]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
fe8ab488 | 2 | * Copyright (c) 2000-2014 Apple Inc. All rights reserved. |
5d5c5d0d | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
0a7de745 | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
0a7de745 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
0a7de745 | 17 | * |
2d21ac55 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
0a7de745 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95 | |
62 | */ | |
63 | ||
64 | #include <sys/param.h> | |
91447636 A |
65 | #include <sys/proc_internal.h> |
66 | #include <sys/buf_internal.h> | |
67 | #include <sys/mount_internal.h> | |
68 | #include <sys/vnode_internal.h> | |
1c79356b A |
69 | #include <sys/trace.h> |
70 | #include <sys/malloc.h> | |
55e303ae A |
71 | #include <sys/time.h> |
72 | #include <sys/kernel.h> | |
1c79356b | 73 | #include <sys/resourcevar.h> |
316670eb | 74 | #include <miscfs/specfs/specdev.h> |
91447636 | 75 | #include <sys/uio_internal.h> |
1c79356b | 76 | #include <libkern/libkern.h> |
55e303ae | 77 | #include <machine/machine_routines.h> |
1c79356b | 78 | |
91447636 | 79 | #include <sys/ubc_internal.h> |
2d21ac55 | 80 | #include <vm/vnode_pager.h> |
1c79356b | 81 | |
55e303ae A |
82 | #include <mach/mach_types.h> |
83 | #include <mach/memory_object_types.h> | |
91447636 A |
84 | #include <mach/vm_map.h> |
85 | #include <mach/upl.h> | |
6d2010ae | 86 | #include <kern/task.h> |
39037602 | 87 | #include <kern/policy_internal.h> |
91447636 A |
88 | |
89 | #include <vm/vm_kern.h> | |
90 | #include <vm/vm_map.h> | |
91 | #include <vm/vm_pageout.h> | |
fe8ab488 | 92 | #include <vm/vm_fault.h> |
55e303ae | 93 | |
1c79356b | 94 | #include <sys/kdebug.h> |
0a7de745 | 95 | #include <libkern/OSAtomic.h> |
b0d623f7 | 96 | |
6d2010ae A |
97 | #include <sys/sdt.h> |
98 | ||
3e170ce0 A |
99 | #include <stdbool.h> |
100 | ||
5ba3f43e A |
101 | #include <vfs/vfs_disk_conditioner.h> |
102 | ||
b0d623f7 A |
103 | #if 0 |
104 | #undef KERNEL_DEBUG | |
105 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT | |
106 | #endif | |
107 | ||
1c79356b | 108 | |
0a7de745 A |
109 | #define CL_READ 0x01 |
110 | #define CL_WRITE 0x02 | |
111 | #define CL_ASYNC 0x04 | |
112 | #define CL_COMMIT 0x08 | |
113 | #define CL_PAGEOUT 0x10 | |
114 | #define CL_AGE 0x20 | |
115 | #define CL_NOZERO 0x40 | |
116 | #define CL_PAGEIN 0x80 | |
117 | #define CL_DEV_MEMORY 0x100 | |
118 | #define CL_PRESERVE 0x200 | |
119 | #define CL_THROTTLE 0x400 | |
120 | #define CL_KEEPCACHED 0x800 | |
121 | #define CL_DIRECT_IO 0x1000 | |
122 | #define CL_PASSIVE 0x2000 | |
123 | #define CL_IOSTREAMING 0x4000 | |
124 | #define CL_CLOSE 0x8000 | |
125 | #define CL_ENCRYPTED 0x10000 | |
126 | #define CL_RAW_ENCRYPTED 0x20000 | |
127 | #define CL_NOCACHE 0x40000 | |
128 | ||
129 | #define MAX_VECTOR_UPL_ELEMENTS 8 | |
130 | #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES) | |
131 | ||
132 | #define CLUSTER_IO_WAITING ((buf_t)1) | |
39037602 | 133 | |
b0d623f7 A |
134 | extern upl_t vector_upl_create(vm_offset_t); |
135 | extern boolean_t vector_upl_is_valid(upl_t); | |
0a7de745 | 136 | extern boolean_t vector_upl_set_subupl(upl_t, upl_t, u_int32_t); |
b0d623f7 A |
137 | extern void vector_upl_set_pagelist(upl_t); |
138 | extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t); | |
d7e50217 | 139 | |
b4c24cb9 | 140 | struct clios { |
6d2010ae | 141 | lck_mtx_t io_mtxp; |
0a7de745 A |
142 | u_int io_completed; /* amount of io that has currently completed */ |
143 | u_int io_issued; /* amount of io that was successfully issued */ | |
144 | int io_error; /* error code of first error encountered */ | |
145 | int io_wanted; /* someone is sleeping waiting for a change in state */ | |
b4c24cb9 A |
146 | }; |
147 | ||
3e170ce0 | 148 | struct cl_direct_read_lock { |
0a7de745 A |
149 | LIST_ENTRY(cl_direct_read_lock) chain; |
150 | int32_t ref_count; | |
151 | vnode_t vp; | |
152 | lck_rw_t rw_lock; | |
3e170ce0 A |
153 | }; |
154 | ||
155 | #define CL_DIRECT_READ_LOCK_BUCKETS 61 | |
156 | ||
157 | static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock) | |
0a7de745 | 158 | cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS]; |
3e170ce0 A |
159 | |
160 | static lck_spin_t cl_direct_read_spin_lock; | |
161 | ||
0a7de745 A |
162 | static lck_grp_t *cl_mtx_grp; |
163 | static lck_attr_t *cl_mtx_attr; | |
91447636 | 164 | static lck_grp_attr_t *cl_mtx_grp_attr; |
0a7de745 | 165 | static lck_mtx_t *cl_transaction_mtxp; |
91447636 | 166 | |
0a7de745 A |
167 | #define IO_UNKNOWN 0 |
168 | #define IO_DIRECT 1 | |
169 | #define IO_CONTIG 2 | |
170 | #define IO_COPY 3 | |
2d21ac55 | 171 | |
0a7de745 A |
172 | #define PUSH_DELAY 0x01 |
173 | #define PUSH_ALL 0x02 | |
174 | #define PUSH_SYNC 0x04 | |
2d21ac55 A |
175 | |
176 | ||
177 | static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset); | |
178 | static void cluster_wait_IO(buf_t cbp_head, int async); | |
179 | static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait); | |
180 | ||
181 | static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length); | |
182 | ||
91447636 | 183 | static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
0a7de745 | 184 | int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg); |
2d21ac55 | 185 | static int cluster_iodone(buf_t bp, void *callback_arg); |
39236c6e A |
186 | static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp); |
187 | static int cluster_is_throttled(vnode_t vp); | |
91447636 | 188 | |
6d2010ae A |
189 | static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name); |
190 | ||
fe8ab488 | 191 | static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags); |
2d21ac55 | 192 | |
b0d623f7 | 193 | static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference); |
2d21ac55 A |
194 | static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference); |
195 | ||
0a7de745 A |
196 | static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, |
197 | int (*)(buf_t, void *), void *callback_arg); | |
2d21ac55 | 198 | static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
0a7de745 | 199 | int flags, int (*)(buf_t, void *), void *callback_arg); |
2d21ac55 | 200 | static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
0a7de745 | 201 | int (*)(buf_t, void *), void *callback_arg, int flags); |
1c79356b | 202 | |
2d21ac55 | 203 | static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, |
0a7de745 | 204 | off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg); |
2d21ac55 | 205 | static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, |
0a7de745 | 206 | int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg); |
2d21ac55 | 207 | static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, |
0a7de745 | 208 | int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag); |
91447636 | 209 | |
d9a64523 | 210 | static void cluster_update_state_internal(vnode_t vp, struct cl_extent *cl, int flags, boolean_t defer_writes, boolean_t *first_pass, |
0a7de745 | 211 | off_t write_off, int write_cnt, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); |
d9a64523 | 212 | |
2d21ac55 | 213 | static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg); |
91447636 | 214 | |
0a7de745 A |
215 | static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag); |
216 | static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, | |
217 | int (*callback)(buf_t, void *), void *callback_arg, int bflag); | |
91447636 | 218 | |
0a7de745 | 219 | static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_ioitiated); |
55e303ae | 220 | |
0a7de745 A |
221 | static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), |
222 | void *callback_arg, int *err, boolean_t vm_initiated); | |
2d21ac55 | 223 | |
0a7de745 A |
224 | static int sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); |
225 | static int sparse_cluster_push(struct cl_writebehind *, void **cmapp, vnode_t vp, off_t EOF, int push_flag, | |
226 | int io_flags, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); | |
227 | static int sparse_cluster_add(struct cl_writebehind *, void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, | |
228 | int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); | |
2d21ac55 A |
229 | |
230 | static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp); | |
55e303ae A |
231 | static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); |
232 | static kern_return_t vfs_drt_control(void **cmapp, int op_type); | |
0a7de745 | 233 | static kern_return_t vfs_get_scmap_push_behavior_internal(void **cmapp, int *push_flag); |
55e303ae | 234 | |
9bccf70c | 235 | |
316670eb A |
236 | /* |
237 | * For throttled IO to check whether | |
238 | * a block is cached by the boot cache | |
239 | * and thus it can avoid delaying the IO. | |
240 | * | |
241 | * bootcache_contains_block is initially | |
242 | * NULL. The BootCache will set it while | |
243 | * the cache is active and clear it when | |
244 | * the cache is jettisoned. | |
245 | * | |
246 | * Returns 0 if the block is not | |
247 | * contained in the cache, 1 if it is | |
248 | * contained. | |
249 | * | |
250 | * The function pointer remains valid | |
251 | * after the cache has been evicted even | |
252 | * if bootcache_contains_block has been | |
253 | * cleared. | |
254 | * | |
255 | * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs | |
256 | */ | |
257 | int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL; | |
258 | ||
259 | ||
2d21ac55 A |
260 | /* |
261 | * limit the internal I/O size so that we | |
262 | * can represent it in a 32 bit int | |
263 | */ | |
0a7de745 A |
264 | #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512) |
265 | #define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES | |
266 | #define MAX_VECTS 16 | |
3e170ce0 A |
267 | /* |
268 | * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider | |
0a7de745 A |
269 | * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k), |
270 | * we have not historically allowed the write to bypass the UBC. | |
3e170ce0 | 271 | */ |
0a7de745 | 272 | #define MIN_DIRECT_WRITE_SIZE (16384) |
2d21ac55 | 273 | |
0a7de745 A |
274 | #define WRITE_THROTTLE 6 |
275 | #define WRITE_THROTTLE_SSD 2 | |
276 | #define WRITE_BEHIND 1 | |
277 | #define WRITE_BEHIND_SSD 1 | |
316670eb | 278 | |
5ba3f43e | 279 | #if CONFIG_EMBEDDED |
0a7de745 A |
280 | #define PREFETCH 1 |
281 | #define PREFETCH_SSD 1 | |
282 | uint32_t speculative_prefetch_max = (2048 * 1024); /* maximum bytes in a specluative read-ahead */ | |
283 | uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead */ | |
5ba3f43e | 284 | #else |
0a7de745 A |
285 | #define PREFETCH 3 |
286 | #define PREFETCH_SSD 2 | |
287 | uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */ | |
288 | uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/ | |
5ba3f43e | 289 | #endif |
316670eb | 290 | |
6d2010ae | 291 | |
0a7de745 A |
292 | #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base)) |
293 | #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE)) | |
294 | #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd) ? PREFETCH_SSD : PREFETCH))) | |
cf7d32b8 | 295 | |
0a7de745 | 296 | int speculative_reads_disabled = 0; |
2d21ac55 | 297 | |
1c79356b A |
298 | /* |
299 | * throttle the number of async writes that | |
300 | * can be outstanding on a single vnode | |
0a7de745 | 301 | * before we issue a synchronous write |
1c79356b | 302 | */ |
0a7de745 | 303 | #define THROTTLE_MAXCNT 0 |
316670eb | 304 | |
39236c6e | 305 | uint32_t throttle_max_iosize = (128 * 1024); |
316670eb | 306 | |
39236c6e A |
307 | #define THROTTLE_MAX_IOSIZE (throttle_max_iosize) |
308 | ||
309 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, ""); | |
316670eb | 310 | |
55e303ae | 311 | |
91447636 | 312 | void |
0a7de745 A |
313 | cluster_init(void) |
314 | { | |
315 | /* | |
91447636 A |
316 | * allocate lock group attribute and group |
317 | */ | |
0a7de745 | 318 | cl_mtx_grp_attr = lck_grp_attr_alloc_init(); |
91447636 | 319 | cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr); |
0a7de745 | 320 | |
91447636 A |
321 | /* |
322 | * allocate the lock attribute | |
323 | */ | |
324 | cl_mtx_attr = lck_attr_alloc_init(); | |
91447636 | 325 | |
060df5ea A |
326 | cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr); |
327 | ||
0a7de745 A |
328 | if (cl_transaction_mtxp == NULL) { |
329 | panic("cluster_init: failed to allocate cl_transaction_mtxp"); | |
330 | } | |
3e170ce0 A |
331 | |
332 | lck_spin_init(&cl_direct_read_spin_lock, cl_mtx_grp, cl_mtx_attr); | |
333 | ||
0a7de745 | 334 | for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i) { |
3e170ce0 | 335 | LIST_INIT(&cl_direct_read_locks[i]); |
0a7de745 | 336 | } |
91447636 A |
337 | } |
338 | ||
339 | ||
cf7d32b8 A |
340 | uint32_t |
341 | cluster_max_io_size(mount_t mp, int type) | |
342 | { | |
0a7de745 A |
343 | uint32_t max_io_size; |
344 | uint32_t segcnt; | |
345 | uint32_t maxcnt; | |
b0d623f7 | 346 | |
0a7de745 | 347 | switch (type) { |
b0d623f7 A |
348 | case CL_READ: |
349 | segcnt = mp->mnt_segreadcnt; | |
350 | maxcnt = mp->mnt_maxreadcnt; | |
351 | break; | |
352 | case CL_WRITE: | |
353 | segcnt = mp->mnt_segwritecnt; | |
354 | maxcnt = mp->mnt_maxwritecnt; | |
355 | break; | |
356 | default: | |
357 | segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt); | |
358 | maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt); | |
359 | break; | |
360 | } | |
fe8ab488 | 361 | if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) { |
0a7de745 A |
362 | /* |
363 | * don't allow a size beyond the max UPL size we can create | |
364 | */ | |
365 | segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT; | |
366 | } | |
367 | max_io_size = min((segcnt * PAGE_SIZE), maxcnt); | |
368 | ||
369 | if (max_io_size < MAX_UPL_TRANSFER_BYTES) { | |
370 | /* | |
371 | * don't allow a size smaller than the old fixed limit | |
372 | */ | |
373 | max_io_size = MAX_UPL_TRANSFER_BYTES; | |
374 | } else { | |
375 | /* | |
376 | * make sure the size specified is a multiple of PAGE_SIZE | |
377 | */ | |
378 | max_io_size &= ~PAGE_MASK; | |
379 | } | |
380 | return max_io_size; | |
cf7d32b8 A |
381 | } |
382 | ||
383 | ||
384 | ||
91447636 | 385 | |
0a7de745 A |
386 | #define CLW_ALLOCATE 0x01 |
387 | #define CLW_RETURNLOCKED 0x02 | |
388 | #define CLW_IONOCACHE 0x04 | |
389 | #define CLW_IOPASSIVE 0x08 | |
2d21ac55 | 390 | |
91447636 A |
391 | /* |
392 | * if the read ahead context doesn't yet exist, | |
393 | * allocate and initialize it... | |
394 | * the vnode lock serializes multiple callers | |
395 | * during the actual assignment... first one | |
396 | * to grab the lock wins... the other callers | |
397 | * will release the now unnecessary storage | |
0a7de745 | 398 | * |
91447636 A |
399 | * once the context is present, try to grab (but don't block on) |
400 | * the lock associated with it... if someone | |
401 | * else currently owns it, than the read | |
402 | * will run without read-ahead. this allows | |
403 | * multiple readers to run in parallel and | |
404 | * since there's only 1 read ahead context, | |
405 | * there's no real loss in only allowing 1 | |
406 | * reader to have read-ahead enabled. | |
407 | */ | |
408 | static struct cl_readahead * | |
409 | cluster_get_rap(vnode_t vp) | |
410 | { | |
0a7de745 A |
411 | struct ubc_info *ubc; |
412 | struct cl_readahead *rap; | |
91447636 A |
413 | |
414 | ubc = vp->v_ubcinfo; | |
415 | ||
0a7de745 A |
416 | if ((rap = ubc->cl_rahead) == NULL) { |
417 | MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK); | |
91447636 A |
418 | |
419 | bzero(rap, sizeof *rap); | |
420 | rap->cl_lastr = -1; | |
421 | lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr); | |
422 | ||
423 | vnode_lock(vp); | |
0a7de745 A |
424 | |
425 | if (ubc->cl_rahead == NULL) { | |
426 | ubc->cl_rahead = rap; | |
427 | } else { | |
428 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
429 | FREE_ZONE(rap, sizeof *rap, M_CLRDAHEAD); | |
2d21ac55 | 430 | rap = ubc->cl_rahead; |
91447636 A |
431 | } |
432 | vnode_unlock(vp); | |
433 | } | |
0a7de745 A |
434 | if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE) { |
435 | return rap; | |
436 | } | |
437 | ||
438 | return (struct cl_readahead *)NULL; | |
91447636 A |
439 | } |
440 | ||
441 | ||
442 | /* | |
443 | * if the write behind context doesn't yet exist, | |
444 | * and CLW_ALLOCATE is specified, allocate and initialize it... | |
445 | * the vnode lock serializes multiple callers | |
446 | * during the actual assignment... first one | |
447 | * to grab the lock wins... the other callers | |
448 | * will release the now unnecessary storage | |
0a7de745 | 449 | * |
91447636 A |
450 | * if CLW_RETURNLOCKED is set, grab (blocking if necessary) |
451 | * the lock associated with the write behind context before | |
452 | * returning | |
453 | */ | |
454 | ||
455 | static struct cl_writebehind * | |
456 | cluster_get_wbp(vnode_t vp, int flags) | |
457 | { | |
0a7de745 | 458 | struct ubc_info *ubc; |
91447636 A |
459 | struct cl_writebehind *wbp; |
460 | ||
461 | ubc = vp->v_ubcinfo; | |
462 | ||
0a7de745 A |
463 | if ((wbp = ubc->cl_wbehind) == NULL) { |
464 | if (!(flags & CLW_ALLOCATE)) { | |
465 | return (struct cl_writebehind *)NULL; | |
466 | } | |
91447636 | 467 | |
0a7de745 | 468 | MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK); |
91447636 A |
469 | |
470 | bzero(wbp, sizeof *wbp); | |
471 | lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr); | |
472 | ||
473 | vnode_lock(vp); | |
0a7de745 A |
474 | |
475 | if (ubc->cl_wbehind == NULL) { | |
476 | ubc->cl_wbehind = wbp; | |
477 | } else { | |
478 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
479 | FREE_ZONE(wbp, sizeof *wbp, M_CLWRBEHIND); | |
2d21ac55 | 480 | wbp = ubc->cl_wbehind; |
91447636 A |
481 | } |
482 | vnode_unlock(vp); | |
483 | } | |
0a7de745 A |
484 | if (flags & CLW_RETURNLOCKED) { |
485 | lck_mtx_lock(&wbp->cl_lockw); | |
486 | } | |
91447636 | 487 | |
0a7de745 | 488 | return wbp; |
91447636 A |
489 | } |
490 | ||
491 | ||
2d21ac55 | 492 | static void |
fe8ab488 | 493 | cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags) |
2d21ac55 A |
494 | { |
495 | struct cl_writebehind *wbp; | |
496 | ||
497 | if ((wbp = cluster_get_wbp(vp, 0)) != NULL) { | |
0a7de745 A |
498 | if (wbp->cl_number) { |
499 | lck_mtx_lock(&wbp->cl_lockw); | |
2d21ac55 | 500 | |
d9a64523 | 501 | cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg, NULL, FALSE); |
2d21ac55 A |
502 | |
503 | lck_mtx_unlock(&wbp->cl_lockw); | |
504 | } | |
505 | } | |
506 | } | |
507 | ||
508 | ||
316670eb A |
509 | static int |
510 | cluster_io_present_in_BC(vnode_t vp, off_t f_offset) | |
511 | { | |
512 | daddr64_t blkno; | |
0a7de745 | 513 | size_t io_size; |
316670eb | 514 | int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block; |
0a7de745 | 515 | |
5ba3f43e | 516 | if (bootcache_check_fn && vp->v_mount && vp->v_mount->mnt_devvp) { |
0a7de745 A |
517 | if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ | VNODE_BLOCKMAP_NO_TRACK, NULL)) { |
518 | return 0; | |
519 | } | |
316670eb | 520 | |
0a7de745 A |
521 | if (io_size == 0) { |
522 | return 0; | |
523 | } | |
316670eb | 524 | |
0a7de745 A |
525 | if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno)) { |
526 | return 1; | |
527 | } | |
316670eb | 528 | } |
0a7de745 | 529 | return 0; |
316670eb A |
530 | } |
531 | ||
532 | ||
0a7de745 | 533 | static int |
39236c6e | 534 | cluster_is_throttled(vnode_t vp) |
55e303ae | 535 | { |
0a7de745 | 536 | return throttle_io_will_be_throttled(-1, vp->v_mount); |
55e303ae A |
537 | } |
538 | ||
1c79356b | 539 | |
6d2010ae A |
540 | static void |
541 | cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name) | |
542 | { | |
6d2010ae A |
543 | lck_mtx_lock(&iostate->io_mtxp); |
544 | ||
545 | while ((iostate->io_issued - iostate->io_completed) > target) { | |
6d2010ae | 546 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START, |
0a7de745 | 547 | iostate->io_issued, iostate->io_completed, target, 0, 0); |
6d2010ae A |
548 | |
549 | iostate->io_wanted = 1; | |
550 | msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL); | |
551 | ||
552 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END, | |
0a7de745 A |
553 | iostate->io_issued, iostate->io_completed, target, 0, 0); |
554 | } | |
6d2010ae A |
555 | lck_mtx_unlock(&iostate->io_mtxp); |
556 | } | |
557 | ||
0a7de745 A |
558 | static void |
559 | cluster_handle_associated_upl(struct clios *iostate, upl_t upl, | |
560 | upl_offset_t upl_offset, upl_size_t size) | |
3e170ce0 | 561 | { |
0a7de745 | 562 | if (!size) { |
3e170ce0 | 563 | return; |
0a7de745 | 564 | } |
3e170ce0 A |
565 | |
566 | upl_t associated_upl = upl_associated_upl(upl); | |
567 | ||
0a7de745 | 568 | if (!associated_upl) { |
3e170ce0 | 569 | return; |
0a7de745 | 570 | } |
3e170ce0 A |
571 | |
572 | #if 0 | |
573 | printf("1: %d %d\n", upl_offset, upl_offset + size); | |
574 | #endif | |
575 | ||
576 | /* | |
577 | * The associated UPL is page aligned to file offsets whereas the | |
578 | * UPL it's attached to has different alignment requirements. The | |
579 | * upl_offset that we have refers to @upl. The code that follows | |
580 | * has to deal with the first and last pages in this transaction | |
581 | * which might straddle pages in the associated UPL. To keep | |
582 | * track of these pages, we use the mark bits: if the mark bit is | |
583 | * set, we know another transaction has completed its part of that | |
584 | * page and so we can unlock that page here. | |
585 | * | |
586 | * The following illustrates what we have to deal with: | |
587 | * | |
588 | * MEM u <------------ 1 PAGE ------------> e | |
589 | * +-------------+----------------------+----------------- | |
590 | * | |######################|################# | |
591 | * +-------------+----------------------+----------------- | |
592 | * FILE | <--- a ---> o <------------ 1 PAGE ------------> | |
593 | * | |
594 | * So here we show a write to offset @o. The data that is to be | |
595 | * written is in a buffer that is not page aligned; it has offset | |
596 | * @a in the page. The upl that carries the data starts in memory | |
597 | * at @u. The associated upl starts in the file at offset @o. A | |
598 | * transaction will always end on a page boundary (like @e above) | |
599 | * except for the very last transaction in the group. We cannot | |
600 | * unlock the page at @o in the associated upl until both the | |
601 | * transaction ending at @e and the following transaction (that | |
602 | * starts at @e) has completed. | |
603 | */ | |
604 | ||
605 | /* | |
606 | * We record whether or not the two UPLs are aligned as the mark | |
607 | * bit in the first page of @upl. | |
608 | */ | |
609 | upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
610 | bool is_unaligned = upl_page_get_mark(pl, 0); | |
611 | ||
612 | if (is_unaligned) { | |
613 | upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl); | |
614 | ||
615 | upl_offset_t upl_end = upl_offset + size; | |
616 | assert(upl_end >= PAGE_SIZE); | |
617 | ||
618 | upl_size_t assoc_upl_size = upl_get_size(associated_upl); | |
619 | ||
620 | /* | |
621 | * In the very first transaction in the group, upl_offset will | |
622 | * not be page aligned, but after that it will be and in that | |
623 | * case we want the preceding page in the associated UPL hence | |
624 | * the minus one. | |
625 | */ | |
626 | assert(upl_offset); | |
0a7de745 | 627 | if (upl_offset) { |
3e170ce0 | 628 | upl_offset = trunc_page_32(upl_offset - 1); |
0a7de745 | 629 | } |
3e170ce0 A |
630 | |
631 | lck_mtx_lock_spin(&iostate->io_mtxp); | |
632 | ||
633 | // Look at the first page... | |
634 | if (upl_offset | |
0a7de745 | 635 | && !upl_page_get_mark(assoc_pl, upl_offset >> PAGE_SHIFT)) { |
3e170ce0 A |
636 | /* |
637 | * The first page isn't marked so let another transaction | |
638 | * completion handle it. | |
639 | */ | |
640 | upl_page_set_mark(assoc_pl, upl_offset >> PAGE_SHIFT, true); | |
641 | upl_offset += PAGE_SIZE; | |
642 | } | |
643 | ||
644 | // And now the last page... | |
645 | ||
646 | /* | |
647 | * This needs to be > rather than >= because if it's equal, it | |
648 | * means there's another transaction that is sharing the last | |
649 | * page. | |
650 | */ | |
0a7de745 | 651 | if (upl_end > assoc_upl_size) { |
3e170ce0 | 652 | upl_end = assoc_upl_size; |
0a7de745 | 653 | } else { |
3e170ce0 A |
654 | upl_end = trunc_page_32(upl_end); |
655 | const int last_pg = (upl_end >> PAGE_SHIFT) - 1; | |
656 | ||
657 | if (!upl_page_get_mark(assoc_pl, last_pg)) { | |
658 | /* | |
659 | * The last page isn't marked so mark the page and let another | |
660 | * transaction completion handle it. | |
661 | */ | |
662 | upl_page_set_mark(assoc_pl, last_pg, true); | |
663 | upl_end -= PAGE_SIZE; | |
664 | } | |
665 | } | |
666 | ||
667 | lck_mtx_unlock(&iostate->io_mtxp); | |
668 | ||
669 | #if 0 | |
670 | printf("2: %d %d\n", upl_offset, upl_end); | |
671 | #endif | |
672 | ||
0a7de745 | 673 | if (upl_end <= upl_offset) { |
3e170ce0 | 674 | return; |
0a7de745 | 675 | } |
3e170ce0 A |
676 | |
677 | size = upl_end - upl_offset; | |
678 | } else { | |
679 | assert(!(upl_offset & PAGE_MASK)); | |
680 | assert(!(size & PAGE_MASK)); | |
681 | } | |
682 | ||
683 | boolean_t empty; | |
684 | ||
685 | /* | |
686 | * We can unlock these pages now and as this is for a | |
687 | * direct/uncached write, we want to dump the pages too. | |
688 | */ | |
689 | kern_return_t kr = upl_abort_range(associated_upl, upl_offset, size, | |
0a7de745 | 690 | UPL_ABORT_DUMP_PAGES, &empty); |
3e170ce0 A |
691 | |
692 | assert(!kr); | |
693 | ||
694 | if (!kr && empty) { | |
695 | upl_set_associated_upl(upl, NULL); | |
696 | upl_deallocate(associated_upl); | |
697 | } | |
698 | } | |
6d2010ae | 699 | |
1c79356b | 700 | static int |
39236c6e | 701 | cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp) |
2d21ac55 | 702 | { |
0a7de745 | 703 | int upl_abort_code = 0; |
2d21ac55 A |
704 | int page_in = 0; |
705 | int page_out = 0; | |
706 | ||
0a7de745 A |
707 | if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE)) { |
708 | /* | |
2d21ac55 A |
709 | * direct write of any flavor, or a direct read that wasn't aligned |
710 | */ | |
0a7de745 A |
711 | ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY); |
712 | } else { | |
713 | if (io_flags & B_PAGEIO) { | |
714 | if (io_flags & B_READ) { | |
715 | page_in = 1; | |
716 | } else { | |
717 | page_out = 1; | |
718 | } | |
719 | } | |
720 | if (io_flags & B_CACHE) { | |
721 | /* | |
2d21ac55 A |
722 | * leave pages in the cache unchanged on error |
723 | */ | |
0a7de745 A |
724 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; |
725 | } else if (((io_flags & B_READ) == 0) && ((error != ENXIO) || vnode_isswap(vp))) { | |
726 | /* | |
d9a64523 | 727 | * transient error on pageout/write path... leave pages unchanged |
2d21ac55 | 728 | */ |
0a7de745 A |
729 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; |
730 | } else if (page_in) { | |
731 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; | |
732 | } else { | |
733 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
734 | } | |
2d21ac55 A |
735 | |
736 | ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code); | |
737 | } | |
0a7de745 | 738 | return upl_abort_code; |
2d21ac55 A |
739 | } |
740 | ||
741 | ||
742 | static int | |
743 | cluster_iodone(buf_t bp, void *callback_arg) | |
1c79356b | 744 | { |
0a7de745 A |
745 | int b_flags; |
746 | int error; | |
747 | int total_size; | |
748 | int total_resid; | |
749 | int upl_offset; | |
750 | int zero_offset; | |
751 | int pg_offset = 0; | |
752 | int commit_size = 0; | |
753 | int upl_flags = 0; | |
754 | int transaction_size = 0; | |
755 | upl_t upl; | |
756 | buf_t cbp; | |
757 | buf_t cbp_head; | |
758 | buf_t cbp_next; | |
759 | buf_t real_bp; | |
760 | vnode_t vp; | |
761 | struct clios *iostate; | |
762 | boolean_t transaction_complete = FALSE; | |
91447636 | 763 | |
3e170ce0 | 764 | __IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head)); |
1c79356b A |
765 | |
766 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, | |
0a7de745 | 767 | cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
1c79356b | 768 | |
060df5ea | 769 | if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) { |
060df5ea A |
770 | lck_mtx_lock_spin(cl_transaction_mtxp); |
771 | ||
772 | bp->b_flags |= B_TDONE; | |
3e170ce0 | 773 | |
060df5ea | 774 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { |
6d2010ae | 775 | /* |
060df5ea A |
776 | * all I/O requests that are part of this transaction |
777 | * have to complete before we can process it | |
778 | */ | |
0a7de745 | 779 | if (!(cbp->b_flags & B_TDONE)) { |
6d2010ae | 780 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
0a7de745 | 781 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); |
060df5ea A |
782 | |
783 | lck_mtx_unlock(cl_transaction_mtxp); | |
6d2010ae | 784 | |
39037602 A |
785 | return 0; |
786 | } | |
787 | ||
788 | if (cbp->b_trans_next == CLUSTER_IO_WAITING) { | |
789 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
0a7de745 | 790 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); |
39037602 A |
791 | |
792 | lck_mtx_unlock(cl_transaction_mtxp); | |
793 | wakeup(cbp); | |
6d2010ae | 794 | |
060df5ea A |
795 | return 0; |
796 | } | |
39037602 | 797 | |
0a7de745 | 798 | if (cbp->b_flags & B_EOT) { |
6d2010ae | 799 | transaction_complete = TRUE; |
0a7de745 | 800 | } |
060df5ea A |
801 | } |
802 | lck_mtx_unlock(cl_transaction_mtxp); | |
803 | ||
804 | if (transaction_complete == FALSE) { | |
6d2010ae | 805 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
0a7de745 | 806 | cbp_head, 0, 0, 0, 0); |
2d21ac55 | 807 | return 0; |
1c79356b A |
808 | } |
809 | } | |
810 | error = 0; | |
811 | total_size = 0; | |
812 | total_resid = 0; | |
813 | ||
814 | cbp = cbp_head; | |
0a7de745 | 815 | vp = cbp->b_vp; |
1c79356b | 816 | upl_offset = cbp->b_uploffset; |
91447636 | 817 | upl = cbp->b_upl; |
1c79356b A |
818 | b_flags = cbp->b_flags; |
819 | real_bp = cbp->b_real_bp; | |
0a7de745 | 820 | zero_offset = cbp->b_validend; |
b4c24cb9 | 821 | iostate = (struct clios *)cbp->b_iostate; |
1c79356b | 822 | |
0a7de745 A |
823 | if (real_bp) { |
824 | real_bp->b_dev = cbp->b_dev; | |
825 | } | |
91447636 | 826 | |
1c79356b | 827 | while (cbp) { |
0a7de745 A |
828 | if ((cbp->b_flags & B_ERROR) && error == 0) { |
829 | error = cbp->b_error; | |
830 | } | |
1c79356b A |
831 | |
832 | total_resid += cbp->b_resid; | |
833 | total_size += cbp->b_bcount; | |
834 | ||
835 | cbp_next = cbp->b_trans_next; | |
836 | ||
0a7de745 A |
837 | if (cbp_next == NULL) { |
838 | /* | |
2d21ac55 A |
839 | * compute the overall size of the transaction |
840 | * in case we created one that has 'holes' in it | |
841 | * 'total_size' represents the amount of I/O we | |
842 | * did, not the span of the transaction w/r to the UPL | |
843 | */ | |
844 | transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset; | |
0a7de745 | 845 | } |
2d21ac55 | 846 | |
0a7de745 A |
847 | if (cbp != cbp_head) { |
848 | free_io_buf(cbp); | |
849 | } | |
1c79356b A |
850 | |
851 | cbp = cbp_next; | |
852 | } | |
3e170ce0 A |
853 | |
854 | if (ISSET(b_flags, B_COMMIT_UPL)) { | |
855 | cluster_handle_associated_upl(iostate, | |
0a7de745 A |
856 | cbp_head->b_upl, |
857 | upl_offset, | |
858 | transaction_size); | |
3e170ce0 A |
859 | } |
860 | ||
0a7de745 | 861 | if (error == 0 && total_resid) { |
2d21ac55 | 862 | error = EIO; |
0a7de745 | 863 | } |
2d21ac55 A |
864 | |
865 | if (error == 0) { | |
0a7de745 | 866 | int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone); |
2d21ac55 A |
867 | |
868 | if (cliodone_func != NULL) { | |
0a7de745 | 869 | cbp_head->b_bcount = transaction_size; |
2d21ac55 | 870 | |
0a7de745 | 871 | error = (*cliodone_func)(cbp_head, callback_arg); |
2d21ac55 A |
872 | } |
873 | } | |
0a7de745 A |
874 | if (zero_offset) { |
875 | cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); | |
876 | } | |
b4c24cb9 | 877 | |
0a7de745 | 878 | free_io_buf(cbp_head); |
2d21ac55 | 879 | |
b4c24cb9 | 880 | if (iostate) { |
0a7de745 | 881 | int need_wakeup = 0; |
91447636 | 882 | |
0a7de745 | 883 | /* |
d7e50217 A |
884 | * someone has issued multiple I/Os asynchrounsly |
885 | * and is waiting for them to complete (streaming) | |
886 | */ | |
6d2010ae | 887 | lck_mtx_lock_spin(&iostate->io_mtxp); |
91447636 | 888 | |
0a7de745 A |
889 | if (error && iostate->io_error == 0) { |
890 | iostate->io_error = error; | |
891 | } | |
9bccf70c | 892 | |
b4c24cb9 A |
893 | iostate->io_completed += total_size; |
894 | ||
895 | if (iostate->io_wanted) { | |
0a7de745 A |
896 | /* |
897 | * someone is waiting for the state of | |
d7e50217 A |
898 | * this io stream to change |
899 | */ | |
0a7de745 | 900 | iostate->io_wanted = 0; |
91447636 | 901 | need_wakeup = 1; |
b4c24cb9 | 902 | } |
6d2010ae | 903 | lck_mtx_unlock(&iostate->io_mtxp); |
91447636 | 904 | |
0a7de745 A |
905 | if (need_wakeup) { |
906 | wakeup((caddr_t)&iostate->io_wanted); | |
907 | } | |
b4c24cb9 | 908 | } |
1c79356b A |
909 | |
910 | if (b_flags & B_COMMIT_UPL) { | |
3e170ce0 | 911 | pg_offset = upl_offset & PAGE_MASK; |
2d21ac55 | 912 | commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 913 | |
d9a64523 | 914 | if (error) { |
0a7de745 | 915 | upl_set_iodone_error(upl, error); |
d9a64523 | 916 | |
39236c6e | 917 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp); |
d9a64523 | 918 | } else { |
3e170ce0 | 919 | upl_flags = UPL_COMMIT_FREE_ON_EMPTY; |
1c79356b | 920 | |
0a7de745 A |
921 | if ((b_flags & B_PHYS) && (b_flags & B_READ)) { |
922 | upl_flags |= UPL_COMMIT_SET_DIRTY; | |
923 | } | |
55e303ae | 924 | |
0a7de745 A |
925 | if (b_flags & B_AGE) { |
926 | upl_flags |= UPL_COMMIT_INACTIVATE; | |
927 | } | |
1c79356b | 928 | |
2d21ac55 | 929 | ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags); |
1c79356b | 930 | } |
91447636 | 931 | } |
6d2010ae | 932 | if (real_bp) { |
2d21ac55 A |
933 | if (error) { |
934 | real_bp->b_flags |= B_ERROR; | |
935 | real_bp->b_error = error; | |
936 | } | |
937 | real_bp->b_resid = total_resid; | |
938 | ||
939 | buf_biodone(real_bp); | |
940 | } | |
941 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
0a7de745 | 942 | upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0); |
1c79356b | 943 | |
0a7de745 | 944 | return error; |
1c79356b A |
945 | } |
946 | ||
947 | ||
b0d623f7 | 948 | uint32_t |
39236c6e | 949 | cluster_throttle_io_limit(vnode_t vp, uint32_t *limit) |
b0d623f7 | 950 | { |
39236c6e | 951 | if (cluster_is_throttled(vp)) { |
316670eb | 952 | *limit = THROTTLE_MAX_IOSIZE; |
b0d623f7 A |
953 | return 1; |
954 | } | |
0a7de745 | 955 | return 0; |
b0d623f7 A |
956 | } |
957 | ||
958 | ||
91447636 | 959 | void |
b0d623f7 | 960 | cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp) |
1c79356b | 961 | { |
55e303ae | 962 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, |
0a7de745 | 963 | upl_offset, size, bp, 0, 0); |
9bccf70c | 964 | |
91447636 | 965 | if (bp == NULL || bp->b_datap == 0) { |
0a7de745 A |
966 | upl_page_info_t *pl; |
967 | addr64_t zero_addr; | |
9bccf70c | 968 | |
0a7de745 | 969 | pl = ubc_upl_pageinfo(upl); |
55e303ae | 970 | |
2d21ac55 | 971 | if (upl_device_page(pl) == TRUE) { |
0a7de745 | 972 | zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset; |
2d21ac55 A |
973 | |
974 | bzero_phys_nc(zero_addr, size); | |
975 | } else { | |
0a7de745 A |
976 | while (size) { |
977 | int page_offset; | |
978 | int page_index; | |
979 | int zero_cnt; | |
55e303ae | 980 | |
2d21ac55 A |
981 | page_index = upl_offset / PAGE_SIZE; |
982 | page_offset = upl_offset & PAGE_MASK; | |
55e303ae | 983 | |
fe8ab488 | 984 | zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset; |
2d21ac55 | 985 | zero_cnt = min(PAGE_SIZE - page_offset, size); |
55e303ae | 986 | |
2d21ac55 | 987 | bzero_phys(zero_addr, zero_cnt); |
55e303ae | 988 | |
2d21ac55 A |
989 | size -= zero_cnt; |
990 | upl_offset += zero_cnt; | |
991 | } | |
55e303ae | 992 | } |
0a7de745 | 993 | } else { |
91447636 | 994 | bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size); |
0a7de745 | 995 | } |
1c79356b | 996 | |
55e303ae | 997 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, |
0a7de745 | 998 | upl_offset, size, 0, 0, 0); |
1c79356b A |
999 | } |
