]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: vm_fault.c | |
54 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
55 | * | |
56 | * Page fault handling module. | |
57 | */ | |
58 | #ifdef MACH_BSD | |
59 | /* remove after component interface available */ | |
60 | extern int vnode_pager_workaround; | |
0b4e3aa0 | 61 | extern int device_pager_workaround; |
1c79356b A |
62 | #endif |
63 | ||
64 | #include <mach_cluster_stats.h> | |
65 | #include <mach_pagemap.h> | |
66 | #include <mach_kdb.h> | |
67 | ||
68 | #include <vm/vm_fault.h> | |
69 | #include <mach/kern_return.h> | |
70 | #include <mach/message.h> /* for error codes */ | |
71 | #include <kern/host_statistics.h> | |
72 | #include <kern/counters.h> | |
73 | #include <kern/task.h> | |
74 | #include <kern/thread.h> | |
75 | #include <kern/sched_prim.h> | |
76 | #include <kern/host.h> | |
77 | #include <kern/xpr.h> | |
0b4e3aa0 A |
78 | #include <ppc/proc_reg.h> |
79 | #include <ppc/pmap_internals.h> | |
80 | #include <vm/task_working_set.h> | |
1c79356b A |
81 | #include <vm/vm_map.h> |
82 | #include <vm/vm_object.h> | |
83 | #include <vm/vm_page.h> | |
84 | #include <vm/pmap.h> | |
85 | #include <vm/vm_pageout.h> | |
86 | #include <mach/vm_param.h> | |
87 | #include <mach/vm_behavior.h> | |
88 | #include <mach/memory_object.h> | |
89 | /* For memory_object_data_{request,unlock} */ | |
90 | #include <kern/mach_param.h> | |
91 | #include <kern/macro_help.h> | |
92 | #include <kern/zalloc.h> | |
93 | #include <kern/misc_protos.h> | |
94 | ||
95 | #include <sys/kdebug.h> | |
96 | ||
97 | #define VM_FAULT_CLASSIFY 0 | |
98 | #define VM_FAULT_STATIC_CONFIG 1 | |
99 | ||
100 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ | |
101 | ||
102 | int vm_object_absent_max = 50; | |
103 | ||
104 | int vm_fault_debug = 0; | |
105 | boolean_t vm_page_deactivate_behind = TRUE; | |
106 | ||
107 | vm_machine_attribute_val_t mv_cache_sync = MATTR_VAL_CACHE_SYNC; | |
108 | ||
109 | #if !VM_FAULT_STATIC_CONFIG | |
110 | boolean_t vm_fault_dirty_handling = FALSE; | |
111 | boolean_t vm_fault_interruptible = FALSE; | |
112 | boolean_t software_reference_bits = TRUE; | |
113 | #endif | |
114 | ||
115 | #if MACH_KDB | |
116 | extern struct db_watchpoint *db_watchpoint_list; | |
117 | #endif /* MACH_KDB */ | |
118 | ||
119 | /* Forward declarations of internal routines. */ | |
120 | extern kern_return_t vm_fault_wire_fast( | |
121 | vm_map_t map, | |
122 | vm_offset_t va, | |
123 | vm_map_entry_t entry, | |
124 | pmap_t pmap); | |
125 | ||
126 | extern void vm_fault_continue(void); | |
127 | ||
128 | extern void vm_fault_copy_cleanup( | |
129 | vm_page_t page, | |
130 | vm_page_t top_page); | |
131 | ||
132 | extern void vm_fault_copy_dst_cleanup( | |
133 | vm_page_t page); | |
134 | ||
135 | #if VM_FAULT_CLASSIFY | |
136 | extern void vm_fault_classify(vm_object_t object, | |
137 | vm_object_offset_t offset, | |
138 | vm_prot_t fault_type); | |
139 | ||
140 | extern void vm_fault_classify_init(void); | |
141 | #endif | |
142 | ||
143 | /* | |
144 | * Routine: vm_fault_init | |
145 | * Purpose: | |
146 | * Initialize our private data structures. | |
147 | */ | |
148 | void | |
149 | vm_fault_init(void) | |
150 | { | |
151 | } | |
152 | ||
153 | /* | |
154 | * Routine: vm_fault_cleanup | |
155 | * Purpose: | |
156 | * Clean up the result of vm_fault_page. | |
157 | * Results: | |
158 | * The paging reference for "object" is released. | |
159 | * "object" is unlocked. | |
160 | * If "top_page" is not null, "top_page" is | |
161 | * freed and the paging reference for the object | |
162 | * containing it is released. | |
163 | * | |
164 | * In/out conditions: | |
165 | * "object" must be locked. | |
166 | */ | |
167 | void | |
168 | vm_fault_cleanup( | |
169 | register vm_object_t object, | |
170 | register vm_page_t top_page) | |
171 | { | |
172 | vm_object_paging_end(object); | |
173 | vm_object_unlock(object); | |
174 | ||
175 | if (top_page != VM_PAGE_NULL) { | |
176 | object = top_page->object; | |
177 | vm_object_lock(object); | |
178 | VM_PAGE_FREE(top_page); | |
179 | vm_object_paging_end(object); | |
180 | vm_object_unlock(object); | |
181 | } | |
182 | } | |
183 | ||
184 | #if MACH_CLUSTER_STATS | |
185 | #define MAXCLUSTERPAGES 16 | |
186 | struct { | |
187 | unsigned long pages_in_cluster; | |
188 | unsigned long pages_at_higher_offsets; | |
189 | unsigned long pages_at_lower_offsets; | |
190 | } cluster_stats_in[MAXCLUSTERPAGES]; | |
191 | #define CLUSTER_STAT(clause) clause | |
192 | #define CLUSTER_STAT_HIGHER(x) \ | |
193 | ((cluster_stats_in[(x)].pages_at_higher_offsets)++) | |
194 | #define CLUSTER_STAT_LOWER(x) \ | |
195 | ((cluster_stats_in[(x)].pages_at_lower_offsets)++) | |
196 | #define CLUSTER_STAT_CLUSTER(x) \ | |
197 | ((cluster_stats_in[(x)].pages_in_cluster)++) | |
198 | #else /* MACH_CLUSTER_STATS */ | |
199 | #define CLUSTER_STAT(clause) | |
200 | #endif /* MACH_CLUSTER_STATS */ | |
201 | ||
202 | /* XXX - temporary */ | |
203 | boolean_t vm_allow_clustered_pagein = FALSE; | |
204 | int vm_pagein_cluster_used = 0; | |
205 | ||
206 | /* | |
207 | * Prepage default sizes given VM_BEHAVIOR_DEFAULT reference behavior | |
208 | */ | |
209 | int vm_default_ahead = 1; /* Number of pages to prepage ahead */ | |
210 | int vm_default_behind = 0; /* Number of pages to prepage behind */ | |
211 | ||
212 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) | |
213 | ||
