228 | |
1229 | return; | |
1230 | } | |
1231 | } | |
1232 | ||
1233 | thread_unlock(thread); | |
1234 | wake_unlock(thread); | |
1235 | splx(s); | |
1236 | } | |
1237 | ||
1238 | /* | |
91447636 A |
1239 | * thread_wait: |
1240 | * | |
1241 | * Wait for a thread to stop running. (non-interruptible) | |
1242 | * | |
1c79356b | 1243 | */ |
91447636 | 1244 | void |
1c79356b | 1245 | thread_wait( |
316670eb A |
1246 | thread_t thread, |
1247 | boolean_t until_not_runnable) | |
1c79356b | 1248 | { |
91447636 | 1249 | wait_result_t wresult; |
316670eb A |
1250 | boolean_t oncpu; |
1251 | processor_t processor; | |
1252 | spl_t s = splsched(); | |
1c79356b | 1253 | |
1c79356b | 1254 | wake_lock(thread); |
9bccf70c | 1255 | thread_lock(thread); |
1c79356b | 1256 | |
316670eb A |
1257 | /* |
1258 | * Wait until not running on a CPU. If stronger requirement | |
1259 | * desired, wait until not runnable. Assumption: if thread is | |
1260 | * on CPU, then TH_RUN is set, so we're not waiting in any case | |
1261 | * where the original, pure "TH_RUN" check would have let us | |
1262 | * finish. | |
1263 | */ | |
39236c6e | 1264 | while ((oncpu = thread_isoncpu(thread)) || |
316670eb | 1265 | (until_not_runnable && (thread->state & TH_RUN))) { |
e7c99d92 | 1266 | |
316670eb A |
1267 | if (oncpu) { |
1268 | assert(thread->state & TH_RUN); | |
39236c6e | 1269 | processor = thread->chosen_processor; |
9bccf70c | 1270 | cause_ast_check(processor); |
316670eb | 1271 | } |
1c79356b A |
1272 | |
1273 | thread->wake_active = TRUE; | |
2d21ac55 A |
1274 | thread_unlock(thread); |
1275 | ||
91447636 | 1276 | wresult = assert_wait(&thread->wake_active, THREAD_UNINT); |
1c79356b A |
1277 | wake_unlock(thread); |
1278 | splx(s); | |
1279 | ||
91447636 A |
1280 | if (wresult == THREAD_WAITING) |
1281 | thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
1282 | |
1283 | s = splsched(); | |
1284 | wake_lock(thread); | |
9bccf70c | 1285 | thread_lock(thread); |
1c79356b | 1286 | } |
0b4e3aa0 | 1287 | |
9bccf70c | 1288 | thread_unlock(thread); |
1c79356b A |
1289 | wake_unlock(thread); |
1290 | splx(s); | |
1c79356b A |
1291 | } |
1292 | ||
1c79356b A |
1293 | /* |
1294 | * Routine: clear_wait_internal | |
1295 | * | |
1296 | * Clear the wait condition for the specified thread. | |
1297 | * Start the thread executing if that is appropriate. | |
1298 | * Arguments: | |
1299 | * thread thread to awaken | |
1300 | * result Wakeup result the thread should see | |
1301 | * Conditions: | |
1302 | * At splsched | |
1303 | * the thread is locked. | |
9bccf70c A |
1304 | * Returns: |
1305 | * KERN_SUCCESS thread was rousted out a wait | |
1306 | * KERN_FAILURE thread was waiting but could not be rousted | |
1307 | * KERN_NOT_WAITING thread was not waiting | |
1c79356b | 1308 | */ |
9bccf70c | 1309 | __private_extern__ kern_return_t |
1c79356b | 1310 | clear_wait_internal( |
9bccf70c | 1311 | thread_t thread, |
55e303ae | 1312 | wait_result_t wresult) |
1c79356b | 1313 | { |
39037602 | 1314 | uint32_t i = LockTimeOutUsec; |
3e170ce0 | 1315 | struct waitq *waitq = thread->waitq; |
39037602 | 1316 | |
9bccf70c | 1317 | do { |
55e303ae A |
1318 | if (wresult == THREAD_INTERRUPTED && (thread->state & TH_UNINT)) |
1319 | return (KERN_FAILURE); | |
9bccf70c | 1320 | |
3e170ce0 | 1321 | if (waitq != NULL) { |
39037602 | 1322 | if (!waitq_pull_thread_locked(waitq, thread)) { |
9bccf70c A |
1323 | thread_unlock(thread); |
1324 | delay(1); | |
39037602 A |
1325 | if (i > 0 && !machine_timeout_suspended()) |
1326 | i--; | |
9bccf70c | 1327 | thread_lock(thread); |
3e170ce0 A |
1328 | if (waitq != thread->waitq) |
1329 | return KERN_NOT_WAITING; | |
9bccf70c A |
1330 | continue; |
1331 | } | |
1c79356b | 1332 | } |
55e303ae | 1333 | |
3e170ce0 A |
1334 | /* TODO: Can we instead assert TH_TERMINATE is not set? */ |
1335 | if ((thread->state & (TH_WAIT|TH_TERMINATE)) == TH_WAIT) | |
1336 | return (thread_go(thread, wresult)); | |
1337 | else | |
1338 | return (KERN_NOT_WAITING); | |
39037602 | 1339 | } while (i > 0); |
55e303ae | 1340 | |
2d21ac55 | 1341 | panic("clear_wait_internal: deadlock: thread=%p, wq=%p, cpu=%d\n", |
3e170ce0 | 1342 | thread, waitq, cpu_number()); |
55e303ae A |
1343 | |
1344 | return (KERN_FAILURE); | |
1c79356b A |
1345 | } |
1346 | ||
1347 | ||
1348 | /* | |
1349 | * clear_wait: | |
1350 | * | |
1351 | * Clear the wait condition for the specified thread. Start the thread | |
1352 | * executing if that is appropriate. | |
1353 | * | |
1354 | * parameters: | |
1355 | * thread thread to awaken | |
1356 | * result Wakeup result the thread should see | |
1357 | */ | |
9bccf70c | 1358 | kern_return_t |
1c79356b | 1359 | clear_wait( |
9bccf70c A |
1360 | thread_t thread, |
1361 | wait_result_t result) | |
1c79356b | 1362 | { |
9bccf70c | 1363 | kern_return_t ret; |
1c79356b A |
1364 | spl_t s; |
1365 | ||
1366 | s = splsched(); | |
1367 | thread_lock(thread); | |
9bccf70c | 1368 | ret = clear_wait_internal(thread, result); |
1c79356b A |
1369 | thread_unlock(thread); |
1370 | splx(s); | |
9bccf70c | 1371 | return ret; |
1c79356b A |
1372 | } |
1373 | ||
1374 | ||
1375 | /* | |
1376 | * thread_wakeup_prim: | |
1377 | * | |
1378 | * Common routine for thread_wakeup, thread_wakeup_with_result, | |
1379 | * and thread_wakeup_one. | |
1380 | * | |
1381 | */ | |
9bccf70c | 1382 | kern_return_t |
1c79356b | 1383 | thread_wakeup_prim( |
39037602 A |
1384 | event_t event, |
1385 | boolean_t one_thread, | |
1386 | wait_result_t result) | |
6d2010ae | 1387 | { |
39037602 A |
1388 | if (__improbable(event == NO_EVENT)) |
1389 | panic("%s() called with NO_EVENT", __func__); | |
1390 | ||
1391 | struct waitq *wq = global_eventq(event); | |
1392 | ||
1393 | if (one_thread) | |
1394 | return waitq_wakeup64_one(wq, CAST_EVENT64_T(event), result, WAITQ_ALL_PRIORITIES); | |
1395 | else | |
1396 | return waitq_wakeup64_all(wq, CAST_EVENT64_T(event), result, WAITQ_ALL_PRIORITIES); | |
6d2010ae A |
1397 | } |
1398 | ||
39037602 A |
1399 | /* |
1400 | * Wakeup a specified thread if and only if it's waiting for this event | |
1401 | */ | |
1402 | kern_return_t | |
1403 | thread_wakeup_thread( | |
1404 | event_t event, | |
1405 | thread_t thread) | |
1406 | { | |
1407 | if (__improbable(event == NO_EVENT)) | |
1408 | panic("%s() called with NO_EVENT", __func__); | |
1409 | ||
1410 | struct waitq *wq = global_eventq(event); | |
1411 | ||
1412 | return waitq_wakeup64_thread(wq, CAST_EVENT64_T(event), thread, THREAD_AWAKENED); | |
1413 | } | |
6d2010ae | 1414 | |
39037602 A |
1415 | /* |
1416 | * Wakeup a thread waiting on an event and promote it to a priority. | |
1417 | * | |
1418 | * Requires woken thread to un-promote itself when done. | |
1419 | */ | |
6d2010ae | 1420 | kern_return_t |
39037602 A |
1421 | thread_wakeup_one_with_pri( |
1422 | event_t event, | |
1423 | int priority) | |
1c79356b | 1424 | { |
3e170ce0 A |
1425 | if (__improbable(event == NO_EVENT)) |
1426 | panic("%s() called with NO_EVENT", __func__); | |
1427 | ||
39037602 | 1428 | struct waitq *wq = global_eventq(event); |
1c79356b | 1429 | |
39037602 A |
1430 | return waitq_wakeup64_one(wq, CAST_EVENT64_T(event), THREAD_AWAKENED, priority); |
1431 | } | |
fe8ab488 | 1432 | |
39037602 A |
1433 | /* |
1434 | * Wakeup a thread waiting on an event, | |
1435 | * promote it to a priority, | |
1436 | * and return a reference to the woken thread. | |
1437 | * | |
1438 | * Requires woken thread to un-promote itself when done. | |
1439 | */ | |
1440 | thread_t | |
1441 | thread_wakeup_identify(event_t event, | |
1442 | int priority) | |
1443 | { | |
1444 | if (__improbable(event == NO_EVENT)) | |
1445 | panic("%s() called with NO_EVENT", __func__); | |
1446 | ||
1447 | struct waitq *wq = global_eventq(event); | |
1448 | ||
1449 | return waitq_wakeup64_identify(wq, CAST_EVENT64_T(event), THREAD_AWAKENED, priority); | |
1c79356b A |
1450 | } |
1451 | ||
1452 | /* | |
1453 | * thread_bind: | |
1454 | * | |
2d21ac55 | 1455 | * Force the current thread to execute on the specified processor. |
fe8ab488 | 1456 | * Takes effect after the next thread_block(). |
1c79356b | 1457 | * |
55e303ae A |
1458 | * Returns the previous binding. PROCESSOR_NULL means |
1459 | * not bound. | |
1460 | * | |
1461 | * XXX - DO NOT export this to users - XXX | |
1c79356b | 1462 | */ |
55e303ae | 1463 | processor_t |
1c79356b | 1464 | thread_bind( |
2d21ac55 | 1465 | processor_t processor) |
1c79356b | 1466 | { |
2d21ac55 | 1467 | thread_t self = current_thread(); |
55e303ae | 1468 | processor_t prev; |
55e303ae | 1469 | spl_t s; |
1c79356b A |
1470 | |
1471 | s = splsched(); | |
2d21ac55 | 1472 | thread_lock(self); |
55e303ae | 1473 | |
3e170ce0 | 1474 | prev = thread_bind_internal(self, processor); |
55e303ae | 1475 | |
2d21ac55 | 1476 | thread_unlock(self); |
1c79356b | 1477 | splx(s); |
55e303ae A |
1478 | |
1479 | return (prev); | |
1c79356b A |
1480 | } |
1481 | ||
3e170ce0 A |
1482 | /* |
1483 | * thread_bind_internal: | |
1484 | * | |
1485 | * If the specified thread is not the current thread, and it is currently | |
1486 | * running on another CPU, a remote AST must be sent to that CPU to cause | |
1487 | * the thread to migrate to its bound processor. Otherwise, the migration | |
1488 | * will occur at the next quantum expiration or blocking point. | |
1489 | * | |
1490 | * When the thread is the current thread, and explicit thread_block() should | |
1491 | * be used to force the current processor to context switch away and | |
1492 | * let the thread migrate to the bound processor. | |
1493 | * | |
1494 | * Thread must be locked, and at splsched. | |
1495 | */ | |
1496 | ||
1497 | static processor_t | |
1498 | thread_bind_internal( | |
1499 | thread_t thread, | |
1500 | processor_t processor) | |
1501 | { | |
1502 | processor_t prev; | |
1503 | ||
1504 | /* <rdar://problem/15102234> */ | |
1505 | assert(thread->sched_pri < BASEPRI_RTQUEUES); | |
1506 | /* A thread can't be bound if it's sitting on a (potentially incorrect) runqueue */ | |
1507 | assert(thread->runq == PROCESSOR_NULL); | |
1508 | ||
1509 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_THREAD_BIND), thread_tid(thread), processor ? (uintptr_t)processor->cpu_id : (uintptr_t)-1, 0, 0, 0); | |
1510 | ||
1511 | prev = thread->bound_processor; | |
1512 | thread->bound_processor = processor; | |
1513 | ||
1514 | return (prev); | |
1515 | } | |
1516 | ||
1517 | /* | |
1518 | * thread_vm_bind_group_add: | |
1519 | * | |
1520 | * The "VM bind group" is a special mechanism to mark a collection | |
1521 | * of threads from the VM subsystem that, in general, should be scheduled | |
1522 | * with only one CPU of parallelism. To accomplish this, we initially | |
1523 | * bind all the threads to the master processor, which has the effect | |
1524 | * that only one of the threads in the group can execute at once, including | |
1525 | * preempting threads in the group that are a lower priority. Future | |
1526 | * mechanisms may use more dynamic mechanisms to prevent the collection | |
1527 | * of VM threads from using more CPU time than desired. | |
1528 | * | |
1529 | * The current implementation can result in priority inversions where | |
1530 | * compute-bound priority 95 or realtime threads that happen to have | |
1531 | * landed on the master processor prevent the VM threads from running. | |
1532 | * When this situation is detected, we unbind the threads for one | |
1533 | * scheduler tick to allow the scheduler to run the threads an | |
1534 | * additional CPUs, before restoring the binding (assuming high latency | |
1535 | * is no longer a problem). | |
1536 | */ | |
1537 | ||
1538 | /* | |
1539 | * The current max is provisioned for: | |
1540 | * vm_compressor_swap_trigger_thread (92) | |
1541 | * 2 x vm_pageout_iothread_internal (92) when vm_restricted_to_single_processor==TRUE | |
1542 | * vm_pageout_continue (92) | |
1543 | * memorystatus_thread (95) | |
1544 | */ | |
1545 | #define MAX_VM_BIND_GROUP_COUNT (5) | |
1546 | decl_simple_lock_data(static,sched_vm_group_list_lock); | |
1547 | static thread_t sched_vm_group_thread_list[MAX_VM_BIND_GROUP_COUNT]; | |
1548 | static int sched_vm_group_thread_count; | |
1549 | static boolean_t sched_vm_group_temporarily_unbound = FALSE; | |
1550 | ||
1551 | void | |
1552 | thread_vm_bind_group_add(void) | |
1553 | { | |
1554 | thread_t self = current_thread(); | |
1555 | ||
1556 | thread_reference_internal(self); | |
1557 | self->options |= TH_OPT_SCHED_VM_GROUP; | |
1558 | ||
1559 | simple_lock(&sched_vm_group_list_lock); | |
1560 | assert(sched_vm_group_thread_count < MAX_VM_BIND_GROUP_COUNT); | |
1561 | sched_vm_group_thread_list[sched_vm_group_thread_count++] = self; | |
1562 | simple_unlock(&sched_vm_group_list_lock); | |
1563 | ||
1564 | thread_bind(master_processor); | |
1565 | ||
1566 | /* Switch to bound processor if not already there */ | |
1567 | thread_block(THREAD_CONTINUE_NULL); | |
1568 | } | |
1569 | ||
1570 | static void | |
1571 | sched_vm_group_maintenance(void) | |
1572 | { | |
1573 | uint64_t ctime = mach_absolute_time(); | |
1574 | uint64_t longtime = ctime - sched_tick_interval; | |
1575 | int i; | |
1576 | spl_t s; | |
1577 | boolean_t high_latency_observed = FALSE; | |
1578 | boolean_t runnable_and_not_on_runq_observed = FALSE; | |
1579 | boolean_t bind_target_changed = FALSE; | |
1580 | processor_t bind_target = PROCESSOR_NULL; | |
1581 | ||
1582 | /* Make sure nobody attempts to add new threads while we are enumerating them */ | |
1583 | simple_lock(&sched_vm_group_list_lock); | |
1584 | ||
1585 | s = splsched(); | |
1586 | ||
1587 | for (i=0; i < sched_vm_group_thread_count; i++) { | |
1588 | thread_t thread = sched_vm_group_thread_list[i]; | |
1589 | assert(thread != THREAD_NULL); | |
1590 | thread_lock(thread); | |
1591 | if ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN) { | |
1592 | if (thread->runq != PROCESSOR_NULL && thread->last_made_runnable_time < longtime) { | |
1593 | high_latency_observed = TRUE; | |
1594 | } else if (thread->runq == PROCESSOR_NULL) { | |
1595 | /* There are some cases where a thread be transitiong that also fall into this case */ | |
1596 | runnable_and_not_on_runq_observed = TRUE; | |
1597 | } | |
1598 | } | |
1599 | thread_unlock(thread); | |
1600 | ||
1601 | if (high_latency_observed && runnable_and_not_on_runq_observed) { | |
1602 | /* All the things we are looking for are true, stop looking */ | |
1603 | break; | |
1604 | } | |
1605 | } | |
1606 | ||
1607 | splx(s); | |
1608 | ||
1609 | if (sched_vm_group_temporarily_unbound) { | |
1610 | /* If we turned off binding, make sure everything is OK before rebinding */ | |
1611 | if (!high_latency_observed) { | |
1612 | /* rebind */ | |
1613 | bind_target_changed = TRUE; | |
1614 | bind_target = master_processor; | |
1615 | sched_vm_group_temporarily_unbound = FALSE; /* might be reset to TRUE if change cannot be completed */ | |
1616 | } | |
1617 | } else { | |
1618 | /* | |
1619 | * Check if we're in a bad state, which is defined by high | |
1620 | * latency with no core currently executing a thread. If a | |
1621 | * single thread is making progress on a CPU, that means the | |
1622 | * binding concept to reduce parallelism is working as | |
1623 | * designed. | |
1624 | */ | |
1625 | if (high_latency_observed && !runnable_and_not_on_runq_observed) { | |
1626 | /* unbind */ | |
1627 | bind_target_changed = TRUE; | |
1628 | bind_target = PROCESSOR_NULL; | |
1629 | sched_vm_group_temporarily_unbound = TRUE; | |
1630 | } | |
1631 | } | |
1632 | ||
1633 | if (bind_target_changed) { | |
1634 | s = splsched(); | |
1635 | for (i=0; i < sched_vm_group_thread_count; i++) { | |
1636 | thread_t thread = sched_vm_group_thread_list[i]; | |
1637 | boolean_t removed; | |
1638 | assert(thread != THREAD_NULL); | |
1639 | ||
1640 | thread_lock(thread); | |
1641 | removed = thread_run_queue_remove(thread); | |
1642 | if (removed || ((thread->state & (TH_RUN | TH_WAIT)) == TH_WAIT)) { | |
1643 | thread_bind_internal(thread, bind_target); | |
1644 | } else { | |
1645 | /* | |
1646 | * Thread was in the middle of being context-switched-to, | |
1647 | * or was in the process of blocking. To avoid switching the bind | |
1648 | * state out mid-flight, defer the change if possible. | |
1649 | */ | |
1650 | if (bind_target == PROCESSOR_NULL) { | |
1651 | thread_bind_internal(thread, bind_target); | |
1652 | } else { | |
1653 | sched_vm_group_temporarily_unbound = TRUE; /* next pass will try again */ | |
1654 | } | |
1655 | } | |
1656 | ||
1657 | if (removed) { | |
1658 | thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
1659 | } | |
1660 | thread_unlock(thread); | |
1661 | } | |
1662 | splx(s); | |
1663 | } | |
1664 | ||
1665 | simple_unlock(&sched_vm_group_list_lock); | |
1666 | } | |
1667 | ||
fe8ab488 A |
1668 | /* Invoked prior to idle entry to determine if, on SMT capable processors, an SMT |
1669 | * rebalancing opportunity exists when a core is (instantaneously) idle, but | |
1670 | * other SMT-capable cores may be over-committed. TODO: some possible negatives: | |
1671 | * IPI thrash if this core does not remain idle following the load balancing ASTs | |
1672 | * Idle "thrash", when IPI issue is followed by idle entry/core power down | |
1673 | * followed by a wakeup shortly thereafter. | |
1674 | */ | |
1675 | ||
fe8ab488 A |
1676 | #if (DEVELOPMENT || DEBUG) |
1677 | int sched_smt_balance = 1; | |
1678 | #endif | |
1679 | ||
3e170ce0 A |
1680 | #if __SMP__ |
1681 | /* Invoked with pset locked, returns with pset unlocked */ | |
fe8ab488 A |
1682 | static void |
1683 | sched_SMT_balance(processor_t cprocessor, processor_set_t cpset) { | |
1684 | processor_t ast_processor = NULL; | |
1685 | ||
1686 | #if (DEVELOPMENT || DEBUG) | |
1687 | if (__improbable(sched_smt_balance == 0)) | |
1688 | goto smt_balance_exit; | |
1689 | #endif | |
1690 | ||
1691 | assert(cprocessor == current_processor()); | |
1692 | if (cprocessor->is_SMT == FALSE) | |
1693 | goto smt_balance_exit; | |
1694 | ||
1695 | processor_t sib_processor = cprocessor->processor_secondary ? cprocessor->processor_secondary : cprocessor->processor_primary; | |
1696 | ||
1697 | /* Determine if both this processor and its sibling are idle, | |
1698 | * indicating an SMT rebalancing opportunity. | |
1699 | */ | |
1700 | if (sib_processor->state != PROCESSOR_IDLE) | |
1701 | goto smt_balance_exit; | |
1702 | ||
1703 | processor_t sprocessor; | |
1704 | ||
39037602 | 1705 | qe_foreach_element(sprocessor, &cpset->active_queue, processor_queue) { |
fe8ab488 A |
1706 | if ((sprocessor->state == PROCESSOR_RUNNING) && |