1000 | ||
91447636 | 1001 | |
2d21ac55 A |
1002 | static void |
1003 | cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset) | |
1004 | { | |
0a7de745 A |
1005 | cbp_head->b_validend = zero_offset; |
1006 | cbp_tail->b_flags |= B_EOT; | |
2d21ac55 A |
1007 | } |
1008 | ||
1009 | static void | |
1010 | cluster_wait_IO(buf_t cbp_head, int async) | |
1011 | { | |
0a7de745 | 1012 | buf_t cbp; |
2d21ac55 A |
1013 | |
1014 | if (async) { | |
39037602 A |
1015 | /* |
1016 | * Async callback completion will not normally generate a | |
1017 | * wakeup upon I/O completion. To get woken up, we set | |
1018 | * b_trans_next (which is safe for us to modify) on the last | |
1019 | * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows | |
1020 | * to wake us up when all buffers as part of this transaction | |
1021 | * are completed. This is done under the umbrella of | |
1022 | * cl_transaction_mtxp which is also taken in cluster_iodone. | |
2d21ac55 | 1023 | */ |
39037602 A |
1024 | bool done = true; |
1025 | buf_t last = NULL; | |
1026 | ||
6d2010ae | 1027 | lck_mtx_lock_spin(cl_transaction_mtxp); |
2d21ac55 | 1028 | |
39037602 | 1029 | for (cbp = cbp_head; cbp; last = cbp, cbp = cbp->b_trans_next) { |
0a7de745 | 1030 | if (!ISSET(cbp->b_flags, B_TDONE)) { |
39037602 | 1031 | done = false; |
0a7de745 | 1032 | } |
39037602 | 1033 | } |
2d21ac55 | 1034 | |
39037602 A |
1035 | if (!done) { |
1036 | last->b_trans_next = CLUSTER_IO_WAITING; | |
1037 | ||
1038 | DTRACE_IO1(wait__start, buf_t, last); | |
1039 | do { | |
0a7de745 | 1040 | msleep(last, cl_transaction_mtxp, PSPIN | (PRIBIO + 1), "cluster_wait_IO", NULL); |
6d2010ae | 1041 | |
39037602 A |
1042 | /* |
1043 | * We should only have been woken up if all the | |
1044 | * buffers are completed, but just in case... | |
1045 | */ | |
1046 | done = true; | |
1047 | for (cbp = cbp_head; cbp != CLUSTER_IO_WAITING; cbp = cbp->b_trans_next) { | |
1048 | if (!ISSET(cbp->b_flags, B_TDONE)) { | |
1049 | done = false; | |
1050 | break; | |
1051 | } | |
1052 | } | |
1053 | } while (!done); | |
1054 | DTRACE_IO1(wait__done, buf_t, last); | |
6d2010ae | 1055 | |
39037602 A |
1056 | last->b_trans_next = NULL; |
1057 | } | |
6d2010ae | 1058 | |
39037602 A |
1059 | lck_mtx_unlock(cl_transaction_mtxp); |
1060 | } else { // !async | |
0a7de745 | 1061 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { |
39037602 | 1062 | buf_biowait(cbp); |
0a7de745 | 1063 | } |
2d21ac55 A |
1064 | } |
1065 | } | |
1066 | ||
1067 | static void | |
1068 | cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait) | |
1069 | { | |
0a7de745 A |
1070 | buf_t cbp; |
1071 | int error; | |
39236c6e | 1072 | boolean_t isswapout = FALSE; |
2d21ac55 A |
1073 | |
1074 | /* | |
1075 | * cluster_complete_transaction will | |
1076 | * only be called if we've issued a complete chain in synchronous mode | |
1077 | * or, we've already done a cluster_wait_IO on an incomplete chain | |
1078 | */ | |
0a7de745 A |
1079 | if (needwait) { |
1080 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) { | |
1081 | buf_biowait(cbp); | |
1082 | } | |
2d21ac55 | 1083 | } |
060df5ea A |
1084 | /* |
1085 | * we've already waited on all of the I/Os in this transaction, | |
1086 | * so mark all of the buf_t's in this transaction as B_TDONE | |
1087 | * so that cluster_iodone sees the transaction as completed | |
1088 | */ | |
0a7de745 | 1089 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) { |
6d2010ae | 1090 | cbp->b_flags |= B_TDONE; |
0a7de745 | 1091 | } |
39236c6e | 1092 | cbp = *cbp_head; |
060df5ea | 1093 | |
0a7de745 | 1094 | if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp)) { |
39236c6e | 1095 | isswapout = TRUE; |
0a7de745 | 1096 | } |
39236c6e A |
1097 | |
1098 | error = cluster_iodone(cbp, callback_arg); | |
2d21ac55 | 1099 | |
0a7de745 A |
1100 | if (!(flags & CL_ASYNC) && error && *retval == 0) { |
1101 | if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO)) { | |
39236c6e | 1102 | *retval = error; |
0a7de745 | 1103 | } else if (isswapout == TRUE) { |
39236c6e | 1104 | *retval = error; |
0a7de745 | 1105 | } |
2d21ac55 A |
1106 | } |
1107 | *cbp_head = (buf_t)NULL; | |
1108 | } | |
1109 | ||
1110 | ||
1c79356b | 1111 | static int |
91447636 | 1112 | cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
0a7de745 | 1113 | int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b | 1114 | { |
0a7de745 A |
1115 | buf_t cbp; |
1116 | u_int size; | |
1117 | u_int io_size; | |
1118 | int io_flags; | |
1119 | int bmap_flags; | |
1120 | int error = 0; | |
1121 | int retval = 0; | |
1122 | buf_t cbp_head = NULL; | |
1123 | buf_t cbp_tail = NULL; | |
1124 | int trans_count = 0; | |
1125 | int max_trans_count; | |
1126 | u_int pg_count; | |
1127 | int pg_offset; | |
1128 | u_int max_iosize; | |
1129 | u_int max_vectors; | |
1130 | int priv; | |
1131 | int zero_offset = 0; | |
1132 | int async_throttle = 0; | |
1133 | mount_t mp; | |
2d21ac55 A |
1134 | vm_offset_t upl_end_offset; |
1135 | boolean_t need_EOT = FALSE; | |
1136 | ||
1137 | /* | |
1138 | * we currently don't support buffers larger than a page | |
1139 | */ | |
0a7de745 | 1140 | if (real_bp && non_rounded_size > PAGE_SIZE) { |
2d21ac55 | 1141 | panic("%s(): Called with real buffer of size %d bytes which " |
0a7de745 A |
1142 | "is greater than the maximum allowed size of " |
1143 | "%d bytes (the system PAGE_SIZE).\n", | |
1144 | __FUNCTION__, non_rounded_size, PAGE_SIZE); | |
1145 | } | |
91447636 A |
1146 | |
1147 | mp = vp->v_mount; | |
1148 | ||
2d21ac55 A |
1149 | /* |
1150 | * we don't want to do any funny rounding of the size for IO requests | |
1151 | * coming through the DIRECT or CONTIGUOUS paths... those pages don't | |
1152 | * belong to us... we can't extend (nor do we need to) the I/O to fill | |
1153 | * out a page | |
1154 | */ | |
1155 | if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) { | |
0a7de745 | 1156 | /* |
91447636 A |
1157 | * round the requested size up so that this I/O ends on a |
1158 | * page boundary in case this is a 'write'... if the filesystem | |
1159 | * has blocks allocated to back the page beyond the EOF, we want to | |
1160 | * make sure to write out the zero's that are sitting beyond the EOF | |
1161 | * so that in case the filesystem doesn't explicitly zero this area | |
1162 | * if a hole is created via a lseek/write beyond the current EOF, | |
1163 | * it will return zeros when it's read back from the disk. If the | |
1164 | * physical allocation doesn't extend for the whole page, we'll | |
1165 | * only write/read from the disk up to the end of this allocation | |
1166 | * via the extent info returned from the VNOP_BLOCKMAP call. | |
1167 | */ | |
0a7de745 | 1168 | pg_offset = upl_offset & PAGE_MASK; |
55e303ae | 1169 | |
91447636 A |
1170 | size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; |
1171 | } else { | |
0a7de745 | 1172 | /* |
91447636 A |
1173 | * anyone advertising a blocksize of 1 byte probably |
1174 | * can't deal with us rounding up the request size | |
1175 | * AFP is one such filesystem/device | |
1176 | */ | |
0a7de745 | 1177 | size = non_rounded_size; |
91447636 | 1178 | } |
2d21ac55 A |
1179 | upl_end_offset = upl_offset + size; |
1180 | ||
1181 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0); | |
1182 | ||
1183 | /* | |
1184 | * Set the maximum transaction size to the maximum desired number of | |
1185 | * buffers. | |
1186 | */ | |
1187 | max_trans_count = 8; | |
0a7de745 | 1188 | if (flags & CL_DEV_MEMORY) { |
2d21ac55 | 1189 | max_trans_count = 16; |
0a7de745 | 1190 | } |
55e303ae | 1191 | |
0b4e3aa0 | 1192 | if (flags & CL_READ) { |
0a7de745 | 1193 | io_flags = B_READ; |
91447636 | 1194 | bmap_flags = VNODE_READ; |
0b4e3aa0 | 1195 | |
91447636 A |
1196 | max_iosize = mp->mnt_maxreadcnt; |
1197 | max_vectors = mp->mnt_segreadcnt; | |
0b4e3aa0 | 1198 | } else { |
0a7de745 | 1199 | io_flags = B_WRITE; |
91447636 | 1200 | bmap_flags = VNODE_WRITE; |
1c79356b | 1201 | |
91447636 A |
1202 | max_iosize = mp->mnt_maxwritecnt; |
1203 | max_vectors = mp->mnt_segwritecnt; | |
0b4e3aa0 | 1204 | } |
91447636 A |
1205 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); |
1206 | ||
55e303ae | 1207 | /* |
91447636 A |
1208 | * make sure the maximum iosize is a |
1209 | * multiple of the page size | |
55e303ae A |
1210 | */ |
1211 | max_iosize &= ~PAGE_MASK; | |
1212 | ||
2d21ac55 A |
1213 | /* |
1214 | * Ensure the maximum iosize is sensible. | |
1215 | */ | |
0a7de745 | 1216 | if (!max_iosize) { |
2d21ac55 | 1217 | max_iosize = PAGE_SIZE; |
0a7de745 | 1218 | } |
2d21ac55 | 1219 | |
55e303ae | 1220 | if (flags & CL_THROTTLE) { |
0a7de745 A |
1221 | if (!(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) { |
1222 | if (max_iosize > THROTTLE_MAX_IOSIZE) { | |
1223 | max_iosize = THROTTLE_MAX_IOSIZE; | |
1224 | } | |
39236c6e | 1225 | async_throttle = THROTTLE_MAXCNT; |
2d21ac55 | 1226 | } else { |
0a7de745 A |
1227 | if ((flags & CL_DEV_MEMORY)) { |
1228 | async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE); | |
1229 | } else { | |
1230 | u_int max_cluster; | |
cf7d32b8 | 1231 | u_int max_cluster_size; |
6d2010ae A |
1232 | u_int scale; |
1233 | ||
39037602 A |
1234 | if (vp->v_mount->mnt_minsaturationbytecount) { |
1235 | max_cluster_size = vp->v_mount->mnt_minsaturationbytecount; | |
b0d623f7 | 1236 | |
39037602 A |
1237 | scale = 1; |
1238 | } else { | |
1239 | max_cluster_size = MAX_CLUSTER_SIZE(vp); | |
1240 | ||
0a7de745 | 1241 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) { |
39037602 | 1242 | scale = WRITE_THROTTLE_SSD; |
0a7de745 | 1243 | } else { |
39037602 | 1244 | scale = WRITE_THROTTLE; |
0a7de745 A |
1245 | } |
1246 | } | |
1247 | if (max_iosize > max_cluster_size) { | |
1248 | max_cluster = max_cluster_size; | |
1249 | } else { | |
1250 | max_cluster = max_iosize; | |
39037602 | 1251 | } |
0a7de745 A |
1252 | |
1253 | if (size < max_cluster) { | |
1254 | max_cluster = size; | |
1255 | } | |
1256 | ||
1257 | if (flags & CL_CLOSE) { | |
6d2010ae | 1258 | scale += MAX_CLUSTERS; |
0a7de745 A |
1259 | } |
1260 | ||
1261 | async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1); | |
2d21ac55 A |
1262 | } |
1263 | } | |
55e303ae | 1264 | } |
0a7de745 A |
1265 | if (flags & CL_AGE) { |
1266 | io_flags |= B_AGE; | |
1267 | } | |
1268 | if (flags & (CL_PAGEIN | CL_PAGEOUT)) { | |
91447636 | 1269 | io_flags |= B_PAGEIO; |
0a7de745 A |
1270 | } |
1271 | if (flags & (CL_IOSTREAMING)) { | |
b0d623f7 | 1272 | io_flags |= B_IOSTREAMING; |
0a7de745 A |
1273 | } |
1274 | if (flags & CL_COMMIT) { | |
1275 | io_flags |= B_COMMIT_UPL; | |
1276 | } | |
1277 | if (flags & CL_DIRECT_IO) { | |
1278 | io_flags |= B_PHYS; | |
1279 | } | |
1280 | if (flags & (CL_PRESERVE | CL_KEEPCACHED)) { | |
6d2010ae | 1281 | io_flags |= B_CACHE; |
0a7de745 A |
1282 | } |
1283 | if (flags & CL_PASSIVE) { | |
1284 | io_flags |= B_PASSIVE; | |
1285 | } | |
1286 | if (flags & CL_ENCRYPTED) { | |
1287 | io_flags |= B_ENCRYPTED_IO; | |
1288 | } | |
3e170ce0 | 1289 | |
0a7de745 A |
1290 | if (vp->v_flag & VSYSTEM) { |
1291 | io_flags |= B_META; | |
1292 | } | |
1c79356b | 1293 | |
9bccf70c | 1294 | if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { |
0a7de745 | 1295 | /* |
1c79356b A |
1296 | * then we are going to end up |
1297 | * with a page that we can't complete (the file size wasn't a multiple | |
1298 | * of PAGE_SIZE and we're trying to read to the end of the file | |
1299 | * so we'll go ahead and zero out the portion of the page we can't | |
1300 | * read in from the file | |
1301 | */ | |
0a7de745 | 1302 | zero_offset = upl_offset + non_rounded_size; |
3e170ce0 A |
1303 | } else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) { |
1304 | assert(ISSET(flags, CL_COMMIT)); | |
1305 | ||
1306 | // For a direct/uncached write, we need to lock pages... | |
1307 | ||
1308 | upl_t cached_upl; | |
1309 | ||
1310 | /* | |
1311 | * Create a UPL to lock the pages in the cache whilst the | |
1312 | * write is in progress. | |
1313 | */ | |
5ba3f43e | 1314 | ubc_create_upl_kernel(vp, f_offset, non_rounded_size, &cached_upl, |
0a7de745 | 1315 | NULL, UPL_SET_LITE, VM_KERN_MEMORY_FILE); |
3e170ce0 A |
1316 | |
1317 | /* | |
1318 | * Attach this UPL to the other UPL so that we can find it | |
1319 | * later. | |
1320 | */ | |
1321 | upl_set_associated_upl(upl, cached_upl); | |
1322 | ||
1323 | if (upl_offset & PAGE_MASK) { | |
1324 | /* | |
1325 | * The two UPLs are not aligned, so mark the first page in | |
1326 | * @upl so that cluster_handle_associated_upl can handle | |
1327 | * it accordingly. | |
1328 | */ | |
1329 | upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
1330 | upl_page_set_mark(pl, 0, true); | |
1331 | } | |
1c79356b | 1332 | } |
3e170ce0 | 1333 | |
1c79356b | 1334 | while (size) { |
91447636 A |
1335 | daddr64_t blkno; |
1336 | daddr64_t lblkno; | |
0a7de745 A |
1337 | u_int io_size_wanted; |
1338 | size_t io_size_tmp; | |
1c79356b | 1339 | |
0a7de745 A |
1340 | if (size > max_iosize) { |
1341 | io_size = max_iosize; | |
1342 | } else { | |
1343 | io_size = size; | |
1344 | } | |
2d21ac55 A |
1345 | |
1346 | io_size_wanted = io_size; | |
b0d623f7 | 1347 | io_size_tmp = (size_t)io_size; |
0a7de745 A |
1348 | |
1349 | if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL))) { | |
1c79356b | 1350 | break; |
0a7de745 | 1351 | } |
2d21ac55 | 1352 | |
0a7de745 A |
1353 | if (io_size_tmp > io_size_wanted) { |
1354 | io_size = io_size_wanted; | |
1355 | } else { | |
1356 | io_size = (u_int)io_size_tmp; | |
1357 | } | |
2d21ac55 | 1358 | |
0a7de745 A |
1359 | if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) { |
1360 | real_bp->b_blkno = blkno; | |
1361 | } | |
1c79356b A |
1362 | |
1363 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, | |
0a7de745 | 1364 | (int)f_offset, (int)(blkno >> 32), (int)blkno, io_size, 0); |
1c79356b | 1365 | |
91447636 | 1366 | if (io_size == 0) { |
0a7de745 | 1367 | /* |
91447636 A |
1368 | * vnop_blockmap didn't return an error... however, it did |
1369 | * return an extent size of 0 which means we can't | |
1370 | * make forward progress on this I/O... a hole in the | |
1371 | * file would be returned as a blkno of -1 with a non-zero io_size | |
1372 | * a real extent is returned with a blkno != -1 and a non-zero io_size | |
1373 | */ | |
0a7de745 | 1374 | error = EINVAL; |
91447636 A |
1375 | break; |
1376 | } | |
0a7de745 A |
1377 | if (!(flags & CL_READ) && blkno == -1) { |
1378 | off_t e_offset; | |
1379 | int pageout_flags; | |
91447636 | 1380 | |
0a7de745 | 1381 | if (upl_get_internal_vectorupl(upl)) { |
b0d623f7 | 1382 | panic("Vector UPLs should not take this code-path\n"); |
0a7de745 A |
1383 | } |
1384 | /* | |
91447636 A |
1385 | * we're writing into a 'hole' |
1386 | */ | |
0b4e3aa0 | 1387 | if (flags & CL_PAGEOUT) { |
0a7de745 A |
1388 | /* |
1389 | * if we got here via cluster_pageout | |
91447636 A |
1390 | * then just error the request and return |
1391 | * the 'hole' should already have been covered | |
1392 | */ | |
0a7de745 | 1393 | error = EINVAL; |
0b4e3aa0 | 1394 | break; |
91447636 | 1395 | } |
91447636 | 1396 | /* |
0a7de745 | 1397 | * we can get here if the cluster code happens to |
91447636 A |
1398 | * pick up a page that was dirtied via mmap vs |
1399 | * a 'write' and the page targets a 'hole'... | |
1400 | * i.e. the writes to the cluster were sparse | |
1401 | * and the file was being written for the first time | |
1402 | * | |
1403 | * we can also get here if the filesystem supports | |
1404 | * 'holes' that are less than PAGE_SIZE.... because | |
1405 | * we can't know if the range in the page that covers | |
1406 | * the 'hole' has been dirtied via an mmap or not, | |
1407 | * we have to assume the worst and try to push the | |
1408 | * entire page to storage. | |
1409 | * | |
1410 | * Try paging out the page individually before | |
1411 | * giving up entirely and dumping it (the pageout | |
1412 | * path will insure that the zero extent accounting | |
1413 | * has been taken care of before we get back into cluster_io) | |
2d21ac55 A |
1414 | * |
1415 | * go direct to vnode_pageout so that we don't have to | |
1416 | * unbusy the page from the UPL... we used to do this | |
fe8ab488 | 1417 | * so that we could call ubc_msync, but that results |
2d21ac55 A |
1418 | * in a potential deadlock if someone else races us to acquire |
1419 | * that page and wins and in addition needs one of the pages | |
1420 | * we're continuing to hold in the UPL | |
0b4e3aa0 | 1421 | */ |
2d21ac55 | 1422 | pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT; |
91447636 | 1423 | |
0a7de745 A |
1424 | if (!(flags & CL_ASYNC)) { |
1425 | pageout_flags |= UPL_IOSYNC; | |
1426 | } | |
1427 | if (!(flags & CL_COMMIT)) { | |
1428 | pageout_flags |= UPL_NOCOMMIT; | |
1429 | } | |
2d21ac55 A |
1430 | |
1431 | if (cbp_head) { | |
00867663 A |
1432 | buf_t prev_cbp; |
1433 | int bytes_in_last_page; | |
2d21ac55 A |
1434 | |
1435 | /* | |
1436 | * first we have to wait for the the current outstanding I/Os | |
1437 | * to complete... EOT hasn't been set yet on this transaction | |
00867663 | 1438 | * so the pages won't be released |
2d21ac55 A |
1439 | */ |
1440 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
1441 | ||
00867663 | 1442 | bytes_in_last_page = cbp_head->b_uploffset & PAGE_MASK; |
0a7de745 | 1443 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { |
00867663 | 1444 | bytes_in_last_page += cbp->b_bcount; |
0a7de745 | 1445 | } |
00867663 | 1446 | bytes_in_last_page &= PAGE_MASK; |
0a7de745 | 1447 | |
00867663 A |
1448 | while (bytes_in_last_page) { |
1449 | /* | |
1450 | * we've got a transcation that | |
1451 | * includes the page we're about to push out through vnode_pageout... | |
1452 | * find the bp's in the list which intersect this page and either | |
1453 | * remove them entirely from the transaction (there could be multiple bp's), or | |
1454 | * round it's iosize down to the page boundary (there can only be one)... | |
1455 | * | |
1456 | * find the last bp in the list and act on it | |
2d21ac55 | 1457 | */ |
0a7de745 | 1458 | for (prev_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next) { |
00867663 | 1459 | prev_cbp = cbp; |
0a7de745 | 1460 | } |
2d21ac55 | 1461 | |
00867663 A |
1462 | if (bytes_in_last_page >= cbp->b_bcount) { |
1463 | /* | |
1464 | * this buf no longer has any I/O associated with it | |
2d21ac55 | 1465 | */ |
00867663 A |
1466 | bytes_in_last_page -= cbp->b_bcount; |
1467 | cbp->b_bcount = 0; | |
1468 | ||
1469 | free_io_buf(cbp); | |
1470 | ||
1471 | if (cbp == cbp_head) { | |
1472 | assert(bytes_in_last_page == 0); | |
1473 | /* | |
1474 | * the buf we just freed was the only buf in | |
1475 | * this transaction... so there's no I/O to do | |
1476 | */ | |
1477 | cbp_head = NULL; | |
1478 | cbp_tail = NULL; | |
1479 | } else { | |
1480 | /* | |
1481 | * remove the buf we just freed from | |
1482 | * the transaction list | |
1483 | */ | |
1484 | prev_cbp->b_trans_next = NULL; | |
1485 | cbp_tail = prev_cbp; | |
1486 | } | |
2d21ac55 | 1487 | } else { |
00867663 A |
1488 | /* |
1489 | * this is the last bp that has I/O | |
1490 | * intersecting the page of interest | |
1491 | * only some of the I/O is in the intersection | |
1492 | * so clip the size but keep it in the transaction list | |
2d21ac55 | 1493 | */ |
00867663 A |
1494 | cbp->b_bcount -= bytes_in_last_page; |
1495 | cbp_tail = cbp; | |
1496 | bytes_in_last_page = 0; | |
2d21ac55 A |
1497 | } |
1498 | } | |
1499 | if (cbp_head) { | |
0a7de745 | 1500 | /* |
2d21ac55 A |
1501 | * there was more to the current transaction |
1502 | * than just the page we are pushing out via vnode_pageout... | |
1503 | * mark it as finished and complete it... we've already | |
1504 | * waited for the I/Os to complete above in the call to cluster_wait_IO | |
1505 | */ | |
0a7de745 | 1506 | cluster_EOT(cbp_head, cbp_tail, 0); |
91447636 | 1507 | |
2d21ac55 A |
1508 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); |
1509 | ||
1510 | trans_count = 0; | |
1511 | } | |
1512 | } | |
1513 | if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) { | |
0a7de745 | 1514 | error = EINVAL; |
91447636 | 1515 | } |
2d21ac55 | 1516 | e_offset = round_page_64(f_offset + 1); |
91447636 A |
1517 | io_size = e_offset - f_offset; |
1518 | ||
1519 | f_offset += io_size; | |
1520 | upl_offset += io_size; | |
1521 | ||
0a7de745 A |
1522 | if (size >= io_size) { |
1523 | size -= io_size; | |
1524 | } else { | |
1525 | size = 0; | |
1526 | } | |
91447636 A |
1527 | /* |
1528 | * keep track of how much of the original request | |
1529 | * that we've actually completed... non_rounded_size | |
1530 | * may go negative due to us rounding the request | |
1531 | * to a page size multiple (i.e. size > non_rounded_size) | |
1532 | */ | |
1533 | non_rounded_size -= io_size; | |
1534 | ||
1535 | if (non_rounded_size <= 0) { | |
0a7de745 | 1536 | /* |
91447636 A |
1537 | * we've transferred all of the data in the original |
1538 | * request, but we were unable to complete the tail | |
1539 | * of the last page because the file didn't have | |
1540 | * an allocation to back that portion... this is ok. | |
1541 | */ | |
0a7de745 | 1542 | size = 0; |
91447636 | 1543 | } |
6d2010ae | 1544 | if (error) { |
0a7de745 | 1545 | if (size == 0) { |
6d2010ae | 1546 | flags &= ~CL_COMMIT; |
0a7de745 A |
1547 | } |
1548 | break; | |
6d2010ae | 1549 | } |
0b4e3aa0 | 1550 | continue; |
1c79356b | 1551 | } |
fe8ab488 | 1552 | lblkno = (daddr64_t)(f_offset / 0x1000); |
1c79356b A |
1553 | /* |
1554 | * we have now figured out how much I/O we can do - this is in 'io_size' | |
1c79356b A |
1555 | * pg_offset is the starting point in the first page for the I/O |
1556 | * pg_count is the number of full and partial pages that 'io_size' encompasses | |
1557 | */ | |
1c79356b | 1558 | pg_offset = upl_offset & PAGE_MASK; |
1c79356b | 1559 | |
0b4e3aa0 | 1560 | if (flags & CL_DEV_MEMORY) { |
0b4e3aa0 A |
1561 | /* |
1562 | * treat physical requests as one 'giant' page | |
1563 | */ | |
1564 | pg_count = 1; | |
0a7de745 A |
1565 | } else { |
1566 | pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1567 | } | |
55e303ae | 1568 | |
91447636 | 1569 | if ((flags & CL_READ) && blkno == -1) { |
2d21ac55 | 1570 | vm_offset_t commit_offset; |
0a7de745 | 1571 | int bytes_to_zero; |
2d21ac55 | 1572 | int complete_transaction_now = 0; |
9bccf70c | 1573 | |
0a7de745 | 1574 | /* |
1c79356b A |
1575 | * if we're reading and blkno == -1, then we've got a |
1576 | * 'hole' in the file that we need to deal with by zeroing | |
1577 | * out the affected area in the upl | |
1578 | */ | |
2d21ac55 | 1579 | if (io_size >= (u_int)non_rounded_size) { |
0a7de745 | 1580 | /* |
9bccf70c A |
1581 | * if this upl contains the EOF and it is not a multiple of PAGE_SIZE |
1582 | * than 'zero_offset' will be non-zero | |
91447636 | 1583 | * if the 'hole' returned by vnop_blockmap extends all the way to the eof |
9bccf70c A |
1584 | * (indicated by the io_size finishing off the I/O request for this UPL) |
1585 | * than we're not going to issue an I/O for the | |
1586 | * last page in this upl... we need to zero both the hole and the tail | |
0a7de745 | 1587 | * of the page beyond the EOF, since the delayed zero-fill won't kick in |
9bccf70c | 1588 | */ |
2d21ac55 | 1589 | bytes_to_zero = non_rounded_size; |
0a7de745 | 1590 | if (!(flags & CL_NOZERO)) { |
2d21ac55 | 1591 | bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset; |
0a7de745 | 1592 | } |
1c79356b | 1593 | |
9bccf70c | 1594 | zero_offset = 0; |
0a7de745 A |
1595 | } else { |
1596 | bytes_to_zero = io_size; | |
1597 | } | |
1c79356b | 1598 | |
2d21ac55 A |
1599 | pg_count = 0; |
1600 | ||
1601 | cluster_zero(upl, upl_offset, bytes_to_zero, real_bp); | |
0a7de745 | 1602 | |
2d21ac55 | 1603 | if (cbp_head) { |
0a7de745 | 1604 | int pg_resid; |
2d21ac55 | 1605 | |
0a7de745 | 1606 | /* |
9bccf70c A |
1607 | * if there is a current I/O chain pending |
1608 | * then the first page of the group we just zero'd | |
1609 | * will be handled by the I/O completion if the zero | |
1610 | * fill started in the middle of the page | |
1611 | */ | |
0a7de745 | 1612 | commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
2d21ac55 A |
1613 | |
1614 | pg_resid = commit_offset - upl_offset; | |
0a7de745 | 1615 | |
2d21ac55 | 1616 | if (bytes_to_zero >= pg_resid) { |
0a7de745 A |
1617 | /* |
1618 | * the last page of the current I/O | |
2d21ac55 | 1619 | * has been completed... |
0a7de745 | 1620 | * compute the number of fully zero'd |
2d21ac55 A |
1621 | * pages that are beyond it |
1622 | * plus the last page if its partial | |
1623 | * and we have no more I/O to issue... | |
1624 | * otherwise a partial page is left | |
1625 | * to begin the next I/O | |
1626 | */ | |
0a7de745 A |
1627 | if ((int)io_size >= non_rounded_size) { |
1628 | pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1629 | } else { | |
1630 | pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE; | |
1631 | } | |
1632 | ||
2d21ac55 A |
1633 | complete_transaction_now = 1; |
1634 | } | |
1635 | } else { | |
0a7de745 | 1636 | /* |
2d21ac55 A |
1637 | * no pending I/O to deal with |
1638 | * so, commit all of the fully zero'd pages | |
1639 | * plus the last page if its partial | |
1640 | * and we have no more I/O to issue... | |
1641 | * otherwise a partial page is left | |
1642 | * to begin the next I/O | |
9bccf70c | 1643 | */ |
0a7de745 A |
1644 | if ((int)io_size >= non_rounded_size) { |
1645 | pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1646 | } else { | |
1647 | pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE; | |
1648 | } | |
9bccf70c | 1649 | |
2d21ac55 A |
1650 | commit_offset = upl_offset & ~PAGE_MASK; |
1651 | } | |
3e170ce0 A |
1652 | |
1653 | // Associated UPL is currently only used in the direct write path | |
1654 | assert(!upl_associated_upl(upl)); | |
1655 | ||
0a7de745 A |
1656 | if ((flags & CL_COMMIT) && pg_count) { |
1657 | ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE, | |
1658 | UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); | |
1c79356b A |
1659 | } |
1660 | upl_offset += io_size; | |
1661 | f_offset += io_size; | |
1662 | size -= io_size; | |
2d21ac55 | 1663 | |
91447636 A |
1664 | /* |
1665 | * keep track of how much of the original request | |
1666 | * that we've actually completed... non_rounded_size | |
1667 | * may go negative due to us rounding the request | |
1668 | * to a page size multiple (i.e. size > non_rounded_size) | |
1669 | */ | |
1670 | non_rounded_size -= io_size; | |
1c79356b | 1671 | |
91447636 | 1672 | if (non_rounded_size <= 0) { |
0a7de745 | 1673 | /* |
91447636 A |
1674 | * we've transferred all of the data in the original |
1675 | * request, but we were unable to complete the tail | |
1676 | * of the last page because the file didn't have | |
1677 | * an allocation to back that portion... this is ok. | |
1678 | */ | |
0a7de745 | 1679 | size = 0; |
91447636 | 1680 | } |
0a7de745 A |
1681 | if (cbp_head && (complete_transaction_now || size == 0)) { |
1682 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
9bccf70c | 1683 | |
2d21ac55 A |
1684 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); |
1685 | ||
1686 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); | |
1687 | ||
1688 | trans_count = 0; | |
1689 | } | |
1690 | continue; | |
1c79356b | 1691 | } |
55e303ae | 1692 | if (pg_count > max_vectors) { |
0a7de745 A |
1693 | if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { |
1694 | io_size = PAGE_SIZE - pg_offset; | |
55e303ae | 1695 | pg_count = 1; |
91447636 | 1696 | } else { |
0a7de745 A |
1697 | io_size -= (pg_count - max_vectors) * PAGE_SIZE; |
1698 | pg_count = max_vectors; | |
91447636 | 1699 | } |
1c79356b | 1700 | } |
2d21ac55 A |
1701 | /* |
1702 | * If the transaction is going to reach the maximum number of | |
1703 | * desired elements, truncate the i/o to the nearest page so | |
1704 | * that the actual i/o is initiated after this buffer is | |
1705 | * created and added to the i/o chain. | |
1706 | * | |
0a7de745 | 1707 | * I/O directed to physically contiguous memory |
2d21ac55 A |
1708 | * doesn't have a requirement to make sure we 'fill' a page |
1709 | */ | |
0a7de745 A |
1710 | if (!(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count && |
1711 | ((upl_offset + io_size) & PAGE_MASK)) { | |
2d21ac55 A |
1712 | vm_offset_t aligned_ofs; |
1713 | ||
1714 | aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK; | |
1715 | /* | |
1716 | * If the io_size does not actually finish off even a | |
1717 | * single page we have to keep adding buffers to the | |
1718 | * transaction despite having reached the desired limit. | |
1719 | * | |
1720 | * Eventually we get here with the page being finished | |
1721 | * off (and exceeded) and then we truncate the size of | |
1722 | * this i/o request so that it is page aligned so that | |
1723 | * we can finally issue the i/o on the transaction. | |
1724 | */ | |
1725 | if (aligned_ofs > upl_offset) { | |
1726 | io_size = aligned_ofs - upl_offset; | |
1727 | pg_count--; | |
1728 | } | |
1729 | } | |
1c79356b | 1730 | |
0a7de745 A |
1731 | if (!(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) { |
1732 | /* | |
55e303ae A |
1733 | * if we're not targeting a virtual device i.e. a disk image |
1734 | * it's safe to dip into the reserve pool since real devices | |
1735 | * can complete this I/O request without requiring additional | |
1736 | * bufs from the alloc_io_buf pool | |
1737 | */ | |
1738 | priv = 1; | |
0a7de745 A |
1739 | } else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT)) { |
1740 | /* | |
55e303ae A |
1741 | * Throttle the speculative IO |
1742 | */ | |
0b4e3aa0 | 1743 | priv = 0; |
0a7de745 | 1744 | } else { |
0b4e3aa0 | 1745 | priv = 1; |
0a7de745 | 1746 | } |
0b4e3aa0 A |
1747 | |
1748 | cbp = alloc_io_buf(vp, priv); | |
1c79356b | 1749 | |
55e303ae | 1750 | if (flags & CL_PAGEOUT) { |
0a7de745 | 1751 | u_int i; |
91447636 | 1752 | |
3e170ce0 A |
1753 | /* |
1754 | * since blocks are in offsets of 0x1000, scale | |
1755 | * iteration to (PAGE_SIZE * pg_count) of blks. | |
1756 | */ | |
0a7de745 A |
1757 | for (i = 0; i < (PAGE_SIZE * pg_count) / 0x1000; i++) { |
1758 | if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY) { | |
3e170ce0 | 1759 | panic("BUSY bp found in cluster_io"); |
0a7de745 | 1760 | } |
1c79356b | 1761 | } |
1c79356b | 1762 | } |
b4c24cb9 | 1763 | if (flags & CL_ASYNC) { |
0a7de745 A |
1764 | if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg)) { |
1765 | panic("buf_setcallback failed\n"); | |
1766 | } | |
b4c24cb9 | 1767 | } |
2d21ac55 | 1768 | cbp->b_cliodone = (void *)callback; |
1c79356b | 1769 | cbp->b_flags |= io_flags; |
0a7de745 | 1770 | if (flags & CL_NOCACHE) { |
316670eb | 1771 | cbp->b_attr.ba_flags |= BA_NOCACHE; |
0a7de745 | 1772 | } |
1c79356b A |
1773 | |
1774 | cbp->b_lblkno = lblkno; | |
1775 | cbp->b_blkno = blkno; | |
1776 | cbp->b_bcount = io_size; | |
1c79356b | 1777 | |
0a7de745 A |
1778 | if (buf_setupl(cbp, upl, upl_offset)) { |
1779 | panic("buf_setupl failed\n"); | |
1780 | } | |
fe8ab488 A |
1781 | #if CONFIG_IOSCHED |
1782 | upl_set_blkno(upl, upl_offset, io_size, blkno); | |
1783 | #endif | |
91447636 A |
1784 | cbp->b_trans_next = (buf_t)NULL; |
1785 | ||
0a7de745 A |
1786 | if ((cbp->b_iostate = (void *)iostate)) { |
1787 | /* | |
d7e50217 A |
1788 | * caller wants to track the state of this |
1789 | * io... bump the amount issued against this stream | |
1790 | */ | |
0a7de745 A |
1791 | iostate->io_issued += io_size; |
1792 | } | |
b4c24cb9 | 1793 | |
91447636 | 1794 | if (flags & CL_READ) { |
1c79356b | 1795 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, |
0a7de745 A |
1796 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
1797 | } else { | |
1c79356b | 1798 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, |
0a7de745 | 1799 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
91447636 | 1800 | } |
1c79356b A |
1801 | |
1802 | if (cbp_head) { | |
0a7de745 | 1803 | cbp_tail->b_trans_next = cbp; |
1c79356b A |
1804 | cbp_tail = cbp; |
1805 | } else { | |
0a7de745 | 1806 | cbp_head = cbp; |
1c79356b | 1807 | cbp_tail = cbp; |
2d21ac55 | 1808 | |
0a7de745 | 1809 | if ((cbp_head->b_real_bp = real_bp)) { |
2d21ac55 | 1810 | real_bp = (buf_t)NULL; |
0a7de745 | 1811 | } |
1c79356b | 1812 | } |
2d21ac55 A |
1813 | *(buf_t *)(&cbp->b_trans_head) = cbp_head; |
1814 | ||
91447636 | 1815 | trans_count++; |
1c79356b A |
1816 | |
1817 | upl_offset += io_size; | |
1818 | f_offset += io_size; | |
1819 | size -= io_size; | |
91447636 A |
1820 | /* |
1821 | * keep track of how much of the original request | |
1822 | * that we've actually completed... non_rounded_size | |
1823 | * may go negative due to us rounding the request | |
1824 | * to a page size multiple (i.e. size > non_rounded_size) | |
1825 | */ | |
1826 | non_rounded_size -= io_size; | |
1c79356b | 1827 | |
91447636 | 1828 | if (non_rounded_size <= 0) { |
0a7de745 | 1829 | /* |
91447636 A |
1830 | * we've transferred all of the data in the original |
1831 | * request, but we were unable to complete the tail | |
1832 | * of the last page because the file didn't have | |
1833 | * an allocation to back that portion... this is ok. | |
1834 | */ | |
0a7de745 | 1835 | size = 0; |
91447636 | 1836 | } |
2d21ac55 | 1837 | if (size == 0) { |
0a7de745 | 1838 | /* |
2d21ac55 A |
1839 | * we have no more I/O to issue, so go |
1840 | * finish the final transaction | |
1841 | */ | |
0a7de745 A |
1842 | need_EOT = TRUE; |
1843 | } else if (((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) && | |
1844 | ((flags & CL_ASYNC) || trans_count > max_trans_count)) { | |
1845 | /* | |
2d21ac55 A |
1846 | * I/O directed to physically contiguous memory... |
1847 | * which doesn't have a requirement to make sure we 'fill' a page | |
0a7de745 | 1848 | * or... |
1c79356b A |
1849 | * the current I/O we've prepared fully |
1850 | * completes the last page in this request | |
2d21ac55 | 1851 | * and ... |
0a7de745 | 1852 | * it's either an ASYNC request or |
9bccf70c | 1853 | * we've already accumulated more than 8 I/O's into |
2d21ac55 A |
1854 | * this transaction so mark it as complete so that |
1855 | * it can finish asynchronously or via the cluster_complete_transaction | |
1856 | * below if the request is synchronous | |
1c79356b | 1857 | */ |
0a7de745 A |
1858 | need_EOT = TRUE; |
1859 | } | |
1860 | if (need_EOT == TRUE) { | |
1861 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); | |
1862 | } | |
1863 | ||
1864 | if (flags & CL_THROTTLE) { | |
1865 | (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io"); | |
2d21ac55 | 1866 | } |
1c79356b | 1867 | |
0a7de745 A |
1868 | if (!(io_flags & B_READ)) { |
1869 | vnode_startwrite(vp); | |
1870 | } | |
1c79356b | 1871 | |
316670eb | 1872 | if (flags & CL_RAW_ENCRYPTED) { |
0a7de745 | 1873 | /* |
316670eb A |
1874 | * User requested raw encrypted bytes. |
1875 | * Twiddle the bit in the ba_flags for the buffer | |
1876 | */ | |
1877 | cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO; | |
1878 | } | |
0a7de745 | 1879 | |
2d21ac55 A |
1880 | (void) VNOP_STRATEGY(cbp); |
1881 | ||
1882 | if (need_EOT == TRUE) { | |
0a7de745 A |
1883 | if (!(flags & CL_ASYNC)) { |
1884 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1); | |
1885 | } | |
9bccf70c | 1886 | |
2d21ac55 | 1887 | need_EOT = FALSE; |
91447636 | 1888 | trans_count = 0; |
2d21ac55 | 1889 | cbp_head = NULL; |
1c79356b | 1890 | } |
0a7de745 | 1891 | } |
1c79356b | 1892 | if (error) { |
3e170ce0 | 1893 | int abort_size; |
0b4e3aa0 | 1894 | |
b4c24cb9 | 1895 | io_size = 0; |
3e170ce0 | 1896 | |
2d21ac55 | 1897 | if (cbp_head) { |
3e170ce0 A |
1898 | /* |
1899 | * Wait until all of the outstanding I/O | |
1900 | * for this partial transaction has completed | |
1901 | */ | |
1902 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
0b4e3aa0 | 1903 | |
2d21ac55 A |
1904 | /* |
1905 | * Rewind the upl offset to the beginning of the | |
1906 | * transaction. | |
1907 | */ | |
1908 | upl_offset = cbp_head->b_uploffset; | |
3e170ce0 | 1909 | } |
2d21ac55 | 1910 | |
3e170ce0 A |
1911 | if (ISSET(flags, CL_COMMIT)) { |
1912 | cluster_handle_associated_upl(iostate, upl, upl_offset, | |
0a7de745 | 1913 | upl_end_offset - upl_offset); |
3e170ce0 | 1914 | } |
2d21ac55 | 1915 | |
3e170ce0 A |
1916 | // Free all the IO buffers in this transaction |