214 | /* | |
215 | * Routine: vm_fault_page | |
216 | * Purpose: | |
217 | * Find the resident page for the virtual memory | |
218 | * specified by the given virtual memory object | |
219 | * and offset. | |
220 | * Additional arguments: | |
221 | * The required permissions for the page is given | |
222 | * in "fault_type". Desired permissions are included | |
223 | * in "protection". The minimum and maximum valid offsets | |
224 | * within the object for the relevant map entry are | |
225 | * passed in "lo_offset" and "hi_offset" respectively and | |
226 | * the expected page reference pattern is passed in "behavior". | |
227 | * These three parameters are used to determine pagein cluster | |
228 | * limits. | |
229 | * | |
230 | * If the desired page is known to be resident (for | |
231 | * example, because it was previously wired down), asserting | |
232 | * the "unwiring" parameter will speed the search. | |
233 | * | |
234 | * If the operation can be interrupted (by thread_abort | |
235 | * or thread_terminate), then the "interruptible" | |
236 | * parameter should be asserted. | |
237 | * | |
238 | * Results: | |
239 | * The page containing the proper data is returned | |
240 | * in "result_page". | |
241 | * | |
242 | * In/out conditions: | |
243 | * The source object must be locked and referenced, | |
244 | * and must donate one paging reference. The reference | |
245 | * is not affected. The paging reference and lock are | |
246 | * consumed. | |
247 | * | |
248 | * If the call succeeds, the object in which "result_page" | |
249 | * resides is left locked and holding a paging reference. | |
250 | * If this is not the original object, a busy page in the | |
251 | * original object is returned in "top_page", to prevent other | |
252 | * callers from pursuing this same data, along with a paging | |
253 | * reference for the original object. The "top_page" should | |
254 | * be destroyed when this guarantee is no longer required. | |
255 | * The "result_page" is also left busy. It is not removed | |
256 | * from the pageout queues. | |
257 | */ | |
258 | ||
259 | vm_fault_return_t | |
260 | vm_fault_page( | |
261 | /* Arguments: */ | |
262 | vm_object_t first_object, /* Object to begin search */ | |
263 | vm_object_offset_t first_offset, /* Offset into object */ | |
264 | vm_prot_t fault_type, /* What access is requested */ | |
265 | boolean_t must_be_resident,/* Must page be resident? */ | |
266 | int interruptible, /* how may fault be interrupted? */ | |
267 | vm_object_offset_t lo_offset, /* Map entry start */ | |
268 | vm_object_offset_t hi_offset, /* Map entry end */ | |
269 | vm_behavior_t behavior, /* Page reference behavior */ | |
270 | /* Modifies in place: */ | |
271 | vm_prot_t *protection, /* Protection for mapping */ | |
272 | /* Returns: */ | |
273 | vm_page_t *result_page, /* Page found, if successful */ | |
274 | vm_page_t *top_page, /* Page in top object, if | |
275 | * not result_page. */ | |
276 | int *type_of_fault, /* if non-null, fill in with type of fault | |
277 | * COW, zero-fill, etc... returned in trace point */ | |
278 | /* More arguments: */ | |
279 | kern_return_t *error_code, /* code if page is in error */ | |
280 | boolean_t no_zero_fill, /* don't zero fill absent pages */ | |
0b4e3aa0 | 281 | boolean_t data_supply, /* treat as data_supply if |
1c79356b A |
282 | * it is a write fault and a full |
283 | * page is provided */ | |
0b4e3aa0 A |
284 | vm_map_t map, |
285 | vm_offset_t vaddr) | |
1c79356b A |
286 | { |
287 | register | |
288 | vm_page_t m; | |
289 | register | |
290 | vm_object_t object; | |
291 | register | |
292 | vm_object_offset_t offset; | |
293 | vm_page_t first_m; | |
294 | vm_object_t next_object; | |
295 | vm_object_t copy_object; | |
296 | boolean_t look_for_page; | |
297 | vm_prot_t access_required = fault_type; | |
298 | vm_prot_t wants_copy_flag; | |
299 | vm_size_t cluster_size, length; | |
300 | vm_object_offset_t cluster_offset; | |
301 | vm_object_offset_t cluster_start, cluster_end, paging_offset; | |
302 | vm_object_offset_t align_offset; | |
303 | CLUSTER_STAT(int pages_at_higher_offsets;) | |
304 | CLUSTER_STAT(int pages_at_lower_offsets;) | |
305 | kern_return_t wait_result; | |
306 | thread_t cur_thread; | |
307 | boolean_t interruptible_state; | |
0b4e3aa0 | 308 | boolean_t bumped_pagein = FALSE; |
1c79356b | 309 | |
1c79356b A |
310 | |
311 | #if MACH_PAGEMAP | |
312 | /* | |
313 | * MACH page map - an optional optimization where a bit map is maintained | |
314 | * by the VM subsystem for internal objects to indicate which pages of | |
315 | * the object currently reside on backing store. This existence map | |
316 | * duplicates information maintained by the vnode pager. It is | |
317 | * created at the time of the first pageout against the object, i.e. | |
318 | * at the same time pager for the object is created. The optimization | |
319 | * is designed to eliminate pager interaction overhead, if it is | |
320 | * 'known' that the page does not exist on backing store. | |
321 | * | |
322 | * LOOK_FOR() evaluates to TRUE if the page specified by object/offset is | |
323 | * either marked as paged out in the existence map for the object or no | |
324 | * existence map exists for the object. LOOK_FOR() is one of the | |
325 | * criteria in the decision to invoke the pager. It is also used as one | |
326 | * of the criteria to terminate the scan for adjacent pages in a clustered | |
