]>
Commit | Line | Data |
---|---|---|
3e170ce0 A |
1 | /* |
2 | * Copyright (c) 2014 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <sys/errno.h> | |
30 | ||
31 | #include <mach/mach_types.h> | |
32 | #include <mach/mach_traps.h> | |
33 | #include <mach/host_priv.h> | |
34 | #include <mach/kern_return.h> | |
35 | #include <mach/memory_object_control.h> | |
36 | #include <mach/memory_object_types.h> | |
37 | #include <mach/port.h> | |
38 | #include <mach/policy.h> | |
39 | #include <mach/upl.h> | |
40 | #include <mach/thread_act.h> | |
41 | #include <mach/mach_vm.h> | |
42 | ||
43 | #include <kern/host.h> | |
44 | #include <kern/kalloc.h> | |
45 | #include <kern/page_decrypt.h> | |
46 | #include <kern/queue.h> | |
47 | #include <kern/thread.h> | |
39037602 | 48 | #include <kern/ipc_kobject.h> |
3e170ce0 A |
49 | |
50 | #include <ipc/ipc_port.h> | |
51 | #include <ipc/ipc_space.h> | |
52 | ||
3e170ce0 A |
53 | #include <vm/vm_fault.h> |
54 | #include <vm/vm_map.h> | |
55 | #include <vm/vm_pageout.h> | |
56 | #include <vm/memory_object.h> | |
57 | #include <vm/vm_pageout.h> | |
58 | #include <vm/vm_protos.h> | |
39037602 | 59 | #include <vm/vm_kern.h> |
3e170ce0 A |
60 | |
61 | ||
62 | /* | |
63 | * 4K MEMORY PAGER | |
64 | * | |
65 | * This external memory manager (EMM) handles memory mappings that are | |
66 | * 4K-aligned but not page-aligned and can therefore not be mapped directly. | |
67 | * | |
68 | * It mostly handles page-in requests (from memory_object_data_request()) by | |
69 | * getting the data needed to fill in each 4K-chunk. That can require | |
70 | * getting data from one or two pages from its backing VM object | |
71 | * (a file or a "apple-protected" pager backed by an encrypted file), and | |
72 | * copies the data to another page so that it is aligned as expected by | |
73 | * the mapping. | |
74 | * | |
75 | * Returned pages can never be dirtied and must always be mapped copy-on-write, | |
76 | * so the memory manager does not need to handle page-out requests (from | |
77 | * memory_object_data_return()). | |
78 | * | |
79 | */ | |
80 | ||
81 | /* forward declarations */ | |
82 | void fourk_pager_reference(memory_object_t mem_obj); | |
83 | void fourk_pager_deallocate(memory_object_t mem_obj); | |
84 | kern_return_t fourk_pager_init(memory_object_t mem_obj, | |
85 | memory_object_control_t control, | |
86 | memory_object_cluster_size_t pg_size); | |
87 | kern_return_t fourk_pager_terminate(memory_object_t mem_obj); | |
88 | kern_return_t fourk_pager_data_request(memory_object_t mem_obj, | |
89 | memory_object_offset_t offset, | |
90 | memory_object_cluster_size_t length, | |
91 | vm_prot_t protection_required, | |
92 | memory_object_fault_info_t fault_info); | |
93 | kern_return_t fourk_pager_data_return(memory_object_t mem_obj, | |
94 | memory_object_offset_t offset, | |
95 | memory_object_cluster_size_t data_cnt, | |
96 | memory_object_offset_t *resid_offset, | |
97 | int *io_error, | |
98 | boolean_t dirty, | |
99 | boolean_t kernel_copy, | |
100 | int upl_flags); | |
101 | kern_return_t fourk_pager_data_initialize(memory_object_t mem_obj, | |
102 | memory_object_offset_t offset, | |
103 | memory_object_cluster_size_t data_cnt); | |
104 | kern_return_t fourk_pager_data_unlock(memory_object_t mem_obj, | |
105 | memory_object_offset_t offset, | |
106 | memory_object_size_t size, | |
107 | vm_prot_t desired_access); | |
108 | kern_return_t fourk_pager_synchronize(memory_object_t mem_obj, | |
109 | memory_object_offset_t offset, | |
110 | memory_object_size_t length, | |
111 | vm_sync_t sync_flags); | |
112 | kern_return_t fourk_pager_map(memory_object_t mem_obj, | |
113 | vm_prot_t prot); | |
114 | kern_return_t fourk_pager_last_unmap(memory_object_t mem_obj); | |
115 | ||
116 | /* | |
117 | * Vector of VM operations for this EMM. | |
118 | * These routines are invoked by VM via the memory_object_*() interfaces. | |
119 | */ | |
120 | const struct memory_object_pager_ops fourk_pager_ops = { | |
121 | fourk_pager_reference, | |
122 | fourk_pager_deallocate, | |
123 | fourk_pager_init, | |
124 | fourk_pager_terminate, | |
125 | fourk_pager_data_request, | |
126 | fourk_pager_data_return, | |
127 | fourk_pager_data_initialize, | |
128 | fourk_pager_data_unlock, | |
129 | fourk_pager_synchronize, | |
130 | fourk_pager_map, | |
131 | fourk_pager_last_unmap, | |
132 | NULL, /* data_reclaim */ | |
133 | "fourk_pager" | |
134 | }; | |
135 | ||
136 | /* | |
137 | * The "fourk_pager" describes a memory object backed by | |
138 | * the "4K" EMM. | |
139 | */ | |
140 | #define FOURK_PAGER_SLOTS 4 /* 16K / 4K */ | |
141 | typedef struct fourk_pager_backing { | |
142 | vm_object_t backing_object; | |
143 | vm_object_offset_t backing_offset; | |
144 | } *fourk_pager_backing_t; | |
145 | typedef struct fourk_pager { | |
5ba3f43e A |
146 | /* mandatory generic header */ |
147 | struct memory_object fourk_pgr_hdr; | |
148 | ||
149 | /* pager-specific data */ | |
3e170ce0 A |
150 | queue_chain_t pager_queue; /* next & prev pagers */ |
151 | unsigned int ref_count; /* reference count */ | |
152 | int is_ready; /* is this pager ready ? */ | |
153 | int is_mapped; /* is this mem_obj mapped ? */ | |
154 | struct fourk_pager_backing slots[FOURK_PAGER_SLOTS]; /* backing for each | |
155 | 4K-chunk */ | |
156 | } *fourk_pager_t; | |
157 | #define FOURK_PAGER_NULL ((fourk_pager_t) NULL) | |
3e170ce0 A |
158 | |
159 | /* | |
160 | * List of memory objects managed by this EMM. | |
161 | * The list is protected by the "fourk_pager_lock" lock. | |
162 | */ | |
163 | int fourk_pager_count = 0; /* number of pagers */ | |
164 | int fourk_pager_count_mapped = 0; /* number of unmapped pagers */ | |
165 | queue_head_t fourk_pager_queue; | |