1707 | (sprocessor->processor_primary != sprocessor) && | |
1708 | (sprocessor->processor_primary->state == PROCESSOR_RUNNING) && | |
1709 | (sprocessor->current_pri < BASEPRI_RTQUEUES) && | |
3e170ce0 | 1710 | ((cpset->pending_AST_cpu_mask & (1ULL << sprocessor->cpu_id)) == 0)) { |
fe8ab488 A |
1711 | assert(sprocessor != cprocessor); |
1712 | ast_processor = sprocessor; | |
1713 | break; | |
1714 | } | |
fe8ab488 A |
1715 | } |
1716 | ||
1717 | smt_balance_exit: | |
1718 | pset_unlock(cpset); | |
1719 | ||
1720 | if (ast_processor) { | |
1721 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_SMT_BALANCE), ast_processor->cpu_id, ast_processor->state, ast_processor->processor_primary->state, 0, 0); | |
1722 | cause_ast_check(ast_processor); | |
1723 | } | |
1724 | } | |
3e170ce0 | 1725 | #endif /* __SMP__ */ |
fe8ab488 | 1726 | |
1c79356b | 1727 | /* |
2d21ac55 A |
1728 | * thread_select: |
1729 | * | |
1730 | * Select a new thread for the current processor to execute. | |
55e303ae A |
1731 | * |
1732 | * May select the current thread, which must be locked. | |
1c79356b | 1733 | */ |
2d21ac55 | 1734 | static thread_t |
1c79356b | 1735 | thread_select( |
2d21ac55 | 1736 | thread_t thread, |
fe8ab488 A |
1737 | processor_t processor, |
1738 | ast_t reason) | |
1c79356b | 1739 | { |
2d21ac55 | 1740 | processor_set_t pset = processor->processor_set; |
cf7d32b8 | 1741 | thread_t new_thread = THREAD_NULL; |
1c79356b | 1742 | |
6d2010ae | 1743 | assert(processor == current_processor()); |
3e170ce0 | 1744 | assert((thread->state & (TH_RUN|TH_TERMINATE2)) == TH_RUN); |
6d2010ae | 1745 | |
2d21ac55 A |
1746 | do { |
1747 | /* | |
1748 | * Update the priority. | |
1749 | */ | |
6d2010ae A |
1750 | if (SCHED(can_update_priority)(thread)) |
1751 | SCHED(update_priority)(thread); | |
1752 | ||
2d21ac55 | 1753 | processor->current_pri = thread->sched_pri; |
6d2010ae | 1754 | processor->current_thmode = thread->sched_mode; |
fe8ab488 | 1755 | processor->current_sfi_class = thread->sfi_class; |
1c79356b | 1756 | |
2d21ac55 A |
1757 | pset_lock(pset); |
1758 | ||
fe8ab488 | 1759 | assert(processor->state != PROCESSOR_OFF_LINE); |
6d2010ae | 1760 | |
3e170ce0 A |
1761 | if (!processor->is_recommended) { |
1762 | /* | |
1763 | * The performance controller has provided a hint to not dispatch more threads, | |
1764 | * unless they are bound to us (and thus we are the only option | |
1765 | */ | |
1766 | if (!SCHED(processor_bound_count)(processor)) { | |
1767 | goto idle; | |
1768 | } | |
1769 | } else if (processor->processor_primary != processor) { | |
39236c6e A |
1770 | /* |
1771 | * Should this secondary SMT processor attempt to find work? For pset runqueue systems, | |
1772 | * we should look for work only under the same conditions that choose_processor() | |
1773 | * would have assigned work, which is when all primary processors have been assigned work. | |
1774 | * | |
1775 | * An exception is that bound threads are dispatched to a processor without going through | |
1776 | * choose_processor(), so in those cases we should continue trying to dequeue work. | |
1777 | */ | |
fe8ab488 | 1778 | if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue) && !rt_runq.count) { |
39236c6e A |
1779 | goto idle; |
1780 | } | |
1781 | } | |
1782 | ||
3e170ce0 | 1783 | rt_lock_lock(); |
2d21ac55 | 1784 | |
2d21ac55 A |
1785 | /* |
1786 | * Test to see if the current thread should continue | |
3e170ce0 | 1787 | * to run on this processor. Must not be attempting to wait, and not |
2d21ac55 | 1788 | * bound to a different processor, nor be in the wrong |
3e170ce0 A |
1789 | * processor set, nor be forced to context switch by TH_SUSP. |
1790 | * | |
1791 | * Note that there are never any RT threads in the regular runqueue. | |
1792 | * | |
1793 | * This code is very insanely tricky. | |
2d21ac55 | 1794 | */ |
3e170ce0 A |
1795 | |
1796 | if (((thread->state & (TH_TERMINATE|TH_IDLE|TH_WAIT|TH_RUN|TH_SUSP)) == TH_RUN) && | |
fe8ab488 A |
1797 | (thread->sched_pri >= BASEPRI_RTQUEUES || processor->processor_primary == processor) && |
1798 | (thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor) && | |
1799 | (thread->affinity_set == AFFINITY_SET_NULL || thread->affinity_set->aset_pset == pset)) { | |
3e170ce0 A |
1800 | /* |
1801 | * RT threads with un-expired quantum stay on processor, | |
1802 | * unless there's a valid RT thread with an earlier deadline. | |
1803 | */ | |
1804 | if (thread->sched_pri >= BASEPRI_RTQUEUES && processor->first_timeslice) { | |
6d2010ae | 1805 | if (rt_runq.count > 0) { |
39037602 | 1806 | thread_t next_rt = qe_queue_first(&rt_runq.queue, struct thread, runq_links); |
3e170ce0 A |
1807 | |
1808 | assert(next_rt->runq == THREAD_ON_RT_RUNQ); | |
1809 | ||
fe8ab488 | 1810 | if (next_rt->realtime.deadline < processor->deadline && |
3e170ce0 A |
1811 | (next_rt->bound_processor == PROCESSOR_NULL || |
1812 | next_rt->bound_processor == processor)) { | |
1813 | /* The next RT thread is better, so pick it off the runqueue. */ | |
1814 | goto pick_new_rt_thread; | |
55e303ae A |
1815 | } |
1816 | } | |
2d21ac55 | 1817 | |
3e170ce0 | 1818 | /* This is still the best RT thread to run. */ |
2d21ac55 A |
1819 | processor->deadline = thread->realtime.deadline; |
1820 | ||
3e170ce0 | 1821 | rt_lock_unlock(); |
2d21ac55 A |
1822 | pset_unlock(pset); |
1823 | ||
1824 | return (thread); | |
55e303ae A |
1825 | } |
1826 | ||
3e170ce0 A |
1827 | if ((rt_runq.count == 0) && |
1828 | SCHED(processor_queue_has_priority)(processor, thread->sched_pri, TRUE) == FALSE) { | |
fe8ab488 | 1829 | /* This thread is still the highest priority runnable (non-idle) thread */ |
2d21ac55 | 1830 | processor->deadline = UINT64_MAX; |
55e303ae | 1831 | |
3e170ce0 | 1832 | rt_lock_unlock(); |
2d21ac55 | 1833 | pset_unlock(pset); |
55e303ae | 1834 | |
2d21ac55 A |
1835 | return (thread); |
1836 | } | |
1837 | } | |
1838 | ||
3e170ce0 A |
1839 | /* OK, so we're not going to run the current thread. Look at the RT queue. */ |
1840 | if (rt_runq.count > 0) { | |
39037602 | 1841 | thread_t next_rt = qe_queue_first(&rt_runq.queue, struct thread, runq_links); |
c910b4d9 | 1842 | |
3e170ce0 | 1843 | assert(next_rt->runq == THREAD_ON_RT_RUNQ); |
fe8ab488 | 1844 | |
3e170ce0 A |
1845 | if (__probable((next_rt->bound_processor == PROCESSOR_NULL || |
1846 | (next_rt->bound_processor == processor)))) { | |
1847 | pick_new_rt_thread: | |
39037602 | 1848 | new_thread = qe_dequeue_head(&rt_runq.queue, struct thread, runq_links); |
6d2010ae | 1849 | |
3e170ce0 | 1850 | new_thread->runq = PROCESSOR_NULL; |
39236c6e A |
1851 | SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count); |
1852 | rt_runq.count--; | |
6d2010ae | 1853 | |
3e170ce0 | 1854 | processor->deadline = new_thread->realtime.deadline; |
c910b4d9 | 1855 | |
3e170ce0 | 1856 | rt_lock_unlock(); |
39236c6e | 1857 | pset_unlock(pset); |
c910b4d9 | 1858 | |
3e170ce0 | 1859 | return (new_thread); |
39236c6e | 1860 | } |
c910b4d9 | 1861 | } |
2d21ac55 | 1862 | |
3e170ce0 A |
1863 | processor->deadline = UINT64_MAX; |
1864 | rt_lock_unlock(); | |
6d2010ae | 1865 | |
3e170ce0 A |
1866 | /* No RT threads, so let's look at the regular threads. */ |
1867 | if ((new_thread = SCHED(choose_thread)(processor, MINPRI, reason)) != THREAD_NULL) { | |
6d2010ae | 1868 | pset_unlock(pset); |
6d2010ae A |
1869 | return (new_thread); |
1870 | } | |
c910b4d9 | 1871 | |
3e170ce0 A |
1872 | #if __SMP__ |
1873 | if (SCHED(steal_thread_enabled)) { | |
1874 | /* | |
1875 | * No runnable threads, attempt to steal | |
1876 | * from other processors. Returns with pset lock dropped. | |
1877 | */ | |
2d21ac55 | 1878 | |
3e170ce0 A |
1879 | if ((new_thread = SCHED(steal_thread)(pset)) != THREAD_NULL) { |
1880 | return (new_thread); | |
1881 | } | |
cf7d32b8 | 1882 | |
3e170ce0 A |
1883 | /* |
1884 | * If other threads have appeared, shortcut | |
1885 | * around again. | |
1886 | */ | |
1887 | if (!SCHED(processor_queue_empty)(processor) || rt_runq.count > 0) | |
1888 | continue; | |
1889 | ||
1890 | pset_lock(pset); | |
1891 | } | |
1892 | #endif | |
55e303ae | 1893 | |
39236c6e | 1894 | idle: |
1c79356b A |
1895 | /* |
1896 | * Nothing is runnable, so set this processor idle if it | |
2d21ac55 | 1897 | * was running. |
1c79356b | 1898 | */ |
55e303ae | 1899 | if (processor->state == PROCESSOR_RUNNING) { |
55e303ae | 1900 | processor->state = PROCESSOR_IDLE; |
1c79356b | 1901 | |
fe8ab488 | 1902 | if (processor->processor_primary == processor) { |
39037602 A |
1903 | re_queue_head(&pset->idle_queue, &processor->processor_queue); |
1904 | } else { | |
1905 | re_queue_head(&pset->idle_secondary_queue, &processor->processor_queue); | |
b0d623f7 | 1906 | } |
1c79356b | 1907 | } |
1c79356b | 1908 | |
3e170ce0 | 1909 | #if __SMP__ |
fe8ab488 A |
1910 | /* Invoked with pset locked, returns with pset unlocked */ |
1911 | sched_SMT_balance(processor, pset); | |
3e170ce0 A |
1912 | #else |
1913 | pset_unlock(pset); | |
1914 | #endif | |
2d21ac55 | 1915 | |
6d2010ae | 1916 | #if CONFIG_SCHED_IDLE_IN_PLACE |
2d21ac55 A |
1917 | /* |
1918 | * Choose idle thread if fast idle is not possible. | |
1919 | */ | |
fe8ab488 A |
1920 | if (processor->processor_primary != processor) |
1921 | return (processor->idle_thread); | |
1922 | ||
6d2010ae | 1923 | if ((thread->state & (TH_IDLE|TH_TERMINATE|TH_SUSP)) || !(thread->state & TH_WAIT) || thread->wake_active || thread->sched_pri >= BASEPRI_RTQUEUES) |
2d21ac55 A |
1924 | return (processor->idle_thread); |
1925 | ||
1926 | /* | |
1927 | * Perform idling activities directly without a | |
1928 | * context switch. Return dispatched thread, | |
1929 | * else check again for a runnable thread. | |
1930 | */ | |
1931 | new_thread = thread_select_idle(thread, processor); | |
1932 | ||
6d2010ae A |
1933 | #else /* !CONFIG_SCHED_IDLE_IN_PLACE */ |
1934 | ||
1935 | /* | |
1936 | * Do a full context switch to idle so that the current | |
1937 | * thread can start running on another processor without | |
1938 | * waiting for the fast-idled processor to wake up. | |
1939 | */ | |
3e170ce0 | 1940 | new_thread = processor->idle_thread; |
6d2010ae A |
1941 | |
1942 | #endif /* !CONFIG_SCHED_IDLE_IN_PLACE */ | |
1943 | ||
2d21ac55 A |
1944 | } while (new_thread == THREAD_NULL); |
1945 | ||
1946 | return (new_thread); | |
1947 | } | |
1948 | ||
6d2010ae | 1949 | #if CONFIG_SCHED_IDLE_IN_PLACE |
2d21ac55 A |
1950 | /* |
1951 | * thread_select_idle: | |
1952 | * | |
1953 | * Idle the processor using the current thread context. | |
1954 | * | |
1955 | * Called with thread locked, then dropped and relocked. | |
1956 | */ | |
1957 | static thread_t | |
1958 | thread_select_idle( | |
1959 | thread_t thread, | |
1960 | processor_t processor) | |
1961 | { | |
1962 | thread_t new_thread; | |
39236c6e A |
1963 | uint64_t arg1, arg2; |
1964 | int urgency; | |
1965 | ||
fe8ab488 | 1966 | sched_run_decr(thread); |
2d21ac55 A |
1967 | |
1968 | thread->state |= TH_IDLE; | |
1969 | processor->current_pri = IDLEPRI; | |
6d2010ae | 1970 | processor->current_thmode = TH_MODE_NONE; |
fe8ab488 | 1971 | processor->current_sfi_class = SFI_CLASS_KERNEL; |
2d21ac55 | 1972 | |
316670eb A |
1973 | /* Reload precise timing global policy to thread-local policy */ |
1974 | thread->precise_user_kernel_time = use_precise_user_kernel_time(thread); | |
1975 | ||
2d21ac55 A |
1976 | thread_unlock(thread); |
1977 | ||
1978 | /* | |
1979 | * Switch execution timing to processor idle thread. | |
1980 | */ | |
1981 | processor->last_dispatch = mach_absolute_time(); | |
fe8ab488 A |
1982 | |
1983 | #ifdef CONFIG_MACH_APPROXIMATE_TIME | |
1984 | commpage_update_mach_approximate_time(processor->last_dispatch); | |
1985 | #endif | |
1986 | ||
6d2010ae | 1987 | thread->last_run_time = processor->last_dispatch; |
2d21ac55 A |
1988 | thread_timer_event(processor->last_dispatch, &processor->idle_thread->system_timer); |
1989 | PROCESSOR_DATA(processor, kernel_timer) = &processor->idle_thread->system_timer; | |
1990 | ||
1991 | /* | |
1992 | * Cancel the quantum timer while idling. | |
1993 | */ | |
1994 | timer_call_cancel(&processor->quantum_timer); | |
3e170ce0 | 1995 | processor->first_timeslice = FALSE; |
2d21ac55 A |
1996 | |
1997 | (*thread->sched_call)(SCHED_CALL_BLOCK, thread); | |
1998 | ||
3e170ce0 | 1999 | thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, NULL); |
6d2010ae | 2000 | |
2d21ac55 A |
2001 | /* |
2002 | * Enable interrupts and perform idling activities. No | |
2003 | * preemption due to TH_IDLE being set. | |
2004 | */ | |
2005 | spllo(); new_thread = processor_idle(thread, processor); | |
2006 | ||
cf7d32b8 A |
2007 | /* |
2008 | * Return at splsched. | |
2009 | */ | |
2d21ac55 A |
2010 | (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread); |
2011 | ||
2012 | thread_lock(thread); | |
2013 | ||
2014 | /* | |
2015 | * If awakened, switch to thread timer and start a new quantum. | |
2016 | * Otherwise skip; we will context switch to another thread or return here. | |
2017 | */ | |
2018 | if (!(thread->state & TH_WAIT)) { | |
2019 | processor->last_dispatch = mach_absolute_time(); | |
2020 | thread_timer_event(processor->last_dispatch, &thread->system_timer); | |
2021 | PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer; | |
2022 | ||
2023 | thread_quantum_init(thread); | |
fe8ab488 A |
2024 | processor->quantum_end = processor->last_dispatch + thread->quantum_remaining; |
2025 | timer_call_enter1(&processor->quantum_timer, thread, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); | |
3e170ce0 | 2026 | processor->first_timeslice = TRUE; |
2d21ac55 A |
2027 | |
2028 | thread->computation_epoch = processor->last_dispatch; | |
1c79356b A |
2029 | } |
2030 | ||
2d21ac55 | 2031 | thread->state &= ~TH_IDLE; |
55e303ae | 2032 | |
39236c6e A |
2033 | urgency = thread_get_urgency(thread, &arg1, &arg2); |
2034 | ||
3e170ce0 | 2035 | thread_tell_urgency(urgency, arg1, arg2, 0, new_thread); |
39236c6e | 2036 | |
fe8ab488 | 2037 | sched_run_incr(thread); |
39236c6e | 2038 | |
2d21ac55 | 2039 | return (new_thread); |
1c79356b | 2040 | } |
6d2010ae A |
2041 | #endif /* CONFIG_SCHED_IDLE_IN_PLACE */ |
2042 | ||
b0d623f7 | 2043 | /* |
3e170ce0 | 2044 | * thread_invoke |
b0d623f7 | 2045 | * |
3e170ce0 | 2046 | * Called at splsched with neither thread locked. |
b0d623f7 | 2047 | * |
3e170ce0 | 2048 | * Perform a context switch and start executing the new thread. |
55e303ae | 2049 | * |
3e170ce0 A |
2050 | * Returns FALSE when the context switch didn't happen. |
2051 | * The reference to the new thread is still consumed. | |
39236c6e A |
2052 | * |
2053 | * "self" is what is currently running on the processor, | |
2054 | * "thread" is the new thread to context switch to | |
2055 | * (which may be the same thread in some cases) | |
2056 | */ | |
2d21ac55 | 2057 | static boolean_t |
1c79356b | 2058 | thread_invoke( |
39236c6e A |
2059 | thread_t self, |
2060 | thread_t thread, | |
91447636 | 2061 | ast_t reason) |
1c79356b | 2062 | { |
39236c6e | 2063 | if (__improbable(get_preemption_level() != 0)) { |
b0d623f7 A |
2064 | int pl = get_preemption_level(); |
2065 | panic("thread_invoke: preemption_level %d, possible cause: %s", | |
2066 | pl, (pl < 0 ? "unlocking an unlocked mutex or spinlock" : | |
2067 | "blocking while holding a spinlock, or within interrupt context")); | |
2068 | } | |
0b4e3aa0 | 2069 | |
3e170ce0 A |
2070 | thread_continue_t continuation = self->continuation; |
2071 | void *parameter = self->parameter; | |
2072 | processor_t processor; | |
2073 | ||
2074 | uint64_t ctime = mach_absolute_time(); | |
2075 | ||
2076 | #ifdef CONFIG_MACH_APPROXIMATE_TIME | |
2077 | commpage_update_mach_approximate_time(ctime); | |
2078 | #endif | |
2079 | ||
2080 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) | |
2081 | sched_timeshare_consider_maintenance(ctime); | |
2082 | #endif | |
2083 | ||
39037602 | 2084 | assert_thread_magic(self); |
2d21ac55 | 2085 | assert(self == current_thread()); |
fe8ab488 | 2086 | assert(self->runq == PROCESSOR_NULL); |
3e170ce0 | 2087 | assert((self->state & (TH_RUN|TH_TERMINATE2)) == TH_RUN); |
91447636 | 2088 | |
2d21ac55 | 2089 | thread_lock(thread); |
1c79356b | 2090 | |
39037602 | 2091 | assert_thread_magic(thread); |
3e170ce0 | 2092 | assert((thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_TERMINATE|TH_TERMINATE2)) == TH_RUN); |
fe8ab488 A |
2093 | assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == current_processor()); |
2094 | assert(thread->runq == PROCESSOR_NULL); | |
1c79356b | 2095 | |
316670eb A |
2096 | /* Reload precise timing global policy to thread-local policy */ |
2097 | thread->precise_user_kernel_time = use_precise_user_kernel_time(thread); | |
3e170ce0 | 2098 | |
fe8ab488 A |
2099 | /* Update SFI class based on other factors */ |
2100 | thread->sfi_class = sfi_thread_classify(thread); | |
2101 | ||
3e170ce0 | 2102 | /* Allow realtime threads to hang onto a stack. */ |
6d2010ae | 2103 | if ((self->sched_mode == TH_MODE_REALTIME) && !self->reserved_stack) |
2d21ac55 | 2104 | self->reserved_stack = self->kernel_stack; |
1c79356b | 2105 | |
91447636 | 2106 | if (continuation != NULL) { |
2d21ac55 | 2107 | if (!thread->kernel_stack) { |
9bccf70c | 2108 | /* |
2d21ac55 | 2109 | * If we are using a privileged stack, |
9bccf70c | 2110 | * check to see whether we can exchange it with |
2d21ac55 | 2111 | * that of the other thread. |
9bccf70c | 2112 | */ |
2d21ac55 | 2113 | if (self->kernel_stack == self->reserved_stack && !thread->reserved_stack) |
9bccf70c | 2114 | goto need_stack; |
1c79356b | 2115 | |
91447636 A |
2116 | /* |
2117 | * Context switch by performing a stack handoff. | |
2118 | */ | |
2d21ac55 A |
2119 | continuation = thread->continuation; |
2120 | parameter = thread->parameter; | |
1c79356b | 2121 | |
9bccf70c | 2122 | processor = current_processor(); |
2d21ac55 A |
2123 | processor->active_thread = thread; |
2124 | processor->current_pri = thread->sched_pri; | |
6d2010ae | 2125 | processor->current_thmode = thread->sched_mode; |
fe8ab488 | 2126 | processor->current_sfi_class = thread->sfi_class; |
2d21ac55 A |
2127 | if (thread->last_processor != processor && thread->last_processor != NULL) { |
2128 | if (thread->last_processor->processor_set != processor->processor_set) | |
2129 | thread->ps_switch++; | |
2130 | thread->p_switch++; | |
2131 | } | |
2132 | thread->last_processor = processor; | |
2133 | thread->c_switch++; | |
2134 | ast_context(thread); | |
3e170ce0 | 2135 | |
2d21ac55 | 2136 | thread_unlock(thread); |
1c79356b | 2137 | |
2d21ac55 | 2138 | self->reason = reason; |
91447636 | 2139 | |
39236c6e A |
2140 | processor->last_dispatch = ctime; |