327 | * pagein operation. Note that LOOK_FOR() always evaluates to TRUE for | |
328 | * permanent objects. Note also that if the pager for an internal object | |
329 | * has not been created, the pager is not invoked regardless of the value | |
330 | * of LOOK_FOR() and that clustered pagein scans are only done on an object | |
331 | * for which a pager has been created. | |
332 | * | |
333 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset | |
334 | * is marked as paged out in the existence map for the object. PAGED_OUT() | |
335 | * PAGED_OUT() is used to determine if a page has already been pushed | |
336 | * into a copy object in order to avoid a redundant page out operation. | |
337 | */ | |
338 | #define LOOK_FOR(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
339 | != VM_EXTERNAL_STATE_ABSENT) | |
340 | #define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
341 | == VM_EXTERNAL_STATE_EXISTS) | |
342 | #else /* MACH_PAGEMAP */ | |
343 | /* | |
344 | * If the MACH page map optimization is not enabled, | |
345 | * LOOK_FOR() always evaluates to TRUE. The pager will always be | |
346 | * invoked to resolve missing pages in an object, assuming the pager | |
347 | * has been created for the object. In a clustered page operation, the | |
348 | * absence of a page on backing backing store cannot be used to terminate | |
349 | * a scan for adjacent pages since that information is available only in | |
350 | * the pager. Hence pages that may not be paged out are potentially | |
351 | * included in a clustered request. The vnode pager is coded to deal | |
352 | * with any combination of absent/present pages in a clustered | |
353 | * pagein request. PAGED_OUT() always evaluates to FALSE, i.e. the pager | |
354 | * will always be invoked to push a dirty page into a copy object assuming | |
355 | * a pager has been created. If the page has already been pushed, the | |
356 | * pager will ingore the new request. | |
357 | */ | |
358 | #define LOOK_FOR(o, f) TRUE | |
359 | #define PAGED_OUT(o, f) FALSE | |
360 | #endif /* MACH_PAGEMAP */ | |
361 | ||
362 | /* | |
363 | * Recovery actions | |
364 | */ | |
365 | #define PREPARE_RELEASE_PAGE(m) \ | |
366 | MACRO_BEGIN \ | |
367 | vm_page_lock_queues(); \ | |
368 | MACRO_END | |
369 | ||
370 | #define DO_RELEASE_PAGE(m) \ | |
371 | MACRO_BEGIN \ | |
372 | PAGE_WAKEUP_DONE(m); \ | |
373 | if (!m->active && !m->inactive) \ | |
374 | vm_page_activate(m); \ | |
375 | vm_page_unlock_queues(); \ | |
376 | MACRO_END | |
377 | ||
378 | #define RELEASE_PAGE(m) \ | |
379 | MACRO_BEGIN \ | |
380 | PREPARE_RELEASE_PAGE(m); \ | |
381 | DO_RELEASE_PAGE(m); \ | |
382 | MACRO_END | |
383 | ||
384 | #if TRACEFAULTPAGE | |
385 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ | |
386 | #endif | |
387 | ||
388 | ||
389 | ||
390 | #if !VM_FAULT_STATIC_CONFIG | |
391 | if (vm_fault_dirty_handling | |
392 | #if MACH_KDB | |
393 | /* | |
394 | * If there are watchpoints set, then | |
395 | * we don't want to give away write permission | |
396 | * on a read fault. Make the task write fault, | |
397 | * so that the watchpoint code notices the access. | |
398 | */ | |
399 | || db_watchpoint_list | |
400 | #endif /* MACH_KDB */ | |
401 | ) { | |
402 | /* | |
403 | * If we aren't asking for write permission, | |
404 | * then don't give it away. We're using write | |
405 | * faults to set the dirty bit. | |
406 | */ | |
407 | if (!(fault_type & VM_PROT_WRITE)) | |
408 | *protection &= ~VM_PROT_WRITE; | |
409 | } | |
410 | ||
411 | if (!vm_fault_interruptible) | |
412 | interruptible = THREAD_UNINT; | |
413 | #else /* STATIC_CONFIG */ | |
414 | #if MACH_KDB | |
415 | /* | |
416 | * If there are watchpoints set, then | |
417 | * we don't want to give away write permission | |
418 | * on a read fault. Make the task write fault, | |
419 | * so that the watchpoint code notices the access. | |
420 | */ | |
421 | if (db_watchpoint_list) { | |
422 | /* | |
423 | * If we aren't asking for write permission, | |
424 | * then don't give it away. We're using write | |
425 | * faults to set the dirty bit. | |
426 | */ | |
427 | if (!(fault_type & VM_PROT_WRITE)) | |
428 | *protection &= ~VM_PROT_WRITE; | |
429 | } | |
430 | ||
431 | #endif /* MACH_KDB */ | |
432 | #endif /* STATIC_CONFIG */ | |
433 | ||
434 | cur_thread = current_thread(); | |
435 | ||
436 | interruptible_state = cur_thread->interruptible; | |
437 | if (interruptible == THREAD_UNINT) | |
438 | cur_thread->interruptible = FALSE; | |
439 | ||
440 | /* | |
441 | * INVARIANTS (through entire routine): | |
442 | * | |
443 | * 1) At all times, we must either have the object | |
444 | * lock or a busy page in some object to prevent | |
445 | * some other thread from trying to bring in | |
446 | * the same page. | |
447 | * | |
448 | * Note that we cannot hold any locks during the | |
449 | * pager access or when waiting for memory, so | |
450 | * we use a busy page then. | |
451 | * | |
452 | * Note also that we aren't as concerned about more than | |
453 | * one thread attempting to memory_object_data_unlock | |
454 | * the same page at once, so we don't hold the page | |
455 | * as busy then, but do record the highest unlock | |
456 | * value so far. [Unlock requests may also be delivered | |
457 | * out of order.] | |
458 | * | |
459 | * 2) To prevent another thread from racing us down the | |
460 | * shadow chain and entering a new page in the top | |