166 | decl_lck_mtx_data(,fourk_pager_lock) | |
167 | ||
168 | /* | |
169 | * Maximum number of unmapped pagers we're willing to keep around. | |
170 | */ | |
171 | int fourk_pager_cache_limit = 0; | |
172 | ||
173 | /* | |
174 | * Statistics & counters. | |
175 | */ | |
176 | int fourk_pager_count_max = 0; | |
177 | int fourk_pager_count_unmapped_max = 0; | |
178 | int fourk_pager_num_trim_max = 0; | |
179 | int fourk_pager_num_trim_total = 0; | |
180 | ||
181 | ||
182 | lck_grp_t fourk_pager_lck_grp; | |
183 | lck_grp_attr_t fourk_pager_lck_grp_attr; | |
184 | lck_attr_t fourk_pager_lck_attr; | |
185 | ||
186 | ||
187 | /* internal prototypes */ | |
188 | fourk_pager_t fourk_pager_lookup(memory_object_t mem_obj); | |
189 | void fourk_pager_dequeue(fourk_pager_t pager); | |
190 | void fourk_pager_deallocate_internal(fourk_pager_t pager, | |
191 | boolean_t locked); | |
192 | void fourk_pager_terminate_internal(fourk_pager_t pager); | |
193 | void fourk_pager_trim(void); | |
194 | ||
195 | ||
196 | #if DEBUG | |
197 | int fourk_pagerdebug = 0; | |
198 | #define PAGER_ALL 0xffffffff | |
199 | #define PAGER_INIT 0x00000001 | |
200 | #define PAGER_PAGEIN 0x00000002 | |
201 | ||
202 | #define PAGER_DEBUG(LEVEL, A) \ | |
203 | MACRO_BEGIN \ | |
204 | if ((fourk_pagerdebug & LEVEL)==LEVEL) { \ | |
205 | printf A; \ | |
206 | } \ | |
207 | MACRO_END | |
208 | #else | |
209 | #define PAGER_DEBUG(LEVEL, A) | |
210 | #endif | |
211 | ||
212 | ||
213 | void | |
214 | fourk_pager_bootstrap(void) | |
215 | { | |
216 | lck_grp_attr_setdefault(&fourk_pager_lck_grp_attr); | |
217 | lck_grp_init(&fourk_pager_lck_grp, "4K-pager", &fourk_pager_lck_grp_attr); | |
218 | lck_attr_setdefault(&fourk_pager_lck_attr); | |
219 | lck_mtx_init(&fourk_pager_lock, &fourk_pager_lck_grp, &fourk_pager_lck_attr); | |
220 | queue_init(&fourk_pager_queue); | |
221 | } | |
222 | ||
223 | /* | |
224 | * fourk_pager_init() | |
225 | * | |
226 | * Initialize the memory object and makes it ready to be used and mapped. | |
227 | */ | |
228 | kern_return_t | |
229 | fourk_pager_init( | |
230 | memory_object_t mem_obj, | |
231 | memory_object_control_t control, | |
232 | #if !DEBUG | |
233 | __unused | |
234 | #endif | |
235 | memory_object_cluster_size_t pg_size) | |
236 | { | |
237 | fourk_pager_t pager; | |
238 | kern_return_t kr; | |
239 | memory_object_attr_info_data_t attributes; | |
240 | ||
241 | PAGER_DEBUG(PAGER_ALL, | |
242 | ("fourk_pager_init: %p, %p, %x\n", | |
243 | mem_obj, control, pg_size)); | |
244 | ||
245 | if (control == MEMORY_OBJECT_CONTROL_NULL) | |
246 | return KERN_INVALID_ARGUMENT; | |
247 | ||
248 | pager = fourk_pager_lookup(mem_obj); | |
249 | ||
250 | memory_object_control_reference(control); | |
251 | ||
5ba3f43e | 252 | pager->fourk_pgr_hdr.mo_control = control; |
3e170ce0 A |
253 | |
254 | attributes.copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
255 | /* attributes.cluster_size = (1 << (CLUSTER_SHIFT + PAGE_SHIFT));*/ | |
256 | attributes.cluster_size = (1 << (PAGE_SHIFT)); | |
257 | attributes.may_cache_object = FALSE; | |
258 | attributes.temporary = TRUE; | |
259 | ||
260 | kr = memory_object_change_attributes( | |
261 | control, | |
262 | MEMORY_OBJECT_ATTRIBUTE_INFO, | |
263 | (memory_object_info_t) &attributes, | |
264 | MEMORY_OBJECT_ATTR_INFO_COUNT); | |
265 | if (kr != KERN_SUCCESS) | |
266 | panic("fourk_pager_init: " | |
267 | "memory_object_change_attributes() failed"); | |
268 | ||
39037602 A |
269 | #if CONFIG_SECLUDED_MEMORY |
270 | if (secluded_for_filecache) { | |
271 | memory_object_mark_eligible_for_secluded(control, TRUE); | |
272 | } | |
273 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
274 | ||
3e170ce0 A |
275 | return KERN_SUCCESS; |
276 | } | |
277 | ||
278 | /* | |
279 | * fourk_pager_data_return() | |
280 | * | |
281 | * Handles page-out requests from VM. This should never happen since | |
282 | * the pages provided by this EMM are not supposed to be dirty or dirtied | |
283 | * and VM should simply discard the contents and reclaim the pages if it | |
284 | * needs to. | |
285 | */ | |
286 | kern_return_t | |
287 | fourk_pager_data_return( | |
288 | __unused memory_object_t mem_obj, | |
289 | __unused memory_object_offset_t offset, | |
290 | __unused memory_object_cluster_size_t data_cnt, | |
291 | __unused memory_object_offset_t *resid_offset, | |
292 | __unused int *io_error, | |
293 | __unused boolean_t dirty, | |
294 | __unused boolean_t kernel_copy, | |
295 | __unused int upl_flags) | |
296 | { | |
297 | panic("fourk_pager_data_return: should never get called"); | |
298 | return KERN_FAILURE; | |
299 | } | |
300 | ||
301 | kern_return_t | |
302 | fourk_pager_data_initialize( | |
303 | __unused memory_object_t mem_obj, | |
304 | __unused memory_object_offset_t offset, | |
305 | __unused memory_object_cluster_size_t data_cnt) | |
306 | { | |
307 | panic("fourk_pager_data_initialize: should never get called"); | |
308 | return KERN_FAILURE; | |
309 | } | |
310 | ||
311 | kern_return_t | |
312 | fourk_pager_data_unlock( | |
313 | __unused memory_object_t mem_obj, | |
314 | __unused memory_object_offset_t offset, | |
315 | __unused memory_object_size_t size, | |
316 | __unused vm_prot_t desired_access) | |
317 | { | |
318 | return KERN_FAILURE; | |
319 | } | |
320 | ||
321 | /* | |
322 | * fourk_pager_reference() | |
323 | * | |
324 | * Get a reference on this memory object. | |
325 | * For external usage only. Assumes that the initial reference count is not 0, | |
326 | * i.e one should not "revive" a dead pager this way. | |
327 | */ | |
328 | void | |
329 | fourk_pager_reference( | |
330 | memory_object_t mem_obj) | |
331 | { | |
332 | fourk_pager_t pager; | |
333 | ||
334 | pager = fourk_pager_lookup(mem_obj); | |
