]>
Commit | Line | Data |
---|---|---|
de355530 | 1 | |
1c79356b A |
2 | /* |
3 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
4 | * | |
5 | * @APPLE_LICENSE_HEADER_START@ | |
6 | * | |
de355530 A |
7 | * The contents of this file constitute Original Code as defined in and |
8 | * are subject to the Apple Public Source License Version 1.1 (the | |
9 | * "License"). You may not use this file except in compliance with the | |
10 | * License. Please obtain a copy of the License at | |
11 | * http://www.apple.com/publicsource and read it before using this file. | |
1c79356b | 12 | * |
de355530 A |
13 | * This Original Code and all software distributed under the License are |
14 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
15 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
16 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
de355530 A |
17 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
18 | * License for the specific language governing rights and limitations | |
19 | * under the License. | |
1c79356b A |
20 | * |
21 | * @APPLE_LICENSE_HEADER_END@ | |
22 | */ | |
23 | /* | |
24 | * @OSF_COPYRIGHT@ | |
25 | */ | |
26 | /* | |
27 | * Mach Operating System | |
28 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
29 | * All Rights Reserved. | |
30 | * | |
31 | * Permission to use, copy, modify and distribute this software and its | |
32 | * documentation is hereby granted, provided that both the copyright | |
33 | * notice and this permission notice appear in all copies of the | |
34 | * software, derivative works or modified versions, and any portions | |
35 | * thereof, and that both notices appear in supporting documentation. | |
36 | * | |
37 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
38 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
39 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
40 | * | |
41 | * Carnegie Mellon requests users of this software to return to | |
42 | * | |
43 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
44 | * School of Computer Science | |
45 | * Carnegie Mellon University | |
46 | * Pittsburgh PA 15213-3890 | |
47 | * | |
48 | * any improvements or extensions that they make and grant Carnegie Mellon | |
49 | * the rights to redistribute these changes. | |
50 | */ | |
51 | /* | |
52 | */ | |
53 | /* | |
54 | * File: vm_fault.c | |
55 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
56 | * | |
57 | * Page fault handling module. | |
58 | */ | |
59 | #ifdef MACH_BSD | |
60 | /* remove after component interface available */ | |
61 | extern int vnode_pager_workaround; | |
0b4e3aa0 | 62 | extern int device_pager_workaround; |
1c79356b A |
63 | #endif |
64 | ||
65 | #include <mach_cluster_stats.h> | |
66 | #include <mach_pagemap.h> | |
67 | #include <mach_kdb.h> | |
68 | ||
69 | #include <vm/vm_fault.h> | |
70 | #include <mach/kern_return.h> | |
71 | #include <mach/message.h> /* for error codes */ | |
72 | #include <kern/host_statistics.h> | |
73 | #include <kern/counters.h> | |
74 | #include <kern/task.h> | |
75 | #include <kern/thread.h> | |
76 | #include <kern/sched_prim.h> | |
77 | #include <kern/host.h> | |
78 | #include <kern/xpr.h> | |
0b4e3aa0 | 79 | #include <ppc/proc_reg.h> |
de355530 | 80 | #include <ppc/pmap_internals.h> |
0b4e3aa0 | 81 | #include <vm/task_working_set.h> |
1c79356b A |
82 | #include <vm/vm_map.h> |
83 | #include <vm/vm_object.h> | |
84 | #include <vm/vm_page.h> | |
85 | #include <vm/pmap.h> | |
86 | #include <vm/vm_pageout.h> | |
87 | #include <mach/vm_param.h> | |
88 | #include <mach/vm_behavior.h> | |
89 | #include <mach/memory_object.h> | |
90 | /* For memory_object_data_{request,unlock} */ | |
91 | #include <kern/mach_param.h> | |
92 | #include <kern/macro_help.h> | |
93 | #include <kern/zalloc.h> | |
94 | #include <kern/misc_protos.h> | |
95 | ||
96 | #include <sys/kdebug.h> | |
97 | ||
98 | #define VM_FAULT_CLASSIFY 0 | |
99 | #define VM_FAULT_STATIC_CONFIG 1 | |
100 | ||
101 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ | |
102 | ||
103 | int vm_object_absent_max = 50; | |
104 | ||
105 | int vm_fault_debug = 0; | |
106 | boolean_t vm_page_deactivate_behind = TRUE; | |
107 | ||
1c79356b A |
108 | |
109 | #if !VM_FAULT_STATIC_CONFIG | |
110 | boolean_t vm_fault_dirty_handling = FALSE; | |
111 | boolean_t vm_fault_interruptible = FALSE; | |
112 | boolean_t software_reference_bits = TRUE; | |
113 | #endif | |
114 | ||
115 | #if MACH_KDB | |
116 | extern struct db_watchpoint *db_watchpoint_list; | |
117 | #endif /* MACH_KDB */ | |
118 | ||
119 | /* Forward declarations of internal routines. */ | |
120 | extern kern_return_t vm_fault_wire_fast( | |
121 | vm_map_t map, | |
122 | vm_offset_t va, | |
123 | vm_map_entry_t entry, | |
9bccf70c A |
124 | pmap_t pmap, |
125 | vm_offset_t pmap_addr); | |
1c79356b A |
126 | |
127 | extern void vm_fault_continue(void); | |
128 | ||
129 | extern void vm_fault_copy_cleanup( | |
130 | vm_page_t page, | |
131 | vm_page_t top_page); | |
132 | ||
133 | extern void vm_fault_copy_dst_cleanup( | |
134 | vm_page_t page); | |
135 | ||
136 | #if VM_FAULT_CLASSIFY | |
137 | extern void vm_fault_classify(vm_object_t object, | |
138 | vm_object_offset_t offset, | |
139 | vm_prot_t fault_type); | |
140 | ||
141 | extern void vm_fault_classify_init(void); | |
142 | #endif | |
143 | ||
144 | /* | |
145 | * Routine: vm_fault_init | |
146 | * Purpose: | |
147 | * Initialize our private data structures. | |
148 | */ | |
149 | void | |
150 | vm_fault_init(void) | |
151 | { | |
152 | } | |
153 | ||
154 | /* | |
155 | * Routine: vm_fault_cleanup | |
156 | * Purpose: | |
157 | * Clean up the result of vm_fault_page. | |
158 | * Results: | |
159 | * The paging reference for "object" is released. | |
160 | * "object" is unlocked. | |
161 | * If "top_page" is not null, "top_page" is | |
162 | * freed and the paging reference for the object | |
163 | * containing it is released. | |
164 | * | |
165 | * In/out conditions: | |
166 | * "object" must be locked. | |
167 | */ | |
168 | void | |
169 | vm_fault_cleanup( | |
170 | register vm_object_t object, | |
171 | register vm_page_t top_page) | |
172 | { | |
173 | vm_object_paging_end(object); | |
174 | vm_object_unlock(object); | |
175 | ||
176 | if (top_page != VM_PAGE_NULL) { | |
177 | object = top_page->object; | |
178 | vm_object_lock(object); | |
179 | VM_PAGE_FREE(top_page); | |
180 | vm_object_paging_end(object); | |
181 | vm_object_unlock(object); | |
182 | } | |
183 | } | |
184 | ||
185 | #if MACH_CLUSTER_STATS | |
186 | #define MAXCLUSTERPAGES 16 | |
187 | struct { | |
188 | unsigned long pages_in_cluster; | |
189 | unsigned long pages_at_higher_offsets; | |
190 | unsigned long pages_at_lower_offsets; | |
191 | } cluster_stats_in[MAXCLUSTERPAGES]; | |
192 | #define CLUSTER_STAT(clause) clause | |
193 | #define CLUSTER_STAT_HIGHER(x) \ | |
194 | ((cluster_stats_in[(x)].pages_at_higher_offsets)++) | |
195 | #define CLUSTER_STAT_LOWER(x) \ | |
196 | ((cluster_stats_in[(x)].pages_at_lower_offsets)++) | |
197 | #define CLUSTER_STAT_CLUSTER(x) \ | |
198 | ((cluster_stats_in[(x)].pages_in_cluster)++) | |
199 | #else /* MACH_CLUSTER_STATS */ | |
200 | #define CLUSTER_STAT(clause) | |
201 | #endif /* MACH_CLUSTER_STATS */ | |
202 | ||
203 | /* XXX - temporary */ | |
204 | boolean_t vm_allow_clustered_pagein = FALSE; | |
205 | int vm_pagein_cluster_used = 0; | |
206 | ||
207 | /* | |
208 | * Prepage default sizes given VM_BEHAVIOR_DEFAULT reference behavior | |
209 | */ | |
210 | int vm_default_ahead = 1; /* Number of pages to prepage ahead */ | |
211 | int vm_default_behind = 0; /* Number of pages to prepage behind */ | |
212 | ||
213 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) | |
214 | ||
215 | /* | |
216 | * Routine: vm_fault_page | |
217 | * Purpose: | |
218 | * Find the resident page for the virtual memory | |
219 | * specified by the given virtual memory object | |
220 | * and offset. | |
221 | * Additional arguments: | |
222 | * The required permissions for the page is given | |
223 | * in "fault_type". Desired permissions are included | |
224 | * in "protection". The minimum and maximum valid offsets | |
225 | * within the object for the relevant map entry are | |
226 | * passed in "lo_offset" and "hi_offset" respectively and | |
227 | * the expected page reference pattern is passed in "behavior". | |
228 | * These three parameters are used to determine pagein cluster | |
229 | * limits. | |
230 | * | |
231 | * If the desired page is known to be resident (for | |
232 | * example, because it was previously wired down), asserting | |
233 | * the "unwiring" parameter will speed the search. | |
234 | * | |
235 | * If the operation can be interrupted (by thread_abort | |
236 | * or thread_terminate), then the "interruptible" | |
237 | * parameter should be asserted. | |
238 | * | |
239 | * Results: | |
240 | * The page containing the proper data is returned | |
241 | * in "result_page". | |
242 | * | |
243 | * In/out conditions: | |
244 | * The source object must be locked and referenced, | |
245 | * and must donate one paging reference. The reference | |
246 | * is not affected. The paging reference and lock are | |
247 | * consumed. | |
248 | * | |
249 | * If the call succeeds, the object in which "result_page" | |
250 | * resides is left locked and holding a paging reference. | |
251 | * If this is not the original object, a busy page in the | |
252 | * original object is returned in "top_page", to prevent other | |
253 | * callers from pursuing this same data, along with a paging | |
254 | * reference for the original object. The "top_page" should | |
255 | * be destroyed when this guarantee is no longer required. | |
256 | * The "result_page" is also left busy. It is not removed | |
257 | * from the pageout queues. | |
258 | */ | |
259 | ||
260 | vm_fault_return_t | |
261 | vm_fault_page( | |
262 | /* Arguments: */ | |
263 | vm_object_t first_object, /* Object to begin search */ | |
264 | vm_object_offset_t first_offset, /* Offset into object */ | |
265 | vm_prot_t fault_type, /* What access is requested */ | |
266 | boolean_t must_be_resident,/* Must page be resident? */ | |
267 | int interruptible, /* how may fault be interrupted? */ | |
268 | vm_object_offset_t lo_offset, /* Map entry start */ | |
269 | vm_object_offset_t hi_offset, /* Map entry end */ | |
270 | vm_behavior_t behavior, /* Page reference behavior */ | |
271 | /* Modifies in place: */ | |
272 | vm_prot_t *protection, /* Protection for mapping */ | |
273 | /* Returns: */ | |
274 | vm_page_t *result_page, /* Page found, if successful */ | |
275 | vm_page_t *top_page, /* Page in top object, if | |
276 | * not result_page. */ | |
277 | int *type_of_fault, /* if non-null, fill in with type of fault | |
278 | * COW, zero-fill, etc... returned in trace point */ | |
279 | /* More arguments: */ | |
280 | kern_return_t *error_code, /* code if page is in error */ | |
281 | boolean_t no_zero_fill, /* don't zero fill absent pages */ | |
0b4e3aa0 | 282 | boolean_t data_supply, /* treat as data_supply if |
1c79356b A |
283 | * it is a write fault and a full |
284 | * page is provided */ | |
0b4e3aa0 A |
285 | vm_map_t map, |
286 | vm_offset_t vaddr) | |
1c79356b A |
287 | { |
288 | register | |
289 | vm_page_t m; | |
290 | register | |
291 | vm_object_t object; | |
292 | register | |
293 | vm_object_offset_t offset; | |
294 | vm_page_t first_m; | |
295 | vm_object_t next_object; | |
296 | vm_object_t copy_object; | |
297 | boolean_t look_for_page; | |
298 | vm_prot_t access_required = fault_type; | |
299 | vm_prot_t wants_copy_flag; | |
300 | vm_size_t cluster_size, length; | |
301 | vm_object_offset_t cluster_offset; | |
302 | vm_object_offset_t cluster_start, cluster_end, paging_offset; | |
303 | vm_object_offset_t align_offset; | |
304 | CLUSTER_STAT(int pages_at_higher_offsets;) | |
305 | CLUSTER_STAT(int pages_at_lower_offsets;) | |
306 | kern_return_t wait_result; | |
1c79356b | 307 | boolean_t interruptible_state; |
0b4e3aa0 | 308 | boolean_t bumped_pagein = FALSE; |
1c79356b | 309 | |
1c79356b A |
310 | |
311 | #if MACH_PAGEMAP | |
312 | /* | |
313 | * MACH page map - an optional optimization where a bit map is maintained | |
314 | * by the VM subsystem for internal objects to indicate which pages of | |
315 | * the object currently reside on backing store. This existence map | |
316 | * duplicates information maintained by the vnode pager. It is | |
317 | * created at the time of the first pageout against the object, i.e. | |
318 | * at the same time pager for the object is created. The optimization | |
319 | * is designed to eliminate pager interaction overhead, if it is | |
320 | * 'known' that the page does not exist on backing store. | |
321 | * | |
322 | * LOOK_FOR() evaluates to TRUE if the page specified by object/offset is | |
323 | * either marked as paged out in the existence map for the object or no | |
324 | * existence map exists for the object. LOOK_FOR() is one of the | |
325 | * criteria in the decision to invoke the pager. It is also used as one | |
326 | * of the criteria to terminate the scan for adjacent pages in a clustered | |
327 | * pagein operation. Note that LOOK_FOR() always evaluates to TRUE for | |
328 | * permanent objects. Note also that if the pager for an internal object | |
329 | * has not been created, the pager is not invoked regardless of the value | |
330 | * of LOOK_FOR() and that clustered pagein scans are only done on an object | |
331 | * for which a pager has been created. | |
332 | * | |
333 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset | |
334 | * is marked as paged out in the existence map for the object. PAGED_OUT() | |
335 | * PAGED_OUT() is used to determine if a page has already been pushed | |
336 | * into a copy object in order to avoid a redundant page out operation. | |
337 | */ | |
338 | #define LOOK_FOR(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
339 | != VM_EXTERNAL_STATE_ABSENT) | |
340 | #define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
341 | == VM_EXTERNAL_STATE_EXISTS) | |
342 | #else /* MACH_PAGEMAP */ | |
343 | /* | |
344 | * If the MACH page map optimization is not enabled, | |
345 | * LOOK_FOR() always evaluates to TRUE. The pager will always be | |
346 | * invoked to resolve missing pages in an object, assuming the pager | |
347 | * has been created for the object. In a clustered page operation, the | |
348 | * absence of a page on backing backing store cannot be used to terminate | |
349 | * a scan for adjacent pages since that information is available only in | |
350 | * the pager. Hence pages that may not be paged out are potentially | |
351 | * included in a clustered request. The vnode pager is coded to deal | |
352 | * with any combination of absent/present pages in a clustered | |
353 | * pagein request. PAGED_OUT() always evaluates to FALSE, i.e. the pager | |
354 | * will always be invoked to push a dirty page into a copy object assuming | |
355 | * a pager has been created. If the page has already been pushed, the | |
356 | * pager will ingore the new request. | |
357 | */ | |
358 | #define LOOK_FOR(o, f) TRUE | |
359 | #define PAGED_OUT(o, f) FALSE | |
360 | #endif /* MACH_PAGEMAP */ | |
361 | ||
362 | /* | |
363 | * Recovery actions | |
364 | */ | |
365 | #define PREPARE_RELEASE_PAGE(m) \ | |
366 | MACRO_BEGIN \ | |
367 | vm_page_lock_queues(); \ | |
368 | MACRO_END | |
369 | ||
370 | #define DO_RELEASE_PAGE(m) \ | |
371 | MACRO_BEGIN \ | |
372 | PAGE_WAKEUP_DONE(m); \ | |
373 | if (!m->active && !m->inactive) \ | |
374 | vm_page_activate(m); \ | |
375 | vm_page_unlock_queues(); \ | |
376 | MACRO_END | |
377 | ||
378 | #define RELEASE_PAGE(m) \ | |
379 | MACRO_BEGIN \ | |
380 | PREPARE_RELEASE_PAGE(m); \ | |
381 | DO_RELEASE_PAGE(m); \ | |
382 | MACRO_END | |
383 | ||
384 | #if TRACEFAULTPAGE | |
385 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ | |
386 | #endif | |
387 | ||
388 | ||
389 | ||
390 | #if !VM_FAULT_STATIC_CONFIG | |
391 | if (vm_fault_dirty_handling | |
392 | #if MACH_KDB | |
393 | /* | |
394 | * If there are watchpoints set, then | |
395 | * we don't want to give away write permission | |
396 | * on a read fault. Make the task write fault, | |
397 | * so that the watchpoint code notices the access. | |
398 | */ | |
399 | || db_watchpoint_list | |
400 | #endif /* MACH_KDB */ | |
401 | ) { | |
402 | /* | |
403 | * If we aren't asking for write permission, | |
404 | * then don't give it away. We're using write | |
405 | * faults to set the dirty bit. | |
406 | */ | |