461 | * object before we do, we must keep a busy page in | |
462 | * the top object while following the shadow chain. | |
463 | * | |
464 | * 3) We must increment paging_in_progress on any object | |
465 | * for which we have a busy page | |
466 | * | |
467 | * 4) We leave busy pages on the pageout queues. | |
468 | * If the pageout daemon comes across a busy page, | |
469 | * it will remove the page from the pageout queues. | |
470 | */ | |
471 | ||
472 | /* | |
473 | * Search for the page at object/offset. | |
474 | */ | |
475 | ||
476 | object = first_object; | |
477 | offset = first_offset; | |
478 | first_m = VM_PAGE_NULL; | |
479 | access_required = fault_type; | |
480 | ||
481 | XPR(XPR_VM_FAULT, | |
482 | "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n", | |
483 | (integer_t)object, offset, fault_type, *protection, 0); | |
484 | ||
485 | /* | |
486 | * See whether this page is resident | |
487 | */ | |
488 | ||
489 | while (TRUE) { | |
490 | #if TRACEFAULTPAGE | |
491 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
492 | #endif | |
493 | if (!object->alive) { | |
494 | vm_fault_cleanup(object, first_m); | |
495 | cur_thread->interruptible = interruptible_state; | |
496 | return(VM_FAULT_MEMORY_ERROR); | |
497 | } | |
498 | m = vm_page_lookup(object, offset); | |
499 | #if TRACEFAULTPAGE | |
500 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
501 | #endif | |
502 | if (m != VM_PAGE_NULL) { | |
503 | /* | |
504 | * If the page was pre-paged as part of a | |
505 | * cluster, record the fact. | |
506 | */ | |
507 | if (m->clustered) { | |
508 | vm_pagein_cluster_used++; | |
509 | m->clustered = FALSE; | |
510 | } | |
511 | ||
512 | /* | |
513 | * If the page is being brought in, | |
514 | * wait for it and then retry. | |
515 | * | |
516 | * A possible optimization: if the page | |
517 | * is known to be resident, we can ignore | |
518 | * pages that are absent (regardless of | |
519 | * whether they're busy). | |
520 | */ | |
521 | ||
522 | if (m->busy) { | |
523 | #if TRACEFAULTPAGE | |
524 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
525 | #endif | |
526 | PAGE_ASSERT_WAIT(m, interruptible); | |
527 | vm_object_unlock(object); | |
528 | XPR(XPR_VM_FAULT, | |
529 | "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n", | |
530 | (integer_t)object, offset, | |
531 | (integer_t)m, 0, 0); | |
532 | counter(c_vm_fault_page_block_busy_kernel++); | |
533 | wait_result = thread_block((void (*)(void))0); | |
534 | ||
535 | vm_object_lock(object); | |
536 | if (wait_result != THREAD_AWAKENED) { | |
537 | vm_fault_cleanup(object, first_m); | |
538 | cur_thread->interruptible = interruptible_state; | |
539 | if (wait_result == THREAD_RESTART) | |
540 | { | |
541 | return(VM_FAULT_RETRY); | |
542 | } | |
543 | else | |
544 | { | |
545 | return(VM_FAULT_INTERRUPTED); | |
546 | } | |
547 | } | |
548 | continue; | |
549 | } | |
550 | ||
551 | /* | |
552 | * If the page is in error, give up now. | |
553 | */ | |
554 | ||
555 | if (m->error) { | |
556 | #if TRACEFAULTPAGE | |
557 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ | |
558 | #endif | |
559 | if (error_code) | |
560 | *error_code = m->page_error; | |
561 | VM_PAGE_FREE(m); | |
562 | vm_fault_cleanup(object, first_m); | |
563 | cur_thread->interruptible = interruptible_state; | |
564 | return(VM_FAULT_MEMORY_ERROR); | |
565 | } | |
566 | ||
567 | /* | |
568 | * If the pager wants us to restart | |
569 | * at the top of the chain, | |
570 | * typically because it has moved the | |
571 | * page to another pager, then do so. | |
572 | */ | |
573 | ||
574 | if (m->restart) { | |
575 | #if TRACEFAULTPAGE | |
576 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
577 | #endif | |
578 | VM_PAGE_FREE(m); | |
579 | vm_fault_cleanup(object, first_m); | |
580 | cur_thread->interruptible = interruptible_state; | |
581 | return(VM_FAULT_RETRY); | |
582 | } | |
583 | ||
584 | /* | |
585 | * If the page isn't busy, but is absent, | |
586 | * then it was deemed "unavailable". | |
587 | */ | |
588 | ||
589 | if (m->absent) { | |
590 | /* | |
591 | * Remove the non-existent page (unless it's | |
592 | * in the top object) and move on down to the | |
593 | * next object (if there is one). | |
594 | */ | |
595 | #if TRACEFAULTPAGE | |
596 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ | |
597 | #endif | |
598 | ||
599 | next_object = object->shadow; | |
600 | if (next_object == VM_OBJECT_NULL) { | |
601 | vm_page_t real_m; | |
602 | ||
603 | assert(!must_be_resident); | |
604 | ||
605 | if (object->shadow_severed) { | |
606 | vm_fault_cleanup( | |
607 | object, first_m); | |
608 | cur_thread->interruptible = interruptible_state; | |
609 | return VM_FAULT_MEMORY_ERROR; | |
610 | } | |
611 | ||
612 | /* | |
613 | * Absent page at bottom of shadow | |
614 | * chain; zero fill the page we left | |
615 | * busy in the first object, and flush | |
616 | * the absent page. But first we | |
617 | * need to allocate a real page. | |
618 | */ | |
619 | if (VM_PAGE_THROTTLED() || | |
620 | (real_m = vm_page_grab()) == VM_PAGE_NULL) { | |
621 | vm_fault_cleanup(object, first_m); | |
622 | cur_thread->interruptible = interruptible_state; | |
623 | return(VM_FAULT_MEMORY_SHORTAGE); | |
624 | } | |
625 | ||
626 | XPR(XPR_VM_FAULT, | |
627 | "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n", | |
628 | (integer_t)object, offset, | |
629 | (integer_t)m, | |