2141 | self->last_run_time = ctime; | |
2142 | thread_timer_event(ctime, &thread->system_timer); | |
2d21ac55 | 2143 | PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer; |
316670eb A |
2144 | |
2145 | /* | |
2146 | * Since non-precise user/kernel time doesn't update the state timer | |
2147 | * during privilege transitions, synthesize an event now. | |
2148 | */ | |
2149 | if (!thread->precise_user_kernel_time) { | |
2150 | timer_switch(PROCESSOR_DATA(processor, current_state), | |
39236c6e | 2151 | ctime, |
316670eb A |
2152 | PROCESSOR_DATA(processor, current_state)); |
2153 | } | |
2d21ac55 | 2154 | |
316670eb A |
2155 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
2156 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_HANDOFF)|DBG_FUNC_NONE, | |
2157 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
1c79356b | 2158 | |
39236c6e | 2159 | if ((thread->chosen_processor != processor) && (thread->chosen_processor != PROCESSOR_NULL)) { |
3e170ce0 | 2160 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE, |
6d2010ae A |
2161 | (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0); |
2162 | } | |
2163 | ||
b0d623f7 A |
2164 | DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info); |
2165 | ||
6d2010ae A |
2166 | SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri); |
2167 | ||
2168 | TLOG(1, "thread_invoke: calling stack_handoff\n"); | |
2169 | stack_handoff(self, thread); | |
9bccf70c | 2170 | |
3e170ce0 A |
2171 | /* 'self' is now off core */ |
2172 | assert(thread == current_thread()); | |
2173 | ||
b0d623f7 A |
2174 | DTRACE_SCHED(on__cpu); |
2175 | ||
39037602 A |
2176 | #if KPERF |
2177 | kperf_on_cpu(thread, continuation, NULL); | |
2178 | #endif /* KPERF */ | |
2179 | ||
2d21ac55 | 2180 | thread_dispatch(self, thread); |
1c79356b | 2181 | |
2d21ac55 | 2182 | thread->continuation = thread->parameter = NULL; |
1c79356b | 2183 | |
2d21ac55 | 2184 | counter(c_thread_invoke_hits++); |
1c79356b | 2185 | |
9bccf70c | 2186 | (void) spllo(); |
1c79356b | 2187 | |
2d21ac55 A |
2188 | assert(continuation); |
2189 | call_continuation(continuation, parameter, thread->wait_result); | |
9bccf70c | 2190 | /*NOTREACHED*/ |
9bccf70c | 2191 | } |
2d21ac55 | 2192 | else if (thread == self) { |
9bccf70c | 2193 | /* same thread but with continuation */ |
2d21ac55 | 2194 | ast_context(self); |
9bccf70c | 2195 | counter(++c_thread_invoke_same); |
3e170ce0 | 2196 | |
2d21ac55 | 2197 | thread_unlock(self); |
9bccf70c | 2198 | |
39037602 A |
2199 | #if KPERF |
2200 | kperf_on_cpu(thread, continuation, NULL); | |
2201 | #endif /* KPERF */ | |
2202 | ||
316670eb A |
2203 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
2204 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE, | |
2205 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
6d2010ae | 2206 | |
2d21ac55 A |
2207 | self->continuation = self->parameter = NULL; |
2208 | ||
9bccf70c | 2209 | (void) spllo(); |
55e303ae | 2210 | |
2d21ac55 | 2211 | call_continuation(continuation, parameter, self->wait_result); |
9bccf70c A |
2212 | /*NOTREACHED*/ |
2213 | } | |
3e170ce0 | 2214 | } else { |
9bccf70c | 2215 | /* |
2d21ac55 | 2216 | * Check that the other thread has a stack |
9bccf70c | 2217 | */ |
2d21ac55 | 2218 | if (!thread->kernel_stack) { |
9bccf70c | 2219 | need_stack: |
2d21ac55 A |
2220 | if (!stack_alloc_try(thread)) { |
2221 | counter(c_thread_invoke_misses++); | |
2222 | thread_unlock(thread); | |
2223 | thread_stack_enqueue(thread); | |
9bccf70c A |
2224 | return (FALSE); |
2225 | } | |
3e170ce0 | 2226 | } else if (thread == self) { |
2d21ac55 | 2227 | ast_context(self); |
9bccf70c | 2228 | counter(++c_thread_invoke_same); |
2d21ac55 | 2229 | thread_unlock(self); |
6d2010ae | 2230 | |
316670eb A |
2231 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
2232 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE, | |
2233 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
6d2010ae | 2234 | |
9bccf70c A |
2235 | return (TRUE); |
2236 | } | |
2237 | } | |
1c79356b A |
2238 | |
2239 | /* | |
91447636 | 2240 | * Context switch by full context save. |
1c79356b | 2241 | */ |
9bccf70c | 2242 | processor = current_processor(); |
2d21ac55 A |
2243 | processor->active_thread = thread; |
2244 | processor->current_pri = thread->sched_pri; | |
6d2010ae | 2245 | processor->current_thmode = thread->sched_mode; |
fe8ab488 | 2246 | processor->current_sfi_class = thread->sfi_class; |
2d21ac55 A |
2247 | if (thread->last_processor != processor && thread->last_processor != NULL) { |
2248 | if (thread->last_processor->processor_set != processor->processor_set) | |
2249 | thread->ps_switch++; | |
2250 | thread->p_switch++; | |
2251 | } | |
2252 | thread->last_processor = processor; | |
2253 | thread->c_switch++; | |
2254 | ast_context(thread); | |
3e170ce0 | 2255 | |
2d21ac55 | 2256 | thread_unlock(thread); |
1c79356b | 2257 | |
2d21ac55 | 2258 | counter(c_thread_invoke_csw++); |
1c79356b | 2259 | |
2d21ac55 | 2260 | self->reason = reason; |
1c79356b | 2261 | |
39236c6e A |
2262 | processor->last_dispatch = ctime; |
2263 | self->last_run_time = ctime; | |
2264 | thread_timer_event(ctime, &thread->system_timer); | |
2d21ac55 | 2265 | PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer; |
91447636 | 2266 | |
316670eb A |
2267 | /* |
2268 | * Since non-precise user/kernel time doesn't update the state timer | |
2269 | * during privilege transitions, synthesize an event now. | |
2270 | */ | |
2271 | if (!thread->precise_user_kernel_time) { | |
2272 | timer_switch(PROCESSOR_DATA(processor, current_state), | |
39236c6e | 2273 | ctime, |
316670eb A |
2274 | PROCESSOR_DATA(processor, current_state)); |
2275 | } | |
3e170ce0 | 2276 | |
316670eb A |
2277 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
2278 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE, | |
2279 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); | |
b0d623f7 | 2280 | |
6d2010ae | 2281 | if ((thread->chosen_processor != processor) && (thread->chosen_processor != NULL)) { |
3e170ce0 | 2282 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE, |
6d2010ae A |
2283 | (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0); |
2284 | } | |
2285 | ||
b0d623f7 | 2286 | DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info); |
1c79356b | 2287 | |
6d2010ae A |
2288 | SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri); |
2289 | ||
1c79356b | 2290 | /* |
91447636 | 2291 | * This is where we actually switch register context, |
2d21ac55 A |
2292 | * and address space if required. We will next run |
2293 | * as a result of a subsequent context switch. | |
3e170ce0 A |
2294 | * |
2295 | * Once registers are switched and the processor is running "thread", | |
2296 | * the stack variables and non-volatile registers will contain whatever | |
2297 | * was there the last time that thread blocked. No local variables should | |
2298 | * be used after this point, except for the special case of "thread", which | |
2299 | * the platform layer returns as the previous thread running on the processor | |
2300 | * via the function call ABI as a return register, and "self", which may have | |
2301 | * been stored on the stack or a non-volatile register, but a stale idea of | |
2302 | * what was on the CPU is newly-accurate because that thread is again | |
2303 | * running on the CPU. | |
91447636 | 2304 | */ |
316670eb | 2305 | assert(continuation == self->continuation); |
2d21ac55 | 2306 | thread = machine_switch_context(self, continuation, thread); |
316670eb | 2307 | assert(self == current_thread()); |
b0d623f7 A |
2308 | TLOG(1,"thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n", self, continuation, thread); |
2309 | ||
2310 | DTRACE_SCHED(on__cpu); | |
1c79356b | 2311 | |
39037602 A |
2312 | #if KPERF |
2313 | kperf_on_cpu(self, NULL, __builtin_frame_address(0)); | |
2314 | #endif /* KPERF */ | |
2315 | ||
1c79356b | 2316 | /* |
2d21ac55 | 2317 | * We have been resumed and are set to run. |
1c79356b | 2318 | */ |
2d21ac55 | 2319 | thread_dispatch(thread, self); |
9bccf70c | 2320 | |
91447636 | 2321 | if (continuation) { |
2d21ac55 A |
2322 | self->continuation = self->parameter = NULL; |
2323 | ||
9bccf70c | 2324 | (void) spllo(); |
55e303ae | 2325 | |
2d21ac55 | 2326 | call_continuation(continuation, parameter, self->wait_result); |
9bccf70c | 2327 | /*NOTREACHED*/ |
1c79356b A |
2328 | } |
2329 | ||
9bccf70c | 2330 | return (TRUE); |
1c79356b A |
2331 | } |
2332 | ||
3e170ce0 A |
2333 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
2334 | /* | |
2335 | * pset_cancel_deferred_dispatch: | |
2336 | * | |
2337 | * Cancels all ASTs that we can cancel for the given processor set | |
2338 | * if the current processor is running the last runnable thread in the | |
2339 | * system. | |
2340 | * | |
2341 | * This function assumes the current thread is runnable. This must | |
2342 | * be called with the pset unlocked. | |
2343 | */ | |
2344 | static void | |
2345 | pset_cancel_deferred_dispatch( | |
2346 | processor_set_t pset, | |
2347 | processor_t processor) | |
2348 | { | |
2349 | processor_t active_processor = NULL; | |
2350 | uint32_t sampled_sched_run_count; | |
2351 | ||
2352 | pset_lock(pset); | |
39037602 | 2353 | sampled_sched_run_count = (volatile uint32_t) sched_run_buckets[TH_BUCKET_RUN]; |
3e170ce0 A |
2354 | |
2355 | /* | |
2356 | * If we have emptied the run queue, and our current thread is runnable, we | |
2357 | * should tell any processors that are still DISPATCHING that they will | |
2358 | * probably not have any work to do. In the event that there are no | |
2359 | * pending signals that we can cancel, this is also uninteresting. | |
2360 | * | |
2361 | * In the unlikely event that another thread becomes runnable while we are | |
2362 | * doing this (sched_run_count is atomically updated, not guarded), the | |
2363 | * codepath making it runnable SHOULD (a dangerous word) need the pset lock | |
2364 | * in order to dispatch it to a processor in our pset. So, the other | |
2365 | * codepath will wait while we squash all cancelable ASTs, get the pset | |
2366 | * lock, and then dispatch the freshly runnable thread. So this should be | |
2367 | * correct (we won't accidentally have a runnable thread that hasn't been | |
2368 | * dispatched to an idle processor), if not ideal (we may be restarting the | |
2369 | * dispatch process, which could have some overhead). | |
2370 | * | |
2371 | */ | |
2372 | if ((sampled_sched_run_count == 1) && | |
2373 | (pset->pending_deferred_AST_cpu_mask)) { | |
2374 | qe_foreach_element_safe(active_processor, &pset->active_queue, processor_queue) { | |
2375 | /* | |
2376 | * If a processor is DISPATCHING, it could be because of | |
2377 | * a cancelable signal. | |
2378 | * | |
2379 | * IF the processor is not our | |
2380 | * current processor (the current processor should not | |
2381 | * be DISPATCHING, so this is a bit paranoid), AND there | |
2382 | * is a cancelable signal pending on the processor, AND | |
2383 | * there is no non-cancelable signal pending (as there is | |
2384 | * no point trying to backtrack on bringing the processor | |
2385 | * up if a signal we cannot cancel is outstanding), THEN | |
2386 | * it should make sense to roll back the processor state | |
2387 | * to the IDLE state. | |
2388 | * | |
2389 | * If the racey nature of this approach (as the signal | |
2390 | * will be arbitrated by hardware, and can fire as we | |
2391 | * roll back state) results in the core responding | |
2392 | * despite being pushed back to the IDLE state, it | |
2393 | * should be no different than if the core took some | |
2394 | * interrupt while IDLE. | |
2395 | */ | |
2396 | if ((active_processor->state == PROCESSOR_DISPATCHING) && | |
2397 | (pset->pending_deferred_AST_cpu_mask & (1ULL << active_processor->cpu_id)) && | |
2398 | (!(pset->pending_AST_cpu_mask & (1ULL << active_processor->cpu_id))) && | |
2399 | (active_processor != processor)) { | |
2400 | /* | |
2401 | * Squash all of the processor state back to some | |
2402 | * reasonable facsimile of PROCESSOR_IDLE. | |
2403 | * | |
2404 | * TODO: What queue policy do we actually want here? | |
2405 | * We want to promote selection of a good processor | |
2406 | * to run on. Do we want to enqueue at the head? | |
2407 | * The tail? At the (relative) old position in the | |
2408 | * queue? Or something else entirely? | |
2409 | */ | |
39037602 | 2410 | re_queue_head(&pset->idle_queue, &active_processor->processor_queue); |
3e170ce0 A |
2411 | |
2412 | assert(active_processor->next_thread == THREAD_NULL); | |
2413 | ||
2414 | active_processor->current_pri = IDLEPRI; | |
2415 | active_processor->current_thmode = TH_MODE_FIXED; | |
2416 | active_processor->current_sfi_class = SFI_CLASS_KERNEL; | |
2417 | active_processor->deadline = UINT64_MAX; | |
2418 | active_processor->state = PROCESSOR_IDLE; | |
2419 | pset->pending_deferred_AST_cpu_mask &= ~(1U << active_processor->cpu_id); | |
2420 | machine_signal_idle_cancel(active_processor); | |
2421 | } | |
2422 | ||
2423 | } | |
2424 | } | |
2425 | ||
2426 | pset_unlock(pset); | |
2427 | } | |
2428 | #else | |
2429 | /* We don't support deferred ASTs; everything is candycanes and sunshine. */ | |
2430 | #endif | |
2431 | ||
1c79356b | 2432 | /* |
2d21ac55 | 2433 | * thread_dispatch: |
1c79356b | 2434 | * |
2d21ac55 A |
2435 | * Handle threads at context switch. Re-dispatch other thread |
2436 | * if still running, otherwise update run state and perform | |
2437 | * special actions. Update quantum for other thread and begin | |
2438 | * the quantum for ourselves. | |
91447636 | 2439 | * |
3e170ce0 A |
2440 | * "thread" is the old thread that we have switched away from. |
2441 | * "self" is the new current thread that we have context switched to | |
39236c6e | 2442 | * |
91447636 | 2443 | * Called at splsched. |
1c79356b A |
2444 | */ |
2445 | void | |
2d21ac55 A |
2446 | thread_dispatch( |
2447 | thread_t thread, | |
2448 | thread_t self) | |
1c79356b | 2449 | { |
2d21ac55 A |
2450 | processor_t processor = self->last_processor; |
2451 | ||
3e170ce0 A |
2452 | assert(processor == current_processor()); |
2453 | assert(self == current_thread()); | |
2454 | assert(thread != self); | |
2455 | ||
2d21ac55 | 2456 | if (thread != THREAD_NULL) { |
91447636 | 2457 | /* |
2d21ac55 A |
2458 | * If blocked at a continuation, discard |
2459 | * the stack. | |
91447636 | 2460 | */ |
2d21ac55 A |
2461 | if (thread->continuation != NULL && thread->kernel_stack != 0) |
2462 | stack_free(thread); | |
2463 | ||
3e170ce0 A |
2464 | if (thread->state & TH_IDLE) { |
2465 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
39037602 A |
2466 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE, |
2467 | (uintptr_t)thread_tid(thread), 0, thread->state, | |
2468 | sched_run_buckets[TH_BUCKET_RUN], 0); | |
3e170ce0 | 2469 | } else { |
316670eb A |
2470 | int64_t consumed; |
2471 | int64_t remainder = 0; | |
2472 | ||
2473 | if (processor->quantum_end > processor->last_dispatch) | |
2474 | remainder = processor->quantum_end - | |
2475 | processor->last_dispatch; | |
2476 | ||
fe8ab488 | 2477 | consumed = thread->quantum_remaining - remainder; |
316670eb | 2478 | |
39236c6e | 2479 | if ((thread->reason & AST_LEDGER) == 0) { |
316670eb | 2480 | /* |
39236c6e A |
2481 | * Bill CPU time to both the task and |
2482 | * the individual thread. | |
316670eb A |
2483 | */ |
2484 | ledger_credit(thread->t_ledger, | |
2485 | task_ledgers.cpu_time, consumed); | |
2486 | ledger_credit(thread->t_threadledger, | |
2487 | thread_ledgers.cpu_time, consumed); | |
fe8ab488 A |
2488 | #ifdef CONFIG_BANK |
2489 | if (thread->t_bankledger) { | |
2490 | ledger_credit(thread->t_bankledger, | |
2491 | bank_ledgers.cpu_time, | |
2492 | (consumed - thread->t_deduct_bank_ledger_time)); | |
2493 | ||
2494 | } | |
2495 | thread->t_deduct_bank_ledger_time =0; | |
2496 | #endif | |
39236c6e | 2497 | } |
316670eb | 2498 | |
2d21ac55 A |
2499 | wake_lock(thread); |
2500 | thread_lock(thread); | |
9bccf70c | 2501 | |
91447636 | 2502 | /* |
39037602 A |
2503 | * Apply a priority floor if the thread holds a kernel resource |
2504 | * Do this before checking starting_pri to avoid overpenalizing | |
2505 | * repeated rwlock blockers. | |
2506 | */ | |
2507 | if (__improbable(thread->rwlock_count != 0)) | |
2508 | lck_rw_set_promotion_locked(thread); | |
2509 | ||
2510 | boolean_t keep_quantum = processor->first_timeslice; | |
2511 | ||
2512 | /* | |
2513 | * Treat a thread which has dropped priority since it got on core | |
2514 | * as having expired its quantum. | |
91447636 | 2515 | */ |
39037602 A |
2516 | if (processor->starting_pri > thread->sched_pri) |
2517 | keep_quantum = FALSE; | |
2518 | ||
2519 | /* Compute remainder of current quantum. */ | |
2520 | if (keep_quantum && | |
316670eb | 2521 | processor->quantum_end > processor->last_dispatch) |
fe8ab488 | 2522 | thread->quantum_remaining = (uint32_t)remainder; |
2d21ac55 | 2523 | else |
fe8ab488 | 2524 | thread->quantum_remaining = 0; |
2d21ac55 | 2525 | |
6d2010ae | 2526 | if (thread->sched_mode == TH_MODE_REALTIME) { |
2d21ac55 A |
2527 | /* |
2528 | * Cancel the deadline if the thread has | |
2529 | * consumed the entire quantum. | |
2530 | */ | |
fe8ab488 | 2531 | if (thread->quantum_remaining == 0) { |
2d21ac55 | 2532 | thread->realtime.deadline = UINT64_MAX; |
2d21ac55 | 2533 | } |
b7266188 | 2534 | } else { |
3e170ce0 | 2535 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
2d21ac55 A |
2536 | /* |
2537 | * For non-realtime threads treat a tiny | |
2538 | * remaining quantum as an expired quantum | |
2539 | * but include what's left next time. | |
2540 | */ | |
fe8ab488 | 2541 | if (thread->quantum_remaining < min_std_quantum) { |
2d21ac55 | 2542 | thread->reason |= AST_QUANTUM; |
fe8ab488 | 2543 | thread->quantum_remaining += SCHED(initial_quantum_size)(thread); |
2d21ac55 | 2544 | } |
3e170ce0 | 2545 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
2d21ac55 A |
2546 | } |
2547 | ||
91447636 | 2548 | /* |
2d21ac55 A |
2549 | * If we are doing a direct handoff then |
2550 | * take the remainder of the quantum. | |
91447636 | 2551 | */ |
2d21ac55 | 2552 | if ((thread->reason & (AST_HANDOFF|AST_QUANTUM)) == AST_HANDOFF) { |
fe8ab488 | 2553 | self->quantum_remaining = thread->quantum_remaining; |
2d21ac55 | 2554 | thread->reason |= AST_QUANTUM; |
fe8ab488 A |
2555 | thread->quantum_remaining = 0; |
2556 | } else { | |
2557 | #if defined(CONFIG_SCHED_MULTIQ) | |
3e170ce0 A |
2558 | if (SCHED(sched_groups_enabled) && |
2559 | thread->sched_group == self->sched_group) { | |