407 | if (!(fault_type & VM_PROT_WRITE)) | |
408 | *protection &= ~VM_PROT_WRITE; | |
409 | } | |
410 | ||
411 | if (!vm_fault_interruptible) | |
412 | interruptible = THREAD_UNINT; | |
413 | #else /* STATIC_CONFIG */ | |
414 | #if MACH_KDB | |
415 | /* | |
416 | * If there are watchpoints set, then | |
417 | * we don't want to give away write permission | |
418 | * on a read fault. Make the task write fault, | |
419 | * so that the watchpoint code notices the access. | |
420 | */ | |
421 | if (db_watchpoint_list) { | |
422 | /* | |
423 | * If we aren't asking for write permission, | |
424 | * then don't give it away. We're using write | |
425 | * faults to set the dirty bit. | |
426 | */ | |
427 | if (!(fault_type & VM_PROT_WRITE)) | |
428 | *protection &= ~VM_PROT_WRITE; | |
429 | } | |
430 | ||
431 | #endif /* MACH_KDB */ | |
432 | #endif /* STATIC_CONFIG */ | |
433 | ||
9bccf70c | 434 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b A |
435 | |
436 | /* | |
437 | * INVARIANTS (through entire routine): | |
438 | * | |
439 | * 1) At all times, we must either have the object | |
440 | * lock or a busy page in some object to prevent | |
441 | * some other thread from trying to bring in | |
442 | * the same page. | |
443 | * | |
444 | * Note that we cannot hold any locks during the | |
445 | * pager access or when waiting for memory, so | |
446 | * we use a busy page then. | |
447 | * | |
448 | * Note also that we aren't as concerned about more than | |
449 | * one thread attempting to memory_object_data_unlock | |
450 | * the same page at once, so we don't hold the page | |
451 | * as busy then, but do record the highest unlock | |
452 | * value so far. [Unlock requests may also be delivered | |
453 | * out of order.] | |
454 | * | |
455 | * 2) To prevent another thread from racing us down the | |
456 | * shadow chain and entering a new page in the top | |
457 | * object before we do, we must keep a busy page in | |
458 | * the top object while following the shadow chain. | |
459 | * | |
460 | * 3) We must increment paging_in_progress on any object | |
461 | * for which we have a busy page | |
462 | * | |
463 | * 4) We leave busy pages on the pageout queues. | |
464 | * If the pageout daemon comes across a busy page, | |
465 | * it will remove the page from the pageout queues. | |
466 | */ | |
467 | ||
468 | /* | |
469 | * Search for the page at object/offset. | |
470 | */ | |
471 | ||
472 | object = first_object; | |
473 | offset = first_offset; | |
474 | first_m = VM_PAGE_NULL; | |
475 | access_required = fault_type; | |
476 | ||
477 | XPR(XPR_VM_FAULT, | |
478 | "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n", | |
479 | (integer_t)object, offset, fault_type, *protection, 0); | |
480 | ||
481 | /* | |
482 | * See whether this page is resident | |
483 | */ | |
484 | ||
485 | while (TRUE) { | |
486 | #if TRACEFAULTPAGE | |
487 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
488 | #endif | |
489 | if (!object->alive) { | |
490 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 491 | thread_interrupt_level(interruptible_state); |
1c79356b A |
492 | return(VM_FAULT_MEMORY_ERROR); |
493 | } | |
494 | m = vm_page_lookup(object, offset); | |
495 | #if TRACEFAULTPAGE | |
496 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
497 | #endif | |
498 | if (m != VM_PAGE_NULL) { | |
499 | /* | |
500 | * If the page was pre-paged as part of a | |
501 | * cluster, record the fact. | |
502 | */ | |
503 | if (m->clustered) { | |
504 | vm_pagein_cluster_used++; | |
505 | m->clustered = FALSE; | |
506 | } | |
507 | ||
508 | /* | |
509 | * If the page is being brought in, | |
510 | * wait for it and then retry. | |
511 | * | |
512 | * A possible optimization: if the page | |
513 | * is known to be resident, we can ignore | |
514 | * pages that are absent (regardless of | |
515 | * whether they're busy). | |
516 | */ | |
517 | ||
518 | if (m->busy) { | |
519 | #if TRACEFAULTPAGE | |
520 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
521 | #endif | |
9bccf70c | 522 | wait_result = PAGE_SLEEP(object, m, interruptible); |
1c79356b A |
523 | XPR(XPR_VM_FAULT, |
524 | "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n", | |
525 | (integer_t)object, offset, | |
526 | (integer_t)m, 0, 0); | |
527 | counter(c_vm_fault_page_block_busy_kernel++); | |
1c79356b | 528 | |
1c79356b A |
529 | if (wait_result != THREAD_AWAKENED) { |
530 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 531 | thread_interrupt_level(interruptible_state); |
1c79356b A |
532 | if (wait_result == THREAD_RESTART) |
533 | { | |
534 | return(VM_FAULT_RETRY); | |
535 | } | |
536 | else | |
537 | { | |
538 | return(VM_FAULT_INTERRUPTED); | |
539 | } | |
540 | } | |
541 | continue; | |
542 | } | |
543 | ||
544 | /* | |
545 | * If the page is in error, give up now. | |
546 | */ | |
547 | ||
548 | if (m->error) { | |
549 | #if TRACEFAULTPAGE | |
550 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ | |
551 | #endif | |
552 | if (error_code) | |
553 | *error_code = m->page_error; | |
554 | VM_PAGE_FREE(m); | |
555 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 556 | thread_interrupt_level(interruptible_state); |
1c79356b A |
557 | return(VM_FAULT_MEMORY_ERROR); |
558 | } | |
559 | ||
560 | /* | |
561 | * If the pager wants us to restart | |
562 | * at the top of the chain, | |
563 | * typically because it has moved the | |
564 | * page to another pager, then do so. | |
565 | */ | |
566 | ||
567 | if (m->restart) { | |
568 | #if TRACEFAULTPAGE | |
569 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
570 | #endif | |
571 | VM_PAGE_FREE(m); | |
572 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 573 | thread_interrupt_level(interruptible_state); |
1c79356b A |
574 | return(VM_FAULT_RETRY); |
575 | } | |
576 | ||
577 | /* | |
578 | * If the page isn't busy, but is absent, | |
579 | * then it was deemed "unavailable". | |
580 | */ | |
581 | ||
582 | if (m->absent) { | |
583 | /* | |
584 | * Remove the non-existent page (unless it's | |
585 | * in the top object) and move on down to the | |
586 | * next object (if there is one). | |
587 | */ | |
588 | #if TRACEFAULTPAGE | |
589 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ | |
590 | #endif | |
591 | ||
592 | next_object = object->shadow; | |
593 | if (next_object == VM_OBJECT_NULL) { | |
594 | vm_page_t real_m; | |
595 | ||
596 | assert(!must_be_resident); | |
597 | ||
598 | if (object->shadow_severed) { | |
599 | vm_fault_cleanup( | |
600 | object, first_m); | |
9bccf70c | 601 | thread_interrupt_level(interruptible_state); |
1c79356b A |
602 | return VM_FAULT_MEMORY_ERROR; |
603 | } | |
604 | ||
605 | /* | |
606 | * Absent page at bottom of shadow | |
607 | * chain; zero fill the page we left | |
608 | * busy in the first object, and flush | |
609 | * the absent page. But first we | |
610 | * need to allocate a real page. | |
611 | */ | |
612 | if (VM_PAGE_THROTTLED() || | |
613 | (real_m = vm_page_grab()) == VM_PAGE_NULL) { | |
614 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 615 | thread_interrupt_level(interruptible_state); |
1c79356b A |
616 | return(VM_FAULT_MEMORY_SHORTAGE); |
617 | } | |
618 | ||
619 | XPR(XPR_VM_FAULT, | |
620 | "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n", | |
621 | (integer_t)object, offset, | |
622 | (integer_t)m, | |
623 | (integer_t)first_object, 0); | |
624 | if (object != first_object) { | |
625 | VM_PAGE_FREE(m); | |
626 | vm_object_paging_end(object); | |
627 | vm_object_unlock(object); | |
628 | object = first_object; | |
629 | offset = first_offset; | |
630 | m = first_m; | |
631 | first_m = VM_PAGE_NULL; | |
632 | vm_object_lock(object); | |
633 | } | |
634 | ||
635 | VM_PAGE_FREE(m); | |
636 | assert(real_m->busy); | |
637 | vm_page_insert(real_m, object, offset); | |
638 | m = real_m; | |
639 | ||
640 | /* | |
641 | * Drop the lock while zero filling | |
642 | * page. Then break because this | |
643 | * is the page we wanted. Checking | |
644 | * the page lock is a waste of time; | |
645 | * this page was either absent or | |
646 | * newly allocated -- in both cases | |
647 | * it can't be page locked by a pager. | |
648 | */ | |
0b4e3aa0 A |
649 | m->no_isync = FALSE; |
650 | ||
1c79356b A |
651 | if (!no_zero_fill) { |
652 | vm_object_unlock(object); | |
653 | vm_page_zero_fill(m); | |
654 | if (type_of_fault) | |
655 | *type_of_fault = DBG_ZERO_FILL_FAULT; | |
656 | VM_STAT(zero_fill_count++); | |
0b4e3aa0 A |
657 | |
658 | if (bumped_pagein == TRUE) { | |
659 | VM_STAT(pageins--); | |
660 | current_task()->pageins--; | |
661 | } | |
1c79356b A |
662 | vm_object_lock(object); |
663 | } | |
de355530 | 664 | pmap_clear_modify(m->phys_addr); |
1c79356b A |
665 | vm_page_lock_queues(); |
666 | VM_PAGE_QUEUES_REMOVE(m); | |
0b4e3aa0 | 667 | m->page_ticket = vm_page_ticket; |
9bccf70c A |
668 | if(m->object->size > 0x80000) { |
669 | m->zero_fill = TRUE; | |
670 | /* depends on the queues lock */ | |
671 | vm_zf_count += 1; | |
672 | queue_enter(&vm_page_queue_zf, | |
673 | m, vm_page_t, pageq); | |
674 | } else { | |
675 | queue_enter( | |
676 | &vm_page_queue_inactive, | |
677 | m, vm_page_t, pageq); | |
678 | } | |
0b4e3aa0 A |
679 | vm_page_ticket_roll++; |
680 | if(vm_page_ticket_roll == | |
681 | VM_PAGE_TICKETS_IN_ROLL) { | |
682 | vm_page_ticket_roll = 0; | |
683 | if(vm_page_ticket == | |
684 | VM_PAGE_TICKET_ROLL_IDS) | |
685 | vm_page_ticket= 0; | |
686 | else | |
687 | vm_page_ticket++; | |
688 | } | |
1c79356b A |
689 | m->inactive = TRUE; |
690 | vm_page_inactive_count++; | |
691 | vm_page_unlock_queues(); | |
692 | break; | |
693 | } else { | |
694 | if (must_be_resident) { | |
695 | vm_object_paging_end(object); | |
696 | } else if (object != first_object) { | |
697 | vm_object_paging_end(object); | |
698 | VM_PAGE_FREE(m); | |
699 | } else { | |
700 | first_m = m; | |
701 | m->absent = FALSE; | |
702 | m->unusual = FALSE; | |
703 | vm_object_absent_release(object); | |
704 | m->busy = TRUE; | |
705 | ||
706 | vm_page_lock_queues(); | |
707 | VM_PAGE_QUEUES_REMOVE(m); | |
708 | vm_page_unlock_queues(); | |
709 | } | |
710 | XPR(XPR_VM_FAULT, | |
711 | "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n", | |
712 | (integer_t)object, offset, | |
713 | (integer_t)next_object, | |
714 | offset+object->shadow_offset,0); | |
715 | offset += object->shadow_offset; | |
716 | hi_offset += object->shadow_offset; | |
717 | lo_offset += object->shadow_offset; | |
718 | access_required = VM_PROT_READ; | |
719 | vm_object_lock(next_object); | |
720 | vm_object_unlock(object); | |
721 | object = next_object; | |
722 | vm_object_paging_begin(object); | |
723 | continue; | |
724 | } | |
725 | } | |
726 | ||
727 | if ((m->cleaning) | |
728 | && ((object != first_object) || | |
729 | (object->copy != VM_OBJECT_NULL)) | |
730 | && (fault_type & VM_PROT_WRITE)) { | |
731 | /* | |
732 | * This is a copy-on-write fault that will | |
733 | * cause us to revoke access to this page, but | |
734 | * this page is in the process of being cleaned | |
735 | * in a clustered pageout. We must wait until | |
736 | * the cleaning operation completes before | |
737 | * revoking access to the original page, | |
738 | * otherwise we might attempt to remove a | |
739 | * wired mapping. | |
740 | */ | |
741 | #if TRACEFAULTPAGE | |
742 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ | |
743 | #endif | |
744 | XPR(XPR_VM_FAULT, | |
745 | "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n", | |
746 | (integer_t)object, offset, | |
747 | (integer_t)m, 0, 0); | |
748 | /* take an extra ref so that object won't die */ | |
749 | assert(object->ref_count > 0); | |
750 | object->ref_count++; | |
751 | vm_object_res_reference(object); | |
752 | vm_fault_cleanup(object, first_m); | |
753 | counter(c_vm_fault_page_block_backoff_kernel++); | |
754 | vm_object_lock(object); | |
755 | assert(object->ref_count > 0); | |
756 | m = vm_page_lookup(object, offset); | |
757 | if (m != VM_PAGE_NULL && m->cleaning) { | |
758 | PAGE_ASSERT_WAIT(m, interruptible); | |
759 | vm_object_unlock(object); | |
9bccf70c | 760 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
761 | vm_object_deallocate(object); |
762 | goto backoff; | |
763 | } else { | |
764 | vm_object_unlock(object); | |
765 | vm_object_deallocate(object); | |
9bccf70c | 766 | thread_interrupt_level(interruptible_state); |
1c79356b A |
767 | return VM_FAULT_RETRY; |
768 | } | |
769 | } | |
770 | ||
771 | /* | |
772 | * If the desired access to this page has | |
773 | * been locked out, request that it be unlocked. | |
774 | */ | |
775 | ||
776 | if (access_required & m->page_lock) { | |
777 | if ((access_required & m->unlock_request) != access_required) { | |
778 | vm_prot_t new_unlock_request; | |
779 | kern_return_t rc; | |
780 | ||
781 | #if TRACEFAULTPAGE | |
782 | dbgTrace(0xBEEF000A, (unsigned int) m, (unsigned int) object->pager_ready); /* (TEST/DEBUG) */ | |
783 | #endif | |
784 | if (!object->pager_ready) { | |
785 | XPR(XPR_VM_FAULT, | |
786 | "vm_f_page: ready wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n", | |
787 | access_required, | |
788 | (integer_t)object, offset, | |
789 | (integer_t)m, 0); | |
790 | /* take an extra ref */ | |
791 | assert(object->ref_count > 0); | |
792 | object->ref_count++; | |
793 | vm_object_res_reference(object); | |
794 | vm_fault_cleanup(object, | |
795 | first_m); | |
796 | counter(c_vm_fault_page_block_backoff_kernel++); | |
797 | vm_object_lock(object); | |
798 | assert(object->ref_count > 0); | |
799 | if (!object->pager_ready) { | |
9bccf70c | 800 | wait_result = vm_object_assert_wait( |
1c79356b A |
801 | object, |
802 | VM_OBJECT_EVENT_PAGER_READY, | |
803 | interruptible); | |
804 | vm_object_unlock(object); | |
9bccf70c A |
805 | if (wait_result == THREAD_WAITING) |
806 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
807 | vm_object_deallocate(object); |
808 | goto backoff; | |
809 | } else { | |
810 | vm_object_unlock(object); | |
811 | vm_object_deallocate(object); | |
9bccf70c | 812 | thread_interrupt_level(interruptible_state); |
1c79356b A |
813 | return VM_FAULT_RETRY; |
814 | } | |
815 | } | |
816 | ||
817 | new_unlock_request = m->unlock_request = | |
818 | (access_required | m->unlock_request); | |
819 | vm_object_unlock(object); | |
820 | XPR(XPR_VM_FAULT, | |
821 | "vm_f_page: unlock obj 0x%X, offset 0x%X, page 0x%X, unl_req %d\n", | |
822 | (integer_t)object, offset, | |
823 | (integer_t)m, new_unlock_request, 0); | |
824 | if ((rc = memory_object_data_unlock( | |
825 | object->pager, | |
1c79356b A |
826 | offset + object->paging_offset, |
827 | PAGE_SIZE, | |
828 | new_unlock_request)) | |
829 | != KERN_SUCCESS) { | |
830 | if (vm_fault_debug) | |
831 | printf("vm_fault: memory_object_data_unlock failed\n"); | |
832 | vm_object_lock(object); | |
833 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 834 | thread_interrupt_level(interruptible_state); |
1c79356b A |
835 | return((rc == MACH_SEND_INTERRUPTED) ? |
836 | VM_FAULT_INTERRUPTED : | |
837 | VM_FAULT_MEMORY_ERROR); | |
838 | } | |
839 | vm_object_lock(object); | |
840 | continue; | |
841 | } | |
842 | ||
843 | XPR(XPR_VM_FAULT, | |
844 | "vm_f_page: access wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n", | |
845 | access_required, (integer_t)object, | |
846 | offset, (integer_t)m, 0); | |
847 | /* take an extra ref so object won't die */ | |
848 | assert(object->ref_count > 0); | |
849 | object->ref_count++; | |
850 | vm_object_res_reference(object); | |
851 | vm_fault_cleanup(object, first_m); | |
852 | counter(c_vm_fault_page_block_backoff_kernel++); | |
853 | vm_object_lock(object); | |
854 | assert(object->ref_count > 0); | |
855 | m = vm_page_lookup(object, offset); | |
856 | if (m != VM_PAGE_NULL && | |
857 | (access_required & m->page_lock) && | |
858 | !((access_required & m->unlock_request) != access_required)) { | |
859 | PAGE_ASSERT_WAIT(m, interruptible); | |
860 | vm_object_unlock(object); | |
9bccf70c | 861 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
862 | vm_object_deallocate(object); |
863 | goto backoff; | |
864 | } else { | |
865 | vm_object_unlock(object); | |
866 | vm_object_deallocate(object); | |
9bccf70c | 867 | thread_interrupt_level(interruptible_state); |
1c79356b A |
868 | return VM_FAULT_RETRY; |
869 | } | |
870 | } | |
871 | /* | |
872 | * We mark the page busy and leave it on | |
873 | * the pageout queues. If the pageout | |
874 | * deamon comes across it, then it will | |
875 | * remove the page. | |
876 | */ | |
877 | ||
878 | #if TRACEFAULTPAGE | |