630 | (integer_t)first_object, 0); | |
631 | if (object != first_object) { | |
632 | VM_PAGE_FREE(m); | |
633 | vm_object_paging_end(object); | |
634 | vm_object_unlock(object); | |
635 | object = first_object; | |
636 | offset = first_offset; | |
637 | m = first_m; | |
638 | first_m = VM_PAGE_NULL; | |
639 | vm_object_lock(object); | |
640 | } | |
641 | ||
642 | VM_PAGE_FREE(m); | |
643 | assert(real_m->busy); | |
644 | vm_page_insert(real_m, object, offset); | |
645 | m = real_m; | |
646 | ||
647 | /* | |
648 | * Drop the lock while zero filling | |
649 | * page. Then break because this | |
650 | * is the page we wanted. Checking | |
651 | * the page lock is a waste of time; | |
652 | * this page was either absent or | |
653 | * newly allocated -- in both cases | |
654 | * it can't be page locked by a pager. | |
655 | */ | |
0b4e3aa0 A |
656 | m->no_isync = FALSE; |
657 | ||
1c79356b A |
658 | if (!no_zero_fill) { |
659 | vm_object_unlock(object); | |
660 | vm_page_zero_fill(m); | |
661 | if (type_of_fault) | |
662 | *type_of_fault = DBG_ZERO_FILL_FAULT; | |
663 | VM_STAT(zero_fill_count++); | |
0b4e3aa0 A |
664 | |
665 | if (bumped_pagein == TRUE) { | |
666 | VM_STAT(pageins--); | |
667 | current_task()->pageins--; | |
668 | } | |
1c79356b A |
669 | vm_object_lock(object); |
670 | } | |
671 | pmap_clear_modify(m->phys_addr); | |
672 | vm_page_lock_queues(); | |
673 | VM_PAGE_QUEUES_REMOVE(m); | |
0b4e3aa0 A |
674 | m->page_ticket = vm_page_ticket; |
675 | vm_page_ticket_roll++; | |
676 | if(vm_page_ticket_roll == | |
677 | VM_PAGE_TICKETS_IN_ROLL) { | |
678 | vm_page_ticket_roll = 0; | |
679 | if(vm_page_ticket == | |
680 | VM_PAGE_TICKET_ROLL_IDS) | |
681 | vm_page_ticket= 0; | |
682 | else | |
683 | vm_page_ticket++; | |
684 | } | |
1c79356b A |
685 | queue_enter(&vm_page_queue_inactive, |
686 | m, vm_page_t, pageq); | |
687 | m->inactive = TRUE; | |
688 | vm_page_inactive_count++; | |
689 | vm_page_unlock_queues(); | |
690 | break; | |
691 | } else { | |
692 | if (must_be_resident) { | |
693 | vm_object_paging_end(object); | |
694 | } else if (object != first_object) { | |
695 | vm_object_paging_end(object); | |
696 | VM_PAGE_FREE(m); | |
697 | } else { | |
698 | first_m = m; | |
699 | m->absent = FALSE; | |
700 | m->unusual = FALSE; | |
701 | vm_object_absent_release(object); | |
702 | m->busy = TRUE; | |
703 | ||
704 | vm_page_lock_queues(); | |
705 | VM_PAGE_QUEUES_REMOVE(m); | |
706 | vm_page_unlock_queues(); | |
707 | } | |
708 | XPR(XPR_VM_FAULT, | |
709 | "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n", | |
710 | (integer_t)object, offset, | |
711 | (integer_t)next_object, | |
712 | offset+object->shadow_offset,0); | |
713 | offset += object->shadow_offset; | |
714 | hi_offset += object->shadow_offset; | |
715 | lo_offset += object->shadow_offset; | |
716 | access_required = VM_PROT_READ; | |
717 | vm_object_lock(next_object); | |
718 | vm_object_unlock(object); | |
719 | object = next_object; | |
720 | vm_object_paging_begin(object); | |
721 | continue; | |
722 | } | |
723 | } | |
724 | ||
725 | if ((m->cleaning) | |
726 | && ((object != first_object) || | |
727 | (object->copy != VM_OBJECT_NULL)) | |
728 | && (fault_type & VM_PROT_WRITE)) { | |
729 | /* | |
730 | * This is a copy-on-write fault that will | |
731 | * cause us to revoke access to this page, but | |
732 | * this page is in the process of being cleaned | |
733 | * in a clustered pageout. We must wait until | |
734 | * the cleaning operation completes before | |
735 | * revoking access to the original page, | |
736 | * otherwise we might attempt to remove a | |
737 | * wired mapping. | |
738 | */ | |
739 | #if TRACEFAULTPAGE | |
740 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ | |
741 | #endif | |
742 | XPR(XPR_VM_FAULT, | |
743 | "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n", | |
744 | (integer_t)object, offset, | |
745 | (integer_t)m, 0, 0); | |
746 | /* take an extra ref so that object won't die */ | |
747 | assert(object->ref_count > 0); | |
748 | object->ref_count++; | |
749 | vm_object_res_reference(object); | |
750 | vm_fault_cleanup(object, first_m); | |
751 | counter(c_vm_fault_page_block_backoff_kernel++); | |
752 | vm_object_lock(object); | |
753 | assert(object->ref_count > 0); | |
754 | m = vm_page_lookup(object, offset); | |
755 | if (m != VM_PAGE_NULL && m->cleaning) { | |
756 | PAGE_ASSERT_WAIT(m, interruptible); | |
757 | vm_object_unlock(object); | |
758 | wait_result = thread_block((void (*)(void)) 0); | |
759 | vm_object_deallocate(object); | |
760 | goto backoff; | |
761 | } else { | |
762 | vm_object_unlock(object); | |
763 | vm_object_deallocate(object); | |
764 | cur_thread->interruptible = interruptible_state; | |
765 | return VM_FAULT_RETRY; | |
766 | } | |
767 | } | |
768 | ||
769 | /* | |
770 | * If the desired access to this page has | |
771 | * been locked out, request that it be unlocked. | |
772 | */ | |
773 | ||
774 | if (access_required & m->page_lock) { | |
775 | if ((access_required & m->unlock_request) != access_required) { | |
776 | vm_prot_t new_unlock_request; | |
777 | kern_return_t rc; | |
778 | ||
779 | #if TRACEFAULTPAGE | |
780 | dbgTrace(0xBEEF000A, (unsigned int) m, (unsigned int) object->pager_ready); /* (TEST/DEBUG) */ | |
781 | #endif | |
782 | if (!object->pager_ready) { | |
783 | XPR(XPR_VM_FAULT, | |
784 | "vm_f_page: ready wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n", | |