fe8ab488 | 2560 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
3e170ce0 | 2561 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_QUANTUM_HANDOFF), |
fe8ab488 A |
2562 | self->reason, (uintptr_t)thread_tid(thread), |
2563 | self->quantum_remaining, thread->quantum_remaining, 0); | |
2564 | ||
2565 | self->quantum_remaining = thread->quantum_remaining; | |
2566 | thread->quantum_remaining = 0; | |
3e170ce0 | 2567 | /* Don't set AST_QUANTUM here - old thread might still want to preempt someone else */ |
fe8ab488 A |
2568 | } |
2569 | #endif /* defined(CONFIG_SCHED_MULTIQ) */ | |
91447636 | 2570 | } |
91447636 | 2571 | |
b0d623f7 | 2572 | thread->computation_metered += (processor->last_dispatch - thread->computation_epoch); |
2d21ac55 A |
2573 | |
2574 | if (!(thread->state & TH_WAIT)) { | |
2575 | /* | |
3e170ce0 | 2576 | * Still runnable. |
2d21ac55 | 2577 | */ |
3e170ce0 A |
2578 | thread->last_made_runnable_time = mach_approximate_time(); |
2579 | ||
d190cdc3 | 2580 | machine_thread_going_off_core(thread, FALSE, processor->last_dispatch); |
3e170ce0 | 2581 | |
2d21ac55 A |
2582 | if (thread->reason & AST_QUANTUM) |
2583 | thread_setrun(thread, SCHED_TAILQ); | |
3e170ce0 | 2584 | else if (thread->reason & AST_PREEMPT) |
2d21ac55 A |
2585 | thread_setrun(thread, SCHED_HEADQ); |
2586 | else | |
2587 | thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
2588 | ||
fe8ab488 | 2589 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
39037602 A |
2590 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE, |
2591 | (uintptr_t)thread_tid(thread), thread->reason, thread->state, | |
2592 | sched_run_buckets[TH_BUCKET_RUN], 0); | |
3e170ce0 | 2593 | |
316670eb A |
2594 | if (thread->wake_active) { |
2595 | thread->wake_active = FALSE; | |
2596 | thread_unlock(thread); | |
2597 | ||
2598 | thread_wakeup(&thread->wake_active); | |
3e170ce0 | 2599 | } else { |
316670eb | 2600 | thread_unlock(thread); |
3e170ce0 | 2601 | } |
316670eb | 2602 | |
2d21ac55 | 2603 | wake_unlock(thread); |
3e170ce0 | 2604 | } else { |
2d21ac55 A |
2605 | /* |
2606 | * Waiting. | |
2607 | */ | |
b7266188 | 2608 | boolean_t should_terminate = FALSE; |
fe8ab488 | 2609 | uint32_t new_run_count; |
b7266188 A |
2610 | |
2611 | /* Only the first call to thread_dispatch | |
2612 | * after explicit termination should add | |
2613 | * the thread to the termination queue | |
2614 | */ | |
2615 | if ((thread->state & (TH_TERMINATE|TH_TERMINATE2)) == TH_TERMINATE) { | |
2616 | should_terminate = TRUE; | |
2617 | thread->state |= TH_TERMINATE2; | |
2618 | } | |
2619 | ||
2d21ac55 | 2620 | thread->state &= ~TH_RUN; |
3e170ce0 | 2621 | thread->last_made_runnable_time = ~0ULL; |
39236c6e A |
2622 | thread->chosen_processor = PROCESSOR_NULL; |
2623 | ||
fe8ab488 | 2624 | new_run_count = sched_run_decr(thread); |
2d21ac55 | 2625 | |
3e170ce0 | 2626 | #if CONFIG_SCHED_SFI |
fe8ab488 A |
2627 | if ((thread->state & (TH_WAIT | TH_TERMINATE)) == TH_WAIT) { |
2628 | if (thread->reason & AST_SFI) { | |
2629 | thread->wait_sfi_begin_time = processor->last_dispatch; | |
2630 | } | |
39236c6e | 2631 | } |
3e170ce0 A |
2632 | #endif |
2633 | ||
d190cdc3 | 2634 | machine_thread_going_off_core(thread, should_terminate, processor->last_dispatch); |
fe8ab488 A |
2635 | |
2636 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
39037602 A |
2637 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE, |
2638 | (uintptr_t)thread_tid(thread), thread->reason, thread->state, | |
2639 | new_run_count, 0); | |
2d21ac55 | 2640 | |
b7266188 A |
2641 | (*thread->sched_call)(SCHED_CALL_BLOCK, thread); |
2642 | ||
2d21ac55 A |
2643 | if (thread->wake_active) { |
2644 | thread->wake_active = FALSE; | |
2645 | thread_unlock(thread); | |
2646 | ||
2647 | thread_wakeup(&thread->wake_active); | |
3e170ce0 | 2648 | } else { |
2d21ac55 | 2649 | thread_unlock(thread); |
3e170ce0 | 2650 | } |
91447636 | 2651 | |
2d21ac55 | 2652 | wake_unlock(thread); |
91447636 | 2653 | |
b7266188 | 2654 | if (should_terminate) |
2d21ac55 A |
2655 | thread_terminate_enqueue(thread); |
2656 | } | |
2657 | } | |
91447636 | 2658 | } |
91447636 | 2659 | |
3e170ce0 A |
2660 | /* Update (new) current thread and reprogram quantum timer */ |
2661 | thread_lock(self); | |
2d21ac55 | 2662 | if (!(self->state & TH_IDLE)) { |
39236c6e A |
2663 | uint64_t arg1, arg2; |
2664 | int urgency; | |
3e170ce0 A |
2665 | uint64_t latency; |
2666 | ||
2667 | #if CONFIG_SCHED_SFI | |
fe8ab488 A |
2668 | ast_t new_ast; |
2669 | ||
fe8ab488 | 2670 | new_ast = sfi_thread_needs_ast(self, NULL); |
fe8ab488 A |
2671 | |
2672 | if (new_ast != AST_NONE) { | |
2673 | ast_on(new_ast); | |
2674 | } | |
3e170ce0 A |
2675 | #endif |
2676 | ||
39037602 | 2677 | assertf(processor->last_dispatch >= self->last_made_runnable_time, "Non-monotonic time? dispatch at 0x%llx, runnable at 0x%llx", processor->last_dispatch, self->last_made_runnable_time); |
3e170ce0 | 2678 | latency = processor->last_dispatch - self->last_made_runnable_time; |
6d2010ae | 2679 | |
39236c6e A |
2680 | urgency = thread_get_urgency(self, &arg1, &arg2); |
2681 | ||
3e170ce0 A |
2682 | thread_tell_urgency(urgency, arg1, arg2, latency, self); |
2683 | ||
d190cdc3 | 2684 | machine_thread_going_on_core(self, urgency, latency, processor->last_dispatch); |
39236c6e | 2685 | |
91447636 | 2686 | /* |
2d21ac55 | 2687 | * Get a new quantum if none remaining. |
91447636 | 2688 | */ |
fe8ab488 | 2689 | if (self->quantum_remaining == 0) { |
2d21ac55 | 2690 | thread_quantum_init(self); |
6d2010ae | 2691 | } |
91447636 A |
2692 | |
2693 | /* | |
2d21ac55 | 2694 | * Set up quantum timer and timeslice. |
91447636 | 2695 | */ |
fe8ab488 A |
2696 | processor->quantum_end = processor->last_dispatch + self->quantum_remaining; |
2697 | timer_call_enter1(&processor->quantum_timer, self, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); | |
91447636 | 2698 | |
3e170ce0 A |
2699 | processor->first_timeslice = TRUE; |
2700 | } else { | |
2701 | timer_call_cancel(&processor->quantum_timer); | |
2702 | processor->first_timeslice = FALSE; | |
91447636 | 2703 | |
3e170ce0 | 2704 | thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, self); |
d190cdc3 | 2705 | machine_thread_going_on_core(self, THREAD_URGENCY_NONE, 0, processor->last_dispatch); |
91447636 | 2706 | } |
6d2010ae | 2707 | |
813fb2f6 | 2708 | assert(self->block_hint == kThreadWaitNone); |
3e170ce0 A |
2709 | self->computation_epoch = processor->last_dispatch; |
2710 | self->reason = AST_NONE; | |
39037602 | 2711 | processor->starting_pri = self->sched_pri; |
3e170ce0 A |
2712 | |
2713 | thread_unlock(self); | |
2714 | ||
2715 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
2716 | /* | |
2717 | * TODO: Can we state that redispatching our old thread is also | |
2718 | * uninteresting? | |
2719 | */ | |
39037602 | 2720 | if ((((volatile uint32_t)sched_run_buckets[TH_BUCKET_RUN]) == 1) && |
3e170ce0 A |
2721 | !(self->state & TH_IDLE)) { |
2722 | pset_cancel_deferred_dispatch(processor->processor_set, processor); | |
91447636 | 2723 | } |
3e170ce0 A |
2724 | #endif |
2725 | ||
91447636 A |
2726 | } |
2727 | ||
2728 | /* | |
2d21ac55 | 2729 | * thread_block_reason: |
91447636 | 2730 | * |
2d21ac55 A |
2731 | * Forces a reschedule, blocking the caller if a wait |
2732 | * has been asserted. | |
91447636 | 2733 | * |
2d21ac55 A |
2734 | * If a continuation is specified, then thread_invoke will |
2735 | * attempt to discard the thread's kernel stack. When the | |
2736 | * thread resumes, it will execute the continuation function | |
2737 | * on a new kernel stack. | |
91447636 | 2738 | */ |
2d21ac55 A |
2739 | counter(mach_counter_t c_thread_block_calls = 0;) |
2740 | ||
2741 | wait_result_t | |
2742 | thread_block_reason( | |
2743 | thread_continue_t continuation, | |
2744 | void *parameter, | |
2745 | ast_t reason) | |
91447636 | 2746 | { |
3e170ce0 A |
2747 | thread_t self = current_thread(); |
2748 | processor_t processor; | |
2749 | thread_t new_thread; | |
2750 | spl_t s; | |
1c79356b A |
2751 | |
2752 | counter(++c_thread_block_calls); | |
2753 | ||
1c79356b A |
2754 | s = splsched(); |
2755 | ||
55e303ae | 2756 | processor = current_processor(); |
1c79356b | 2757 | |
9bccf70c A |
2758 | /* If we're explicitly yielding, force a subsequent quantum */ |
2759 | if (reason & AST_YIELD) | |
3e170ce0 | 2760 | processor->first_timeslice = FALSE; |
0b4e3aa0 | 2761 | |
9bccf70c A |
2762 | /* We're handling all scheduling AST's */ |
2763 | ast_off(AST_SCHEDULING); | |
1c79356b | 2764 | |
490019cf A |
2765 | #if PROC_REF_DEBUG |
2766 | if ((continuation != NULL) && (self->task != kernel_task)) { | |
2767 | if (uthread_get_proc_refcount(self->uthread) != 0) { | |
2768 | panic("thread_block_reason with continuation uthread %p with uu_proc_refcount != 0", self->uthread); | |
2769 | } | |
2770 | } | |
2771 | #endif | |
2772 | ||
91447636 A |
2773 | self->continuation = continuation; |
2774 | self->parameter = parameter; | |
2775 | ||
fe8ab488 | 2776 | if (self->state & ~(TH_RUN | TH_IDLE)) { |
316670eb A |
2777 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
2778 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_BLOCK), | |
2779 | reason, VM_KERNEL_UNSLIDE(continuation), 0, 0, 0); | |
b0d623f7 A |
2780 | } |
2781 | ||
2d21ac55 | 2782 | do { |
91447636 | 2783 | thread_lock(self); |
fe8ab488 | 2784 | new_thread = thread_select(self, processor, reason); |
91447636 | 2785 | thread_unlock(self); |
2d21ac55 | 2786 | } while (!thread_invoke(self, new_thread, reason)); |
1c79356b | 2787 | |
1c79356b A |
2788 | splx(s); |
2789 | ||
91447636 | 2790 | return (self->wait_result); |
1c79356b A |
2791 | } |
2792 | ||
2793 | /* | |
2794 | * thread_block: | |
2795 | * | |
9bccf70c | 2796 | * Block the current thread if a wait has been asserted. |
1c79356b | 2797 | */ |
91447636 | 2798 | wait_result_t |
1c79356b | 2799 | thread_block( |
9bccf70c | 2800 | thread_continue_t continuation) |
1c79356b | 2801 | { |
91447636 A |
2802 | return thread_block_reason(continuation, NULL, AST_NONE); |
2803 | } | |
2804 | ||
2805 | wait_result_t | |
2806 | thread_block_parameter( | |
2807 | thread_continue_t continuation, | |
2808 | void *parameter) | |
2809 | { | |
2810 | return thread_block_reason(continuation, parameter, AST_NONE); | |
1c79356b A |
2811 | } |
2812 | ||
2813 | /* | |
2814 | * thread_run: | |
2815 | * | |
91447636 | 2816 | * Switch directly from the current thread to the |
55e303ae | 2817 | * new thread, handing off our quantum if appropriate. |
9bccf70c A |
2818 | * |
2819 | * New thread must be runnable, and not on a run queue. | |
1c79356b | 2820 | * |
55e303ae | 2821 | * Called at splsched. |
1c79356b A |
2822 | */ |
2823 | int | |
2824 | thread_run( | |
91447636 | 2825 | thread_t self, |
9bccf70c | 2826 | thread_continue_t continuation, |
91447636 | 2827 | void *parameter, |
9bccf70c | 2828 | thread_t new_thread) |
1c79356b | 2829 | { |
9bccf70c A |
2830 | ast_t handoff = AST_HANDOFF; |
2831 | ||
91447636 A |
2832 | self->continuation = continuation; |
2833 | self->parameter = parameter; | |
9bccf70c | 2834 | |
91447636 | 2835 | while (!thread_invoke(self, new_thread, handoff)) { |
2d21ac55 | 2836 | processor_t processor = current_processor(); |
9bccf70c | 2837 | |
91447636 | 2838 | thread_lock(self); |
fe8ab488 | 2839 | new_thread = thread_select(self, processor, AST_NONE); |
91447636 | 2840 | thread_unlock(self); |
9bccf70c A |
2841 | handoff = AST_NONE; |
2842 | } | |
2843 | ||
91447636 | 2844 | return (self->wait_result); |
1c79356b A |
2845 | } |
2846 | ||
2847 | /* | |
91447636 | 2848 | * thread_continue: |
55e303ae | 2849 | * |
91447636 A |
2850 | * Called at splsched when a thread first receives |
2851 | * a new stack after a continuation. | |
1c79356b A |
2852 | */ |
2853 | void | |
91447636 | 2854 | thread_continue( |
3e170ce0 | 2855 | thread_t thread) |
1c79356b | 2856 | { |
3e170ce0 A |
2857 | thread_t self = current_thread(); |
2858 | thread_continue_t continuation; | |
2859 | void *parameter; | |
b0d623f7 A |
2860 | |
2861 | DTRACE_SCHED(on__cpu); | |
2862 | ||
91447636 | 2863 | continuation = self->continuation; |
91447636 | 2864 | parameter = self->parameter; |
9bccf70c | 2865 | |
39037602 A |
2866 | #if KPERF |
2867 | kperf_on_cpu(self, continuation, NULL); | |
2868 | #endif | |
2869 | ||
2d21ac55 | 2870 | thread_dispatch(thread, self); |
9bccf70c | 2871 | |
2d21ac55 | 2872 | self->continuation = self->parameter = NULL; |
1c79356b | 2873 | |
2d21ac55 | 2874 | if (thread != THREAD_NULL) |
91447636 | 2875 | (void)spllo(); |
9bccf70c | 2876 | |
2d21ac55 | 2877 | TLOG(1, "thread_continue: calling call_continuation \n"); |
91447636 A |
2878 | call_continuation(continuation, parameter, self->wait_result); |
2879 | /*NOTREACHED*/ | |
1c79356b A |
2880 | } |
2881 | ||
2d21ac55 | 2882 | void |
6d2010ae | 2883 | thread_quantum_init(thread_t thread) |
2d21ac55 | 2884 | { |
6d2010ae | 2885 | if (thread->sched_mode == TH_MODE_REALTIME) { |
fe8ab488 | 2886 | thread->quantum_remaining = thread->realtime.computation; |
6d2010ae | 2887 | } else { |
fe8ab488 | 2888 | thread->quantum_remaining = SCHED(initial_quantum_size)(thread); |
6d2010ae A |
2889 | } |
2890 | } | |
2d21ac55 | 2891 | |
fe8ab488 | 2892 | uint32_t |
3e170ce0 | 2893 | sched_timeshare_initial_quantum_size(thread_t thread) |
6d2010ae | 2894 | { |
39037602 | 2895 | if ((thread != THREAD_NULL) && thread->th_sched_bucket == TH_BUCKET_SHARE_BG) |
316670eb | 2896 | return bg_quantum; |
39037602 A |
2897 | else |
2898 | return std_quantum; | |
6d2010ae A |
2899 | } |
2900 | ||
6d2010ae A |
2901 | /* |
2902 | * run_queue_init: | |
2903 | * | |
2904 | * Initialize a run queue before first use. | |
2905 | */ | |
2906 | void | |
2907 | run_queue_init( | |
2908 | run_queue_t rq) | |
2909 | { | |
39037602 A |
2910 | rq->highq = NOPRI; |
2911 | for (u_int i = 0; i < BITMAP_LEN(NRQS); i++) | |
2d21ac55 | 2912 | rq->bitmap[i] = 0; |
2d21ac55 | 2913 | rq->urgency = rq->count = 0; |
39037602 | 2914 | for (int i = 0; i < NRQS; i++) |
2d21ac55 A |
2915 | queue_init(&rq->queues[i]); |
2916 | } | |
1c79356b | 2917 | |
2d21ac55 A |
2918 | /* |
2919 | * run_queue_dequeue: | |
2920 | * | |
2921 | * Perform a dequeue operation on a run queue, | |
2922 | * and return the resulting thread. | |
2923 | * | |
6d2010ae | 2924 | * The run queue must be locked (see thread_run_queue_remove() |
2d21ac55 A |
2925 | * for more info), and not empty. |
2926 | */ | |
6d2010ae | 2927 | thread_t |
2d21ac55 | 2928 | run_queue_dequeue( |
39037602 A |
2929 | run_queue_t rq, |
2930 | integer_t options) | |
2d21ac55 | 2931 | { |
39037602 A |
2932 | thread_t thread; |
2933 | queue_t queue = &rq->queues[rq->highq]; | |
9bccf70c | 2934 | |
2d21ac55 | 2935 | if (options & SCHED_HEADQ) { |
39037602 A |
2936 | thread = qe_dequeue_head(queue, struct thread, runq_links); |
2937 | } else { | |
2938 | thread = qe_dequeue_tail(queue, struct thread, runq_links); | |
9bccf70c | 2939 | } |
1c79356b | 2940 | |
39037602 A |
2941 | assert(thread != THREAD_NULL); |
2942 | assert_thread_magic(thread); | |
2943 | ||
2d21ac55 | 2944 | thread->runq = PROCESSOR_NULL; |
6d2010ae | 2945 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); |
2d21ac55 | 2946 | rq->count--; |
6d2010ae | 2947 | if (SCHED(priority_is_urgent)(rq->highq)) { |
4a3eedf9 A |
2948 | rq->urgency--; assert(rq->urgency >= 0); |
2949 | } | |
2d21ac55 | 2950 | if (queue_empty(queue)) { |
39037602 A |
2951 | bitmap_clear(rq->bitmap, rq->highq); |
2952 | rq->highq = bitmap_first(rq->bitmap, NRQS); | |
2d21ac55 | 2953 | } |
1c79356b | 2954 | |
39037602 | 2955 | return thread; |
1c79356b A |
2956 | } |
2957 | ||
6d2010ae A |
2958 | /* |
2959 | * run_queue_enqueue: | |
2960 | * | |
2961 | * Perform a enqueue operation on a run queue. | |
2962 | * | |
2963 | * The run queue must be locked (see thread_run_queue_remove() | |
2964 | * for more info). | |
2965 | */ | |
2966 | boolean_t | |
2967 | run_queue_enqueue( | |
39037602 A |
2968 | run_queue_t rq, |
2969 | thread_t thread, | |
2970 | integer_t options) | |
6d2010ae | 2971 | { |
39037602 A |
2972 | queue_t queue = &rq->queues[thread->sched_pri]; |
2973 | boolean_t result = FALSE; | |
2974 | ||
2975 | assert_thread_magic(thread); | |
2976 | ||
6d2010ae | 2977 | if (queue_empty(queue)) { |
39037602 A |
2978 | enqueue_tail(queue, &thread->runq_links); |
2979 | ||
2980 | rq_bitmap_set(rq->bitmap, thread->sched_pri); | |
6d2010ae A |
2981 | if (thread->sched_pri > rq->highq) { |
2982 | rq->highq = thread->sched_pri; | |
2983 | result = TRUE; | |
2984 | } | |
fe8ab488 | 2985 | } else { |
6d2010ae | 2986 | if (options & SCHED_TAILQ) |
39037602 | 2987 | enqueue_tail(queue, &thread->runq_links); |
6d2010ae | 2988 | else |
39037602 | 2989 | enqueue_head(queue, &thread->runq_links); |
fe8ab488 | 2990 | } |
6d2010ae A |
2991 | if (SCHED(priority_is_urgent)(thread->sched_pri)) |
2992 | rq->urgency++; | |
2993 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
2994 | rq->count++; | |
39037602 | 2995 | |
6d2010ae | 2996 | return (result); |
6d2010ae A |
2997 | } |
2998 | ||
2999 | /* | |
3000 | * run_queue_remove: | |
3001 | * | |
3002 | * Remove a specific thread from a runqueue. | |
3003 | * | |
3004 | * The run queue must be locked. | |
3005 | */ | |
3006 | void | |
3007 | run_queue_remove( | |
39037602 A |
3008 | run_queue_t rq, |
3009 | thread_t thread) | |
6d2010ae | 3010 | { |
39037602 A |
3011 | assert(thread->runq != PROCESSOR_NULL); |
3012 | assert_thread_magic(thread); | |
6d2010ae | 3013 | |
39037602 | 3014 | remqueue(&thread->runq_links); |
6d2010ae A |
3015 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); |
3016 | rq->count--; | |
3017 | if (SCHED(priority_is_urgent)(thread->sched_pri)) { | |
3018 | rq->urgency--; assert(rq->urgency >= 0); | |
3019 | } | |
39037602 A |
3020 | |
3021 | if (queue_empty(&rq->queues[thread->sched_pri])) { | |
6d2010ae | 3022 | /* update run queue status */ |
39037602 A |
3023 | bitmap_clear(rq->bitmap, thread->sched_pri); |
3024 | rq->highq = bitmap_first(rq->bitmap, NRQS); | |
6d2010ae | 3025 | } |
39037602 | 3026 | |
6d2010ae A |
3027 | thread->runq = PROCESSOR_NULL; |
3028 | } | |
3029 | ||
3e170ce0 A |
3030 | /* Assumes RT lock is not held, and acquires splsched/rt_lock itself */ |
3031 | void | |
3032 | rt_runq_scan(sched_update_scan_context_t scan_context) | |
6d2010ae | 3033 | { |
3e170ce0 A |
3034 | spl_t s; |
3035 | thread_t thread; | |
fe8ab488 | 3036 | |
3e170ce0 A |
3037 | s = splsched(); |
3038 | rt_lock_lock(); | |
6d2010ae | 3039 | |
39037602 | 3040 | qe_foreach_element_safe(thread, &rt_runq.queue, runq_links) { |
3e170ce0 A |