1917 | for (cbp = cbp_head; cbp;) { | |
0a7de745 A |
1918 | buf_t cbp_next; |
1919 | ||
3e170ce0 A |
1920 | size += cbp->b_bcount; |
1921 | io_size += cbp->b_bcount; | |
1922 | ||
1923 | cbp_next = cbp->b_trans_next; | |
1924 | free_io_buf(cbp); | |
1925 | cbp = cbp_next; | |
1c79356b | 1926 | } |
3e170ce0 | 1927 | |
b4c24cb9 | 1928 | if (iostate) { |
0a7de745 | 1929 | int need_wakeup = 0; |
91447636 | 1930 | |
0a7de745 | 1931 | /* |
d7e50217 A |
1932 | * update the error condition for this stream |
1933 | * since we never really issued the io | |
1934 | * just go ahead and adjust it back | |
1935 | */ | |
0a7de745 | 1936 | lck_mtx_lock_spin(&iostate->io_mtxp); |
91447636 | 1937 | |
0a7de745 A |
1938 | if (iostate->io_error == 0) { |
1939 | iostate->io_error = error; | |
1940 | } | |
b4c24cb9 A |
1941 | iostate->io_issued -= io_size; |
1942 | ||
1943 | if (iostate->io_wanted) { | |
0a7de745 | 1944 | /* |
d7e50217 A |
1945 | * someone is waiting for the state of |
1946 | * this io stream to change | |
1947 | */ | |
0a7de745 | 1948 | iostate->io_wanted = 0; |
2d21ac55 | 1949 | need_wakeup = 1; |
b4c24cb9 | 1950 | } |
0a7de745 | 1951 | lck_mtx_unlock(&iostate->io_mtxp); |
91447636 | 1952 | |
0a7de745 A |
1953 | if (need_wakeup) { |
1954 | wakeup((caddr_t)&iostate->io_wanted); | |
1955 | } | |
b4c24cb9 | 1956 | } |
3e170ce0 | 1957 | |
1c79356b | 1958 | if (flags & CL_COMMIT) { |
0a7de745 | 1959 | int upl_flags; |
1c79356b | 1960 | |
3e170ce0 | 1961 | pg_offset = upl_offset & PAGE_MASK; |
2d21ac55 | 1962 | abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK; |
3e170ce0 | 1963 | |
39236c6e | 1964 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp); |
0a7de745 | 1965 | |
1c79356b | 1966 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, |
0a7de745 A |
1967 | upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0); |
1968 | } | |
1969 | if (retval == 0) { | |
1970 | retval = error; | |
1c79356b | 1971 | } |
0a7de745 A |
1972 | } else if (cbp_head) { |
1973 | panic("%s(): cbp_head is not NULL.\n", __FUNCTION__); | |
1974 | } | |
2d21ac55 A |
1975 | |
1976 | if (real_bp) { | |
0a7de745 | 1977 | /* |
2d21ac55 A |
1978 | * can get here if we either encountered an error |
1979 | * or we completely zero-filled the request and | |
1980 | * no I/O was issued | |
1981 | */ | |
1982 | if (error) { | |
1983 | real_bp->b_flags |= B_ERROR; | |
1984 | real_bp->b_error = error; | |
1985 | } | |
1986 | buf_biodone(real_bp); | |
1c79356b | 1987 | } |
2d21ac55 | 1988 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0); |
1c79356b | 1989 | |
0a7de745 | 1990 | return retval; |
1c79356b A |
1991 | } |
1992 | ||
0a7de745 A |
1993 | #define reset_vector_run_state() \ |
1994 | issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0; | |
b0d623f7 A |
1995 | |
1996 | static int | |
1997 | vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize, | |
0a7de745 | 1998 | int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) |
b0d623f7 A |
1999 | { |
2000 | vector_upl_set_pagelist(vector_upl); | |
2001 | ||
0a7de745 A |
2002 | if (io_flag & CL_READ) { |
2003 | if (vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK) == 0)) { | |
2004 | io_flag &= ~CL_PRESERVE; /*don't zero fill*/ | |
2005 | } else { | |
2006 | io_flag |= CL_PRESERVE; /*zero fill*/ | |
2007 | } | |
2008 | } | |
2009 | return cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg); | |
b0d623f7 | 2010 | } |
1c79356b A |
2011 | |
2012 | static int | |
2d21ac55 | 2013 | cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag) |
1c79356b | 2014 | { |
55e303ae | 2015 | int pages_in_prefetch; |
1c79356b A |
2016 | |
2017 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, | |
0a7de745 | 2018 | (int)f_offset, size, (int)filesize, 0, 0); |
1c79356b A |
2019 | |
2020 | if (f_offset >= filesize) { | |
0a7de745 A |
2021 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, |
2022 | (int)f_offset, 0, 0, 0, 0); | |
2023 | return 0; | |
2024 | } | |
2025 | if ((off_t)size > (filesize - f_offset)) { | |
2026 | size = filesize - f_offset; | |
1c79356b | 2027 | } |
55e303ae | 2028 | pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; |
1c79356b | 2029 | |
2d21ac55 | 2030 | advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag); |
1c79356b A |
2031 | |
2032 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
0a7de745 | 2033 | (int)f_offset + size, pages_in_prefetch, 0, 1, 0); |
1c79356b | 2034 | |
0a7de745 | 2035 | return pages_in_prefetch; |
1c79356b A |
2036 | } |
2037 | ||
2038 | ||
2039 | ||
2040 | static void | |
2d21ac55 | 2041 | cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg, |
0a7de745 | 2042 | int bflag) |
1c79356b | 2043 | { |
0a7de745 A |
2044 | daddr64_t r_addr; |
2045 | off_t f_offset; | |
2046 | int size_of_prefetch; | |
2047 | u_int max_prefetch; | |
91447636 | 2048 | |
1c79356b A |
2049 | |
2050 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, | |
0a7de745 | 2051 | (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); |
1c79356b | 2052 | |
91447636 | 2053 | if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { |
1c79356b | 2054 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
0a7de745 | 2055 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); |
1c79356b A |
2056 | return; |
2057 | } | |
2d21ac55 | 2058 | if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) { |
0a7de745 | 2059 | rap->cl_ralen = 0; |
91447636 | 2060 | rap->cl_maxra = 0; |
1c79356b A |
2061 | |
2062 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
0a7de745 | 2063 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); |
1c79356b A |
2064 | |
2065 | return; | |
2066 | } | |
5ba3f43e | 2067 | max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), disk_conditioner_mount_is_ssd(vp->v_mount)); |
cf7d32b8 | 2068 | |
0a7de745 | 2069 | if (max_prefetch > speculative_prefetch_max) { |
fe8ab488 | 2070 | max_prefetch = speculative_prefetch_max; |
0a7de745 | 2071 | } |
6d2010ae A |
2072 | |
2073 | if (max_prefetch <= PAGE_SIZE) { | |
2074 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
0a7de745 | 2075 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0); |
6d2010ae A |
2076 | return; |
2077 | } | |
fe8ab488 | 2078 | if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) { |
0a7de745 A |
2079 | if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) { |
2080 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
2081 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); | |
1c79356b A |
2082 | return; |
2083 | } | |
2084 | } | |
91447636 A |
2085 | r_addr = max(extent->e_addr, rap->cl_maxra) + 1; |
2086 | f_offset = (off_t)(r_addr * PAGE_SIZE_64); | |
1c79356b | 2087 | |
0a7de745 | 2088 | size_of_prefetch = 0; |
55e303ae A |
2089 | |
2090 | ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch); | |
2091 | ||
2092 | if (size_of_prefetch) { | |
0a7de745 A |
2093 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
2094 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); | |
55e303ae A |
2095 | return; |
2096 | } | |
9bccf70c | 2097 | if (f_offset < filesize) { |
0a7de745 | 2098 | daddr64_t read_size; |
55e303ae | 2099 | |
0a7de745 | 2100 | rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1; |
55e303ae | 2101 | |
91447636 A |
2102 | read_size = (extent->e_addr + 1) - extent->b_addr; |
2103 | ||
2104 | if (read_size > rap->cl_ralen) { | |
0a7de745 A |
2105 | if (read_size > max_prefetch / PAGE_SIZE) { |
2106 | rap->cl_ralen = max_prefetch / PAGE_SIZE; | |
2107 | } else { | |
2108 | rap->cl_ralen = read_size; | |
2109 | } | |
91447636 | 2110 | } |
2d21ac55 | 2111 | size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag); |
1c79356b | 2112 | |
0a7de745 A |
2113 | if (size_of_prefetch) { |
2114 | rap->cl_maxra = (r_addr + size_of_prefetch) - 1; | |
2115 | } | |
9bccf70c | 2116 | } |
1c79356b | 2117 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
0a7de745 | 2118 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); |
1c79356b A |
2119 | } |
2120 | ||
2d21ac55 | 2121 | |
9bccf70c | 2122 | int |
b0d623f7 | 2123 | cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
0a7de745 | 2124 | int size, off_t filesize, int flags) |
2d21ac55 | 2125 | { |
0a7de745 | 2126 | return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); |
2d21ac55 A |
2127 | } |
2128 | ||
2129 | ||
2130 | int | |
b0d623f7 | 2131 | cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
0a7de745 | 2132 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
2133 | { |
2134 | int io_size; | |
55e303ae | 2135 | int rounded_size; |
0a7de745 | 2136 | off_t max_size; |
55e303ae A |
2137 | int local_flags; |
2138 | ||
6d2010ae | 2139 | local_flags = CL_PAGEOUT | CL_THROTTLE; |
1c79356b | 2140 | |
0a7de745 | 2141 | if ((flags & UPL_IOSYNC) == 0) { |
1c79356b | 2142 | local_flags |= CL_ASYNC; |
0a7de745 A |
2143 | } |
2144 | if ((flags & UPL_NOCOMMIT) == 0) { | |
1c79356b | 2145 | local_flags |= CL_COMMIT; |
0a7de745 A |
2146 | } |
2147 | if ((flags & UPL_KEEPCACHED)) { | |
2148 | local_flags |= CL_KEEPCACHED; | |
2149 | } | |
2150 | if (flags & UPL_PAGING_ENCRYPTED) { | |
6d2010ae | 2151 | local_flags |= CL_ENCRYPTED; |
0a7de745 | 2152 | } |
1c79356b | 2153 | |
1c79356b A |
2154 | |
2155 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, | |
0a7de745 | 2156 | (int)f_offset, size, (int)filesize, local_flags, 0); |
1c79356b A |
2157 | |
2158 | /* | |
2159 | * If they didn't specify any I/O, then we are done... | |
2160 | * we can't issue an abort because we don't know how | |
2161 | * big the upl really is | |
2162 | */ | |
0a7de745 A |
2163 | if (size <= 0) { |
2164 | return EINVAL; | |
2165 | } | |
1c79356b | 2166 | |
0a7de745 A |
2167 | if (vp->v_mount->mnt_flag & MNT_RDONLY) { |
2168 | if (local_flags & CL_COMMIT) { | |
2169 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); | |
2170 | } | |
2171 | return EROFS; | |
1c79356b A |
2172 | } |
2173 | /* | |
2174 | * can't page-in from a negative offset | |
2175 | * or if we're starting beyond the EOF | |
2176 | * or if the file offset isn't page aligned | |
2177 | * or the size requested isn't a multiple of PAGE_SIZE | |
2178 | */ | |
2179 | if (f_offset < 0 || f_offset >= filesize || | |
0a7de745 A |
2180 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) { |
2181 | if (local_flags & CL_COMMIT) { | |
0b4e3aa0 | 2182 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); |
0a7de745 A |
2183 | } |
2184 | return EINVAL; | |
1c79356b A |
2185 | } |
2186 | max_size = filesize - f_offset; | |
2187 | ||
0a7de745 A |
2188 | if (size < max_size) { |
2189 | io_size = size; | |
2190 | } else { | |
2191 | io_size = max_size; | |
2192 | } | |
1c79356b | 2193 | |
55e303ae | 2194 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 2195 | |
55e303ae | 2196 | if (size > rounded_size) { |
0a7de745 | 2197 | if (local_flags & CL_COMMIT) { |
55e303ae | 2198 | ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, |
0a7de745 A |
2199 | UPL_ABORT_FREE_ON_EMPTY); |
2200 | } | |
1c79356b | 2201 | } |
0a7de745 A |
2202 | return cluster_io(vp, upl, upl_offset, f_offset, io_size, |
2203 | local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
1c79356b A |
2204 | } |
2205 | ||
2d21ac55 | 2206 | |
9bccf70c | 2207 | int |
b0d623f7 | 2208 | cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
0a7de745 | 2209 | int size, off_t filesize, int flags) |
2d21ac55 | 2210 | { |
0a7de745 | 2211 | return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); |
2d21ac55 A |
2212 | } |
2213 | ||
2214 | ||
2215 | int | |
b0d623f7 | 2216 | cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
0a7de745 | 2217 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
2218 | { |
2219 | u_int io_size; | |
9bccf70c | 2220 | int rounded_size; |
0a7de745 | 2221 | off_t max_size; |
1c79356b A |
2222 | int retval; |
2223 | int local_flags = 0; | |
1c79356b | 2224 | |
0a7de745 A |
2225 | if (upl == NULL || size < 0) { |
2226 | panic("cluster_pagein: NULL upl passed in"); | |
2227 | } | |
1c79356b | 2228 | |
0a7de745 A |
2229 | if ((flags & UPL_IOSYNC) == 0) { |
2230 | local_flags |= CL_ASYNC; | |
2231 | } | |
2232 | if ((flags & UPL_NOCOMMIT) == 0) { | |
9bccf70c | 2233 | local_flags |= CL_COMMIT; |
0a7de745 A |
2234 | } |
2235 | if (flags & UPL_IOSTREAMING) { | |
b0d623f7 | 2236 | local_flags |= CL_IOSTREAMING; |
0a7de745 A |
2237 | } |
2238 | if (flags & UPL_PAGING_ENCRYPTED) { | |
6d2010ae | 2239 | local_flags |= CL_ENCRYPTED; |
0a7de745 | 2240 | } |
9bccf70c | 2241 | |
1c79356b A |
2242 | |
2243 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, | |
0a7de745 | 2244 | (int)f_offset, size, (int)filesize, local_flags, 0); |
1c79356b A |
2245 | |
2246 | /* | |
2247 | * can't page-in from a negative offset | |
2248 | * or if we're starting beyond the EOF | |
2249 | * or if the file offset isn't page aligned | |
2250 | * or the size requested isn't a multiple of PAGE_SIZE | |
2251 | */ | |
2252 | if (f_offset < 0 || f_offset >= filesize || | |
0a7de745 A |
2253 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) { |
2254 | if (local_flags & CL_COMMIT) { | |
2255 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
2256 | } | |
2257 | return EINVAL; | |
1c79356b A |
2258 | } |
2259 | max_size = filesize - f_offset; | |
2260 | ||
0a7de745 A |
2261 | if (size < max_size) { |
2262 | io_size = size; | |
2263 | } else { | |
2264 | io_size = max_size; | |
2265 | } | |
1c79356b | 2266 | |
9bccf70c | 2267 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 2268 | |
0a7de745 | 2269 | if (size > rounded_size && (local_flags & CL_COMMIT)) { |
9bccf70c | 2270 | ubc_upl_abort_range(upl, upl_offset + rounded_size, |
0a7de745 A |
2271 | size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); |
2272 | } | |
2273 | ||
91447636 | 2274 | retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, |
0a7de745 | 2275 | local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 2276 | |
0a7de745 | 2277 | return retval; |
1c79356b A |
2278 | } |
2279 | ||
2d21ac55 | 2280 | |
9bccf70c | 2281 | int |
91447636 | 2282 | cluster_bp(buf_t bp) |
2d21ac55 | 2283 | { |
0a7de745 | 2284 | return cluster_bp_ext(bp, NULL, NULL); |
2d21ac55 A |
2285 | } |
2286 | ||
2287 | ||
2288 | int | |
2289 | cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b | 2290 | { |
0a7de745 | 2291 | off_t f_offset; |
1c79356b A |
2292 | int flags; |
2293 | ||
9bccf70c | 2294 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, |
0a7de745 | 2295 | bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
9bccf70c | 2296 | |
0a7de745 A |
2297 | if (bp->b_flags & B_READ) { |
2298 | flags = CL_ASYNC | CL_READ; | |
2299 | } else { | |
2300 | flags = CL_ASYNC; | |
2301 | } | |
2302 | if (bp->b_flags & B_PASSIVE) { | |
2d21ac55 | 2303 | flags |= CL_PASSIVE; |
0a7de745 | 2304 | } |
1c79356b A |
2305 | |
2306 | f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); | |
2307 | ||
0a7de745 | 2308 | return cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg); |
1c79356b A |
2309 | } |
2310 | ||
2d21ac55 A |
2311 | |
2312 | ||
9bccf70c | 2313 | int |
91447636 | 2314 | cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) |
1c79356b | 2315 | { |
0a7de745 | 2316 | return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL); |
2d21ac55 A |
2317 | } |
2318 | ||
2319 | ||
2320 | int | |
2321 | cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, | |
0a7de745 | 2322 | int xflags, int (*callback)(buf_t, void *), void *callback_arg) |
2d21ac55 | 2323 | { |
0a7de745 A |
2324 | user_ssize_t cur_resid; |
2325 | int retval = 0; | |
2326 | int flags; | |
2327 | int zflags; | |
2d21ac55 | 2328 | int bflag; |
0a7de745 A |
2329 | int write_type = IO_COPY; |
2330 | u_int32_t write_length; | |
1c79356b | 2331 | |
91447636 A |
2332 | flags = xflags; |
2333 | ||
0a7de745 | 2334 | if (flags & IO_PASSIVE) { |
b0d623f7 | 2335 | bflag = CL_PASSIVE; |
0a7de745 | 2336 | } else { |
b0d623f7 | 2337 | bflag = 0; |
0a7de745 | 2338 | } |
2d21ac55 | 2339 | |
0a7de745 A |
2340 | if (vp->v_flag & VNOCACHE_DATA) { |
2341 | flags |= IO_NOCACHE; | |
316670eb A |
2342 | bflag |= CL_NOCACHE; |
2343 | } | |
0a7de745 A |
2344 | if (uio == NULL) { |
2345 | /* | |
2d21ac55 A |
2346 | * no user data... |
2347 | * this call is being made to zero-fill some range in the file | |
91447636 | 2348 | */ |
0a7de745 A |
2349 | retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg); |
2350 | ||
2351 | return retval; | |
2352 | } | |
2353 | /* | |
2354 | * do a write through the cache if one of the following is true.... | |
2355 | * NOCACHE is not true or NODIRECT is true | |
2356 | * the uio request doesn't target USERSPACE | |
2357 | * otherwise, find out if we want the direct or contig variant for | |
2358 | * the first vector in the uio request | |
2359 | */ | |
2360 | if (((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) { | |
2361 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); | |
2362 | } | |
2363 | ||
2364 | if ((flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT) { | |
2365 | /* | |
2d21ac55 | 2366 | * must go through the cached variant in this case |
0b4e3aa0 | 2367 | */ |
0a7de745 A |
2368 | write_type = IO_COPY; |
2369 | } | |
0b4e3aa0 | 2370 | |
2d21ac55 | 2371 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) { |
0a7de745 | 2372 | switch (write_type) { |
2d21ac55 | 2373 | case IO_COPY: |
0a7de745 | 2374 | /* |
2d21ac55 A |
2375 | * make sure the uio_resid isn't too big... |
2376 | * internally, we want to handle all of the I/O in | |
2377 | * chunk sizes that fit in a 32 bit int | |
91447636 | 2378 | */ |
0a7de745 A |
2379 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { |
2380 | /* | |
2d21ac55 A |
2381 | * we're going to have to call cluster_write_copy |
2382 | * more than once... | |
2383 | * | |
2384 | * only want the last call to cluster_write_copy to | |
2385 | * have the IO_TAILZEROFILL flag set and only the | |
2386 | * first call should have IO_HEADZEROFILL | |
91447636 | 2387 | */ |
0a7de745 | 2388 | zflags = flags & ~IO_TAILZEROFILL; |
2d21ac55 | 2389 | flags &= ~IO_HEADZEROFILL; |
91447636 | 2390 | |
2d21ac55 A |
2391 | write_length = MAX_IO_REQUEST_SIZE; |
2392 | } else { | |
0a7de745 | 2393 | /* |
2d21ac55 | 2394 | * last call to cluster_write_copy |
91447636 | 2395 | */ |
0a7de745 A |
2396 | zflags = flags; |
2397 | ||
2d21ac55 A |
2398 | write_length = (u_int32_t)cur_resid; |
2399 | } | |
2400 | retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg); | |
2401 | break; | |
91447636 | 2402 | |
2d21ac55 | 2403 | case IO_CONTIG: |
0a7de745 | 2404 | zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL); |
91447636 | 2405 | |
2d21ac55 | 2406 | if (flags & IO_HEADZEROFILL) { |
0a7de745 | 2407 | /* |
2d21ac55 | 2408 | * only do this once per request |
91447636 | 2409 | */ |
0a7de745 | 2410 | flags &= ~IO_HEADZEROFILL; |
91447636 | 2411 | |
2d21ac55 | 2412 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset, |
0a7de745 A |
2413 | headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); |
2414 | if (retval) { | |
2415 | break; | |
2416 | } | |
91447636 | 2417 | } |
2d21ac55 A |
2418 | retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag); |
2419 | ||
2420 | if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) { | |
0a7de745 | 2421 | /* |
2d21ac55 A |
2422 | * we're done with the data from the user specified buffer(s) |
2423 | * and we've been requested to zero fill at the tail | |
2424 | * treat this as an IO_HEADZEROFILL which doesn't require a uio | |
2425 | * by rearranging the args and passing in IO_HEADZEROFILL | |
91447636 | 2426 | */ |
0a7de745 A |
2427 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset, |
2428 | (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2d21ac55 A |
2429 | } |
2430 | break; | |
91447636 | 2431 | |
2d21ac55 A |
2432 | case IO_DIRECT: |
2433 | /* | |
2434 | * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL | |
2435 | */ | |
2436 | retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg); | |
2437 | break; | |
91447636 | 2438 | |
2d21ac55 | 2439 | case IO_UNKNOWN: |
0a7de745 | 2440 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); |
2d21ac55 A |
2441 | break; |
2442 | } | |
b0d623f7 A |
2443 | /* |
2444 | * in case we end up calling cluster_write_copy (from cluster_write_direct) | |
2445 | * multiple times to service a multi-vector request that is not aligned properly | |
2446 | * we need to update the oldEOF so that we | |
2447 | * don't zero-fill the head of a page if we've successfully written | |
2448 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2449 | * page that is beyond the oldEOF if the write is unaligned... we only | |
0a7de745 | 2450 | * want that to happen for the very first page of the cluster_write, |
b0d623f7 A |
2451 | * NOT the first page of each vector making up a multi-vector write. |
2452 | */ | |
0a7de745 | 2453 | if (uio->uio_offset > oldEOF) { |
b0d623f7 | 2454 | oldEOF = uio->uio_offset; |
0a7de745 | 2455 | } |
2d21ac55 | 2456 | } |
0a7de745 | 2457 | return retval; |
1c79356b A |
2458 | } |
2459 | ||
b4c24cb9 | 2460 | |
9bccf70c | 2461 | static int |
2d21ac55 | 2462 | cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length, |
0a7de745 | 2463 | int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
2464 | { |
2465 | upl_t upl; | |
2466 | upl_page_info_t *pl; | |
1c79356b | 2467 | vm_offset_t upl_offset; |
0a7de745 A |
2468 | vm_offset_t vector_upl_offset = 0; |
2469 | u_int32_t io_req_size; | |
2470 | u_int32_t offset_in_file; | |
2471 | u_int32_t offset_in_iovbase; | |
b0d623f7 A |
2472 | u_int32_t io_size; |
2473 | int io_flag = 0; | |
0a7de745 A |
2474 | upl_size_t upl_size, vector_upl_size = 0; |
2475 | vm_size_t upl_needed_size; | |
2476 | mach_msg_type_number_t pages_in_pl; | |
3e170ce0 | 2477 | upl_control_flags_t upl_flags; |
1c79356b | 2478 | kern_return_t kret; |
0a7de745 | 2479 | mach_msg_type_number_t i; |
1c79356b | 2480 | int force_data_sync; |
2d21ac55 | 2481 | int retval = 0; |
0a7de745 | 2482 | int first_IO = 1; |
d7e50217 | 2483 | struct clios iostate; |
0a7de745 A |
2484 | user_addr_t iov_base; |
2485 | u_int32_t mem_alignment_mask; | |
2486 | u_int32_t devblocksize; | |
2487 | u_int32_t max_io_size; | |
2488 | u_int32_t max_upl_size; | |
316670eb | 2489 | u_int32_t max_vector_size; |
0a7de745 A |
2490 | u_int32_t bytes_outstanding_limit; |
2491 | boolean_t io_throttled = FALSE; | |
cf7d32b8 | 2492 | |
0a7de745 A |
2493 | u_int32_t vector_upl_iosize = 0; |
2494 | int issueVectorUPL = 0, useVectorUPL = (uio->uio_iovcnt > 1); | |
2495 | off_t v_upl_uio_offset = 0; | |
2496 | int vector_upl_index = 0; | |
2497 | upl_t vector_upl = NULL; | |
cf7d32b8 | 2498 | |
1c79356b A |
2499 | |
2500 | /* | |
2501 | * When we enter this routine, we know | |
1c79356b A |
2502 | * -- the resid will not exceed iov_len |
2503 | */ | |
2d21ac55 | 2504 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, |
0a7de745 | 2505 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); |
91447636 | 2506 | |
b0d623f7 A |
2507 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE); |
2508 | ||
2509 | io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO; | |
2510 | ||
0a7de745 | 2511 | if (flags & IO_PASSIVE) { |
b0d623f7 | 2512 | io_flag |= CL_PASSIVE; |
0a7de745 A |
2513 | } |
2514 | ||
2515 | if (flags & IO_NOCACHE) { | |
2516 | io_flag |= CL_NOCACHE; | |
2517 | } | |
2518 | ||
2519 | if (flags & IO_SKIP_ENCRYPTION) { | |
fe8ab488 | 2520 | io_flag |= CL_ENCRYPTED; |
0a7de745 | 2521 | } |
fe8ab488 | 2522 | |
d7e50217 A |
2523 | iostate.io_completed = 0; |
2524 | iostate.io_issued = 0; | |
2525 | iostate.io_error = 0; | |
2526 | iostate.io_wanted = 0; | |
2527 | ||
6d2010ae A |
2528 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
2529 | ||
2d21ac55 A |
2530 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; |
2531 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
2532 | ||
2533 | if (devblocksize == 1) { | |
0a7de745 A |
2534 | /* |
2535 | * the AFP client advertises a devblocksize of 1 | |
2536 | * however, its BLOCKMAP routine maps to physical | |
2537 | * blocks that are PAGE_SIZE in size... | |
2538 | * therefore we can't ask for I/Os that aren't page aligned | |
2539 | * or aren't multiples of PAGE_SIZE in size | |
2540 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
2541 | * the old behavior we had before the mem_alignment_mask | |
2542 | * changes went in... | |
2543 | */ | |
2544 | devblocksize = PAGE_SIZE; | |
2d21ac55 A |
2545 | } |
2546 | ||
2547 | next_dwrite: | |
2548 | io_req_size = *write_length; | |
2549 | iov_base = uio_curriovbase(uio); | |
cc9f6e38 | 2550 | |
2d21ac55 A |
2551 | offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK; |
2552 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
1c79356b | 2553 | |
2d21ac55 | 2554 | if (offset_in_file || offset_in_iovbase) { |
0a7de745 | 2555 | /* |
2d21ac55 A |
2556 | * one of the 2 important offsets is misaligned |
2557 | * so fire an I/O through the cache for this entire vector | |
2558 | */ | |
0a7de745 | 2559 | goto wait_for_dwrites; |
2d21ac55 A |
2560 | } |
2561 | if (iov_base & (devblocksize - 1)) { | |
0a7de745 | 2562 | /* |
2d21ac55 A |
2563 | * the offset in memory must be on a device block boundary |
2564 | * so that we can guarantee that we can generate an | |
2565 | * I/O that ends on a page boundary in cluster_io | |
2566 | */ | |
0a7de745 A |
2567 | goto wait_for_dwrites; |
2568 | } | |
1c79356b | 2569 | |
39037602 | 2570 | task_update_logical_writes(current_task(), (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE, vp); |
2d21ac55 | 2571 | while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) { |
0a7de745 | 2572 | int throttle_type; |
316670eb | 2573 | |
0a7de745 | 2574 | if ((throttle_type = cluster_is_throttled(vp))) { |
316670eb A |
2575 | /* |
2576 | * we're in the throttle window, at the very least | |
2577 | * we want to limit the size of the I/O we're about | |
2578 | * to issue | |
2579 | */ | |
0a7de745 | 2580 | if ((flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) { |
316670eb A |
2581 | /* |
2582 | * we're in the throttle window and at least 1 I/O | |
2583 | * has already been issued by a throttleable thread | |
2584 | * in this window, so return with EAGAIN to indicate | |
2585 | * to the FS issuing the cluster_write call that it | |
2586 | * should now throttle after dropping any locks | |
2587 | */ | |
2588 | throttle_info_update_by_mount(vp->v_mount); | |
2589 | ||
2590 | io_throttled = TRUE; | |
2591 | goto wait_for_dwrites; | |
2592 | } | |
2593 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
2594 | max_io_size = THROTTLE_MAX_IOSIZE; | |
2595 | } else { | |
2596 | max_vector_size = MAX_VECTOR_UPL_SIZE; | |
2597 | max_io_size = max_upl_size; | |
2598 | } | |
2d21ac55 | 2599 | |
0a7de745 A |
2600 | if (first_IO) { |
2601 | cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); | |
2d21ac55 A |
2602 | first_IO = 0; |
2603 | } | |
0a7de745 | 2604 | io_size = io_req_size & ~PAGE_MASK; |
cc9f6e38 A |
2605 | iov_base = uio_curriovbase(uio); |
2606 | ||
0a7de745 A |
2607 | if (io_size > max_io_size) { |
2608 | io_size = max_io_size; | |
2609 | } | |
2d21ac55 | 2610 | |
0a7de745 | 2611 | if (useVectorUPL && (iov_base & PAGE_MASK)) { |
b0d623f7 A |
2612 | /* |
2613 | * We have an iov_base that's not page-aligned. | |
0a7de745 | 2614 | * Issue all I/O's that have been collected within |
b0d623f7 A |
2615 | * this Vectored UPL. |
2616 | */ | |
0a7de745 | 2617 | if (vector_upl_index) { |
b0d623f7 A |
2618 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
2619 | reset_vector_run_state(); | |
2620 | } | |
0a7de745 A |
2621 | |
2622 | /* | |
2623 | * After this point, if we are using the Vector UPL path and the base is | |
2624 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
2625 | */ | |
b0d623f7 A |
2626 | } |
2627 | ||
2d21ac55 | 2628 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
0a7de745 | 2629 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
d7e50217 A |
2630 | |
2631 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, | |
0a7de745 | 2632 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
d7e50217 | 2633 | |
3e170ce0 | 2634 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
d7e50217 | 2635 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { |
0a7de745 | 2636 | pages_in_pl = 0; |
d7e50217 A |
2637 | upl_size = upl_needed_size; |
2638 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | | |
0a7de745 | 2639 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
d7e50217 | 2640 | |
3e170ce0 | 2641 | kret = vm_map_get_upl(map, |
0a7de745 A |
2642 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
2643 | &upl_size, | |
2644 | &upl, | |
2645 | NULL, | |
2646 | &pages_in_pl, | |
2647 | &upl_flags, | |
2648 | VM_KERN_MEMORY_FILE, | |
2649 | force_data_sync); | |
d7e50217 A |
2650 | |
2651 | if (kret != KERN_SUCCESS) { | |
0a7de745 A |
2652 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, |
2653 | 0, 0, 0, kret, 0); | |
d7e50217 | 2654 | /* |
2d21ac55 | 2655 | * failed to get pagelist |
d7e50217 A |
2656 | * |
2657 | * we may have already spun some portion of this request | |
2658 | * off as async requests... we need to wait for the I/O | |
2659 | * to complete before returning | |
2660 | */ | |
2d21ac55 | 2661 | goto wait_for_dwrites; |
d7e50217 A |
2662 | } |
2663 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
2664 | pages_in_pl = upl_size / PAGE_SIZE; | |
1c79356b | 2665 | |
d7e50217 | 2666 | for (i = 0; i < pages_in_pl; i++) { |
0a7de745 A |
2667 | if (!upl_valid_page(pl, i)) { |
2668 | break; | |
2669 | } | |
2670 | } | |
2671 | if (i == pages_in_pl) { | |
2672 | break; | |
d7e50217 | 2673 | } |
1c79356b | 2674 | |
d7e50217 A |
2675 | /* |
2676 | * didn't get all the pages back that we | |
2677 | * needed... release this upl and try again | |
2678 | */ | |
2d21ac55 | 2679 | ubc_upl_abort(upl, 0); |
1c79356b | 2680 | } |
d7e50217 | 2681 | if (force_data_sync >= 3) { |
0a7de745 A |
2682 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, |
2683 | i, pages_in_pl, upl_size, kret, 0); | |
d7e50217 A |
2684 | /* |
2685 | * for some reason, we couldn't acquire a hold on all | |
2686 | * the pages needed in the user's address space | |
2687 | * | |
2688 | * we may have already spun some portion of this request | |
2689 | * off as async requests... we need to wait for the I/O | |
2690 | * to complete before returning | |
2691 | */ | |
2d21ac55 | 2692 | goto wait_for_dwrites; |
1c79356b | 2693 | } |
0b4e3aa0 | 2694 | |
d7e50217 A |
2695 | /* |
2696 | * Consider the possibility that upl_size wasn't satisfied. | |
2697 | */ | |
2d21ac55 | 2698 | if (upl_size < upl_needed_size) { |
0a7de745 A |
2699 | if (upl_size && upl_offset == 0) { |
2700 | io_size = upl_size; | |
2701 | } else { | |
2702 | io_size = 0; | |
2703 | } | |
2d21ac55 | 2704 | } |
d7e50217 | 2705 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, |
0a7de745 | 2706 | (int)upl_offset, upl_size, (int)iov_base, io_size, 0); |
1c79356b | 2707 | |
d7e50217 | 2708 | if (io_size == 0) { |
0a7de745 | 2709 | ubc_upl_abort(upl, 0); |
d7e50217 A |
2710 | /* |
2711 | * we may have already spun some portion of this request | |
2712 | * off as async requests... we need to wait for the I/O | |
2713 | * to complete before returning | |
2714 | */ | |
2d21ac55 | 2715 | goto wait_for_dwrites; |
d7e50217 | 2716 | } |
0a7de745 A |
2717 | |
2718 | if (useVectorUPL) { | |
b0d623f7 | 2719 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); |
0a7de745 | 2720 | if (end_off) { |
b0d623f7 | 2721 | issueVectorUPL = 1; |
0a7de745 | 2722 | } |
b0d623f7 A |
2723 | /* |
2724 | * After this point, if we are using a vector UPL, then | |
2725 | * either all the UPL elements end on a page boundary OR | |
2726 | * this UPL is the last element because it does not end | |
2727 | * on a page boundary. | |
2728 | */ | |
2729 | } | |
2d21ac55 | 2730 | |
d7e50217 A |
2731 | /* |
2732 | * we want push out these writes asynchronously so that we can overlap | |
2733 | * the preparation of the next I/O | |
2734 | * if there are already too many outstanding writes | |
2735 | * wait until some complete before issuing the next | |
2736 | */ | |
0a7de745 | 2737 | if (vp->v_mount->mnt_minsaturationbytecount) { |
39037602 | 2738 | bytes_outstanding_limit = vp->v_mount->mnt_minsaturationbytecount; |
0a7de745 | 2739 | } else { |
39037602 | 2740 | bytes_outstanding_limit = max_upl_size * IO_SCALE(vp, 2); |
0a7de745 | 2741 | } |
39037602 A |
2742 | |
2743 | cluster_iostate_wait(&iostate, bytes_outstanding_limit, "cluster_write_direct"); | |
cf7d32b8 | 2744 | |
d7e50217 | 2745 | if (iostate.io_error) { |
0a7de745 | 2746 | /* |
d7e50217 A |
2747 | * one of the earlier writes we issued ran into a hard error |
2748 | * don't issue any more writes, cleanup the UPL | |
2749 | * that was just created but not used, then | |
2750 | * go wait for all writes that are part of this stream | |
2751 | * to complete before returning the error to the caller | |
2752 | */ | |
0a7de745 | 2753 | ubc_upl_abort(upl, 0); |
1c79356b | 2754 | |
0a7de745 A |
2755 | goto wait_for_dwrites; |
2756 | } | |
1c79356b | 2757 | |
d7e50217 | 2758 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, |
0a7de745 | 2759 | (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); |
1c79356b | 2760 | |
0a7de745 | 2761 | if (!useVectorUPL) { |
b0d623f7 | 2762 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, |
0a7de745 A |
2763 | io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
2764 | } else { | |
2765 | if (!vector_upl_index) { | |
b0d623f7 A |
2766 | vector_upl = vector_upl_create(upl_offset); |
2767 | v_upl_uio_offset = uio->uio_offset; | |
2768 | vector_upl_offset = upl_offset; | |
2769 | } | |
2770 | ||
0a7de745 | 2771 | vector_upl_set_subupl(vector_upl, upl, upl_size); |
b0d623f7 A |
2772 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); |
2773 | vector_upl_index++; | |
2774 | vector_upl_iosize += io_size; | |
2775 | vector_upl_size += upl_size; | |
2776 | ||
0a7de745 | 2777 | if (issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { |
b0d623f7 A |
2778 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
2779 | reset_vector_run_state(); | |
2780 | } | |
0a7de745 | 2781 | } |
b0d623f7 | 2782 | |
2d21ac55 A |
2783 | /* |
2784 | * update the uio structure to | |
2785 | * reflect the I/O that we just issued | |
2786 | */ | |
cc9f6e38 | 2787 | uio_update(uio, (user_size_t)io_size); |
1c79356b | 2788 | |
b0d623f7 A |
2789 | /* |
2790 | * in case we end up calling through to cluster_write_copy to finish | |
2791 | * the tail of this request, we need to update the oldEOF so that we | |
2792 | * don't zero-fill the head of a page if we've successfully written | |
2793 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2794 | * page that is beyond the oldEOF if the write is unaligned... we only | |
0a7de745 | 2795 | * want that to happen for the very first page of the cluster_write, |
b0d623f7 A |
2796 | * NOT the first page of each vector making up a multi-vector write. |
2797 | */ | |
0a7de745 | 2798 | if (uio->uio_offset > oldEOF) { |
b0d623f7 | 2799 | oldEOF = uio->uio_offset; |
0a7de745 | 2800 | } |
b0d623f7 | 2801 | |
2d21ac55 A |
2802 | io_req_size -= io_size; |
2803 | ||
d7e50217 | 2804 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, |
0a7de745 | 2805 | (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0); |
1c79356b A |
2806 | } /* end while */ |
2807 | ||
0a7de745 A |
2808 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) { |
2809 | retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE); | |
2d21ac55 A |
2810 | |
2811 | if (retval == 0 && *write_type == IO_DIRECT) { | |
0a7de745 A |
2812 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE, |
2813 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
2d21ac55 | 2814 | |
0a7de745 | 2815 | goto next_dwrite; |
2d21ac55 | 2816 | } |
0a7de745 | 2817 | } |
2d21ac55 A |
2818 | |
2819 | wait_for_dwrites: | |
b0d623f7 | 2820 | |
6d2010ae | 2821 | if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { |
b0d623f7 | 2822 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
0a7de745 | 2823 | reset_vector_run_state(); |
b0d623f7 | 2824 | } |
fe8ab488 A |
2825 | /* |
2826 | * make sure all async writes issued as part of this stream | |
2827 | * have completed before we return | |
2828 | */ | |
2829 | cluster_iostate_wait(&iostate, 0, "cluster_write_direct"); | |