785 | access_required, | |
786 | (integer_t)object, offset, | |
787 | (integer_t)m, 0); | |
788 | /* take an extra ref */ | |
789 | assert(object->ref_count > 0); | |
790 | object->ref_count++; | |
791 | vm_object_res_reference(object); | |
792 | vm_fault_cleanup(object, | |
793 | first_m); | |
794 | counter(c_vm_fault_page_block_backoff_kernel++); | |
795 | vm_object_lock(object); | |
796 | assert(object->ref_count > 0); | |
797 | if (!object->pager_ready) { | |
798 | vm_object_assert_wait( | |
799 | object, | |
800 | VM_OBJECT_EVENT_PAGER_READY, | |
801 | interruptible); | |
802 | vm_object_unlock(object); | |
803 | wait_result = thread_block((void (*)(void))0); | |
804 | vm_object_deallocate(object); | |
805 | goto backoff; | |
806 | } else { | |
807 | vm_object_unlock(object); | |
808 | vm_object_deallocate(object); | |
809 | cur_thread->interruptible = interruptible_state; | |
810 | return VM_FAULT_RETRY; | |
811 | } | |
812 | } | |
813 | ||
814 | new_unlock_request = m->unlock_request = | |
815 | (access_required | m->unlock_request); | |
816 | vm_object_unlock(object); | |
817 | XPR(XPR_VM_FAULT, | |
818 | "vm_f_page: unlock obj 0x%X, offset 0x%X, page 0x%X, unl_req %d\n", | |
819 | (integer_t)object, offset, | |
820 | (integer_t)m, new_unlock_request, 0); | |
821 | if ((rc = memory_object_data_unlock( | |
822 | object->pager, | |
1c79356b A |
823 | offset + object->paging_offset, |
824 | PAGE_SIZE, | |
825 | new_unlock_request)) | |
826 | != KERN_SUCCESS) { | |
827 | if (vm_fault_debug) | |
828 | printf("vm_fault: memory_object_data_unlock failed\n"); | |
829 | vm_object_lock(object); | |
830 | vm_fault_cleanup(object, first_m); | |
831 | cur_thread->interruptible = interruptible_state; | |
832 | return((rc == MACH_SEND_INTERRUPTED) ? | |
833 | VM_FAULT_INTERRUPTED : | |
834 | VM_FAULT_MEMORY_ERROR); | |
835 | } | |
836 | vm_object_lock(object); | |
837 | continue; | |
838 | } | |
839 | ||
840 | XPR(XPR_VM_FAULT, | |
841 | "vm_f_page: access wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n", | |
842 | access_required, (integer_t)object, | |
843 | offset, (integer_t)m, 0); | |
844 | /* take an extra ref so object won't die */ | |
845 | assert(object->ref_count > 0); | |
846 | object->ref_count++; | |
847 | vm_object_res_reference(object); | |
848 | vm_fault_cleanup(object, first_m); | |
849 | counter(c_vm_fault_page_block_backoff_kernel++); | |
850 | vm_object_lock(object); | |
851 | assert(object->ref_count > 0); | |
852 | m = vm_page_lookup(object, offset); | |
853 | if (m != VM_PAGE_NULL && | |
854 | (access_required & m->page_lock) && | |
855 | !((access_required & m->unlock_request) != access_required)) { | |
856 | PAGE_ASSERT_WAIT(m, interruptible); | |
857 | vm_object_unlock(object); | |
858 | wait_result = thread_block((void (*)(void)) 0); | |
859 | vm_object_deallocate(object); | |
860 | goto backoff; | |
861 | } else { | |
862 | vm_object_unlock(object); | |
863 | vm_object_deallocate(object); | |
864 | cur_thread->interruptible = interruptible_state; | |
865 | return VM_FAULT_RETRY; | |
866 | } | |
867 | } | |
868 | /* | |
869 | * We mark the page busy and leave it on | |
870 | * the pageout queues. If the pageout | |
871 | * deamon comes across it, then it will | |
872 | * remove the page. | |
873 | */ | |
874 | ||
875 | #if TRACEFAULTPAGE | |
876 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
877 | #endif | |
878 | ||
879 | #if !VM_FAULT_STATIC_CONFIG | |
880 | if (!software_reference_bits) { | |
881 | vm_page_lock_queues(); | |
882 | if (m->inactive) | |
883 | vm_stat.reactivations++; | |
884 | ||
885 | VM_PAGE_QUEUES_REMOVE(m); | |
886 | vm_page_unlock_queues(); | |
887 | } | |
888 | #endif | |
889 | XPR(XPR_VM_FAULT, | |
890 | "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n", | |
891 | (integer_t)object, offset, (integer_t)m, 0, 0); | |
892 | assert(!m->busy); | |
893 | m->busy = TRUE; | |
894 | assert(!m->absent); | |
895 | break; | |
896 | } | |
897 | ||
898 | look_for_page = | |
899 | (object->pager_created) && | |
900 | LOOK_FOR(object, offset) && | |
901 | (!data_supply); | |
902 | ||
903 | #if TRACEFAULTPAGE | |
904 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ | |
905 | #endif | |
906 | if ((look_for_page || (object == first_object)) | |
0b4e3aa0 A |
907 | && !must_be_resident |
908 | && !(object->phys_contiguous)) { | |
1c79356b A |
909 | /* |
910 | * Allocate a new page for this object/offset | |
911 | * pair. | |
912 | */ | |
913 | ||
914 | m = vm_page_grab_fictitious(); | |
915 | #if TRACEFAULTPAGE | |
916 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
917 | #endif | |
918 | if (m == VM_PAGE_NULL) { | |
919 | vm_fault_cleanup(object, first_m); | |
920 | cur_thread->interruptible = interruptible_state; | |
921 | return(VM_FAULT_FICTITIOUS_SHORTAGE); | |
922 | } | |
923 | vm_page_insert(m, object, offset); | |
924 | } | |
925 | ||
0b4e3aa0 | 926 | if ((look_for_page && !must_be_resident)) { |
1c79356b A |
927 | kern_return_t rc; |
928 | ||
929 | /* | |
930 | * If the memory manager is not ready, we | |
931 | * cannot make requests. | |
932 | */ | |
933 | if (!object->pager_ready) { | |
934 | #if TRACEFAULTPAGE | |
935 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
936 | #endif | |
0b4e3aa0 A |
937 | if(m != VM_PAGE_NULL) |
938 | VM_PAGE_FREE(m); | |
1c79356b A |
939 | XPR(XPR_VM_FAULT, |
940 | "vm_f_page: ready wait obj 0x%X, offset 0x%X\n", | |