3041 | if (thread->last_made_runnable_time < scan_context->earliest_rt_make_runnable_time) { |
3042 | scan_context->earliest_rt_make_runnable_time = thread->last_made_runnable_time; | |
3043 | } | |
3044 | } | |
6d2010ae | 3045 | |
3e170ce0 A |
3046 | rt_lock_unlock(); |
3047 | splx(s); | |
6d2010ae A |
3048 | } |
3049 | ||
3e170ce0 | 3050 | |
1c79356b | 3051 | /* |
2d21ac55 A |
3052 | * realtime_queue_insert: |
3053 | * | |
3054 | * Enqueue a thread for realtime execution. | |
1c79356b | 3055 | */ |
2d21ac55 | 3056 | static boolean_t |
39037602 | 3057 | realtime_queue_insert(thread_t thread) |
1c79356b | 3058 | { |
39037602 A |
3059 | queue_t queue = &rt_runq.queue; |
3060 | uint64_t deadline = thread->realtime.deadline; | |
3061 | boolean_t preempt = FALSE; | |
1c79356b | 3062 | |
3e170ce0 | 3063 | rt_lock_lock(); |
1c79356b | 3064 | |
55e303ae | 3065 | if (queue_empty(queue)) { |
39037602 | 3066 | enqueue_tail(queue, &thread->runq_links); |
2d21ac55 | 3067 | preempt = TRUE; |
39037602 A |
3068 | } else { |
3069 | /* Insert into rt_runq in thread deadline order */ | |
3070 | queue_entry_t iter; | |
3071 | qe_foreach(iter, queue) { | |
3072 | thread_t iter_thread = qe_element(iter, struct thread, runq_links); | |
3073 | assert_thread_magic(iter_thread); | |
3074 | ||
3075 | if (deadline < iter_thread->realtime.deadline) { | |
3076 | if (iter == queue_first(queue)) | |
3077 | preempt = TRUE; | |
3078 | insque(&thread->runq_links, queue_prev(iter)); | |
3079 | break; | |
3080 | } else if (iter == queue_last(queue)) { | |
3081 | enqueue_tail(queue, &thread->runq_links); | |
55e303ae A |
3082 | break; |
3083 | } | |
55e303ae | 3084 | } |
55e303ae A |
3085 | } |
3086 | ||
3e170ce0 | 3087 | thread->runq = THREAD_ON_RT_RUNQ; |
6d2010ae A |
3088 | SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count); |
3089 | rt_runq.count++; | |
55e303ae | 3090 | |
3e170ce0 | 3091 | rt_lock_unlock(); |
55e303ae | 3092 | |
2d21ac55 A |
3093 | return (preempt); |
3094 | } | |
55e303ae | 3095 | |
2d21ac55 A |
3096 | /* |
3097 | * realtime_setrun: | |
3098 | * | |
3099 | * Dispatch a thread for realtime execution. | |
3100 | * | |
3101 | * Thread must be locked. Associated pset must | |
3102 | * be locked, and is returned unlocked. | |
3103 | */ | |
3104 | static void | |
3105 | realtime_setrun( | |
3106 | processor_t processor, | |
3107 | thread_t thread) | |
3108 | { | |
3109 | processor_set_t pset = processor->processor_set; | |
39236c6e | 3110 | ast_t preempt; |
55e303ae | 3111 | |
fe8ab488 A |
3112 | boolean_t do_signal_idle = FALSE, do_cause_ast = FALSE; |
3113 | ||
6d2010ae A |
3114 | thread->chosen_processor = processor; |
3115 | ||
fe8ab488 A |
3116 | /* <rdar://problem/15102234> */ |
3117 | assert(thread->bound_processor == PROCESSOR_NULL); | |
3118 | ||
2d21ac55 A |
3119 | /* |
3120 | * Dispatch directly onto idle processor. | |
3121 | */ | |
6d2010ae A |
3122 | if ( (thread->bound_processor == processor) |
3123 | && processor->state == PROCESSOR_IDLE) { | |
39037602 | 3124 | re_queue_tail(&pset->active_queue, &processor->processor_queue); |
55e303ae | 3125 | |
2d21ac55 | 3126 | processor->next_thread = thread; |
39236c6e A |
3127 | processor->current_pri = thread->sched_pri; |
3128 | processor->current_thmode = thread->sched_mode; | |
fe8ab488 | 3129 | processor->current_sfi_class = thread->sfi_class; |
2d21ac55 A |
3130 | processor->deadline = thread->realtime.deadline; |
3131 | processor->state = PROCESSOR_DISPATCHING; | |
55e303ae | 3132 | |
39236c6e | 3133 | if (processor != current_processor()) { |
3e170ce0 | 3134 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { |
39236c6e | 3135 | /* cleared on exit from main processor_idle() loop */ |
3e170ce0 | 3136 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); |
fe8ab488 | 3137 | do_signal_idle = TRUE; |
39236c6e A |
3138 | } |
3139 | } | |
39236c6e | 3140 | pset_unlock(pset); |
fe8ab488 A |
3141 | |
3142 | if (do_signal_idle) { | |
3143 | machine_signal_idle(processor); | |
3144 | } | |
2d21ac55 A |
3145 | return; |
3146 | } | |
55e303ae | 3147 | |
39236c6e A |
3148 | if (processor->current_pri < BASEPRI_RTQUEUES) |
3149 | preempt = (AST_PREEMPT | AST_URGENT); | |
3150 | else if (thread->realtime.deadline < processor->deadline) | |
3151 | preempt = (AST_PREEMPT | AST_URGENT); | |
3152 | else | |
3153 | preempt = AST_NONE; | |
3154 | ||
3155 | realtime_queue_insert(thread); | |
3156 | ||
3157 | if (preempt != AST_NONE) { | |
3158 | if (processor->state == PROCESSOR_IDLE) { | |
39037602 A |
3159 | re_queue_tail(&pset->active_queue, &processor->processor_queue); |
3160 | ||
39236c6e A |
3161 | processor->next_thread = THREAD_NULL; |
3162 | processor->current_pri = thread->sched_pri; | |
3163 | processor->current_thmode = thread->sched_mode; | |
fe8ab488 | 3164 | processor->current_sfi_class = thread->sfi_class; |
39236c6e A |
3165 | processor->deadline = thread->realtime.deadline; |
3166 | processor->state = PROCESSOR_DISPATCHING; | |
3167 | if (processor == current_processor()) { | |
3168 | ast_on(preempt); | |
3169 | } else { | |
3e170ce0 | 3170 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { |
39236c6e | 3171 | /* cleared on exit from main processor_idle() loop */ |
3e170ce0 | 3172 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); |
fe8ab488 | 3173 | do_signal_idle = TRUE; |
39236c6e | 3174 | } |
fe8ab488 | 3175 | } |
39236c6e A |
3176 | } else if (processor->state == PROCESSOR_DISPATCHING) { |
3177 | if ((processor->next_thread == THREAD_NULL) && ((processor->current_pri < thread->sched_pri) || (processor->deadline > thread->realtime.deadline))) { | |
3178 | processor->current_pri = thread->sched_pri; | |
3179 | processor->current_thmode = thread->sched_mode; | |
fe8ab488 | 3180 | processor->current_sfi_class = thread->sfi_class; |
39236c6e A |
3181 | processor->deadline = thread->realtime.deadline; |
3182 | } | |
3183 | } else { | |
3184 | if (processor == current_processor()) { | |
3185 | ast_on(preempt); | |
3186 | } else { | |
3e170ce0 | 3187 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { |
39236c6e | 3188 | /* cleared after IPI causes csw_check() to be called */ |
3e170ce0 | 3189 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); |
fe8ab488 | 3190 | do_cause_ast = TRUE; |
39236c6e A |
3191 | } |
3192 | } | |
3193 | } | |
3194 | } else { | |
3195 | /* Selected processor was too busy, just keep thread enqueued and let other processors drain it naturally. */ | |
2d21ac55 A |
3196 | } |
3197 | ||
3198 | pset_unlock(pset); | |
fe8ab488 A |
3199 | |
3200 | if (do_signal_idle) { | |
3201 | machine_signal_idle(processor); | |
3202 | } else if (do_cause_ast) { | |
3203 | cause_ast_check(processor); | |
3204 | } | |
2d21ac55 A |
3205 | } |
3206 | ||
6d2010ae | 3207 | |
fe8ab488 A |
3208 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
3209 | ||
3210 | boolean_t | |
6d2010ae A |
3211 | priority_is_urgent(int priority) |
3212 | { | |
39037602 | 3213 | return bitmap_test(sched_preempt_pri, priority) ? TRUE : FALSE; |
6d2010ae A |
3214 | } |
3215 | ||
fe8ab488 A |
3216 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
3217 | ||
55e303ae | 3218 | /* |
2d21ac55 | 3219 | * processor_setrun: |
55e303ae | 3220 | * |
2d21ac55 A |
3221 | * Dispatch a thread for execution on a |
3222 | * processor. | |
55e303ae | 3223 | * |
2d21ac55 A |
3224 | * Thread must be locked. Associated pset must |
3225 | * be locked, and is returned unlocked. | |
55e303ae | 3226 | */ |
2d21ac55 A |
3227 | static void |
3228 | processor_setrun( | |
3229 | processor_t processor, | |
3230 | thread_t thread, | |
3231 | integer_t options) | |
55e303ae | 3232 | { |
2d21ac55 A |
3233 | processor_set_t pset = processor->processor_set; |
3234 | ast_t preempt; | |
39236c6e | 3235 | enum { eExitIdle, eInterruptRunning, eDoNothing } ipi_action = eDoNothing; |
3e170ce0 | 3236 | enum { eNoSignal, eDoSignal, eDoDeferredSignal } do_signal_idle = eNoSignal; |
55e303ae | 3237 | |
3e170ce0 | 3238 | boolean_t do_cause_ast = FALSE; |
fe8ab488 | 3239 | |
6d2010ae A |
3240 | thread->chosen_processor = processor; |
3241 | ||
55e303ae | 3242 | /* |
2d21ac55 | 3243 | * Dispatch directly onto idle processor. |
55e303ae | 3244 | */ |
6d2010ae A |
3245 | if ( (SCHED(direct_dispatch_to_idle_processors) || |
3246 | thread->bound_processor == processor) | |
3247 | && processor->state == PROCESSOR_IDLE) { | |
39037602 A |
3248 | |
3249 | re_queue_tail(&pset->active_queue, &processor->processor_queue); | |
2d21ac55 A |
3250 | |
3251 | processor->next_thread = thread; | |
39236c6e A |
3252 | processor->current_pri = thread->sched_pri; |
3253 | processor->current_thmode = thread->sched_mode; | |
fe8ab488 | 3254 | processor->current_sfi_class = thread->sfi_class; |
2d21ac55 A |
3255 | processor->deadline = UINT64_MAX; |
3256 | processor->state = PROCESSOR_DISPATCHING; | |
2d21ac55 | 3257 | |
3e170ce0 | 3258 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { |
39236c6e | 3259 | /* cleared on exit from main processor_idle() loop */ |
3e170ce0 A |
3260 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); |
3261 | do_signal_idle = eDoSignal; | |
39236c6e A |
3262 | } |
3263 | ||
3264 | pset_unlock(pset); | |
3e170ce0 A |
3265 | |
3266 | if (do_signal_idle == eDoSignal) { | |
fe8ab488 A |
3267 | machine_signal_idle(processor); |
3268 | } | |
3269 | ||
2d21ac55 A |
3270 | return; |
3271 | } | |
55e303ae A |
3272 | |
3273 | /* | |
2d21ac55 | 3274 | * Set preemption mode. |
1c79356b | 3275 | */ |
3e170ce0 A |
3276 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
3277 | /* TODO: Do we need to care about urgency (see rdar://problem/20136239)? */ | |
3278 | #endif | |
6d2010ae A |
3279 | if (SCHED(priority_is_urgent)(thread->sched_pri) && thread->sched_pri > processor->current_pri) |
3280 | preempt = (AST_PREEMPT | AST_URGENT); | |
3281 | else if(processor->active_thread && thread_eager_preemption(processor->active_thread)) | |
55e303ae | 3282 | preempt = (AST_PREEMPT | AST_URGENT); |
3e170ce0 A |
3283 | else if ((thread->sched_mode == TH_MODE_TIMESHARE) && (thread->sched_pri < thread->base_pri)) { |
3284 | if(SCHED(priority_is_urgent)(thread->base_pri) && thread->sched_pri > processor->current_pri) { | |
39236c6e A |
3285 | preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE; |
3286 | } else { | |
3287 | preempt = AST_NONE; | |
3288 | } | |
3289 | } else | |
2d21ac55 | 3290 | preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE; |
9bccf70c | 3291 | |
39236c6e | 3292 | SCHED(processor_enqueue)(processor, thread, options); |
9bccf70c | 3293 | |
2d21ac55 | 3294 | if (preempt != AST_NONE) { |
39236c6e | 3295 | if (processor->state == PROCESSOR_IDLE) { |
39037602 A |
3296 | re_queue_tail(&pset->active_queue, &processor->processor_queue); |
3297 | ||
39236c6e A |
3298 | processor->next_thread = THREAD_NULL; |
3299 | processor->current_pri = thread->sched_pri; | |
3300 | processor->current_thmode = thread->sched_mode; | |
fe8ab488 | 3301 | processor->current_sfi_class = thread->sfi_class; |
39236c6e A |
3302 | processor->deadline = UINT64_MAX; |
3303 | processor->state = PROCESSOR_DISPATCHING; | |
3304 | ||
3305 | ipi_action = eExitIdle; | |
3306 | } else if ( processor->state == PROCESSOR_DISPATCHING) { | |
3307 | if ((processor->next_thread == THREAD_NULL) && (processor->current_pri < thread->sched_pri)) { | |
3308 | processor->current_pri = thread->sched_pri; | |
3309 | processor->current_thmode = thread->sched_mode; | |
fe8ab488 | 3310 | processor->current_sfi_class = thread->sfi_class; |
39236c6e A |
3311 | processor->deadline = UINT64_MAX; |
3312 | } | |
3313 | } else if ( (processor->state == PROCESSOR_RUNNING || | |
2d21ac55 | 3314 | processor->state == PROCESSOR_SHUTDOWN) && |
3e170ce0 | 3315 | (thread->sched_pri >= processor->current_pri)) { |
39236c6e | 3316 | ipi_action = eInterruptRunning; |
2d21ac55 | 3317 | } |
39236c6e A |
3318 | } else { |
3319 | /* | |
3320 | * New thread is not important enough to preempt what is running, but | |
3321 | * special processor states may need special handling | |
3322 | */ | |
3323 | if (processor->state == PROCESSOR_SHUTDOWN && | |
2d21ac55 | 3324 | thread->sched_pri >= processor->current_pri ) { |
39236c6e | 3325 | ipi_action = eInterruptRunning; |
d190cdc3 | 3326 | } else if (processor->state == PROCESSOR_IDLE) { |
39037602 A |
3327 | re_queue_tail(&pset->active_queue, &processor->processor_queue); |
3328 | ||
39236c6e A |
3329 | processor->next_thread = THREAD_NULL; |
3330 | processor->current_pri = thread->sched_pri; | |
3331 | processor->current_thmode = thread->sched_mode; | |
fe8ab488 | 3332 | processor->current_sfi_class = thread->sfi_class; |
39236c6e A |
3333 | processor->deadline = UINT64_MAX; |
3334 | processor->state = PROCESSOR_DISPATCHING; | |
3335 | ||
3336 | ipi_action = eExitIdle; | |
3337 | } | |
2d21ac55 | 3338 | } |
39236c6e A |
3339 | |
3340 | switch (ipi_action) { | |
3341 | case eDoNothing: | |
3342 | break; | |
3343 | case eExitIdle: | |
3344 | if (processor == current_processor()) { | |
fe8ab488 | 3345 | if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE) |
39236c6e A |
3346 | ast_on(preempt); |
3347 | } else { | |
3e170ce0 A |
3348 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
3349 | if (!(pset->pending_deferred_AST_cpu_mask & (1ULL << processor->cpu_id)) && | |
3350 | !(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { | |
39236c6e | 3351 | /* cleared on exit from main processor_idle() loop */ |
3e170ce0 A |
3352 | pset->pending_deferred_AST_cpu_mask |= (1ULL << processor->cpu_id); |
3353 | do_signal_idle = eDoDeferredSignal; | |
3354 | } | |
3355 | #else | |
3356 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { | |
3357 | /* cleared on exit from main processor_idle() loop */ | |
3358 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); | |
3359 | do_signal_idle = eDoSignal; | |
39236c6e | 3360 | } |
3e170ce0 | 3361 | #endif |
39236c6e A |
3362 | } |
3363 | break; | |
3364 | case eInterruptRunning: | |
3365 | if (processor == current_processor()) { | |
fe8ab488 | 3366 | if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE) |
39236c6e A |
3367 | ast_on(preempt); |
3368 | } else { | |
3e170ce0 | 3369 | if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) { |
39236c6e | 3370 | /* cleared after IPI causes csw_check() to be called */ |
3e170ce0 | 3371 | pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id); |
fe8ab488 | 3372 | do_cause_ast = TRUE; |
39236c6e A |
3373 | } |
3374 | } | |
3375 | break; | |
6d2010ae | 3376 | } |
2d21ac55 A |
3377 | |
3378 | pset_unlock(pset); | |
fe8ab488 | 3379 | |
3e170ce0 | 3380 | if (do_signal_idle == eDoSignal) { |
fe8ab488 | 3381 | machine_signal_idle(processor); |
fe8ab488 | 3382 | } |
3e170ce0 A |
3383 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
3384 | else if (do_signal_idle == eDoDeferredSignal) { | |
3385 | /* | |
3386 | * TODO: The ability to cancel this signal could make | |
3387 | * sending it outside of the pset lock an issue. Do | |
3388 | * we need to address this? Or would the only fallout | |
3389 | * be that the core takes a signal? As long as we do | |
3390 | * not run the risk of having a core marked as signal | |
3391 | * outstanding, with no real signal outstanding, the | |
3392 | * only result should be that we fail to cancel some | |
3393 | * signals. | |
3394 | */ | |
3395 | machine_signal_idle_deferred(processor); | |
316670eb | 3396 | } |
3e170ce0 A |
3397 | #endif |
3398 | else if (do_cause_ast) { | |
3399 | cause_ast_check(processor); | |
6d2010ae | 3400 | } |
6d2010ae A |
3401 | } |
3402 | ||
2d21ac55 A |
3403 | /* |
3404 | * choose_next_pset: | |
3405 | * | |
3406 | * Return the next sibling pset containing | |
3407 | * available processors. | |
3408 | * | |
3409 | * Returns the original pset if none other is | |
3410 | * suitable. | |
3411 | */ | |
3412 | static processor_set_t | |
3413 | choose_next_pset( | |
3414 | processor_set_t pset) | |
3415 | { | |
3416 | processor_set_t nset = pset; | |
3417 | ||
3418 | do { | |
3419 | nset = next_pset(nset); | |
6d2010ae | 3420 | } while (nset->online_processor_count < 1 && nset != pset); |
2d21ac55 | 3421 | |
cf7d32b8 | 3422 | return (nset); |
2d21ac55 A |
3423 | } |
3424 | ||
3425 | /* | |
3426 | * choose_processor: | |
3427 | * | |
3428 | * Choose a processor for the thread, beginning at | |
b7266188 | 3429 | * the pset. Accepts an optional processor hint in |
2d21ac55 A |
3430 | * the pset. |
3431 | * | |
3432 | * Returns a processor, possibly from a different pset. | |
3433 | * | |
3434 | * The thread must be locked. The pset must be locked, | |
3435 | * and the resulting pset is locked on return. | |
3436 | */ | |
6d2010ae | 3437 | processor_t |
2d21ac55 A |
3438 | choose_processor( |
3439 | processor_set_t pset, | |
b7266188 | 3440 | processor_t processor, |
2d21ac55 A |
3441 | thread_t thread) |
3442 | { | |
3443 | processor_set_t nset, cset = pset; | |
39037602 A |
3444 | |
3445 | assert(thread->sched_pri <= BASEPRI_RTQUEUES); | |
3446 | ||
cf7d32b8 | 3447 | /* |
fe8ab488 | 3448 | * Prefer the hinted processor, when appropriate. |
cf7d32b8 | 3449 | */ |
b7266188 | 3450 | |
fe8ab488 | 3451 | /* Fold last processor hint from secondary processor to its primary */ |
0b4c1975 | 3452 | if (processor != PROCESSOR_NULL) { |
fe8ab488 | 3453 | processor = processor->processor_primary; |
0b4c1975 | 3454 | } |
b0d623f7 | 3455 | |
fe8ab488 A |
3456 | /* |
3457 | * Only consult platform layer if pset is active, which | |
3458 | * it may not be in some cases when a multi-set system | |
3459 | * is going to sleep. | |
3460 | */ | |
3461 | if (pset->online_processor_count) { | |
3462 | if ((processor == PROCESSOR_NULL) || (processor->processor_set == pset && processor->state == PROCESSOR_IDLE)) { | |
3463 | processor_t mc_processor = machine_choose_processor(pset, processor); | |
3464 | if (mc_processor != PROCESSOR_NULL) | |
3465 | processor = mc_processor->processor_primary; | |
3466 | } | |
3467 | } | |
b7266188 | 3468 | |
fe8ab488 A |
3469 | /* |
3470 | * At this point, we may have a processor hint, and we may have | |
3471 | * an initial starting pset. If the hint is not in the pset, or | |
3472 | * if the hint is for a processor in an invalid state, discard | |
3473 | * the hint. | |
3474 | */ | |
0b4c1975 | 3475 | if (processor != PROCESSOR_NULL) { |
fe8ab488 | 3476 | if (processor->processor_set != pset) { |
cf7d32b8 | 3477 | processor = PROCESSOR_NULL; |
3e170ce0 A |
3478 | } else if (!processor->is_recommended) { |
3479 | processor = PROCESSOR_NULL; | |
fe8ab488 A |
3480 | } else { |
3481 | switch (processor->state) { | |