335 | ||
336 | lck_mtx_lock(&fourk_pager_lock); | |
337 | assert(pager->ref_count > 0); | |
338 | pager->ref_count++; | |
339 | lck_mtx_unlock(&fourk_pager_lock); | |
340 | } | |
341 | ||
342 | ||
343 | /* | |
344 | * fourk_pager_dequeue: | |
345 | * | |
346 | * Removes a pager from the list of pagers. | |
347 | * | |
348 | * The caller must hold "fourk_pager_lock". | |
349 | */ | |
350 | void | |
351 | fourk_pager_dequeue( | |
352 | fourk_pager_t pager) | |
353 | { | |
354 | assert(!pager->is_mapped); | |
355 | ||
356 | queue_remove(&fourk_pager_queue, | |
357 | pager, | |
358 | fourk_pager_t, | |
359 | pager_queue); | |
360 | pager->pager_queue.next = NULL; | |
361 | pager->pager_queue.prev = NULL; | |
362 | ||
363 | fourk_pager_count--; | |
364 | } | |
365 | ||
366 | /* | |
367 | * fourk_pager_terminate_internal: | |
368 | * | |
369 | * Trigger the asynchronous termination of the memory object associated | |
370 | * with this pager. | |
371 | * When the memory object is terminated, there will be one more call | |
372 | * to memory_object_deallocate() (i.e. fourk_pager_deallocate()) | |
373 | * to finish the clean up. | |
374 | * | |
375 | * "fourk_pager_lock" should not be held by the caller. | |
376 | * We don't need the lock because the pager has already been removed from | |
377 | * the pagers' list and is now ours exclusively. | |
378 | */ | |
379 | void | |
380 | fourk_pager_terminate_internal( | |
381 | fourk_pager_t pager) | |
382 | { | |
383 | int i; | |
384 | ||
385 | assert(pager->is_ready); | |
386 | assert(!pager->is_mapped); | |
387 | ||
388 | for (i = 0; i < FOURK_PAGER_SLOTS; i++) { | |
389 | if (pager->slots[i].backing_object != VM_OBJECT_NULL && | |
390 | pager->slots[i].backing_object != (vm_object_t) -1) { | |
391 | vm_object_deallocate(pager->slots[i].backing_object); | |
392 | pager->slots[i].backing_object = (vm_object_t) -1; | |
393 | pager->slots[i].backing_offset = (vm_object_offset_t) -1; | |
394 | } | |
395 | } | |
396 | ||
397 | /* trigger the destruction of the memory object */ | |
5ba3f43e | 398 | memory_object_destroy(pager->fourk_pgr_hdr.mo_control, 0); |
3e170ce0 A |
399 | } |
400 | ||
401 | /* | |
402 | * fourk_pager_deallocate_internal() | |
403 | * | |
404 | * Release a reference on this pager and free it when the last | |
405 | * reference goes away. | |
406 | * Can be called with fourk_pager_lock held or not but always returns | |
407 | * with it unlocked. | |
408 | */ | |
409 | void | |
410 | fourk_pager_deallocate_internal( | |
411 | fourk_pager_t pager, | |
412 | boolean_t locked) | |
413 | { | |
414 | boolean_t needs_trimming; | |
415 | int count_unmapped; | |
416 | ||
417 | if (! locked) { | |
418 | lck_mtx_lock(&fourk_pager_lock); | |
419 | } | |
420 | ||
421 | count_unmapped = (fourk_pager_count - | |
422 | fourk_pager_count_mapped); | |
423 | if (count_unmapped > fourk_pager_cache_limit) { | |
424 | /* we have too many unmapped pagers: trim some */ | |
425 | needs_trimming = TRUE; | |
426 | } else { | |
427 | needs_trimming = FALSE; | |
428 | } | |
429 | ||
430 | /* drop a reference on this pager */ | |
431 | pager->ref_count--; | |
432 | ||
433 | if (pager->ref_count == 1) { | |
434 | /* | |
435 | * Only the "named" reference is left, which means that | |
436 | * no one is really holding on to this pager anymore. | |
437 | * Terminate it. | |
438 | */ | |
439 | fourk_pager_dequeue(pager); | |
440 | /* the pager is all ours: no need for the lock now */ | |
441 | lck_mtx_unlock(&fourk_pager_lock); | |
442 | fourk_pager_terminate_internal(pager); | |
443 | } else if (pager->ref_count == 0) { | |
444 | /* | |
445 | * Dropped the existence reference; the memory object has | |
446 | * been terminated. Do some final cleanup and release the | |
447 | * pager structure. | |
448 | */ | |
449 | lck_mtx_unlock(&fourk_pager_lock); | |
5ba3f43e A |
450 | if (pager->fourk_pgr_hdr.mo_control != MEMORY_OBJECT_CONTROL_NULL) { |
451 | memory_object_control_deallocate(pager->fourk_pgr_hdr.mo_control); | |
452 | pager->fourk_pgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL; | |
3e170ce0 A |
453 | } |
454 | kfree(pager, sizeof (*pager)); | |
455 | pager = FOURK_PAGER_NULL; | |
456 | } else { | |
457 | /* there are still plenty of references: keep going... */ | |
458 | lck_mtx_unlock(&fourk_pager_lock); | |
459 | } | |
460 | ||
461 | if (needs_trimming) { | |
462 | fourk_pager_trim(); | |
463 | } | |
464 | /* caution: lock is not held on return... */ | |
465 | } | |
466 | ||
467 | /* | |
468 | * fourk_pager_deallocate() | |
469 | * | |
470 | * Release a reference on this pager and free it when the last | |
471 | * reference goes away. | |
472 | */ | |
473 | void | |
474 | fourk_pager_deallocate( | |
475 | memory_object_t mem_obj) | |
476 | { | |
477 | fourk_pager_t pager; | |
478 | ||
479 | PAGER_DEBUG(PAGER_ALL, ("fourk_pager_deallocate: %p\n", mem_obj)); | |
480 | pager = fourk_pager_lookup(mem_obj); | |
481 | fourk_pager_deallocate_internal(pager, FALSE); | |
482 | } | |
483 | ||
484 | /* | |
485 | * | |
486 | */ | |
487 | kern_return_t | |
488 | fourk_pager_terminate( | |
489 | #if !DEBUG | |
490 | __unused | |
491 | #endif | |
492 | memory_object_t mem_obj) | |
493 | { | |
494 | PAGER_DEBUG(PAGER_ALL, ("fourk_pager_terminate: %p\n", mem_obj)); | |
495 | ||
496 | return KERN_SUCCESS; | |
497 | } | |
498 | ||
499 | /* | |
500 | * | |
501 | */ | |
502 | kern_return_t | |
503 | fourk_pager_synchronize( | |
5ba3f43e A |
504 | __unused memory_object_t mem_obj, |
505 | __unused memory_object_offset_t offset, | |
506 | __unused memory_object_size_t length, | |
3e170ce0 A |
507 | __unused vm_sync_t sync_flags) |
508 | { | |
5ba3f43e A |
509 | panic("fourk_pager_synchronize: memory_object_synchronize no longer supported\n"); |