941 | (integer_t)object, offset, 0, 0, 0); | |
942 | /* take an extra ref so object won't die */ | |
943 | assert(object->ref_count > 0); | |
944 | object->ref_count++; | |
945 | vm_object_res_reference(object); | |
946 | vm_fault_cleanup(object, first_m); | |
947 | counter(c_vm_fault_page_block_backoff_kernel++); | |
948 | vm_object_lock(object); | |
949 | assert(object->ref_count > 0); | |
950 | if (!object->pager_ready) { | |
951 | vm_object_assert_wait(object, | |
952 | VM_OBJECT_EVENT_PAGER_READY, | |
953 | interruptible); | |
954 | vm_object_unlock(object); | |
955 | wait_result = thread_block((void (*)(void))0); | |
956 | vm_object_deallocate(object); | |
957 | goto backoff; | |
958 | } else { | |
959 | vm_object_unlock(object); | |
960 | vm_object_deallocate(object); | |
961 | cur_thread->interruptible = interruptible_state; | |
962 | return VM_FAULT_RETRY; | |
963 | } | |
964 | } | |
965 | ||
0b4e3aa0 A |
966 | if(object->phys_contiguous) { |
967 | if(m != VM_PAGE_NULL) { | |
968 | VM_PAGE_FREE(m); | |
969 | m = VM_PAGE_NULL; | |
970 | } | |
971 | goto no_clustering; | |
972 | } | |
1c79356b A |
973 | if (object->internal) { |
974 | /* | |
975 | * Requests to the default pager | |
976 | * must reserve a real page in advance, | |
977 | * because the pager's data-provided | |
978 | * won't block for pages. IMPORTANT: | |
979 | * this acts as a throttling mechanism | |
980 | * for data_requests to the default | |
981 | * pager. | |
982 | */ | |
983 | ||
984 | #if TRACEFAULTPAGE | |
985 | dbgTrace(0xBEEF000F, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
986 | #endif | |
987 | if (m->fictitious && !vm_page_convert(m)) { | |
988 | VM_PAGE_FREE(m); | |
989 | vm_fault_cleanup(object, first_m); | |
990 | cur_thread->interruptible = interruptible_state; | |
991 | return(VM_FAULT_MEMORY_SHORTAGE); | |
992 | } | |
993 | } else if (object->absent_count > | |
994 | vm_object_absent_max) { | |
995 | /* | |
996 | * If there are too many outstanding page | |
997 | * requests pending on this object, we | |
998 | * wait for them to be resolved now. | |
999 | */ | |
1000 | ||
1001 | #if TRACEFAULTPAGE | |
1002 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1003 | #endif | |
0b4e3aa0 A |
1004 | if(m != VM_PAGE_NULL) |
1005 | VM_PAGE_FREE(m); | |
1c79356b A |
1006 | /* take an extra ref so object won't die */ |
1007 | assert(object->ref_count > 0); | |
1008 | object->ref_count++; | |
1009 | vm_object_res_reference(object); | |
1010 | vm_fault_cleanup(object, first_m); | |
1011 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1012 | vm_object_lock(object); | |
1013 | assert(object->ref_count > 0); | |
1014 | if (object->absent_count > vm_object_absent_max) { | |
1015 | vm_object_absent_assert_wait(object, | |
1016 | interruptible); | |
1017 | vm_object_unlock(object); | |
1018 | wait_result = thread_block((void (*)(void))0); | |
1019 | vm_object_deallocate(object); | |
1020 | goto backoff; | |
1021 | } else { | |
1022 | vm_object_unlock(object); | |
1023 | vm_object_deallocate(object); | |
1024 | cur_thread->interruptible = interruptible_state; | |
1025 | return VM_FAULT_RETRY; | |
1026 | } | |
1027 | } | |
1028 | ||
1029 | /* | |
1030 | * Indicate that the page is waiting for data | |
1031 | * from the memory manager. | |
1032 | */ | |
1033 | ||
0b4e3aa0 A |
1034 | if(m != VM_PAGE_NULL) { |
1035 | ||
1036 | m->list_req_pending = TRUE; | |
1037 | m->absent = TRUE; | |
1038 | m->unusual = TRUE; | |
1039 | object->absent_count++; | |
1040 | ||
1041 | } | |
1c79356b A |
1042 | |
1043 | cluster_start = offset; | |
1044 | length = PAGE_SIZE; | |
1045 | cluster_size = object->cluster_size; | |
1046 | ||
1047 | /* | |
1048 | * Skip clustered pagein if it is globally disabled | |
1049 | * or random page reference behavior is expected | |
1050 | * for the address range containing the faulting | |
1051 | * address or the object paging block size is | |
1052 | * equal to the page size. | |
1053 | */ | |
1054 | if (!vm_allow_clustered_pagein || | |
1055 | behavior == VM_BEHAVIOR_RANDOM || | |
0b4e3aa0 | 1056 | m == VM_PAGE_NULL || |
1c79356b A |
1057 | cluster_size == PAGE_SIZE) { |
1058 | cluster_start = trunc_page_64(cluster_start); | |
1059 | goto no_clustering; | |
1060 | } | |
1061 | ||
1062 | assert(offset >= lo_offset); | |
1063 | assert(offset < hi_offset); | |
1064 | assert(ALIGNED(object->paging_offset)); | |
1065 | assert(cluster_size >= PAGE_SIZE); | |
1066 | ||
1067 | #if TRACEFAULTPAGE | |
1068 | dbgTrace(0xBEEF0011, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1069 | #endif | |
1070 | /* | |
1071 | * Decide whether to scan ahead or behind for | |
1072 | * additional pages contiguous to the faulted | |
1073 | * page in the same paging block. The decision | |
1074 | * is based on system wide globals and the | |
1075 | * expected page reference behavior of the | |
1076 | * address range contained the faulting address. | |
1077 | * First calculate some constants. | |
1078 | */ | |
1079 | paging_offset = offset + object->paging_offset; | |
1080 | cluster_offset = paging_offset & (cluster_size - 1); | |
1081 | align_offset = paging_offset&(PAGE_SIZE_64-1); | |
1082 | if (align_offset != 0) { | |
1083 | cluster_offset = trunc_page_64(cluster_offset); | |
1084 | } | |
1085 | ||
1086 | #define SPANS_CLUSTER(x) ((((x) - align_offset) & (vm_object_offset_t)(cluster_size - 1)) == 0) | |
1087 | ||
1088 | /* | |
1089 | * Backward scan only if reverse sequential | |