879 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
880 | #endif | |
881 | ||
882 | #if !VM_FAULT_STATIC_CONFIG | |
883 | if (!software_reference_bits) { | |
884 | vm_page_lock_queues(); | |
885 | if (m->inactive) | |
886 | vm_stat.reactivations++; | |
887 | ||
888 | VM_PAGE_QUEUES_REMOVE(m); | |
889 | vm_page_unlock_queues(); | |
890 | } | |
891 | #endif | |
892 | XPR(XPR_VM_FAULT, | |
893 | "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n", | |
894 | (integer_t)object, offset, (integer_t)m, 0, 0); | |
895 | assert(!m->busy); | |
896 | m->busy = TRUE; | |
897 | assert(!m->absent); | |
898 | break; | |
899 | } | |
900 | ||
901 | look_for_page = | |
902 | (object->pager_created) && | |
903 | LOOK_FOR(object, offset) && | |
904 | (!data_supply); | |
905 | ||
906 | #if TRACEFAULTPAGE | |
907 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ | |
908 | #endif | |
909 | if ((look_for_page || (object == first_object)) | |
0b4e3aa0 A |
910 | && !must_be_resident |
911 | && !(object->phys_contiguous)) { | |
1c79356b A |
912 | /* |
913 | * Allocate a new page for this object/offset | |
914 | * pair. | |
915 | */ | |
916 | ||
917 | m = vm_page_grab_fictitious(); | |
918 | #if TRACEFAULTPAGE | |
919 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
920 | #endif | |
921 | if (m == VM_PAGE_NULL) { | |
922 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 923 | thread_interrupt_level(interruptible_state); |
1c79356b A |
924 | return(VM_FAULT_FICTITIOUS_SHORTAGE); |
925 | } | |
926 | vm_page_insert(m, object, offset); | |
927 | } | |
928 | ||
0b4e3aa0 | 929 | if ((look_for_page && !must_be_resident)) { |
1c79356b A |
930 | kern_return_t rc; |
931 | ||
932 | /* | |
933 | * If the memory manager is not ready, we | |
934 | * cannot make requests. | |
935 | */ | |
936 | if (!object->pager_ready) { | |
937 | #if TRACEFAULTPAGE | |
938 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
939 | #endif | |
0b4e3aa0 A |
940 | if(m != VM_PAGE_NULL) |
941 | VM_PAGE_FREE(m); | |
1c79356b A |
942 | XPR(XPR_VM_FAULT, |
943 | "vm_f_page: ready wait obj 0x%X, offset 0x%X\n", | |
944 | (integer_t)object, offset, 0, 0, 0); | |
945 | /* take an extra ref so object won't die */ | |
946 | assert(object->ref_count > 0); | |
947 | object->ref_count++; | |
948 | vm_object_res_reference(object); | |
949 | vm_fault_cleanup(object, first_m); | |
950 | counter(c_vm_fault_page_block_backoff_kernel++); | |
951 | vm_object_lock(object); | |
952 | assert(object->ref_count > 0); | |
953 | if (!object->pager_ready) { | |
9bccf70c | 954 | wait_result = vm_object_assert_wait(object, |
1c79356b A |
955 | VM_OBJECT_EVENT_PAGER_READY, |
956 | interruptible); | |
957 | vm_object_unlock(object); | |
9bccf70c A |
958 | if (wait_result == THREAD_WAITING) |
959 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
960 | vm_object_deallocate(object); |
961 | goto backoff; | |
962 | } else { | |
963 | vm_object_unlock(object); | |
964 | vm_object_deallocate(object); | |
9bccf70c | 965 | thread_interrupt_level(interruptible_state); |
1c79356b A |
966 | return VM_FAULT_RETRY; |
967 | } | |
968 | } | |
969 | ||
0b4e3aa0 A |
970 | if(object->phys_contiguous) { |
971 | if(m != VM_PAGE_NULL) { | |
972 | VM_PAGE_FREE(m); | |
973 | m = VM_PAGE_NULL; | |
974 | } | |
975 | goto no_clustering; | |
976 | } | |
1c79356b A |
977 | if (object->internal) { |
978 | /* | |
979 | * Requests to the default pager | |
980 | * must reserve a real page in advance, | |
981 | * because the pager's data-provided | |
982 | * won't block for pages. IMPORTANT: | |
983 | * this acts as a throttling mechanism | |
984 | * for data_requests to the default | |
985 | * pager. | |
986 | */ | |
987 | ||
988 | #if TRACEFAULTPAGE | |
989 | dbgTrace(0xBEEF000F, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
990 | #endif | |
991 | if (m->fictitious && !vm_page_convert(m)) { | |
992 | VM_PAGE_FREE(m); | |
993 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 994 | thread_interrupt_level(interruptible_state); |
1c79356b A |
995 | return(VM_FAULT_MEMORY_SHORTAGE); |
996 | } | |
997 | } else if (object->absent_count > | |
998 | vm_object_absent_max) { | |
999 | /* | |
1000 | * If there are too many outstanding page | |
1001 | * requests pending on this object, we | |
1002 | * wait for them to be resolved now. | |
1003 | */ | |
1004 | ||
1005 | #if TRACEFAULTPAGE | |
1006 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1007 | #endif | |
0b4e3aa0 A |
1008 | if(m != VM_PAGE_NULL) |
1009 | VM_PAGE_FREE(m); | |
1c79356b A |
1010 | /* take an extra ref so object won't die */ |
1011 | assert(object->ref_count > 0); | |
1012 | object->ref_count++; | |
1013 | vm_object_res_reference(object); | |
1014 | vm_fault_cleanup(object, first_m); | |
1015 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1016 | vm_object_lock(object); | |
1017 | assert(object->ref_count > 0); | |
1018 | if (object->absent_count > vm_object_absent_max) { | |
1019 | vm_object_absent_assert_wait(object, | |
1020 | interruptible); | |
1021 | vm_object_unlock(object); | |
9bccf70c | 1022 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
1023 | vm_object_deallocate(object); |
1024 | goto backoff; | |
1025 | } else { | |
1026 | vm_object_unlock(object); | |
1027 | vm_object_deallocate(object); | |
9bccf70c | 1028 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1029 | return VM_FAULT_RETRY; |
1030 | } | |
1031 | } | |
1032 | ||
1033 | /* | |
1034 | * Indicate that the page is waiting for data | |
1035 | * from the memory manager. | |
1036 | */ | |
1037 | ||
0b4e3aa0 A |
1038 | if(m != VM_PAGE_NULL) { |
1039 | ||
1040 | m->list_req_pending = TRUE; | |
1041 | m->absent = TRUE; | |
1042 | m->unusual = TRUE; | |
1043 | object->absent_count++; | |
1044 | ||
1045 | } | |
1c79356b | 1046 | |
9bccf70c | 1047 | no_clustering: |
1c79356b A |
1048 | cluster_start = offset; |
1049 | length = PAGE_SIZE; | |
1c79356b | 1050 | |
0b4e3aa0 A |
1051 | /* |
1052 | * lengthen the cluster by the pages in the working set | |
1053 | */ | |
1054 | if((map != NULL) && | |
1055 | (current_task()->dynamic_working_set != 0)) { | |
1056 | cluster_end = cluster_start + length; | |
1057 | /* tws values for start and end are just a | |
1058 | * suggestions. Therefore, as long as | |
1059 | * build_cluster does not use pointers or | |
1060 | * take action based on values that | |
1061 | * could be affected by re-entrance we | |
1062 | * do not need to take the map lock. | |
1063 | */ | |
9bccf70c | 1064 | cluster_end = offset + PAGE_SIZE_64; |
0b4e3aa0 A |
1065 | tws_build_cluster((tws_hash_t) |
1066 | current_task()->dynamic_working_set, | |
1067 | object, &cluster_start, | |
9bccf70c | 1068 | &cluster_end, 0x40000); |
0b4e3aa0 A |
1069 | length = cluster_end - cluster_start; |
1070 | } | |
1c79356b A |
1071 | #if TRACEFAULTPAGE |
1072 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1073 | #endif | |
1074 | /* | |
1075 | * We have a busy page, so we can | |
1076 | * release the object lock. | |
1077 | */ | |
1078 | vm_object_unlock(object); | |
1079 | ||
1080 | /* | |
1081 | * Call the memory manager to retrieve the data. | |
1082 | */ | |
1083 | ||
1084 | if (type_of_fault) | |
9bccf70c | 1085 | *type_of_fault = (length << 8) | DBG_PAGEIN_FAULT; |
1c79356b A |
1086 | VM_STAT(pageins++); |
1087 | current_task()->pageins++; | |
0b4e3aa0 | 1088 | bumped_pagein = TRUE; |
1c79356b A |
1089 | |
1090 | /* | |
1091 | * If this object uses a copy_call strategy, | |
1092 | * and we are interested in a copy of this object | |
1093 | * (having gotten here only by following a | |
1094 | * shadow chain), then tell the memory manager | |
1095 | * via a flag added to the desired_access | |
1096 | * parameter, so that it can detect a race | |
1097 | * between our walking down the shadow chain | |
1098 | * and its pushing pages up into a copy of | |
1099 | * the object that it manages. | |
1100 | */ | |
1101 | ||
1102 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && | |
1103 | object != first_object) { | |
1104 | wants_copy_flag = VM_PROT_WANTS_COPY; | |
1105 | } else { | |
1106 | wants_copy_flag = VM_PROT_NONE; | |
1107 | } | |
1108 | ||
1109 | XPR(XPR_VM_FAULT, | |
1110 | "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n", | |
1111 | (integer_t)object, offset, (integer_t)m, | |
1112 | access_required | wants_copy_flag, 0); | |
1113 | ||
1c79356b | 1114 | rc = memory_object_data_request(object->pager, |
1c79356b A |
1115 | cluster_start + object->paging_offset, |
1116 | length, | |
1117 | access_required | wants_copy_flag); | |
1118 | ||
1c79356b A |
1119 | |
1120 | #if TRACEFAULTPAGE | |
1121 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ | |
1122 | #endif | |
1123 | if (rc != KERN_SUCCESS) { | |
1124 | if (rc != MACH_SEND_INTERRUPTED | |
1125 | && vm_fault_debug) | |
0b4e3aa0 | 1126 | printf("%s(0x%x, 0x%x, 0x%x, 0x%x) failed, rc=%d\n", |
1c79356b A |
1127 | "memory_object_data_request", |
1128 | object->pager, | |
1c79356b | 1129 | cluster_start + object->paging_offset, |
0b4e3aa0 | 1130 | length, access_required, rc); |
1c79356b A |
1131 | /* |
1132 | * Don't want to leave a busy page around, | |
1133 | * but the data request may have blocked, | |
1134 | * so check if it's still there and busy. | |
1135 | */ | |
0b4e3aa0 A |
1136 | if(!object->phys_contiguous) { |
1137 | vm_object_lock(object); | |
1138 | for (; length; length -= PAGE_SIZE, | |
1139 | cluster_start += PAGE_SIZE_64) { | |
1140 | vm_page_t p; | |
1141 | if ((p = vm_page_lookup(object, | |
1c79356b | 1142 | cluster_start)) |
0b4e3aa0 A |
1143 | && p->absent && p->busy |
1144 | && p != first_m) { | |
1145 | VM_PAGE_FREE(p); | |
1146 | } | |
1147 | } | |
1c79356b A |
1148 | } |
1149 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1150 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1151 | return((rc == MACH_SEND_INTERRUPTED) ? |
1152 | VM_FAULT_INTERRUPTED : | |
1153 | VM_FAULT_MEMORY_ERROR); | |
0b4e3aa0 A |
1154 | } else { |
1155 | #ifdef notdefcdy | |
1156 | tws_hash_line_t line; | |
1157 | task_t task; | |
1158 | ||
1159 | task = current_task(); | |
1160 | ||
1161 | if((map != NULL) && | |
9bccf70c A |
1162 | (task->dynamic_working_set != 0)) |
1163 | && !(object->private)) { | |
1164 | vm_object_t base_object; | |
1165 | vm_object_offset_t base_offset; | |
1166 | base_object = object; | |
1167 | base_offset = offset; | |
1168 | while(base_object->shadow) { | |
1169 | base_offset += | |
1170 | base_object->shadow_offset; | |
1171 | base_object = | |
1172 | base_object->shadow; | |
1173 | } | |
0b4e3aa0 A |
1174 | if(tws_lookup |
1175 | ((tws_hash_t) | |
1176 | task->dynamic_working_set, | |
9bccf70c | 1177 | base_offset, base_object, |
0b4e3aa0 A |
1178 | &line) == KERN_SUCCESS) { |
1179 | tws_line_signal((tws_hash_t) | |
1180 | task->dynamic_working_set, | |
1181 | map, line, vaddr); | |
1182 | } | |
1183 | } | |
1184 | #endif | |
1c79356b A |
1185 | } |
1186 | ||
1187 | /* | |
1188 | * Retry with same object/offset, since new data may | |
1189 | * be in a different page (i.e., m is meaningless at | |
1190 | * this point). | |
1191 | */ | |
1192 | vm_object_lock(object); | |
1193 | if ((interruptible != THREAD_UNINT) && | |
1194 | (current_thread()->state & TH_ABORT)) { | |
1195 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1196 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1197 | return(VM_FAULT_INTERRUPTED); |
1198 | } | |
0b4e3aa0 A |
1199 | if(m == VM_PAGE_NULL) |
1200 | break; | |
1c79356b A |
1201 | continue; |
1202 | } | |
1203 | ||
1204 | /* | |
1205 | * The only case in which we get here is if | |
1206 | * object has no pager (or unwiring). If the pager doesn't | |
1207 | * have the page this is handled in the m->absent case above | |
1208 | * (and if you change things here you should look above). | |
1209 | */ | |
1210 | #if TRACEFAULTPAGE | |
1211 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1212 | #endif | |
1213 | if (object == first_object) | |
1214 | first_m = m; | |
1215 | else | |
1216 | assert(m == VM_PAGE_NULL); | |
1217 | ||
1218 | XPR(XPR_VM_FAULT, | |
1219 | "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n", | |
1220 | (integer_t)object, offset, (integer_t)m, | |
1221 | (integer_t)object->shadow, 0); | |
1222 | /* | |
1223 | * Move on to the next object. Lock the next | |
1224 | * object before unlocking the current one. | |
1225 | */ | |
1226 | next_object = object->shadow; | |
1227 | if (next_object == VM_OBJECT_NULL) { | |
1228 | assert(!must_be_resident); | |
1229 | /* | |
1230 | * If there's no object left, fill the page | |
1231 | * in the top object with zeros. But first we | |
1232 | * need to allocate a real page. | |
1233 | */ | |
1234 | ||
1235 | if (object != first_object) { | |
1236 | vm_object_paging_end(object); | |
1237 | vm_object_unlock(object); | |
1238 | ||
1239 | object = first_object; | |
1240 | offset = first_offset; | |
1241 | vm_object_lock(object); | |
1242 | } | |
1243 | ||
1244 | m = first_m; | |
1245 | assert(m->object == object); | |
1246 | first_m = VM_PAGE_NULL; | |
1247 | ||
1248 | if (object->shadow_severed) { | |
1249 | VM_PAGE_FREE(m); | |
1250 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
9bccf70c | 1251 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1252 | return VM_FAULT_MEMORY_ERROR; |
1253 | } | |
1254 | ||
1255 | if (VM_PAGE_THROTTLED() || | |
1256 | (m->fictitious && !vm_page_convert(m))) { | |
1257 | VM_PAGE_FREE(m); | |
1258 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
9bccf70c | 1259 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1260 | return(VM_FAULT_MEMORY_SHORTAGE); |
1261 | } | |
0b4e3aa0 | 1262 | m->no_isync = FALSE; |
1c79356b A |
1263 | |
1264 | if (!no_zero_fill) { | |
1265 | vm_object_unlock(object); | |
1266 | vm_page_zero_fill(m); | |
1267 | if (type_of_fault) | |
1268 | *type_of_fault = DBG_ZERO_FILL_FAULT; | |
1269 | VM_STAT(zero_fill_count++); | |
0b4e3aa0 A |
1270 | |
1271 | if (bumped_pagein == TRUE) { | |
1272 | VM_STAT(pageins--); | |
1273 | current_task()->pageins--; | |
1274 | } | |
1c79356b A |
1275 | vm_object_lock(object); |
1276 | } | |
1277 | vm_page_lock_queues(); | |
1278 | VM_PAGE_QUEUES_REMOVE(m); | |
9bccf70c A |
1279 | if(m->object->size > 0x80000) { |
1280 | m->zero_fill = TRUE; | |
1281 | /* depends on the queues lock */ | |
1282 | vm_zf_count += 1; | |
1283 | queue_enter(&vm_page_queue_zf, | |
1284 | m, vm_page_t, pageq); | |
1285 | } else { | |
1286 | queue_enter( | |
1287 | &vm_page_queue_inactive, | |
1288 | m, vm_page_t, pageq); | |
1289 | } | |
0b4e3aa0 A |
1290 | m->page_ticket = vm_page_ticket; |
1291 | vm_page_ticket_roll++; | |
1292 | if(vm_page_ticket_roll == VM_PAGE_TICKETS_IN_ROLL) { | |
1293 | vm_page_ticket_roll = 0; | |
1294 | if(vm_page_ticket == | |
1295 | VM_PAGE_TICKET_ROLL_IDS) | |
1296 | vm_page_ticket= 0; | |
1297 | else | |
1298 | vm_page_ticket++; | |
1299 | } | |
1c79356b A |
1300 | m->inactive = TRUE; |
1301 | vm_page_inactive_count++; | |
1302 | vm_page_unlock_queues(); | |
de355530 | 1303 | pmap_clear_modify(m->phys_addr); |
1c79356b A |
1304 | break; |
1305 | } | |
1306 | else { | |
1307 | if ((object != first_object) || must_be_resident) | |
1308 | vm_object_paging_end(object); | |
1309 | offset += object->shadow_offset; | |
1310 | hi_offset += object->shadow_offset; | |
1311 | lo_offset += object->shadow_offset; | |
1312 | access_required = VM_PROT_READ; | |
1313 | vm_object_lock(next_object); | |
1314 | vm_object_unlock(object); | |
1315 | object = next_object; | |
1316 | vm_object_paging_begin(object); | |
1317 | } | |
1318 | } | |
1319 | ||
1320 | /* | |
1321 | * PAGE HAS BEEN FOUND. | |
1322 | * | |
1323 | * This page (m) is: | |
1324 | * busy, so that we can play with it; | |
1325 | * not absent, so that nobody else will fill it; | |
1326 | * possibly eligible for pageout; | |
1327 | * | |
1328 | * The top-level page (first_m) is: | |
1329 | * VM_PAGE_NULL if the page was found in the | |
1330 | * top-level object; | |
1331 | * busy, not absent, and ineligible for pageout. | |
1332 | * | |
1333 | * The current object (object) is locked. A paging | |
1334 | * reference is held for the current and top-level | |
1335 | * objects. | |
1336 | */ | |
1337 | ||
1338 | #if TRACEFAULTPAGE | |
1339 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1340 | #endif | |
1341 | #if EXTRA_ASSERTIONS | |
0b4e3aa0 A |
1342 | if(m != VM_PAGE_NULL) { |
1343 | assert(m->busy && !m->absent); | |
1344 | assert((first_m == VM_PAGE_NULL) || | |
1345 | (first_m->busy && !first_m->absent && | |
1346 | !first_m->active && !first_m->inactive)); | |