510 | return (KERN_FAILURE); | |
3e170ce0 A |
511 | } |
512 | ||
513 | /* | |
514 | * fourk_pager_map() | |
515 | * | |
516 | * This allows VM to let us, the EMM, know that this memory object | |
517 | * is currently mapped one or more times. This is called by VM each time | |
518 | * the memory object gets mapped and we take one extra reference on the | |
519 | * memory object to account for all its mappings. | |
520 | */ | |
521 | kern_return_t | |
522 | fourk_pager_map( | |
523 | memory_object_t mem_obj, | |
524 | __unused vm_prot_t prot) | |
525 | { | |
526 | fourk_pager_t pager; | |
527 | ||
528 | PAGER_DEBUG(PAGER_ALL, ("fourk_pager_map: %p\n", mem_obj)); | |
529 | ||
530 | pager = fourk_pager_lookup(mem_obj); | |
531 | ||
532 | lck_mtx_lock(&fourk_pager_lock); | |
533 | assert(pager->is_ready); | |
534 | assert(pager->ref_count > 0); /* pager is alive */ | |
535 | if (pager->is_mapped == FALSE) { | |
536 | /* | |
537 | * First mapping of this pager: take an extra reference | |
538 | * that will remain until all the mappings of this pager | |
539 | * are removed. | |
540 | */ | |
541 | pager->is_mapped = TRUE; | |
542 | pager->ref_count++; | |
543 | fourk_pager_count_mapped++; | |
544 | } | |
545 | lck_mtx_unlock(&fourk_pager_lock); | |
546 | ||
547 | return KERN_SUCCESS; | |
548 | } | |
549 | ||
550 | /* | |
551 | * fourk_pager_last_unmap() | |
552 | * | |
553 | * This is called by VM when this memory object is no longer mapped anywhere. | |
554 | */ | |
555 | kern_return_t | |
556 | fourk_pager_last_unmap( | |
557 | memory_object_t mem_obj) | |
558 | { | |
559 | fourk_pager_t pager; | |
560 | int count_unmapped; | |
561 | ||
562 | PAGER_DEBUG(PAGER_ALL, | |
563 | ("fourk_pager_last_unmap: %p\n", mem_obj)); | |
564 | ||
565 | pager = fourk_pager_lookup(mem_obj); | |
566 | ||
567 | lck_mtx_lock(&fourk_pager_lock); | |
568 | if (pager->is_mapped) { | |
569 | /* | |
570 | * All the mappings are gone, so let go of the one extra | |
571 | * reference that represents all the mappings of this pager. | |
572 | */ | |
573 | fourk_pager_count_mapped--; | |
574 | count_unmapped = (fourk_pager_count - | |
575 | fourk_pager_count_mapped); | |
576 | if (count_unmapped > fourk_pager_count_unmapped_max) { | |
577 | fourk_pager_count_unmapped_max = count_unmapped; | |
578 | } | |
579 | pager->is_mapped = FALSE; | |
580 | fourk_pager_deallocate_internal(pager, TRUE); | |
581 | /* caution: deallocate_internal() released the lock ! */ | |
582 | } else { | |
583 | lck_mtx_unlock(&fourk_pager_lock); | |
584 | } | |
585 | ||
586 | return KERN_SUCCESS; | |
587 | } | |
588 | ||
589 | ||
590 | /* | |
591 | * | |
592 | */ | |
593 | fourk_pager_t | |
594 | fourk_pager_lookup( | |
595 | memory_object_t mem_obj) | |
596 | { | |
597 | fourk_pager_t pager; | |
598 | ||
5ba3f43e | 599 | assert(mem_obj->mo_pager_ops == &fourk_pager_ops); |
3e170ce0 | 600 | pager = (fourk_pager_t) mem_obj; |
3e170ce0 A |
601 | assert(pager->ref_count > 0); |
602 | return pager; | |
603 | } | |
604 | ||
605 | void | |
606 | fourk_pager_trim(void) | |
607 | { | |
608 | fourk_pager_t pager, prev_pager; | |
609 | queue_head_t trim_queue; | |
610 | int num_trim; | |
611 | int count_unmapped; | |
612 | ||
613 | lck_mtx_lock(&fourk_pager_lock); | |
614 | ||
615 | /* | |
616 | * We have too many pagers, try and trim some unused ones, | |
617 | * starting with the oldest pager at the end of the queue. | |
618 | */ | |
619 | queue_init(&trim_queue); | |
620 | num_trim = 0; | |
621 | ||
622 | for (pager = (fourk_pager_t) | |
623 | queue_last(&fourk_pager_queue); | |
624 | !queue_end(&fourk_pager_queue, | |
625 | (queue_entry_t) pager); | |
626 | pager = prev_pager) { | |
627 | /* get prev elt before we dequeue */ | |
628 | prev_pager = (fourk_pager_t) | |
629 | queue_prev(&pager->pager_queue); | |
630 | ||
631 | if (pager->ref_count == 2 && | |
632 | pager->is_ready && | |
633 | !pager->is_mapped) { | |
634 | /* this pager can be trimmed */ | |
635 | num_trim++; | |
636 | /* remove this pager from the main list ... */ | |
637 | fourk_pager_dequeue(pager); | |
638 | /* ... and add it to our trim queue */ | |
639 | queue_enter_first(&trim_queue, | |
640 | pager, | |
641 | fourk_pager_t, | |
642 | pager_queue); | |
643 | ||
644 | count_unmapped = (fourk_pager_count - | |
645 | fourk_pager_count_mapped); | |
646 | if (count_unmapped <= fourk_pager_cache_limit) { | |
647 | /* we have enough pagers to trim */ | |
648 | break; | |
649 | } | |
650 | } | |
651 | } | |
652 | if (num_trim > fourk_pager_num_trim_max) { | |
653 | fourk_pager_num_trim_max = num_trim; | |
654 | } | |
655 | fourk_pager_num_trim_total += num_trim; | |
656 | ||
657 | lck_mtx_unlock(&fourk_pager_lock); | |
658 | ||
659 | /* terminate the trimmed pagers */ | |
660 | while (!queue_empty(&trim_queue)) { | |
661 | queue_remove_first(&trim_queue, | |
662 | pager, | |
663 | fourk_pager_t, | |
664 | pager_queue); | |
665 | pager->pager_queue.next = NULL; | |
666 | pager->pager_queue.prev = NULL; | |
667 | assert(pager->ref_count == 2); | |
668 | /* | |
669 | * We can't call deallocate_internal() because the pager | |
670 | * has already been dequeued, but we still need to remove | |
671 | * a reference. | |
672 | */ | |
673 | pager->ref_count--; | |
674 | fourk_pager_terminate_internal(pager); | |
675 | } | |
676 | } | |
677 | ||
678 | ||
679 | ||
680 | ||
681 | ||
682 | ||
683 | vm_object_t | |
684 | fourk_pager_to_vm_object( | |
685 | memory_object_t mem_obj) | |
686 | { | |
687 | fourk_pager_t pager; | |
688 | vm_object_t object; | |
689 | ||
690 | pager = fourk_pager_lookup(mem_obj); | |
691 | if (pager == NULL) { | |
692 | return VM_OBJECT_NULL; | |
693 | } | |
694 | ||
695 | assert(pager->ref_count > 0); | |
