]>
Commit | Line | Data |
---|---|---|
fe8ab488 A |
1 | /* |
2 | * Copyright (c) 2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <mach/machine.h> | |
30 | #include <mach/processor.h> | |
31 | #include <kern/processor.h> | |
32 | #include <kern/cpu_data.h> | |
33 | #include <kern/cpu_number.h> | |
34 | #include <kern/kalloc.h> | |
35 | #include <kern/machine.h> | |
36 | #include <kern/misc_protos.h> | |
37 | #include <kern/startup.h> | |
38 | #include <kern/sched.h> | |
39 | #include <kern/thread.h> | |
40 | #include <kern/thread_call.h> | |
41 | #include <machine/cpu_data.h> | |
42 | #include <machine/simple_lock.h> | |
43 | #include <vm/pmap.h> | |
44 | #include <vm/vm_page.h> | |
45 | #include <sys/kdebug.h> | |
46 | #include <sys/random.h> | |
47 | ||
48 | #include <prng/random.h> | |
49 | #include <corecrypto/ccdrbg.h> | |
50 | #include <corecrypto/ccsha1.h> | |
51 | ||
52 | #include <pexpert/pexpert.h> | |
53 | #include <console/serial_protos.h> | |
54 | #include <IOKit/IOPlatformExpert.h> | |
55 | ||
56 | static lck_grp_t *gPRNGGrp; | |
57 | static lck_attr_t *gPRNGAttr; | |
58 | static lck_grp_attr_t *gPRNGGrpAttr; | |
59 | static lck_mtx_t *gPRNGMutex = NULL; | |
60 | ||
61 | typedef struct prngContext { | |
62 | struct ccdrbg_info *infop; | |
63 | struct ccdrbg_state *statep; | |
64 | uint64_t bytes_generated; | |
65 | uint64_t bytes_reseeded; | |
66 | } *prngContextp; | |
67 | ||
68 | ccdrbg_factory_t prng_ccdrbg_factory = NULL; | |
69 | ||
70 | entropy_data_t EntropyData = { .index_ptr = EntropyData.buffer }; | |
71 | ||
72 | boolean_t erandom_seed_set = FALSE; | |
73 | char erandom_seed[EARLY_RANDOM_SEED_SIZE]; | |
74 | typedef struct ccdrbg_state ccdrbg_state_t; | |
75 | uint8_t master_erandom_state[EARLY_RANDOM_STATE_STATIC_SIZE]; | |
76 | ccdrbg_state_t *erandom_state[MAX_CPUS]; | |
77 | struct ccdrbg_info erandom_info; | |
78 | decl_simple_lock_data(,entropy_lock); | |
79 | ||
80 | struct ccdrbg_nisthmac_custom erandom_custom = { | |
81 | .di = &ccsha1_eay_di, | |
82 | .strictFIPS = 0, | |
83 | }; | |
84 | ||
85 | static void read_erandom(void *buffer, u_int numBytes); /* Forward */ | |
86 | ||
87 | void | |
88 | entropy_buffer_read(char *buffer, | |
89 | unsigned int *count) | |
90 | { | |
91 | boolean_t current_state; | |
92 | unsigned int i, j; | |
93 | ||
94 | if (!erandom_seed_set) { | |
95 | panic("early_random was never invoked"); | |
96 | } | |
97 | ||
98 | if ((*count) > (ENTROPY_BUFFER_SIZE * sizeof(unsigned int))) | |
99 | *count = ENTROPY_BUFFER_SIZE * sizeof(unsigned int); | |
100 | ||
101 | current_state = ml_set_interrupts_enabled(FALSE); | |
102 | #if defined (__x86_64__) | |
103 | simple_lock(&entropy_lock); | |
104 | #endif | |
105 | ||
106 | memcpy((char *) buffer, (char *) EntropyData.buffer, *count); | |
107 | ||
108 | for (i = 0, j = (ENTROPY_BUFFER_SIZE - 1); i < ENTROPY_BUFFER_SIZE; j = i, i++) | |
109 | EntropyData.buffer[i] = EntropyData.buffer[i] ^ EntropyData.buffer[j]; | |
110 | ||
111 | #if defined (__x86_64__) | |
112 | simple_unlock(&entropy_lock); | |
113 | #endif | |
114 | (void) ml_set_interrupts_enabled(current_state); | |
115 | ||
116 | #if DEVELOPMENT || DEBUG | |
117 | uint32_t *word = (uint32_t *) (void *) buffer; | |