1347 | } | |
1c79356b A |
1348 | #endif /* EXTRA_ASSERTIONS */ |
1349 | ||
1350 | XPR(XPR_VM_FAULT, | |
1351 | "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n", | |
1352 | (integer_t)object, offset, (integer_t)m, | |
1353 | (integer_t)first_object, (integer_t)first_m); | |
1354 | /* | |
1355 | * If the page is being written, but isn't | |
1356 | * already owned by the top-level object, | |
1357 | * we have to copy it into a new page owned | |
1358 | * by the top-level object. | |
1359 | */ | |
1360 | ||
0b4e3aa0 | 1361 | if ((object != first_object) && (m != VM_PAGE_NULL)) { |
1c79356b A |
1362 | /* |
1363 | * We only really need to copy if we | |
1364 | * want to write it. | |
1365 | */ | |
1366 | ||
1367 | #if TRACEFAULTPAGE | |
1368 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1369 | #endif | |
1370 | if (fault_type & VM_PROT_WRITE) { | |
1371 | vm_page_t copy_m; | |
1372 | ||
1373 | assert(!must_be_resident); | |
1374 | ||
1375 | /* | |
1376 | * If we try to collapse first_object at this | |
1377 | * point, we may deadlock when we try to get | |
1378 | * the lock on an intermediate object (since we | |
1379 | * have the bottom object locked). We can't | |
1380 | * unlock the bottom object, because the page | |
1381 | * we found may move (by collapse) if we do. | |
1382 | * | |
1383 | * Instead, we first copy the page. Then, when | |
1384 | * we have no more use for the bottom object, | |
1385 | * we unlock it and try to collapse. | |
1386 | * | |
1387 | * Note that we copy the page even if we didn't | |
1388 | * need to... that's the breaks. | |
1389 | */ | |
1390 | ||
1391 | /* | |
1392 | * Allocate a page for the copy | |
1393 | */ | |
1394 | copy_m = vm_page_grab(); | |
1395 | if (copy_m == VM_PAGE_NULL) { | |
1396 | RELEASE_PAGE(m); | |
1397 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1398 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1399 | return(VM_FAULT_MEMORY_SHORTAGE); |
1400 | } | |
1401 | ||
1402 | ||
1403 | XPR(XPR_VM_FAULT, | |
1404 | "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n", | |
1405 | (integer_t)object, offset, | |
1406 | (integer_t)m, (integer_t)copy_m, 0); | |
1407 | vm_page_copy(m, copy_m); | |
1408 | ||
1409 | /* | |
1410 | * If another map is truly sharing this | |
1411 | * page with us, we have to flush all | |
1412 | * uses of the original page, since we | |
1413 | * can't distinguish those which want the | |
1414 | * original from those which need the | |
1415 | * new copy. | |
1416 | * | |
1417 | * XXXO If we know that only one map has | |
1418 | * access to this page, then we could | |
1419 | * avoid the pmap_page_protect() call. | |
1420 | */ | |
1421 | ||
1422 | vm_page_lock_queues(); | |
1423 | assert(!m->cleaning); | |
de355530 | 1424 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); |
1c79356b A |
1425 | vm_page_deactivate(m); |
1426 | copy_m->dirty = TRUE; | |
1427 | /* | |
1428 | * Setting reference here prevents this fault from | |
1429 | * being counted as a (per-thread) reactivate as well | |
1430 | * as a copy-on-write. | |
1431 | */ | |
1432 | first_m->reference = TRUE; | |
1433 | vm_page_unlock_queues(); | |
1434 | ||
1435 | /* | |
1436 | * We no longer need the old page or object. | |
1437 | */ | |
1438 | ||
1439 | PAGE_WAKEUP_DONE(m); | |
1440 | vm_object_paging_end(object); | |
1441 | vm_object_unlock(object); | |
1442 | ||
1443 | if (type_of_fault) | |
1444 | *type_of_fault = DBG_COW_FAULT; | |
1445 | VM_STAT(cow_faults++); | |
1446 | current_task()->cow_faults++; | |
1447 | object = first_object; | |
1448 | offset = first_offset; | |
1449 | ||
1450 | vm_object_lock(object); | |
1451 | VM_PAGE_FREE(first_m); | |
1452 | first_m = VM_PAGE_NULL; | |
1453 | assert(copy_m->busy); | |
1454 | vm_page_insert(copy_m, object, offset); | |
1455 | m = copy_m; | |
1456 | ||
1457 | /* | |
1458 | * Now that we've gotten the copy out of the | |
1459 | * way, let's try to collapse the top object. | |
1460 | * But we have to play ugly games with | |
1461 | * paging_in_progress to do that... | |
1462 | */ | |
1463 | ||
1464 | vm_object_paging_end(object); | |
1465 | vm_object_collapse(object); | |
1466 | vm_object_paging_begin(object); | |
1467 | ||
1468 | } | |
1469 | else { | |
1470 | *protection &= (~VM_PROT_WRITE); | |
1471 | } | |
1472 | } | |
1473 | ||
1474 | /* | |
1475 | * Now check whether the page needs to be pushed into the | |
1476 | * copy object. The use of asymmetric copy on write for | |
1477 | * shared temporary objects means that we may do two copies to | |
1478 | * satisfy the fault; one above to get the page from a | |
1479 | * shadowed object, and one here to push it into the copy. | |
1480 | */ | |
1481 | ||
9bccf70c | 1482 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL && |
0b4e3aa0 | 1483 | (m!= VM_PAGE_NULL)) { |
1c79356b A |
1484 | vm_object_offset_t copy_offset; |
1485 | vm_page_t copy_m; | |
1486 | ||
1487 | #if TRACEFAULTPAGE | |
1488 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1489 | #endif | |
1490 | /* | |
1491 | * If the page is being written, but hasn't been | |
1492 | * copied to the copy-object, we have to copy it there. | |
1493 | */ | |
1494 | ||
1495 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
1496 | *protection &= ~VM_PROT_WRITE; | |
1497 | break; | |
1498 | } | |
1499 | ||
1500 | /* | |
1501 | * If the page was guaranteed to be resident, | |
1502 | * we must have already performed the copy. | |
1503 | */ | |
1504 | ||
1505 | if (must_be_resident) | |
1506 | break; | |
1507 | ||
1508 | /* | |
1509 | * Try to get the lock on the copy_object. | |
1510 | */ | |
1511 | if (!vm_object_lock_try(copy_object)) { | |
1512 | vm_object_unlock(object); | |
1513 | ||
1514 | mutex_pause(); /* wait a bit */ | |
1515 | ||
1516 | vm_object_lock(object); | |
1517 | continue; | |
1518 | } | |
1519 | ||
1520 | /* | |
1521 | * Make another reference to the copy-object, | |
1522 | * to keep it from disappearing during the | |
1523 | * copy. | |
1524 | */ | |
1525 | assert(copy_object->ref_count > 0); | |
1526 | copy_object->ref_count++; | |
1527 | VM_OBJ_RES_INCR(copy_object); | |
1528 | ||
1529 | /* | |
1530 | * Does the page exist in the copy? | |
1531 | */ | |
1532 | copy_offset = first_offset - copy_object->shadow_offset; | |
1533 | if (copy_object->size <= copy_offset) | |
1534 | /* | |
1535 | * Copy object doesn't cover this page -- do nothing. | |
1536 | */ | |
1537 | ; | |
1538 | else if ((copy_m = | |
1539 | vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { | |
1540 | /* Page currently exists in the copy object */ | |
1541 | if (copy_m->busy) { | |
1542 | /* | |
1543 | * If the page is being brought | |
1544 | * in, wait for it and then retry. | |
1545 | */ | |
1546 | RELEASE_PAGE(m); | |
1547 | /* take an extra ref so object won't die */ | |
1548 | assert(copy_object->ref_count > 0); | |
1549 | copy_object->ref_count++; | |
1550 | vm_object_res_reference(copy_object); | |
1551 | vm_object_unlock(copy_object); | |
1552 | vm_fault_cleanup(object, first_m); | |
1553 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1554 | vm_object_lock(copy_object); | |
1555 | assert(copy_object->ref_count > 0); | |
1556 | VM_OBJ_RES_DECR(copy_object); | |
1557 | copy_object->ref_count--; | |
1558 | assert(copy_object->ref_count > 0); | |
1559 | copy_m = vm_page_lookup(copy_object, copy_offset); | |
1560 | if (copy_m != VM_PAGE_NULL && copy_m->busy) { | |
1561 | PAGE_ASSERT_WAIT(copy_m, interruptible); | |
1562 | vm_object_unlock(copy_object); | |
9bccf70c | 1563 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
1564 | vm_object_deallocate(copy_object); |
1565 | goto backoff; | |
1566 | } else { | |
1567 | vm_object_unlock(copy_object); | |
1568 | vm_object_deallocate(copy_object); | |
9bccf70c | 1569 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1570 | return VM_FAULT_RETRY; |
1571 | } | |
1572 | } | |
1573 | } | |
1574 | else if (!PAGED_OUT(copy_object, copy_offset)) { | |
1575 | /* | |
1576 | * If PAGED_OUT is TRUE, then the page used to exist | |
1577 | * in the copy-object, and has already been paged out. | |
1578 | * We don't need to repeat this. If PAGED_OUT is | |
1579 | * FALSE, then either we don't know (!pager_created, | |
1580 | * for example) or it hasn't been paged out. | |
1581 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) | |
1582 | * We must copy the page to the copy object. | |
1583 | */ | |
1584 | ||
1585 | /* | |
1586 | * Allocate a page for the copy | |
1587 | */ | |
1588 | copy_m = vm_page_alloc(copy_object, copy_offset); | |
1589 | if (copy_m == VM_PAGE_NULL) { | |
1590 | RELEASE_PAGE(m); | |
1591 | VM_OBJ_RES_DECR(copy_object); | |
1592 | copy_object->ref_count--; | |
1593 | assert(copy_object->ref_count > 0); | |
1594 | vm_object_unlock(copy_object); | |
1595 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1596 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1597 | return(VM_FAULT_MEMORY_SHORTAGE); |
1598 | } | |
1599 | ||
1600 | /* | |
1601 | * Must copy page into copy-object. | |
1602 | */ | |
1603 | ||
1604 | vm_page_copy(m, copy_m); | |
1605 | ||
1606 | /* | |
1607 | * If the old page was in use by any users | |
1608 | * of the copy-object, it must be removed | |
1609 | * from all pmaps. (We can't know which | |
1610 | * pmaps use it.) | |
1611 | */ | |
1612 | ||
1613 | vm_page_lock_queues(); | |
1614 | assert(!m->cleaning); | |
de355530 | 1615 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); |
1c79356b A |
1616 | copy_m->dirty = TRUE; |
1617 | vm_page_unlock_queues(); | |
1618 | ||
1619 | /* | |
1620 | * If there's a pager, then immediately | |
1621 | * page out this page, using the "initialize" | |
1622 | * option. Else, we use the copy. | |
1623 | */ | |
1624 | ||
1625 | if | |
1626 | #if MACH_PAGEMAP | |
1627 | ((!copy_object->pager_created) || | |
1628 | vm_external_state_get( | |
1629 | copy_object->existence_map, copy_offset) | |
1630 | == VM_EXTERNAL_STATE_ABSENT) | |
1631 | #else | |
1632 | (!copy_object->pager_created) | |
1633 | #endif | |
1634 | { | |
1635 | vm_page_lock_queues(); | |
1636 | vm_page_activate(copy_m); | |
1637 | vm_page_unlock_queues(); | |
1638 | PAGE_WAKEUP_DONE(copy_m); | |
1639 | } | |
1640 | else { | |
1641 | assert(copy_m->busy == TRUE); | |
1642 | ||
1643 | /* | |
1644 | * The page is already ready for pageout: | |
1645 | * not on pageout queues and busy. | |
1646 | * Unlock everything except the | |
1647 | * copy_object itself. | |
1648 | */ | |
1649 | ||
1650 | vm_object_unlock(object); | |
1651 | ||
1652 | /* | |
1653 | * Write the page to the copy-object, | |
1654 | * flushing it from the kernel. | |
1655 | */ | |
1656 | ||
1657 | vm_pageout_initialize_page(copy_m); | |
1658 | ||
1659 | /* | |
1660 | * Since the pageout may have | |
1661 | * temporarily dropped the | |
1662 | * copy_object's lock, we | |
1663 | * check whether we'll have | |
1664 | * to deallocate the hard way. | |
1665 | */ | |
1666 | ||
1667 | if ((copy_object->shadow != object) || | |
1668 | (copy_object->ref_count == 1)) { | |
1669 | vm_object_unlock(copy_object); | |
1670 | vm_object_deallocate(copy_object); | |
1671 | vm_object_lock(object); | |
1672 | continue; | |
1673 | } | |
1674 | ||
1675 | /* | |
1676 | * Pick back up the old object's | |
1677 | * lock. [It is safe to do so, | |
1678 | * since it must be deeper in the | |
1679 | * object tree.] | |
1680 | */ | |
1681 | ||
1682 | vm_object_lock(object); | |
1683 | } | |
1684 | ||
1685 | /* | |
1686 | * Because we're pushing a page upward | |
1687 | * in the object tree, we must restart | |
1688 | * any faults that are waiting here. | |
1689 | * [Note that this is an expansion of | |
1690 | * PAGE_WAKEUP that uses the THREAD_RESTART | |
1691 | * wait result]. Can't turn off the page's | |
1692 | * busy bit because we're not done with it. | |
1693 | */ | |
1694 | ||
1695 | if (m->wanted) { | |
1696 | m->wanted = FALSE; | |
1697 | thread_wakeup_with_result((event_t) m, | |
1698 | THREAD_RESTART); | |
1699 | } | |
1700 | } | |
1701 | ||
1702 | /* | |
1703 | * The reference count on copy_object must be | |
1704 | * at least 2: one for our extra reference, | |
1705 | * and at least one from the outside world | |
1706 | * (we checked that when we last locked | |
1707 | * copy_object). | |
1708 | */ | |
1709 | copy_object->ref_count--; | |
1710 | assert(copy_object->ref_count > 0); | |
1711 | VM_OBJ_RES_DECR(copy_object); | |
1712 | vm_object_unlock(copy_object); | |
1713 | ||
1714 | break; | |
1715 | } | |
1716 | ||
1717 | *result_page = m; | |
1718 | *top_page = first_m; | |
1719 | ||
1720 | XPR(XPR_VM_FAULT, | |
1721 | "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n", | |
1722 | (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0); | |
1723 | /* | |
1724 | * If the page can be written, assume that it will be. | |
1725 | * [Earlier, we restrict the permission to allow write | |
1726 | * access only if the fault so required, so we don't | |
1727 | * mark read-only data as dirty.] | |
1728 | */ | |
1729 | ||
1730 | #if !VM_FAULT_STATIC_CONFIG | |
0b4e3aa0 A |
1731 | if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE) && |
1732 | (m != VM_PAGE_NULL)) { | |
1c79356b | 1733 | m->dirty = TRUE; |
0b4e3aa0 | 1734 | } |
1c79356b A |
1735 | #endif |
1736 | #if TRACEFAULTPAGE | |
1737 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_page_deactivate_behind); /* (TEST/DEBUG) */ | |
1738 | #endif | |
1739 | if (vm_page_deactivate_behind) { | |
1740 | if (offset && /* don't underflow */ | |
1741 | (object->last_alloc == (offset - PAGE_SIZE_64))) { | |
1742 | m = vm_page_lookup(object, object->last_alloc); | |
1743 | if ((m != VM_PAGE_NULL) && !m->busy) { | |
1744 | vm_page_lock_queues(); | |
1745 | vm_page_deactivate(m); | |
1746 | vm_page_unlock_queues(); | |
1747 | } | |
1748 | #if TRACEFAULTPAGE | |
1749 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1750 | #endif | |
1751 | } | |
1752 | object->last_alloc = offset; | |
1753 | } | |
1754 | #if TRACEFAULTPAGE | |
1755 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ | |
1756 | #endif | |
9bccf70c | 1757 | thread_interrupt_level(interruptible_state); |
0b4e3aa0 A |
1758 | if(*result_page == VM_PAGE_NULL) { |
1759 | vm_object_unlock(object); | |
1760 | } | |
1c79356b A |
1761 | return(VM_FAULT_SUCCESS); |
1762 | ||
1763 | #if 0 | |
1764 | block_and_backoff: | |
1765 | vm_fault_cleanup(object, first_m); | |
1766 | ||
1767 | counter(c_vm_fault_page_block_backoff_kernel++); | |
9bccf70c | 1768 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
1769 | #endif |
1770 | ||
1771 | backoff: | |
9bccf70c | 1772 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1773 | if (wait_result == THREAD_INTERRUPTED) |
1774 | return VM_FAULT_INTERRUPTED; | |
1775 | return VM_FAULT_RETRY; | |
1776 | ||
1777 | #undef RELEASE_PAGE | |
1778 | } | |
1779 | ||
1780 | /* | |
1781 | * Routine: vm_fault | |
1782 | * Purpose: | |
1783 | * Handle page faults, including pseudo-faults | |
1784 | * used to change the wiring status of pages. | |
1785 | * Returns: | |
1786 | * Explicit continuations have been removed. | |
1787 | * Implementation: | |
1788 | * vm_fault and vm_fault_page save mucho state | |
1789 | * in the moral equivalent of a closure. The state | |
1790 | * structure is allocated when first entering vm_fault | |
1791 | * and deallocated when leaving vm_fault. | |
1792 | */ | |
1793 | ||
1794 | kern_return_t | |
1795 | vm_fault( | |
1796 | vm_map_t map, | |
1797 | vm_offset_t vaddr, | |
1798 | vm_prot_t fault_type, | |
1799 | boolean_t change_wiring, | |
9bccf70c A |
1800 | int interruptible, |
1801 | pmap_t caller_pmap, | |
1802 | vm_offset_t caller_pmap_addr) | |
1c79356b A |
1803 | { |
1804 | vm_map_version_t version; /* Map version for verificiation */ | |
1805 | boolean_t wired; /* Should mapping be wired down? */ | |
1806 | vm_object_t object; /* Top-level object */ | |
1807 | vm_object_offset_t offset; /* Top-level offset */ | |
1808 | vm_prot_t prot; /* Protection for mapping */ | |
1809 | vm_behavior_t behavior; /* Expected paging behavior */ | |
1810 | vm_object_offset_t lo_offset, hi_offset; | |
1811 | vm_object_t old_copy_object; /* Saved copy object */ | |
1812 | vm_page_t result_page; /* Result of vm_fault_page */ | |
1813 | vm_page_t top_page; /* Placeholder page */ | |
1814 | kern_return_t kr; | |
1815 | ||
1816 | register | |
1817 | vm_page_t m; /* Fast access to result_page */ | |
1818 | kern_return_t error_code; /* page error reasons */ | |
1819 | register | |
1820 | vm_object_t cur_object; | |
1821 | register | |