5ba3f43e A |
696 | assert(pager->fourk_pgr_hdr.mo_control != MEMORY_OBJECT_CONTROL_NULL); |
697 | object = memory_object_control_to_vm_object(pager->fourk_pgr_hdr.mo_control); | |
3e170ce0 A |
698 | assert(object != VM_OBJECT_NULL); |
699 | return object; | |
700 | } | |
701 | ||
702 | memory_object_t | |
703 | fourk_pager_create(void) | |
704 | { | |
705 | fourk_pager_t pager; | |
706 | memory_object_control_t control; | |
707 | kern_return_t kr; | |
708 | int i; | |
709 | ||
710 | #if 00 | |
711 | if (PAGE_SIZE_64 == FOURK_PAGE_SIZE) { | |
712 | panic("fourk_pager_create: page size is 4K !?"); | |
713 | } | |
714 | #endif | |
715 | ||
716 | pager = (fourk_pager_t) kalloc(sizeof (*pager)); | |
717 | if (pager == FOURK_PAGER_NULL) { | |
718 | return MEMORY_OBJECT_NULL; | |
719 | } | |
720 | bzero(pager, sizeof (*pager)); | |
721 | ||
722 | /* | |
723 | * The vm_map call takes both named entry ports and raw memory | |
724 | * objects in the same parameter. We need to make sure that | |
725 | * vm_map does not see this object as a named entry port. So, | |
726 | * we reserve the first word in the object for a fake ip_kotype | |
727 | * setting - that will tell vm_map to use it as a memory object. | |
728 | */ | |
5ba3f43e A |
729 | pager->fourk_pgr_hdr.mo_ikot = IKOT_MEMORY_OBJECT; |
730 | pager->fourk_pgr_hdr.mo_pager_ops = &fourk_pager_ops; | |
731 | pager->fourk_pgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL; | |
732 | ||
3e170ce0 A |
733 | pager->ref_count = 2; /* existence + setup reference */ |
734 | pager->is_ready = FALSE;/* not ready until it has a "name" */ | |
735 | pager->is_mapped = FALSE; | |
736 | ||
737 | for (i = 0; i < FOURK_PAGER_SLOTS; i++) { | |
738 | pager->slots[i].backing_object = (vm_object_t) -1; | |
739 | pager->slots[i].backing_offset = (vm_object_offset_t) -1; | |
740 | } | |
741 | ||
742 | lck_mtx_lock(&fourk_pager_lock); | |
743 | ||
744 | /* enter new pager at the head of our list of pagers */ | |
745 | queue_enter_first(&fourk_pager_queue, | |
746 | pager, | |
747 | fourk_pager_t, | |
748 | pager_queue); | |
749 | fourk_pager_count++; | |
750 | if (fourk_pager_count > fourk_pager_count_max) { | |
751 | fourk_pager_count_max = fourk_pager_count; | |
752 | } | |
753 | lck_mtx_unlock(&fourk_pager_lock); | |
754 | ||
755 | kr = memory_object_create_named((memory_object_t) pager, | |
756 | 0, | |
757 | &control); | |
758 | assert(kr == KERN_SUCCESS); | |
759 | ||
760 | lck_mtx_lock(&fourk_pager_lock); | |
761 | /* the new pager is now ready to be used */ | |
762 | pager->is_ready = TRUE; | |
763 | lck_mtx_unlock(&fourk_pager_lock); | |
764 | ||
765 | /* wakeup anyone waiting for this pager to be ready */ | |
766 | thread_wakeup(&pager->is_ready); | |
767 | ||
768 | return (memory_object_t) pager; | |
769 | } | |
770 | ||
771 | /* | |
772 | * fourk_pager_data_request() | |
773 | * | |
774 | * Handles page-in requests from VM. | |
775 | */ | |
776 | int fourk_pager_data_request_debug = 0; | |
777 | kern_return_t | |
778 | fourk_pager_data_request( | |
779 | memory_object_t mem_obj, | |
780 | memory_object_offset_t offset, | |
781 | memory_object_cluster_size_t length, | |
782 | #if !DEBUG | |
783 | __unused | |
784 | #endif | |
785 | vm_prot_t protection_required, | |
786 | memory_object_fault_info_t mo_fault_info) | |
787 | { | |
788 | fourk_pager_t pager; | |
789 | memory_object_control_t mo_control; | |
790 | upl_t upl; | |
791 | int upl_flags; | |
792 | upl_size_t upl_size; | |
793 | upl_page_info_t *upl_pl; | |
794 | unsigned int pl_count; | |
795 | vm_object_t dst_object; | |
796 | kern_return_t kr, retval; | |
797 | vm_map_offset_t kernel_mapping; | |
798 | vm_offset_t src_vaddr, dst_vaddr; | |
799 | vm_offset_t cur_offset; | |
800 | int sub_page; | |
801 | int sub_page_idx, sub_page_cnt; | |
802 | ||
803 | pager = fourk_pager_lookup(mem_obj); | |
804 | assert(pager->is_ready); | |
805 | assert(pager->ref_count > 1); /* pager is alive and mapped */ | |
806 | ||
807 | PAGER_DEBUG(PAGER_PAGEIN, ("fourk_pager_data_request: %p, %llx, %x, %x, pager %p\n", mem_obj, offset, length, protection_required, pager)); | |
808 | ||
809 | retval = KERN_SUCCESS; | |
810 | kernel_mapping = 0; | |
811 | ||
812 | offset = memory_object_trunc_page(offset); | |
813 | ||
814 | /* | |
815 | * Gather in a UPL all the VM pages requested by VM. | |
816 | */ | |
5ba3f43e | 817 | mo_control = pager->fourk_pgr_hdr.mo_control; |
3e170ce0 A |
818 | |
819 | upl_size = length; | |
820 | upl_flags = | |
821 | UPL_RET_ONLY_ABSENT | | |
822 | UPL_SET_LITE | | |
823 | UPL_NO_SYNC | | |
824 | UPL_CLEAN_IN_PLACE | /* triggers UPL_CLEAR_DIRTY */ | |
825 | UPL_SET_INTERNAL; | |
826 | pl_count = 0; | |
827 | kr = memory_object_upl_request(mo_control, | |
828 | offset, upl_size, | |
5ba3f43e | 829 | &upl, NULL, NULL, upl_flags, VM_KERN_MEMORY_NONE); |
3e170ce0 A |
830 | if (kr != KERN_SUCCESS) { |
831 | retval = kr; | |
832 | goto done; | |
833 | } | |
834 | dst_object = mo_control->moc_object; | |
835 | assert(dst_object != VM_OBJECT_NULL); | |
836 | ||
837 | #if __x86_64__ || __arm__ || __arm64__ | |
838 | /* use the 1-to-1 mapping of physical memory */ | |
839 | #else /* __x86_64__ || __arm__ || __arm64__ */ | |
840 | /* | |
841 | * Reserve 2 virtual pages in the kernel address space to map the | |
842 | * source and destination physical pages when it's their turn to | |
843 | * be processed. | |
844 | */ | |
845 | vm_map_entry_t map_entry; | |
846 | ||
847 | vm_object_reference(kernel_object); /* ref. for mapping */ | |
848 | kr = vm_map_find_space(kernel_map, | |
849 | &kernel_mapping, | |
850 | 2 * PAGE_SIZE_64, | |
851 | 0, | |
852 | 0, | |
5ba3f43e | 853 | VM_MAP_KERNEL_FLAGS_NONE, |
3e170ce0 A |
854 | &map_entry); |