118 | /* Good for both 32-bit and 64-bit kernels. */ | |
119 | for (i = 0; i < ENTROPY_BUFFER_SIZE; i += 4) | |
120 | /* | |
121 | * We use "EARLY" here so that we can grab early entropy on | |
122 | * ARM, where tracing is not started until after PRNG is | |
123 | * initialized. | |
124 | */ | |
125 | KERNEL_DEBUG_EARLY(ENTROPY_READ(i/4), | |
126 | word[i+0], word[i+1], word[i+2], word[i+3]); | |
127 | #endif | |
128 | } | |
129 | ||
130 | /* | |
131 | * Return a uniformly distributed 64-bit random number. | |
132 | * | |
133 | * This interface should have minimal dependencies on kernel | |
134 | * services, and thus be available very early in the life | |
135 | * of the kernel. | |
136 | * This provides cryptographically secure randomness. | |
137 | * Each processor has its own generator instance. | |
138 | * It is seeded (lazily) with entropy provided by the Booter. | |
139 | * | |
140 | * For <rdar://problem/17292592> the algorithm switched from LCG to | |
141 | * NIST HMAC DBRG as follows: | |
142 | * - When first called (on OSX this is very early while page tables are being | |
143 | * built) early_random() calls ccdrbg_factory_hmac() to set-up a ccdbrg info | |
144 | * structure. | |
145 | * - The boot processor's ccdrbg state structure is a statically allocated area | |
146 | * which is then initialized by calling the ccdbrg_init method. | |
147 | * The initial entropy is 16 bytes of boot entropy. | |
148 | * The nonce is the first 8 bytes of entropy xor'ed with a timestamp | |
149 | * from ml_get_timebase(). | |
150 | * The personalization data provided is null. | |
151 | * - The first 64-bit random value is returned on the boot processor from | |
152 | * an invocation of the ccdbrg_generate method. | |
153 | * - Non-boot processor's DRBG state structures are allocated dynamically | |
154 | * from prng_init(). Each is initialized with the same 16 bytes of entropy | |
155 | * but with a different timestamped nonce and cpu number as personalization. | |
156 | * - Subsequent calls to early_random() pass to read_erandom() to generate | |
157 | * an 8-byte random value. read_erandom() ensures that pre-emption is | |
158 | * disabled and selects the DBRG state from the current processor. | |
159 | * The ccdbrg_generate method is called for the required random output. | |
160 | * If this method returns CCDRBG_STATUS_NEED_RESEED, the erandom_seed buffer | |
161 | * is re-filled with kernel-harvested entropy and the ccdbrg_reseed method is | |
162 | * called with this new entropy. The kernel panics if a reseed fails. | |
163 | */ | |
164 | uint64_t | |
165 | early_random(void) | |
166 | { | |
167 | uint32_t cnt = 0; | |
168 | uint64_t result; | |
169 | uint64_t nonce; | |
170 | int rc; | |
171 | ccdrbg_state_t *state; | |
172 | ||
173 | if (!erandom_seed_set) { | |
174 | simple_lock_init(&entropy_lock,0); | |
175 | erandom_seed_set = TRUE; | |
176 | cnt = PE_get_random_seed((unsigned char *) EntropyData.buffer, | |
177 | sizeof(EntropyData.buffer)); | |
178 | ||
179 | if (cnt < sizeof(EntropyData.buffer)) { | |
180 | /* | |
181 | * Insufficient entropy is fatal. We must fill the | |
182 | * entire entropy buffer during initializaton. | |
183 | */ | |