b0d623f7 | 2830 | |
0a7de745 A |
2831 | if (iostate.io_error) { |
2832 | retval = iostate.io_error; | |
2833 | } | |
2d21ac55 | 2834 | |
6d2010ae A |
2835 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
2836 | ||
0a7de745 | 2837 | if (io_throttled == TRUE && retval == 0) { |
316670eb | 2838 | retval = EAGAIN; |
0a7de745 | 2839 | } |
316670eb | 2840 | |
2d21ac55 | 2841 | if (io_req_size && retval == 0) { |
0a7de745 | 2842 | /* |
2d21ac55 A |
2843 | * we couldn't handle the tail of this request in DIRECT mode |
2844 | * so fire it through the copy path | |
2845 | * | |
2846 | * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set | |
2847 | * so we can just pass 0 in for the headOff and tailOff | |
2848 | */ | |
0a7de745 | 2849 | if (uio->uio_offset > oldEOF) { |
b0d623f7 | 2850 | oldEOF = uio->uio_offset; |
0a7de745 | 2851 | } |
b0d623f7 | 2852 | |
0a7de745 | 2853 | retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg); |
1c79356b | 2854 | |
2d21ac55 A |
2855 | *write_type = IO_UNKNOWN; |
2856 | } | |
1c79356b | 2857 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, |
0a7de745 | 2858 | (int)uio->uio_offset, io_req_size, retval, 4, 0); |
1c79356b | 2859 | |
0a7de745 | 2860 | return retval; |
1c79356b A |
2861 | } |
2862 | ||
b4c24cb9 | 2863 | |
9bccf70c | 2864 | static int |
2d21ac55 | 2865 | cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length, |
0a7de745 | 2866 | int (*callback)(buf_t, void *), void *callback_arg, int bflag) |
0b4e3aa0 | 2867 | { |
b4c24cb9 | 2868 | upl_page_info_t *pl; |
0a7de745 A |
2869 | addr64_t src_paddr = 0; |
2870 | upl_t upl[MAX_VECTS]; | |
0b4e3aa0 | 2871 | vm_offset_t upl_offset; |
2d21ac55 | 2872 | u_int32_t tail_size = 0; |
0a7de745 A |
2873 | u_int32_t io_size; |
2874 | u_int32_t xsize; | |
2875 | upl_size_t upl_size; | |
2876 | vm_size_t upl_needed_size; | |
2877 | mach_msg_type_number_t pages_in_pl; | |
3e170ce0 | 2878 | upl_control_flags_t upl_flags; |
0b4e3aa0 | 2879 | kern_return_t kret; |
0a7de745 | 2880 | struct clios iostate; |
0b4e3aa0 | 2881 | int error = 0; |
0a7de745 A |
2882 | int cur_upl = 0; |
2883 | int num_upl = 0; | |
2884 | int n; | |
2885 | user_addr_t iov_base; | |
2886 | u_int32_t devblocksize; | |
2887 | u_int32_t mem_alignment_mask; | |
0b4e3aa0 A |
2888 | |
2889 | /* | |
2890 | * When we enter this routine, we know | |
2d21ac55 A |
2891 | * -- the io_req_size will not exceed iov_len |
2892 | * -- the target address is physically contiguous | |
0b4e3aa0 | 2893 | */ |
fe8ab488 | 2894 | cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); |
0b4e3aa0 | 2895 | |
2d21ac55 A |
2896 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
2897 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
91447636 | 2898 | |
0a7de745 A |
2899 | iostate.io_completed = 0; |
2900 | iostate.io_issued = 0; | |
2901 | iostate.io_error = 0; | |
2902 | iostate.io_wanted = 0; | |
2d21ac55 | 2903 | |
6d2010ae A |
2904 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
2905 | ||
2d21ac55 A |
2906 | next_cwrite: |
2907 | io_size = *write_length; | |
91447636 | 2908 | |
cc9f6e38 A |
2909 | iov_base = uio_curriovbase(uio); |
2910 | ||
2d21ac55 | 2911 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
0b4e3aa0 A |
2912 | upl_needed_size = upl_offset + io_size; |
2913 | ||
2914 | pages_in_pl = 0; | |
2915 | upl_size = upl_needed_size; | |
0a7de745 A |
2916 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | |
2917 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; | |
0b4e3aa0 | 2918 | |
3e170ce0 A |
2919 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
2920 | kret = vm_map_get_upl(map, | |
0a7de745 A |
2921 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
2922 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0); | |
0b4e3aa0 | 2923 | |
b4c24cb9 | 2924 | if (kret != KERN_SUCCESS) { |
0a7de745 | 2925 | /* |
2d21ac55 | 2926 | * failed to get pagelist |
b4c24cb9 | 2927 | */ |
0a7de745 | 2928 | error = EINVAL; |
2d21ac55 | 2929 | goto wait_for_cwrites; |
b4c24cb9 | 2930 | } |
2d21ac55 A |
2931 | num_upl++; |
2932 | ||
0b4e3aa0 A |
2933 | /* |
2934 | * Consider the possibility that upl_size wasn't satisfied. | |
0b4e3aa0 | 2935 | */ |
b4c24cb9 | 2936 | if (upl_size < upl_needed_size) { |
2d21ac55 A |
2937 | /* |
2938 | * This is a failure in the physical memory case. | |
2939 | */ | |
2940 | error = EINVAL; | |
2941 | goto wait_for_cwrites; | |
b4c24cb9 | 2942 | } |
2d21ac55 | 2943 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
0b4e3aa0 | 2944 | |
fe8ab488 | 2945 | src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; |
0b4e3aa0 | 2946 | |
b4c24cb9 | 2947 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
0a7de745 | 2948 | u_int32_t head_size; |
0b4e3aa0 | 2949 | |
2d21ac55 | 2950 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
0b4e3aa0 | 2951 | |
0a7de745 A |
2952 | if (head_size > io_size) { |
2953 | head_size = io_size; | |
2954 | } | |
b4c24cb9 | 2955 | |
2d21ac55 | 2956 | error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg); |
b4c24cb9 | 2957 | |
0a7de745 A |
2958 | if (error) { |
2959 | goto wait_for_cwrites; | |
2960 | } | |
b4c24cb9 | 2961 | |
b4c24cb9 A |
2962 | upl_offset += head_size; |
2963 | src_paddr += head_size; | |
2964 | io_size -= head_size; | |
2d21ac55 A |
2965 | |
2966 | iov_base += head_size; | |
2967 | } | |
2968 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
0a7de745 | 2969 | /* |
2d21ac55 A |
2970 | * request doesn't set up on a memory boundary |
2971 | * the underlying DMA engine can handle... | |
2972 | * return an error instead of going through | |
2973 | * the slow copy path since the intent of this | |
2974 | * path is direct I/O from device memory | |
2975 | */ | |
0a7de745 | 2976 | error = EINVAL; |
2d21ac55 | 2977 | goto wait_for_cwrites; |
0b4e3aa0 | 2978 | } |
2d21ac55 | 2979 | |
b4c24cb9 A |
2980 | tail_size = io_size & (devblocksize - 1); |
2981 | io_size -= tail_size; | |
2982 | ||
2d21ac55 | 2983 | while (io_size && error == 0) { |
0a7de745 A |
2984 | if (io_size > MAX_IO_CONTIG_SIZE) { |
2985 | xsize = MAX_IO_CONTIG_SIZE; | |
2986 | } else { | |
2987 | xsize = io_size; | |
2988 | } | |
2d21ac55 A |
2989 | /* |
2990 | * request asynchronously so that we can overlap | |
2991 | * the preparation of the next I/O... we'll do | |
2992 | * the commit after all the I/O has completed | |
2993 | * since its all issued against the same UPL | |
2994 | * if there are already too many outstanding writes | |
2995 | * wait until some have completed before issuing the next | |
b4c24cb9 | 2996 | */ |
fe8ab488 | 2997 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig"); |
2d21ac55 | 2998 | |
0a7de745 A |
2999 | if (iostate.io_error) { |
3000 | /* | |
3001 | * one of the earlier writes we issued ran into a hard error | |
3002 | * don't issue any more writes... | |
3003 | * go wait for all writes that are part of this stream | |
3004 | * to complete before returning the error to the caller | |
3005 | */ | |
3006 | goto wait_for_cwrites; | |
2d21ac55 | 3007 | } |
0a7de745 | 3008 | /* |
2d21ac55 | 3009 | * issue an asynchronous write to cluster_io |
b4c24cb9 | 3010 | */ |
0a7de745 A |
3011 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, |
3012 | xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg); | |
cc9f6e38 | 3013 | |
2d21ac55 | 3014 | if (error == 0) { |
0a7de745 | 3015 | /* |
2d21ac55 A |
3016 | * The cluster_io write completed successfully, |
3017 | * update the uio structure | |
3018 | */ | |
0a7de745 | 3019 | uio_update(uio, (user_size_t)xsize); |
b4c24cb9 | 3020 | |
2d21ac55 A |
3021 | upl_offset += xsize; |
3022 | src_paddr += xsize; | |
3023 | io_size -= xsize; | |
3024 | } | |
b4c24cb9 | 3025 | } |
0a7de745 A |
3026 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) { |
3027 | error = cluster_io_type(uio, write_type, write_length, 0); | |
2d21ac55 A |
3028 | |
3029 | if (error == 0 && *write_type == IO_CONTIG) { | |
0a7de745 A |
3030 | cur_upl++; |
3031 | goto next_cwrite; | |
2d21ac55 | 3032 | } |
0a7de745 A |
3033 | } else { |
3034 | *write_type = IO_UNKNOWN; | |
3035 | } | |
2d21ac55 A |
3036 | |
3037 | wait_for_cwrites: | |
b4c24cb9 | 3038 | /* |
0a7de745 A |
3039 | * make sure all async writes that are part of this stream |
3040 | * have completed before we proceed | |
3041 | */ | |
fe8ab488 | 3042 | cluster_iostate_wait(&iostate, 0, "cluster_write_contig"); |
cf7d32b8 | 3043 | |
0a7de745 A |
3044 | if (iostate.io_error) { |
3045 | error = iostate.io_error; | |
3046 | } | |
2d21ac55 | 3047 | |
6d2010ae A |
3048 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
3049 | ||
0a7de745 A |
3050 | if (error == 0 && tail_size) { |
3051 | error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg); | |
3052 | } | |
2d21ac55 | 3053 | |
0a7de745 A |
3054 | for (n = 0; n < num_upl; n++) { |
3055 | /* | |
2d21ac55 A |
3056 | * just release our hold on each physically contiguous |
3057 | * region without changing any state | |
3058 | */ | |
0a7de745 A |
3059 | ubc_upl_abort(upl[n], 0); |
3060 | } | |
0b4e3aa0 | 3061 | |
0a7de745 | 3062 | return error; |
0b4e3aa0 A |
3063 | } |
3064 | ||
b4c24cb9 | 3065 | |
b0d623f7 A |
3066 | /* |
3067 | * need to avoid a race between an msync of a range of pages dirtied via mmap | |
3068 | * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's | |
3069 | * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd | |
3070 | * | |
3071 | * we should never force-zero-fill pages that are already valid in the cache... | |
3072 | * the entire page contains valid data (either from disk, zero-filled or dirtied | |
3073 | * via an mmap) so we can only do damage by trying to zero-fill | |
3074 | * | |
3075 | */ | |
3076 | static int | |
3077 | cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero) | |
3078 | { | |
3079 | int zero_pg_index; | |
3080 | boolean_t need_cluster_zero = TRUE; | |
3081 | ||
0a7de745 A |
3082 | if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { |
3083 | bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); | |
b0d623f7 A |
3084 | zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); |
3085 | ||
3086 | if (upl_valid_page(pl, zero_pg_index)) { | |
3087 | /* | |
3088 | * never force zero valid pages - dirty or clean | |
3089 | * we'll leave these in the UPL for cluster_write_copy to deal with | |
3090 | */ | |
3091 | need_cluster_zero = FALSE; | |
0a7de745 | 3092 | } |
b0d623f7 | 3093 | } |
0a7de745 | 3094 | if (need_cluster_zero == TRUE) { |
b0d623f7 | 3095 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); |
0a7de745 | 3096 | } |
b0d623f7 | 3097 | |
0a7de745 | 3098 | return bytes_to_zero; |
b0d623f7 A |
3099 | } |
3100 | ||
3101 | ||
d9a64523 A |
3102 | void |
3103 | cluster_update_state(vnode_t vp, vm_object_offset_t s_offset, vm_object_offset_t e_offset, boolean_t vm_initiated) | |
3104 | { | |
3105 | struct cl_extent cl; | |
3106 | boolean_t first_pass = TRUE; | |
3107 | ||
3108 | assert(s_offset < e_offset); | |
3109 | assert((s_offset & PAGE_MASK_64) == 0); | |
3110 | assert((e_offset & PAGE_MASK_64) == 0); | |
3111 | ||
3112 | cl.b_addr = (daddr64_t)(s_offset / PAGE_SIZE_64); | |
3113 | cl.e_addr = (daddr64_t)(e_offset / PAGE_SIZE_64); | |
3114 | ||
3115 | cluster_update_state_internal(vp, &cl, 0, TRUE, &first_pass, s_offset, (int)(e_offset - s_offset), | |
0a7de745 | 3116 | vp->v_un.vu_ubcinfo->ui_size, NULL, NULL, vm_initiated); |
d9a64523 A |
3117 | } |
3118 | ||
3119 | ||
3120 | static void | |
3121 | cluster_update_state_internal(vnode_t vp, struct cl_extent *cl, int flags, boolean_t defer_writes, | |
0a7de745 A |
3122 | boolean_t *first_pass, off_t write_off, int write_cnt, off_t newEOF, |
3123 | int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) | |
d9a64523 A |
3124 | { |
3125 | struct cl_writebehind *wbp; | |
0a7de745 A |
3126 | int cl_index; |
3127 | int ret_cluster_try_push; | |
3128 | u_int max_cluster_pgcount; | |
d9a64523 A |
3129 | |
3130 | ||
3131 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; | |
3132 | ||
3133 | /* | |
3134 | * take the lock to protect our accesses | |
3135 | * of the writebehind and sparse cluster state | |
3136 | */ | |
3137 | wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); | |
3138 | ||
3139 | if (wbp->cl_scmap) { | |
0a7de745 A |
3140 | if (!(flags & IO_NOCACHE)) { |
3141 | /* | |
d9a64523 A |
3142 | * we've fallen into the sparse |
3143 | * cluster method of delaying dirty pages | |
3144 | */ | |
0a7de745 | 3145 | sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, cl, newEOF, callback, callback_arg, vm_initiated); |
d9a64523 A |
3146 | |
3147 | lck_mtx_unlock(&wbp->cl_lockw); | |
3148 | return; | |
3149 | } | |
3150 | /* | |
3151 | * must have done cached writes that fell into | |
3152 | * the sparse cluster mechanism... we've switched | |
3153 | * to uncached writes on the file, so go ahead | |
3154 | * and push whatever's in the sparse map | |
3155 | * and switch back to normal clustering | |
3156 | */ | |
3157 | wbp->cl_number = 0; | |
3158 | ||
3159 | sparse_cluster_push(wbp, &(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg, vm_initiated); | |
3160 | /* | |
3161 | * no clusters of either type present at this point | |
3162 | * so just go directly to start_new_cluster since | |
3163 | * we know we need to delay this I/O since we've | |
3164 | * already released the pages back into the cache | |
3165 | * to avoid the deadlock with sparse_cluster_push | |
3166 | */ | |
3167 | goto start_new_cluster; | |
3168 | } | |
3169 | if (*first_pass == TRUE) { | |
0a7de745 | 3170 | if (write_off == wbp->cl_last_write) { |
d9a64523 | 3171 | wbp->cl_seq_written += write_cnt; |
0a7de745 | 3172 | } else { |
d9a64523 | 3173 | wbp->cl_seq_written = write_cnt; |
0a7de745 | 3174 | } |
d9a64523 A |
3175 | |
3176 | wbp->cl_last_write = write_off + write_cnt; | |
3177 | ||
3178 | *first_pass = FALSE; | |
3179 | } | |
0a7de745 | 3180 | if (wbp->cl_number == 0) { |
d9a64523 A |
3181 | /* |
3182 | * no clusters currently present | |
3183 | */ | |
3184 | goto start_new_cluster; | |
0a7de745 | 3185 | } |
d9a64523 A |
3186 | |
3187 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
3188 | /* | |
3189 | * check each cluster that we currently hold | |
3190 | * try to merge some or all of this write into | |
3191 | * one or more of the existing clusters... if | |
3192 | * any portion of the write remains, start a | |
3193 | * new cluster | |
3194 | */ | |
3195 | if (cl->b_addr >= wbp->cl_clusters[cl_index].b_addr) { | |
3196 | /* | |
3197 | * the current write starts at or after the current cluster | |
3198 | */ | |
3199 | if (cl->e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { | |
3200 | /* | |
3201 | * we have a write that fits entirely | |
3202 | * within the existing cluster limits | |
3203 | */ | |
0a7de745 | 3204 | if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr) { |
d9a64523 A |
3205 | /* |
3206 | * update our idea of where the cluster ends | |
3207 | */ | |
3208 | wbp->cl_clusters[cl_index].e_addr = cl->e_addr; | |
0a7de745 | 3209 | } |
d9a64523 A |
3210 | break; |
3211 | } | |
3212 | if (cl->b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { | |
3213 | /* | |
3214 | * we have a write that starts in the middle of the current cluster | |
3215 | * but extends beyond the cluster's limit... we know this because | |
3216 | * of the previous checks | |
3217 | * we'll extend the current cluster to the max | |
3218 | * and update the b_addr for the current write to reflect that | |
3219 | * the head of it was absorbed into this cluster... | |
3220 | * note that we'll always have a leftover tail in this case since | |
3221 | * full absorbtion would have occurred in the clause above | |
3222 | */ | |
3223 | wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount; | |
3224 | ||
3225 | cl->b_addr = wbp->cl_clusters[cl_index].e_addr; | |
3226 | } | |
3227 | /* | |
3228 | * we come here for the case where the current write starts | |
3229 | * beyond the limit of the existing cluster or we have a leftover | |
3230 | * tail after a partial absorbtion | |
3231 | * | |
0a7de745 | 3232 | * in either case, we'll check the remaining clusters before |
d9a64523 A |
3233 | * starting a new one |
3234 | */ | |
3235 | } else { | |
3236 | /* | |
3237 | * the current write starts in front of the cluster we're currently considering | |
3238 | */ | |
3239 | if ((wbp->cl_clusters[cl_index].e_addr - cl->b_addr) <= max_cluster_pgcount) { | |
3240 | /* | |
3241 | * we can just merge the new request into | |
3242 | * this cluster and leave it in the cache | |
0a7de745 | 3243 | * since the resulting cluster is still |
d9a64523 A |
3244 | * less than the maximum allowable size |
3245 | */ | |
3246 | wbp->cl_clusters[cl_index].b_addr = cl->b_addr; | |
3247 | ||
3248 | if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr) { | |
3249 | /* | |
3250 | * the current write completely | |
3251 | * envelops the existing cluster and since | |
3252 | * each write is limited to at most max_cluster_pgcount pages | |
3253 | * we can just use the start and last blocknos of the write | |
3254 | * to generate the cluster limits | |
3255 | */ | |
3256 | wbp->cl_clusters[cl_index].e_addr = cl->e_addr; | |
3257 | } | |
3258 | break; | |
3259 | } | |
3260 | /* | |
3261 | * if we were to combine this write with the current cluster | |
3262 | * we would exceed the cluster size limit.... so, | |
3263 | * let's see if there's any overlap of the new I/O with | |
3264 | * the cluster we're currently considering... in fact, we'll | |
3265 | * stretch the cluster out to it's full limit and see if we | |
3266 | * get an intersection with the current write | |
0a7de745 | 3267 | * |
d9a64523 A |
3268 | */ |
3269 | if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) { | |
3270 | /* | |
3271 | * the current write extends into the proposed cluster | |
3272 | * clip the length of the current write after first combining it's | |
3273 | * tail with the newly shaped cluster | |
3274 | */ | |
3275 | wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount; | |
3276 | ||
3277 | cl->e_addr = wbp->cl_clusters[cl_index].b_addr; | |
3278 | } | |
3279 | /* | |
3280 | * if we get here, there was no way to merge | |
0a7de745 A |
3281 | * any portion of this write with this cluster |
3282 | * or we could only merge part of it which | |
d9a64523 A |
3283 | * will leave a tail... |
3284 | * we'll check the remaining clusters before starting a new one | |
3285 | */ | |
3286 | } | |
3287 | } | |
0a7de745 | 3288 | if (cl_index < wbp->cl_number) { |
d9a64523 A |
3289 | /* |
3290 | * we found an existing cluster(s) that we | |
3291 | * could entirely merge this I/O into | |
3292 | */ | |
3293 | goto delay_io; | |
0a7de745 | 3294 | } |
d9a64523 A |
3295 | |
3296 | if (defer_writes == FALSE && | |
3297 | wbp->cl_number == MAX_CLUSTERS && | |
3298 | wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) { | |
0a7de745 | 3299 | uint32_t n; |
d9a64523 A |
3300 | |
3301 | if (vp->v_mount->mnt_minsaturationbytecount) { | |
3302 | n = vp->v_mount->mnt_minsaturationbytecount / MAX_CLUSTER_SIZE(vp); | |
0a7de745 A |
3303 | |
3304 | if (n > MAX_CLUSTERS) { | |
d9a64523 | 3305 | n = MAX_CLUSTERS; |
0a7de745 A |
3306 | } |
3307 | } else { | |
d9a64523 | 3308 | n = 0; |
0a7de745 | 3309 | } |
d9a64523 A |
3310 | |
3311 | if (n == 0) { | |
0a7de745 | 3312 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) { |
d9a64523 | 3313 | n = WRITE_BEHIND_SSD; |
0a7de745 | 3314 | } else { |
d9a64523 | 3315 | n = WRITE_BEHIND; |
0a7de745 A |
3316 | } |
3317 | } | |
3318 | while (n--) { | |
3319 | cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg, NULL, vm_initiated); | |
d9a64523 | 3320 | } |
d9a64523 A |
3321 | } |
3322 | if (wbp->cl_number < MAX_CLUSTERS) { | |
3323 | /* | |
3324 | * we didn't find an existing cluster to | |
3325 | * merge into, but there's room to start | |
3326 | * a new one | |
3327 | */ | |
3328 | goto start_new_cluster; | |
3329 | } | |
3330 | /* | |
3331 | * no exisitng cluster to merge with and no | |
0a7de745 | 3332 | * room to start a new one... we'll try |
d9a64523 A |
3333 | * pushing one of the existing ones... if none of |
3334 | * them are able to be pushed, we'll switch | |
3335 | * to the sparse cluster mechanism | |
3336 | * cluster_try_push updates cl_number to the | |
3337 | * number of remaining clusters... and | |
3338 | * returns the number of currently unused clusters | |
3339 | */ | |
3340 | ret_cluster_try_push = 0; | |
3341 | ||
3342 | /* | |
3343 | * if writes are not deferred, call cluster push immediately | |
3344 | */ | |
3345 | if (defer_writes == FALSE) { | |
0a7de745 | 3346 | ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg, NULL, vm_initiated); |
d9a64523 A |
3347 | } |
3348 | /* | |
3349 | * execute following regardless of writes being deferred or not | |
3350 | */ | |
3351 | if (ret_cluster_try_push == 0) { | |
3352 | /* | |
3353 | * no more room in the normal cluster mechanism | |
3354 | * so let's switch to the more expansive but expensive | |
3355 | * sparse mechanism.... | |
3356 | */ | |
0a7de745 | 3357 | sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg, vm_initiated); |
d9a64523 | 3358 | sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, cl, newEOF, callback, callback_arg, vm_initiated); |
0a7de745 | 3359 | |
d9a64523 A |
3360 | lck_mtx_unlock(&wbp->cl_lockw); |
3361 | return; | |
3362 | } | |
3363 | start_new_cluster: | |
3364 | wbp->cl_clusters[wbp->cl_number].b_addr = cl->b_addr; | |
3365 | wbp->cl_clusters[wbp->cl_number].e_addr = cl->e_addr; | |
3366 | ||
3367 | wbp->cl_clusters[wbp->cl_number].io_flags = 0; | |
3368 | ||
0a7de745 | 3369 | if (flags & IO_NOCACHE) { |
d9a64523 | 3370 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE; |
0a7de745 | 3371 | } |
d9a64523 | 3372 | |
0a7de745 | 3373 | if (flags & IO_PASSIVE) { |
d9a64523 | 3374 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE; |
0a7de745 | 3375 | } |
d9a64523 A |
3376 | |
3377 | wbp->cl_number++; | |
3378 | delay_io: | |
3379 | lck_mtx_unlock(&wbp->cl_lockw); | |
3380 | return; | |
3381 | } | |
3382 | ||
3383 | ||
9bccf70c | 3384 | static int |
2d21ac55 | 3385 | cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff, |
0a7de745 | 3386 | off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
3387 | { |
3388 | upl_page_info_t *pl; | |
3389 | upl_t upl; | |
91447636 | 3390 | vm_offset_t upl_offset = 0; |
0a7de745 A |
3391 | vm_size_t upl_size; |
3392 | off_t upl_f_offset; | |
1c79356b | 3393 | int pages_in_upl; |
0a7de745 | 3394 | int start_offset; |
1c79356b A |
3395 | int xfer_resid; |
3396 | int io_size; | |
1c79356b A |
3397 | int io_offset; |
3398 | int bytes_to_zero; | |
3399 | int bytes_to_move; | |
3400 | kern_return_t kret; | |
3401 | int retval = 0; | |
91447636 | 3402 | int io_resid; |
1c79356b A |
3403 | long long total_size; |
3404 | long long zero_cnt; | |
3405 | off_t zero_off; | |
3406 | long long zero_cnt1; | |
3407 | off_t zero_off1; | |
0a7de745 A |
3408 | off_t write_off = 0; |
3409 | int write_cnt = 0; | |
3410 | boolean_t first_pass = FALSE; | |
91447636 | 3411 | struct cl_extent cl; |
2d21ac55 | 3412 | int bflag; |
0a7de745 | 3413 | u_int max_io_size; |
1c79356b A |
3414 | |
3415 | if (uio) { | |
0a7de745 A |
3416 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, |
3417 | (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0); | |
1c79356b | 3418 | |
0a7de745 | 3419 | io_resid = io_req_size; |
1c79356b | 3420 | } else { |
0a7de745 A |
3421 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, |
3422 | 0, 0, (int)oldEOF, (int)newEOF, 0); | |
1c79356b | 3423 | |
0a7de745 | 3424 | io_resid = 0; |
1c79356b | 3425 | } |
0a7de745 | 3426 | if (flags & IO_PASSIVE) { |
b0d623f7 | 3427 | bflag = CL_PASSIVE; |
0a7de745 | 3428 | } else { |
b0d623f7 | 3429 | bflag = 0; |
0a7de745 A |
3430 | } |
3431 | if (flags & IO_NOCACHE) { | |
316670eb | 3432 | bflag |= CL_NOCACHE; |
0a7de745 A |
3433 | } |
3434 | ||
3435 | if (flags & IO_SKIP_ENCRYPTION) { | |
fe8ab488 | 3436 | bflag |= CL_ENCRYPTED; |
0a7de745 | 3437 | } |
fe8ab488 | 3438 | |
1c79356b A |
3439 | zero_cnt = 0; |
3440 | zero_cnt1 = 0; | |
91447636 A |
3441 | zero_off = 0; |
3442 | zero_off1 = 0; | |
1c79356b | 3443 | |
cf7d32b8 A |
3444 | max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE); |
3445 | ||
1c79356b | 3446 | if (flags & IO_HEADZEROFILL) { |
0a7de745 | 3447 | /* |
1c79356b A |
3448 | * some filesystems (HFS is one) don't support unallocated holes within a file... |
3449 | * so we zero fill the intervening space between the old EOF and the offset | |
3450 | * where the next chunk of real data begins.... ftruncate will also use this | |
3451 | * routine to zero fill to the new EOF when growing a file... in this case, the | |
3452 | * uio structure will not be provided | |
3453 | */ | |
0a7de745 A |
3454 | if (uio) { |
3455 | if (headOff < uio->uio_offset) { | |
3456 | zero_cnt = uio->uio_offset - headOff; | |
1c79356b A |
3457 | zero_off = headOff; |
3458 | } | |
0a7de745 A |
3459 | } else if (headOff < newEOF) { |
3460 | zero_cnt = newEOF - headOff; | |
1c79356b A |
3461 | zero_off = headOff; |
3462 | } | |
b0d623f7 A |
3463 | } else { |
3464 | if (uio && uio->uio_offset > oldEOF) { | |
3465 | zero_off = uio->uio_offset & ~PAGE_MASK_64; | |
3466 | ||
3467 | if (zero_off >= oldEOF) { | |
3468 | zero_cnt = uio->uio_offset - zero_off; | |
3469 | ||
3470 | flags |= IO_HEADZEROFILL; | |
3471 | } | |
3472 | } | |
1c79356b A |
3473 | } |
3474 | if (flags & IO_TAILZEROFILL) { | |
0a7de745 A |
3475 | if (uio) { |
3476 | zero_off1 = uio->uio_offset + io_req_size; | |
1c79356b | 3477 | |
0a7de745 A |
3478 | if (zero_off1 < tailOff) { |
3479 | zero_cnt1 = tailOff - zero_off1; | |
3480 | } | |
3481 | } | |
b0d623f7 A |
3482 | } else { |
3483 | if (uio && newEOF > oldEOF) { | |
0a7de745 | 3484 | zero_off1 = uio->uio_offset + io_req_size; |
b0d623f7 A |
3485 | |
3486 | if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) { | |
3487 | zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64); | |
3488 | ||
3489 | flags |= IO_TAILZEROFILL; | |
3490 | } | |
3491 | } | |
1c79356b | 3492 | } |
55e303ae | 3493 | if (zero_cnt == 0 && uio == (struct uio *) 0) { |
0a7de745 A |
3494 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, |
3495 | retval, 0, 0, 0, 0); | |
3496 | return 0; | |
55e303ae | 3497 | } |
6d2010ae A |
3498 | if (uio) { |
3499 | write_off = uio->uio_offset; | |
3500 | write_cnt = uio_resid(uio); | |
3501 | /* | |
3502 | * delay updating the sequential write info | |
3503 | * in the control block until we've obtained | |
3504 | * the lock for it | |
3505 | */ | |
3506 | first_pass = TRUE; | |
3507 | } | |
91447636 | 3508 | while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { |
0a7de745 | 3509 | /* |
1c79356b A |
3510 | * for this iteration of the loop, figure out where our starting point is |
3511 | */ | |
0a7de745 A |
3512 | if (zero_cnt) { |
3513 | start_offset = (int)(zero_off & PAGE_MASK_64); | |
1c79356b | 3514 | upl_f_offset = zero_off - start_offset; |
91447636 | 3515 | } else if (io_resid) { |
0a7de745 | 3516 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); |
1c79356b A |
3517 | upl_f_offset = uio->uio_offset - start_offset; |
3518 | } else { | |
0a7de745 | 3519 | start_offset = (int)(zero_off1 & PAGE_MASK_64); |
1c79356b A |
3520 | upl_f_offset = zero_off1 - start_offset; |
3521 | } | |
0a7de745 A |
3522 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, |
3523 | (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); | |
1c79356b | 3524 | |
0a7de745 A |
3525 | if (total_size > max_io_size) { |
3526 | total_size = max_io_size; | |
3527 | } | |
1c79356b | 3528 | |
91447636 | 3529 | cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); |
0a7de745 | 3530 | |
2d21ac55 | 3531 | if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { |
0a7de745 | 3532 | /* |
91447636 | 3533 | * assumption... total_size <= io_resid |
55e303ae A |
3534 | * because IO_HEADZEROFILL and IO_TAILZEROFILL not set |
3535 | */ | |
0a7de745 A |
3536 | if ((start_offset + total_size) > max_io_size) { |
3537 | total_size = max_io_size - start_offset; | |
3538 | } | |
3539 | xfer_resid = total_size; | |
55e303ae | 3540 | |
0a7de745 | 3541 | retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1); |
b0d623f7 | 3542 | |
0a7de745 A |
3543 | if (retval) { |
3544 | break; | |
3545 | } | |
55e303ae | 3546 | |
2d21ac55 | 3547 | io_resid -= (total_size - xfer_resid); |
55e303ae A |
3548 | total_size = xfer_resid; |
3549 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
3550 | upl_f_offset = uio->uio_offset - start_offset; | |
3551 | ||
3552 | if (total_size == 0) { | |
0a7de745 A |
3553 | if (start_offset) { |
3554 | /* | |
55e303ae A |
3555 | * the write did not finish on a page boundary |
3556 | * which will leave upl_f_offset pointing to the | |
3557 | * beginning of the last page written instead of | |
3558 | * the page beyond it... bump it in this case | |
3559 | * so that the cluster code records the last page | |
3560 | * written as dirty | |
3561 | */ | |
0a7de745 | 3562 | upl_f_offset += PAGE_SIZE_64; |
55e303ae | 3563 | } |
0a7de745 A |
3564 | upl_size = 0; |
3565 | ||
3566 | goto check_cluster; | |
55e303ae A |
3567 | } |
3568 | } | |
1c79356b A |
3569 | /* |
3570 | * compute the size of the upl needed to encompass | |
3571 | * the requested write... limit each call to cluster_io | |
0b4e3aa0 A |
3572 | * to the maximum UPL size... cluster_io will clip if |
3573 | * this exceeds the maximum io_size for the device, | |
0a7de745 | 3574 | * make sure to account for |
1c79356b A |
3575 | * a starting offset that's not page aligned |
3576 | */ | |
3577 | upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
3578 | ||
0a7de745 A |
3579 | if (upl_size > max_io_size) { |
3580 | upl_size = max_io_size; | |
3581 | } | |
1c79356b A |
3582 | |
3583 | pages_in_upl = upl_size / PAGE_SIZE; | |
3584 | io_size = upl_size - start_offset; | |
0a7de745 A |
3585 | |
3586 | if ((long long)io_size > total_size) { | |
3587 | io_size = total_size; | |
3588 | } | |
1c79356b | 3589 | |
55e303ae | 3590 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); |
0a7de745 | 3591 | |
1c79356b | 3592 | |
91447636 A |
3593 | /* |
3594 | * Gather the pages from the buffer cache. | |
3595 | * The UPL_WILL_MODIFY flag lets the UPL subsystem know | |
3596 | * that we intend to modify these pages. | |
3597 | */ | |
5ba3f43e | 3598 | kret = ubc_create_upl_kernel(vp, |
0a7de745 A |
3599 | upl_f_offset, |
3600 | upl_size, | |
3601 | &upl, | |
3602 | &pl, | |
3603 | UPL_SET_LITE | ((uio != NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY), | |
3604 | VM_KERN_MEMORY_FILE); | |
3605 | if (kret != KERN_SUCCESS) { | |
2d21ac55 | 3606 | panic("cluster_write_copy: failed to get pagelist"); |
0a7de745 | 3607 | } |
1c79356b | 3608 | |
55e303ae | 3609 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, |
0a7de745 | 3610 | upl, (int)upl_f_offset, start_offset, 0, 0); |
1c79356b | 3611 | |
b0d623f7 | 3612 | if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) { |
0b4e3aa0 | 3613 | int read_size; |
1c79356b | 3614 | |
0b4e3aa0 | 3615 | /* |
1c79356b A |
3616 | * we're starting in the middle of the first page of the upl |
3617 | * and the page isn't currently valid, so we're going to have | |
3618 | * to read it in first... this is a synchronous operation | |
3619 | */ | |
3620 | read_size = PAGE_SIZE; | |
3621 | ||
0a7de745 A |
3622 | if ((upl_f_offset + read_size) > oldEOF) { |
3623 | read_size = oldEOF - upl_f_offset; | |
3624 | } | |
9bccf70c | 3625 | |
0a7de745 A |
3626 | retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, |
3627 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
1c79356b | 3628 | if (retval) { |
0b4e3aa0 | 3629 | /* |
1c79356b A |
3630 | * we had an error during the read which causes us to abort |
3631 | * the current cluster_write request... before we do, we need | |
3632 | * to release the rest of the pages in the upl without modifying | |
3633 | * there state and mark the failed page in error | |
3634 | */ | |
0a7de745 | 3635 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
91447636 | 3636 | |
0a7de745 A |
3637 | if (upl_size > PAGE_SIZE) { |
3638 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
3639 | } | |
1c79356b A |
3640 | |
3641 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
0a7de745 | 3642 | upl, 0, 0, retval, 0); |
1c79356b A |
3643 | break; |
3644 | } | |
3645 | } | |
3646 | if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) { | |
0a7de745 | 3647 | /* |
1c79356b A |
3648 | * the last offset we're writing to in this upl does not end on a page |
3649 | * boundary... if it's not beyond the old EOF, then we'll also need to | |
3650 | * pre-read this page in if it isn't already valid | |
3651 | */ | |
0a7de745 | 3652 | upl_offset = upl_size - PAGE_SIZE; |
1c79356b | 3653 | |
0a7de745 | 3654 | if ((upl_f_offset + start_offset + io_size) < oldEOF && |
1c79356b | 3655 | !upl_valid_page(pl, upl_offset / PAGE_SIZE)) { |
0a7de745 | 3656 | int read_size; |
1c79356b A |
3657 | |
3658 | read_size = PAGE_SIZE; | |
3659 | ||
0a7de745 A |
3660 | if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF) { |
3661 | read_size = oldEOF - (upl_f_offset + upl_offset); | |
3662 | } | |
9bccf70c | 3663 | |
0a7de745 A |
3664 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, |
3665 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
1c79356b | 3666 | if (retval) { |
0b4e3aa0 | 3667 | /* |
1c79356b | 3668 | * we had an error during the read which causes us to abort |
0b4e3aa0 A |
3669 | * the current cluster_write request... before we do, we |
3670 | * need to release the rest of the pages in the upl without | |
3671 | * modifying there state and mark the failed page in error | |
1c79356b | 3672 | */ |
0a7de745 | 3673 | ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
91447636 | 3674 | |
0a7de745 A |
3675 | if (upl_size > PAGE_SIZE) { |
3676 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
3677 | } | |
1c79356b A |
3678 | |
3679 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
0a7de745 | 3680 | upl, 0, 0, retval, 0); |
1c79356b A |
3681 | break; |
3682 | } | |
3683 | } | |
3684 | } | |
1c79356b A |
3685 | xfer_resid = io_size; |
3686 | io_offset = start_offset; | |
3687 | ||
3688 | while (zero_cnt && xfer_resid) { | |
0a7de745 A |
3689 | if (zero_cnt < (long long)xfer_resid) { |
3690 | bytes_to_zero = zero_cnt; | |
3691 | } else { | |
3692 | bytes_to_zero = xfer_resid; | |
3693 | } | |
1c79356b | 3694 | |
b0d623f7 | 3695 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero); |
9bccf70c | 3696 | |
1c79356b A |
3697 | xfer_resid -= bytes_to_zero; |
3698 | zero_cnt -= bytes_to_zero; | |
3699 | zero_off += bytes_to_zero; | |
3700 | io_offset += bytes_to_zero; | |
3701 | } | |
91447636 | 3702 | if (xfer_resid && io_resid) { |
0a7de745 | 3703 | u_int32_t io_requested; |
2d21ac55 | 3704 | |
91447636 | 3705 | bytes_to_move = min(io_resid, xfer_resid); |
2d21ac55 | 3706 | io_requested = bytes_to_move; |
1c79356b | 3707 | |
2d21ac55 | 3708 | retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested); |
9bccf70c | 3709 | |
1c79356b | 3710 | if (retval) { |
d9a64523 | 3711 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); |
1c79356b A |
3712 | |
3713 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
0a7de745 | 3714 | upl, 0, 0, retval, 0); |
1c79356b | 3715 | } else { |
0a7de745 | 3716 | io_resid -= bytes_to_move; |
1c79356b A |
3717 | xfer_resid -= bytes_to_move; |
3718 | io_offset += bytes_to_move; | |
3719 | } | |
3720 | } | |
3721 | while (xfer_resid && zero_cnt1 && retval == 0) { | |
0a7de745 A |
3722 | if (zero_cnt1 < (long long)xfer_resid) { |
3723 | bytes_to_zero = zero_cnt1; | |
3724 | } else { | |
3725 | bytes_to_zero = xfer_resid; | |
3726 | } | |
1c79356b | 3727 | |
b0d623f7 A |
3728 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero); |
3729 | ||
1c79356b A |
3730 | xfer_resid -= bytes_to_zero; |
3731 | zero_cnt1 -= bytes_to_zero; | |
3732 | zero_off1 += bytes_to_zero; | |
3733 | io_offset += bytes_to_zero; | |
3734 | } | |
1c79356b | 3735 | if (retval == 0) { |
a39ff7e2 | 3736 | int do_zeroing = 1; |
0a7de745 | 3737 | |
a39ff7e2 | 3738 | io_size += start_offset; |
1c79356b | 3739 | |
a39ff7e2 A |
3740 | /* Force more restrictive zeroing behavior only on APFS */ |
3741 | if ((vnode_tag(vp) == VT_APFS) && (newEOF < oldEOF)) { | |
3742 | do_zeroing = 0; | |
3743 | } | |