855 | if (kr != KERN_SUCCESS) { | |
856 | vm_object_deallocate(kernel_object); | |
857 | retval = kr; | |
858 | goto done; | |
859 | } | |
860 | map_entry->object.vm_object = kernel_object; | |
861 | map_entry->offset = kernel_mapping; | |
862 | vm_map_unlock(kernel_map); | |
863 | src_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping); | |
864 | dst_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping + PAGE_SIZE_64); | |
865 | #endif /* __x86_64__ || __arm__ || __arm64__ */ | |
866 | ||
867 | /* | |
868 | * Fill in the contents of the pages requested by VM. | |
869 | */ | |
870 | upl_pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
871 | pl_count = length / PAGE_SIZE; | |
872 | for (cur_offset = 0; | |
873 | retval == KERN_SUCCESS && cur_offset < length; | |
874 | cur_offset += PAGE_SIZE) { | |
875 | ppnum_t dst_pnum; | |
876 | int num_subpg_signed, num_subpg_validated; | |
877 | int num_subpg_tainted, num_subpg_nx; | |
878 | ||
879 | if (!upl_page_present(upl_pl, (int)(cur_offset / PAGE_SIZE))) { | |
880 | /* this page is not in the UPL: skip it */ | |
881 | continue; | |
882 | } | |
883 | ||
884 | /* | |
885 | * Establish an explicit pmap mapping of the destination | |
886 | * physical page. | |
887 | * We can't do a regular VM mapping because the VM page | |
888 | * is "busy". | |
889 | */ | |
890 | dst_pnum = (ppnum_t) | |
891 | upl_phys_page(upl_pl, (int)(cur_offset / PAGE_SIZE)); | |
892 | assert(dst_pnum != 0); | |
893 | #if __x86_64__ | |
894 | dst_vaddr = (vm_map_offset_t) | |
895 | PHYSMAP_PTOV((pmap_paddr_t)dst_pnum << PAGE_SHIFT); | |
5ba3f43e A |
896 | #elif __arm__ || __arm64__ |
897 | dst_vaddr = (vm_map_offset_t) | |
898 | phystokv((pmap_paddr_t)dst_pnum << PAGE_SHIFT); | |
3e170ce0 | 899 | #else |
5ba3f43e A |
900 | kr = pmap_enter(kernel_pmap, |
901 | dst_vaddr, | |
902 | dst_pnum, | |
903 | VM_PROT_READ | VM_PROT_WRITE, | |
904 | VM_PROT_NONE, | |
905 | 0, | |
906 | TRUE); | |
907 | ||
908 | assert(kr == KERN_SUCCESS); | |
3e170ce0 A |
909 | #endif |
910 | ||
911 | /* retrieve appropriate data for each 4K-page in this page */ | |
912 | if (PAGE_SHIFT == FOURK_PAGE_SHIFT && | |
913 | page_shift_user32 == SIXTEENK_PAGE_SHIFT) { | |
914 | /* | |
915 | * Find the slot for the requested 4KB page in | |
916 | * the 16K page... | |
917 | */ | |
918 | assert(PAGE_SHIFT == FOURK_PAGE_SHIFT); | |
919 | assert(page_shift_user32 == SIXTEENK_PAGE_SHIFT); | |
920 | sub_page_idx = ((offset & SIXTEENK_PAGE_MASK) / | |
921 | PAGE_SIZE); | |
922 | /* | |
923 | * ... and provide only that one 4KB page. | |
924 | */ | |
925 | sub_page_cnt = 1; | |
926 | } else { | |
927 | /* | |
928 | * Iterate over all slots, i.e. retrieve all four 4KB | |
929 | * pages in the requested 16KB page. | |
930 | */ | |
931 | assert(PAGE_SHIFT == SIXTEENK_PAGE_SHIFT); | |
932 | sub_page_idx = 0; | |
933 | sub_page_cnt = FOURK_PAGER_SLOTS; | |
934 | } | |
935 | ||
936 | num_subpg_signed = 0; | |
937 | num_subpg_validated = 0; | |
938 | num_subpg_tainted = 0; | |
939 | num_subpg_nx = 0; | |
940 | ||
941 | /* retrieve appropriate data for each 4K-page in this page */ | |
942 | for (sub_page = sub_page_idx; | |
943 | sub_page < sub_page_idx + sub_page_cnt; | |
944 | sub_page++) { | |
945 | vm_object_t src_object; | |
946 | memory_object_offset_t src_offset; | |
947 | vm_offset_t offset_in_src_page; | |
948 | kern_return_t error_code; | |
39037602 | 949 | vm_object_t src_page_object; |
3e170ce0 A |
950 | vm_page_t src_page; |
951 | vm_page_t top_page; | |
952 | vm_prot_t prot; | |
953 | int interruptible; | |
954 | struct vm_object_fault_info fault_info; | |
955 | boolean_t subpg_validated; | |
956 | unsigned subpg_tainted; | |
957 | ||
958 | ||
959 | if (offset < SIXTEENK_PAGE_SIZE) { | |
960 | /* | |
961 | * The 1st 16K-page can cover multiple | |
962 | * sub-mappings, as described in the | |
963 | * pager->slots[] array. | |
964 | */ | |
965 | src_object = | |
966 | pager->slots[sub_page].backing_object; | |
967 | src_offset = | |
968 | pager->slots[sub_page].backing_offset; | |
969 | } else { | |
970 | fourk_pager_backing_t slot; | |
971 | ||
972 | /* | |
973 | * Beyond the 1st 16K-page in the pager is | |
974 | * an extension of the last "sub page" in | |
975 | * the pager->slots[] array. | |
976 | */ | |
977 | slot = &pager->slots[FOURK_PAGER_SLOTS-1]; | |
978 | src_object = slot->backing_object; | |
979 | src_offset = slot->backing_offset; | |
980 | src_offset += FOURK_PAGE_SIZE; | |
981 | src_offset += | |
982 | (vm_map_trunc_page(offset, | |
983 | SIXTEENK_PAGE_MASK) | |
984 | - SIXTEENK_PAGE_SIZE); | |
985 | src_offset += sub_page * FOURK_PAGE_SIZE; | |
986 | } | |
987 | offset_in_src_page = src_offset & PAGE_MASK_64; | |
988 | src_offset = vm_object_trunc_page(src_offset); | |
989 | ||
990 | if (src_object == VM_OBJECT_NULL || | |
991 | src_object == (vm_object_t) -1) { | |
992 | /* zero-fill */ | |
993 | bzero((char *)(dst_vaddr + | |
994 | ((sub_page-sub_page_idx) | |
995 | * FOURK_PAGE_SIZE)), | |
996 | FOURK_PAGE_SIZE); | |
997 | if (fourk_pager_data_request_debug) { | |
998 | printf("fourk_pager_data_request" | |
999 | "(%p,0x%llx+0x%lx+0x%04x): " | |
1000 | "ZERO\n", | |
1001 | pager, | |
1002 | offset, | |
1003 | cur_offset, | |
1004 | ((sub_page - sub_page_idx) | |
1005 | * FOURK_PAGE_SIZE)); | |
1006 | } | |
1007 | continue; | |
1008 | } | |
1009 | ||
1010 | /* fault in the source page from src_object */ | |
1011 | retry_src_fault: | |
1012 | src_page = VM_PAGE_NULL; | |
1013 | top_page = VM_PAGE_NULL; | |
1014 | fault_info = *((struct vm_object_fault_info *) | |
1015 | (uintptr_t)mo_fault_info); | |
1016 | fault_info.stealth = TRUE; | |
1017 | fault_info.io_sync = FALSE; | |
1018 | fault_info.mark_zf_absent = FALSE; | |