1822 | vm_object_offset_t cur_offset; | |
1823 | vm_page_t cur_m; | |
1824 | vm_object_t new_object; | |
1825 | int type_of_fault; | |
1826 | vm_map_t pmap_map = map; | |
1827 | vm_map_t original_map = map; | |
1828 | pmap_t pmap = NULL; | |
1829 | boolean_t funnel_set = FALSE; | |
1830 | funnel_t *curflock; | |
1831 | thread_t cur_thread; | |
1832 | boolean_t interruptible_state; | |
9bccf70c A |
1833 | unsigned int cache_attr; |
1834 | int write_startup_file = 0; | |
1835 | vm_prot_t full_fault_type; | |
1c79356b A |
1836 | |
1837 | ||
de355530 | 1838 | |
1c79356b A |
1839 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_START, |
1840 | vaddr, | |
1841 | 0, | |
1842 | 0, | |
1843 | 0, | |
1844 | 0); | |
1845 | ||
de355530 | 1846 | cur_thread = current_thread(); |
9bccf70c A |
1847 | /* at present we do not fully check for execute permission */ |
1848 | /* we generally treat it is read except in certain device */ | |
1849 | /* memory settings */ | |
1850 | full_fault_type = fault_type; | |
1851 | if(fault_type & VM_PROT_EXECUTE) { | |
1852 | fault_type &= ~VM_PROT_EXECUTE; | |
1853 | fault_type |= VM_PROT_READ; | |
1854 | } | |
1c79356b | 1855 | |
9bccf70c | 1856 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b A |
1857 | |
1858 | /* | |
1859 | * assume we will hit a page in the cache | |
1860 | * otherwise, explicitly override with | |
1861 | * the real fault type once we determine it | |
1862 | */ | |
1863 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
1864 | ||
1865 | VM_STAT(faults++); | |
1866 | current_task()->faults++; | |
1867 | ||
1868 | /* | |
1869 | * drop funnel if it is already held. Then restore while returning | |
1870 | */ | |
1871 | if ((cur_thread->funnel_state & TH_FN_OWNED) == TH_FN_OWNED) { | |
1872 | funnel_set = TRUE; | |
1873 | curflock = cur_thread->funnel_lock; | |
1874 | thread_funnel_set( curflock , FALSE); | |
1875 | } | |
1876 | ||
1877 | RetryFault: ; | |
1878 | ||
1879 | /* | |
1880 | * Find the backing store object and offset into | |
1881 | * it to begin the search. | |
1882 | */ | |
1883 | map = original_map; | |
1884 | vm_map_lock_read(map); | |
1885 | kr = vm_map_lookup_locked(&map, vaddr, fault_type, &version, | |
1886 | &object, &offset, | |
1887 | &prot, &wired, | |
1888 | &behavior, &lo_offset, &hi_offset, &pmap_map); | |
1889 | ||
1890 | pmap = pmap_map->pmap; | |
1891 | ||
1892 | if (kr != KERN_SUCCESS) { | |
1893 | vm_map_unlock_read(map); | |
1894 | goto done; | |
1895 | } | |
1896 | ||
1897 | /* | |
1898 | * If the page is wired, we must fault for the current protection | |
1899 | * value, to avoid further faults. | |
1900 | */ | |
1901 | ||
1902 | if (wired) | |
1903 | fault_type = prot | VM_PROT_WRITE; | |
1904 | ||
1905 | #if VM_FAULT_CLASSIFY | |
1906 | /* | |
1907 | * Temporary data gathering code | |
1908 | */ | |
1909 | vm_fault_classify(object, offset, fault_type); | |
1910 | #endif | |
1911 | /* | |
1912 | * Fast fault code. The basic idea is to do as much as | |
1913 | * possible while holding the map lock and object locks. | |
1914 | * Busy pages are not used until the object lock has to | |
1915 | * be dropped to do something (copy, zero fill, pmap enter). | |
1916 | * Similarly, paging references aren't acquired until that | |
1917 | * point, and object references aren't used. | |
1918 | * | |
1919 | * If we can figure out what to do | |
1920 | * (zero fill, copy on write, pmap enter) while holding | |
1921 | * the locks, then it gets done. Otherwise, we give up, | |
1922 | * and use the original fault path (which doesn't hold | |
1923 | * the map lock, and relies on busy pages). | |
1924 | * The give up cases include: | |
1925 | * - Have to talk to pager. | |
1926 | * - Page is busy, absent or in error. | |
1927 | * - Pager has locked out desired access. | |
1928 | * - Fault needs to be restarted. | |
1929 | * - Have to push page into copy object. | |
1930 | * | |
1931 | * The code is an infinite loop that moves one level down | |
1932 | * the shadow chain each time. cur_object and cur_offset | |
1933 | * refer to the current object being examined. object and offset | |
1934 | * are the original object from the map. The loop is at the | |
1935 | * top level if and only if object and cur_object are the same. | |
1936 | * | |
1937 | * Invariants: Map lock is held throughout. Lock is held on | |
1938 | * original object and cur_object (if different) when | |
1939 | * continuing or exiting loop. | |
1940 | * | |
1941 | */ | |
1942 | ||
1943 | ||
1944 | /* | |
1945 | * If this page is to be inserted in a copy delay object | |
1946 | * for writing, and if the object has a copy, then the | |
1947 | * copy delay strategy is implemented in the slow fault page. | |
1948 | */ | |
1949 | if (object->copy_strategy != MEMORY_OBJECT_COPY_DELAY || | |
1950 | object->copy == VM_OBJECT_NULL || | |
1951 | (fault_type & VM_PROT_WRITE) == 0) { | |
1952 | cur_object = object; | |
1953 | cur_offset = offset; | |
1954 | ||
1955 | while (TRUE) { | |
1956 | m = vm_page_lookup(cur_object, cur_offset); | |
1957 | if (m != VM_PAGE_NULL) { | |
143cc14e A |
1958 | if (m->busy) { |
1959 | wait_result_t result; | |
1960 | ||
1961 | if (object != cur_object) | |
1962 | vm_object_unlock(object); | |
1963 | ||
1964 | vm_map_unlock_read(map); | |
1965 | if (pmap_map != map) | |
1966 | vm_map_unlock(pmap_map); | |
1967 | ||
1968 | #if !VM_FAULT_STATIC_CONFIG | |
1969 | if (!vm_fault_interruptible) | |
1970 | interruptible = THREAD_UNINT; | |
1971 | #endif | |
1972 | result = PAGE_ASSERT_WAIT(m, interruptible); | |
1c79356b | 1973 | |
143cc14e A |
1974 | vm_object_unlock(cur_object); |
1975 | ||
1976 | if (result == THREAD_WAITING) { | |
1977 | result = thread_block(THREAD_CONTINUE_NULL); | |
1978 | ||
1979 | counter(c_vm_fault_page_block_busy_kernel++); | |
1980 | } | |
1981 | if (result == THREAD_AWAKENED || result == THREAD_RESTART) | |
1982 | goto RetryFault; | |
1983 | ||
1984 | kr = KERN_ABORTED; | |
1985 | goto done; | |
1986 | } | |
0b4e3aa0 A |
1987 | if (m->unusual && (m->error || m->restart || m->private |
1988 | || m->absent || (fault_type & m->page_lock))) { | |
1c79356b | 1989 | |
143cc14e | 1990 | /* |
1c79356b A |
1991 | * Unusual case. Give up. |
1992 | */ | |
1993 | break; | |
1994 | } | |
1995 | ||
1996 | /* | |
1997 | * Two cases of map in faults: | |
1998 | * - At top level w/o copy object. | |
1999 | * - Read fault anywhere. | |
2000 | * --> must disallow write. | |
2001 | */ | |
2002 | ||
2003 | if (object == cur_object && | |
2004 | object->copy == VM_OBJECT_NULL) | |
2005 | goto FastMapInFault; | |
2006 | ||
2007 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
2008 | ||
2009 | prot &= ~VM_PROT_WRITE; | |
2010 | ||
2011 | /* | |
2012 | * Set up to map the page ... | |
2013 | * mark the page busy, drop | |
2014 | * locks and take a paging reference | |
2015 | * on the object with the page. | |
2016 | */ | |
2017 | ||
2018 | if (object != cur_object) { | |
2019 | vm_object_unlock(object); | |
2020 | object = cur_object; | |
2021 | } | |
2022 | FastMapInFault: | |
2023 | m->busy = TRUE; | |
2024 | ||
2025 | vm_object_paging_begin(object); | |
1c79356b A |
2026 | |
2027 | FastPmapEnter: | |
2028 | /* | |
2029 | * Check a couple of global reasons to | |
2030 | * be conservative about write access. | |
2031 | * Then do the pmap_enter. | |
2032 | */ | |
2033 | #if !VM_FAULT_STATIC_CONFIG | |
2034 | if (vm_fault_dirty_handling | |
2035 | #if MACH_KDB | |
2036 | || db_watchpoint_list | |
2037 | #endif | |
2038 | && (fault_type & VM_PROT_WRITE) == 0) | |
2039 | prot &= ~VM_PROT_WRITE; | |
2040 | #else /* STATIC_CONFIG */ | |
2041 | #if MACH_KDB | |
2042 | if (db_watchpoint_list | |
2043 | && (fault_type & VM_PROT_WRITE) == 0) | |
2044 | prot &= ~VM_PROT_WRITE; | |
2045 | #endif /* MACH_KDB */ | |
2046 | #endif /* STATIC_CONFIG */ | |
de355530 A |
2047 | if (m->no_isync == TRUE) { |
2048 | pmap_sync_caches_phys(m->phys_addr); | |
143cc14e A |
2049 | m->no_isync = FALSE; |
2050 | } | |
0b4e3aa0 | 2051 | |
de355530 | 2052 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; |
9bccf70c A |
2053 | if(caller_pmap) { |
2054 | PMAP_ENTER(caller_pmap, | |
2055 | caller_pmap_addr, m, | |
2056 | prot, cache_attr, wired); | |
2057 | } else { | |
2058 | PMAP_ENTER(pmap, vaddr, m, | |
2059 | prot, cache_attr, wired); | |
2060 | } | |
0b4e3aa0 | 2061 | |
1c79356b | 2062 | /* |
143cc14e | 2063 | * Grab the queues lock to manipulate |
1c79356b A |
2064 | * the page queues. Change wiring |
2065 | * case is obvious. In soft ref bits | |
2066 | * case activate page only if it fell | |
2067 | * off paging queues, otherwise just | |
2068 | * activate it if it's inactive. | |
2069 | * | |
2070 | * NOTE: original vm_fault code will | |
2071 | * move active page to back of active | |
2072 | * queue. This code doesn't. | |
2073 | */ | |
1c79356b | 2074 | vm_page_lock_queues(); |
765c9de3 A |
2075 | |
2076 | if (m->clustered) { | |
2077 | vm_pagein_cluster_used++; | |
2078 | m->clustered = FALSE; | |
2079 | } | |
1c79356b A |
2080 | m->reference = TRUE; |
2081 | ||
2082 | if (change_wiring) { | |
2083 | if (wired) | |
2084 | vm_page_wire(m); | |
2085 | else | |
2086 | vm_page_unwire(m); | |
2087 | } | |
2088 | #if VM_FAULT_STATIC_CONFIG | |
2089 | else { | |
2090 | if (!m->active && !m->inactive) | |
2091 | vm_page_activate(m); | |
2092 | } | |
2093 | #else | |
2094 | else if (software_reference_bits) { | |
2095 | if (!m->active && !m->inactive) | |
2096 | vm_page_activate(m); | |
2097 | } | |
2098 | else if (!m->active) { | |
2099 | vm_page_activate(m); | |
2100 | } | |
2101 | #endif | |
2102 | vm_page_unlock_queues(); | |
2103 | ||
2104 | /* | |
2105 | * That's it, clean up and return. | |
2106 | */ | |
2107 | PAGE_WAKEUP_DONE(m); | |
2108 | vm_object_paging_end(object); | |
143cc14e A |
2109 | |
2110 | { | |
2111 | tws_hash_line_t line; | |
2112 | task_t task; | |
2113 | ||
2114 | task = current_task(); | |
2115 | if((map != NULL) && | |
2116 | (task->dynamic_working_set != 0) && | |
2117 | !(object->private)) { | |
2118 | kern_return_t kr; | |
2119 | vm_object_t base_object; | |
2120 | vm_object_offset_t base_offset; | |
2121 | base_object = object; | |
2122 | base_offset = cur_offset; | |
2123 | while(base_object->shadow) { | |
2124 | base_offset += | |
2125 | base_object->shadow_offset; | |
2126 | base_object = | |
2127 | base_object->shadow; | |
2128 | } | |
2129 | kr = tws_lookup((tws_hash_t) | |
2130 | task->dynamic_working_set, | |
2131 | base_offset, base_object, | |
2132 | &line); | |
2133 | if(kr == KERN_OPERATION_TIMED_OUT){ | |
2134 | write_startup_file = 1; | |
2135 | } else if (kr != KERN_SUCCESS) { | |
2136 | kr = tws_insert((tws_hash_t) | |
2137 | task->dynamic_working_set, | |
2138 | base_offset, base_object, | |
2139 | vaddr, pmap_map); | |
2140 | if(kr == KERN_NO_SPACE) { | |
2141 | vm_object_unlock(object); | |
2142 | ||
2143 | tws_expand_working_set( | |
2144 | task->dynamic_working_set, | |
2145 | TWS_HASH_LINE_COUNT, | |
2146 | FALSE); | |
2147 | ||
2148 | vm_object_lock(object); | |
2149 | } | |
2150 | if(kr == | |
2151 | KERN_OPERATION_TIMED_OUT) { | |
2152 | write_startup_file = 1; | |
2153 | } | |
2154 | } | |
2155 | } | |
2156 | } | |
1c79356b | 2157 | vm_object_unlock(object); |
143cc14e | 2158 | |
1c79356b A |
2159 | vm_map_unlock_read(map); |
2160 | if(pmap_map != map) | |
2161 | vm_map_unlock(pmap_map); | |
2162 | ||
9bccf70c A |
2163 | if(write_startup_file) |
2164 | tws_send_startup_info(current_task()); | |
2165 | ||
143cc14e | 2166 | if (funnel_set) |
1c79356b | 2167 | thread_funnel_set( curflock, TRUE); |
143cc14e | 2168 | |
9bccf70c | 2169 | thread_interrupt_level(interruptible_state); |
1c79356b | 2170 | |
143cc14e | 2171 | |
1c79356b A |
2172 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END, |
2173 | vaddr, | |
9bccf70c | 2174 | type_of_fault & 0xff, |
1c79356b | 2175 | KERN_SUCCESS, |
9bccf70c | 2176 | type_of_fault >> 8, |
1c79356b | 2177 | 0); |
143cc14e | 2178 | |
1c79356b A |
2179 | return KERN_SUCCESS; |
2180 | } | |
2181 | ||
2182 | /* | |
2183 | * Copy on write fault. If objects match, then | |
2184 | * object->copy must not be NULL (else control | |
2185 | * would be in previous code block), and we | |
2186 | * have a potential push into the copy object | |
2187 | * with which we won't cope here. | |
2188 | */ | |
2189 | ||
2190 | if (cur_object == object) | |
2191 | break; | |
1c79356b A |
2192 | /* |
2193 | * This is now a shadow based copy on write | |
2194 | * fault -- it requires a copy up the shadow | |
2195 | * chain. | |
2196 | * | |
2197 | * Allocate a page in the original top level | |
2198 | * object. Give up if allocate fails. Also | |
2199 | * need to remember current page, as it's the | |
2200 | * source of the copy. | |
2201 | */ | |
2202 | cur_m = m; | |
2203 | m = vm_page_grab(); | |
2204 | if (m == VM_PAGE_NULL) { | |
2205 | break; | |
2206 | } | |
1c79356b A |
2207 | /* |
2208 | * Now do the copy. Mark the source busy | |
2209 | * and take out paging references on both | |
2210 | * objects. | |
2211 | * | |
2212 | * NOTE: This code holds the map lock across | |
2213 | * the page copy. | |
2214 | */ | |
2215 | ||
2216 | cur_m->busy = TRUE; | |
2217 | vm_page_copy(cur_m, m); | |
2218 | vm_page_insert(m, object, offset); | |
2219 | ||
2220 | vm_object_paging_begin(cur_object); | |
2221 | vm_object_paging_begin(object); | |
2222 | ||
2223 | type_of_fault = DBG_COW_FAULT; | |
2224 | VM_STAT(cow_faults++); | |
2225 | current_task()->cow_faults++; | |
2226 | ||
2227 | /* | |
2228 | * Now cope with the source page and object | |
2229 | * If the top object has a ref count of 1 | |
2230 | * then no other map can access it, and hence | |
2231 | * it's not necessary to do the pmap_page_protect. | |
2232 | */ | |
2233 | ||
2234 | ||
2235 | vm_page_lock_queues(); | |
2236 | vm_page_deactivate(cur_m); | |
2237 | m->dirty = TRUE; | |
de355530 | 2238 | pmap_page_protect(cur_m->phys_addr, |
1c79356b A |
2239 | VM_PROT_NONE); |
2240 | vm_page_unlock_queues(); | |
2241 | ||
2242 | PAGE_WAKEUP_DONE(cur_m); | |
2243 | vm_object_paging_end(cur_object); | |
2244 | vm_object_unlock(cur_object); | |
2245 | ||
2246 | /* | |
2247 | * Slight hack to call vm_object collapse | |
2248 | * and then reuse common map in code. | |
2249 | * note that the object lock was taken above. | |
2250 | */ | |
2251 | ||
2252 | vm_object_paging_end(object); | |
2253 | vm_object_collapse(object); | |
2254 | vm_object_paging_begin(object); | |
1c79356b A |
2255 | |
2256 | goto FastPmapEnter; | |
2257 | } | |
2258 | else { | |
2259 | ||
2260 | /* | |
2261 | * No page at cur_object, cur_offset | |
2262 | */ | |
2263 | ||
2264 | if (cur_object->pager_created) { | |
2265 | ||
2266 | /* | |
2267 | * Have to talk to the pager. Give up. | |
2268 | */ | |
1c79356b A |
2269 | break; |
2270 | } | |
2271 | ||
2272 | ||
2273 | if (cur_object->shadow == VM_OBJECT_NULL) { | |
2274 | ||
2275 | if (cur_object->shadow_severed) { | |
2276 | vm_object_paging_end(object); | |
2277 | vm_object_unlock(object); | |
2278 | vm_map_unlock_read(map); | |
2279 | if(pmap_map != map) | |
2280 | vm_map_unlock(pmap_map); | |
2281 | ||
9bccf70c A |
2282 | if(write_startup_file) |
2283 | tws_send_startup_info( | |
2284 | current_task()); | |
2285 | ||
1c79356b A |
2286 | if (funnel_set) { |
2287 | thread_funnel_set( curflock, TRUE); | |
2288 | funnel_set = FALSE; | |
2289 | } | |
9bccf70c | 2290 | thread_interrupt_level(interruptible_state); |
1c79356b A |
2291 | |
2292 | return VM_FAULT_MEMORY_ERROR; | |
2293 | } | |
2294 | ||
2295 | /* | |
2296 | * Zero fill fault. Page gets | |
2297 | * filled in top object. Insert | |
2298 | * page, then drop any lower lock. | |
2299 | * Give up if no page. | |
2300 | */ | |
2301 | if ((vm_page_free_target - | |
2302 | ((vm_page_free_target-vm_page_free_min)>>2)) | |
2303 | > vm_page_free_count) { | |
2304 | break; | |
2305 | } | |
2306 | m = vm_page_alloc(object, offset); | |
2307 | if (m == VM_PAGE_NULL) { | |
2308 | break; | |
2309 | } | |
0b4e3aa0 A |
2310 | /* |
2311 | * This is a zero-fill or initial fill | |
2312 | * page fault. As such, we consider it | |
2313 | * undefined with respect to instruction | |
2314 | * execution. i.e. it is the responsibility | |
2315 | * of higher layers to call for an instruction | |
2316 | * sync after changing the contents and before | |
2317 | * sending a program into this area. We | |
2318 | * choose this approach for performance | |
2319 | */ | |
2320 | ||
2321 | m->no_isync = FALSE; | |
1c79356b A |
2322 | |
2323 | if (cur_object != object) | |