3482 | case PROCESSOR_START: | |
3483 | case PROCESSOR_SHUTDOWN: | |
3484 | case PROCESSOR_OFF_LINE: | |
3485 | /* | |
3486 | * Hint is for a processor that cannot support running new threads. | |
3487 | */ | |
3488 | processor = PROCESSOR_NULL; | |
3489 | break; | |
3490 | case PROCESSOR_IDLE: | |
3491 | /* | |
3492 | * Hint is for an idle processor. Assume it is no worse than any other | |
3493 | * idle processor. The platform layer had an opportunity to provide | |
3494 | * the "least cost idle" processor above. | |
3495 | */ | |
3496 | return (processor); | |
fe8ab488 A |
3497 | case PROCESSOR_RUNNING: |
3498 | case PROCESSOR_DISPATCHING: | |
3499 | /* | |
3500 | * Hint is for an active CPU. This fast-path allows | |
3501 | * realtime threads to preempt non-realtime threads | |
3502 | * to regain their previous executing processor. | |
3503 | */ | |
3504 | if ((thread->sched_pri >= BASEPRI_RTQUEUES) && | |
3505 | (processor->current_pri < BASEPRI_RTQUEUES)) | |
3506 | return (processor); | |
3507 | ||
3508 | /* Otherwise, use hint as part of search below */ | |
3509 | break; | |
3510 | default: | |
3511 | processor = PROCESSOR_NULL; | |
3512 | break; | |
3513 | } | |
3514 | } | |
b7266188 | 3515 | } |
2d21ac55 A |
3516 | |
3517 | /* | |
fe8ab488 A |
3518 | * Iterate through the processor sets to locate |
3519 | * an appropriate processor. Seed results with | |
3520 | * a last-processor hint, if available, so that | |
3521 | * a search must find something strictly better | |
3522 | * to replace it. | |
3523 | * | |
3524 | * A primary/secondary pair of SMT processors are | |
3525 | * "unpaired" if the primary is busy but its | |
3526 | * corresponding secondary is idle (so the physical | |
3527 | * core has full use of its resources). | |
2d21ac55 | 3528 | */ |
fe8ab488 A |
3529 | |
3530 | integer_t lowest_priority = MAXPRI + 1; | |
3531 | integer_t lowest_unpaired_primary_priority = MAXPRI + 1; | |
3532 | integer_t lowest_count = INT_MAX; | |
3533 | uint64_t furthest_deadline = 1; | |
3534 | processor_t lp_processor = PROCESSOR_NULL; | |
3535 | processor_t lp_unpaired_primary_processor = PROCESSOR_NULL; | |
3536 | processor_t lp_unpaired_secondary_processor = PROCESSOR_NULL; | |
3537 | processor_t lc_processor = PROCESSOR_NULL; | |
3538 | processor_t fd_processor = PROCESSOR_NULL; | |
3539 | ||
3540 | if (processor != PROCESSOR_NULL) { | |
3541 | /* All other states should be enumerated above. */ | |
3542 | assert(processor->state == PROCESSOR_RUNNING || processor->state == PROCESSOR_DISPATCHING); | |
3543 | ||
3544 | lowest_priority = processor->current_pri; | |
3545 | lp_processor = processor; | |
3546 | ||
3547 | if (processor->current_pri >= BASEPRI_RTQUEUES) { | |
3548 | furthest_deadline = processor->deadline; | |
3549 | fd_processor = processor; | |
3550 | } | |
3551 | ||
3552 | lowest_count = SCHED(processor_runq_count)(processor); | |
3553 | lc_processor = processor; | |
3554 | } | |
3555 | ||
2d21ac55 | 3556 | do { |
fe8ab488 | 3557 | |
9bccf70c | 3558 | /* |
fe8ab488 | 3559 | * Choose an idle processor, in pset traversal order |
9bccf70c | 3560 | */ |
3e170ce0 A |
3561 | qe_foreach_element(processor, &cset->idle_queue, processor_queue) { |
3562 | if (processor->is_recommended) | |
3563 | return processor; | |
3564 | } | |
1c79356b | 3565 | |
fe8ab488 A |
3566 | /* |
3567 | * Otherwise, enumerate active and idle processors to find candidates | |
3568 | * with lower priority/etc. | |
3569 | */ | |
0b4c1975 | 3570 | |
3e170ce0 A |
3571 | qe_foreach_element(processor, &cset->active_queue, processor_queue) { |
3572 | ||
3573 | if (!processor->is_recommended) { | |
3574 | continue; | |
3575 | } | |
2d21ac55 | 3576 | |
fe8ab488 A |
3577 | integer_t cpri = processor->current_pri; |
3578 | if (cpri < lowest_priority) { | |
3579 | lowest_priority = cpri; | |
3580 | lp_processor = processor; | |
3581 | } | |
b0d623f7 | 3582 | |
fe8ab488 A |
3583 | if ((cpri >= BASEPRI_RTQUEUES) && (processor->deadline > furthest_deadline)) { |
3584 | furthest_deadline = processor->deadline; | |
3585 | fd_processor = processor; | |
3586 | } | |
0b4c1975 | 3587 | |
fe8ab488 A |
3588 | integer_t ccount = SCHED(processor_runq_count)(processor); |
3589 | if (ccount < lowest_count) { | |
3590 | lowest_count = ccount; | |
3591 | lc_processor = processor; | |
3592 | } | |
fe8ab488 A |
3593 | } |
3594 | ||
3595 | /* | |
3596 | * For SMT configs, these idle secondary processors must have active primary. Otherwise | |
3597 | * the idle primary would have short-circuited the loop above | |
3598 | */ | |
3e170ce0 A |
3599 | qe_foreach_element(processor, &cset->idle_secondary_queue, processor_queue) { |
3600 | ||
3601 | if (!processor->is_recommended) { | |
3602 | continue; | |
3603 | } | |
3604 | ||
fe8ab488 A |
3605 | processor_t cprimary = processor->processor_primary; |
3606 | ||
3607 | /* If the primary processor is offline or starting up, it's not a candidate for this path */ | |
3608 | if (cprimary->state == PROCESSOR_RUNNING || cprimary->state == PROCESSOR_DISPATCHING) { | |
3609 | integer_t primary_pri = cprimary->current_pri; | |
3610 | ||
3611 | if (primary_pri < lowest_unpaired_primary_priority) { | |
3612 | lowest_unpaired_primary_priority = primary_pri; | |
3613 | lp_unpaired_primary_processor = cprimary; | |
3614 | lp_unpaired_secondary_processor = processor; | |
0b4c1975 | 3615 | } |
2d21ac55 | 3616 | } |
fe8ab488 A |
3617 | } |
3618 | ||
0b4c1975 | 3619 | |
fe8ab488 A |
3620 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
3621 | ||
3622 | /* | |
3623 | * For realtime threads, the most important aspect is | |
3624 | * scheduling latency, so we attempt to assign threads | |
3625 | * to good preemption candidates (assuming an idle primary | |
3626 | * processor was not available above). | |
3627 | */ | |
3628 | ||
3629 | if (thread->sched_pri > lowest_unpaired_primary_priority) { | |
3630 | /* Move to end of active queue so that the next thread doesn't also pick it */ | |
39037602 | 3631 | re_queue_tail(&cset->active_queue, &lp_unpaired_primary_processor->processor_queue); |
fe8ab488 A |
3632 | return lp_unpaired_primary_processor; |
3633 | } | |
3634 | if (thread->sched_pri > lowest_priority) { | |
3635 | /* Move to end of active queue so that the next thread doesn't also pick it */ | |
39037602 | 3636 | re_queue_tail(&cset->active_queue, &lp_processor->processor_queue); |
0b4c1975 | 3637 | return lp_processor; |
fe8ab488 | 3638 | } |
0b4c1975 A |
3639 | if (thread->realtime.deadline < furthest_deadline) |
3640 | return fd_processor; | |
6d2010ae | 3641 | |
2d21ac55 | 3642 | /* |
fe8ab488 A |
3643 | * If all primary and secondary CPUs are busy with realtime |
3644 | * threads with deadlines earlier than us, move on to next | |
3645 | * pset. | |
2d21ac55 | 3646 | */ |
fe8ab488 A |
3647 | } |
3648 | else { | |
3649 | ||
3650 | if (thread->sched_pri > lowest_unpaired_primary_priority) { | |
3651 | /* Move to end of active queue so that the next thread doesn't also pick it */ | |
39037602 | 3652 | re_queue_tail(&cset->active_queue, &lp_unpaired_primary_processor->processor_queue); |
fe8ab488 | 3653 | return lp_unpaired_primary_processor; |
c910b4d9 | 3654 | } |
fe8ab488 A |
3655 | if (thread->sched_pri > lowest_priority) { |
3656 | /* Move to end of active queue so that the next thread doesn't also pick it */ | |
39037602 | 3657 | re_queue_tail(&cset->active_queue, &lp_processor->processor_queue); |
fe8ab488 | 3658 | return lp_processor; |
cf7d32b8 | 3659 | } |
9bccf70c | 3660 | |
9bccf70c | 3661 | /* |
fe8ab488 A |
3662 | * If all primary processor in this pset are running a higher |
3663 | * priority thread, move on to next pset. Only when we have | |
3664 | * exhausted this search do we fall back to other heuristics. | |
1c79356b | 3665 | */ |
2d21ac55 A |
3666 | } |
3667 | ||
3668 | /* | |
fe8ab488 | 3669 | * Move onto the next processor set. |
2d21ac55 A |
3670 | */ |
3671 | nset = next_pset(cset); | |
3672 | ||
3673 | if (nset != pset) { | |
3674 | pset_unlock(cset); | |
3675 | ||
3676 | cset = nset; | |
3677 | pset_lock(cset); | |
3678 | } | |
3679 | } while (nset != pset); | |
3680 | ||
3681 | /* | |
fe8ab488 A |
3682 | * Make sure that we pick a running processor, |
3683 | * and that the correct processor set is locked. | |
3684 | * Since we may have unlock the candidate processor's | |
3685 | * pset, it may have changed state. | |
3686 | * | |
3687 | * All primary processors are running a higher priority | |
3688 | * thread, so the only options left are enqueuing on | |
3689 | * the secondary processor that would perturb the least priority | |
3690 | * primary, or the least busy primary. | |
2d21ac55 | 3691 | */ |
cf7d32b8 | 3692 | do { |
2d21ac55 | 3693 | |
fe8ab488 A |
3694 | /* lowest_priority is evaluated in the main loops above */ |
3695 | if (lp_unpaired_secondary_processor != PROCESSOR_NULL) { | |
3696 | processor = lp_unpaired_secondary_processor; | |
3697 | lp_unpaired_secondary_processor = PROCESSOR_NULL; | |
3698 | } else if (lc_processor != PROCESSOR_NULL) { | |
3699 | processor = lc_processor; | |
3700 | lc_processor = PROCESSOR_NULL; | |
3701 | } else { | |
cf7d32b8 | 3702 | /* |
fe8ab488 A |
3703 | * All processors are executing higher |
3704 | * priority threads, and the lowest_count | |
3705 | * candidate was not usable | |
cf7d32b8 | 3706 | */ |
fe8ab488 | 3707 | processor = master_processor; |
cf7d32b8 A |
3708 | } |
3709 | ||
3710 | /* | |
fe8ab488 A |
3711 | * Check that the correct processor set is |
3712 | * returned locked. | |
cf7d32b8 A |
3713 | */ |
3714 | if (cset != processor->processor_set) { | |
3715 | pset_unlock(cset); | |
cf7d32b8 A |
3716 | cset = processor->processor_set; |
3717 | pset_lock(cset); | |
3718 | } | |
3719 | ||
3720 | /* | |
fe8ab488 A |
3721 | * We must verify that the chosen processor is still available. |
3722 | * master_processor is an exception, since we may need to preempt | |
3723 | * a running thread on it during processor shutdown (for sleep), | |
3724 | * and that thread needs to be enqueued on its runqueue to run | |
3725 | * when the processor is restarted. | |
cf7d32b8 | 3726 | */ |
fe8ab488 | 3727 | if (processor != master_processor && (processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE)) |
cf7d32b8 | 3728 | processor = PROCESSOR_NULL; |
fe8ab488 | 3729 | |
cf7d32b8 | 3730 | } while (processor == PROCESSOR_NULL); |
2d21ac55 A |
3731 | |
3732 | return (processor); | |
3733 | } | |
3734 | ||
3735 | /* | |
3736 | * thread_setrun: | |
3737 | * | |
3738 | * Dispatch thread for execution, onto an idle | |
3739 | * processor or run queue, and signal a preemption | |
3740 | * as appropriate. | |
3741 | * | |
3742 | * Thread must be locked. | |
3743 | */ | |
3744 | void | |
3745 | thread_setrun( | |
3746 | thread_t thread, | |
3747 | integer_t options) | |
3748 | { | |
3749 | processor_t processor; | |
3750 | processor_set_t pset; | |
3751 | ||
3e170ce0 A |
3752 | assert((thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_TERMINATE|TH_TERMINATE2)) == TH_RUN); |
3753 | assert(thread->runq == PROCESSOR_NULL); | |
3754 | ||
2d21ac55 A |
3755 | /* |
3756 | * Update priority if needed. | |
3757 | */ | |
6d2010ae A |
3758 | if (SCHED(can_update_priority)(thread)) |
3759 | SCHED(update_priority)(thread); | |
2d21ac55 | 3760 | |
fe8ab488 A |
3761 | thread->sfi_class = sfi_thread_classify(thread); |
3762 | ||
2d21ac55 A |
3763 | assert(thread->runq == PROCESSOR_NULL); |
3764 | ||
3e170ce0 | 3765 | #if __SMP__ |
2d21ac55 A |
3766 | if (thread->bound_processor == PROCESSOR_NULL) { |
3767 | /* | |
3768 | * Unbound case. | |
3769 | */ | |
3770 | if (thread->affinity_set != AFFINITY_SET_NULL) { | |
3771 | /* | |
3772 | * Use affinity set policy hint. | |
3773 | */ | |
3774 | pset = thread->affinity_set->aset_pset; | |
3775 | pset_lock(pset); | |
3776 | ||
6d2010ae | 3777 | processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread); |
39236c6e | 3778 | |
3e170ce0 | 3779 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, |
39236c6e | 3780 | (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0); |
3e170ce0 | 3781 | } else if (thread->last_processor != PROCESSOR_NULL) { |
2d21ac55 A |
3782 | /* |
3783 | * Simple (last processor) affinity case. | |
3784 | */ | |
3785 | processor = thread->last_processor; | |
3786 | pset = processor->processor_set; | |
3787 | pset_lock(pset); | |
6d2010ae A |
3788 | processor = SCHED(choose_processor)(pset, processor, thread); |
3789 | ||
3e170ce0 | 3790 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, |
39236c6e | 3791 | (uintptr_t)thread_tid(thread), thread->last_processor->cpu_id, processor->cpu_id, processor->state, 0); |
3e170ce0 | 3792 | } else { |
2d21ac55 A |
3793 | /* |
3794 | * No Affinity case: | |
3795 | * | |
cf7d32b8 A |
3796 | * Utilitize a per task hint to spread threads |
3797 | * among the available processor sets. | |
2d21ac55 | 3798 | */ |
cf7d32b8 A |
3799 | task_t task = thread->task; |
3800 | ||
3801 | pset = task->pset_hint; | |
3802 | if (pset == PROCESSOR_SET_NULL) | |
3803 | pset = current_processor()->processor_set; | |
3804 | ||
3805 | pset = choose_next_pset(pset); | |
2d21ac55 | 3806 | pset_lock(pset); |
9bccf70c | 3807 | |
6d2010ae | 3808 | processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread); |
cf7d32b8 | 3809 | task->pset_hint = processor->processor_set; |
39236c6e | 3810 | |
3e170ce0 | 3811 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, |
39236c6e | 3812 | (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0); |
55e303ae | 3813 | } |
3e170ce0 | 3814 | } else { |
2d21ac55 A |
3815 | /* |
3816 | * Bound case: | |
3817 | * | |
3818 | * Unconditionally dispatch on the processor. | |
3819 | */ | |
3820 | processor = thread->bound_processor; | |
55e303ae | 3821 | pset = processor->processor_set; |
2d21ac55 | 3822 | pset_lock(pset); |
39236c6e | 3823 | |
3e170ce0 | 3824 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE, |
39236c6e | 3825 | (uintptr_t)thread_tid(thread), (uintptr_t)-2, processor->cpu_id, processor->state, 0); |
2d21ac55 | 3826 | } |
3e170ce0 A |
3827 | #else /* !__SMP__ */ |
3828 | /* Only one processor to choose */ | |
3829 | assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == master_processor); | |
3830 | processor = master_processor; | |
3831 | pset = processor->processor_set; | |
3832 | pset_lock(pset); | |
3833 | #endif /* !__SMP__ */ | |
2d21ac55 A |
3834 | |
3835 | /* | |
3e170ce0 | 3836 | * Dispatch the thread on the chosen processor. |
fe8ab488 | 3837 | * TODO: This should be based on sched_mode, not sched_pri |
2d21ac55 A |
3838 | */ |
3839 | if (thread->sched_pri >= BASEPRI_RTQUEUES) | |
3840 | realtime_setrun(processor, thread); | |
3841 | else | |
3842 | processor_setrun(processor, thread, options); | |
3843 | } | |
3844 | ||
b0d623f7 A |
3845 | processor_set_t |
3846 | task_choose_pset( | |
3847 | task_t task) | |
3848 | { | |
3849 | processor_set_t pset = task->pset_hint; | |
3850 | ||
3851 | if (pset != PROCESSOR_SET_NULL) | |
3852 | pset = choose_next_pset(pset); | |
3853 | ||
3854 | return (pset); | |
3855 | } | |
3856 | ||
9bccf70c | 3857 | /* |
c910b4d9 A |
3858 | * Check for a preemption point in |
3859 | * the current context. | |
55e303ae | 3860 | * |
fe8ab488 | 3861 | * Called at splsched with thread locked. |
9bccf70c A |
3862 | */ |
3863 | ast_t | |
3864 | csw_check( | |
fe8ab488 A |
3865 | processor_t processor, |
3866 | ast_t check_reason) | |
39236c6e A |
3867 | { |
3868 | processor_set_t pset = processor->processor_set; | |
3869 | ast_t result; | |
3870 | ||
3871 | pset_lock(pset); | |
3872 | ||
3873 | /* If we were sent a remote AST and interrupted a running processor, acknowledge it here with pset lock held */ | |
3e170ce0 | 3874 | pset->pending_AST_cpu_mask &= ~(1ULL << processor->cpu_id); |
39236c6e | 3875 | |
fe8ab488 | 3876 | result = csw_check_locked(processor, pset, check_reason); |
39236c6e A |
3877 | |
3878 | pset_unlock(pset); | |
3879 | ||
3880 | return result; | |
3881 | } | |
3882 | ||
3883 | /* | |
3884 | * Check for preemption at splsched with | |
fe8ab488 | 3885 | * pset and thread locked |
39236c6e A |
3886 | */ |
3887 | ast_t | |
3888 | csw_check_locked( | |
3889 | processor_t processor, | |
fe8ab488 A |
3890 | processor_set_t pset __unused, |
3891 | ast_t check_reason) | |
9bccf70c | 3892 | { |
fe8ab488 | 3893 | ast_t result; |
316670eb | 3894 | thread_t thread = processor->active_thread; |
9bccf70c | 3895 | |
3e170ce0 | 3896 | if (processor->first_timeslice) { |
6d2010ae | 3897 | if (rt_runq.count > 0) |
fe8ab488 | 3898 | return (check_reason | AST_PREEMPT | AST_URGENT); |
9bccf70c A |
3899 | } |
3900 | else { | |
39236c6e A |
3901 | if (rt_runq.count > 0) { |
3902 | if (BASEPRI_RTQUEUES > processor->current_pri) | |
fe8ab488 | 3903 | return (check_reason | AST_PREEMPT | AST_URGENT); |
39236c6e | 3904 | else |
fe8ab488 | 3905 | return (check_reason | AST_PREEMPT); |
39236c6e | 3906 | } |
1c79356b | 3907 | } |
9bccf70c | 3908 | |
316670eb | 3909 | result = SCHED(processor_csw_check)(processor); |
9bccf70c | 3910 | if (result != AST_NONE) |
3e170ce0 A |
3911 | return (check_reason | result | (thread_eager_preemption(thread) ? AST_URGENT : AST_NONE)); |
3912 | ||
3913 | #if __SMP__ | |
9bccf70c | 3914 | |
3e170ce0 A |
3915 | /* |
3916 | * If the current thread is running on a processor that is no longer recommended, gently | |
3917 | * (non-urgently) get to a point and then block, and which point thread_select() should | |
3918 | * try to idle the processor and re-dispatch the thread to a recommended processor. | |
3919 | */ | |
3920 | if (!processor->is_recommended) | |
fe8ab488 | 3921 | return (check_reason | AST_PREEMPT); |
3e170ce0 A |
3922 | |
3923 | /* | |
3924 | * Even though we could continue executing on this processor, a | |
3925 | * secondary SMT core should try to shed load to another primary core. | |
3926 | * | |
3927 | * TODO: Should this do the same check that thread_select does? i.e. | |
3928 | * if no bound threads target this processor, and idle primaries exist, preempt | |
3929 | * The case of RT threads existing is already taken care of above | |
3930 | * Consider Capri in this scenario. | |
3931 | * | |
3932 | * if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue)) | |
3933 | * | |
3934 | * TODO: Alternatively - check if only primary is idle, or check if primary's pri is lower than mine. | |
3935 | */ | |
3936 | ||
3937 | if (processor->current_pri < BASEPRI_RTQUEUES && | |
3938 | processor->processor_primary != processor) | |
3939 | return (check_reason | AST_PREEMPT); | |
3940 | #endif | |
3941 | ||
316670eb | 3942 | if (thread->state & TH_SUSP) |