3744 | ||
a39ff7e2 | 3745 | if (do_zeroing && (upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) { |
a39ff7e2 | 3746 | /* |
1c79356b A |
3747 | * if we're extending the file with this write |
3748 | * we'll zero fill the rest of the page so that | |
3749 | * if the file gets extended again in such a way as to leave a | |
3750 | * hole starting at this EOF, we'll have zero's in the correct spot | |
3751 | */ | |
0a7de745 | 3752 | cluster_zero(upl, io_size, upl_size - io_size, NULL); |
1c79356b | 3753 | } |
935ed37a A |
3754 | /* |
3755 | * release the upl now if we hold one since... | |
3756 | * 1) pages in it may be present in the sparse cluster map | |
0a7de745 | 3757 | * and may span 2 separate buckets there... if they do and |
935ed37a A |
3758 | * we happen to have to flush a bucket to make room and it intersects |
3759 | * this upl, a deadlock may result on page BUSY | |
3760 | * 2) we're delaying the I/O... from this point forward we're just updating | |
3761 | * the cluster state... no need to hold the pages, so commit them | |
3762 | * 3) IO_SYNC is set... | |
3763 | * because we had to ask for a UPL that provides currenty non-present pages, the | |
3764 | * UPL has been automatically set to clear the dirty flags (both software and hardware) | |
3765 | * upon committing it... this is not the behavior we want since it's possible for | |
3766 | * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. | |
3767 | * we'll pick these pages back up later with the correct behavior specified. | |
3768 | * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush | |
3769 | * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages | |
3770 | * we hold since the flushing context is holding the cluster lock. | |
3771 | */ | |
3772 | ubc_upl_commit_range(upl, 0, upl_size, | |
0a7de745 | 3773 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); |
935ed37a A |
3774 | check_cluster: |
3775 | /* | |
0a7de745 | 3776 | * calculate the last logical block number |
935ed37a A |
3777 | * that this delayed I/O encompassed |
3778 | */ | |
3779 | cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); | |
3780 | ||
b0d623f7 | 3781 | if (flags & IO_SYNC) { |
55e303ae | 3782 | /* |
d9a64523 A |
3783 | * if the IO_SYNC flag is set than we need to bypass |
3784 | * any clustering and immediately issue the I/O | |
3785 | * | |
3786 | * we don't hold the lock at this point | |
3787 | * | |
3788 | * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set | |
3789 | * so that we correctly deal with a change in state of the hardware modify bit... | |
3790 | * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force | |
3791 | * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also | |
3792 | * responsible for generating the correct sized I/O(s) | |
55e303ae | 3793 | */ |
0a7de745 | 3794 | retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg, FALSE); |
d9a64523 A |
3795 | } else { |
3796 | boolean_t defer_writes = FALSE; | |
91447636 | 3797 | |
0a7de745 | 3798 | if (vfs_flags(vp->v_mount) & MNT_DEFWRITE) { |
d9a64523 | 3799 | defer_writes = TRUE; |
0a7de745 | 3800 | } |
55e303ae | 3801 | |
d9a64523 | 3802 | cluster_update_state_internal(vp, &cl, flags, defer_writes, &first_pass, |
0a7de745 | 3803 | write_off, write_cnt, newEOF, callback, callback_arg, FALSE); |
9bccf70c | 3804 | } |
1c79356b A |
3805 | } |
3806 | } | |
2d21ac55 | 3807 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0); |
1c79356b | 3808 | |
0a7de745 | 3809 | return retval; |
1c79356b A |
3810 | } |
3811 | ||
2d21ac55 A |
3812 | |
3813 | ||
9bccf70c | 3814 | int |
91447636 | 3815 | cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) |
1c79356b | 3816 | { |
0a7de745 | 3817 | return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL); |
2d21ac55 A |
3818 | } |
3819 | ||
3820 | ||
3821 | int | |
3822 | cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
3823 | { | |
0a7de745 A |
3824 | int retval = 0; |
3825 | int flags; | |
3826 | user_ssize_t cur_resid; | |
3827 | u_int32_t io_size; | |
3828 | u_int32_t read_length = 0; | |
3829 | int read_type = IO_COPY; | |
1c79356b | 3830 | |
91447636 | 3831 | flags = xflags; |
1c79356b | 3832 | |
0a7de745 A |
3833 | if (vp->v_flag & VNOCACHE_DATA) { |
3834 | flags |= IO_NOCACHE; | |
3835 | } | |
3836 | if ((vp->v_flag & VRAOFF) || speculative_reads_disabled) { | |
3837 | flags |= IO_RAOFF; | |
3838 | } | |
3e170ce0 | 3839 | |
0a7de745 | 3840 | if (flags & IO_SKIP_ENCRYPTION) { |
fe8ab488 | 3841 | flags |= IO_ENCRYPTED; |
0a7de745 | 3842 | } |
91447636 | 3843 | |
316670eb | 3844 | /* |
2d21ac55 A |
3845 | * do a read through the cache if one of the following is true.... |
3846 | * NOCACHE is not true | |
3847 | * the uio request doesn't target USERSPACE | |
316670eb A |
3848 | * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well. |
3849 | * Reading encrypted data from a CP filesystem should never result in the data touching | |
3850 | * the UBC. | |
3851 | * | |
2d21ac55 A |
3852 | * otherwise, find out if we want the direct or contig variant for |
3853 | * the first vector in the uio request | |
3854 | */ | |
0a7de745 | 3855 | if (((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED)) { |
fe8ab488 | 3856 | retval = cluster_io_type(uio, &read_type, &read_length, 0); |
316670eb | 3857 | } |
39037602 | 3858 | |
2d21ac55 | 3859 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) { |
2d21ac55 | 3860 | switch (read_type) { |
2d21ac55 | 3861 | case IO_COPY: |
0a7de745 | 3862 | /* |
2d21ac55 A |
3863 | * make sure the uio_resid isn't too big... |
3864 | * internally, we want to handle all of the I/O in | |
3865 | * chunk sizes that fit in a 32 bit int | |
91447636 | 3866 | */ |
0a7de745 A |
3867 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { |
3868 | io_size = MAX_IO_REQUEST_SIZE; | |
3869 | } else { | |
3870 | io_size = (u_int32_t)cur_resid; | |
3871 | } | |
91447636 | 3872 | |
2d21ac55 A |
3873 | retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg); |
3874 | break; | |
1c79356b | 3875 | |
2d21ac55 | 3876 | case IO_DIRECT: |
0a7de745 | 3877 | retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg); |
2d21ac55 | 3878 | break; |
91447636 | 3879 | |
2d21ac55 | 3880 | case IO_CONTIG: |
0a7de745 | 3881 | retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags); |
2d21ac55 | 3882 | break; |
0a7de745 | 3883 | |
2d21ac55 | 3884 | case IO_UNKNOWN: |
0a7de745 | 3885 | retval = cluster_io_type(uio, &read_type, &read_length, 0); |
2d21ac55 A |
3886 | break; |
3887 | } | |
3888 | } | |
0a7de745 | 3889 | return retval; |
2d21ac55 | 3890 | } |
91447636 | 3891 | |
91447636 | 3892 | |
91447636 | 3893 | |
2d21ac55 | 3894 | static void |
b0d623f7 | 3895 | cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference) |
2d21ac55 A |
3896 | { |
3897 | int range; | |
3898 | int abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
1c79356b | 3899 | |
2d21ac55 | 3900 | if ((range = last_pg - start_pg)) { |
0a7de745 | 3901 | if (take_reference) { |
2d21ac55 | 3902 | abort_flags |= UPL_ABORT_REFERENCE; |
0a7de745 | 3903 | } |
2d21ac55 A |
3904 | |
3905 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags); | |
3906 | } | |
1c79356b A |
3907 | } |
3908 | ||
2d21ac55 | 3909 | |
9bccf70c | 3910 | static int |
2d21ac55 | 3911 | cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
3912 | { |
3913 | upl_page_info_t *pl; | |
3914 | upl_t upl; | |
3915 | vm_offset_t upl_offset; | |
0a7de745 A |
3916 | u_int32_t upl_size; |
3917 | off_t upl_f_offset; | |
3918 | int start_offset; | |
3919 | int start_pg; | |
3920 | int last_pg; | |
91447636 | 3921 | int uio_last = 0; |
1c79356b A |
3922 | int pages_in_upl; |
3923 | off_t max_size; | |
55e303ae A |
3924 | off_t last_ioread_offset; |
3925 | off_t last_request_offset; | |
1c79356b | 3926 | kern_return_t kret; |
1c79356b A |
3927 | int error = 0; |
3928 | int retval = 0; | |
2d21ac55 A |
3929 | u_int32_t size_of_prefetch; |
3930 | u_int32_t xsize; | |
3931 | u_int32_t io_size; | |
cf7d32b8 | 3932 | u_int32_t max_rd_size; |
b0d623f7 A |
3933 | u_int32_t max_io_size; |
3934 | u_int32_t max_prefetch; | |
55e303ae A |
3935 | u_int rd_ahead_enabled = 1; |
3936 | u_int prefetch_enabled = 1; | |
0a7de745 A |
3937 | struct cl_readahead * rap; |
3938 | struct clios iostate; | |
3939 | struct cl_extent extent; | |
2d21ac55 | 3940 | int bflag; |
0a7de745 A |
3941 | int take_reference = 1; |
3942 | int policy = IOPOL_DEFAULT; | |
3943 | boolean_t iolock_inited = FALSE; | |
b0d623f7 A |
3944 | |
3945 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, | |
0a7de745 A |
3946 | (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0); |
3947 | ||
316670eb | 3948 | if (flags & IO_ENCRYPTED) { |
0a7de745 | 3949 | panic("encrypted blocks will hit UBC!"); |
316670eb | 3950 | } |
0a7de745 | 3951 | |
39236c6e | 3952 | policy = throttle_get_io_policy(NULL); |
2d21ac55 | 3953 | |
0a7de745 | 3954 | if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE)) { |
2d21ac55 | 3955 | take_reference = 0; |
0a7de745 | 3956 | } |
2d21ac55 | 3957 | |
0a7de745 | 3958 | if (flags & IO_PASSIVE) { |
cf7d32b8 | 3959 | bflag = CL_PASSIVE; |
0a7de745 | 3960 | } else { |
b0d623f7 | 3961 | bflag = 0; |
0a7de745 | 3962 | } |
cf7d32b8 | 3963 | |
0a7de745 | 3964 | if (flags & IO_NOCACHE) { |
316670eb | 3965 | bflag |= CL_NOCACHE; |
0a7de745 | 3966 | } |
316670eb | 3967 | |
0a7de745 | 3968 | if (flags & IO_SKIP_ENCRYPTION) { |
fe8ab488 | 3969 | bflag |= CL_ENCRYPTED; |
0a7de745 | 3970 | } |
fe8ab488 | 3971 | |
b0d623f7 | 3972 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); |
5ba3f43e | 3973 | max_prefetch = MAX_PREFETCH(vp, max_io_size, disk_conditioner_mount_is_ssd(vp->v_mount)); |
b0d623f7 | 3974 | max_rd_size = max_prefetch; |
55e303ae | 3975 | |
2d21ac55 | 3976 | last_request_offset = uio->uio_offset + io_req_size; |
55e303ae | 3977 | |
0a7de745 A |
3978 | if (last_request_offset > filesize) { |
3979 | last_request_offset = filesize; | |
3980 | } | |
b0d623f7 | 3981 | |
0a7de745 A |
3982 | if ((flags & (IO_RAOFF | IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { |
3983 | rd_ahead_enabled = 0; | |
91447636 A |
3984 | rap = NULL; |
3985 | } else { | |
0a7de745 | 3986 | if (cluster_is_throttled(vp)) { |
316670eb A |
3987 | /* |
3988 | * we're in the throttle window, at the very least | |
3989 | * we want to limit the size of the I/O we're about | |
3990 | * to issue | |
3991 | */ | |
0a7de745 | 3992 | rd_ahead_enabled = 0; |
91447636 | 3993 | prefetch_enabled = 0; |
55e303ae | 3994 | |
316670eb | 3995 | max_rd_size = THROTTLE_MAX_IOSIZE; |
91447636 | 3996 | } |
0a7de745 A |
3997 | if ((rap = cluster_get_rap(vp)) == NULL) { |
3998 | rd_ahead_enabled = 0; | |
3999 | } else { | |
b0d623f7 A |
4000 | extent.b_addr = uio->uio_offset / PAGE_SIZE_64; |
4001 | extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; | |
4002 | } | |
55e303ae | 4003 | } |
91447636 | 4004 | if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { |
0a7de745 | 4005 | /* |
55e303ae A |
4006 | * determine if we already have a read-ahead in the pipe courtesy of the |
4007 | * last read systemcall that was issued... | |
4008 | * if so, pick up it's extent to determine where we should start | |
0a7de745 | 4009 | * with respect to any read-ahead that might be necessary to |
55e303ae A |
4010 | * garner all the data needed to complete this read systemcall |
4011 | */ | |
0a7de745 | 4012 | last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; |
1c79356b | 4013 | |
0a7de745 A |
4014 | if (last_ioread_offset < uio->uio_offset) { |
4015 | last_ioread_offset = (off_t)0; | |
4016 | } else if (last_ioread_offset > last_request_offset) { | |
4017 | last_ioread_offset = last_request_offset; | |
4018 | } | |
4019 | } else { | |
4020 | last_ioread_offset = (off_t)0; | |
4021 | } | |
1c79356b | 4022 | |
2d21ac55 | 4023 | while (io_req_size && uio->uio_offset < filesize && retval == 0) { |
b0d623f7 | 4024 | max_size = filesize - uio->uio_offset; |
1c79356b | 4025 | |
0a7de745 A |
4026 | if ((off_t)(io_req_size) < max_size) { |
4027 | io_size = io_req_size; | |
4028 | } else { | |
4029 | io_size = max_size; | |
4030 | } | |
9bccf70c | 4031 | |
91447636 | 4032 | if (!(flags & IO_NOCACHE)) { |
0a7de745 A |
4033 | while (io_size) { |
4034 | u_int32_t io_resid; | |
2d21ac55 | 4035 | u_int32_t io_requested; |
1c79356b | 4036 | |
55e303ae A |
4037 | /* |
4038 | * if we keep finding the pages we need already in the cache, then | |
2d21ac55 | 4039 | * don't bother to call cluster_read_prefetch since it costs CPU cycles |
55e303ae A |
4040 | * to determine that we have all the pages we need... once we miss in |
4041 | * the cache and have issued an I/O, than we'll assume that we're likely | |
4042 | * to continue to miss in the cache and it's to our advantage to try and prefetch | |
4043 | */ | |
4044 | if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) { | |
0a7de745 A |
4045 | if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) { |
4046 | /* | |
55e303ae A |
4047 | * we've already issued I/O for this request and |
4048 | * there's still work to do and | |
4049 | * our prefetch stream is running dry, so issue a | |
4050 | * pre-fetch I/O... the I/O latency will overlap | |
4051 | * with the copying of the data | |
4052 | */ | |
0a7de745 A |
4053 | if (size_of_prefetch > max_rd_size) { |
4054 | size_of_prefetch = max_rd_size; | |
4055 | } | |
1c79356b | 4056 | |
0a7de745 | 4057 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); |
1c79356b | 4058 | |
55e303ae | 4059 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); |
0a7de745 A |
4060 | |
4061 | if (last_ioread_offset > last_request_offset) { | |
4062 | last_ioread_offset = last_request_offset; | |
4063 | } | |
55e303ae A |
4064 | } |
4065 | } | |
4066 | /* | |
0a7de745 A |
4067 | * limit the size of the copy we're about to do so that |
4068 | * we can notice that our I/O pipe is running dry and | |
55e303ae A |
4069 | * get the next I/O issued before it does go dry |
4070 | */ | |
0a7de745 A |
4071 | if (last_ioread_offset && io_size > (max_io_size / 4)) { |
4072 | io_resid = (max_io_size / 4); | |
4073 | } else { | |
4074 | io_resid = io_size; | |
4075 | } | |
1c79356b | 4076 | |
55e303ae | 4077 | io_requested = io_resid; |
1c79356b | 4078 | |
0a7de745 | 4079 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference); |
2d21ac55 A |
4080 | |
4081 | xsize = io_requested - io_resid; | |
1c79356b | 4082 | |
2d21ac55 A |
4083 | io_size -= xsize; |
4084 | io_req_size -= xsize; | |
1c79356b | 4085 | |
0a7de745 A |
4086 | if (retval || io_resid) { |
4087 | /* | |
55e303ae A |
4088 | * if we run into a real error or |
4089 | * a page that is not in the cache | |
4090 | * we need to leave streaming mode | |
4091 | */ | |
0a7de745 A |
4092 | break; |
4093 | } | |
4094 | ||
b0d623f7 | 4095 | if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) { |
0a7de745 | 4096 | /* |
55e303ae A |
4097 | * we're already finished the I/O for this read request |
4098 | * let's see if we should do a read-ahead | |
4099 | */ | |
0a7de745 | 4100 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); |
55e303ae | 4101 | } |
1c79356b | 4102 | } |
0a7de745 A |
4103 | if (retval) { |
4104 | break; | |
4105 | } | |
1c79356b | 4106 | if (io_size == 0) { |
91447636 | 4107 | if (rap != NULL) { |
0a7de745 A |
4108 | if (extent.e_addr < rap->cl_lastr) { |
4109 | rap->cl_maxra = 0; | |
4110 | } | |
91447636 A |
4111 | rap->cl_lastr = extent.e_addr; |
4112 | } | |
0a7de745 | 4113 | break; |
1c79356b | 4114 | } |
b0d623f7 A |
4115 | /* |
4116 | * recompute max_size since cluster_copy_ubc_data_internal | |
4117 | * may have advanced uio->uio_offset | |
4118 | */ | |
4119 | max_size = filesize - uio->uio_offset; | |
1c79356b | 4120 | } |
316670eb A |
4121 | |
4122 | iostate.io_completed = 0; | |
4123 | iostate.io_issued = 0; | |
4124 | iostate.io_error = 0; | |
4125 | iostate.io_wanted = 0; | |
4126 | ||
0a7de745 | 4127 | if ((flags & IO_RETURN_ON_THROTTLE)) { |
39236c6e | 4128 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { |
0a7de745 | 4129 | if (!cluster_io_present_in_BC(vp, uio->uio_offset)) { |
316670eb A |
4130 | /* |
4131 | * we're in the throttle window and at least 1 I/O | |
4132 | * has already been issued by a throttleable thread | |
4133 | * in this window, so return with EAGAIN to indicate | |
4134 | * to the FS issuing the cluster_read call that it | |
4135 | * should now throttle after dropping any locks | |
4136 | */ | |
4137 | throttle_info_update_by_mount(vp->v_mount); | |
4138 | ||
4139 | retval = EAGAIN; | |
4140 | break; | |
4141 | } | |
4142 | } | |
4143 | } | |
4144 | ||
b0d623f7 A |
4145 | /* |
4146 | * compute the size of the upl needed to encompass | |
4147 | * the requested read... limit each call to cluster_io | |
4148 | * to the maximum UPL size... cluster_io will clip if | |
4149 | * this exceeds the maximum io_size for the device, | |
0a7de745 | 4150 | * make sure to account for |
b0d623f7 A |
4151 | * a starting offset that's not page aligned |
4152 | */ | |
4153 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
4154 | upl_f_offset = uio->uio_offset - (off_t)start_offset; | |
4155 | ||
0a7de745 A |
4156 | if (io_size > max_rd_size) { |
4157 | io_size = max_rd_size; | |
4158 | } | |
55e303ae | 4159 | |
1c79356b | 4160 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
55e303ae | 4161 | |
2d21ac55 | 4162 | if (flags & IO_NOCACHE) { |
0a7de745 A |
4163 | if (upl_size > max_io_size) { |
4164 | upl_size = max_io_size; | |
4165 | } | |
2d21ac55 | 4166 | } else { |
0a7de745 A |
4167 | if (upl_size > max_io_size / 4) { |
4168 | upl_size = max_io_size / 4; | |
fe8ab488 | 4169 | upl_size &= ~PAGE_MASK; |
0a7de745 A |
4170 | |
4171 | if (upl_size == 0) { | |
fe8ab488 | 4172 | upl_size = PAGE_SIZE; |
0a7de745 | 4173 | } |
fe8ab488 | 4174 | } |
2d21ac55 | 4175 | } |
1c79356b A |
4176 | pages_in_upl = upl_size / PAGE_SIZE; |
4177 | ||
4178 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, | |
0a7de745 | 4179 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
1c79356b | 4180 | |
5ba3f43e | 4181 | kret = ubc_create_upl_kernel(vp, |
0a7de745 A |
4182 | upl_f_offset, |
4183 | upl_size, | |
4184 | &upl, | |
4185 | &pl, | |
4186 | UPL_FILE_IO | UPL_SET_LITE, | |
4187 | VM_KERN_MEMORY_FILE); | |
4188 | if (kret != KERN_SUCCESS) { | |
2d21ac55 | 4189 | panic("cluster_read_copy: failed to get pagelist"); |
0a7de745 | 4190 | } |
1c79356b | 4191 | |
1c79356b | 4192 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, |
0a7de745 | 4193 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
1c79356b A |
4194 | |
4195 | /* | |
4196 | * scan from the beginning of the upl looking for the first | |
4197 | * non-valid page.... this will become the first page in | |
4198 | * the request we're going to make to 'cluster_io'... if all | |
4199 | * of the pages are valid, we won't call through to 'cluster_io' | |
4200 | */ | |
4201 | for (start_pg = 0; start_pg < pages_in_upl; start_pg++) { | |
0a7de745 | 4202 | if (!upl_valid_page(pl, start_pg)) { |
1c79356b | 4203 | break; |
0a7de745 | 4204 | } |
1c79356b A |
4205 | } |
4206 | ||
4207 | /* | |
4208 | * scan from the starting invalid page looking for a valid | |
0a7de745 | 4209 | * page before the end of the upl is reached, if we |
1c79356b A |
4210 | * find one, then it will be the last page of the request to |
4211 | * 'cluster_io' | |
4212 | */ | |
4213 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
0a7de745 | 4214 | if (upl_valid_page(pl, last_pg)) { |
1c79356b | 4215 | break; |
0a7de745 | 4216 | } |
1c79356b A |
4217 | } |
4218 | ||
0a7de745 A |
4219 | if (start_pg < last_pg) { |
4220 | /* | |
1c79356b A |
4221 | * we found a range of 'invalid' pages that must be filled |
4222 | * if the last page in this range is the last page of the file | |
4223 | * we may have to clip the size of it to keep from reading past | |
4224 | * the end of the last physical block associated with the file | |
4225 | */ | |
6d2010ae A |
4226 | if (iolock_inited == FALSE) { |
4227 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); | |
4228 | ||
4229 | iolock_inited = TRUE; | |
4230 | } | |
1c79356b A |
4231 | upl_offset = start_pg * PAGE_SIZE; |
4232 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
4233 | ||
0a7de745 A |
4234 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) { |
4235 | io_size = filesize - (upl_f_offset + upl_offset); | |
4236 | } | |
9bccf70c | 4237 | |
1c79356b | 4238 | /* |
55e303ae | 4239 | * issue an asynchronous read to cluster_io |
1c79356b A |
4240 | */ |
4241 | ||
4242 | error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, | |
0a7de745 | 4243 | io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg); |
6d2010ae A |
4244 | |
4245 | if (rap) { | |
0a7de745 A |
4246 | if (extent.e_addr < rap->cl_maxra) { |
4247 | /* | |
4248 | * we've just issued a read for a block that should have been | |
4249 | * in the cache courtesy of the read-ahead engine... something | |
4250 | * has gone wrong with the pipeline, so reset the read-ahead | |
4251 | * logic which will cause us to restart from scratch | |
4252 | */ | |
4253 | rap->cl_maxra = 0; | |
4254 | } | |
4255 | } | |
1c79356b A |
4256 | } |
4257 | if (error == 0) { | |
0a7de745 | 4258 | /* |
1c79356b | 4259 | * if the read completed successfully, or there was no I/O request |
55e303ae A |
4260 | * issued, than copy the data into user land via 'cluster_upl_copy_data' |
4261 | * we'll first add on any 'valid' | |
1c79356b A |
4262 | * pages that were present in the upl when we acquired it. |
4263 | */ | |
4264 | u_int val_size; | |
1c79356b | 4265 | |
0a7de745 A |
4266 | for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { |
4267 | if (!upl_valid_page(pl, uio_last)) { | |
4268 | break; | |
4269 | } | |
1c79356b | 4270 | } |
2d21ac55 | 4271 | if (uio_last < pages_in_upl) { |
0a7de745 | 4272 | /* |
2d21ac55 A |
4273 | * there were some invalid pages beyond the valid pages |
4274 | * that we didn't issue an I/O for, just release them | |
4275 | * unchanged now, so that any prefetch/readahed can | |
4276 | * include them | |
4277 | */ | |
0a7de745 A |
4278 | ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, |
4279 | (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
2d21ac55 A |
4280 | } |
4281 | ||
1c79356b | 4282 | /* |
2d21ac55 | 4283 | * compute size to transfer this round, if io_req_size is |
55e303ae | 4284 | * still non-zero after this attempt, we'll loop around and |
1c79356b A |
4285 | * set up for another I/O. |
4286 | */ | |
4287 | val_size = (uio_last * PAGE_SIZE) - start_offset; | |
1c79356b | 4288 | |
0a7de745 A |
4289 | if (val_size > max_size) { |
4290 | val_size = max_size; | |
4291 | } | |
4292 | ||
4293 | if (val_size > io_req_size) { | |
4294 | val_size = io_req_size; | |
4295 | } | |
1c79356b | 4296 | |
0a7de745 A |
4297 | if ((uio->uio_offset + val_size) > last_ioread_offset) { |
4298 | last_ioread_offset = uio->uio_offset + val_size; | |
4299 | } | |
1c79356b | 4300 | |
55e303ae | 4301 | if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) { |
0a7de745 A |
4302 | if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) { |
4303 | /* | |
2d21ac55 A |
4304 | * if there's still I/O left to do for this request, and... |
4305 | * we're not in hard throttle mode, and... | |
4306 | * we're close to using up the previous prefetch, then issue a | |
4307 | * new pre-fetch I/O... the I/O latency will overlap | |
4308 | * with the copying of the data | |
4309 | */ | |
0a7de745 A |
4310 | if (size_of_prefetch > max_rd_size) { |
4311 | size_of_prefetch = max_rd_size; | |
4312 | } | |
2d21ac55 A |
4313 | |
4314 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); | |
4315 | ||
4316 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); | |
1c79356b | 4317 | |
0a7de745 A |
4318 | if (last_ioread_offset > last_request_offset) { |
4319 | last_ioread_offset = last_request_offset; | |
4320 | } | |
4321 | } | |
55e303ae | 4322 | } else if ((uio->uio_offset + val_size) == last_request_offset) { |
0a7de745 | 4323 | /* |
55e303ae | 4324 | * this transfer will finish this request, so... |
0a7de745 | 4325 | * let's try to read ahead if we're in |
55e303ae A |
4326 | * a sequential access pattern and we haven't |
4327 | * explicitly disabled it | |
4328 | */ | |
0a7de745 | 4329 | if (rd_ahead_enabled) { |
2d21ac55 | 4330 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); |
0a7de745 A |
4331 | } |
4332 | ||
91447636 | 4333 | if (rap != NULL) { |
0a7de745 A |
4334 | if (extent.e_addr < rap->cl_lastr) { |
4335 | rap->cl_maxra = 0; | |
4336 | } | |
91447636 A |
4337 | rap->cl_lastr = extent.e_addr; |
4338 | } | |
9bccf70c | 4339 | } |
0a7de745 | 4340 | if (iolock_inited == TRUE) { |
6d2010ae | 4341 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); |
0a7de745 A |
4342 | } |
4343 | ||
4344 | if (iostate.io_error) { | |
4345 | error = iostate.io_error; | |
4346 | } else { | |
4347 | u_int32_t io_requested; | |
cf7d32b8 | 4348 | |
0a7de745 | 4349 | io_requested = val_size; |
2d21ac55 | 4350 | |
0a7de745 | 4351 | retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested); |
2d21ac55 | 4352 | |
2d21ac55 A |
4353 | io_req_size -= (val_size - io_requested); |
4354 | } | |
6d2010ae | 4355 | } else { |
0a7de745 | 4356 | if (iolock_inited == TRUE) { |
6d2010ae | 4357 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); |
0a7de745 | 4358 | } |
1c79356b A |
4359 | } |
4360 | if (start_pg < last_pg) { | |
0a7de745 | 4361 | /* |
1c79356b A |
4362 | * compute the range of pages that we actually issued an I/O for |
4363 | * and either commit them as valid if the I/O succeeded | |
0a7de745 | 4364 | * or abort them if the I/O failed or we're not supposed to |
2d21ac55 | 4365 | * keep them in the cache |
1c79356b | 4366 | */ |
0a7de745 | 4367 | io_size = (last_pg - start_pg) * PAGE_SIZE; |
1c79356b | 4368 | |
b0d623f7 | 4369 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0); |
1c79356b | 4370 | |
0a7de745 A |
4371 | if (error || (flags & IO_NOCACHE)) { |
4372 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, | |
4373 | UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
4374 | } else { | |
4375 | int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY; | |
b0d623f7 | 4376 | |
0a7de745 | 4377 | if (take_reference) { |
b0d623f7 | 4378 | commit_flags |= UPL_COMMIT_INACTIVATE; |
0a7de745 | 4379 | } else { |
b0d623f7 | 4380 | commit_flags |= UPL_COMMIT_SPECULATE; |
0a7de745 | 4381 | } |
1c79356b | 4382 | |
0a7de745 | 4383 | ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags); |
b0d623f7 A |
4384 | } |
4385 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0); | |
1c79356b A |
4386 | } |
4387 | if ((last_pg - start_pg) < pages_in_upl) { | |
0a7de745 | 4388 | /* |
1c79356b A |
4389 | * the set of pages that we issued an I/O for did not encompass |
4390 | * the entire upl... so just release these without modifying | |
55e303ae | 4391 | * their state |
1c79356b | 4392 | */ |
0a7de745 | 4393 | if (error) { |
9bccf70c | 4394 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); |
0a7de745 | 4395 | } else { |
2d21ac55 | 4396 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, |
0a7de745 | 4397 | upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); |
2d21ac55 A |
4398 | |
4399 | /* | |
4400 | * handle any valid pages at the beginning of | |
4401 | * the upl... release these appropriately | |
4402 | */ | |
b0d623f7 | 4403 | cluster_read_upl_release(upl, 0, start_pg, take_reference); |
2d21ac55 A |
4404 | |
4405 | /* | |
4406 | * handle any valid pages immediately after the | |
4407 | * pages we issued I/O for... ... release these appropriately | |
4408 | */ | |
b0d623f7 | 4409 | cluster_read_upl_release(upl, last_pg, uio_last, take_reference); |
2d21ac55 | 4410 | |
b0d623f7 | 4411 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0); |
1c79356b A |
4412 | } |
4413 | } | |
0a7de745 A |
4414 | if (retval == 0) { |
4415 | retval = error; | |
4416 | } | |
91447636 | 4417 | |
2d21ac55 | 4418 | if (io_req_size) { |
0a7de745 | 4419 | if (cluster_is_throttled(vp)) { |
316670eb A |
4420 | /* |
4421 | * we're in the throttle window, at the very least | |
4422 | * we want to limit the size of the I/O we're about | |
4423 | * to issue | |
4424 | */ | |
0a7de745 | 4425 | rd_ahead_enabled = 0; |
91447636 | 4426 | prefetch_enabled = 0; |
316670eb | 4427 | max_rd_size = THROTTLE_MAX_IOSIZE; |
91447636 | 4428 | } else { |
0a7de745 A |
4429 | if (max_rd_size == THROTTLE_MAX_IOSIZE) { |
4430 | /* | |
2d21ac55 A |
4431 | * coming out of throttled state |
4432 | */ | |
39236c6e | 4433 | if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) { |
0a7de745 | 4434 | if (rap != NULL) { |
b0d623f7 | 4435 | rd_ahead_enabled = 1; |
0a7de745 | 4436 | } |
b0d623f7 A |
4437 | prefetch_enabled = 1; |
4438 | } | |
cf7d32b8 | 4439 | max_rd_size = max_prefetch; |
2d21ac55 A |
4440 | last_ioread_offset = 0; |
4441 | } | |
91447636 A |
4442 | } |
4443 | } | |
4444 | } | |
6d2010ae | 4445 | if (iolock_inited == TRUE) { |
fe8ab488 A |
4446 | /* |
4447 | * cluster_io returned an error after it | |
4448 | * had already issued some I/O. we need | |
4449 | * to wait for that I/O to complete before | |
4450 | * we can destroy the iostate mutex... | |
4451 | * 'retval' already contains the early error | |
4452 | * so no need to pick it up from iostate.io_error | |
4453 | */ | |
4454 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
4455 | ||
6d2010ae A |
4456 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
4457 | } | |
91447636 | 4458 | if (rap != NULL) { |
0a7de745 A |
4459 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, |
4460 | (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0); | |
91447636 | 4461 | |
0a7de745 | 4462 | lck_mtx_unlock(&rap->cl_lockr); |
91447636 | 4463 | } else { |
0a7de745 A |
4464 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, |
4465 | (int)uio->uio_offset, io_req_size, 0, retval, 0); | |
1c79356b A |
4466 | } |
4467 | ||
0a7de745 | 4468 | return retval; |
1c79356b A |
4469 | } |
4470 | ||
3e170ce0 A |
4471 | /* |
4472 | * We don't want another read/write lock for every vnode in the system | |
4473 | * so we keep a hash of them here. There should never be very many of | |
4474 | * these around at any point in time. | |
4475 | */ | |
0a7de745 A |
4476 | cl_direct_read_lock_t * |
4477 | cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type) | |
3e170ce0 A |
4478 | { |
4479 | struct cl_direct_read_locks *head | |
0a7de745 A |
4480 | = &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp) |
4481 | % CL_DIRECT_READ_LOCK_BUCKETS]; | |
3e170ce0 A |
4482 | |
4483 | struct cl_direct_read_lock *lck, *new_lck = NULL; | |
4484 | ||
4485 | for (;;) { | |
4486 | lck_spin_lock(&cl_direct_read_spin_lock); | |
4487 | ||
4488 | LIST_FOREACH(lck, head, chain) { | |
4489 | if (lck->vp == vp) { | |
4490 | ++lck->ref_count; | |
4491 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4492 | if (new_lck) { | |
4493 | // Someone beat us to it, ditch the allocation | |
4494 | lck_rw_destroy(&new_lck->rw_lock, cl_mtx_grp); | |
4495 | FREE(new_lck, M_TEMP); | |
4496 | } | |
4497 | lck_rw_lock(&lck->rw_lock, type); | |
4498 | return lck; | |
4499 | } | |
4500 | } | |
4501 | ||
4502 | if (new_lck) { | |
4503 | // Use the lock we allocated | |
4504 | LIST_INSERT_HEAD(head, new_lck, chain); | |
4505 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4506 | lck_rw_lock(&new_lck->rw_lock, type); | |
4507 | return new_lck; | |
4508 | } | |
4509 | ||
4510 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4511 | ||
4512 | // Allocate a new lock | |
4513 | MALLOC(new_lck, cl_direct_read_lock_t *, sizeof(*new_lck), | |
0a7de745 | 4514 | M_TEMP, M_WAITOK); |
3e170ce0 A |
4515 | lck_rw_init(&new_lck->rw_lock, cl_mtx_grp, cl_mtx_attr); |
4516 | new_lck->vp = vp; | |
4517 | new_lck->ref_count = 1; | |
4518 | ||
4519 | // Got to go round again | |
4520 | } | |
4521 | } | |
4522 | ||
0a7de745 A |
4523 | void |
4524 | cluster_unlock_direct_read(cl_direct_read_lock_t *lck) | |
3e170ce0 A |
4525 | { |
4526 | lck_rw_done(&lck->rw_lock); | |
4527 | ||
4528 | lck_spin_lock(&cl_direct_read_spin_lock); | |
4529 | if (lck->ref_count == 1) { | |
4530 | LIST_REMOVE(lck, chain); | |
4531 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4532 | lck_rw_destroy(&lck->rw_lock, cl_mtx_grp); | |
4533 | FREE(lck, M_TEMP); | |
4534 | } else { | |
4535 | --lck->ref_count; | |
4536 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4537 | } | |
4538 | } | |
4539 | ||
9bccf70c | 4540 | static int |
2d21ac55 | 4541 | cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
0a7de745 | 4542 | int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
4543 | { |
4544 | upl_t upl; | |
4545 | upl_page_info_t *pl; | |
0a7de745 | 4546 | off_t max_io_size; |
b0d623f7 | 4547 | vm_offset_t upl_offset, vector_upl_offset = 0; |
0a7de745 A |
4548 | upl_size_t upl_size, vector_upl_size = 0; |
4549 | vm_size_t upl_needed_size; | |
4550 | unsigned int pages_in_pl; | |
3e170ce0 | 4551 | upl_control_flags_t upl_flags; |
1c79356b | 4552 | kern_return_t kret; |
2d21ac55 | 4553 | unsigned int i; |
1c79356b | 4554 | int force_data_sync; |
1c79356b | 4555 | int retval = 0; |
0a7de745 | 4556 | int no_zero_fill = 0; |
2d21ac55 | 4557 | int io_flag = 0; |
0a7de745 | 4558 | int misaligned = 0; |
d7e50217 | 4559 | struct clios iostate; |
0a7de745 A |
4560 | user_addr_t iov_base; |
4561 | u_int32_t io_req_size; | |
4562 | u_int32_t offset_in_file; | |
4563 | u_int32_t offset_in_iovbase; | |
4564 | u_int32_t io_size; | |
4565 | u_int32_t io_min; | |
4566 | u_int32_t xsize; | |
4567 | u_int32_t devblocksize; | |
4568 | u_int32_t mem_alignment_mask; | |
4569 | u_int32_t max_upl_size; | |
b0d623f7 A |
4570 | u_int32_t max_rd_size; |
4571 | u_int32_t max_rd_ahead; | |
316670eb | 4572 | u_int32_t max_vector_size; |
0a7de745 | 4573 | boolean_t io_throttled = FALSE; |
cf7d32b8 | 4574 | |
0a7de745 A |
4575 | u_int32_t vector_upl_iosize = 0; |
4576 | int issueVectorUPL = 0, useVectorUPL = (uio->uio_iovcnt > 1); | |
4577 | off_t v_upl_uio_offset = 0; | |
4578 | int vector_upl_index = 0; | |
4579 | upl_t vector_upl = NULL; | |
3e170ce0 | 4580 | cl_direct_read_lock_t *lock = NULL; |
cf7d32b8 | 4581 | |
0a7de745 A |
4582 | user_addr_t orig_iov_base = 0; |
4583 | user_addr_t last_iov_base = 0; | |
4584 | user_addr_t next_iov_base = 0; | |
fe8ab488 | 4585 | |
b0d623f7 | 4586 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, |
0a7de745 | 4587 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); |
cf7d32b8 | 4588 | |
b0d623f7 | 4589 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ); |
2d21ac55 | 4590 | |
b0d623f7 A |
4591 | max_rd_size = max_upl_size; |
4592 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); | |
1c79356b | 4593 | |
b0d623f7 | 4594 | io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO; |
6d2010ae | 4595 | |
0a7de745 | 4596 | if (flags & IO_PASSIVE) { |
b0d623f7 | 4597 | io_flag |= CL_PASSIVE; |
0a7de745 | 4598 | } |
1c79356b | 4599 | |
316670eb A |
4600 | if (flags & IO_ENCRYPTED) { |
4601 | io_flag |= CL_RAW_ENCRYPTED; | |
4602 | } | |
4603 | ||
4604 | if (flags & IO_NOCACHE) { | |
4605 | io_flag |= CL_NOCACHE; | |
4606 | } | |
4607 | ||
0a7de745 | 4608 | if (flags & IO_SKIP_ENCRYPTION) { |
fe8ab488 | 4609 | io_flag |= CL_ENCRYPTED; |
0a7de745 | 4610 | } |
fe8ab488 | 4611 | |
d7e50217 A |
4612 | iostate.io_completed = 0; |
4613 | iostate.io_issued = 0; | |
4614 | iostate.io_error = 0; | |
4615 | iostate.io_wanted = 0; | |
4616 | ||
6d2010ae A |
4617 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
4618 | ||
2d21ac55 A |
4619 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
4620 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
4621 | ||
4622 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
0a7de745 | 4623 | (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0); |
2d21ac55 A |
4624 | |
4625 | if (devblocksize == 1) { | |
0a7de745 A |
4626 | /* |
4627 | * the AFP client advertises a devblocksize of 1 | |
4628 | * however, its BLOCKMAP routine maps to physical | |
4629 | * blocks that are PAGE_SIZE in size... | |
4630 | * therefore we can't ask for I/Os that aren't page aligned | |
4631 | * or aren't multiples of PAGE_SIZE in size | |
4632 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
4633 | * the old behavior we had before the mem_alignment_mask | |
4634 | * changes went in... | |
4635 | */ | |