2324 | vm_object_unlock(cur_object); | |
2325 | ||
2326 | vm_object_paging_begin(object); | |
2327 | vm_object_unlock(object); | |
2328 | ||
2329 | /* | |
2330 | * Now zero fill page and map it. | |
2331 | * the page is probably going to | |
2332 | * be written soon, so don't bother | |
2333 | * to clear the modified bit | |
2334 | * | |
2335 | * NOTE: This code holds the map | |
2336 | * lock across the zero fill. | |
2337 | */ | |
2338 | ||
2339 | if (!map->no_zero_fill) { | |
2340 | vm_page_zero_fill(m); | |
2341 | type_of_fault = DBG_ZERO_FILL_FAULT; | |
2342 | VM_STAT(zero_fill_count++); | |
2343 | } | |
2344 | vm_page_lock_queues(); | |
2345 | VM_PAGE_QUEUES_REMOVE(m); | |
0b4e3aa0 A |
2346 | |
2347 | m->page_ticket = vm_page_ticket; | |
9bccf70c A |
2348 | if(m->object->size > 0x80000) { |
2349 | m->zero_fill = TRUE; | |
2350 | /* depends on the queues lock */ | |
2351 | vm_zf_count += 1; | |
2352 | queue_enter(&vm_page_queue_zf, | |
2353 | m, vm_page_t, pageq); | |
2354 | } else { | |
2355 | queue_enter( | |
2356 | &vm_page_queue_inactive, | |
2357 | m, vm_page_t, pageq); | |
2358 | } | |
0b4e3aa0 A |
2359 | vm_page_ticket_roll++; |
2360 | if(vm_page_ticket_roll == | |
2361 | VM_PAGE_TICKETS_IN_ROLL) { | |
2362 | vm_page_ticket_roll = 0; | |
2363 | if(vm_page_ticket == | |
2364 | VM_PAGE_TICKET_ROLL_IDS) | |
2365 | vm_page_ticket= 0; | |
2366 | else | |
2367 | vm_page_ticket++; | |
2368 | } | |
2369 | ||
1c79356b A |
2370 | m->inactive = TRUE; |
2371 | vm_page_inactive_count++; | |
2372 | vm_page_unlock_queues(); | |
143cc14e A |
2373 | vm_object_lock(object); |
2374 | ||
1c79356b A |
2375 | goto FastPmapEnter; |
2376 | } | |
2377 | ||
2378 | /* | |
2379 | * On to the next level | |
2380 | */ | |
2381 | ||
2382 | cur_offset += cur_object->shadow_offset; | |
2383 | new_object = cur_object->shadow; | |
2384 | vm_object_lock(new_object); | |
2385 | if (cur_object != object) | |
2386 | vm_object_unlock(cur_object); | |
2387 | cur_object = new_object; | |
2388 | ||
2389 | continue; | |
2390 | } | |
2391 | } | |
2392 | ||
2393 | /* | |
2394 | * Cleanup from fast fault failure. Drop any object | |
2395 | * lock other than original and drop map lock. | |
2396 | */ | |
2397 | ||
2398 | if (object != cur_object) | |
2399 | vm_object_unlock(cur_object); | |
2400 | } | |
2401 | vm_map_unlock_read(map); | |
143cc14e | 2402 | |
1c79356b A |
2403 | if(pmap_map != map) |
2404 | vm_map_unlock(pmap_map); | |
2405 | ||
2406 | /* | |
2407 | * Make a reference to this object to | |
2408 | * prevent its disposal while we are messing with | |
2409 | * it. Once we have the reference, the map is free | |
2410 | * to be diddled. Since objects reference their | |
2411 | * shadows (and copies), they will stay around as well. | |
2412 | */ | |
2413 | ||
2414 | assert(object->ref_count > 0); | |
2415 | object->ref_count++; | |
2416 | vm_object_res_reference(object); | |
2417 | vm_object_paging_begin(object); | |
2418 | ||
2419 | XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0); | |
9bccf70c A |
2420 | { |
2421 | tws_hash_line_t line; | |
2422 | task_t task; | |
2423 | kern_return_t kr; | |
2424 | ||
2425 | task = current_task(); | |
2426 | if((map != NULL) && | |
2427 | (task->dynamic_working_set != 0) | |
2428 | && !(object->private)) { | |
2429 | vm_object_t base_object; | |
2430 | vm_object_offset_t base_offset; | |
2431 | base_object = object; | |
2432 | base_offset = offset; | |
2433 | while(base_object->shadow) { | |
2434 | base_offset += | |
2435 | base_object->shadow_offset; | |
2436 | base_object = | |
2437 | base_object->shadow; | |
2438 | } | |
2439 | kr = tws_lookup((tws_hash_t) | |
2440 | task->dynamic_working_set, | |
2441 | base_offset, base_object, | |
2442 | &line); | |
2443 | if(kr == KERN_OPERATION_TIMED_OUT){ | |
2444 | write_startup_file = 1; | |
2445 | } else if (kr != KERN_SUCCESS) { | |
2446 | tws_insert((tws_hash_t) | |
2447 | task->dynamic_working_set, | |
2448 | base_offset, base_object, | |
2449 | vaddr, pmap_map); | |
2450 | kr = tws_insert((tws_hash_t) | |
2451 | task->dynamic_working_set, | |
2452 | base_offset, base_object, | |
2453 | vaddr, pmap_map); | |
2454 | if(kr == KERN_NO_SPACE) { | |
2455 | vm_object_unlock(object); | |
2456 | tws_expand_working_set( | |
2457 | task->dynamic_working_set, | |
2458 | TWS_HASH_LINE_COUNT, | |
2459 | FALSE); | |
2460 | vm_object_lock(object); | |
2461 | } | |
2462 | if(kr == KERN_OPERATION_TIMED_OUT) { | |
2463 | write_startup_file = 1; | |
2464 | } | |
2465 | } | |
2466 | } | |
2467 | } | |
1c79356b A |
2468 | kr = vm_fault_page(object, offset, fault_type, |
2469 | (change_wiring && !wired), | |
2470 | interruptible, | |
2471 | lo_offset, hi_offset, behavior, | |
2472 | &prot, &result_page, &top_page, | |
2473 | &type_of_fault, | |
0b4e3aa0 | 2474 | &error_code, map->no_zero_fill, FALSE, map, vaddr); |
1c79356b A |
2475 | |
2476 | /* | |
2477 | * If we didn't succeed, lose the object reference immediately. | |
2478 | */ | |
2479 | ||
2480 | if (kr != VM_FAULT_SUCCESS) | |
2481 | vm_object_deallocate(object); | |
2482 | ||
2483 | /* | |
2484 | * See why we failed, and take corrective action. | |
2485 | */ | |
2486 | ||
2487 | switch (kr) { | |
2488 | case VM_FAULT_SUCCESS: | |
2489 | break; | |
2490 | case VM_FAULT_MEMORY_SHORTAGE: | |
2491 | if (vm_page_wait((change_wiring) ? | |
2492 | THREAD_UNINT : | |
2493 | THREAD_ABORTSAFE)) | |
2494 | goto RetryFault; | |
2495 | /* fall thru */ | |
2496 | case VM_FAULT_INTERRUPTED: | |
2497 | kr = KERN_ABORTED; | |
2498 | goto done; | |
2499 | case VM_FAULT_RETRY: | |
2500 | goto RetryFault; | |
2501 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
2502 | vm_page_more_fictitious(); | |
2503 | goto RetryFault; | |
2504 | case VM_FAULT_MEMORY_ERROR: | |
2505 | if (error_code) | |
2506 | kr = error_code; | |
2507 | else | |
2508 | kr = KERN_MEMORY_ERROR; | |
2509 | goto done; | |
2510 | } | |
2511 | ||
2512 | m = result_page; | |
2513 | ||
0b4e3aa0 A |
2514 | if(m != VM_PAGE_NULL) { |
2515 | assert((change_wiring && !wired) ? | |
2516 | (top_page == VM_PAGE_NULL) : | |
2517 | ((top_page == VM_PAGE_NULL) == (m->object == object))); | |
2518 | } | |
1c79356b A |
2519 | |
2520 | /* | |
2521 | * How to clean up the result of vm_fault_page. This | |
2522 | * happens whether the mapping is entered or not. | |
2523 | */ | |
2524 | ||
2525 | #define UNLOCK_AND_DEALLOCATE \ | |
2526 | MACRO_BEGIN \ | |
2527 | vm_fault_cleanup(m->object, top_page); \ | |
2528 | vm_object_deallocate(object); \ | |
2529 | MACRO_END | |
2530 | ||
2531 | /* | |
2532 | * What to do with the resulting page from vm_fault_page | |
2533 | * if it doesn't get entered into the physical map: | |
2534 | */ | |
2535 | ||
2536 | #define RELEASE_PAGE(m) \ | |
2537 | MACRO_BEGIN \ | |
2538 | PAGE_WAKEUP_DONE(m); \ | |
2539 | vm_page_lock_queues(); \ | |
2540 | if (!m->active && !m->inactive) \ | |
2541 | vm_page_activate(m); \ | |
2542 | vm_page_unlock_queues(); \ | |
2543 | MACRO_END | |
2544 | ||
2545 | /* | |
2546 | * We must verify that the maps have not changed | |
2547 | * since our last lookup. | |
2548 | */ | |
2549 | ||
0b4e3aa0 A |
2550 | if(m != VM_PAGE_NULL) { |
2551 | old_copy_object = m->object->copy; | |
0b4e3aa0 A |
2552 | vm_object_unlock(m->object); |
2553 | } else { | |
2554 | old_copy_object = VM_OBJECT_NULL; | |
2555 | } | |
1c79356b A |
2556 | if ((map != original_map) || !vm_map_verify(map, &version)) { |
2557 | vm_object_t retry_object; | |
2558 | vm_object_offset_t retry_offset; | |
2559 | vm_prot_t retry_prot; | |
2560 | ||
2561 | /* | |
2562 | * To avoid trying to write_lock the map while another | |
2563 | * thread has it read_locked (in vm_map_pageable), we | |
2564 | * do not try for write permission. If the page is | |
2565 | * still writable, we will get write permission. If it | |
2566 | * is not, or has been marked needs_copy, we enter the | |
2567 | * mapping without write permission, and will merely | |
2568 | * take another fault. | |
2569 | */ | |
2570 | map = original_map; | |
2571 | vm_map_lock_read(map); | |
2572 | kr = vm_map_lookup_locked(&map, vaddr, | |
2573 | fault_type & ~VM_PROT_WRITE, &version, | |
2574 | &retry_object, &retry_offset, &retry_prot, | |
2575 | &wired, &behavior, &lo_offset, &hi_offset, | |
2576 | &pmap_map); | |
2577 | pmap = pmap_map->pmap; | |
2578 | ||
2579 | if (kr != KERN_SUCCESS) { | |
2580 | vm_map_unlock_read(map); | |
0b4e3aa0 A |
2581 | if(m != VM_PAGE_NULL) { |
2582 | vm_object_lock(m->object); | |
2583 | RELEASE_PAGE(m); | |
2584 | UNLOCK_AND_DEALLOCATE; | |
2585 | } else { | |
2586 | vm_object_deallocate(object); | |
2587 | } | |
1c79356b A |
2588 | goto done; |
2589 | } | |
2590 | ||
2591 | vm_object_unlock(retry_object); | |
0b4e3aa0 A |
2592 | if(m != VM_PAGE_NULL) { |
2593 | vm_object_lock(m->object); | |
2594 | } else { | |
2595 | vm_object_lock(object); | |
2596 | } | |
1c79356b A |
2597 | |
2598 | if ((retry_object != object) || | |
2599 | (retry_offset != offset)) { | |
2600 | vm_map_unlock_read(map); | |
2601 | if(pmap_map != map) | |
2602 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
2603 | if(m != VM_PAGE_NULL) { |
2604 | RELEASE_PAGE(m); | |
2605 | UNLOCK_AND_DEALLOCATE; | |
2606 | } else { | |
2607 | vm_object_deallocate(object); | |
2608 | } | |
1c79356b A |
2609 | goto RetryFault; |
2610 | } | |
2611 | ||
2612 | /* | |
2613 | * Check whether the protection has changed or the object | |
2614 | * has been copied while we left the map unlocked. | |
2615 | */ | |
2616 | prot &= retry_prot; | |
0b4e3aa0 A |
2617 | if(m != VM_PAGE_NULL) { |
2618 | vm_object_unlock(m->object); | |
2619 | } else { | |
2620 | vm_object_unlock(object); | |
2621 | } | |
2622 | } | |
2623 | if(m != VM_PAGE_NULL) { | |
2624 | vm_object_lock(m->object); | |
2625 | } else { | |
2626 | vm_object_lock(object); | |
1c79356b | 2627 | } |
1c79356b A |
2628 | |
2629 | /* | |
2630 | * If the copy object changed while the top-level object | |
2631 | * was unlocked, then we must take away write permission. | |
2632 | */ | |
2633 | ||
0b4e3aa0 A |
2634 | if(m != VM_PAGE_NULL) { |
2635 | if (m->object->copy != old_copy_object) | |
2636 | prot &= ~VM_PROT_WRITE; | |
2637 | } | |
1c79356b A |
2638 | |
2639 | /* | |
2640 | * If we want to wire down this page, but no longer have | |
2641 | * adequate permissions, we must start all over. | |
2642 | */ | |
2643 | ||
2644 | if (wired && (fault_type != (prot|VM_PROT_WRITE))) { | |
2645 | vm_map_verify_done(map, &version); | |
2646 | if(pmap_map != map) | |
2647 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
2648 | if(m != VM_PAGE_NULL) { |
2649 | RELEASE_PAGE(m); | |
2650 | UNLOCK_AND_DEALLOCATE; | |
2651 | } else { | |
2652 | vm_object_deallocate(object); | |
2653 | } | |
1c79356b A |
2654 | goto RetryFault; |
2655 | } | |
2656 | ||
1c79356b A |
2657 | /* |
2658 | * Put this page into the physical map. | |
2659 | * We had to do the unlock above because pmap_enter | |
2660 | * may cause other faults. The page may be on | |
2661 | * the pageout queues. If the pageout daemon comes | |
2662 | * across the page, it will remove it from the queues. | |
2663 | */ | |
765c9de3 A |
2664 | if (m != VM_PAGE_NULL) { |
2665 | if (m->no_isync == TRUE) { | |
de355530 | 2666 | pmap_sync_caches_phys(m->phys_addr); |
0b4e3aa0 | 2667 | |
765c9de3 A |
2668 | m->no_isync = FALSE; |
2669 | } | |
9bccf70c A |
2670 | |
2671 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; | |
0b4e3aa0 | 2672 | |
9bccf70c A |
2673 | if(caller_pmap) { |
2674 | PMAP_ENTER(caller_pmap, | |
2675 | caller_pmap_addr, m, | |
2676 | prot, cache_attr, wired); | |
2677 | } else { | |
2678 | PMAP_ENTER(pmap, vaddr, m, | |
2679 | prot, cache_attr, wired); | |
2680 | } | |
0b4e3aa0 A |
2681 | { |
2682 | tws_hash_line_t line; | |
2683 | task_t task; | |
9bccf70c | 2684 | kern_return_t kr; |
0b4e3aa0 A |
2685 | |
2686 | task = current_task(); | |
2687 | if((map != NULL) && | |
9bccf70c A |
2688 | (task->dynamic_working_set != 0) |
2689 | && (object->private)) { | |
2690 | vm_object_t base_object; | |
2691 | vm_object_offset_t base_offset; | |
2692 | base_object = m->object; | |
2693 | base_offset = m->offset; | |
2694 | while(base_object->shadow) { | |
2695 | base_offset += | |
2696 | base_object->shadow_offset; | |
2697 | base_object = | |
2698 | base_object->shadow; | |
2699 | } | |
2700 | kr = tws_lookup((tws_hash_t) | |
0b4e3aa0 | 2701 | task->dynamic_working_set, |
9bccf70c A |
2702 | base_offset, base_object, &line); |
2703 | if(kr == KERN_OPERATION_TIMED_OUT){ | |
2704 | write_startup_file = 1; | |
2705 | } else if (kr != KERN_SUCCESS) { | |
0b4e3aa0 A |
2706 | tws_insert((tws_hash_t) |
2707 | task->dynamic_working_set, | |
9bccf70c | 2708 | base_offset, base_object, |
0b4e3aa0 | 2709 | vaddr, pmap_map); |
9bccf70c | 2710 | kr = tws_insert((tws_hash_t) |
0b4e3aa0 | 2711 | task->dynamic_working_set, |
9bccf70c A |
2712 | base_offset, base_object, |
2713 | vaddr, pmap_map); | |
2714 | if(kr == KERN_NO_SPACE) { | |
143cc14e | 2715 | vm_object_unlock(m->object); |
0b4e3aa0 | 2716 | tws_expand_working_set( |
9bccf70c A |
2717 | task->dynamic_working_set, |
2718 | TWS_HASH_LINE_COUNT, | |
2719 | FALSE); | |
143cc14e | 2720 | vm_object_lock(m->object); |
9bccf70c A |
2721 | } |
2722 | if(kr == KERN_OPERATION_TIMED_OUT) { | |
2723 | write_startup_file = 1; | |
0b4e3aa0 A |
2724 | } |
2725 | } | |
2726 | } | |
2727 | } | |
2728 | } else { | |
2729 | ||
9bccf70c A |
2730 | #ifndef i386 |
2731 | int memattr; | |
de355530 | 2732 | struct phys_entry *pp; |
9bccf70c A |
2733 | vm_map_entry_t entry; |
2734 | vm_offset_t laddr; | |
2735 | vm_offset_t ldelta, hdelta; | |
143cc14e | 2736 | |
0b4e3aa0 A |
2737 | /* |
2738 | * do a pmap block mapping from the physical address | |
2739 | * in the object | |
2740 | */ | |
de355530 A |
2741 | if(pp = pmap_find_physentry( |
2742 | (vm_offset_t)object->shadow_offset)) { | |
2743 | memattr = ((pp->pte1 & 0x00000078) >> 3); | |
2744 | } else { | |
2745 | memattr = VM_WIMG_MASK & (int)object->wimg_bits; | |
2746 | } | |
9bccf70c A |
2747 | |
2748 | ||
de355530 A |
2749 | /* While we do not worry about execution protection in */ |
2750 | /* general, we may be able to read device memory and */ | |
2751 | /* still not be able to execute it. Here we check for */ | |
2752 | /* the guarded bit. If its set and we are attempting */ | |
2753 | /* to execute, we return with a protection failure. */ | |
9bccf70c | 2754 | |
de355530 A |
2755 | if((memattr & VM_MEM_GUARDED) && |
2756 | (full_fault_type & VM_PROT_EXECUTE)) { | |
9bccf70c A |
2757 | vm_map_verify_done(map, &version); |
2758 | if(pmap_map != map) | |
2759 | vm_map_unlock(pmap_map); | |
2760 | vm_fault_cleanup(object, top_page); | |
2761 | vm_object_deallocate(object); | |
2762 | kr = KERN_PROTECTION_FAILURE; | |
2763 | goto done; | |
0b4e3aa0 | 2764 | } |
1c79356b | 2765 | |
de355530 A |
2766 | |
2767 | ||
9bccf70c A |
2768 | if(pmap_map != map) { |
2769 | vm_map_unlock(pmap_map); | |
2770 | } | |
2771 | if (original_map != map) { | |
2772 | vm_map_unlock_read(map); | |
2773 | vm_map_lock_read(original_map); | |
2774 | map = original_map; | |
2775 | } | |
2776 | pmap_map = map; | |
2777 | ||
2778 | laddr = vaddr; | |
2779 | hdelta = 0xFFFFF000; | |
2780 | ldelta = 0xFFFFF000; | |
2781 | ||
2782 | ||
2783 | while(vm_map_lookup_entry(map, laddr, &entry)) { | |
2784 | if(ldelta > (laddr - entry->vme_start)) | |
2785 | ldelta = laddr - entry->vme_start; | |
2786 | if(hdelta > (entry->vme_end - laddr)) | |
2787 | hdelta = entry->vme_end - laddr; | |
2788 | if(entry->is_sub_map) { | |
2789 | ||
2790 | laddr = (laddr - entry->vme_start) | |
2791 | + entry->offset; | |
2792 | vm_map_lock_read(entry->object.sub_map); | |
2793 | if(map != pmap_map) | |
2794 | vm_map_unlock_read(map); | |
2795 | if(entry->use_pmap) { | |
2796 | vm_map_unlock_read(pmap_map); | |
2797 | pmap_map = entry->object.sub_map; | |
2798 | } | |
2799 | map = entry->object.sub_map; | |
2800 | ||
2801 | } else { | |
2802 | break; | |
2803 | } | |
2804 | } | |
2805 | ||
2806 | if(vm_map_lookup_entry(map, laddr, &entry) && | |
2807 | (entry->object.vm_object != NULL) && | |
2808 | (entry->object.vm_object == object)) { | |
2809 | ||
2810 | ||
2811 | if(caller_pmap) { | |
2812 | pmap_map_block(caller_pmap, | |
de355530 A |
2813 | caller_pmap_addr - ldelta, |
2814 | ((vm_offset_t) | |
9bccf70c A |
2815 | (entry->object.vm_object->shadow_offset)) |
2816 | + entry->offset + | |
de355530 | 2817 | (laddr - entry->vme_start) - ldelta, |
9bccf70c | 2818 | ldelta + hdelta, prot, |
de355530 A |
2819 | memattr, 0); /* Set up a block mapped area */ |