1019 | fault_info.batch_pmap_op = FALSE; | |
1020 | interruptible = fault_info.interruptible; | |
1021 | prot = VM_PROT_READ; | |
1022 | error_code = 0; | |
1023 | ||
1024 | vm_object_lock(src_object); | |
1025 | vm_object_paging_begin(src_object); | |
1026 | kr = vm_fault_page(src_object, | |
1027 | src_offset, | |
1028 | VM_PROT_READ, | |
1029 | FALSE, | |
1030 | FALSE, /* src_page not looked up */ | |
1031 | &prot, | |
1032 | &src_page, | |
1033 | &top_page, | |
1034 | NULL, | |
1035 | &error_code, | |
1036 | FALSE, | |
1037 | FALSE, | |
1038 | &fault_info); | |
1039 | switch (kr) { | |
1040 | case VM_FAULT_SUCCESS: | |
1041 | break; | |
1042 | case VM_FAULT_RETRY: | |
1043 | goto retry_src_fault; | |
1044 | case VM_FAULT_MEMORY_SHORTAGE: | |
1045 | if (vm_page_wait(interruptible)) { | |
1046 | goto retry_src_fault; | |
1047 | } | |
1048 | /* fall thru */ | |
1049 | case VM_FAULT_INTERRUPTED: | |
1050 | retval = MACH_SEND_INTERRUPTED; | |
1051 | goto src_fault_done; | |
1052 | case VM_FAULT_SUCCESS_NO_VM_PAGE: | |
1053 | /* success but no VM page: fail */ | |
1054 | vm_object_paging_end(src_object); | |
1055 | vm_object_unlock(src_object); | |
1056 | /*FALLTHROUGH*/ | |
1057 | case VM_FAULT_MEMORY_ERROR: | |
1058 | /* the page is not there! */ | |
1059 | if (error_code) { | |
1060 | retval = error_code; | |
1061 | } else { | |
1062 | retval = KERN_MEMORY_ERROR; | |
1063 | } | |
1064 | goto src_fault_done; | |
1065 | default: | |
1066 | panic("fourk_pager_data_request: " | |
1067 | "vm_fault_page() unexpected error 0x%x\n", | |
1068 | kr); | |
1069 | } | |
1070 | assert(src_page != VM_PAGE_NULL); | |
d9a64523 | 1071 | assert(src_page->vmp_busy); |
3e170ce0 | 1072 | |
39037602 A |
1073 | src_page_object = VM_PAGE_OBJECT(src_page); |
1074 | ||
1075 | if (( !VM_PAGE_PAGEABLE(src_page)) && | |
3e170ce0 A |
1076 | !VM_PAGE_WIRED(src_page)) { |
1077 | vm_page_lockspin_queues(); | |
39037602 | 1078 | if (( !VM_PAGE_PAGEABLE(src_page)) && |
3e170ce0 A |
1079 | !VM_PAGE_WIRED(src_page)) { |
1080 | vm_page_deactivate(src_page); | |
1081 | } | |
1082 | vm_page_unlock_queues(); | |
1083 | } | |
1084 | ||
1085 | #if __x86_64__ | |
1086 | src_vaddr = (vm_map_offset_t) | |
39037602 | 1087 | PHYSMAP_PTOV((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(src_page) |
3e170ce0 | 1088 | << PAGE_SHIFT); |
5ba3f43e A |
1089 | #elif __arm__ || __arm64__ |
1090 | src_vaddr = (vm_map_offset_t) | |
1091 | phystokv((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(src_page) | |
1092 | << PAGE_SHIFT); | |
3e170ce0 A |
1093 | #else |
1094 | /* | |
1095 | * Establish an explicit mapping of the source | |
1096 | * physical page. | |
1097 | */ | |
5ba3f43e A |
1098 | kr = pmap_enter(kernel_pmap, |
1099 | src_vaddr, | |
1100 | VM_PAGE_GET_PHYS_PAGE(src_page), | |
1101 | VM_PROT_READ, | |
1102 | VM_PROT_NONE, | |
1103 | 0, | |
1104 | TRUE); | |
1105 | ||
1106 | assert(kr == KERN_SUCCESS); | |
3e170ce0 A |
1107 | #endif |
1108 | ||
1109 | /* | |
1110 | * Validate the 4K page we want from | |
1111 | * this source page... | |
1112 | */ | |
1113 | subpg_validated = FALSE; | |
1114 | subpg_tainted = 0; | |
39037602 | 1115 | if (src_page_object->code_signed) { |
3e170ce0 A |
1116 | vm_page_validate_cs_mapped_chunk( |
1117 | src_page, | |
1118 | (const void *) src_vaddr, | |
1119 | offset_in_src_page, | |
39037602 | 1120 | FOURK_PAGE_SIZE, |
3e170ce0 A |
1121 | &subpg_validated, |
1122 | &subpg_tainted); | |
1123 | num_subpg_signed++; | |
1124 | if (subpg_validated) { | |
1125 | num_subpg_validated++; | |
1126 | } | |
1127 | if (subpg_tainted & CS_VALIDATE_TAINTED) { | |
1128 | num_subpg_tainted++; | |
1129 | } | |
1130 | if (subpg_tainted & CS_VALIDATE_NX) { | |
1131 | /* subpg should not be executable */ | |
1132 | if (sub_page_cnt > 1) { | |
1133 | /* | |
1134 | * The destination page has | |
1135 | * more than 1 subpage and its | |
1136 | * other subpages might need | |
1137 | * EXEC, so we do not propagate | |
1138 | * CS_VALIDATE_NX to the | |
1139 | * destination page... | |
1140 | */ | |
1141 | } else { | |
1142 | num_subpg_nx++; | |
1143 | } | |
1144 | } | |
1145 | } | |
1146 | ||
1147 | /* | |
1148 | * Copy the relevant portion of the source page | |
1149 | * into the appropriate part of the destination page. | |
1150 | */ | |
1151 | bcopy((const char *)(src_vaddr + offset_in_src_page), | |
1152 | (char *)(dst_vaddr + | |
1153 | ((sub_page - sub_page_idx) * | |
1154 | FOURK_PAGE_SIZE)), | |
1155 | FOURK_PAGE_SIZE); | |
1156 | if (fourk_pager_data_request_debug) { | |
1157 | printf("fourk_data_request" | |
1158 | "(%p,0x%llx+0x%lx+0x%04x): " | |
1159 | "backed by [%p:0x%llx]: " | |
1160 | "[0x%016llx 0x%016llx] " | |
1161 | "code_signed=%d " | |
1162 | "cs_valid=%d cs_tainted=%d cs_nx=%d\n", | |
1163 | pager, | |
1164 | offset, cur_offset, | |
1165 | (sub_page-sub_page_idx)*FOURK_PAGE_SIZE, | |
39037602 | 1166 | src_page_object, |
d9a64523 | 1167 | src_page->vmp_offset + offset_in_src_page, |
3e170ce0 A |
1168 | *(uint64_t *)(dst_vaddr + |
1169 | ((sub_page-sub_page_idx) * | |
1170 | FOURK_PAGE_SIZE)), | |
1171 | *(uint64_t *)(dst_vaddr + | |
1172 | ((sub_page-sub_page_idx) * | |
1173 | FOURK_PAGE_SIZE) + | |
1174 | 8), | |
39037602 | 1175 | src_page_object->code_signed, |
3e170ce0 A |
1176 | subpg_validated, |
1177 | !!(subpg_tainted & CS_VALIDATE_TAINTED), | |
1178 | !!(subpg_tainted & CS_VALIDATE_NX)); | |
1179 | } | |
1180 | ||
1181 | #if __x86_64__ || __arm__ || __arm64__ | |
1182 | /* we used the 1-to-1 mapping of physical memory */ | |
1183 | src_vaddr = 0; | |
1184 | #else /* __x86_64__ || __arm__ || __arm64__ */ | |
1185 | /* | |
1186 | * Remove the pmap mapping of the source page | |
1187 | * in the kernel. | |
1188 | */ | |
1189 | pmap_remove(kernel_pmap, | |