4636 | devblocksize = PAGE_SIZE; | |
2d21ac55 | 4637 | } |
6d2010ae | 4638 | |
fe8ab488 A |
4639 | orig_iov_base = uio_curriovbase(uio); |
4640 | last_iov_base = orig_iov_base; | |
4641 | ||
2d21ac55 A |
4642 | next_dread: |
4643 | io_req_size = *read_length; | |
4644 | iov_base = uio_curriovbase(uio); | |
4645 | ||
2d21ac55 A |
4646 | offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1); |
4647 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
4648 | ||
4649 | if (offset_in_file || offset_in_iovbase) { | |
0a7de745 | 4650 | /* |
2d21ac55 A |
4651 | * one of the 2 important offsets is misaligned |
4652 | * so fire an I/O through the cache for this entire vector | |
4653 | */ | |
4654 | misaligned = 1; | |
4655 | } | |
4656 | if (iov_base & (devblocksize - 1)) { | |
0a7de745 | 4657 | /* |
2d21ac55 A |
4658 | * the offset in memory must be on a device block boundary |
4659 | * so that we can guarantee that we can generate an | |
4660 | * I/O that ends on a page boundary in cluster_io | |
4661 | */ | |
4662 | misaligned = 1; | |
0a7de745 | 4663 | } |
316670eb | 4664 | |
39037602 A |
4665 | max_io_size = filesize - uio->uio_offset; |
4666 | ||
0a7de745 A |
4667 | /* |
4668 | * The user must request IO in aligned chunks. If the | |
4669 | * offset into the file is bad, or the userland pointer | |
316670eb A |
4670 | * is non-aligned, then we cannot service the encrypted IO request. |
4671 | */ | |
39037602 | 4672 | if (flags & IO_ENCRYPTED) { |
0a7de745 | 4673 | if (misaligned || (io_req_size & (devblocksize - 1))) { |
39037602 | 4674 | retval = EINVAL; |
0a7de745 | 4675 | } |
39037602 A |
4676 | |
4677 | max_io_size = roundup(max_io_size, devblocksize); | |
316670eb A |
4678 | } |
4679 | ||
0a7de745 A |
4680 | if ((off_t)io_req_size > max_io_size) { |
4681 | io_req_size = max_io_size; | |
4682 | } | |
39037602 | 4683 | |
2d21ac55 A |
4684 | /* |
4685 | * When we get to this point, we know... | |
4686 | * -- the offset into the file is on a devblocksize boundary | |
4687 | */ | |
4688 | ||
4689 | while (io_req_size && retval == 0) { | |
0a7de745 | 4690 | u_int32_t io_start; |
1c79356b | 4691 | |
0a7de745 | 4692 | if (cluster_is_throttled(vp)) { |
316670eb A |
4693 | /* |
4694 | * we're in the throttle window, at the very least | |
4695 | * we want to limit the size of the I/O we're about | |
4696 | * to issue | |
4697 | */ | |
0a7de745 | 4698 | max_rd_size = THROTTLE_MAX_IOSIZE; |
316670eb A |
4699 | max_rd_ahead = THROTTLE_MAX_IOSIZE - 1; |
4700 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
91447636 | 4701 | } else { |
0a7de745 | 4702 | max_rd_size = max_upl_size; |
b0d623f7 | 4703 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); |
316670eb | 4704 | max_vector_size = MAX_VECTOR_UPL_SIZE; |
91447636 | 4705 | } |
2d21ac55 | 4706 | io_start = io_size = io_req_size; |
1c79356b | 4707 | |
d7e50217 A |
4708 | /* |
4709 | * First look for pages already in the cache | |
316670eb A |
4710 | * and move them to user space. But only do this |
4711 | * check if we are not retrieving encrypted data directly | |
4712 | * from the filesystem; those blocks should never | |
0a7de745 | 4713 | * be in the UBC. |
2d21ac55 A |
4714 | * |
4715 | * cluster_copy_ubc_data returns the resid | |
4716 | * in io_size | |
d7e50217 | 4717 | */ |
d9a64523 | 4718 | if ((flags & IO_ENCRYPTED) == 0) { |
6d2010ae A |
4719 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0); |
4720 | } | |
2d21ac55 A |
4721 | /* |
4722 | * calculate the number of bytes actually copied | |
4723 | * starting size - residual | |
4724 | */ | |
4725 | xsize = io_start - io_size; | |
4726 | ||
4727 | io_req_size -= xsize; | |
4728 | ||
0a7de745 | 4729 | if (useVectorUPL && (xsize || (iov_base & PAGE_MASK))) { |
b0d623f7 A |
4730 | /* |
4731 | * We found something in the cache or we have an iov_base that's not | |
4732 | * page-aligned. | |
0a7de745 | 4733 | * |
b0d623f7 A |
4734 | * Issue all I/O's that have been collected within this Vectored UPL. |
4735 | */ | |
0a7de745 | 4736 | if (vector_upl_index) { |
b0d623f7 A |
4737 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
4738 | reset_vector_run_state(); | |
4739 | } | |
0a7de745 A |
4740 | |
4741 | if (xsize) { | |
b0d623f7 | 4742 | useVectorUPL = 0; |
0a7de745 | 4743 | } |
b0d623f7 | 4744 | |
0a7de745 A |
4745 | /* |
4746 | * After this point, if we are using the Vector UPL path and the base is | |
4747 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
4748 | */ | |
b0d623f7 A |
4749 | } |
4750 | ||
2d21ac55 | 4751 | /* |
316670eb A |
4752 | * check to see if we are finished with this request. |
4753 | * | |
4754 | * If we satisfied this IO already, then io_req_size will be 0. | |
0a7de745 | 4755 | * Otherwise, see if the IO was mis-aligned and needs to go through |
316670eb A |
4756 | * the UBC to deal with the 'tail'. |
4757 | * | |
2d21ac55 | 4758 | */ |
316670eb | 4759 | if (io_req_size == 0 || (misaligned)) { |
0a7de745 | 4760 | /* |
2d21ac55 A |
4761 | * see if there's another uio vector to |
4762 | * process that's of type IO_DIRECT | |
4763 | * | |
4764 | * break out of while loop to get there | |
d7e50217 | 4765 | */ |
0a7de745 | 4766 | break; |
0b4e3aa0 | 4767 | } |
d7e50217 | 4768 | /* |
2d21ac55 | 4769 | * assume the request ends on a device block boundary |
d7e50217 | 4770 | */ |
2d21ac55 A |
4771 | io_min = devblocksize; |
4772 | ||
4773 | /* | |
4774 | * we can handle I/O's in multiples of the device block size | |
4775 | * however, if io_size isn't a multiple of devblocksize we | |
4776 | * want to clip it back to the nearest page boundary since | |
4777 | * we are going to have to go through cluster_read_copy to | |
4778 | * deal with the 'overhang'... by clipping it to a PAGE_SIZE | |
4779 | * multiple, we avoid asking the drive for the same physical | |
4780 | * blocks twice.. once for the partial page at the end of the | |
4781 | * request and a 2nd time for the page we read into the cache | |
0a7de745 | 4782 | * (which overlaps the end of the direct read) in order to |
2d21ac55 A |
4783 | * get at the overhang bytes |
4784 | */ | |
39037602 A |
4785 | if (io_size & (devblocksize - 1)) { |
4786 | assert(!(flags & IO_ENCRYPTED)); | |
4787 | /* | |
4788 | * Clip the request to the previous page size boundary | |
4789 | * since request does NOT end on a device block boundary | |
4790 | */ | |
4791 | io_size &= ~PAGE_MASK; | |
4792 | io_min = PAGE_SIZE; | |
2d21ac55 A |
4793 | } |
4794 | if (retval || io_size < io_min) { | |
0a7de745 | 4795 | /* |
2d21ac55 A |
4796 | * either an error or we only have the tail left to |
4797 | * complete via the copy path... | |
d7e50217 A |
4798 | * we may have already spun some portion of this request |
4799 | * off as async requests... we need to wait for the I/O | |
4800 | * to complete before returning | |
4801 | */ | |
0a7de745 | 4802 | goto wait_for_dreads; |
d7e50217 | 4803 | } |
55e303ae | 4804 | |
3e170ce0 | 4805 | /* |
316670eb A |
4806 | * Don't re-check the UBC data if we are looking for uncached IO |
4807 | * or asking for encrypted blocks. | |
4808 | */ | |
d9a64523 | 4809 | if ((flags & IO_ENCRYPTED) == 0) { |
0a7de745 | 4810 | if ((xsize = io_size) > max_rd_size) { |
316670eb | 4811 | xsize = max_rd_size; |
0a7de745 | 4812 | } |
55e303ae | 4813 | |
6d2010ae A |
4814 | io_size = 0; |
4815 | ||
3e170ce0 A |
4816 | if (!lock) { |
4817 | /* | |
4818 | * We hold a lock here between the time we check the | |
4819 | * cache and the time we issue I/O. This saves us | |
4820 | * from having to lock the pages in the cache. Not | |
4821 | * all clients will care about this lock but some | |
4822 | * clients may want to guarantee stability between | |
4823 | * here and when the I/O is issued in which case they | |
4824 | * will take the lock exclusively. | |
4825 | */ | |
4826 | lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED); | |
4827 | } | |
4828 | ||
6d2010ae A |
4829 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size); |
4830 | ||
4831 | if (io_size == 0) { | |
4832 | /* | |
4833 | * a page must have just come into the cache | |
4834 | * since the first page in this range is no | |
4835 | * longer absent, go back and re-evaluate | |
4836 | */ | |
4837 | continue; | |
4838 | } | |
2d21ac55 | 4839 | } |
0a7de745 | 4840 | if ((flags & IO_RETURN_ON_THROTTLE)) { |
39236c6e | 4841 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { |
0a7de745 | 4842 | if (!cluster_io_present_in_BC(vp, uio->uio_offset)) { |
316670eb A |
4843 | /* |
4844 | * we're in the throttle window and at least 1 I/O | |
4845 | * has already been issued by a throttleable thread | |
4846 | * in this window, so return with EAGAIN to indicate | |
4847 | * to the FS issuing the cluster_read call that it | |
4848 | * should now throttle after dropping any locks | |
4849 | */ | |
4850 | throttle_info_update_by_mount(vp->v_mount); | |
4851 | ||
4852 | io_throttled = TRUE; | |
4853 | goto wait_for_dreads; | |
4854 | } | |
4855 | } | |
4856 | } | |
0a7de745 | 4857 | if (io_size > max_rd_size) { |
316670eb | 4858 | io_size = max_rd_size; |
0a7de745 | 4859 | } |
6d2010ae | 4860 | |
cc9f6e38 | 4861 | iov_base = uio_curriovbase(uio); |
1c79356b | 4862 | |
2d21ac55 | 4863 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
0a7de745 | 4864 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 4865 | |
d7e50217 | 4866 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, |
0a7de745 | 4867 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
1c79356b | 4868 | |
0a7de745 A |
4869 | if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) { |
4870 | no_zero_fill = 1; | |
4871 | } else { | |
4872 | no_zero_fill = 0; | |
4873 | } | |
0b4c1975 | 4874 | |
3e170ce0 | 4875 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
d7e50217 | 4876 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { |
0a7de745 | 4877 | pages_in_pl = 0; |
d7e50217 | 4878 | upl_size = upl_needed_size; |
5ba3f43e | 4879 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
0a7de745 A |
4880 | if (no_zero_fill) { |
4881 | upl_flags |= UPL_NOZEROFILL; | |
4882 | } | |
4883 | if (force_data_sync) { | |
4884 | upl_flags |= UPL_FORCE_DATA_SYNC; | |
4885 | } | |
91447636 | 4886 | |
3e170ce0 | 4887 | kret = vm_map_create_upl(map, |
0a7de745 A |
4888 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
4889 | &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE); | |
1c79356b | 4890 | |
d7e50217 | 4891 | if (kret != KERN_SUCCESS) { |
0a7de745 A |
4892 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, |
4893 | (int)upl_offset, upl_size, io_size, kret, 0); | |
d7e50217 | 4894 | /* |
2d21ac55 | 4895 | * failed to get pagelist |
d7e50217 A |
4896 | * |
4897 | * we may have already spun some portion of this request | |
4898 | * off as async requests... we need to wait for the I/O | |
4899 | * to complete before returning | |
4900 | */ | |
2d21ac55 | 4901 | goto wait_for_dreads; |
d7e50217 A |
4902 | } |
4903 | pages_in_pl = upl_size / PAGE_SIZE; | |
4904 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
1c79356b | 4905 | |
d7e50217 | 4906 | for (i = 0; i < pages_in_pl; i++) { |
0a7de745 A |
4907 | if (!upl_page_present(pl, i)) { |
4908 | break; | |
4909 | } | |
4910 | } | |
4911 | if (i == pages_in_pl) { | |
4912 | break; | |
d7e50217 | 4913 | } |
0b4e3aa0 | 4914 | |
0b4c1975 | 4915 | ubc_upl_abort(upl, 0); |
1c79356b | 4916 | } |
d7e50217 | 4917 | if (force_data_sync >= 3) { |
0a7de745 A |
4918 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, |
4919 | (int)upl_offset, upl_size, io_size, kret, 0); | |
4920 | ||
2d21ac55 | 4921 | goto wait_for_dreads; |
d7e50217 A |
4922 | } |
4923 | /* | |
4924 | * Consider the possibility that upl_size wasn't satisfied. | |
4925 | */ | |
2d21ac55 | 4926 | if (upl_size < upl_needed_size) { |
0a7de745 A |
4927 | if (upl_size && upl_offset == 0) { |
4928 | io_size = upl_size; | |
4929 | } else { | |
4930 | io_size = 0; | |
4931 | } | |
2d21ac55 | 4932 | } |
d7e50217 | 4933 | if (io_size == 0) { |
0b4c1975 | 4934 | ubc_upl_abort(upl, 0); |
2d21ac55 | 4935 | goto wait_for_dreads; |
d7e50217 A |
4936 | } |
4937 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
0a7de745 | 4938 | (int)upl_offset, upl_size, io_size, kret, 0); |
1c79356b | 4939 | |
0a7de745 | 4940 | if (useVectorUPL) { |
b0d623f7 | 4941 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); |
0a7de745 | 4942 | if (end_off) { |
b0d623f7 | 4943 | issueVectorUPL = 1; |
0a7de745 | 4944 | } |
b0d623f7 A |
4945 | /* |
4946 | * After this point, if we are using a vector UPL, then | |
4947 | * either all the UPL elements end on a page boundary OR | |
4948 | * this UPL is the last element because it does not end | |
4949 | * on a page boundary. | |
4950 | */ | |
4951 | } | |
4952 | ||
d7e50217 A |
4953 | /* |
4954 | * request asynchronously so that we can overlap | |
4955 | * the preparation of the next I/O | |
4956 | * if there are already too many outstanding reads | |
4957 | * wait until some have completed before issuing the next read | |
4958 | */ | |
fe8ab488 | 4959 | cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct"); |
91447636 | 4960 | |
d7e50217 | 4961 | if (iostate.io_error) { |
0a7de745 | 4962 | /* |
d7e50217 A |
4963 | * one of the earlier reads we issued ran into a hard error |
4964 | * don't issue any more reads, cleanup the UPL | |
4965 | * that was just created but not used, then | |
4966 | * go wait for any other reads to complete before | |
4967 | * returning the error to the caller | |
4968 | */ | |
0b4c1975 | 4969 | ubc_upl_abort(upl, 0); |
1c79356b | 4970 | |
0a7de745 A |
4971 | goto wait_for_dreads; |
4972 | } | |
d7e50217 | 4973 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, |
0a7de745 | 4974 | upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); |
b0d623f7 | 4975 | |
0a7de745 A |
4976 | if (!useVectorUPL) { |
4977 | if (no_zero_fill) { | |
4978 | io_flag &= ~CL_PRESERVE; | |
4979 | } else { | |
4980 | io_flag |= CL_PRESERVE; | |
4981 | } | |
1c79356b | 4982 | |
0a7de745 A |
4983 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
4984 | } else { | |
4985 | if (!vector_upl_index) { | |
b0d623f7 A |
4986 | vector_upl = vector_upl_create(upl_offset); |
4987 | v_upl_uio_offset = uio->uio_offset; | |
4988 | vector_upl_offset = upl_offset; | |
4989 | } | |
4990 | ||
0a7de745 | 4991 | vector_upl_set_subupl(vector_upl, upl, upl_size); |
b0d623f7 A |
4992 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); |
4993 | vector_upl_index++; | |
4994 | vector_upl_size += upl_size; | |
4995 | vector_upl_iosize += io_size; | |
0a7de745 A |
4996 | |
4997 | if (issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { | |
4998 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4999 | reset_vector_run_state(); | |
b0d623f7 | 5000 | } |
fe8ab488 A |
5001 | } |
5002 | last_iov_base = iov_base + io_size; | |
5003 | ||
3e170ce0 A |
5004 | if (lock) { |
5005 | // We don't need to wait for the I/O to complete | |
5006 | cluster_unlock_direct_read(lock); | |
5007 | lock = NULL; | |
5008 | } | |
5009 | ||
d7e50217 A |
5010 | /* |
5011 | * update the uio structure | |
5012 | */ | |
316670eb A |
5013 | if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) { |
5014 | uio_update(uio, (user_size_t)max_io_size); | |
0a7de745 | 5015 | } else { |
316670eb A |
5016 | uio_update(uio, (user_size_t)io_size); |
5017 | } | |
39037602 A |
5018 | |
5019 | io_req_size -= io_size; | |
2d21ac55 | 5020 | |
d7e50217 | 5021 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, |
0a7de745 | 5022 | upl, (int)uio->uio_offset, io_req_size, retval, 0); |
1c79356b A |
5023 | } /* end while */ |
5024 | ||
2d21ac55 | 5025 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) { |
0a7de745 | 5026 | retval = cluster_io_type(uio, read_type, read_length, 0); |
91447636 | 5027 | |
2d21ac55 | 5028 | if (retval == 0 && *read_type == IO_DIRECT) { |
0a7de745 A |
5029 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, |
5030 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
2d21ac55 A |
5031 | |
5032 | goto next_dread; | |
5033 | } | |
5034 | } | |
5035 | ||
5036 | wait_for_dreads: | |
b0d623f7 | 5037 | |
0a7de745 A |
5038 | if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { |
5039 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
b0d623f7 A |
5040 | reset_vector_run_state(); |
5041 | } | |
3e170ce0 A |
5042 | |
5043 | // We don't need to wait for the I/O to complete | |
0a7de745 | 5044 | if (lock) { |
3e170ce0 | 5045 | cluster_unlock_direct_read(lock); |
0a7de745 | 5046 | } |
3e170ce0 | 5047 | |
b0d623f7 A |
5048 | /* |
5049 | * make sure all async reads that are part of this stream | |
5050 | * have completed before we return | |
5051 | */ | |
fe8ab488 | 5052 | cluster_iostate_wait(&iostate, 0, "cluster_read_direct"); |
b0d623f7 | 5053 | |
0a7de745 A |
5054 | if (iostate.io_error) { |
5055 | retval = iostate.io_error; | |
5056 | } | |
2d21ac55 | 5057 | |
6d2010ae A |
5058 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
5059 | ||
0a7de745 | 5060 | if (io_throttled == TRUE && retval == 0) { |
316670eb | 5061 | retval = EAGAIN; |
0a7de745 | 5062 | } |
316670eb | 5063 | |
fe8ab488 A |
5064 | for (next_iov_base = orig_iov_base; next_iov_base < last_iov_base; next_iov_base += PAGE_SIZE) { |
5065 | /* | |
5066 | * This is specifically done for pmap accounting purposes. | |
5067 | * vm_pre_fault() will call vm_fault() to enter the page into | |
5068 | * the pmap if there isn't _a_ physical page for that VA already. | |
5069 | */ | |
cb323159 | 5070 | vm_pre_fault(vm_map_trunc_page(next_iov_base, PAGE_MASK), VM_PROT_READ); |
fe8ab488 A |
5071 | } |
5072 | ||
2d21ac55 | 5073 | if (io_req_size && retval == 0) { |
0a7de745 | 5074 | /* |
2d21ac55 A |
5075 | * we couldn't handle the tail of this request in DIRECT mode |
5076 | * so fire it through the copy path | |
5077 | */ | |
d9a64523 A |
5078 | if (flags & IO_ENCRYPTED) { |
5079 | /* | |
5080 | * We cannot fall back to the copy path for encrypted I/O. If this | |
5081 | * happens, there is something wrong with the user buffer passed | |
5082 | * down. | |
5083 | */ | |
5084 | retval = EFAULT; | |
5085 | } else { | |
5086 | retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg); | |
5087 | } | |
1c79356b | 5088 | |
2d21ac55 A |
5089 | *read_type = IO_UNKNOWN; |
5090 | } | |
1c79356b | 5091 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, |
0a7de745 | 5092 | (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0); |
1c79356b | 5093 | |
0a7de745 | 5094 | return retval; |
1c79356b A |
5095 | } |
5096 | ||
5097 | ||
9bccf70c | 5098 | static int |
2d21ac55 | 5099 | cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
0a7de745 | 5100 | int (*callback)(buf_t, void *), void *callback_arg, int flags) |
0b4e3aa0 | 5101 | { |
b4c24cb9 | 5102 | upl_page_info_t *pl; |
2d21ac55 | 5103 | upl_t upl[MAX_VECTS]; |
0b4e3aa0 | 5104 | vm_offset_t upl_offset; |
0a7de745 A |
5105 | addr64_t dst_paddr = 0; |
5106 | user_addr_t iov_base; | |
2d21ac55 | 5107 | off_t max_size; |
0a7de745 A |
5108 | upl_size_t upl_size; |
5109 | vm_size_t upl_needed_size; | |
5110 | mach_msg_type_number_t pages_in_pl; | |
3e170ce0 | 5111 | upl_control_flags_t upl_flags; |
0b4e3aa0 | 5112 | kern_return_t kret; |
b4c24cb9 | 5113 | struct clios iostate; |
0a7de745 A |
5114 | int error = 0; |
5115 | int cur_upl = 0; | |
5116 | int num_upl = 0; | |
5117 | int n; | |
5118 | u_int32_t xsize; | |
5119 | u_int32_t io_size; | |
5120 | u_int32_t devblocksize; | |
5121 | u_int32_t mem_alignment_mask; | |
5122 | u_int32_t tail_size = 0; | |
2d21ac55 A |
5123 | int bflag; |
5124 | ||
0a7de745 | 5125 | if (flags & IO_PASSIVE) { |
b0d623f7 | 5126 | bflag = CL_PASSIVE; |
0a7de745 | 5127 | } else { |
b0d623f7 | 5128 | bflag = 0; |
0a7de745 A |
5129 | } |
5130 | ||
5131 | if (flags & IO_NOCACHE) { | |
316670eb | 5132 | bflag |= CL_NOCACHE; |
0a7de745 A |
5133 | } |
5134 | ||
0b4e3aa0 A |
5135 | /* |
5136 | * When we enter this routine, we know | |
2d21ac55 A |
5137 | * -- the read_length will not exceed the current iov_len |
5138 | * -- the target address is physically contiguous for read_length | |
0b4e3aa0 | 5139 | */ |
fe8ab488 | 5140 | cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC); |
0b4e3aa0 | 5141 | |
2d21ac55 A |
5142 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
5143 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
91447636 | 5144 | |
2d21ac55 A |
5145 | iostate.io_completed = 0; |
5146 | iostate.io_issued = 0; | |
5147 | iostate.io_error = 0; | |
5148 | iostate.io_wanted = 0; | |
5149 | ||
6d2010ae A |
5150 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
5151 | ||
2d21ac55 A |
5152 | next_cread: |
5153 | io_size = *read_length; | |
0b4e3aa0 A |
5154 | |
5155 | max_size = filesize - uio->uio_offset; | |
5156 | ||
0a7de745 A |
5157 | if (io_size > max_size) { |
5158 | io_size = max_size; | |
5159 | } | |
0b4e3aa0 | 5160 | |
2d21ac55 A |
5161 | iov_base = uio_curriovbase(uio); |
5162 | ||
5163 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
0b4e3aa0 A |
5164 | upl_needed_size = upl_offset + io_size; |
5165 | ||
5166 | pages_in_pl = 0; | |
5167 | upl_size = upl_needed_size; | |
5ba3f43e | 5168 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
0b4e3aa0 | 5169 | |
2d21ac55 A |
5170 | |
5171 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START, | |
0a7de745 | 5172 | (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0); |
2d21ac55 | 5173 | |
3e170ce0 A |
5174 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
5175 | kret = vm_map_get_upl(map, | |
0a7de745 A |
5176 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
5177 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0); | |
2d21ac55 A |
5178 | |
5179 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END, | |
0a7de745 | 5180 | (int)upl_offset, upl_size, io_size, kret, 0); |
0b4e3aa0 | 5181 | |
b4c24cb9 | 5182 | if (kret != KERN_SUCCESS) { |
0a7de745 | 5183 | /* |
2d21ac55 | 5184 | * failed to get pagelist |
b4c24cb9 | 5185 | */ |
0a7de745 | 5186 | error = EINVAL; |
2d21ac55 | 5187 | goto wait_for_creads; |
b4c24cb9 | 5188 | } |
2d21ac55 A |
5189 | num_upl++; |
5190 | ||
b4c24cb9 | 5191 | if (upl_size < upl_needed_size) { |
0a7de745 | 5192 | /* |
b4c24cb9 A |
5193 | * The upl_size wasn't satisfied. |
5194 | */ | |
0a7de745 | 5195 | error = EINVAL; |
2d21ac55 | 5196 | goto wait_for_creads; |
b4c24cb9 | 5197 | } |
2d21ac55 | 5198 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
b4c24cb9 | 5199 | |
fe8ab488 | 5200 | dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; |
0b4e3aa0 | 5201 | |
b4c24cb9 | 5202 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
0a7de745 | 5203 | u_int32_t head_size; |
b4c24cb9 | 5204 | |
2d21ac55 | 5205 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
b4c24cb9 | 5206 | |
0a7de745 A |
5207 | if (head_size > io_size) { |
5208 | head_size = io_size; | |
5209 | } | |
b4c24cb9 | 5210 | |
2d21ac55 | 5211 | error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg); |
b4c24cb9 | 5212 | |
0a7de745 | 5213 | if (error) { |
2d21ac55 | 5214 | goto wait_for_creads; |
0a7de745 | 5215 | } |
b4c24cb9 | 5216 | |
b4c24cb9 A |
5217 | upl_offset += head_size; |
5218 | dst_paddr += head_size; | |
5219 | io_size -= head_size; | |
2d21ac55 A |
5220 | |
5221 | iov_base += head_size; | |
5222 | } | |
5223 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
0a7de745 | 5224 | /* |
2d21ac55 A |
5225 | * request doesn't set up on a memory boundary |
5226 | * the underlying DMA engine can handle... | |
5227 | * return an error instead of going through | |
5228 | * the slow copy path since the intent of this | |
5229 | * path is direct I/O to device memory | |
5230 | */ | |
0a7de745 | 5231 | error = EINVAL; |
2d21ac55 | 5232 | goto wait_for_creads; |
b4c24cb9 | 5233 | } |
2d21ac55 | 5234 | |
b4c24cb9 | 5235 | tail_size = io_size & (devblocksize - 1); |
b4c24cb9 | 5236 | |
2d21ac55 | 5237 | io_size -= tail_size; |
b4c24cb9 A |
5238 | |
5239 | while (io_size && error == 0) { | |
0a7de745 A |
5240 | if (io_size > MAX_IO_CONTIG_SIZE) { |
5241 | xsize = MAX_IO_CONTIG_SIZE; | |
5242 | } else { | |
5243 | xsize = io_size; | |
5244 | } | |
b4c24cb9 A |
5245 | /* |
5246 | * request asynchronously so that we can overlap | |
5247 | * the preparation of the next I/O... we'll do | |
5248 | * the commit after all the I/O has completed | |
5249 | * since its all issued against the same UPL | |
5250 | * if there are already too many outstanding reads | |
d7e50217 | 5251 | * wait until some have completed before issuing the next |
b4c24cb9 | 5252 | */ |
fe8ab488 | 5253 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig"); |
cf7d32b8 | 5254 | |
2d21ac55 | 5255 | if (iostate.io_error) { |
0a7de745 | 5256 | /* |
2d21ac55 A |
5257 | * one of the earlier reads we issued ran into a hard error |
5258 | * don't issue any more reads... | |
5259 | * go wait for any other reads to complete before | |
5260 | * returning the error to the caller | |
5261 | */ | |
0a7de745 | 5262 | goto wait_for_creads; |
2d21ac55 | 5263 | } |
0a7de745 A |
5264 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize, |
5265 | CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag, | |
5266 | (buf_t)NULL, &iostate, callback, callback_arg); | |
5267 | /* | |
b4c24cb9 A |
5268 | * The cluster_io read was issued successfully, |
5269 | * update the uio structure | |
5270 | */ | |
5271 | if (error == 0) { | |
0a7de745 | 5272 | uio_update(uio, (user_size_t)xsize); |
cc9f6e38 A |
5273 | |
5274 | dst_paddr += xsize; | |
5275 | upl_offset += xsize; | |
5276 | io_size -= xsize; | |
b4c24cb9 A |
5277 | } |
5278 | } | |
2d21ac55 | 5279 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) { |
0a7de745 | 5280 | error = cluster_io_type(uio, read_type, read_length, 0); |
2d21ac55 | 5281 | |
2d21ac55 | 5282 | if (error == 0 && *read_type == IO_CONTIG) { |
0a7de745 | 5283 | cur_upl++; |
2d21ac55 A |
5284 | goto next_cread; |
5285 | } | |
0a7de745 A |
5286 | } else { |
5287 | *read_type = IO_UNKNOWN; | |
5288 | } | |
2d21ac55 A |
5289 | |
5290 | wait_for_creads: | |
0b4e3aa0 | 5291 | /* |
d7e50217 A |
5292 | * make sure all async reads that are part of this stream |
5293 | * have completed before we proceed | |
0b4e3aa0 | 5294 | */ |
fe8ab488 | 5295 | cluster_iostate_wait(&iostate, 0, "cluster_read_contig"); |
91447636 | 5296 | |
0a7de745 A |
5297 | if (iostate.io_error) { |
5298 | error = iostate.io_error; | |
5299 | } | |
91447636 | 5300 | |
6d2010ae A |
5301 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
5302 | ||
0a7de745 A |
5303 | if (error == 0 && tail_size) { |
5304 | error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg); | |
5305 | } | |
0b4e3aa0 | 5306 | |
0a7de745 A |
5307 | for (n = 0; n < num_upl; n++) { |
5308 | /* | |
2d21ac55 A |
5309 | * just release our hold on each physically contiguous |
5310 | * region without changing any state | |
5311 | */ | |
0a7de745 A |
5312 | ubc_upl_abort(upl[n], 0); |
5313 | } | |
5314 | ||
5315 | return error; | |
0b4e3aa0 | 5316 | } |
1c79356b | 5317 | |
b4c24cb9 | 5318 | |
2d21ac55 A |
5319 | static int |
5320 | cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length) | |
5321 | { | |
0a7de745 A |
5322 | user_size_t iov_len; |
5323 | user_addr_t iov_base = 0; | |
2d21ac55 | 5324 | upl_t upl; |
b0d623f7 | 5325 | upl_size_t upl_size; |
3e170ce0 | 5326 | upl_control_flags_t upl_flags; |
0a7de745 | 5327 | int retval = 0; |
2d21ac55 | 5328 | |
0a7de745 | 5329 | /* |
2d21ac55 A |
5330 | * skip over any emtpy vectors |
5331 | */ | |
0a7de745 | 5332 | uio_update(uio, (user_size_t)0); |
2d21ac55 A |
5333 | |
5334 | iov_len = uio_curriovlen(uio); | |
5335 | ||
b0d623f7 | 5336 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0); |
2d21ac55 A |
5337 | |
5338 | if (iov_len) { | |
0a7de745 A |
5339 | iov_base = uio_curriovbase(uio); |
5340 | /* | |
2d21ac55 A |
5341 | * make sure the size of the vector isn't too big... |
5342 | * internally, we want to handle all of the I/O in | |
5343 | * chunk sizes that fit in a 32 bit int | |
5344 | */ | |
0a7de745 A |
5345 | if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE) { |
5346 | upl_size = MAX_IO_REQUEST_SIZE; | |
5347 | } else { | |
5348 | upl_size = (u_int32_t)iov_len; | |
5349 | } | |
2d21ac55 | 5350 | |
5ba3f43e | 5351 | upl_flags = UPL_QUERY_OBJECT_TYPE; |
3e170ce0 A |
5352 | |
5353 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; | |
5354 | if ((vm_map_get_upl(map, | |
0a7de745 A |
5355 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
5356 | &upl_size, &upl, NULL, NULL, &upl_flags, VM_KERN_MEMORY_FILE, 0)) != KERN_SUCCESS) { | |
5357 | /* | |
2d21ac55 A |
5358 | * the user app must have passed in an invalid address |
5359 | */ | |
0a7de745 A |
5360 | retval = EFAULT; |
5361 | } | |
5362 | if (upl_size == 0) { | |
5363 | retval = EFAULT; | |
2d21ac55 | 5364 | } |
2d21ac55 A |
5365 | |
5366 | *io_length = upl_size; | |
5367 | ||
0a7de745 A |
5368 | if (upl_flags & UPL_PHYS_CONTIG) { |
5369 | *io_type = IO_CONTIG; | |
5370 | } else if (iov_len >= min_length) { | |
5371 | *io_type = IO_DIRECT; | |
5372 | } else { | |
5373 | *io_type = IO_COPY; | |
5374 | } | |
2d21ac55 | 5375 | } else { |
0a7de745 | 5376 | /* |
2d21ac55 A |
5377 | * nothing left to do for this uio |
5378 | */ | |
0a7de745 | 5379 | *io_length = 0; |
2d21ac55 A |
5380 | *io_type = IO_UNKNOWN; |
5381 | } | |
b0d623f7 | 5382 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0); |
2d21ac55 | 5383 | |
0a7de745 | 5384 | return retval; |
2d21ac55 A |
5385 | } |
5386 | ||
5387 | ||
1c79356b A |
5388 | /* |
5389 | * generate advisory I/O's in the largest chunks possible | |
5390 | * the completed pages will be released into the VM cache | |
5391 | */ | |
9bccf70c | 5392 | int |
91447636 | 5393 | advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) |
2d21ac55 | 5394 | { |
0a7de745 | 5395 | return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE); |
2d21ac55 A |
5396 | } |
5397 | ||
5398 | int | |
5399 | advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
1c79356b | 5400 | { |
1c79356b A |
5401 | upl_page_info_t *pl; |
5402 | upl_t upl; | |
5403 | vm_offset_t upl_offset; | |
0a7de745 A |
5404 | int upl_size; |
5405 | off_t upl_f_offset; | |
5406 | int start_offset; | |
5407 | int start_pg; | |
5408 | int last_pg; | |
1c79356b A |
5409 | int pages_in_upl; |
5410 | off_t max_size; | |
5411 | int io_size; | |
5412 | kern_return_t kret; | |
5413 | int retval = 0; | |
9bccf70c | 5414 | int issued_io; |
55e303ae | 5415 | int skip_range; |
0a7de745 | 5416 | uint32_t max_io_size; |
b0d623f7 A |
5417 | |
5418 | ||
0a7de745 A |
5419 | if (!UBCINFOEXISTS(vp)) { |
5420 | return EINVAL; | |
5421 | } | |
1c79356b | 5422 | |
0a7de745 A |
5423 | if (resid < 0) { |
5424 | return EINVAL; | |
5425 | } | |
ca66cea6 | 5426 | |
cf7d32b8 | 5427 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); |
b0d623f7 | 5428 | |
5ba3f43e | 5429 | #if CONFIG_EMBEDDED |
0a7de745 | 5430 | if (max_io_size > speculative_prefetch_max_iosize) { |
5ba3f43e | 5431 | max_io_size = speculative_prefetch_max_iosize; |
0a7de745 | 5432 | } |
5ba3f43e A |
5433 | #else |
5434 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) { | |
0a7de745 | 5435 | if (max_io_size > speculative_prefetch_max_iosize) { |
316670eb | 5436 | max_io_size = speculative_prefetch_max_iosize; |
0a7de745 | 5437 | } |
316670eb | 5438 | } |
5ba3f43e | 5439 | #endif |
316670eb | 5440 | |
1c79356b | 5441 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, |
0a7de745 | 5442 | (int)f_offset, resid, (int)filesize, 0, 0); |
1c79356b A |
5443 | |
5444 | while (resid && f_offset < filesize && retval == 0) { | |
5445 | /* | |
5446 | * compute the size of the upl needed to encompass | |
5447 | * the requested read... limit each call to cluster_io | |
0b4e3aa0 A |
5448 | * to the maximum UPL size... cluster_io will clip if |
5449 | * this exceeds the maximum io_size for the device, | |
0a7de745 | 5450 | * make sure to account for |
1c79356b A |
5451 | * a starting offset that's not page aligned |
5452 | */ | |
5453 | start_offset = (int)(f_offset & PAGE_MASK_64); | |
5454 | upl_f_offset = f_offset - (off_t)start_offset; | |
5455 | max_size = filesize - f_offset; | |
5456 | ||
0a7de745 A |
5457 | if (resid < max_size) { |
5458 | io_size = resid; | |
5459 | } else { | |
5460 | io_size = max_size; | |
5461 | } | |
1c79356b A |
5462 | |
5463 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
0a7de745 A |
5464 | if ((uint32_t)upl_size > max_io_size) { |
5465 | upl_size = max_io_size; | |
5466 | } | |
55e303ae A |
5467 | |
5468 | skip_range = 0; | |
5469 | /* | |
5470 | * return the number of contiguously present pages in the cache | |
5471 | * starting at upl_f_offset within the file | |
5472 | */ | |
5473 | ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range); | |
5474 | ||
5475 | if (skip_range) { | |
0a7de745 | 5476 | /* |
55e303ae A |
5477 | * skip over pages already present in the cache |
5478 | */ | |
0a7de745 | 5479 | io_size = skip_range - start_offset; |
55e303ae | 5480 | |
0a7de745 | 5481 | f_offset += io_size; |
55e303ae A |
5482 | resid -= io_size; |
5483 | ||
0a7de745 A |
5484 | if (skip_range == upl_size) { |
5485 | continue; | |
5486 | } | |
55e303ae A |
5487 | /* |
5488 | * have to issue some real I/O | |
5489 | * at this point, we know it's starting on a page boundary | |
5490 | * because we've skipped over at least the first page in the request | |
5491 | */ | |
5492 | start_offset = 0; | |
5493 | upl_f_offset += skip_range; | |
5494 | upl_size -= skip_range; | |
5495 | } | |
1c79356b A |
5496 | pages_in_upl = upl_size / PAGE_SIZE; |
5497 | ||
55e303ae | 5498 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, |
0a7de745 | 5499 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
55e303ae | 5500 | |
5ba3f43e | 5501 | kret = ubc_create_upl_kernel(vp, |
0a7de745 A |
5502 | upl_f_offset, |
5503 | upl_size, | |
5504 | &upl, | |
5505 | &pl, | |
5506 | UPL_RET_ONLY_ABSENT | UPL_SET_LITE, | |
5507 | VM_KERN_MEMORY_FILE); | |
5508 | if (kret != KERN_SUCCESS) { | |
5509 | return retval; | |
5510 | } | |
9bccf70c | 5511 | issued_io = 0; |
1c79356b A |
5512 | |
5513 | /* | |
0a7de745 | 5514 | * before we start marching forward, we must make sure we end on |
9bccf70c A |
5515 | * a present page, otherwise we will be working with a freed |
5516 | * upl | |
1c79356b | 5517 | */ |
9bccf70c | 5518 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { |
0a7de745 A |
5519 | if (upl_page_present(pl, last_pg)) { |
5520 | break; | |
5521 | } | |
1c79356b | 5522 | } |
9bccf70c | 5523 | pages_in_upl = last_pg + 1; |
1c79356b | 5524 | |
1c79356b | 5525 | |
55e303ae | 5526 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, |
0a7de745 | 5527 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
9bccf70c A |
5528 | |
5529 | ||
0a7de745 A |
5530 | for (last_pg = 0; last_pg < pages_in_upl;) { |
5531 | /* | |
9bccf70c A |
5532 | * scan from the beginning of the upl looking for the first |
5533 | * page that is present.... this will become the first page in | |
5534 | * the request we're going to make to 'cluster_io'... if all | |
5535 | * of the pages are absent, we won't call through to 'cluster_io' | |
1c79356b | 5536 | */ |
0a7de745 A |
5537 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
5538 | if (upl_page_present(pl, start_pg)) { | |
5539 | break; | |
5540 | } | |
1c79356b | 5541 | } |
1c79356b | 5542 | |
1c79356b | 5543 | /* |
9bccf70c | 5544 | * scan from the starting present page looking for an absent |
0a7de745 | 5545 | * page before the end of the upl is reached, if we |
9bccf70c A |
5546 | * find one, then it will terminate the range of pages being |
5547 | * presented to 'cluster_io' | |
1c79356b | 5548 | */ |
9bccf70c | 5549 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
0a7de745 A |
5550 | if (!upl_page_present(pl, last_pg)) { |
5551 | break; | |
5552 | } | |
9bccf70c A |
5553 | } |
5554 | ||
0a7de745 A |
5555 | if (last_pg > start_pg) { |
5556 | /* | |
9bccf70c A |
5557 | * we found a range of pages that must be filled |
5558 | * if the last page in this range is the last page of the file | |
5559 | * we may have to clip the size of it to keep from reading past | |
5560 | * the end of the last physical block associated with the file | |
5561 | */ | |
0a7de745 | 5562 | upl_offset = start_pg * PAGE_SIZE; |
9bccf70c A |
5563 | io_size = (last_pg - start_pg) * PAGE_SIZE; |
5564 | ||
0a7de745 A |