fe8ab488 A |
3943 | return (check_reason | AST_PREEMPT); |
3944 | ||
3e170ce0 | 3945 | #if CONFIG_SCHED_SFI |
fe8ab488 A |
3946 | /* |
3947 | * Current thread may not need to be preempted, but maybe needs | |
3948 | * an SFI wait? | |
3949 | */ | |
3950 | result = sfi_thread_needs_ast(thread, NULL); | |
3951 | if (result != AST_NONE) | |
3952 | return (check_reason | result); | |
3e170ce0 | 3953 | #endif |
c910b4d9 A |
3954 | |
3955 | return (AST_NONE); | |
1c79356b A |
3956 | } |
3957 | ||
3958 | /* | |
9bccf70c | 3959 | * set_sched_pri: |
1c79356b | 3960 | * |
55e303ae A |
3961 | * Set the scheduled priority of the specified thread. |
3962 | * | |
9bccf70c | 3963 | * This may cause the thread to change queues. |
1c79356b | 3964 | * |
55e303ae | 3965 | * Thread must be locked. |
1c79356b A |
3966 | */ |
3967 | void | |
9bccf70c | 3968 | set_sched_pri( |
3e170ce0 A |
3969 | thread_t thread, |
3970 | int priority) | |
1c79356b | 3971 | { |
3e170ce0 A |
3972 | thread_t cthread = current_thread(); |
3973 | boolean_t is_current_thread = (thread == cthread) ? TRUE : FALSE; | |
fe8ab488 A |
3974 | int curgency, nurgency; |
3975 | uint64_t urgency_param1, urgency_param2; | |
3e170ce0 | 3976 | boolean_t removed_from_runq = FALSE; |
9bccf70c | 3977 | |
3e170ce0 A |
3978 | /* If we're already at this priority, no need to mess with the runqueue */ |
3979 | if (priority == thread->sched_pri) | |
3980 | return; | |
3981 | ||
3982 | if (is_current_thread) { | |
3983 | assert(thread->runq == PROCESSOR_NULL); | |
fe8ab488 | 3984 | curgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2); |
3e170ce0 A |
3985 | } else { |
3986 | removed_from_runq = thread_run_queue_remove(thread); | |
fe8ab488 | 3987 | } |
3e170ce0 | 3988 | |
490019cf A |
3989 | thread->sched_pri = priority; |
3990 | ||
3e170ce0 A |
3991 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHANGE_PRIORITY), |
3992 | (uintptr_t)thread_tid(thread), | |
3993 | thread->base_pri, | |
3994 | thread->sched_pri, | |
3995 | 0, /* eventually, 'reason' */ | |
3996 | 0); | |
3997 | ||
3e170ce0 | 3998 | if (is_current_thread) { |
fe8ab488 | 3999 | nurgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2); |
3e170ce0 A |
4000 | /* |
4001 | * set_sched_pri doesn't alter RT params. We expect direct base priority/QoS | |
4002 | * class alterations from user space to occur relatively infrequently, hence | |
4003 | * those are lazily handled. QoS classes have distinct priority bands, and QoS | |
4004 | * inheritance is expected to involve priority changes. | |
4005 | */ | |
fe8ab488 | 4006 | if (nurgency != curgency) { |
3e170ce0 | 4007 | thread_tell_urgency(nurgency, urgency_param1, urgency_param2, 0, thread); |
d190cdc3 | 4008 | machine_thread_going_on_core(thread, nurgency, 0, 0); |
fe8ab488 A |
4009 | } |
4010 | } | |
4011 | ||
3e170ce0 A |
4012 | /* TODO: Should this be TAILQ if it went down, HEADQ if it went up? */ |
4013 | if (removed_from_runq) | |
4014 | thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
4015 | else if (thread->state & TH_RUN) { | |
4016 | processor_t processor = thread->last_processor; | |
9bccf70c | 4017 | |
3e170ce0 A |
4018 | if (is_current_thread) { |
4019 | ast_t preempt; | |
9bccf70c | 4020 | |
9bccf70c | 4021 | processor->current_pri = priority; |
6d2010ae | 4022 | processor->current_thmode = thread->sched_mode; |
fe8ab488 A |
4023 | processor->current_sfi_class = thread->sfi_class = sfi_thread_classify(thread); |
4024 | if ((preempt = csw_check(processor, AST_NONE)) != AST_NONE) | |
c910b4d9 | 4025 | ast_on(preempt); |
3e170ce0 | 4026 | } else if (processor != PROCESSOR_NULL && processor->active_thread == thread) |
9bccf70c | 4027 | cause_ast_check(processor); |
1c79356b A |
4028 | } |
4029 | } | |
4030 | ||
3e170ce0 A |
4031 | /* |
4032 | * thread_run_queue_remove_for_handoff | |
4033 | * | |
4034 | * Pull a thread or its (recursive) push target out of the runqueue | |
4035 | * so that it is ready for thread_run() | |
4036 | * | |
4037 | * Called at splsched | |
4038 | * | |
4039 | * Returns the thread that was pulled or THREAD_NULL if no thread could be pulled. | |
4040 | * This may be different than the thread that was passed in. | |
4041 | */ | |
4042 | thread_t | |
4043 | thread_run_queue_remove_for_handoff(thread_t thread) { | |
91447636 | 4044 | |
3e170ce0 | 4045 | thread_t pulled_thread = THREAD_NULL; |
91447636 | 4046 | |
3e170ce0 | 4047 | thread_lock(thread); |
91447636 | 4048 | |
3e170ce0 A |
4049 | /* |
4050 | * Check that the thread is not bound | |
4051 | * to a different processor, and that realtime | |
4052 | * is not involved. | |
4053 | * | |
4054 | * Next, pull it off its run queue. If it | |
4055 | * doesn't come, it's not eligible. | |
4056 | */ | |
91447636 | 4057 | |
3e170ce0 A |
4058 | processor_t processor = current_processor(); |
4059 | if (processor->current_pri < BASEPRI_RTQUEUES && thread->sched_pri < BASEPRI_RTQUEUES && | |
4060 | (thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor)) { | |
91447636 | 4061 | |
3e170ce0 A |
4062 | if (thread_run_queue_remove(thread)) |
4063 | pulled_thread = thread; | |
91447636 A |
4064 | } |
4065 | ||
3e170ce0 | 4066 | thread_unlock(thread); |
6d2010ae | 4067 | |
3e170ce0 | 4068 | return pulled_thread; |
6d2010ae A |
4069 | } |
4070 | ||
1c79356b | 4071 | /* |
6d2010ae | 4072 | * thread_run_queue_remove: |
1c79356b | 4073 | * |
fe8ab488 | 4074 | * Remove a thread from its current run queue and |
2d21ac55 | 4075 | * return TRUE if successful. |
55e303ae A |
4076 | * |
4077 | * Thread must be locked. | |
fe8ab488 A |
4078 | * |
4079 | * If thread->runq is PROCESSOR_NULL, the thread will not re-enter the | |
4080 | * run queues because the caller locked the thread. Otherwise | |
4081 | * the thread is on a run queue, but could be chosen for dispatch | |
4082 | * and removed by another processor under a different lock, which | |
4083 | * will set thread->runq to PROCESSOR_NULL. | |
4084 | * | |
4085 | * Hence the thread select path must not rely on anything that could | |
4086 | * be changed under the thread lock after calling this function, | |
4087 | * most importantly thread->sched_pri. | |
1c79356b | 4088 | */ |
2d21ac55 | 4089 | boolean_t |
6d2010ae | 4090 | thread_run_queue_remove( |
fe8ab488 | 4091 | thread_t thread) |
1c79356b | 4092 | { |
fe8ab488 A |
4093 | boolean_t removed = FALSE; |
4094 | processor_t processor = thread->runq; | |
1c79356b | 4095 | |
fe8ab488 A |
4096 | if ((thread->state & (TH_RUN|TH_WAIT)) == TH_WAIT) { |
4097 | /* Thread isn't runnable */ | |
4098 | assert(thread->runq == PROCESSOR_NULL); | |
4099 | return FALSE; | |
4100 | } | |
55e303ae | 4101 | |
fe8ab488 | 4102 | if (processor == PROCESSOR_NULL) { |
55e303ae | 4103 | /* |
fe8ab488 A |
4104 | * The thread is either not on the runq, |
4105 | * or is in the midst of being removed from the runq. | |
4106 | * | |
4107 | * runq is set to NULL under the pset lock, not the thread | |
4108 | * lock, so the thread may still be in the process of being dequeued | |
4109 | * from the runq. It will wait in invoke for the thread lock to be | |
4110 | * dropped. | |
55e303ae | 4111 | */ |
55e303ae | 4112 | |
fe8ab488 A |
4113 | return FALSE; |
4114 | } | |
55e303ae | 4115 | |
fe8ab488 A |
4116 | if (thread->sched_pri < BASEPRI_RTQUEUES) { |
4117 | return SCHED(processor_queue_remove)(processor, thread); | |
4118 | } | |
55e303ae | 4119 | |
3e170ce0 | 4120 | rt_lock_lock(); |
55e303ae | 4121 | |
fe8ab488 A |
4122 | if (thread->runq != PROCESSOR_NULL) { |
4123 | /* | |
3e170ce0 | 4124 | * Thread is on the RT run queue and we have a lock on |
fe8ab488 A |
4125 | * that run queue. |
4126 | */ | |
4127 | ||
3e170ce0 | 4128 | assert(thread->runq == THREAD_ON_RT_RUNQ); |
fe8ab488 | 4129 | |
39037602 | 4130 | remqueue(&thread->runq_links); |
fe8ab488 A |
4131 | SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count); |
4132 | rt_runq.count--; | |
4133 | ||
4134 | thread->runq = PROCESSOR_NULL; | |
4135 | ||
4136 | removed = TRUE; | |
1c79356b A |
4137 | } |
4138 | ||
3e170ce0 | 4139 | rt_lock_unlock(); |
fe8ab488 A |
4140 | |
4141 | return (removed); | |
1c79356b A |
4142 | } |
4143 | ||
cf7d32b8 | 4144 | /* |
3e170ce0 | 4145 | * Put the thread back where it goes after a thread_run_queue_remove |
cf7d32b8 | 4146 | * |
3e170ce0 | 4147 | * Thread must have been removed under the same thread lock hold |
cf7d32b8 | 4148 | * |
3e170ce0 | 4149 | * thread locked, at splsched |
cf7d32b8 | 4150 | */ |
3e170ce0 A |
4151 | void |
4152 | thread_run_queue_reinsert(thread_t thread, integer_t options) | |
cf7d32b8 | 4153 | { |
3e170ce0 | 4154 | assert(thread->runq == PROCESSOR_NULL); |
cf7d32b8 | 4155 | |
3e170ce0 A |
4156 | assert(thread->state & (TH_RUN)); |
4157 | thread_setrun(thread, options); | |
6d2010ae | 4158 | |
6d2010ae A |
4159 | } |
4160 | ||
39236c6e A |
4161 | void |
4162 | sys_override_cpu_throttle(int flag) | |
6d2010ae | 4163 | { |
39236c6e A |
4164 | if (flag == CPU_THROTTLE_ENABLE) |
4165 | cpu_throttle_enabled = 1; | |
4166 | if (flag == CPU_THROTTLE_DISABLE) | |
4167 | cpu_throttle_enabled = 0; | |
4168 | } | |
6d2010ae | 4169 | |
39236c6e A |
4170 | int |
4171 | thread_get_urgency(thread_t thread, uint64_t *arg1, uint64_t *arg2) | |
4172 | { | |
4173 | if (thread == NULL || (thread->state & TH_IDLE)) { | |
4174 | *arg1 = 0; | |
4175 | *arg2 = 0; | |
4176 | ||
4177 | return (THREAD_URGENCY_NONE); | |
4178 | } else if (thread->sched_mode == TH_MODE_REALTIME) { | |
4179 | *arg1 = thread->realtime.period; | |
4180 | *arg2 = thread->realtime.deadline; | |
4181 | ||
4182 | return (THREAD_URGENCY_REAL_TIME); | |
4183 | } else if (cpu_throttle_enabled && | |
3e170ce0 | 4184 | ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) { |
39236c6e A |
4185 | /* |
4186 | * Background urgency applied when thread priority is MAXPRI_THROTTLE or lower and thread is not promoted | |
4187 | */ | |
4188 | *arg1 = thread->sched_pri; | |
3e170ce0 | 4189 | *arg2 = thread->base_pri; |
6d2010ae | 4190 | |
39236c6e A |
4191 | return (THREAD_URGENCY_BACKGROUND); |
4192 | } else { | |
fe8ab488 A |
4193 | /* For otherwise unclassified threads, report throughput QoS |
4194 | * parameters | |
4195 | */ | |
39037602 A |
4196 | *arg1 = proc_get_effective_thread_policy(thread, TASK_POLICY_THROUGH_QOS); |
4197 | *arg2 = proc_get_effective_task_policy(thread->task, TASK_POLICY_THROUGH_QOS); | |
4198 | ||
6d2010ae A |
4199 | return (THREAD_URGENCY_NORMAL); |
4200 | } | |
6d2010ae A |
4201 | } |
4202 | ||
4203 | ||
1c79356b | 4204 | /* |
2d21ac55 A |
4205 | * This is the processor idle loop, which just looks for other threads |
4206 | * to execute. Processor idle threads invoke this without supplying a | |
4207 | * current thread to idle without an asserted wait state. | |
4208 | * | |
4209 | * Returns a the next thread to execute if dispatched directly. | |
1c79356b | 4210 | */ |
6d2010ae A |
4211 | |
4212 | #if 0 | |
4213 | #define IDLE_KERNEL_DEBUG_CONSTANT(...) KERNEL_DEBUG_CONSTANT(__VA_ARGS__) | |
4214 | #else | |
4215 | #define IDLE_KERNEL_DEBUG_CONSTANT(...) do { } while(0) | |
4216 | #endif | |
4217 | ||
4218 | thread_t | |
2d21ac55 A |
4219 | processor_idle( |
4220 | thread_t thread, | |
4221 | processor_t processor) | |
1c79356b | 4222 | { |
2d21ac55 A |
4223 | processor_set_t pset = processor->processor_set; |
4224 | thread_t new_thread; | |
4225 | int state; | |
2d21ac55 | 4226 | (void)splsched(); |
1c79356b | 4227 | |
316670eb A |
4228 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
4229 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_START, | |
4230 | (uintptr_t)thread_tid(thread), 0, 0, 0, 0); | |
3a60a9f5 | 4231 | |
6d2010ae A |
4232 | SCHED_STATS_CPU_IDLE_START(processor); |
4233 | ||
2d21ac55 A |
4234 | timer_switch(&PROCESSOR_DATA(processor, system_state), |
4235 | mach_absolute_time(), &PROCESSOR_DATA(processor, idle_state)); | |
4236 | PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, idle_state); | |
3a60a9f5 | 4237 | |
39236c6e | 4238 | while (1) { |
39236c6e A |
4239 | if (processor->state != PROCESSOR_IDLE) /* unsafe, but worst case we loop around once */ |
4240 | break; | |
3e170ce0 | 4241 | if (pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id)) |
39236c6e | 4242 | break; |
3e170ce0 A |
4243 | if (processor->is_recommended) { |
4244 | if (rt_runq.count) | |
4245 | break; | |
4246 | } else { | |
4247 | if (SCHED(processor_bound_count)(processor)) | |
4248 | break; | |
4249 | } | |
4250 | ||
39236c6e A |
4251 | #if CONFIG_SCHED_IDLE_IN_PLACE |
4252 | if (thread != THREAD_NULL) { | |
4253 | /* Did idle-in-place thread wake up */ | |
4254 | if ((thread->state & (TH_WAIT|TH_SUSP)) != TH_WAIT || thread->wake_active) | |
4255 | break; | |
4256 | } | |
4257 | #endif | |
4258 | ||
6d2010ae A |
4259 | IDLE_KERNEL_DEBUG_CONSTANT( |
4260 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -1, 0); | |
4261 | ||
4b17d6b6 A |
4262 | machine_track_platform_idle(TRUE); |
4263 | ||
2d21ac55 | 4264 | machine_idle(); |
55e303ae | 4265 | |
4b17d6b6 A |
4266 | machine_track_platform_idle(FALSE); |
4267 | ||
55e303ae | 4268 | (void)splsched(); |
c910b4d9 | 4269 | |
6d2010ae A |
4270 | IDLE_KERNEL_DEBUG_CONSTANT( |
4271 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -2, 0); | |
4272 | ||
fe8ab488 A |
4273 | if (!SCHED(processor_queue_empty)(processor)) { |
4274 | /* Secondary SMT processors respond to directed wakeups | |
4275 | * exclusively. Some platforms induce 'spurious' SMT wakeups. | |
4276 | */ | |
4277 | if (processor->processor_primary == processor) | |
4278 | break; | |
4279 | } | |
55e303ae A |
4280 | } |
4281 | ||
2d21ac55 A |
4282 | timer_switch(&PROCESSOR_DATA(processor, idle_state), |
4283 | mach_absolute_time(), &PROCESSOR_DATA(processor, system_state)); | |
4284 | PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, system_state); | |
1c79356b | 4285 | |
2d21ac55 A |
4286 | pset_lock(pset); |
4287 | ||
39236c6e | 4288 | /* If we were sent a remote AST and came out of idle, acknowledge it here with pset lock held */ |
3e170ce0 A |
4289 | pset->pending_AST_cpu_mask &= ~(1ULL << processor->cpu_id); |
4290 | #if defined(CONFIG_SCHED_DEFERRED_AST) | |
4291 | pset->pending_deferred_AST_cpu_mask &= ~(1ULL << processor->cpu_id); | |
4292 | #endif | |
39236c6e | 4293 | |
55e303ae A |
4294 | state = processor->state; |
4295 | if (state == PROCESSOR_DISPATCHING) { | |
1c79356b | 4296 | /* |
55e303ae | 4297 | * Commmon case -- cpu dispatched. |
1c79356b | 4298 | */ |
2d21ac55 A |
4299 | new_thread = processor->next_thread; |
4300 | processor->next_thread = THREAD_NULL; | |
55e303ae | 4301 | processor->state = PROCESSOR_RUNNING; |
1c79356b | 4302 | |
39236c6e | 4303 | if ((new_thread != THREAD_NULL) && (SCHED(processor_queue_has_priority)(processor, new_thread->sched_pri, FALSE) || |
3e170ce0 | 4304 | (rt_runq.count > 0)) ) { |
fe8ab488 | 4305 | /* Something higher priority has popped up on the runqueue - redispatch this thread elsewhere */ |
39236c6e A |
4306 | processor->current_pri = IDLEPRI; |
4307 | processor->current_thmode = TH_MODE_FIXED; | |
fe8ab488 | 4308 | processor->current_sfi_class = SFI_CLASS_KERNEL; |
2d21ac55 | 4309 | processor->deadline = UINT64_MAX; |
55e303ae | 4310 | |
2d21ac55 | 4311 | pset_unlock(pset); |
1c79356b | 4312 | |
2d21ac55 | 4313 | thread_lock(new_thread); |
6d2010ae | 4314 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REDISPATCH), (uintptr_t)thread_tid(new_thread), new_thread->sched_pri, rt_runq.count, 0, 0); |
2d21ac55 A |
4315 | thread_setrun(new_thread, SCHED_HEADQ); |
4316 | thread_unlock(new_thread); | |
55e303ae | 4317 | |
316670eb A |
4318 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
4319 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, | |
4320 | (uintptr_t)thread_tid(thread), state, 0, 0, 0); | |
6d2010ae | 4321 | |
2d21ac55 | 4322 | return (THREAD_NULL); |
1c79356b | 4323 | } |
1c79356b | 4324 | |
2d21ac55 A |
4325 | pset_unlock(pset); |
4326 | ||
316670eb A |
4327 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
4328 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, | |
4329 | (uintptr_t)thread_tid(thread), state, (uintptr_t)thread_tid(new_thread), 0, 0); | |
39037602 | 4330 | |
2d21ac55 | 4331 | return (new_thread); |
39037602 A |
4332 | |
4333 | } else if (state == PROCESSOR_IDLE) { | |
4334 | re_queue_tail(&pset->active_queue, &processor->processor_queue); | |
1c79356b | 4335 | |
2d21ac55 | 4336 | processor->state = PROCESSOR_RUNNING; |
39236c6e A |
4337 | processor->current_pri = IDLEPRI; |
4338 | processor->current_thmode = TH_MODE_FIXED; | |
fe8ab488 | 4339 | processor->current_sfi_class = SFI_CLASS_KERNEL; |
39236c6e | 4340 | processor->deadline = UINT64_MAX; |
39037602 A |
4341 | |
4342 | } else if (state == PROCESSOR_SHUTDOWN) { | |
55e303ae A |
4343 | /* |
4344 | * Going off-line. Force a | |
4345 | * reschedule. | |
4346 | */ | |
2d21ac55 A |
4347 | if ((new_thread = processor->next_thread) != THREAD_NULL) { |
4348 | processor->next_thread = THREAD_NULL; | |
39236c6e A |
4349 | processor->current_pri = IDLEPRI; |
4350 | processor->current_thmode = TH_MODE_FIXED; | |
fe8ab488 | 4351 | processor->current_sfi_class = SFI_CLASS_KERNEL; |
55e303ae | 4352 | processor->deadline = UINT64_MAX; |
2d21ac55 A |
4353 | |
4354 | pset_unlock(pset); | |
55e303ae A |
4355 | |
4356 | thread_lock(new_thread); | |
4357 | thread_setrun(new_thread, SCHED_HEADQ); | |
4358 | thread_unlock(new_thread); | |
55e303ae | 4359 | |
316670eb A |
4360 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
4361 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, | |
4362 | (uintptr_t)thread_tid(thread), state, 0, 0, 0); | |
6d2010ae | 4363 | |
2d21ac55 A |
4364 | return (THREAD_NULL); |
4365 | } | |
55e303ae A |
4366 | } |
4367 | ||
2d21ac55 A |
4368 | pset_unlock(pset); |
4369 | ||
316670eb A |
4370 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
4371 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, | |
4372 | (uintptr_t)thread_tid(thread), state, 0, 0, 0); | |
6d2010ae | 4373 | |
2d21ac55 A |
4374 | return (THREAD_NULL); |
4375 | } | |
4376 | ||
cf7d32b8 A |
4377 | /* |
4378 | * Each processor has a dedicated thread which | |
4379 | * executes the idle loop when there is no suitable | |
4380 | * previous context. | |
4381 | */ | |
2d21ac55 A |
4382 | void |
4383 | idle_thread(void) | |
4384 | { | |
4385 | processor_t processor = current_processor(); | |
4386 | thread_t new_thread; | |
4387 | ||
4388 | new_thread = processor_idle(THREAD_NULL, processor); | |
4389 | if (new_thread != THREAD_NULL) { | |
4390 | thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread); | |