184 | panic("EntropyData needed %lu bytes, but got %u.\n", | |
185 | sizeof(EntropyData.buffer), cnt); | |
186 | } | |
187 | ||
188 | /* | |
189 | * Use some of the supplied entropy as a basis for early_random; | |
190 | * reuse is ugly, but simplifies things. Ideally, we would guard | |
191 | * early random values well enough that it isn't safe to attack | |
192 | * them, but this cannot be guaranteed; thus, initial entropy | |
193 | * can be considered 8 bytes weaker for a given boot if any | |
194 | * early random values are conclusively determined. | |
195 | * | |
196 | * early_random_seed could be larger than EntopyData.buffer... | |
197 | * but it won't be. | |
198 | */ | |
199 | bcopy(EntropyData.buffer, &erandom_seed, sizeof(erandom_seed)); | |
200 | ||
201 | /* Init DRBG for NIST HMAC */ | |
202 | ccdrbg_factory_nisthmac(&erandom_info, &erandom_custom); | |
203 | assert(erandom_info.size <= sizeof(master_erandom_state)); | |
204 | state = (ccdrbg_state_t *) master_erandom_state; | |
205 | erandom_state[0] = state; | |
206 | ||
207 | /* | |
208 | * Init our DBRG from the boot entropy and a nonce composed of | |
209 | * a timestamp swizzled with the first 8 bytes of this entropy. | |
210 | */ | |
211 | assert(sizeof(erandom_seed) > sizeof(nonce)); | |
212 | bcopy(erandom_seed, &nonce, sizeof(nonce)); | |
213 | nonce ^= ml_get_timebase(); | |
214 | rc = ccdrbg_init(&erandom_info, state, | |
215 | sizeof(erandom_seed), erandom_seed, | |
216 | sizeof(nonce), &nonce, | |
217 | 0, NULL); | |
218 | assert(rc == CCDRBG_STATUS_OK); | |
219 | ||
220 | /* Generate output */ | |
221 | rc = ccdrbg_generate(&erandom_info, state, | |
222 | sizeof(result), &result, | |
223 | 0, NULL); | |
224 | assert(rc == CCDRBG_STATUS_OK); | |
225 | ||
226 | return result; | |
227 | }; | |
228 | ||
229 | read_erandom(&result, sizeof(result)); | |
230 | ||
231 | return result; | |
232 | } | |
233 | ||
234 | void | |
235 | read_erandom(void *buffer, u_int numBytes) | |
236 | { | |
237 | int cpu; | |
238 | int rc; | |
239 | uint32_t cnt; | |
240 | ccdrbg_state_t *state; | |
241 | ||
242 | mp_disable_preemption(); | |
243 | cpu = cpu_number(); | |
244 | state = erandom_state[cpu]; | |
245 | assert(state); | |
246 | while (TRUE) { | |
247 | /* Generate output */ | |
248 | rc = ccdrbg_generate(&erandom_info, state, | |
249 | numBytes, buffer, | |
250 | 0, NULL); | |
251 | if (rc == CCDRBG_STATUS_OK) | |
252 | break; | |
253 | if (rc == CCDRBG_STATUS_NEED_RESEED) { | |
254 | /* It's time to reseed. Get more entropy */ | |
255 | cnt = sizeof(erandom_seed); | |
256 | entropy_buffer_read(erandom_seed, &cnt); | |
257 | assert(cnt == sizeof(erandom_seed)); | |
258 | rc = ccdrbg_reseed(&erandom_info, state, | |
259 | sizeof(erandom_seed), erandom_seed, | |
260 | 0, NULL); | |
261 | if (rc == CCDRBG_STATUS_OK) | |
262 | continue; | |
263 | panic("read_erandom reseed error %d\n", rc); | |
264 | } | |
265 | panic("read_erandom ccdrbg error %d\n", rc); | |
266 | } | |
267 | mp_enable_preemption(); | |
268 | } | |
269 | ||
270 | void | |
271 | read_frandom(void *buffer, u_int numBytes) | |
272 | { | |
273 | char *cp = (char *) buffer; | |
274 | int nbytes; | |
275 | ||
276 | /* | |