2820 | } else { | |
2821 | pmap_map_block(pmap_map->pmap, vaddr - ldelta, | |
2822 | ((vm_offset_t) | |
9bccf70c | 2823 | (entry->object.vm_object->shadow_offset)) |
de355530 A |
2824 | + entry->offset + |
2825 | (laddr - entry->vme_start) - ldelta, | |
2826 | ldelta + hdelta, prot, | |
2827 | memattr, 0); /* Set up a block mapped area */ | |
9bccf70c A |
2828 | } |
2829 | } | |
2830 | #else | |
2831 | #ifdef notyet | |
2832 | if(caller_pmap) { | |
2833 | pmap_enter(caller_pmap, caller_pmap_addr, | |
de355530 | 2834 | object->shadow_offset, prot, 0, TRUE); |
9bccf70c A |
2835 | } else { |
2836 | pmap_enter(pmap, vaddr, | |
de355530 | 2837 | object->shadow_offset, prot, 0, TRUE); |
9bccf70c | 2838 | } |
0b4e3aa0 | 2839 | /* Map it in */ |
9bccf70c | 2840 | #endif |
0b4e3aa0 A |
2841 | #endif |
2842 | ||
2843 | } | |
1c79356b A |
2844 | |
2845 | /* | |
2846 | * If the page is not wired down and isn't already | |
2847 | * on a pageout queue, then put it where the | |
2848 | * pageout daemon can find it. | |
2849 | */ | |
0b4e3aa0 | 2850 | if(m != VM_PAGE_NULL) { |
0b4e3aa0 A |
2851 | vm_page_lock_queues(); |
2852 | ||
2853 | if (change_wiring) { | |
2854 | if (wired) | |
2855 | vm_page_wire(m); | |
2856 | else | |
2857 | vm_page_unwire(m); | |
2858 | } | |
1c79356b | 2859 | #if VM_FAULT_STATIC_CONFIG |
0b4e3aa0 A |
2860 | else { |
2861 | if (!m->active && !m->inactive) | |
2862 | vm_page_activate(m); | |
2863 | m->reference = TRUE; | |
2864 | } | |
1c79356b | 2865 | #else |
0b4e3aa0 A |
2866 | else if (software_reference_bits) { |
2867 | if (!m->active && !m->inactive) | |
2868 | vm_page_activate(m); | |
2869 | m->reference = TRUE; | |
2870 | } else { | |
1c79356b | 2871 | vm_page_activate(m); |
0b4e3aa0 | 2872 | } |
1c79356b | 2873 | #endif |
0b4e3aa0 A |
2874 | vm_page_unlock_queues(); |
2875 | } | |
1c79356b A |
2876 | |
2877 | /* | |
2878 | * Unlock everything, and return | |
2879 | */ | |
2880 | ||
2881 | vm_map_verify_done(map, &version); | |
2882 | if(pmap_map != map) | |
2883 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
2884 | if(m != VM_PAGE_NULL) { |
2885 | PAGE_WAKEUP_DONE(m); | |
2886 | UNLOCK_AND_DEALLOCATE; | |
2887 | } else { | |
2888 | vm_fault_cleanup(object, top_page); | |
2889 | vm_object_deallocate(object); | |
2890 | } | |
1c79356b | 2891 | kr = KERN_SUCCESS; |
1c79356b A |
2892 | |
2893 | #undef UNLOCK_AND_DEALLOCATE | |
2894 | #undef RELEASE_PAGE | |
2895 | ||
2896 | done: | |
9bccf70c A |
2897 | if(write_startup_file) |
2898 | tws_send_startup_info(current_task()); | |
1c79356b A |
2899 | if (funnel_set) { |
2900 | thread_funnel_set( curflock, TRUE); | |
2901 | funnel_set = FALSE; | |
2902 | } | |
9bccf70c | 2903 | thread_interrupt_level(interruptible_state); |
1c79356b A |
2904 | |
2905 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END, | |
2906 | vaddr, | |
9bccf70c | 2907 | type_of_fault & 0xff, |
1c79356b | 2908 | kr, |
9bccf70c | 2909 | type_of_fault >> 8, |
1c79356b | 2910 | 0); |
143cc14e | 2911 | |
1c79356b A |
2912 | return(kr); |
2913 | } | |
2914 | ||
2915 | /* | |
2916 | * vm_fault_wire: | |
2917 | * | |
2918 | * Wire down a range of virtual addresses in a map. | |
2919 | */ | |
2920 | kern_return_t | |
2921 | vm_fault_wire( | |
2922 | vm_map_t map, | |
2923 | vm_map_entry_t entry, | |
9bccf70c A |
2924 | pmap_t pmap, |
2925 | vm_offset_t pmap_addr) | |
1c79356b A |
2926 | { |
2927 | ||
2928 | register vm_offset_t va; | |
2929 | register vm_offset_t end_addr = entry->vme_end; | |
2930 | register kern_return_t rc; | |
2931 | ||
2932 | assert(entry->in_transition); | |
2933 | ||
9bccf70c A |
2934 | if ((entry->object.vm_object != NULL) && |
2935 | !entry->is_sub_map && | |
2936 | entry->object.vm_object->phys_contiguous) { | |
2937 | return KERN_SUCCESS; | |
2938 | } | |
2939 | ||
1c79356b A |
2940 | /* |
2941 | * Inform the physical mapping system that the | |
2942 | * range of addresses may not fault, so that | |
2943 | * page tables and such can be locked down as well. | |
2944 | */ | |
2945 | ||
9bccf70c A |
2946 | pmap_pageable(pmap, pmap_addr, |
2947 | pmap_addr + (end_addr - entry->vme_start), FALSE); | |
1c79356b A |
2948 | |
2949 | /* | |
2950 | * We simulate a fault to get the page and enter it | |
2951 | * in the physical map. | |
2952 | */ | |
2953 | ||
2954 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
2955 | if ((rc = vm_fault_wire_fast( | |
9bccf70c A |
2956 | map, va, entry, pmap, |
2957 | pmap_addr + (va - entry->vme_start) | |
2958 | )) != KERN_SUCCESS) { | |
1c79356b | 2959 | rc = vm_fault(map, va, VM_PROT_NONE, TRUE, |
9bccf70c A |
2960 | (pmap == kernel_pmap) ? |
2961 | THREAD_UNINT : THREAD_ABORTSAFE, | |
2962 | pmap, pmap_addr + (va - entry->vme_start)); | |
1c79356b A |
2963 | } |
2964 | ||
2965 | if (rc != KERN_SUCCESS) { | |
2966 | struct vm_map_entry tmp_entry = *entry; | |
2967 | ||
2968 | /* unwire wired pages */ | |
2969 | tmp_entry.vme_end = va; | |
9bccf70c A |
2970 | vm_fault_unwire(map, |
2971 | &tmp_entry, FALSE, pmap, pmap_addr); | |
1c79356b A |
2972 | |
2973 | return rc; | |
2974 | } | |
2975 | } | |
2976 | return KERN_SUCCESS; | |
2977 | } | |
2978 | ||
2979 | /* | |
2980 | * vm_fault_unwire: | |
2981 | * | |
2982 | * Unwire a range of virtual addresses in a map. | |
2983 | */ | |
2984 | void | |
2985 | vm_fault_unwire( | |
2986 | vm_map_t map, | |
2987 | vm_map_entry_t entry, | |
2988 | boolean_t deallocate, | |
9bccf70c A |
2989 | pmap_t pmap, |
2990 | vm_offset_t pmap_addr) | |
1c79356b A |
2991 | { |
2992 | register vm_offset_t va; | |
2993 | register vm_offset_t end_addr = entry->vme_end; | |
2994 | vm_object_t object; | |
2995 | ||
2996 | object = (entry->is_sub_map) | |
2997 | ? VM_OBJECT_NULL : entry->object.vm_object; | |
2998 | ||
2999 | /* | |
3000 | * Since the pages are wired down, we must be able to | |
3001 | * get their mappings from the physical map system. | |
3002 | */ | |
3003 | ||
3004 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
9bccf70c A |
3005 | pmap_change_wiring(pmap, |
3006 | pmap_addr + (va - entry->vme_start), FALSE); | |
1c79356b A |
3007 | |
3008 | if (object == VM_OBJECT_NULL) { | |
9bccf70c A |
3009 | (void) vm_fault(map, va, VM_PROT_NONE, |
3010 | TRUE, THREAD_UNINT, pmap, pmap_addr); | |
3011 | } else if (object->phys_contiguous) { | |
3012 | continue; | |
1c79356b A |
3013 | } else { |
3014 | vm_prot_t prot; | |
3015 | vm_page_t result_page; | |
3016 | vm_page_t top_page; | |
3017 | vm_object_t result_object; | |
3018 | vm_fault_return_t result; | |
3019 | ||
3020 | do { | |
3021 | prot = VM_PROT_NONE; | |
3022 | ||
3023 | vm_object_lock(object); | |
3024 | vm_object_paging_begin(object); | |
3025 | XPR(XPR_VM_FAULT, | |
3026 | "vm_fault_unwire -> vm_fault_page\n", | |
3027 | 0,0,0,0,0); | |
3028 | result = vm_fault_page(object, | |
3029 | entry->offset + | |
3030 | (va - entry->vme_start), | |
3031 | VM_PROT_NONE, TRUE, | |
3032 | THREAD_UNINT, | |
3033 | entry->offset, | |
3034 | entry->offset + | |
3035 | (entry->vme_end | |
3036 | - entry->vme_start), | |
3037 | entry->behavior, | |
3038 | &prot, | |
3039 | &result_page, | |
3040 | &top_page, | |
3041 | (int *)0, | |
3042 | 0, map->no_zero_fill, | |
0b4e3aa0 | 3043 | FALSE, NULL, 0); |
1c79356b A |
3044 | } while (result == VM_FAULT_RETRY); |
3045 | ||
3046 | if (result != VM_FAULT_SUCCESS) | |
3047 | panic("vm_fault_unwire: failure"); | |
3048 | ||
3049 | result_object = result_page->object; | |
3050 | if (deallocate) { | |
3051 | assert(!result_page->fictitious); | |
de355530 | 3052 | pmap_page_protect(result_page->phys_addr, |
1c79356b A |
3053 | VM_PROT_NONE); |
3054 | VM_PAGE_FREE(result_page); | |
3055 | } else { | |
3056 | vm_page_lock_queues(); | |
3057 | vm_page_unwire(result_page); | |
3058 | vm_page_unlock_queues(); | |
3059 | PAGE_WAKEUP_DONE(result_page); | |
3060 | } | |
3061 | ||
3062 | vm_fault_cleanup(result_object, top_page); | |
3063 | } | |
3064 | } | |
3065 | ||
3066 | /* | |
3067 | * Inform the physical mapping system that the range | |
3068 | * of addresses may fault, so that page tables and | |
3069 | * such may be unwired themselves. | |
3070 | */ | |
3071 | ||
9bccf70c A |
3072 | pmap_pageable(pmap, pmap_addr, |
3073 | pmap_addr + (end_addr - entry->vme_start), TRUE); | |
1c79356b A |
3074 | |
3075 | } | |
3076 | ||
3077 | /* | |
3078 | * vm_fault_wire_fast: | |
3079 | * | |
3080 | * Handle common case of a wire down page fault at the given address. | |
3081 | * If successful, the page is inserted into the associated physical map. | |
3082 | * The map entry is passed in to avoid the overhead of a map lookup. | |
3083 | * | |
3084 | * NOTE: the given address should be truncated to the | |
3085 | * proper page address. | |
3086 | * | |
3087 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, | |
3088 | * a standard error specifying why the fault is fatal is returned. | |
3089 | * | |
3090 | * The map in question must be referenced, and remains so. | |
3091 | * Caller has a read lock on the map. | |
3092 | * | |
3093 | * This is a stripped version of vm_fault() for wiring pages. Anything | |
3094 | * other than the common case will return KERN_FAILURE, and the caller | |
3095 | * is expected to call vm_fault(). | |
3096 | */ | |
3097 | kern_return_t | |
3098 | vm_fault_wire_fast( | |
3099 | vm_map_t map, | |
3100 | vm_offset_t va, | |
3101 | vm_map_entry_t entry, | |
9bccf70c A |
3102 | pmap_t pmap, |
3103 | vm_offset_t pmap_addr) | |
1c79356b A |
3104 | { |
3105 | vm_object_t object; | |
3106 | vm_object_offset_t offset; | |
3107 | register vm_page_t m; | |
3108 | vm_prot_t prot; | |
3109 | thread_act_t thr_act; | |
9bccf70c | 3110 | unsigned int cache_attr; |
1c79356b A |
3111 | |
3112 | VM_STAT(faults++); | |
3113 | ||
3114 | if((thr_act=current_act()) && (thr_act->task != TASK_NULL)) | |
3115 | thr_act->task->faults++; | |
3116 | ||
3117 | /* | |
3118 | * Recovery actions | |
3119 | */ | |
3120 | ||
3121 | #undef RELEASE_PAGE | |
3122 | #define RELEASE_PAGE(m) { \ | |
3123 | PAGE_WAKEUP_DONE(m); \ | |
3124 | vm_page_lock_queues(); \ | |
3125 | vm_page_unwire(m); \ | |
3126 | vm_page_unlock_queues(); \ | |
3127 | } | |
3128 | ||
3129 | ||
3130 | #undef UNLOCK_THINGS | |
3131 | #define UNLOCK_THINGS { \ | |
3132 | object->paging_in_progress--; \ | |
3133 | vm_object_unlock(object); \ | |
3134 | } | |
3135 | ||
3136 | #undef UNLOCK_AND_DEALLOCATE | |
3137 | #define UNLOCK_AND_DEALLOCATE { \ | |
3138 | UNLOCK_THINGS; \ | |
3139 | vm_object_deallocate(object); \ | |
3140 | } | |
3141 | /* | |
3142 | * Give up and have caller do things the hard way. | |
3143 | */ | |
3144 | ||
3145 | #define GIVE_UP { \ | |
3146 | UNLOCK_AND_DEALLOCATE; \ | |
3147 | return(KERN_FAILURE); \ | |
3148 | } | |
3149 | ||
3150 | ||
3151 | /* | |
3152 | * If this entry is not directly to a vm_object, bail out. | |
3153 | */ | |
3154 | if (entry->is_sub_map) | |
3155 | return(KERN_FAILURE); | |
3156 | ||
3157 | /* | |
3158 | * Find the backing store object and offset into it. | |
3159 | */ | |
3160 | ||
3161 | object = entry->object.vm_object; | |
3162 | offset = (va - entry->vme_start) + entry->offset; | |
3163 | prot = entry->protection; | |
3164 | ||
3165 | /* | |
3166 | * Make a reference to this object to prevent its | |
3167 | * disposal while we are messing with it. | |
3168 | */ | |
3169 | ||
3170 | vm_object_lock(object); | |
3171 | assert(object->ref_count > 0); | |
3172 | object->ref_count++; | |
3173 | vm_object_res_reference(object); | |
3174 | object->paging_in_progress++; | |
3175 | ||
3176 | /* | |
3177 | * INVARIANTS (through entire routine): | |
3178 | * | |
3179 | * 1) At all times, we must either have the object | |
3180 | * lock or a busy page in some object to prevent | |
3181 | * some other thread from trying to bring in | |
3182 | * the same page. | |
3183 | * | |
3184 | * 2) Once we have a busy page, we must remove it from | |
3185 | * the pageout queues, so that the pageout daemon | |
3186 | * will not grab it away. | |
3187 | * | |
3188 | */ | |
3189 | ||
3190 | /* | |
3191 | * Look for page in top-level object. If it's not there or | |
3192 | * there's something going on, give up. | |
3193 | */ | |
3194 | m = vm_page_lookup(object, offset); | |
3195 | if ((m == VM_PAGE_NULL) || (m->busy) || | |
3196 | (m->unusual && ( m->error || m->restart || m->absent || | |
3197 | prot & m->page_lock))) { | |
3198 | ||
3199 | GIVE_UP; | |
3200 | } | |
3201 | ||
3202 | /* | |
3203 | * Wire the page down now. All bail outs beyond this | |
3204 | * point must unwire the page. | |
3205 | */ | |
3206 | ||
3207 | vm_page_lock_queues(); | |
3208 | vm_page_wire(m); | |
3209 | vm_page_unlock_queues(); | |
3210 | ||
3211 | /* | |
3212 | * Mark page busy for other threads. | |
3213 | */ | |
3214 | assert(!m->busy); | |
3215 | m->busy = TRUE; | |
3216 | assert(!m->absent); | |
3217 | ||
3218 | /* | |
3219 | * Give up if the page is being written and there's a copy object | |
3220 | */ | |
3221 | if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { | |
3222 | RELEASE_PAGE(m); | |
3223 | GIVE_UP; | |
3224 | } | |
3225 | ||
3226 | /* | |
3227 | * Put this page into the physical map. | |
3228 | * We have to unlock the object because pmap_enter | |
3229 | * may cause other faults. | |
3230 | */ | |
765c9de3 | 3231 | if (m->no_isync == TRUE) { |
de355530 | 3232 | pmap_sync_caches_phys(m->phys_addr); |
0b4e3aa0 | 3233 | |
765c9de3 | 3234 | m->no_isync = FALSE; |
0b4e3aa0 | 3235 | } |
9bccf70c A |
3236 | |
3237 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; | |
765c9de3 | 3238 | |
9bccf70c | 3239 | PMAP_ENTER(pmap, pmap_addr, m, prot, cache_attr, TRUE); |
1c79356b | 3240 | |
1c79356b A |
3241 | /* |
3242 | * Unlock everything, and return | |
3243 | */ | |
3244 | ||
3245 | PAGE_WAKEUP_DONE(m); | |
3246 | UNLOCK_AND_DEALLOCATE; | |
3247 | ||
3248 | return(KERN_SUCCESS); | |
3249 | ||
3250 | } | |
3251 | ||
3252 | /* | |
3253 | * Routine: vm_fault_copy_cleanup | |
3254 | * Purpose: | |
3255 | * Release a page used by vm_fault_copy. | |
3256 | */ | |
3257 | ||
3258 | void | |
3259 | vm_fault_copy_cleanup( | |
3260 | vm_page_t page, | |
3261 | vm_page_t top_page) | |
3262 | { | |
3263 | vm_object_t object = page->object; | |
3264 | ||
3265 | vm_object_lock(object); | |
3266 | PAGE_WAKEUP_DONE(page); | |
3267 | vm_page_lock_queues(); | |
3268 | if (!page->active && !page->inactive) | |
3269 | vm_page_activate(page); | |
3270 | vm_page_unlock_queues(); | |
3271 | vm_fault_cleanup(object, top_page); | |
3272 | } | |
3273 | ||
3274 | void | |
3275 | vm_fault_copy_dst_cleanup( | |
3276 | vm_page_t page) | |
3277 | { | |
3278 | vm_object_t object; | |
3279 | ||
3280 | if (page != VM_PAGE_NULL) { | |
3281 | object = page->object; | |
3282 | vm_object_lock(object); | |
3283 | vm_page_lock_queues(); | |
3284 | vm_page_unwire(page); | |
3285 | vm_page_unlock_queues(); | |
3286 | vm_object_paging_end(object); | |
3287 | vm_object_unlock(object); | |
3288 | } | |
3289 | } | |
3290 | ||
3291 | /* | |
3292 | * Routine: vm_fault_copy | |
3293 | * | |
3294 | * Purpose: | |
3295 | * Copy pages from one virtual memory object to another -- | |
3296 | * neither the source nor destination pages need be resident. | |
3297 | * | |
3298 | * Before actually copying a page, the version associated with | |
3299 | * the destination address map wil be verified. | |
3300 | * | |
3301 | * In/out conditions: | |
3302 | * The caller must hold a reference, but not a lock, to | |
3303 | * each of the source and destination objects and to the | |
3304 | * destination map. | |
3305 | * | |
3306 | * Results: | |
3307 | * Returns KERN_SUCCESS if no errors were encountered in | |
3308 | * reading or writing the data. Returns KERN_INTERRUPTED if | |
3309 | * the operation was interrupted (only possible if the | |
3310 | * "interruptible" argument is asserted). Other return values | |
3311 | * indicate a permanent error in copying the data. | |
3312 | * | |
3313 | * The actual amount of data copied will be returned in the | |
3314 | * "copy_size" argument. In the event that the destination map | |
3315 | * verification failed, this amount may be less than the amount | |
3316 | * requested. | |
3317 | */ | |
3318 | kern_return_t | |
3319 | vm_fault_copy( | |
3320 | vm_object_t src_object, | |
3321 | vm_object_offset_t src_offset, | |
3322 | vm_size_t *src_size, /* INOUT */ | |
3323 | vm_object_t dst_object, | |
3324 | vm_object_offset_t dst_offset, | |
3325 | vm_map_t dst_map, | |
3326 | vm_map_version_t *dst_version, | |
3327 | int interruptible) | |
3328 | { | |
3329 | vm_page_t result_page; | |