5565 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) { |
5566 | io_size = filesize - (upl_f_offset + upl_offset); | |
5567 | } | |
9bccf70c A |
5568 | |
5569 | /* | |
5570 | * issue an asynchronous read to cluster_io | |
5571 | */ | |
91447636 | 5572 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, |
0a7de745 | 5573 | CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 5574 | |
9bccf70c A |
5575 | issued_io = 1; |
5576 | } | |
1c79356b | 5577 | } |
0a7de745 A |
5578 | if (issued_io == 0) { |
5579 | ubc_upl_abort(upl, 0); | |
5580 | } | |
9bccf70c A |
5581 | |
5582 | io_size = upl_size - start_offset; | |
0a7de745 A |
5583 | |
5584 | if (io_size > resid) { | |
5585 | io_size = resid; | |
5586 | } | |
1c79356b A |
5587 | f_offset += io_size; |
5588 | resid -= io_size; | |
5589 | } | |
9bccf70c | 5590 | |
1c79356b | 5591 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END, |
0a7de745 | 5592 | (int)f_offset, resid, retval, 0, 0); |
1c79356b | 5593 | |
0a7de745 | 5594 | return retval; |
1c79356b A |
5595 | } |
5596 | ||
5597 | ||
9bccf70c | 5598 | int |
91447636 | 5599 | cluster_push(vnode_t vp, int flags) |
2d21ac55 | 5600 | { |
0a7de745 | 5601 | return cluster_push_ext(vp, flags, NULL, NULL); |
2d21ac55 A |
5602 | } |
5603 | ||
5604 | ||
5605 | int | |
5606 | cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
813fb2f6 A |
5607 | { |
5608 | return cluster_push_err(vp, flags, callback, callback_arg, NULL); | |
5609 | } | |
5610 | ||
5611 | /* write errors via err, but return the number of clusters written */ | |
5612 | int | |
5613 | cluster_push_err(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg, int *err) | |
9bccf70c | 5614 | { |
0a7de745 A |
5615 | int retval; |
5616 | int my_sparse_wait = 0; | |
5617 | struct cl_writebehind *wbp; | |
5618 | int local_err = 0; | |
9bccf70c | 5619 | |
0a7de745 | 5620 | if (err) { |
813fb2f6 | 5621 | *err = 0; |
0a7de745 | 5622 | } |
813fb2f6 | 5623 | |
0a7de745 A |
5624 | if (!UBCINFOEXISTS(vp)) { |
5625 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -1, 0); | |
5626 | return 0; | |
91447636 A |
5627 | } |
5628 | /* return if deferred write is set */ | |
5629 | if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { | |
0a7de745 | 5630 | return 0; |
91447636 A |
5631 | } |
5632 | if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { | |
0a7de745 A |
5633 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -2, 0); |
5634 | return 0; | |
91447636 | 5635 | } |
fe8ab488 | 5636 | if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) { |
0a7de745 | 5637 | lck_mtx_unlock(&wbp->cl_lockw); |
9bccf70c | 5638 | |
0a7de745 A |
5639 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -3, 0); |
5640 | return 0; | |
91447636 | 5641 | } |
9bccf70c | 5642 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, |
0a7de745 | 5643 | wbp->cl_scmap, wbp->cl_number, flags, 0, 0); |
b0d623f7 A |
5644 | |
5645 | /* | |
5646 | * if we have an fsync in progress, we don't want to allow any additional | |
5647 | * sync/fsync/close(s) to occur until it finishes. | |
5648 | * note that its possible for writes to continue to occur to this file | |
5649 | * while we're waiting and also once the fsync starts to clean if we're | |
5650 | * in the sparse map case | |
5651 | */ | |
5652 | while (wbp->cl_sparse_wait) { | |
39037602 | 5653 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5654 | |
5655 | msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5656 | ||
39037602 | 5657 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5658 | } |
5659 | if (flags & IO_SYNC) { | |
5660 | my_sparse_wait = 1; | |
5661 | wbp->cl_sparse_wait = 1; | |
9bccf70c | 5662 | |
b0d623f7 A |
5663 | /* |
5664 | * this is an fsync (or equivalent)... we must wait for any existing async | |
5665 | * cleaning operations to complete before we evaulate the current state | |
5666 | * and finish cleaning... this insures that all writes issued before this | |
5667 | * fsync actually get cleaned to the disk before this fsync returns | |
5668 | */ | |
5669 | while (wbp->cl_sparse_pushes) { | |
39037602 | 5670 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5671 | |
5672 | msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5673 | ||
39037602 | 5674 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5675 | } |
5676 | } | |
91447636 | 5677 | if (wbp->cl_scmap) { |
0a7de745 | 5678 | void *scmap; |
b0d623f7 A |
5679 | |
5680 | if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) { | |
b0d623f7 A |
5681 | scmap = wbp->cl_scmap; |
5682 | wbp->cl_scmap = NULL; | |
5683 | ||
5684 | wbp->cl_sparse_pushes++; | |
5685 | ||
5686 | lck_mtx_unlock(&wbp->cl_lockw); | |
5687 | ||
d9a64523 | 5688 | retval = sparse_cluster_push(wbp, &scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, FALSE); |
b0d623f7 A |
5689 | |
5690 | lck_mtx_lock(&wbp->cl_lockw); | |
9bccf70c | 5691 | |
b0d623f7 | 5692 | wbp->cl_sparse_pushes--; |
d9a64523 A |
5693 | |
5694 | if (retval) { | |
5695 | if (wbp->cl_scmap != NULL) { | |
5696 | panic("cluster_push_err: Expected NULL cl_scmap\n"); | |
5697 | } | |
5698 | ||
5699 | wbp->cl_scmap = scmap; | |
5700 | } | |
0a7de745 A |
5701 | |
5702 | if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0) { | |
b0d623f7 | 5703 | wakeup((caddr_t)&wbp->cl_sparse_pushes); |
0a7de745 | 5704 | } |
b0d623f7 | 5705 | } else { |
0a7de745 | 5706 | retval = sparse_cluster_push(wbp, &(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, FALSE); |
b0d623f7 | 5707 | } |
d9a64523 A |
5708 | |
5709 | local_err = retval; | |
5710 | ||
0a7de745 | 5711 | if (err) { |
813fb2f6 | 5712 | *err = retval; |
0a7de745 | 5713 | } |
55e303ae | 5714 | retval = 1; |
813fb2f6 | 5715 | } else { |
d9a64523 | 5716 | retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, &local_err, FALSE); |
0a7de745 | 5717 | if (err) { |
d9a64523 | 5718 | *err = local_err; |
0a7de745 | 5719 | } |
b0d623f7 | 5720 | } |
91447636 A |
5721 | lck_mtx_unlock(&wbp->cl_lockw); |
5722 | ||
0a7de745 A |
5723 | if (flags & IO_SYNC) { |
5724 | (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push"); | |
5725 | } | |
9bccf70c | 5726 | |
b0d623f7 A |
5727 | if (my_sparse_wait) { |
5728 | /* | |
5729 | * I'm the owner of the serialization token | |
5730 | * clear it and wakeup anyone that is waiting | |
5731 | * for me to finish | |
5732 | */ | |
5733 | lck_mtx_lock(&wbp->cl_lockw); | |
5734 | ||
5735 | wbp->cl_sparse_wait = 0; | |
5736 | wakeup((caddr_t)&wbp->cl_sparse_wait); | |
5737 | ||
5738 | lck_mtx_unlock(&wbp->cl_lockw); | |
5739 | } | |
55e303ae | 5740 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, |
0a7de745 | 5741 | wbp->cl_scmap, wbp->cl_number, retval, local_err, 0); |
9bccf70c | 5742 | |
0a7de745 | 5743 | return retval; |
55e303ae | 5744 | } |
9bccf70c | 5745 | |
9bccf70c | 5746 | |
91447636 A |
5747 | __private_extern__ void |
5748 | cluster_release(struct ubc_info *ubc) | |
55e303ae | 5749 | { |
0a7de745 | 5750 | struct cl_writebehind *wbp; |
91447636 A |
5751 | struct cl_readahead *rap; |
5752 | ||
5753 | if ((wbp = ubc->cl_wbehind)) { | |
0a7de745 | 5754 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0); |
9bccf70c | 5755 | |
0a7de745 A |
5756 | if (wbp->cl_scmap) { |
5757 | vfs_drt_control(&(wbp->cl_scmap), 0); | |
5758 | } | |
91447636 | 5759 | } else { |
0a7de745 | 5760 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0); |
91447636 | 5761 | } |
9bccf70c | 5762 | |
91447636 | 5763 | rap = ubc->cl_rahead; |
55e303ae | 5764 | |
91447636 | 5765 | if (wbp != NULL) { |
0a7de745 A |
5766 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); |
5767 | FREE_ZONE(wbp, sizeof *wbp, M_CLWRBEHIND); | |
91447636 A |
5768 | } |
5769 | if ((rap = ubc->cl_rahead)) { | |
0a7de745 A |
5770 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); |
5771 | FREE_ZONE(rap, sizeof *rap, M_CLRDAHEAD); | |
55e303ae | 5772 | } |
91447636 A |
5773 | ubc->cl_rahead = NULL; |
5774 | ubc->cl_wbehind = NULL; | |
5775 | ||
b0d623f7 | 5776 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0); |
91447636 A |
5777 | } |
5778 | ||
5779 | ||
9bccf70c | 5780 | static int |
d9a64523 | 5781 | cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg, int *err, boolean_t vm_initiated) |
9bccf70c | 5782 | { |
0a7de745 | 5783 | int cl_index; |
9bccf70c A |
5784 | int cl_index1; |
5785 | int min_index; | |
0a7de745 | 5786 | int cl_len; |
55e303ae | 5787 | int cl_pushed = 0; |
91447636 | 5788 | struct cl_wextent l_clusters[MAX_CLUSTERS]; |
b0d623f7 | 5789 | u_int max_cluster_pgcount; |
813fb2f6 | 5790 | int error = 0; |
b0d623f7 A |
5791 | |
5792 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; | |
9bccf70c | 5793 | /* |
91447636 A |
5794 | * the write behind context exists and has |
5795 | * already been locked... | |
2d21ac55 | 5796 | */ |
0a7de745 A |
5797 | if (wbp->cl_number == 0) { |
5798 | /* | |
2d21ac55 A |
5799 | * no clusters to push |
5800 | * return number of empty slots | |
5801 | */ | |
0a7de745 A |
5802 | return MAX_CLUSTERS; |
5803 | } | |
5804 | ||
2d21ac55 | 5805 | /* |
9bccf70c | 5806 | * make a local 'sorted' copy of the clusters |
91447636 | 5807 | * and clear wbp->cl_number so that new clusters can |
9bccf70c A |
5808 | * be developed |
5809 | */ | |
91447636 | 5810 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
0a7de745 A |
5811 | for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { |
5812 | if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) { | |
5813 | continue; | |
5814 | } | |
5815 | if (min_index == -1) { | |
5816 | min_index = cl_index1; | |
5817 | } else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) { | |
5818 | min_index = cl_index1; | |
5819 | } | |
5820 | } | |
5821 | if (min_index == -1) { | |
5822 | break; | |
5823 | } | |
5824 | ||
5825 | l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; | |
91447636 | 5826 | l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; |
2d21ac55 | 5827 | l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags; |
9bccf70c | 5828 | |
0a7de745 | 5829 | wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; |
9bccf70c | 5830 | } |
91447636 A |
5831 | wbp->cl_number = 0; |
5832 | ||
5833 | cl_len = cl_index; | |
9bccf70c | 5834 | |
39037602 | 5835 | /* skip switching to the sparse cluster mechanism if on diskimage */ |
0a7de745 A |
5836 | if (((push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS) && |
5837 | !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV)) { | |
55e303ae | 5838 | int i; |
0a7de745 | 5839 | |
55e303ae A |
5840 | /* |
5841 | * determine if we appear to be writing the file sequentially | |
5842 | * if not, by returning without having pushed any clusters | |
5843 | * we will cause this vnode to be pushed into the sparse cluster mechanism | |
5844 | * used for managing more random I/O patterns | |
5845 | * | |
5846 | * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... | |
2d21ac55 | 5847 | * that's why we're in try_push with PUSH_DELAY... |
55e303ae A |
5848 | * |
5849 | * check to make sure that all the clusters except the last one are 'full'... and that each cluster | |
5850 | * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above | |
91447636 A |
5851 | * so we can just make a simple pass through, up to, but not including the last one... |
5852 | * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they | |
55e303ae | 5853 | * are sequential |
0a7de745 | 5854 | * |
55e303ae A |
5855 | * we let the last one be partial as long as it was adjacent to the previous one... |
5856 | * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out | |
5857 | * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... | |
5858 | */ | |
5859 | for (i = 0; i < MAX_CLUSTERS - 1; i++) { | |
0a7de745 A |
5860 | if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount) { |
5861 | goto dont_try; | |
5862 | } | |
5863 | if (l_clusters[i].e_addr != l_clusters[i + 1].b_addr) { | |
5864 | goto dont_try; | |
5865 | } | |
55e303ae A |
5866 | } |
5867 | } | |
0a7de745 | 5868 | if (vm_initiated == TRUE) { |
d9a64523 | 5869 | lck_mtx_unlock(&wbp->cl_lockw); |
0a7de745 | 5870 | } |
d9a64523 | 5871 | |
55e303ae | 5872 | for (cl_index = 0; cl_index < cl_len; cl_index++) { |
0a7de745 A |
5873 | int flags; |
5874 | struct cl_extent cl; | |
813fb2f6 | 5875 | int retval; |
91447636 | 5876 | |
0a7de745 | 5877 | flags = io_flags & (IO_PASSIVE | IO_CLOSE); |
6d2010ae | 5878 | |
0a7de745 | 5879 | /* |
91447636 | 5880 | * try to push each cluster in turn... |
9bccf70c | 5881 | */ |
0a7de745 A |
5882 | if (l_clusters[cl_index].io_flags & CLW_IONOCACHE) { |
5883 | flags |= IO_NOCACHE; | |
5884 | } | |
2d21ac55 | 5885 | |
0a7de745 A |
5886 | if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE) { |
5887 | flags |= IO_PASSIVE; | |
5888 | } | |
2d21ac55 | 5889 | |
0a7de745 A |
5890 | if (push_flag & PUSH_SYNC) { |
5891 | flags |= IO_SYNC; | |
5892 | } | |
2d21ac55 | 5893 | |
91447636 A |
5894 | cl.b_addr = l_clusters[cl_index].b_addr; |
5895 | cl.e_addr = l_clusters[cl_index].e_addr; | |
9bccf70c | 5896 | |
d9a64523 | 5897 | retval = cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg, vm_initiated); |
9bccf70c | 5898 | |
d9a64523 A |
5899 | if (retval == 0) { |
5900 | cl_pushed++; | |
91447636 | 5901 | |
d9a64523 A |
5902 | l_clusters[cl_index].b_addr = 0; |
5903 | l_clusters[cl_index].e_addr = 0; | |
5904 | } else if (error == 0) { | |
5905 | error = retval; | |
5906 | } | |
91447636 | 5907 | |
0a7de745 A |
5908 | if (!(push_flag & PUSH_ALL)) { |
5909 | break; | |
5910 | } | |
9bccf70c | 5911 | } |
0a7de745 | 5912 | if (vm_initiated == TRUE) { |
d9a64523 | 5913 | lck_mtx_lock(&wbp->cl_lockw); |
0a7de745 | 5914 | } |
d9a64523 | 5915 | |
0a7de745 | 5916 | if (err) { |
813fb2f6 | 5917 | *err = error; |
0a7de745 | 5918 | } |
813fb2f6 | 5919 | |
55e303ae | 5920 | dont_try: |
9bccf70c | 5921 | if (cl_len > cl_pushed) { |
0a7de745 A |
5922 | /* |
5923 | * we didn't push all of the clusters, so | |
5924 | * lets try to merge them back in to the vnode | |
5925 | */ | |
5926 | if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { | |
5927 | /* | |
9bccf70c | 5928 | * we picked up some new clusters while we were trying to |
91447636 A |
5929 | * push the old ones... this can happen because I've dropped |
5930 | * the vnode lock... the sum of the | |
9bccf70c | 5931 | * leftovers plus the new cluster count exceeds our ability |
55e303ae | 5932 | * to represent them, so switch to the sparse cluster mechanism |
91447636 A |
5933 | * |
5934 | * collect the active public clusters... | |
9bccf70c | 5935 | */ |
0a7de745 | 5936 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg, vm_initiated); |
55e303ae | 5937 | |
0a7de745 A |
5938 | for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { |
5939 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) { | |
5940 | continue; | |
5941 | } | |
5942 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; | |
91447636 | 5943 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; |
2d21ac55 | 5944 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
9bccf70c | 5945 | |
55e303ae | 5946 | cl_index1++; |
9bccf70c | 5947 | } |
55e303ae A |
5948 | /* |
5949 | * update the cluster count | |
5950 | */ | |
91447636 | 5951 | wbp->cl_number = cl_index1; |
55e303ae | 5952 | |
0a7de745 A |
5953 | /* |
5954 | * and collect the original clusters that were moved into the | |
55e303ae A |
5955 | * local storage for sorting purposes |
5956 | */ | |
0a7de745 | 5957 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg, vm_initiated); |
9bccf70c | 5958 | } else { |
0a7de745 | 5959 | /* |
9bccf70c A |
5960 | * we've got room to merge the leftovers back in |
5961 | * just append them starting at the next 'hole' | |
91447636 | 5962 | * represented by wbp->cl_number |
9bccf70c | 5963 | */ |
0a7de745 A |
5964 | for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { |
5965 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) { | |
5966 | continue; | |
5967 | } | |
9bccf70c | 5968 | |
0a7de745 | 5969 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; |
91447636 | 5970 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; |
2d21ac55 | 5971 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
9bccf70c | 5972 | |
9bccf70c A |
5973 | cl_index1++; |
5974 | } | |
5975 | /* | |
5976 | * update the cluster count | |
5977 | */ | |
91447636 | 5978 | wbp->cl_number = cl_index1; |
9bccf70c A |
5979 | } |
5980 | } | |
0a7de745 | 5981 | return MAX_CLUSTERS - wbp->cl_number; |
9bccf70c A |
5982 | } |
5983 | ||
5984 | ||
5985 | ||
5986 | static int | |
d9a64523 | 5987 | cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, |
0a7de745 | 5988 | int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) |
1c79356b | 5989 | { |
1c79356b A |
5990 | upl_page_info_t *pl; |
5991 | upl_t upl; | |
5992 | vm_offset_t upl_offset; | |
5993 | int upl_size; | |
0a7de745 A |
5994 | off_t upl_f_offset; |
5995 | int pages_in_upl; | |
1c79356b A |
5996 | int start_pg; |
5997 | int last_pg; | |
5998 | int io_size; | |
5999 | int io_flags; | |
55e303ae | 6000 | int upl_flags; |
2d21ac55 | 6001 | int bflag; |
1c79356b | 6002 | int size; |
91447636 A |
6003 | int error = 0; |
6004 | int retval; | |
1c79356b A |
6005 | kern_return_t kret; |
6006 | ||
0a7de745 | 6007 | if (flags & IO_PASSIVE) { |
6d2010ae | 6008 | bflag = CL_PASSIVE; |
0a7de745 | 6009 | } else { |
6d2010ae | 6010 | bflag = 0; |
0a7de745 | 6011 | } |
1c79356b | 6012 | |
0a7de745 | 6013 | if (flags & IO_SKIP_ENCRYPTION) { |
fe8ab488 | 6014 | bflag |= CL_ENCRYPTED; |
0a7de745 | 6015 | } |
fe8ab488 | 6016 | |
9bccf70c | 6017 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, |
0a7de745 | 6018 | (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); |
9bccf70c | 6019 | |
91447636 | 6020 | if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { |
0a7de745 | 6021 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); |
1c79356b | 6022 | |
0a7de745 | 6023 | return 0; |
9bccf70c | 6024 | } |
1c79356b | 6025 | upl_size = pages_in_upl * PAGE_SIZE; |
91447636 | 6026 | upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
1c79356b | 6027 | |
9bccf70c | 6028 | if (upl_f_offset + upl_size >= EOF) { |
0a7de745 A |
6029 | if (upl_f_offset >= EOF) { |
6030 | /* | |
6031 | * must have truncated the file and missed | |
9bccf70c A |
6032 | * clearing a dangling cluster (i.e. it's completely |
6033 | * beyond the new EOF | |
6034 | */ | |
0a7de745 | 6035 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); |
9bccf70c | 6036 | |
0a7de745 | 6037 | return 0; |
9bccf70c A |
6038 | } |
6039 | size = EOF - upl_f_offset; | |
1c79356b | 6040 | |
55e303ae | 6041 | upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
9bccf70c | 6042 | pages_in_upl = upl_size / PAGE_SIZE; |
0a7de745 A |
6043 | } else { |
6044 | size = upl_size; | |
6045 | } | |
55e303ae | 6046 | |
d9a64523 A |
6047 | |
6048 | if (vm_initiated) { | |
0a7de745 A |
6049 | vnode_pageout(vp, NULL, (upl_offset_t)0, upl_f_offset, (upl_size_t)upl_size, |
6050 | UPL_MSYNC | UPL_VNODE_PAGER | UPL_KEEPCACHED, &error); | |
d9a64523 | 6051 | |
0a7de745 | 6052 | return error; |
d9a64523 | 6053 | } |
55e303ae A |
6054 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); |
6055 | ||
91447636 A |
6056 | /* |
6057 | * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior | |
0a7de745 | 6058 | * |
91447636 A |
6059 | * - only pages that are currently dirty are returned... these are the ones we need to clean |
6060 | * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set | |
6061 | * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page | |
0a7de745 | 6062 | * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if |
91447636 A |
6063 | * someone dirties this page while the I/O is in progress, we don't lose track of the new state |
6064 | * | |
6065 | * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) | |
6066 | */ | |
6067 | ||
0a7de745 A |
6068 | if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) { |
6069 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; | |
6070 | } else { | |
6071 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; | |
6072 | } | |
55e303ae | 6073 | |
5ba3f43e | 6074 | kret = ubc_create_upl_kernel(vp, |
0a7de745 A |
6075 | upl_f_offset, |
6076 | upl_size, | |
6077 | &upl, | |
6078 | &pl, | |
6079 | upl_flags, | |
6080 | VM_KERN_MEMORY_FILE); | |
6081 | if (kret != KERN_SUCCESS) { | |
6082 | panic("cluster_push: failed to get pagelist"); | |
6083 | } | |
1c79356b | 6084 | |
b0d623f7 | 6085 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0); |
9bccf70c | 6086 | |
55e303ae A |
6087 | /* |
6088 | * since we only asked for the dirty pages back | |
6089 | * it's possible that we may only get a few or even none, so... | |
6090 | * before we start marching forward, we must make sure we know | |
6091 | * where the last present page is in the UPL, otherwise we could | |
6092 | * end up working with a freed upl due to the FREE_ON_EMPTY semantics | |
6093 | * employed by commit_range and abort_range. | |
6094 | */ | |
6095 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { | |
0a7de745 A |
6096 | if (upl_page_present(pl, last_pg)) { |
6097 | break; | |
6098 | } | |
9bccf70c | 6099 | } |
55e303ae | 6100 | pages_in_upl = last_pg + 1; |
1c79356b | 6101 | |
55e303ae | 6102 | if (pages_in_upl == 0) { |
0a7de745 | 6103 | ubc_upl_abort(upl, 0); |
1c79356b | 6104 | |
55e303ae | 6105 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); |
0a7de745 A |
6106 | return 0; |
6107 | } | |
55e303ae | 6108 | |
0a7de745 A |
6109 | for (last_pg = 0; last_pg < pages_in_upl;) { |
6110 | /* | |
55e303ae | 6111 | * find the next dirty page in the UPL |
0a7de745 | 6112 | * this will become the first page in the |
55e303ae A |
6113 | * next I/O to generate |
6114 | */ | |
1c79356b | 6115 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
0a7de745 | 6116 | if (upl_dirty_page(pl, start_pg)) { |
1c79356b | 6117 | break; |
0a7de745 A |
6118 | } |
6119 | if (upl_page_present(pl, start_pg)) { | |
6120 | /* | |
55e303ae A |
6121 | * RET_ONLY_DIRTY will return non-dirty 'precious' pages |
6122 | * just release these unchanged since we're not going | |
6123 | * to steal them or change their state | |
6124 | */ | |
0a7de745 A |
6125 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); |
6126 | } | |
1c79356b | 6127 | } |
0a7de745 A |
6128 | if (start_pg >= pages_in_upl) { |
6129 | /* | |
55e303ae A |
6130 | * done... no more dirty pages to push |
6131 | */ | |
0a7de745 A |
6132 | break; |
6133 | } | |
6134 | if (start_pg > last_pg) { | |
6135 | /* | |
55e303ae A |
6136 | * skipped over some non-dirty pages |
6137 | */ | |
6138 | size -= ((start_pg - last_pg) * PAGE_SIZE); | |
0a7de745 | 6139 | } |
1c79356b | 6140 | |
55e303ae A |
6141 | /* |
6142 | * find a range of dirty pages to write | |
6143 | */ | |
1c79356b | 6144 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
0a7de745 | 6145 | if (!upl_dirty_page(pl, last_pg)) { |
1c79356b | 6146 | break; |
0a7de745 | 6147 | } |
1c79356b A |
6148 | } |
6149 | upl_offset = start_pg * PAGE_SIZE; | |
6150 | ||
6151 | io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); | |
6152 | ||
2d21ac55 | 6153 | io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag; |
91447636 | 6154 | |
0a7de745 A |
6155 | if (!(flags & IO_SYNC)) { |
6156 | io_flags |= CL_ASYNC; | |
6157 | } | |
91447636 | 6158 | |
0a7de745 A |
6159 | if (flags & IO_CLOSE) { |
6160 | io_flags |= CL_CLOSE; | |
6161 | } | |
6d2010ae | 6162 | |
0a7de745 | 6163 | if (flags & IO_NOCACHE) { |
316670eb | 6164 | io_flags |= CL_NOCACHE; |
0a7de745 | 6165 | } |
316670eb | 6166 | |
91447636 | 6167 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, |
0a7de745 | 6168 | io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 6169 | |
0a7de745 A |
6170 | if (error == 0 && retval) { |
6171 | error = retval; | |
6172 | } | |
1c79356b A |
6173 | |
6174 | size -= io_size; | |
6175 | } | |
d9a64523 | 6176 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, error, 0, 0); |
9bccf70c | 6177 | |
0a7de745 | 6178 | return error; |
1c79356b | 6179 | } |
b4c24cb9 A |
6180 | |
6181 | ||
91447636 A |
6182 | /* |
6183 | * sparse_cluster_switch is called with the write behind lock held | |
6184 | */ | |
d9a64523 A |
6185 | static int |
6186 | sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) | |
b4c24cb9 | 6187 | { |
0a7de745 A |
6188 | int cl_index; |
6189 | int error; | |
b4c24cb9 | 6190 | |
d9a64523 | 6191 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, kdebug_vnode(vp), wbp->cl_scmap, wbp->cl_number, 0, 0); |
91447636 A |
6192 | |
6193 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
0a7de745 | 6194 | int flags; |
91447636 A |
6195 | struct cl_extent cl; |
6196 | ||
0a7de745 A |
6197 | for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { |
6198 | if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) { | |
6199 | if (flags & UPL_POP_DIRTY) { | |
6200 | cl.e_addr = cl.b_addr + 1; | |
b4c24cb9 | 6201 | |
0a7de745 | 6202 | error = sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg, vm_initiated); |
d9a64523 A |
6203 | |
6204 | if (error) { | |
6205 | break; | |
6206 | } | |
91447636 | 6207 | } |
55e303ae A |
6208 | } |
6209 | } | |
6210 | } | |
d9a64523 A |
6211 | wbp->cl_number -= cl_index; |
6212 | ||
6213 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, kdebug_vnode(vp), wbp->cl_scmap, wbp->cl_number, error, 0); | |
91447636 | 6214 | |
d9a64523 | 6215 | return error; |
55e303ae A |
6216 | } |
6217 | ||
6218 | ||
91447636 | 6219 | /* |
b0d623f7 A |
6220 | * sparse_cluster_push must be called with the write-behind lock held if the scmap is |
6221 | * still associated with the write-behind context... however, if the scmap has been disassociated | |
6222 | * from the write-behind context (the cluster_push case), the wb lock is not held | |
91447636 | 6223 | */ |
813fb2f6 | 6224 | static int |
d9a64523 | 6225 | sparse_cluster_push(struct cl_writebehind *wbp, void **scmap, vnode_t vp, off_t EOF, int push_flag, |
0a7de745 | 6226 | int io_flags, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) |
55e303ae | 6227 | { |
0a7de745 A |
6228 | struct cl_extent cl; |
6229 | off_t offset; | |
6230 | u_int length; | |
d9a64523 | 6231 | void *l_scmap; |
813fb2f6 | 6232 | int error = 0; |
55e303ae | 6233 | |
39037602 | 6234 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, kdebug_vnode(vp), (*scmap), 0, push_flag, 0); |
55e303ae | 6235 | |
0a7de745 A |
6236 | if (push_flag & PUSH_ALL) { |
6237 | vfs_drt_control(scmap, 1); | |
6238 | } | |
55e303ae | 6239 | |
d9a64523 A |
6240 | l_scmap = *scmap; |
6241 | ||
55e303ae | 6242 | for (;;) { |
813fb2f6 | 6243 | int retval; |
d9a64523 | 6244 | |
0a7de745 | 6245 | if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS) { |
55e303ae | 6246 | break; |
0a7de745 | 6247 | } |
55e303ae | 6248 | |
0a7de745 A |
6249 | if (vm_initiated == TRUE) { |
6250 | lck_mtx_unlock(&wbp->cl_lockw); | |
6251 | } | |
d9a64523 | 6252 | |
91447636 A |
6253 | cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); |
6254 | cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); | |
6255 | ||
d9a64523 | 6256 | retval = cluster_push_now(vp, &cl, EOF, io_flags, callback, callback_arg, vm_initiated); |
0a7de745 | 6257 | if (error == 0 && retval) { |
813fb2f6 | 6258 | error = retval; |
0a7de745 | 6259 | } |
2d21ac55 | 6260 | |
d9a64523 | 6261 | if (vm_initiated == TRUE) { |
0a7de745 | 6262 | lck_mtx_lock(&wbp->cl_lockw); |
d9a64523 | 6263 | |
0a7de745 A |
6264 | if (*scmap != l_scmap) { |
6265 | break; | |
6266 | } | |
d9a64523 A |
6267 | } |
6268 | ||
6269 | if (error) { | |
6270 | if (vfs_drt_mark_pages(scmap, offset, length, NULL) != KERN_SUCCESS) { | |
6271 | panic("Failed to restore dirty state on failure\n"); | |
6272 | } | |
6273 | ||
6274 | break; | |
6275 | } | |
6276 | ||
0a7de745 A |
6277 | if (!(push_flag & PUSH_ALL)) { |
6278 | break; | |
d9a64523 | 6279 | } |
55e303ae | 6280 | } |
d9a64523 | 6281 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), error, 0, 0); |
813fb2f6 A |
6282 | |
6283 | return error; | |
55e303ae A |
6284 | } |
6285 | ||
6286 | ||
91447636 A |
6287 | /* |
6288 | * sparse_cluster_add is called with the write behind lock held | |
6289 | */ | |
d9a64523 A |
6290 | static int |
6291 | sparse_cluster_add(struct cl_writebehind *wbp, void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, | |
0a7de745 | 6292 | int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) |
55e303ae | 6293 | { |
0a7de745 A |
6294 | u_int new_dirty; |
6295 | u_int length; | |
6296 | off_t offset; | |
6297 | int error; | |
6298 | int push_flag = 0; /* Is this a valid value? */ | |
55e303ae | 6299 | |
b0d623f7 | 6300 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0); |
55e303ae | 6301 | |
91447636 A |
6302 | offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
6303 | length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; | |
55e303ae | 6304 | |
b0d623f7 | 6305 | while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) { |
0a7de745 | 6306 | /* |
55e303ae A |
6307 | * no room left in the map |
6308 | * only a partial update was done | |
6309 | * push out some pages and try again | |
6310 | */ | |
0a7de745 A |
6311 | |
6312 | if (vfs_get_scmap_push_behavior_internal(scmap, &push_flag)) { | |
6313 | push_flag = 0; | |
6314 | } | |
6315 | ||
6316 | error = sparse_cluster_push(wbp, scmap, vp, EOF, push_flag, 0, callback, callback_arg, vm_initiated); | |
d9a64523 A |
6317 | |
6318 | if (error) { | |
6319 | break; | |
6320 | } | |
55e303ae A |
6321 | |
6322 | offset += (new_dirty * PAGE_SIZE_64); | |
6323 | length -= (new_dirty * PAGE_SIZE); | |
6324 | } | |
d9a64523 A |
6325 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), error, 0, 0); |
6326 | ||
6327 | return error; | |
55e303ae A |
6328 | } |
6329 | ||
6330 | ||
6331 | static int | |
2d21ac55 | 6332 | cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 6333 | { |
0a7de745 A |
6334 | upl_page_info_t *pl; |
6335 | upl_t upl; | |
6336 | addr64_t ubc_paddr; | |
6337 | kern_return_t kret; | |
6338 | int error = 0; | |
6339 | int did_read = 0; | |
6340 | int abort_flags; | |
6341 | int upl_flags; | |
2d21ac55 A |
6342 | int bflag; |
6343 | ||
0a7de745 | 6344 | if (flags & IO_PASSIVE) { |
6d2010ae | 6345 | bflag = CL_PASSIVE; |
0a7de745 | 6346 | } else { |
6d2010ae | 6347 | bflag = 0; |
0a7de745 | 6348 | } |
55e303ae | 6349 | |
0a7de745 | 6350 | if (flags & IO_NOCACHE) { |
316670eb | 6351 | bflag |= CL_NOCACHE; |
0a7de745 | 6352 | } |
316670eb | 6353 | |
91447636 | 6354 | upl_flags = UPL_SET_LITE; |
2d21ac55 | 6355 | |
0a7de745 | 6356 | if (!(flags & CL_READ)) { |
91447636 A |
6357 | /* |
6358 | * "write" operation: let the UPL subsystem know | |
6359 | * that we intend to modify the buffer cache pages | |
6360 | * we're gathering. | |
6361 | */ | |
6362 | upl_flags |= UPL_WILL_MODIFY; | |
2d21ac55 | 6363 | } else { |
0a7de745 | 6364 | /* |
2d21ac55 A |
6365 | * indicate that there is no need to pull the |
6366 | * mapping for this page... we're only going | |
6367 | * to read from it, not modify it. | |
6368 | */ | |
6369 | upl_flags |= UPL_FILE_IO; | |
91447636 | 6370 | } |
0a7de745 A |
6371 | kret = ubc_create_upl_kernel(vp, |
6372 | uio->uio_offset & ~PAGE_MASK_64, | |
6373 | PAGE_SIZE, | |
6374 | &upl, | |
6375 | &pl, | |
6376 | upl_flags, | |
6377 | VM_KERN_MEMORY_FILE); | |
6378 | ||
6379 | if (kret != KERN_SUCCESS) { | |
6380 | return EINVAL; | |
6381 | } | |
6382 | ||
6383 | if (!upl_valid_page(pl, 0)) { | |
6384 | /* | |
6385 | * issue a synchronous read to cluster_io | |
6386 | */ | |
6387 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, | |
6388 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); | |
6389 | if (error) { | |
6390 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); | |
6391 | ||
6392 | return error; | |
6393 | } | |
91447636 | 6394 | did_read = 1; |
0a7de745 A |
6395 | } |
6396 | ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); | |
b4c24cb9 | 6397 | |
55e303ae A |
6398 | /* |
6399 | * NOTE: There is no prototype for the following in BSD. It, and the definitions | |
6400 | * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in | |
6401 | * osfmk/ppc/mappings.h. They are not included here because there appears to be no | |
6402 | * way to do so without exporting them to kexts as well. | |
6403 | */ | |
0a7de745 | 6404 | if (flags & CL_READ) { |
55e303ae | 6405 | // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ |
0a7de745 A |
6406 | copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */ |
6407 | } else { | |
4a249263 | 6408 | // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ |
0a7de745 A |
6409 | copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */ |
6410 | } | |
6411 | if (!(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) { | |
6412 | /* | |
55e303ae A |
6413 | * issue a synchronous write to cluster_io |
6414 | */ | |
91447636 | 6415 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, |
0a7de745 A |
6416 | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
6417 | } | |
6418 | if (error == 0) { | |
6419 | uio_update(uio, (user_size_t)xsize); | |
de355530 | 6420 | } |
cc9f6e38 | 6421 | |
0a7de745 A |
6422 | if (did_read) { |
6423 | abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
6424 | } else { | |
6425 | abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
6426 | } | |
91447636 A |
6427 | |
6428 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); | |
0a7de745 A |
6429 | |
6430 | return error; | |
55e303ae A |
6431 | } |
6432 | ||
55e303ae | 6433 | int |
2d21ac55 | 6434 | cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid) |
55e303ae | 6435 | { |
0a7de745 | 6436 | int pg_offset; |
55e303ae | 6437 | int pg_index; |
0a7de745 | 6438 | int csize; |
55e303ae A |
6439 | int segflg; |
6440 | int retval = 0; | |
0a7de745 | 6441 | int xsize; |
55e303ae | 6442 | upl_page_info_t *pl; |
0a7de745 | 6443 | int dirty_count; |
55e303ae | 6444 | |
2d21ac55 A |
6445 | xsize = *io_resid; |
6446 | ||
55e303ae | 6447 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, |
0a7de745 | 6448 | (int)uio->uio_offset, upl_offset, xsize, 0, 0); |
55e303ae A |
6449 | |
6450 | segflg = uio->uio_segflg; | |
6451 | ||
0a7de745 A |
6452 | switch (segflg) { |
6453 | case UIO_USERSPACE32: | |
6454 | case UIO_USERISPACE32: | |
91447636 A |
6455 | uio->uio_segflg = UIO_PHYS_USERSPACE32; |
6456 | break; | |
6457 | ||
0a7de745 A |
6458 | case UIO_USERSPACE: |
6459 | case UIO_USERISPACE: | |
55e303ae A |
6460 | uio->uio_segflg = UIO_PHYS_USERSPACE; |
6461 | break; | |
6462 | ||
0a7de745 A |
6463 | case UIO_USERSPACE64: |
6464 | case UIO_USERISPACE64: | |
91447636 A |
6465 | uio->uio_segflg = UIO_PHYS_USERSPACE64; |
6466 | break; | |
6467 | ||
0a7de745 | 6468 | case UIO_SYSSPACE: |
55e303ae A |
6469 | uio->uio_segflg = UIO_PHYS_SYSSPACE; |
6470 | break; | |
6471 | } | |
6472 | pl = ubc_upl_pageinfo(upl); | |
6473 | ||
6474 | pg_index = upl_offset / PAGE_SIZE; | |
6475 | pg_offset = upl_offset & PAGE_MASK; | |
6476 | csize = min(PAGE_SIZE - pg_offset, xsize); | |
6477 | ||
4bd07ac2 | 6478 | dirty_count = 0; |
55e303ae | 6479 | while (xsize && retval == 0) { |
0a7de745 | 6480 | addr64_t paddr; |
55e303ae | 6481 | |
fe8ab488 | 6482 | paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset; |
0a7de745 | 6483 | if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(pl, pg_index) == FALSE)) { |
4bd07ac2 | 6484 | dirty_count++; |
0a7de745 | 6485 | } |
de355530 | 6486 | |
55e303ae A |
6487 | retval = uiomove64(paddr, csize, uio); |
6488 | ||
6489 | pg_index += 1; | |
6490 | pg_offset = 0; | |
6491 | xsize -= csize; | |
6492 | csize = min(PAGE_SIZE, xsize); | |
6493 | } | |
2d21ac55 A |
6494 | *io_resid = xsize; |
6495 | ||
55e303ae A |
6496 | uio->uio_segflg = segflg; |
6497 | ||
39037602 | 6498 | task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED, upl_lookup_vnode(upl)); |
55e303ae | 6499 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
0a7de745 A |
6500 | (int)uio->uio_offset, xsize, retval, segflg, 0); |
6501 | ||
6502 | return retval; | |
55e303ae A |
6503 | } |
6504 | ||
6505 | ||
6506 | int | |
91447636 | 6507 | cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) |
2d21ac55 | 6508 | { |
0a7de745 | 6509 | return cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1); |
2d21ac55 A |
6510 | } |
6511 | ||
6512 | ||
6513 | static int | |
6514 | cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference) | |
55e303ae A |