277 | * Split up into requests for blocks smaller than | |
278 | * than the DBRG request limit. iThis limit is private but | |
279 | * for NISTHMAC it's known to be greater then 4096. | |
280 | */ | |
281 | while (numBytes) { | |
282 | nbytes = MIN(numBytes, PAGE_SIZE); | |
283 | read_erandom(cp, nbytes); | |
284 | cp += nbytes; | |
285 | numBytes -= nbytes; | |
286 | } | |
287 | } | |
288 | ||
289 | /* | |
290 | * Register a DRBG factory routine to e used in constructing the kernel PRNG. | |
291 | * XXX to be called from the corecrypto kext. | |
292 | */ | |
293 | void | |
294 | prng_factory_register(ccdrbg_factory_t factory) | |
295 | { | |
296 | prng_ccdrbg_factory = factory; | |
297 | thread_wakeup((event_t) &prng_ccdrbg_factory); | |
298 | } | |
299 | ||
300 | void | |
301 | prng_cpu_init(int cpu) | |
302 | { | |
303 | uint64_t nonce; | |
304 | int rc; | |
305 | ccdrbg_state_t *state; | |
306 | prngContextp pp; | |
307 | ||
308 | /* | |
309 | * Allocate state and initialize DBRG state for early_random() | |
310 | * for this processor, if necessary. | |
311 | */ | |
312 | if (erandom_state[cpu] == NULL) { | |
313 | ||
314 | state = kalloc(erandom_info.size); | |
315 | if (state == NULL) { | |
316 | panic("prng_init kalloc failed\n"); | |
317 | } | |
318 | erandom_state[cpu] = state; | |
319 | ||
320 | /* | |
321 | * Init our DBRG from boot entropy, nonce as timestamp xor'ed | |
322 | * with the first 8 bytes of entropy, and use the cpu number | |
323 | * as the personalization parameter. | |
324 | */ | |
325 | bcopy(erandom_seed, &nonce, sizeof(nonce)); | |
326 | nonce ^= ml_get_timebase(); | |
327 | rc = ccdrbg_init(&erandom_info, state, | |
328 | sizeof(erandom_seed), erandom_seed, | |
329 | sizeof(nonce), &nonce, | |
330 | sizeof(cpu), &cpu); | |
331 | assert(rc == CCDRBG_STATUS_OK); | |
332 | } | |
333 | ||
334 | /* Non-boot cpus use the master cpu's global context */ | |
335 | if (cpu != master_cpu) { | |
336 | cpu_datap(cpu)->cpu_prng = master_prng_context(); | |
337 | return; | |
338 | } | |
339 | ||
340 | assert(gPRNGMutex == NULL); /* Once only, please */ | |
341 | ||
342 | /* make a mutex to control access */ | |
343 | gPRNGGrpAttr = lck_grp_attr_alloc_init(); | |
344 | gPRNGGrp = lck_grp_alloc_init("random", gPRNGGrpAttr); | |
345 | gPRNGAttr = lck_attr_alloc_init(); | |
346 | gPRNGMutex = lck_mtx_alloc_init(gPRNGGrp, gPRNGAttr); | |
347 | ||
348 | pp = kalloc(sizeof(*pp)); | |
349 | if (pp == NULL) | |
350 | panic("Unable to allocate prng context"); | |
351 | pp->bytes_generated = 0; | |
352 | pp->bytes_reseeded = 0; | |
353 | pp->infop = NULL; | |
354 | ||
355 | /* XXX Temporary registration */ | |
356 | prng_factory_register(ccdrbg_factory_yarrow); | |
357 | ||
358 | master_prng_context() = pp; | |
359 | } | |
360 | ||
361 | static ccdrbg_info_t * | |
362 | prng_infop(prngContextp pp) | |
363 | { | |
364 | lck_mtx_assert(gPRNGMutex, LCK_MTX_ASSERT_OWNED); | |
365 | ||
366 | /* Usual case: the info is all set */ | |
367 | if (pp->infop) | |
368 | return pp->infop; | |
369 | ||
370 | /* | |
371 | * Possibly wait for the CCDRBG factory routune to be registered | |
372 | * by corecypto. But panic after waiting for more than 10 seconds. | |
373 | */ | |
374 | while (prng_ccdrbg_factory == NULL ) { | |