3330 | ||
3331 | vm_page_t src_page; | |
3332 | vm_page_t src_top_page; | |
3333 | vm_prot_t src_prot; | |
3334 | ||
3335 | vm_page_t dst_page; | |
3336 | vm_page_t dst_top_page; | |
3337 | vm_prot_t dst_prot; | |
3338 | ||
3339 | vm_size_t amount_left; | |
3340 | vm_object_t old_copy_object; | |
3341 | kern_return_t error = 0; | |
3342 | ||
3343 | vm_size_t part_size; | |
3344 | ||
3345 | /* | |
3346 | * In order not to confuse the clustered pageins, align | |
3347 | * the different offsets on a page boundary. | |
3348 | */ | |
3349 | vm_object_offset_t src_lo_offset = trunc_page_64(src_offset); | |
3350 | vm_object_offset_t dst_lo_offset = trunc_page_64(dst_offset); | |
3351 | vm_object_offset_t src_hi_offset = round_page_64(src_offset + *src_size); | |
3352 | vm_object_offset_t dst_hi_offset = round_page_64(dst_offset + *src_size); | |
3353 | ||
3354 | #define RETURN(x) \ | |
3355 | MACRO_BEGIN \ | |
3356 | *src_size -= amount_left; \ | |
3357 | MACRO_RETURN(x); \ | |
3358 | MACRO_END | |
3359 | ||
3360 | amount_left = *src_size; | |
3361 | do { /* while (amount_left > 0) */ | |
3362 | /* | |
3363 | * There may be a deadlock if both source and destination | |
3364 | * pages are the same. To avoid this deadlock, the copy must | |
3365 | * start by getting the destination page in order to apply | |
3366 | * COW semantics if any. | |
3367 | */ | |
3368 | ||
3369 | RetryDestinationFault: ; | |
3370 | ||
3371 | dst_prot = VM_PROT_WRITE|VM_PROT_READ; | |
3372 | ||
3373 | vm_object_lock(dst_object); | |
3374 | vm_object_paging_begin(dst_object); | |
3375 | ||
3376 | XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0); | |
3377 | switch (vm_fault_page(dst_object, | |
3378 | trunc_page_64(dst_offset), | |
3379 | VM_PROT_WRITE|VM_PROT_READ, | |
3380 | FALSE, | |
3381 | interruptible, | |
3382 | dst_lo_offset, | |
3383 | dst_hi_offset, | |
3384 | VM_BEHAVIOR_SEQUENTIAL, | |
3385 | &dst_prot, | |
3386 | &dst_page, | |
3387 | &dst_top_page, | |
3388 | (int *)0, | |
3389 | &error, | |
3390 | dst_map->no_zero_fill, | |
0b4e3aa0 | 3391 | FALSE, NULL, 0)) { |
1c79356b A |
3392 | case VM_FAULT_SUCCESS: |
3393 | break; | |
3394 | case VM_FAULT_RETRY: | |
3395 | goto RetryDestinationFault; | |
3396 | case VM_FAULT_MEMORY_SHORTAGE: | |
3397 | if (vm_page_wait(interruptible)) | |
3398 | goto RetryDestinationFault; | |
3399 | /* fall thru */ | |
3400 | case VM_FAULT_INTERRUPTED: | |
3401 | RETURN(MACH_SEND_INTERRUPTED); | |
3402 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
3403 | vm_page_more_fictitious(); | |
3404 | goto RetryDestinationFault; | |
3405 | case VM_FAULT_MEMORY_ERROR: | |
3406 | if (error) | |
3407 | return (error); | |
3408 | else | |
3409 | return(KERN_MEMORY_ERROR); | |
3410 | } | |
3411 | assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); | |
3412 | ||
3413 | old_copy_object = dst_page->object->copy; | |
3414 | ||
3415 | /* | |
3416 | * There exists the possiblity that the source and | |
3417 | * destination page are the same. But we can't | |
3418 | * easily determine that now. If they are the | |
3419 | * same, the call to vm_fault_page() for the | |
3420 | * destination page will deadlock. To prevent this we | |
3421 | * wire the page so we can drop busy without having | |
3422 | * the page daemon steal the page. We clean up the | |
3423 | * top page but keep the paging reference on the object | |
3424 | * holding the dest page so it doesn't go away. | |
3425 | */ | |
3426 | ||
3427 | vm_page_lock_queues(); | |
3428 | vm_page_wire(dst_page); | |
3429 | vm_page_unlock_queues(); | |
3430 | PAGE_WAKEUP_DONE(dst_page); | |
3431 | vm_object_unlock(dst_page->object); | |
3432 | ||
3433 | if (dst_top_page != VM_PAGE_NULL) { | |
3434 | vm_object_lock(dst_object); | |
3435 | VM_PAGE_FREE(dst_top_page); | |
3436 | vm_object_paging_end(dst_object); | |
3437 | vm_object_unlock(dst_object); | |
3438 | } | |
3439 | ||
3440 | RetrySourceFault: ; | |
3441 | ||
3442 | if (src_object == VM_OBJECT_NULL) { | |
3443 | /* | |
3444 | * No source object. We will just | |
3445 | * zero-fill the page in dst_object. | |
3446 | */ | |
3447 | src_page = VM_PAGE_NULL; | |
e3027f41 | 3448 | result_page = VM_PAGE_NULL; |
1c79356b A |
3449 | } else { |
3450 | vm_object_lock(src_object); | |
3451 | src_page = vm_page_lookup(src_object, | |
3452 | trunc_page_64(src_offset)); | |
e3027f41 | 3453 | if (src_page == dst_page) { |
1c79356b | 3454 | src_prot = dst_prot; |
e3027f41 A |
3455 | result_page = VM_PAGE_NULL; |
3456 | } else { | |
1c79356b A |
3457 | src_prot = VM_PROT_READ; |
3458 | vm_object_paging_begin(src_object); | |
3459 | ||
3460 | XPR(XPR_VM_FAULT, | |
3461 | "vm_fault_copy(2) -> vm_fault_page\n", | |
3462 | 0,0,0,0,0); | |
3463 | switch (vm_fault_page(src_object, | |
3464 | trunc_page_64(src_offset), | |
3465 | VM_PROT_READ, | |
3466 | FALSE, | |
3467 | interruptible, | |
3468 | src_lo_offset, | |
3469 | src_hi_offset, | |
3470 | VM_BEHAVIOR_SEQUENTIAL, | |
3471 | &src_prot, | |
3472 | &result_page, | |
3473 | &src_top_page, | |
3474 | (int *)0, | |
3475 | &error, | |
3476 | FALSE, | |
0b4e3aa0 | 3477 | FALSE, NULL, 0)) { |
1c79356b A |
3478 | |
3479 | case VM_FAULT_SUCCESS: | |
3480 | break; | |
3481 | case VM_FAULT_RETRY: | |
3482 | goto RetrySourceFault; | |
3483 | case VM_FAULT_MEMORY_SHORTAGE: | |
3484 | if (vm_page_wait(interruptible)) | |
3485 | goto RetrySourceFault; | |
3486 | /* fall thru */ | |
3487 | case VM_FAULT_INTERRUPTED: | |
3488 | vm_fault_copy_dst_cleanup(dst_page); | |
3489 | RETURN(MACH_SEND_INTERRUPTED); | |
3490 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
3491 | vm_page_more_fictitious(); | |
3492 | goto RetrySourceFault; | |
3493 | case VM_FAULT_MEMORY_ERROR: | |
3494 | vm_fault_copy_dst_cleanup(dst_page); | |
3495 | if (error) | |
3496 | return (error); | |
3497 | else | |
3498 | return(KERN_MEMORY_ERROR); | |
3499 | } | |
3500 | ||
1c79356b A |
3501 | |
3502 | assert((src_top_page == VM_PAGE_NULL) == | |
e3027f41 | 3503 | (result_page->object == src_object)); |
1c79356b A |
3504 | } |
3505 | assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE); | |
e3027f41 | 3506 | vm_object_unlock(result_page->object); |
1c79356b A |
3507 | } |
3508 | ||
3509 | if (!vm_map_verify(dst_map, dst_version)) { | |
e3027f41 A |
3510 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3511 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3512 | vm_fault_copy_dst_cleanup(dst_page); |
3513 | break; | |
3514 | } | |
3515 | ||
3516 | vm_object_lock(dst_page->object); | |
3517 | ||
3518 | if (dst_page->object->copy != old_copy_object) { | |
3519 | vm_object_unlock(dst_page->object); | |
3520 | vm_map_verify_done(dst_map, dst_version); | |
e3027f41 A |
3521 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3522 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3523 | vm_fault_copy_dst_cleanup(dst_page); |
3524 | break; | |
3525 | } | |
3526 | vm_object_unlock(dst_page->object); | |
3527 | ||
3528 | /* | |
3529 | * Copy the page, and note that it is dirty | |
3530 | * immediately. | |
3531 | */ | |
3532 | ||
3533 | if (!page_aligned(src_offset) || | |
3534 | !page_aligned(dst_offset) || | |
3535 | !page_aligned(amount_left)) { | |
3536 | ||
3537 | vm_object_offset_t src_po, | |
3538 | dst_po; | |
3539 | ||
3540 | src_po = src_offset - trunc_page_64(src_offset); | |
3541 | dst_po = dst_offset - trunc_page_64(dst_offset); | |
3542 | ||
3543 | if (dst_po > src_po) { | |
3544 | part_size = PAGE_SIZE - dst_po; | |
3545 | } else { | |
3546 | part_size = PAGE_SIZE - src_po; | |
3547 | } | |
3548 | if (part_size > (amount_left)){ | |
3549 | part_size = amount_left; | |
3550 | } | |
3551 | ||
e3027f41 | 3552 | if (result_page == VM_PAGE_NULL) { |
1c79356b A |
3553 | vm_page_part_zero_fill(dst_page, |
3554 | dst_po, part_size); | |
3555 | } else { | |
e3027f41 | 3556 | vm_page_part_copy(result_page, src_po, |
1c79356b A |
3557 | dst_page, dst_po, part_size); |
3558 | if(!dst_page->dirty){ | |
3559 | vm_object_lock(dst_object); | |
3560 | dst_page->dirty = TRUE; | |
3561 | vm_object_unlock(dst_page->object); | |
3562 | } | |
3563 | ||
3564 | } | |
3565 | } else { | |
3566 | part_size = PAGE_SIZE; | |
3567 | ||
e3027f41 | 3568 | if (result_page == VM_PAGE_NULL) |
1c79356b A |
3569 | vm_page_zero_fill(dst_page); |
3570 | else{ | |
e3027f41 | 3571 | vm_page_copy(result_page, dst_page); |
1c79356b A |
3572 | if(!dst_page->dirty){ |
3573 | vm_object_lock(dst_object); | |
3574 | dst_page->dirty = TRUE; | |
3575 | vm_object_unlock(dst_page->object); | |
3576 | } | |
3577 | } | |
3578 | ||
3579 | } | |
3580 | ||
3581 | /* | |
3582 | * Unlock everything, and return | |
3583 | */ | |
3584 | ||
3585 | vm_map_verify_done(dst_map, dst_version); | |
3586 | ||
e3027f41 A |
3587 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3588 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3589 | vm_fault_copy_dst_cleanup(dst_page); |
3590 | ||
3591 | amount_left -= part_size; | |
3592 | src_offset += part_size; | |
3593 | dst_offset += part_size; | |
3594 | } while (amount_left > 0); | |
3595 | ||
3596 | RETURN(KERN_SUCCESS); | |
3597 | #undef RETURN | |
3598 | ||
3599 | /*NOTREACHED*/ | |
3600 | } | |
3601 | ||
3602 | #ifdef notdef | |
3603 | ||
3604 | /* | |
3605 | * Routine: vm_fault_page_overwrite | |
3606 | * | |
3607 | * Description: | |
3608 | * A form of vm_fault_page that assumes that the | |
3609 | * resulting page will be overwritten in its entirety, | |
3610 | * making it unnecessary to obtain the correct *contents* | |
3611 | * of the page. | |
3612 | * | |
3613 | * Implementation: | |
3614 | * XXX Untested. Also unused. Eventually, this technology | |
3615 | * could be used in vm_fault_copy() to advantage. | |
3616 | */ | |
3617 | vm_fault_return_t | |
3618 | vm_fault_page_overwrite( | |
3619 | register | |
3620 | vm_object_t dst_object, | |
3621 | vm_object_offset_t dst_offset, | |
3622 | vm_page_t *result_page) /* OUT */ | |
3623 | { | |
3624 | register | |
3625 | vm_page_t dst_page; | |
3626 | kern_return_t wait_result; | |
3627 | ||
3628 | #define interruptible THREAD_UNINT /* XXX */ | |
3629 | ||
3630 | while (TRUE) { | |
3631 | /* | |
3632 | * Look for a page at this offset | |
3633 | */ | |
3634 | ||
3635 | while ((dst_page = vm_page_lookup(dst_object, dst_offset)) | |
3636 | == VM_PAGE_NULL) { | |
3637 | /* | |
3638 | * No page, no problem... just allocate one. | |
3639 | */ | |
3640 | ||
3641 | dst_page = vm_page_alloc(dst_object, dst_offset); | |
3642 | if (dst_page == VM_PAGE_NULL) { | |
3643 | vm_object_unlock(dst_object); | |
3644 | VM_PAGE_WAIT(); | |
3645 | vm_object_lock(dst_object); | |
3646 | continue; | |
3647 | } | |
3648 | ||
3649 | /* | |
3650 | * Pretend that the memory manager | |
3651 | * write-protected the page. | |
3652 | * | |
3653 | * Note that we will be asking for write | |
3654 | * permission without asking for the data | |
3655 | * first. | |
3656 | */ | |
3657 | ||
3658 | dst_page->overwriting = TRUE; | |
3659 | dst_page->page_lock = VM_PROT_WRITE; | |
3660 | dst_page->absent = TRUE; | |
3661 | dst_page->unusual = TRUE; | |
3662 | dst_object->absent_count++; | |
3663 | ||
3664 | break; | |
3665 | ||
3666 | /* | |
3667 | * When we bail out, we might have to throw | |
3668 | * away the page created here. | |
3669 | */ | |
3670 | ||
3671 | #define DISCARD_PAGE \ | |
3672 | MACRO_BEGIN \ | |
3673 | vm_object_lock(dst_object); \ | |
3674 | dst_page = vm_page_lookup(dst_object, dst_offset); \ | |
3675 | if ((dst_page != VM_PAGE_NULL) && dst_page->overwriting) \ | |
3676 | VM_PAGE_FREE(dst_page); \ | |
3677 | vm_object_unlock(dst_object); \ | |
3678 | MACRO_END | |
3679 | } | |
3680 | ||
3681 | /* | |
3682 | * If the page is write-protected... | |
3683 | */ | |
3684 | ||
3685 | if (dst_page->page_lock & VM_PROT_WRITE) { | |
3686 | /* | |
3687 | * ... and an unlock request hasn't been sent | |
3688 | */ | |
3689 | ||
3690 | if ( ! (dst_page->unlock_request & VM_PROT_WRITE)) { | |
3691 | vm_prot_t u; | |
3692 | kern_return_t rc; | |
3693 | ||
3694 | /* | |
3695 | * ... then send one now. | |
3696 | */ | |
3697 | ||
3698 | if (!dst_object->pager_ready) { | |
9bccf70c A |
3699 | wait_result = vm_object_assert_wait(dst_object, |
3700 | VM_OBJECT_EVENT_PAGER_READY, | |
3701 | interruptible); | |
1c79356b | 3702 | vm_object_unlock(dst_object); |
9bccf70c A |
3703 | if (wait_result == THREAD_WAITING) |
3704 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
3705 | if (wait_result != THREAD_AWAKENED) { |
3706 | DISCARD_PAGE; | |
3707 | return(VM_FAULT_INTERRUPTED); | |
3708 | } | |
3709 | continue; | |
3710 | } | |
3711 | ||
3712 | u = dst_page->unlock_request |= VM_PROT_WRITE; | |
3713 | vm_object_unlock(dst_object); | |
3714 | ||
3715 | if ((rc = memory_object_data_unlock( | |
3716 | dst_object->pager, | |
1c79356b A |
3717 | dst_offset + dst_object->paging_offset, |
3718 | PAGE_SIZE, | |
3719 | u)) != KERN_SUCCESS) { | |
3720 | if (vm_fault_debug) | |
3721 | printf("vm_object_overwrite: memory_object_data_unlock failed\n"); | |
3722 | DISCARD_PAGE; | |
3723 | return((rc == MACH_SEND_INTERRUPTED) ? | |
3724 | VM_FAULT_INTERRUPTED : | |
3725 | VM_FAULT_MEMORY_ERROR); | |
3726 | } | |
3727 | vm_object_lock(dst_object); | |
3728 | continue; | |
3729 | } | |
3730 | ||
3731 | /* ... fall through to wait below */ | |
3732 | } else { | |
3733 | /* | |
3734 | * If the page isn't being used for other | |
3735 | * purposes, then we're done. | |
3736 | */ | |
3737 | if ( ! (dst_page->busy || dst_page->absent || | |
3738 | dst_page->error || dst_page->restart) ) | |
3739 | break; | |
3740 | } | |
3741 | ||
9bccf70c | 3742 | wait_result = PAGE_ASSERT_WAIT(dst_page, interruptible); |
1c79356b | 3743 | vm_object_unlock(dst_object); |
9bccf70c A |
3744 | if (wait_result == THREAD_WAITING) |
3745 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
3746 | if (wait_result != THREAD_AWAKENED) { |
3747 | DISCARD_PAGE; | |
3748 | return(VM_FAULT_INTERRUPTED); | |
3749 | } | |
3750 | } | |
3751 | ||
3752 | *result_page = dst_page; | |
3753 | return(VM_FAULT_SUCCESS); | |
3754 | ||
3755 | #undef interruptible | |
3756 | #undef DISCARD_PAGE | |
3757 | } | |
3758 | ||
3759 | #endif /* notdef */ | |
3760 | ||
3761 | #if VM_FAULT_CLASSIFY | |
3762 | /* | |
3763 | * Temporary statistics gathering support. | |
3764 | */ | |
3765 | ||
3766 | /* | |
3767 | * Statistics arrays: | |
3768 | */ | |
3769 | #define VM_FAULT_TYPES_MAX 5 | |
3770 | #define VM_FAULT_LEVEL_MAX 8 | |
3771 | ||
3772 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; | |
3773 | ||
3774 | #define VM_FAULT_TYPE_ZERO_FILL 0 | |
3775 | #define VM_FAULT_TYPE_MAP_IN 1 | |
3776 | #define VM_FAULT_TYPE_PAGER 2 | |
3777 | #define VM_FAULT_TYPE_COPY 3 | |
3778 | #define VM_FAULT_TYPE_OTHER 4 | |
3779 | ||
3780 | ||
3781 | void | |
3782 | vm_fault_classify(vm_object_t object, | |
3783 | vm_object_offset_t offset, | |
3784 | vm_prot_t fault_type) | |
3785 | { | |
3786 | int type, level = 0; | |
3787 | vm_page_t m; | |
3788 | ||
3789 | while (TRUE) { | |
3790 | m = vm_page_lookup(object, offset); | |
3791 | if (m != VM_PAGE_NULL) { | |
3792 | if (m->busy || m->error || m->restart || m->absent || | |
3793 | fault_type & m->page_lock) { | |
3794 | type = VM_FAULT_TYPE_OTHER; | |
3795 | break; | |
3796 | } | |
3797 | if (((fault_type & VM_PROT_WRITE) == 0) || | |
3798 | ((level == 0) && object->copy == VM_OBJECT_NULL)) { | |
3799 | type = VM_FAULT_TYPE_MAP_IN; | |
3800 | break; | |
3801 | } | |
3802 | type = VM_FAULT_TYPE_COPY; | |
3803 | break; | |
3804 | } | |
3805 | else { | |
3806 | if (object->pager_created) { | |
3807 | type = VM_FAULT_TYPE_PAGER; | |
3808 | break; | |
3809 | } | |
3810 | if (object->shadow == VM_OBJECT_NULL) { | |
3811 | type = VM_FAULT_TYPE_ZERO_FILL; | |
3812 | break; | |
3813 | } | |
3814 | ||
3815 | offset += object->shadow_offset; | |
3816 | object = object->shadow; | |
3817 | level++; | |
3818 | continue; | |
3819 | } | |
3820 | } | |
3821 | ||
3822 | if (level > VM_FAULT_LEVEL_MAX) | |
3823 | level = VM_FAULT_LEVEL_MAX; | |
3824 | ||
3825 | vm_fault_stats[type][level] += 1; | |
3826 | ||
3827 | return; | |
3828 | } | |
3829 | ||
3830 | /* cleanup routine to call from debugger */ | |
3831 | ||
3832 | void | |
3833 | vm_fault_classify_init(void) | |
3834 | { | |
3835 | int type, level; | |
3836 | ||
3837 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { | |
3838 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { | |
3839 | vm_fault_stats[type][level] = 0; | |
3840 | } | |
3841 | } | |
3842 | ||
3843 | return; | |
3844 | } | |
3845 | #endif /* VM_FAULT_CLASSIFY */ |