6515 | { |
6516 | int segflg; | |
6517 | int io_size; | |
6518 | int xsize; | |
6519 | int start_offset; | |
55e303ae | 6520 | int retval = 0; |
0a7de745 | 6521 | memory_object_control_t control; |
55e303ae | 6522 | |
2d21ac55 | 6523 | io_size = *io_resid; |
55e303ae A |
6524 | |
6525 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, | |
0a7de745 | 6526 | (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0); |
55e303ae A |
6527 | |
6528 | control = ubc_getobject(vp, UBC_FLAGS_NONE); | |
2d21ac55 | 6529 | |
55e303ae A |
6530 | if (control == MEMORY_OBJECT_CONTROL_NULL) { |
6531 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
0a7de745 | 6532 | (int)uio->uio_offset, io_size, retval, 3, 0); |
55e303ae | 6533 | |
0a7de745 | 6534 | return 0; |
55e303ae | 6535 | } |
55e303ae A |
6536 | segflg = uio->uio_segflg; |
6537 | ||
0a7de745 A |
6538 | switch (segflg) { |
6539 | case UIO_USERSPACE32: | |
6540 | case UIO_USERISPACE32: | |
91447636 A |
6541 | uio->uio_segflg = UIO_PHYS_USERSPACE32; |
6542 | break; | |
6543 | ||
0a7de745 A |
6544 | case UIO_USERSPACE64: |
6545 | case UIO_USERISPACE64: | |
91447636 A |
6546 | uio->uio_segflg = UIO_PHYS_USERSPACE64; |
6547 | break; | |
6548 | ||
0a7de745 A |
6549 | case UIO_USERSPACE: |
6550 | case UIO_USERISPACE: | |
55e303ae A |
6551 | uio->uio_segflg = UIO_PHYS_USERSPACE; |
6552 | break; | |
6553 | ||
0a7de745 | 6554 | case UIO_SYSSPACE: |
55e303ae A |
6555 | uio->uio_segflg = UIO_PHYS_SYSSPACE; |
6556 | break; | |
6557 | } | |
55e303ae | 6558 | |
0a7de745 A |
6559 | if ((io_size = *io_resid)) { |
6560 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
91447636 | 6561 | xsize = uio_resid(uio); |
55e303ae | 6562 | |
2d21ac55 | 6563 | retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio, |
0a7de745 | 6564 | start_offset, io_size, mark_dirty, take_reference); |
91447636 A |
6565 | xsize -= uio_resid(uio); |
6566 | io_size -= xsize; | |
55e303ae A |
6567 | } |
6568 | uio->uio_segflg = segflg; | |
6569 | *io_resid = io_size; | |
6570 | ||
55e303ae | 6571 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
0a7de745 | 6572 | (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0); |
55e303ae | 6573 | |
0a7de745 | 6574 | return retval; |
55e303ae A |
6575 | } |
6576 | ||
6577 | ||
6578 | int | |
91447636 | 6579 | is_file_clean(vnode_t vp, off_t filesize) |
55e303ae | 6580 | { |
0a7de745 | 6581 | off_t f_offset; |
55e303ae A |
6582 | int flags; |
6583 | int total_dirty = 0; | |
6584 | ||
6585 | for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { | |
0a7de745 A |
6586 | if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) { |
6587 | if (flags & UPL_POP_DIRTY) { | |
6588 | total_dirty++; | |
55e303ae A |
6589 | } |
6590 | } | |
6591 | } | |
0a7de745 A |
6592 | if (total_dirty) { |
6593 | return EINVAL; | |
6594 | } | |
55e303ae | 6595 | |
0a7de745 | 6596 | return 0; |
55e303ae A |
6597 | } |
6598 | ||
6599 | ||
6600 | ||
6601 | /* | |
6602 | * Dirty region tracking/clustering mechanism. | |
6603 | * | |
6604 | * This code (vfs_drt_*) provides a mechanism for tracking and clustering | |
6605 | * dirty regions within a larger space (file). It is primarily intended to | |
6606 | * support clustering in large files with many dirty areas. | |
6607 | * | |
6608 | * The implementation assumes that the dirty regions are pages. | |
6609 | * | |
6610 | * To represent dirty pages within the file, we store bit vectors in a | |
6611 | * variable-size circular hash. | |
6612 | */ | |
6613 | ||
6614 | /* | |
6615 | * Bitvector size. This determines the number of pages we group in a | |
6616 | * single hashtable entry. Each hashtable entry is aligned to this | |
6617 | * size within the file. | |
6618 | */ | |
0a7de745 | 6619 | #define DRT_BITVECTOR_PAGES ((1024 * 256) / PAGE_SIZE) |
55e303ae A |
6620 | |
6621 | /* | |
6622 | * File offset handling. | |
6623 | * | |
0a7de745 | 6624 | * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES; |
3e170ce0 | 6625 | * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) |
55e303ae | 6626 | */ |
0a7de745 A |
6627 | #define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) |
6628 | #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK) | |
55e303ae A |
6629 | |
6630 | /* | |
6631 | * Hashtable address field handling. | |
6632 | * | |
6633 | * The low-order bits of the hashtable address are used to conserve | |
6634 | * space. | |
6635 | * | |
6636 | * DRT_HASH_COUNT_MASK must be large enough to store the range | |
6637 | * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value | |
6638 | * to indicate that the bucket is actually unoccupied. | |
6639 | */ | |
0a7de745 A |
6640 | #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK) |
6641 | #define DRT_HASH_SET_ADDRESS(scm, i, a) \ | |
6642 | do { \ | |
6643 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
6644 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \ | |
55e303ae | 6645 | } while (0) |
0a7de745 A |
6646 | #define DRT_HASH_COUNT_MASK 0x1ff |
6647 | #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK) | |
6648 | #define DRT_HASH_SET_COUNT(scm, i, c) \ | |
6649 | do { \ | |
6650 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
6651 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \ | |
55e303ae A |
6652 | } while (0) |
6653 | #define DRT_HASH_CLEAR(scm, i) \ | |
0a7de745 A |
6654 | do { \ |
6655 | (scm)->scm_hashtable[(i)].dhe_control = 0; \ | |
55e303ae | 6656 | } while (0) |
0a7de745 A |
6657 | #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK) |
6658 | #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK) | |
6659 | #define DRT_HASH_COPY(oscm, oi, scm, i) \ | |
6660 | do { \ | |
6661 | (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \ | |
6662 | DRT_BITVECTOR_COPY(oscm, oi, scm, i); \ | |
55e303ae A |
6663 | } while(0); |
6664 | ||
6665 | ||
d9a64523 | 6666 | #if CONFIG_EMBEDDED |
55e303ae A |
6667 | /* |
6668 | * Hash table moduli. | |
6669 | * | |
6670 | * Since the hashtable entry's size is dependent on the size of | |
6671 | * the bitvector, and since the hashtable size is constrained to | |
6672 | * both being prime and fitting within the desired allocation | |
6673 | * size, these values need to be manually determined. | |
6674 | * | |
d9a64523 | 6675 | * For DRT_BITVECTOR_SIZE = 64, the entry size is 16 bytes. |
55e303ae | 6676 | * |
d9a64523 A |
6677 | * The small hashtable allocation is 4096 bytes, so the modulus is 251. |
6678 | * The large hashtable allocation is 32768 bytes, so the modulus is 2039. | |
0a7de745 | 6679 | * The xlarge hashtable allocation is 131072 bytes, so the modulus is 8179. |
55e303ae | 6680 | */ |
d9a64523 | 6681 | |
0a7de745 A |
6682 | #define DRT_HASH_SMALL_MODULUS 251 |
6683 | #define DRT_HASH_LARGE_MODULUS 2039 | |
6684 | #define DRT_HASH_XLARGE_MODULUS 8179 | |
55e303ae | 6685 | |
b7266188 A |
6686 | /* |
6687 | * Physical memory required before the large hash modulus is permitted. | |
6688 | * | |
6689 | * On small memory systems, the large hash modulus can lead to phsyical | |
6690 | * memory starvation, so we avoid using it there. | |
6691 | */ | |
0a7de745 A |
6692 | #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */ |
6693 | #define DRT_HASH_XLARGE_MEMORY_REQUIRED (8 * 1024LL * 1024LL * 1024LL) /* 8GiB */ | |
b7266188 | 6694 | |
0a7de745 A |
6695 | #define DRT_SMALL_ALLOCATION 4096 /* 80 bytes spare */ |
6696 | #define DRT_LARGE_ALLOCATION 32768 /* 144 bytes spare */ | |
6697 | #define DRT_XLARGE_ALLOCATION 131072 /* 208 bytes spare */ | |
d9a64523 A |
6698 | |
6699 | #else | |
6700 | /* | |
6701 | * Hash table moduli. | |
6702 | * | |
6703 | * Since the hashtable entry's size is dependent on the size of | |
6704 | * the bitvector, and since the hashtable size is constrained to | |
6705 | * both being prime and fitting within the desired allocation | |
6706 | * size, these values need to be manually determined. | |
6707 | * | |
6708 | * For DRT_BITVECTOR_SIZE = 64, the entry size is 16 bytes. | |
6709 | * | |
6710 | * The small hashtable allocation is 16384 bytes, so the modulus is 1019. | |
6711 | * The large hashtable allocation is 131072 bytes, so the modulus is 8179. | |
0a7de745 | 6712 | * The xlarge hashtable allocation is 524288 bytes, so the modulus is 32749. |
d9a64523 A |
6713 | */ |
6714 | ||
0a7de745 A |
6715 | #define DRT_HASH_SMALL_MODULUS 1019 |
6716 | #define DRT_HASH_LARGE_MODULUS 8179 | |
6717 | #define DRT_HASH_XLARGE_MODULUS 32749 | |
d9a64523 A |
6718 | |
6719 | /* | |
6720 | * Physical memory required before the large hash modulus is permitted. | |
6721 | * | |
6722 | * On small memory systems, the large hash modulus can lead to phsyical | |
6723 | * memory starvation, so we avoid using it there. | |
6724 | */ | |
0a7de745 A |
6725 | #define DRT_HASH_LARGE_MEMORY_REQUIRED (4 * 1024LL * 1024LL * 1024LL) /* 4GiB */ |
6726 | #define DRT_HASH_XLARGE_MEMORY_REQUIRED (32 * 1024LL * 1024LL * 1024LL) /* 32GiB */ | |
d9a64523 | 6727 | |
0a7de745 A |
6728 | #define DRT_SMALL_ALLOCATION 16384 /* 80 bytes spare */ |
6729 | #define DRT_LARGE_ALLOCATION 131072 /* 208 bytes spare */ | |
6730 | #define DRT_XLARGE_ALLOCATION 524288 /* 304 bytes spare */ | |
d9a64523 A |
6731 | |
6732 | #endif | |
55e303ae A |
6733 | |
6734 | /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */ | |
6735 | ||
d9a64523 A |
6736 | /* |
6737 | * Hashtable entry. | |
6738 | */ | |
6739 | struct vfs_drt_hashentry { | |
0a7de745 | 6740 | u_int64_t dhe_control; |
d9a64523 | 6741 | /* |
0a7de745 A |
6742 | * dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32]; |
6743 | * DRT_BITVECTOR_PAGES is defined as ((1024 * 256) / PAGE_SIZE) | |
6744 | * Since PAGE_SIZE is only known at boot time, | |
6745 | * -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k) | |
6746 | * -declare dhe_bitvector array for largest possible length | |
6747 | */ | |
d9a64523 | 6748 | #define MAX_DRT_BITVECTOR_PAGES (1024 * 256)/( 4 * 1024) |
0a7de745 | 6749 | u_int32_t dhe_bitvector[MAX_DRT_BITVECTOR_PAGES / 32]; |
d9a64523 A |
6750 | }; |
6751 | ||
55e303ae A |
6752 | /* |
6753 | * Hashtable bitvector handling. | |
6754 | * | |
6755 | * Bitvector fields are 32 bits long. | |
6756 | */ | |
6757 | ||
0a7de745 | 6758 | #define DRT_HASH_SET_BIT(scm, i, bit) \ |
55e303ae A |
6759 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32)) |
6760 | ||
0a7de745 | 6761 | #define DRT_HASH_CLEAR_BIT(scm, i, bit) \ |
55e303ae | 6762 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32)) |
0a7de745 A |
6763 | |
6764 | #define DRT_HASH_TEST_BIT(scm, i, bit) \ | |
55e303ae | 6765 | ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32))) |
0a7de745 A |
6766 | |
6767 | #define DRT_BITVECTOR_CLEAR(scm, i) \ | |
d9a64523 | 6768 | bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (MAX_DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) |
55e303ae | 6769 | |
0a7de745 A |
6770 | #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \ |
6771 | bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \ | |
6772 | &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \ | |
d9a64523 | 6773 | (MAX_DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) |
55e303ae A |
6774 | |
6775 | /* | |
6776 | * Dirty Region Tracking structure. | |
6777 | * | |
6778 | * The hashtable is allocated entirely inside the DRT structure. | |
6779 | * | |
6780 | * The hash is a simple circular prime modulus arrangement, the structure | |
6781 | * is resized from small to large if it overflows. | |
6782 | */ | |
6783 | ||
6784 | struct vfs_drt_clustermap { | |
0a7de745 A |
6785 | u_int32_t scm_magic; /* sanity/detection */ |
6786 | #define DRT_SCM_MAGIC 0x12020003 | |
6787 | u_int32_t scm_modulus; /* current ring size */ | |
6788 | u_int32_t scm_buckets; /* number of occupied buckets */ | |
6789 | u_int32_t scm_lastclean; /* last entry we cleaned */ | |
6790 | u_int32_t scm_iskips; /* number of slot skips */ | |
55e303ae A |
6791 | |
6792 | struct vfs_drt_hashentry scm_hashtable[0]; | |
6793 | }; | |
6794 | ||
6795 | ||
0a7de745 A |
6796 | #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus) |
6797 | #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus) | |
55e303ae A |
6798 | |
6799 | /* | |
6800 | * Debugging codes and arguments. | |
6801 | */ | |
0a7de745 A |
6802 | #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */ |
6803 | #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */ | |
6804 | #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */ | |
6805 | #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */ | |
6806 | #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length, | |
6807 | * dirty */ | |
6808 | /* 0, setcount */ | |
6809 | /* 1 (clean, no map) */ | |
6810 | /* 2 (map alloc fail) */ | |
6811 | /* 3, resid (partial) */ | |
6812 | #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87)) | |
6813 | #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets, | |
6814 | * lastclean, iskips */ | |
6815 | ||
6816 | ||
6817 | static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); | |
6818 | static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); | |
6819 | static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, | |
6820 | u_int64_t offset, int *indexp); | |
6821 | static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, | |
6822 | u_int64_t offset, | |
6823 | int *indexp, | |
6824 | int recursed); | |
6825 | static kern_return_t vfs_drt_do_mark_pages( | |
6826 | void **cmapp, | |
6827 | u_int64_t offset, | |
6828 | u_int length, | |
6829 | u_int *setcountp, | |
6830 | int dirty); | |
6831 | static void vfs_drt_trace( | |
55e303ae A |
6832 | struct vfs_drt_clustermap *cmap, |
6833 | int code, | |
6834 | int arg1, | |
6835 | int arg2, | |
6836 | int arg3, | |
6837 | int arg4); | |
6838 | ||
6839 | ||
6840 | /* | |
6841 | * Allocate and initialise a sparse cluster map. | |
6842 | * | |
6843 | * Will allocate a new map, resize or compact an existing map. | |
6844 | * | |
6845 | * XXX we should probably have at least one intermediate map size, | |
6846 | * as the 1:16 ratio seems a bit drastic. | |
6847 | */ | |
6848 | static kern_return_t | |
6849 | vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) | |
6850 | { | |
0a7de745 A |
6851 | struct vfs_drt_clustermap *cmap = NULL, *ocmap = NULL; |
6852 | kern_return_t kret = KERN_SUCCESS; | |
6853 | u_int64_t offset = 0; | |
6854 | u_int32_t i = 0; | |
6855 | int modulus_size = 0, map_size = 0, active_buckets = 0, index = 0, copycount = 0; | |
55e303ae A |
6856 | |
6857 | ocmap = NULL; | |
0a7de745 | 6858 | if (cmapp != NULL) { |
55e303ae | 6859 | ocmap = *cmapp; |
0a7de745 A |
6860 | } |
6861 | ||
55e303ae A |
6862 | /* |
6863 | * Decide on the size of the new map. | |
6864 | */ | |
6865 | if (ocmap == NULL) { | |
0a7de745 A |
6866 | modulus_size = DRT_HASH_SMALL_MODULUS; |
6867 | map_size = DRT_SMALL_ALLOCATION; | |
55e303ae A |
6868 | } else { |
6869 | /* count the number of active buckets in the old map */ | |
6870 | active_buckets = 0; | |
6871 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6872 | if (!DRT_HASH_VACANT(ocmap, i) && | |
0a7de745 | 6873 | (DRT_HASH_GET_COUNT(ocmap, i) != 0)) { |
55e303ae | 6874 | active_buckets++; |
0a7de745 | 6875 | } |
55e303ae A |
6876 | } |
6877 | /* | |
6878 | * If we're currently using the small allocation, check to | |
6879 | * see whether we should grow to the large one. | |
6880 | */ | |
6881 | if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { | |
0a7de745 | 6882 | /* |
b7266188 A |
6883 | * If the ring is nearly full and we are allowed to |
6884 | * use the large modulus, upgrade. | |
6885 | */ | |
6886 | if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) && | |
6887 | (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) { | |
0a7de745 A |
6888 | modulus_size = DRT_HASH_LARGE_MODULUS; |
6889 | map_size = DRT_LARGE_ALLOCATION; | |
6890 | } else { | |
6891 | modulus_size = DRT_HASH_SMALL_MODULUS; | |
6892 | map_size = DRT_SMALL_ALLOCATION; | |
6893 | } | |
6894 | } else if (ocmap->scm_modulus == DRT_HASH_LARGE_MODULUS) { | |
6895 | if ((active_buckets > (DRT_HASH_LARGE_MODULUS - 5)) && | |
6896 | (max_mem >= DRT_HASH_XLARGE_MEMORY_REQUIRED)) { | |
6897 | modulus_size = DRT_HASH_XLARGE_MODULUS; | |
6898 | map_size = DRT_XLARGE_ALLOCATION; | |
55e303ae | 6899 | } else { |
cb323159 A |
6900 | /* |
6901 | * If the ring is completely full and we can't | |
6902 | * expand, there's nothing useful for us to do. | |
6903 | * Behave as though we had compacted into the new | |
6904 | * array and return. | |
6905 | */ | |
6906 | return KERN_SUCCESS; | |
55e303ae A |
6907 | } |
6908 | } else { | |
0a7de745 A |
6909 | /* already using the xlarge modulus */ |
6910 | modulus_size = DRT_HASH_XLARGE_MODULUS; | |
6911 | map_size = DRT_XLARGE_ALLOCATION; | |
6912 | ||
55e303ae A |
6913 | /* |
6914 | * If the ring is completely full, there's | |
6915 | * nothing useful for us to do. Behave as | |
6916 | * though we had compacted into the new | |
6917 | * array and return. | |
6918 | */ | |
0a7de745 A |
6919 | if (active_buckets >= DRT_HASH_XLARGE_MODULUS) { |
6920 | return KERN_SUCCESS; | |
6921 | } | |
55e303ae A |
6922 | } |
6923 | } | |
6924 | ||
6925 | /* | |
6926 | * Allocate and initialise the new map. | |
6927 | */ | |
6928 | ||
0a7de745 A |
6929 | kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap, map_size, VM_KERN_MEMORY_FILE); |
6930 | if (kret != KERN_SUCCESS) { | |
6931 | return kret; | |
6932 | } | |
55e303ae | 6933 | cmap->scm_magic = DRT_SCM_MAGIC; |
0a7de745 | 6934 | cmap->scm_modulus = modulus_size; |
55e303ae A |
6935 | cmap->scm_buckets = 0; |
6936 | cmap->scm_lastclean = 0; | |
6937 | cmap->scm_iskips = 0; | |
6938 | for (i = 0; i < cmap->scm_modulus; i++) { | |
0a7de745 | 6939 | DRT_HASH_CLEAR(cmap, i); |
55e303ae A |
6940 | DRT_HASH_VACATE(cmap, i); |
6941 | DRT_BITVECTOR_CLEAR(cmap, i); | |
6942 | } | |
6943 | ||
6944 | /* | |
6945 | * If there's an old map, re-hash entries from it into the new map. | |
6946 | */ | |
6947 | copycount = 0; | |
6948 | if (ocmap != NULL) { | |
6949 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6950 | /* skip empty buckets */ | |
6951 | if (DRT_HASH_VACANT(ocmap, i) || | |
0a7de745 | 6952 | (DRT_HASH_GET_COUNT(ocmap, i) == 0)) { |
55e303ae | 6953 | continue; |
0a7de745 | 6954 | } |
55e303ae A |
6955 | /* get new index */ |
6956 | offset = DRT_HASH_GET_ADDRESS(ocmap, i); | |
6957 | kret = vfs_drt_get_index(&cmap, offset, &index, 1); | |
6958 | if (kret != KERN_SUCCESS) { | |
6959 | /* XXX need to bail out gracefully here */ | |
6960 | panic("vfs_drt: new cluster map mysteriously too small"); | |
2d21ac55 | 6961 | index = 0; |
55e303ae A |
6962 | } |
6963 | /* copy */ | |
6964 | DRT_HASH_COPY(ocmap, i, cmap, index); | |
6965 | copycount++; | |
6966 | } | |
6967 | } | |
6968 | ||
6969 | /* log what we've done */ | |
6970 | vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0); | |
0a7de745 | 6971 | |
55e303ae | 6972 | /* |
0a7de745 | 6973 | * It's important to ensure that *cmapp always points to |
55e303ae A |
6974 | * a valid map, so we must overwrite it before freeing |
6975 | * the old map. | |
6976 | */ | |
6977 | *cmapp = cmap; | |
6978 | if (ocmap != NULL) { | |
6979 | /* emit stats into trace buffer */ | |
6980 | vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA, | |
0a7de745 A |
6981 | ocmap->scm_modulus, |
6982 | ocmap->scm_buckets, | |
6983 | ocmap->scm_lastclean, | |
6984 | ocmap->scm_iskips); | |
55e303ae A |
6985 | |
6986 | vfs_drt_free_map(ocmap); | |
6987 | } | |
0a7de745 | 6988 | return KERN_SUCCESS; |
55e303ae A |
6989 | } |
6990 | ||
6991 | ||
6992 | /* | |
6993 | * Free a sparse cluster map. | |
6994 | */ | |
6995 | static kern_return_t | |
6996 | vfs_drt_free_map(struct vfs_drt_clustermap *cmap) | |
6997 | { | |
0a7de745 A |
6998 | vm_size_t map_size = 0; |
6999 | ||
7000 | if (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { | |
7001 | map_size = DRT_SMALL_ALLOCATION; | |
7002 | } else if (cmap->scm_modulus == DRT_HASH_LARGE_MODULUS) { | |
7003 | map_size = DRT_LARGE_ALLOCATION; | |
7004 | } else if (cmap->scm_modulus == DRT_HASH_XLARGE_MODULUS) { | |
7005 | map_size = DRT_XLARGE_ALLOCATION; | |
7006 | } else { | |
7007 | panic("vfs_drt_free_map: Invalid modulus %d\n", cmap->scm_modulus); | |
7008 | } | |
7009 | ||
7010 | kmem_free(kernel_map, (vm_offset_t)cmap, map_size); | |
7011 | return KERN_SUCCESS; | |
55e303ae A |
7012 | } |
7013 | ||
7014 | ||
7015 | /* | |
7016 | * Find the hashtable slot currently occupied by an entry for the supplied offset. | |
7017 | */ | |
7018 | static kern_return_t | |
7019 | vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) | |
7020 | { | |
0a7de745 A |
7021 | int index; |
7022 | u_int32_t i; | |
55e303ae A |
7023 | |
7024 | offset = DRT_ALIGN_ADDRESS(offset); | |
7025 | index = DRT_HASH(cmap, offset); | |
7026 | ||
7027 | /* traverse the hashtable */ | |
7028 | for (i = 0; i < cmap->scm_modulus; i++) { | |
55e303ae A |
7029 | /* |
7030 | * If the slot is vacant, we can stop. | |
7031 | */ | |
0a7de745 | 7032 | if (DRT_HASH_VACANT(cmap, index)) { |
55e303ae | 7033 | break; |
0a7de745 | 7034 | } |
55e303ae A |
7035 | |
7036 | /* | |
7037 | * If the address matches our offset, we have success. | |
7038 | */ | |
7039 | if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) { | |
7040 | *indexp = index; | |
0a7de745 | 7041 | return KERN_SUCCESS; |
55e303ae A |
7042 | } |
7043 | ||
7044 | /* | |
7045 | * Move to the next slot, try again. | |
7046 | */ | |
7047 | index = DRT_HASH_NEXT(cmap, index); | |
7048 | } | |
7049 | /* | |
7050 | * It's not there. | |
7051 | */ | |
0a7de745 | 7052 | return KERN_FAILURE; |
55e303ae A |
7053 | } |
7054 | ||
7055 | /* | |
7056 | * Find the hashtable slot for the supplied offset. If we haven't allocated | |
7057 | * one yet, allocate one and populate the address field. Note that it will | |
7058 | * not have a nonzero page count and thus will still technically be free, so | |
7059 | * in the case where we are called to clean pages, the slot will remain free. | |
7060 | */ | |
7061 | static kern_return_t | |
7062 | vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed) | |
7063 | { | |
7064 | struct vfs_drt_clustermap *cmap; | |
0a7de745 A |
7065 | kern_return_t kret; |
7066 | u_int32_t index; | |
7067 | u_int32_t i; | |
55e303ae A |
7068 | |
7069 | cmap = *cmapp; | |
7070 | ||
7071 | /* look for an existing entry */ | |
7072 | kret = vfs_drt_search_index(cmap, offset, indexp); | |
0a7de745 A |
7073 | if (kret == KERN_SUCCESS) { |
7074 | return kret; | |
7075 | } | |
55e303ae A |
7076 | |
7077 | /* need to allocate an entry */ | |
7078 | offset = DRT_ALIGN_ADDRESS(offset); | |
7079 | index = DRT_HASH(cmap, offset); | |
7080 | ||
7081 | /* scan from the index forwards looking for a vacant slot */ | |
7082 | for (i = 0; i < cmap->scm_modulus; i++) { | |
7083 | /* slot vacant? */ | |
0a7de745 | 7084 | if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap, index) == 0) { |
55e303ae | 7085 | cmap->scm_buckets++; |
0a7de745 | 7086 | if (index < cmap->scm_lastclean) { |
55e303ae | 7087 | cmap->scm_lastclean = index; |
0a7de745 | 7088 | } |
55e303ae A |
7089 | DRT_HASH_SET_ADDRESS(cmap, index, offset); |
7090 | DRT_HASH_SET_COUNT(cmap, index, 0); | |
7091 | DRT_BITVECTOR_CLEAR(cmap, index); | |
7092 | *indexp = index; | |
7093 | vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0); | |
0a7de745 | 7094 | return KERN_SUCCESS; |
55e303ae A |
7095 | } |
7096 | cmap->scm_iskips += i; | |
7097 | index = DRT_HASH_NEXT(cmap, index); | |
7098 | } | |
7099 | ||
7100 | /* | |
7101 | * We haven't found a vacant slot, so the map is full. If we're not | |
7102 | * already recursed, try reallocating/compacting it. | |
7103 | */ | |
0a7de745 A |
7104 | if (recursed) { |
7105 | return KERN_FAILURE; | |
7106 | } | |
55e303ae A |
7107 | kret = vfs_drt_alloc_map(cmapp); |
7108 | if (kret == KERN_SUCCESS) { | |
7109 | /* now try to insert again */ | |
7110 | kret = vfs_drt_get_index(cmapp, offset, indexp, 1); | |
7111 | } | |
0a7de745 | 7112 | return kret; |
55e303ae A |
7113 | } |
7114 | ||
7115 | /* | |
7116 | * Implementation of set dirty/clean. | |
7117 | * | |
7118 | * In the 'clean' case, not finding a map is OK. | |
7119 | */ | |
7120 | static kern_return_t | |
7121 | vfs_drt_do_mark_pages( | |
0a7de745 A |
7122 | void **private, |
7123 | u_int64_t offset, | |
7124 | u_int length, | |
7125 | u_int *setcountp, | |
7126 | int dirty) | |
55e303ae A |
7127 | { |
7128 | struct vfs_drt_clustermap *cmap, **cmapp; | |
0a7de745 A |
7129 | kern_return_t kret; |
7130 | int i, index, pgoff, pgcount, setcount, ecount; | |
55e303ae A |
7131 | |
7132 | cmapp = (struct vfs_drt_clustermap **)private; | |
7133 | cmap = *cmapp; | |
7134 | ||
7135 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0); | |
7136 | ||
0a7de745 A |
7137 | if (setcountp != NULL) { |
7138 | *setcountp = 0; | |
7139 | } | |
7140 | ||
55e303ae A |
7141 | /* allocate a cluster map if we don't already have one */ |
7142 | if (cmap == NULL) { | |
7143 | /* no cluster map, nothing to clean */ | |
7144 | if (!dirty) { | |
7145 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0); | |
0a7de745 | 7146 | return KERN_SUCCESS; |
55e303ae A |
7147 | } |
7148 | kret = vfs_drt_alloc_map(cmapp); | |
7149 | if (kret != KERN_SUCCESS) { | |
7150 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0); | |
0a7de745 | 7151 | return kret; |
55e303ae A |
7152 | } |
7153 | } | |
7154 | setcount = 0; | |
7155 | ||
7156 | /* | |
7157 | * Iterate over the length of the region. | |
7158 | */ | |
7159 | while (length > 0) { | |
7160 | /* | |
7161 | * Get the hashtable index for this offset. | |
7162 | * | |
7163 | * XXX this will add blank entries if we are clearing a range | |
7164 | * that hasn't been dirtied. | |
7165 | */ | |
7166 | kret = vfs_drt_get_index(cmapp, offset, &index, 0); | |
0a7de745 | 7167 | cmap = *cmapp; /* may have changed! */ |
55e303ae A |
7168 | /* this may be a partial-success return */ |
7169 | if (kret != KERN_SUCCESS) { | |
0a7de745 A |
7170 | if (setcountp != NULL) { |
7171 | *setcountp = setcount; | |
7172 | } | |
55e303ae A |
7173 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0); |
7174 | ||
0a7de745 | 7175 | return kret; |
55e303ae A |
7176 | } |
7177 | ||
7178 | /* | |
7179 | * Work out how many pages we're modifying in this | |
7180 | * hashtable entry. | |
7181 | */ | |
7182 | pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE; | |
7183 | pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff)); | |
7184 | ||
7185 | /* | |
7186 | * Iterate over pages, dirty/clearing as we go. | |
7187 | */ | |
7188 | ecount = DRT_HASH_GET_COUNT(cmap, index); | |
7189 | for (i = 0; i < pgcount; i++) { | |
7190 | if (dirty) { | |
7191 | if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
0a7de745 A |
7192 | if (ecount >= DRT_BITVECTOR_PAGES) { |
7193 | panic("ecount >= DRT_BITVECTOR_PAGES, cmap = %p, index = %d, bit = %d", cmap, index, pgoff + i); | |
7194 | } | |
55e303ae A |
7195 | DRT_HASH_SET_BIT(cmap, index, pgoff + i); |
7196 | ecount++; | |
7197 | setcount++; | |
7198 | } | |
7199 | } else { | |
7200 | if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
0a7de745 A |
7201 | if (ecount <= 0) { |
7202 | panic("ecount <= 0, cmap = %p, index = %d, bit = %d", cmap, index, pgoff + i); | |
7203 | } | |
7204 | assert(ecount > 0); | |
55e303ae A |
7205 | DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i); |
7206 | ecount--; | |
7207 | setcount++; | |
7208 | } | |
7209 | } | |
7210 | } | |
7211 | DRT_HASH_SET_COUNT(cmap, index, ecount); | |
91447636 | 7212 | |
55e303ae A |
7213 | offset += pgcount * PAGE_SIZE; |
7214 | length -= pgcount * PAGE_SIZE; | |
7215 | } | |
0a7de745 | 7216 | if (setcountp != NULL) { |
55e303ae | 7217 | *setcountp = setcount; |
0a7de745 | 7218 | } |
55e303ae A |
7219 | |
7220 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0); | |
7221 | ||
0a7de745 | 7222 | return KERN_SUCCESS; |
55e303ae A |
7223 | } |
7224 | ||
7225 | /* | |
7226 | * Mark a set of pages as dirty/clean. | |
7227 | * | |
7228 | * This is a public interface. | |
7229 | * | |
7230 | * cmapp | |
7231 | * Pointer to storage suitable for holding a pointer. Note that | |
7232 | * this must either be NULL or a value set by this function. | |
7233 | * | |
7234 | * size | |
7235 | * Current file size in bytes. | |
7236 | * | |
7237 | * offset | |
7238 | * Offset of the first page to be marked as dirty, in bytes. Must be | |
7239 | * page-aligned. | |
7240 | * | |
7241 | * length | |
7242 | * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE. | |
7243 | * | |
7244 | * setcountp | |
7245 | * Number of pages newly marked dirty by this call (optional). | |
7246 | * | |
7247 | * Returns KERN_SUCCESS if all the pages were successfully marked. | |
7248 | */ | |
7249 | static kern_return_t | |
2d21ac55 | 7250 | vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp) |
55e303ae A |
7251 | { |
7252 | /* XXX size unused, drop from interface */ | |
0a7de745 | 7253 | return vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1); |
55e303ae A |
7254 | } |
7255 | ||
91447636 | 7256 | #if 0 |
55e303ae A |
7257 | static kern_return_t |
7258 | vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) | |
7259 | { | |
0a7de745 | 7260 | return vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); |
55e303ae | 7261 | } |
91447636 | 7262 | #endif |
55e303ae A |
7263 | |
7264 | /* | |
7265 | * Get a cluster of dirty pages. | |
7266 | * | |
7267 | * This is a public interface. | |
7268 | * | |
7269 | * cmapp | |
7270 | * Pointer to storage managed by drt_mark_pages. Note that this must | |
7271 | * be NULL or a value set by drt_mark_pages. | |
7272 | * | |
7273 | * offsetp | |
7274 | * Returns the byte offset into the file of the first page in the cluster. | |
7275 | * | |
7276 | * lengthp | |
7277 | * Returns the length in bytes of the cluster of dirty pages. | |
7278 | * | |
7279 | * Returns success if a cluster was found. If KERN_FAILURE is returned, there | |
7280 | * are no dirty pages meeting the minmum size criteria. Private storage will | |
7281 | * be released if there are no more dirty pages left in the map | |
7282 | * | |
7283 | */ | |
7284 | static kern_return_t | |
7285 | vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) | |
7286 | { | |
7287 | struct vfs_drt_clustermap *cmap; | |
0a7de745 A |
7288 | u_int64_t offset; |
7289 | u_int length; | |
7290 | u_int32_t j; | |
7291 | int index, i, fs, ls; | |
55e303ae A |
7292 | |
7293 | /* sanity */ | |
0a7de745 A |
7294 | if ((cmapp == NULL) || (*cmapp == NULL)) { |
7295 | return KERN_FAILURE; | |
7296 | } | |
55e303ae A |
7297 | cmap = *cmapp; |
7298 | ||
7299 | /* walk the hashtable */ | |
7300 | for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) { | |
0a7de745 | 7301 | index = DRT_HASH(cmap, offset); |
55e303ae | 7302 | |
0a7de745 | 7303 | if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0)) { |
55e303ae | 7304 | continue; |
0a7de745 | 7305 | } |
55e303ae A |
7306 | |
7307 | /* scan the bitfield for a string of bits */ | |
7308 | fs = -1; | |
7309 | ||
7310 | for (i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
0a7de745 A |
7311 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { |
7312 | fs = i; | |
55e303ae A |
7313 | break; |
7314 | } | |
7315 | } | |
7316 | if (fs == -1) { | |
0a7de745 A |
7317 | /* didn't find any bits set */ |
7318 | panic("vfs_drt: entry summary count > 0 but no bits set in map, cmap = %p, index = %d, count = %lld", | |
7319 | cmap, index, DRT_HASH_GET_COUNT(cmap, index)); | |
55e303ae A |
7320 | } |
7321 | for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) { | |
0a7de745 A |
7322 | if (!DRT_HASH_TEST_BIT(cmap, index, i)) { |
7323 | break; | |
7324 | } | |
55e303ae | 7325 | } |
0a7de745 | 7326 | |
55e303ae A |
7327 | /* compute offset and length, mark pages clean */ |
7328 | offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs); | |
7329 | length = ls * PAGE_SIZE; | |
7330 | vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); | |
7331 | cmap->scm_lastclean = index; | |
7332 | ||
7333 | /* return successful */ | |
7334 | *offsetp = (off_t)offset; | |
7335 | *lengthp = length; | |
7336 | ||
7337 | vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0); | |
0a7de745 | 7338 | return KERN_SUCCESS; |
55e303ae A |
7339 | } |
7340 | /* | |
7341 | * We didn't find anything... hashtable is empty | |
7342 | * emit stats into trace buffer and | |
7343 | * then free it | |
7344 | */ | |
7345 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
0a7de745 A |
7346 | cmap->scm_modulus, |
7347 | cmap->scm_buckets, | |
7348 | cmap->scm_lastclean, | |
7349 | cmap->scm_iskips); | |
7350 | ||
55e303ae A |
7351 | vfs_drt_free_map(cmap); |
7352 | *cmapp = NULL; | |
7353 | ||
0a7de745 | 7354 | return KERN_FAILURE; |
55e303ae A |
7355 | } |
7356 | ||
7357 | ||
7358 | static kern_return_t | |
7359 | vfs_drt_control(void **cmapp, int op_type) | |
7360 | { | |
7361 | struct vfs_drt_clustermap *cmap; | |
7362 | ||
7363 | /* sanity */ | |
0a7de745 A |
7364 | if ((cmapp == NULL) || (*cmapp == NULL)) { |
7365 | return KERN_FAILURE; | |
7366 | } | |
55e303ae A |
7367 | cmap = *cmapp; |
7368 | ||
7369 | switch (op_type) { | |
7370 | case 0: | |
7371 | /* emit stats into trace buffer */ | |
7372 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
0a7de745 A |
7373 | cmap->scm_modulus, |
7374 | cmap->scm_buckets, | |
7375 | cmap->scm_lastclean, | |
7376 | cmap->scm_iskips); | |
55e303ae A |
7377 | |
7378 | vfs_drt_free_map(cmap); | |
7379 | *cmapp = NULL; | |
0a7de745 | 7380 | break; |
55e303ae A |
7381 | |
7382 | case 1: | |
0a7de745 A |
7383 | cmap->scm_lastclean = 0; |
7384 | break; | |
55e303ae | 7385 | } |
0a7de745 | 7386 | return KERN_SUCCESS; |
55e303ae A |
7387 | } |
7388 | ||
7389 | ||
7390 | ||
7391 | /* | |
7392 | * Emit a summary of the state of the clustermap into the trace buffer | |
7393 | * along with some caller-provided data. | |
7394 | */ | |
91447636 | 7395 | #if KDEBUG |
55e303ae | 7396 | static void |
91447636 | 7397 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) |
55e303ae A |
7398 | { |
7399 | KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); | |
7400 | } | |
91447636 A |
7401 | #else |
7402 | static void | |
0a7de745 A |
7403 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, |
7404 | __unused int arg1, __unused int arg2, __unused int arg3, | |
7405 | __unused int arg4) | |
91447636 A |
7406 | { |
7407 | } | |
0a7de745 | 7408 | #endif |
55e303ae | 7409 | |
91447636 | 7410 | #if 0 |
55e303ae A |
7411 | /* |
7412 | * Perform basic sanity check on the hash entry summary count | |
7413 | * vs. the actual bits set in the entry. | |
7414 | */ | |
7415 | static void | |
7416 | vfs_drt_sanity(struct vfs_drt_clustermap *cmap) | |
7417 | { | |
0a7de745 | 7418 | int index, i; |
55e303ae | 7419 | int bits_on; |
0a7de745 | 7420 | |
55e303ae | 7421 | for (index = 0; index < cmap->scm_modulus; index++) { |
0a7de745 A |
7422 | if (DRT_HASH_VACANT(cmap, index)) { |
7423 | continue; | |
7424 | } | |
55e303ae A |
7425 | |
7426 | for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
0a7de745 A |
7427 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { |
7428 | bits_on++; | |
7429 | } | |
55e303ae | 7430 | } |
0a7de745 A |
7431 | if (bits_on != DRT_HASH_GET_COUNT(cmap, index)) { |
7432 | panic("bits_on = %d, index = %d\n", bits_on, index); | |
7433 | } | |
7434 | } | |
b4c24cb9 | 7435 | } |
91447636 | 7436 | #endif |
0a7de745 A |
7437 | |
7438 | /* | |
7439 | * Internal interface only. | |
7440 | */ | |
7441 | static kern_return_t | |
7442 | vfs_get_scmap_push_behavior_internal(void **cmapp, int *push_flag) | |
7443 | { | |
7444 | struct vfs_drt_clustermap *cmap; | |
7445 | ||
7446 | /* sanity */ | |
7447 | if ((cmapp == NULL) || (*cmapp == NULL) || (push_flag == NULL)) { | |
7448 | return KERN_FAILURE; | |
7449 | } | |
7450 | cmap = *cmapp; | |
7451 | ||
7452 | if (cmap->scm_modulus == DRT_HASH_XLARGE_MODULUS) { | |
7453 | /* | |
7454 | * If we have a full xlarge sparse cluster, | |
7455 | * we push it out all at once so the cluster | |
7456 | * map can be available to absorb more I/Os. | |
7457 | * This is done on large memory configs so | |
7458 | * the small I/Os don't interfere with the | |
7459 | * pro workloads. | |
7460 | */ | |
7461 | *push_flag = PUSH_ALL; | |
7462 | } | |
7463 | return KERN_SUCCESS; | |
7464 | } |