375 | wait_result_t wait_result; | |
376 | assert_wait_timeout((event_t) &prng_ccdrbg_factory, TRUE, | |
377 | 10, NSEC_PER_USEC); | |
378 | lck_mtx_unlock(gPRNGMutex); | |
379 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
380 | if (wait_result == THREAD_TIMED_OUT) | |
381 | panic("prng_ccdrbg_factory registration timeout"); | |
382 | lck_mtx_lock(gPRNGMutex); | |
383 | } | |
384 | /* Check we didn't lose the set-up race */ | |
385 | if (pp->infop) | |
386 | return pp->infop; | |
387 | ||
388 | pp->infop = (ccdrbg_info_t *) kalloc(sizeof(ccdrbg_info_t)); | |
389 | if (pp->infop == NULL) | |
390 | panic("Unable to allocate prng info"); | |
391 | ||
392 | prng_ccdrbg_factory(pp->infop, NULL); | |
393 | ||
394 | pp->statep = kalloc(pp->infop->size); | |
395 | if (pp->statep == NULL) | |
396 | panic("Unable to allocate prng state"); | |
397 | ||
398 | char rdBuffer[ENTROPY_BUFFER_BYTE_SIZE]; | |
399 | unsigned int bytesToInput = sizeof(rdBuffer); | |
400 | ||
401 | entropy_buffer_read(rdBuffer, &bytesToInput); | |
402 | ||
403 | (void) ccdrbg_init(pp->infop, pp->statep, | |
404 | bytesToInput, rdBuffer, | |
405 | 0, NULL, | |
406 | 0, NULL); | |
407 | return pp->infop; | |
408 | } | |
409 | ||
410 | static void | |
411 | Reseed(prngContextp pp) | |
412 | { | |
413 | char rdBuffer[ENTROPY_BUFFER_BYTE_SIZE]; | |
414 | unsigned int bytesToInput = sizeof(rdBuffer); | |
415 | ||
416 | entropy_buffer_read(rdBuffer, &bytesToInput); | |
417 | ||
418 | PRNG_CCDRBG((void) ccdrbg_reseed(pp->infop, pp->statep, | |
419 | bytesToInput, rdBuffer, | |
420 | 0, NULL)); | |
421 | ||
422 | pp->bytes_reseeded = pp->bytes_generated; | |
423 | } | |
424 | ||
425 | ||
426 | /* export good random numbers to the rest of the kernel */ | |
427 | void | |
428 | read_random(void* buffer, u_int numbytes) | |
429 | { | |
430 | prngContextp pp; | |
431 | ccdrbg_info_t *infop; | |
432 | int ccdrbg_err; | |
433 | ||
434 | lck_mtx_lock(gPRNGMutex); | |
435 | ||
436 | pp = current_prng_context(); | |
437 | infop = prng_infop(pp); | |
438 | ||
439 | /* | |
440 | * Call DRBG, reseeding and retrying if requested. | |
441 | */ | |
442 | while (TRUE) { | |
443 | PRNG_CCDRBG( | |
444 | ccdrbg_err = ccdrbg_generate(infop, pp->statep, | |
445 | numbytes, buffer, | |
446 | 0, NULL)); | |
447 | if (ccdrbg_err == CCDRBG_STATUS_OK) | |
448 | break; | |
449 | if (ccdrbg_err == CCDRBG_STATUS_NEED_RESEED) { | |
450 | Reseed(pp); | |
451 | continue; | |
452 | } | |
453 | panic("read_random ccdrbg error %d\n", ccdrbg_err); | |
454 | } | |
455 | ||
456 | pp->bytes_generated += numbytes; | |
457 | lck_mtx_unlock(gPRNGMutex); | |
458 | } | |
459 | ||
460 | int | |
461 | write_random(void* buffer, u_int numbytes) | |
462 | { | |
463 | #if 0 | |
464 | int retval = 0; | |
465 | prngContextp pp; | |
466 | ||
467 | lck_mtx_lock(gPRNGMutex); | |
468 | ||
469 | pp = current_prng_context(); | |
470 | ||
471 | if (ccdrbg_reseed(prng_infop(pp), pp->statep, | |
472 | bytesToInput, rdBuffer, 0, NULL) != 0) | |
473 | retval = EIO; | |
474 | ||
475 | lck_mtx_unlock(gPRNGMutex); | |
476 | return retval; | |
477 | #else | |
478 | #pragma unused(buffer, numbytes) | |
479 | return 0; | |
480 | #endif | |
481 | } |