1190 | (addr64_t) src_vaddr, | |
1191 | (addr64_t) src_vaddr + PAGE_SIZE_64); | |
1192 | #endif /* __x86_64__ || __arm__ || __arm64__ */ | |
1193 | ||
1194 | src_fault_done: | |
1195 | /* | |
1196 | * Cleanup the result of vm_fault_page(). | |
1197 | */ | |
1198 | if (src_page) { | |
39037602 | 1199 | assert(VM_PAGE_OBJECT(src_page) == src_page_object); |
3e170ce0 | 1200 | |
3e170ce0 A |
1201 | PAGE_WAKEUP_DONE(src_page); |
1202 | src_page = VM_PAGE_NULL; | |
1203 | vm_object_paging_end(src_page_object); | |
1204 | vm_object_unlock(src_page_object); | |
1205 | if (top_page) { | |
1206 | vm_object_t top_object; | |
1207 | ||
39037602 | 1208 | top_object = VM_PAGE_OBJECT(top_page); |
3e170ce0 A |
1209 | vm_object_lock(top_object); |
1210 | VM_PAGE_FREE(top_page); | |
1211 | top_page = VM_PAGE_NULL; | |
1212 | vm_object_paging_end(top_object); | |
1213 | vm_object_unlock(top_object); | |
1214 | } | |
1215 | } | |
1216 | } | |
1217 | if (num_subpg_signed > 0) { | |
1218 | /* some code-signing involved with this 16K page */ | |
1219 | if (num_subpg_tainted > 0) { | |
1220 | /* a tainted subpage taints entire 16K page */ | |
1221 | UPL_SET_CS_TAINTED(upl_pl, | |
1222 | cur_offset / PAGE_SIZE, | |
1223 | TRUE); | |
1224 | /* also mark as "validated" for consisteny */ | |
1225 | UPL_SET_CS_VALIDATED(upl_pl, | |
1226 | cur_offset / PAGE_SIZE, | |
1227 | TRUE); | |
1228 | } else if (num_subpg_validated == num_subpg_signed) { | |
1229 | /* | |
1230 | * All the code-signed 4K subpages of this | |
1231 | * 16K page are validated: our 16K page is | |
1232 | * considered validated. | |
1233 | */ | |
1234 | UPL_SET_CS_VALIDATED(upl_pl, | |
1235 | cur_offset / PAGE_SIZE, | |
1236 | TRUE); | |
1237 | } | |
1238 | if (num_subpg_nx > 0) { | |
1239 | UPL_SET_CS_NX(upl_pl, | |
1240 | cur_offset / PAGE_SIZE, | |
1241 | TRUE); | |
1242 | } | |
1243 | } | |
1244 | } | |
1245 | ||
1246 | done: | |
1247 | if (upl != NULL) { | |
1248 | /* clean up the UPL */ | |
1249 | ||
1250 | /* | |
1251 | * The pages are currently dirty because we've just been | |
1252 | * writing on them, but as far as we're concerned, they're | |
1253 | * clean since they contain their "original" contents as | |
1254 | * provided by us, the pager. | |
1255 | * Tell the UPL to mark them "clean". | |
1256 | */ | |
1257 | upl_clear_dirty(upl, TRUE); | |
1258 | ||
1259 | /* abort or commit the UPL */ | |
1260 | if (retval != KERN_SUCCESS) { | |
1261 | upl_abort(upl, 0); | |
1262 | if (retval == KERN_ABORTED) { | |
1263 | wait_result_t wait_result; | |
1264 | ||
1265 | /* | |
1266 | * We aborted the fault and did not provide | |
1267 | * any contents for the requested pages but | |
1268 | * the pages themselves are not invalid, so | |
1269 | * let's return success and let the caller | |
1270 | * retry the fault, in case it might succeed | |
1271 | * later (when the decryption code is up and | |
1272 | * running in the kernel, for example). | |
1273 | */ | |
1274 | retval = KERN_SUCCESS; | |
1275 | /* | |
1276 | * Wait a little bit first to avoid using | |
1277 | * too much CPU time retrying and failing | |
1278 | * the same fault over and over again. | |
1279 | */ | |
1280 | wait_result = assert_wait_timeout( | |
1281 | (event_t) fourk_pager_data_request, | |
1282 | THREAD_UNINT, | |
1283 | 10000, /* 10ms */ | |
1284 | NSEC_PER_USEC); | |
1285 | assert(wait_result == THREAD_WAITING); | |
1286 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1287 | assert(wait_result == THREAD_TIMED_OUT); | |
1288 | } | |
1289 | } else { | |
1290 | boolean_t empty; | |
1291 | upl_commit_range(upl, 0, upl->size, | |
1292 | UPL_COMMIT_CS_VALIDATED | UPL_COMMIT_WRITTEN_BY_KERNEL, | |
1293 | upl_pl, pl_count, &empty); | |
1294 | } | |
1295 | ||
1296 | /* and deallocate the UPL */ | |
1297 | upl_deallocate(upl); | |
1298 | upl = NULL; | |
1299 | } | |
1300 | if (kernel_mapping != 0) { | |
1301 | /* clean up the mapping of the source and destination pages */ | |
1302 | kr = vm_map_remove(kernel_map, | |
1303 | kernel_mapping, | |
1304 | kernel_mapping + (2 * PAGE_SIZE_64), | |
d9a64523 | 1305 | VM_MAP_REMOVE_NO_FLAGS); |
3e170ce0 A |
1306 | assert(kr == KERN_SUCCESS); |
1307 | kernel_mapping = 0; | |
1308 | src_vaddr = 0; | |
1309 | dst_vaddr = 0; | |
1310 | } | |
1311 | ||
1312 | return retval; | |
1313 | } | |
1314 | ||
1315 | ||
1316 | ||
1317 | kern_return_t | |
1318 | fourk_pager_populate( | |
1319 | memory_object_t mem_obj, | |
1320 | boolean_t overwrite, | |
1321 | int index, | |
1322 | vm_object_t new_backing_object, | |
1323 | vm_object_offset_t new_backing_offset, | |
1324 | vm_object_t *old_backing_object, | |
1325 | vm_object_offset_t *old_backing_offset) | |
1326 | { | |
1327 | fourk_pager_t pager; | |
1328 | ||
1329 | pager = fourk_pager_lookup(mem_obj); | |
1330 | if (pager == NULL) { | |
1331 | return KERN_INVALID_ARGUMENT; | |
1332 | } | |
1333 | ||
1334 | assert(pager->ref_count > 0); | |
5ba3f43e | 1335 | assert(pager->fourk_pgr_hdr.mo_control != MEMORY_OBJECT_CONTROL_NULL); |
3e170ce0 A |
1336 | |
1337 | if (index < 0 || index > FOURK_PAGER_SLOTS) { | |
1338 | return KERN_INVALID_ARGUMENT; | |
1339 | } | |
1340 | ||
1341 | if (!overwrite && | |
1342 | (pager->slots[index].backing_object != (vm_object_t) -1 || | |
1343 | pager->slots[index].backing_offset != (vm_object_offset_t) -1)) { | |
1344 | return KERN_INVALID_ADDRESS; | |
1345 | } | |
1346 | ||
1347 | *old_backing_object = pager->slots[index].backing_object; | |
1348 | *old_backing_offset = pager->slots[index].backing_offset; | |
1349 | ||
1350 | pager->slots[index].backing_object = new_backing_object; | |
1351 | pager->slots[index].backing_offset = new_backing_offset; | |
1352 | ||
1353 | return KERN_SUCCESS; | |
1354 | } | |
1355 |