4391 | /*NOTREACHED*/ | |
4392 | } | |
55e303ae | 4393 | |
2d21ac55 | 4394 | thread_block((thread_continue_t)idle_thread); |
55e303ae | 4395 | /*NOTREACHED*/ |
1c79356b A |
4396 | } |
4397 | ||
91447636 A |
4398 | kern_return_t |
4399 | idle_thread_create( | |
4400 | processor_t processor) | |
1c79356b | 4401 | { |
91447636 A |
4402 | kern_return_t result; |
4403 | thread_t thread; | |
4404 | spl_t s; | |
4405 | ||
4406 | result = kernel_thread_create((thread_continue_t)idle_thread, NULL, MAXPRI_KERNEL, &thread); | |
4407 | if (result != KERN_SUCCESS) | |
4408 | return (result); | |
4409 | ||
4410 | s = splsched(); | |
4411 | thread_lock(thread); | |
4412 | thread->bound_processor = processor; | |
4413 | processor->idle_thread = thread; | |
3e170ce0 | 4414 | thread->sched_pri = thread->base_pri = IDLEPRI; |
91447636 | 4415 | thread->state = (TH_RUN | TH_IDLE); |
39236c6e | 4416 | thread->options |= TH_OPT_IDLE_THREAD; |
91447636 A |
4417 | thread_unlock(thread); |
4418 | splx(s); | |
4419 | ||
4420 | thread_deallocate(thread); | |
4421 | ||
4422 | return (KERN_SUCCESS); | |
1c79356b A |
4423 | } |
4424 | ||
91447636 A |
4425 | /* |
4426 | * sched_startup: | |
4427 | * | |
4428 | * Kicks off scheduler services. | |
4429 | * | |
4430 | * Called at splsched. | |
4431 | */ | |
0b4e3aa0 | 4432 | void |
91447636 | 4433 | sched_startup(void) |
0b4e3aa0 | 4434 | { |
91447636 A |
4435 | kern_return_t result; |
4436 | thread_t thread; | |
4437 | ||
3e170ce0 A |
4438 | simple_lock_init(&sched_vm_group_list_lock, 0); |
4439 | ||
490019cf | 4440 | |
6d2010ae | 4441 | result = kernel_thread_start_priority((thread_continue_t)sched_init_thread, |
39236c6e | 4442 | (void *)SCHED(maintenance_continuation), MAXPRI_KERNEL, &thread); |
91447636 A |
4443 | if (result != KERN_SUCCESS) |
4444 | panic("sched_startup"); | |
4445 | ||
4446 | thread_deallocate(thread); | |
4447 | ||
39037602 A |
4448 | assert_thread_magic(thread); |
4449 | ||
91447636 | 4450 | /* |
316670eb A |
4451 | * Yield to the sched_init_thread once, to |
4452 | * initialize our own thread after being switched | |
4453 | * back to. | |
91447636 A |
4454 | * |
4455 | * The current thread is the only other thread | |
4456 | * active at this point. | |
4457 | */ | |
316670eb | 4458 | thread_block(THREAD_CONTINUE_NULL); |
6d2010ae | 4459 | } |
91447636 | 4460 | |
fe8ab488 | 4461 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
91447636 | 4462 | |
39236c6e A |
4463 | static volatile uint64_t sched_maintenance_deadline; |
4464 | static uint64_t sched_tick_last_abstime; | |
4465 | static uint64_t sched_tick_delta; | |
4466 | uint64_t sched_tick_max_delta; | |
1c79356b | 4467 | /* |
6d2010ae | 4468 | * sched_init_thread: |
1c79356b | 4469 | * |
55e303ae A |
4470 | * Perform periodic bookkeeping functions about ten |
4471 | * times per second. | |
1c79356b | 4472 | */ |
fe8ab488 | 4473 | void |
3e170ce0 | 4474 | sched_timeshare_maintenance_continue(void) |
1c79356b | 4475 | { |
fe8ab488 A |
4476 | uint64_t sched_tick_ctime, late_time; |
4477 | ||
3e170ce0 A |
4478 | struct sched_update_scan_context scan_context = { |
4479 | .earliest_bg_make_runnable_time = UINT64_MAX, | |
4480 | .earliest_normal_make_runnable_time = UINT64_MAX, | |
4481 | .earliest_rt_make_runnable_time = UINT64_MAX | |
4482 | }; | |
4483 | ||
fe8ab488 | 4484 | sched_tick_ctime = mach_absolute_time(); |
1c79356b | 4485 | |
39236c6e A |
4486 | if (__improbable(sched_tick_last_abstime == 0)) { |
4487 | sched_tick_last_abstime = sched_tick_ctime; | |
fe8ab488 | 4488 | late_time = 0; |
39236c6e A |
4489 | sched_tick_delta = 1; |
4490 | } else { | |
fe8ab488 A |
4491 | late_time = sched_tick_ctime - sched_tick_last_abstime; |
4492 | sched_tick_delta = late_time / sched_tick_interval; | |
39236c6e A |
4493 | /* Ensure a delta of 1, since the interval could be slightly |
4494 | * smaller than the sched_tick_interval due to dispatch | |
4495 | * latencies. | |
4496 | */ | |
4497 | sched_tick_delta = MAX(sched_tick_delta, 1); | |
4498 | ||
4499 | /* In the event interrupt latencies or platform | |
4500 | * idle events that advanced the timebase resulted | |
4501 | * in periods where no threads were dispatched, | |
4502 | * cap the maximum "tick delta" at SCHED_TICK_MAX_DELTA | |
4503 | * iterations. | |
4504 | */ | |
4505 | sched_tick_delta = MIN(sched_tick_delta, SCHED_TICK_MAX_DELTA); | |
4506 | ||
4507 | sched_tick_last_abstime = sched_tick_ctime; | |
4508 | sched_tick_max_delta = MAX(sched_tick_delta, sched_tick_max_delta); | |
4509 | } | |
4510 | ||
fe8ab488 | 4511 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE)|DBG_FUNC_START, |
39037602 | 4512 | sched_tick_delta, late_time, 0, 0, 0); |
fe8ab488 | 4513 | |
39236c6e A |
4514 | /* Add a number of pseudo-ticks corresponding to the elapsed interval |
4515 | * This could be greater than 1 if substantial intervals where | |
4516 | * all processors are idle occur, which rarely occurs in practice. | |
4517 | */ | |
39037602 | 4518 | |
39236c6e | 4519 | sched_tick += sched_tick_delta; |
1c79356b A |
4520 | |
4521 | /* | |
91447636 | 4522 | * Compute various averages. |
1c79356b | 4523 | */ |
39236c6e | 4524 | compute_averages(sched_tick_delta); |
1c79356b A |
4525 | |
4526 | /* | |
91447636 | 4527 | * Scan the run queues for threads which |
39037602 A |
4528 | * may need to be updated, and find the earliest runnable thread on the runqueue |
4529 | * to report its latency. | |
1c79356b | 4530 | */ |
3e170ce0 A |
4531 | SCHED(thread_update_scan)(&scan_context); |
4532 | ||
4533 | rt_runq_scan(&scan_context); | |
4534 | ||
4535 | uint64_t ctime = mach_absolute_time(); | |
4536 | ||
39037602 A |
4537 | uint64_t bg_max_latency = (ctime > scan_context.earliest_bg_make_runnable_time) ? |
4538 | ctime - scan_context.earliest_bg_make_runnable_time : 0; | |
4539 | ||
4540 | uint64_t default_max_latency = (ctime > scan_context.earliest_normal_make_runnable_time) ? | |
4541 | ctime - scan_context.earliest_normal_make_runnable_time : 0; | |
4542 | ||
4543 | uint64_t realtime_max_latency = (ctime > scan_context.earliest_rt_make_runnable_time) ? | |
4544 | ctime - scan_context.earliest_rt_make_runnable_time : 0; | |
4545 | ||
4546 | machine_max_runnable_latency(bg_max_latency, default_max_latency, realtime_max_latency); | |
3e170ce0 A |
4547 | |
4548 | /* | |
4549 | * Check to see if the special sched VM group needs attention. | |
4550 | */ | |
4551 | sched_vm_group_maintenance(); | |
fe8ab488 | 4552 | |
490019cf | 4553 | |
39037602 A |
4554 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE) | DBG_FUNC_END, |
4555 | sched_pri_shifts[TH_BUCKET_SHARE_FG], sched_pri_shifts[TH_BUCKET_SHARE_BG], | |
4556 | sched_pri_shifts[TH_BUCKET_SHARE_UT], 0, 0); | |
1c79356b | 4557 | |
3e170ce0 A |
4558 | assert_wait((event_t)sched_timeshare_maintenance_continue, THREAD_UNINT); |
4559 | thread_block((thread_continue_t)sched_timeshare_maintenance_continue); | |
1c79356b A |
4560 | /*NOTREACHED*/ |
4561 | } | |
4562 | ||
39236c6e A |
4563 | static uint64_t sched_maintenance_wakeups; |
4564 | ||
4565 | /* | |
4566 | * Determine if the set of routines formerly driven by a maintenance timer | |
4567 | * must be invoked, based on a deadline comparison. Signals the scheduler | |
4568 | * maintenance thread on deadline expiration. Must be invoked at an interval | |
4569 | * lower than the "sched_tick_interval", currently accomplished by | |
4570 | * invocation via the quantum expiration timer and at context switch time. | |
4571 | * Performance matters: this routine reuses a timestamp approximating the | |
4572 | * current absolute time received from the caller, and should perform | |
4573 | * no more than a comparison against the deadline in the common case. | |
4574 | */ | |
4575 | void | |
3e170ce0 | 4576 | sched_timeshare_consider_maintenance(uint64_t ctime) { |
39236c6e A |
4577 | uint64_t ndeadline, deadline = sched_maintenance_deadline; |
4578 | ||
4579 | if (__improbable(ctime >= deadline)) { | |
4580 | if (__improbable(current_thread() == sched_maintenance_thread)) | |
4581 | return; | |
4582 | OSMemoryBarrier(); | |
4583 | ||
4584 | ndeadline = ctime + sched_tick_interval; | |
4585 | ||
4586 | if (__probable(__sync_bool_compare_and_swap(&sched_maintenance_deadline, deadline, ndeadline))) { | |
3e170ce0 | 4587 | thread_wakeup((event_t)sched_timeshare_maintenance_continue); |
39236c6e A |
4588 | sched_maintenance_wakeups++; |
4589 | } | |
4590 | } | |
4591 | } | |
4592 | ||
fe8ab488 | 4593 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
6d2010ae | 4594 | |
1c79356b | 4595 | void |
6d2010ae | 4596 | sched_init_thread(void (*continuation)(void)) |
1c79356b | 4597 | { |
316670eb | 4598 | thread_block(THREAD_CONTINUE_NULL); |
91447636 | 4599 | |
490019cf A |
4600 | thread_t thread = current_thread(); |
4601 | ||
39037602 A |
4602 | thread_set_thread_name(thread, "sched_maintenance_thread"); |
4603 | ||
490019cf A |
4604 | sched_maintenance_thread = thread; |
4605 | ||
6d2010ae | 4606 | continuation(); |
1c79356b | 4607 | |
1c79356b A |
4608 | /*NOTREACHED*/ |
4609 | } | |
4610 | ||
fe8ab488 | 4611 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
6d2010ae | 4612 | |
1c79356b | 4613 | /* |
91447636 | 4614 | * thread_update_scan / runq_scan: |
55e303ae | 4615 | * |
91447636 A |
4616 | * Scan the run queues to account for timesharing threads |
4617 | * which need to be updated. | |
1c79356b A |
4618 | * |
4619 | * Scanner runs in two passes. Pass one squirrels likely | |
91447636 | 4620 | * threads away in an array, pass two does the update. |
1c79356b | 4621 | * |
91447636 A |
4622 | * This is necessary because the run queue is locked for |
4623 | * the candidate scan, but the thread is locked for the update. | |
1c79356b | 4624 | * |
91447636 A |
4625 | * Array should be sized to make forward progress, without |
4626 | * disabling preemption for long periods. | |
1c79356b | 4627 | */ |
55e303ae | 4628 | |
91447636 | 4629 | #define THREAD_UPDATE_SIZE 128 |
55e303ae | 4630 | |
39037602 A |
4631 | static thread_t thread_update_array[THREAD_UPDATE_SIZE]; |
4632 | static uint32_t thread_update_count = 0; | |
1c79356b | 4633 | |
fe8ab488 A |
4634 | /* Returns TRUE if thread was added, FALSE if thread_update_array is full */ |
4635 | boolean_t | |
4636 | thread_update_add_thread(thread_t thread) | |
4637 | { | |
4638 | if (thread_update_count == THREAD_UPDATE_SIZE) | |
4639 | return (FALSE); | |
4640 | ||
4641 | thread_update_array[thread_update_count++] = thread; | |
4642 | thread_reference_internal(thread); | |
4643 | return (TRUE); | |
4644 | } | |
4645 | ||
4646 | void | |
4647 | thread_update_process_threads(void) | |
4648 | { | |
39037602 | 4649 | assert(thread_update_count <= THREAD_UPDATE_SIZE); |
fe8ab488 | 4650 | |
39037602 A |
4651 | for (uint32_t i = 0 ; i < thread_update_count ; i++) { |
4652 | thread_t thread = thread_update_array[i]; | |
4653 | assert_thread_magic(thread); | |
4654 | thread_update_array[i] = THREAD_NULL; | |
4655 | ||
4656 | spl_t s = splsched(); | |
fe8ab488 | 4657 | thread_lock(thread); |
39037602 | 4658 | if (!(thread->state & (TH_WAIT)) && thread->sched_stamp != sched_tick) { |
fe8ab488 A |
4659 | SCHED(update_priority)(thread); |
4660 | } | |
4661 | thread_unlock(thread); | |
4662 | splx(s); | |
4663 | ||
4664 | thread_deallocate(thread); | |
4665 | } | |
39037602 A |
4666 | |
4667 | thread_update_count = 0; | |
fe8ab488 A |
4668 | } |
4669 | ||
1c79356b | 4670 | /* |
91447636 A |
4671 | * Scan a runq for candidate threads. |
4672 | * | |
4673 | * Returns TRUE if retry is needed. | |
1c79356b | 4674 | */ |
fe8ab488 | 4675 | boolean_t |
91447636 | 4676 | runq_scan( |
39037602 A |
4677 | run_queue_t runq, |
4678 | sched_update_scan_context_t scan_context) | |
1c79356b | 4679 | { |
39037602 A |
4680 | int count = runq->count; |
4681 | int queue_index; | |
1c79356b | 4682 | |
39037602 A |
4683 | assert(count >= 0); |
4684 | ||
4685 | if (count == 0) | |
4686 | return FALSE; | |
4687 | ||
4688 | for (queue_index = bitmap_first(runq->bitmap, NRQS); | |
4689 | queue_index >= 0; | |
4690 | queue_index = bitmap_next(runq->bitmap, queue_index)) { | |
4691 | ||
4692 | thread_t thread; | |
4693 | queue_t queue = &runq->queues[queue_index]; | |
3e170ce0 | 4694 | |
39037602 A |
4695 | qe_foreach_element(thread, queue, runq_links) { |
4696 | assert(count > 0); | |
4697 | assert_thread_magic(thread); | |
4698 | ||
4699 | if (thread->sched_stamp != sched_tick && | |
4700 | thread->sched_mode == TH_MODE_TIMESHARE) { | |
4701 | if (thread_update_add_thread(thread) == FALSE) | |
4702 | return TRUE; | |
1c79356b A |
4703 | } |
4704 | ||
39037602 A |
4705 | if (cpu_throttle_enabled && ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) { |
4706 | if (thread->last_made_runnable_time < scan_context->earliest_bg_make_runnable_time) { | |
4707 | scan_context->earliest_bg_make_runnable_time = thread->last_made_runnable_time; | |
4708 | } | |
4709 | } else { | |
4710 | if (thread->last_made_runnable_time < scan_context->earliest_normal_make_runnable_time) { | |
4711 | scan_context->earliest_normal_make_runnable_time = thread->last_made_runnable_time; | |
4712 | } | |
4713 | } | |
4714 | count--; | |
1c79356b A |
4715 | } |
4716 | } | |
1c79356b | 4717 | |
39037602 | 4718 | return FALSE; |
1c79356b A |
4719 | } |
4720 | ||
fe8ab488 A |
4721 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
4722 | ||
6d2010ae A |
4723 | boolean_t |
4724 | thread_eager_preemption(thread_t thread) | |
4725 | { | |
4726 | return ((thread->sched_flags & TH_SFLAG_EAGERPREEMPT) != 0); | |
4727 | } | |
4728 | ||
4729 | void | |
4730 | thread_set_eager_preempt(thread_t thread) | |
4731 | { | |
4732 | spl_t x; | |
4733 | processor_t p; | |
4734 | ast_t ast = AST_NONE; | |
4735 | ||
4736 | x = splsched(); | |
4737 | p = current_processor(); | |
4738 | ||
4739 | thread_lock(thread); | |
4740 | thread->sched_flags |= TH_SFLAG_EAGERPREEMPT; | |
4741 | ||
4742 | if (thread == current_thread()) { | |
6d2010ae | 4743 | |
fe8ab488 A |
4744 | ast = csw_check(p, AST_NONE); |
4745 | thread_unlock(thread); | |
6d2010ae A |
4746 | if (ast != AST_NONE) { |
4747 | (void) thread_block_reason(THREAD_CONTINUE_NULL, NULL, ast); | |
4748 | } | |
4749 | } else { | |
4750 | p = thread->last_processor; | |
4751 | ||
4752 | if (p != PROCESSOR_NULL && p->state == PROCESSOR_RUNNING && | |
4753 | p->active_thread == thread) { | |
4754 | cause_ast_check(p); | |
4755 | } | |
1c79356b | 4756 | |
6d2010ae A |
4757 | thread_unlock(thread); |
4758 | } | |
4759 | ||
4760 | splx(x); | |
4761 | } | |
4762 | ||
4763 | void | |
4764 | thread_clear_eager_preempt(thread_t thread) | |
4765 | { | |
4766 | spl_t x; | |
4767 | ||
4768 | x = splsched(); | |
4769 | thread_lock(thread); | |
4770 | ||
4771 | thread->sched_flags &= ~TH_SFLAG_EAGERPREEMPT; | |
4772 | ||
4773 | thread_unlock(thread); | |
4774 | splx(x); | |
4775 | } | |
3e170ce0 | 4776 | |
6d2010ae A |
4777 | /* |
4778 | * Scheduling statistics | |
4779 | */ | |
4780 | void | |
4781 | sched_stats_handle_csw(processor_t processor, int reasons, int selfpri, int otherpri) | |
4782 | { | |
4783 | struct processor_sched_statistics *stats; | |
4784 | boolean_t to_realtime = FALSE; | |
4785 | ||
4786 | stats = &processor->processor_data.sched_stats; | |
4787 | stats->csw_count++; | |
4788 | ||
4789 | if (otherpri >= BASEPRI_REALTIME) { | |
4790 | stats->rt_sched_count++; | |
4791 | to_realtime = TRUE; | |
4792 | } | |
4793 | ||
4794 | if ((reasons & AST_PREEMPT) != 0) { | |
4795 | stats->preempt_count++; | |
4796 | ||
4797 | if (selfpri >= BASEPRI_REALTIME) { | |
4798 | stats->preempted_rt_count++; | |
4799 | } | |
4800 | ||
4801 | if (to_realtime) { | |
4802 | stats->preempted_by_rt_count++; | |
4803 | } | |
4804 | ||
4805 | } | |
4806 | } | |
4807 | ||
4808 | void | |
4809 | sched_stats_handle_runq_change(struct runq_stats *stats, int old_count) | |
4810 | { | |
4811 | uint64_t timestamp = mach_absolute_time(); | |
4812 | ||
4813 | stats->count_sum += (timestamp - stats->last_change_timestamp) * old_count; | |
4814 | stats->last_change_timestamp = timestamp; | |
4815 | } | |
4816 | ||
1c79356b | 4817 | /* |
6d2010ae | 4818 | * For calls from assembly code |
1c79356b | 4819 | */ |
6d2010ae | 4820 | #undef thread_wakeup |
1c79356b A |
4821 | void |
4822 | thread_wakeup( | |
6d2010ae | 4823 | event_t x); |
1c79356b A |
4824 | |
4825 | void | |
4826 | thread_wakeup( | |
6d2010ae | 4827 | event_t x) |
1c79356b | 4828 | { |
6d2010ae | 4829 | thread_wakeup_with_result(x, THREAD_AWAKENED); |
1c79356b A |
4830 | } |
4831 | ||
91447636 A |
4832 | boolean_t |
4833 | preemption_enabled(void) | |
4834 | { | |
4835 | return (get_preemption_level() == 0 && ml_get_interrupts_enabled()); | |
4836 | } | |
9bccf70c | 4837 | |
4b17d6b6 A |
4838 | static void |
4839 | sched_timer_deadline_tracking_init(void) { | |
4840 | nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT, &timer_deadline_tracking_bin_1); | |
4841 | nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT, &timer_deadline_tracking_bin_2); | |
4842 | } | |
3e170ce0 A |
4843 | |
4844 | ||
4845 | kern_return_t | |
4846 | sched_work_interval_notify(thread_t thread, uint64_t work_interval_id, uint64_t start, uint64_t finish, uint64_t deadline, uint64_t next_start, uint32_t flags) | |
4847 | { | |
4848 | int urgency; | |
4849 | uint64_t urgency_param1, urgency_param2; | |
4850 | spl_t s; | |
4851 | ||
4852 | if (work_interval_id == 0) { | |
4853 | return (KERN_INVALID_ARGUMENT); | |
4854 | } | |
4855 | ||
4856 | assert(thread == current_thread()); | |
4857 | ||
4858 | thread_mtx_lock(thread); | |
4859 | if (thread->work_interval_id != work_interval_id) { | |
4860 | thread_mtx_unlock(thread); | |
4861 | return (KERN_INVALID_ARGUMENT); | |
4862 | } | |
4863 | thread_mtx_unlock(thread); | |
4864 | ||
4865 | s = splsched(); | |
4866 | thread_lock(thread); | |
4867 | urgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2); | |
4868 | thread_unlock(thread); | |
4869 | splx(s); | |
4870 | ||
4871 | machine_work_interval_notify(thread, work_interval_id, start, finish, deadline, next_start, urgency, flags); | |
4872 | return (KERN_SUCCESS); | |
4873 | } | |
4874 | ||
4875 | void thread_set_options(uint32_t thopt) { | |
4876 | spl_t x; | |
4877 | thread_t t = current_thread(); | |
4878 | ||
4879 | x = splsched(); | |
4880 | thread_lock(t); | |
4881 | ||
4882 | t->options |= thopt; | |
4883 | ||
4884 | thread_unlock(t); | |
4885 | splx(x); | |
4886 | } | |
813fb2f6 A |
4887 | |
4888 | void thread_set_pending_block_hint(thread_t thread, block_hint_t block_hint) { | |
4889 | thread->pending_block_hint = block_hint; | |
4890 | } |