1090 | * behavior has been specified | |
1091 | */ | |
1092 | CLUSTER_STAT(pages_at_lower_offsets = 0;) | |
1093 | if (((vm_default_behind != 0 && | |
1094 | behavior == VM_BEHAVIOR_DEFAULT) || | |
1095 | behavior == VM_BEHAVIOR_RSEQNTL) && offset) { | |
1096 | vm_object_offset_t cluster_bot; | |
1097 | ||
1098 | /* | |
1099 | * Calculate lower search boundary. | |
1100 | * Exclude pages that span a cluster boundary. | |
1101 | * Clip to start of map entry. | |
1102 | * For default page reference behavior, scan | |
1103 | * default pages behind. | |
1104 | */ | |
1105 | cluster_bot = (offset > cluster_offset) ? | |
1106 | offset - cluster_offset : offset; | |
1107 | if (align_offset != 0) { | |
1108 | if ((cluster_bot < offset) && | |
1109 | SPANS_CLUSTER(cluster_bot)) { | |
1110 | cluster_bot += PAGE_SIZE_64; | |
1111 | } | |
1112 | } | |
1113 | if (behavior == VM_BEHAVIOR_DEFAULT) { | |
1114 | vm_object_offset_t | |
1115 | bot = (vm_object_offset_t) | |
1116 | (vm_default_behind * PAGE_SIZE); | |
1117 | ||
1118 | if (cluster_bot < (offset - bot)) | |
1119 | cluster_bot = offset - bot; | |
1120 | } | |
1121 | if (lo_offset > cluster_bot) | |
1122 | cluster_bot = lo_offset; | |
1123 | ||
1124 | for ( cluster_start = offset - PAGE_SIZE_64; | |
1125 | (cluster_start >= cluster_bot) && | |
1126 | (cluster_start != | |
1127 | (align_offset - PAGE_SIZE_64)); | |
1128 | cluster_start -= PAGE_SIZE_64) { | |
1129 | assert(cluster_size > PAGE_SIZE_64); | |
1130 | retry_cluster_backw: | |
1131 | if (!LOOK_FOR(object, cluster_start) || | |
1132 | vm_page_lookup(object, cluster_start) | |
1133 | != VM_PAGE_NULL) { | |
1134 | break; | |
1135 | } | |
1136 | if (object->internal) { | |
1137 | /* | |
1138 | * need to acquire a real page in | |
1139 | * advance because this acts as | |
1140 | * a throttling mechanism for | |
1141 | * data_requests to the default | |
1142 | * pager. If this fails, give up | |
1143 | * trying to find any more pages | |
1144 | * in the cluster and send off the | |
1145 | * request for what we already have. | |
1146 | */ | |
1147 | if ((m = vm_page_grab()) | |
1148 | == VM_PAGE_NULL) { | |
1149 | cluster_start += PAGE_SIZE_64; | |
1150 | cluster_end = offset + PAGE_SIZE_64; | |
1151 | goto give_up; | |
1152 | } | |
1153 | } else if ((m = vm_page_grab_fictitious()) | |
1154 | == VM_PAGE_NULL) { | |
1155 | vm_object_unlock(object); | |
1156 | vm_page_more_fictitious(); | |
1157 | vm_object_lock(object); | |
1158 | goto retry_cluster_backw; | |
1159 | } | |
1160 | m->absent = TRUE; | |
1161 | m->unusual = TRUE; | |
1162 | m->clustered = TRUE; | |
1163 | m->list_req_pending = TRUE; | |
1164 | ||
1165 | vm_page_insert(m, object, cluster_start); | |
1166 | CLUSTER_STAT(pages_at_lower_offsets++;) | |
1167 | object->absent_count++; | |
1168 | } | |
1169 | cluster_start += PAGE_SIZE_64; | |
1170 | assert(cluster_start >= cluster_bot); | |
1171 | } | |
1172 | assert(cluster_start <= offset); | |
1173 | ||
1174 | /* | |
1175 | * Forward scan if default or sequential behavior | |
1176 | * specified | |
1177 | */ | |
1178 | CLUSTER_STAT(pages_at_higher_offsets = 0;) | |
1179 | if ((behavior == VM_BEHAVIOR_DEFAULT && | |
1180 | vm_default_ahead != 0) || | |
1181 | behavior == VM_BEHAVIOR_SEQUENTIAL) { | |
1182 | vm_object_offset_t cluster_top; | |
1183 | ||
1184 | /* | |
1185 | * Calculate upper search boundary. | |
1186 | * Exclude pages that span a cluster boundary. | |
1187 | * Clip to end of map entry. | |
1188 | * For default page reference behavior, scan | |
1189 | * default pages ahead. | |
1190 | */ | |
1191 | cluster_top = (offset + cluster_size) - | |
1192 | cluster_offset; | |
1193 | if (align_offset != 0) { | |
1194 | if ((cluster_top > (offset + PAGE_SIZE_64)) && | |
1195 | SPANS_CLUSTER(cluster_top)) { | |
1196 | cluster_top -= PAGE_SIZE_64; | |
1197 | } | |
1198 | } | |
1199 | if (behavior == VM_BEHAVIOR_DEFAULT) { | |
1200 | vm_object_offset_t top = (vm_object_offset_t) | |
1201 | ((vm_default_ahead*PAGE_SIZE)+PAGE_SIZE); | |
1202 | ||
1203 | if (cluster_top > (offset + top)) | |
1204 | cluster_top = offset + top; | |
1205 | } | |
1206 | if (cluster_top > hi_offset) | |
1207 | cluster_top = hi_offset; | |
1208 | ||
1209 | for (cluster_end = offset + PAGE_SIZE_64; | |
1210 | cluster_end < cluster_top; | |
1211 | cluster_end += PAGE_SIZE_64) { | |
1212 | assert(cluster_size > PAGE_SIZE); | |
1213 | retry_cluster_forw: | |
1214 | if (!LOOK_FOR(object, cluster_end) || | |
1215 | vm_page_lookup(object, cluster_end) | |
1216 | != VM_PAGE_NULL) { | |
1217 | break; | |
1218 | } | |
1219 | if (object->internal) { | |
1220 | /* | |
1221 | * need to acquire a real page in | |
1222 | * advance because this acts as | |
1223 | * a throttling mechanism for | |
1224 | * data_requests to the default | |
1225 | * pager. If this fails, give up | |
1226 | * trying to find any more pages | |
1227 | * in the cluster and send off the | |
1228 | * request for what we already have. | |
1229 | */ | |
1230 | if ((m = vm_page_grab()) | |
1231 | == VM_PAGE_NULL) { | |
1232 | break; | |
1233 | } | |
1234 | } else if ((m = vm_page_grab_fictitious()) | |
1235 | == VM_PAGE_NULL) { | |
1236 | vm_object_unlock(object); | |
1237 | vm_page_more_fictitious(); | |
1238 | vm_object_lock(object); | |
1239 | goto retry_cluster_forw; | |
1240 | } | |
1241 | m->absent = TRUE; | |
1242 | m->unusual = TRUE; | |
1243 | m->clustered = TRUE; | |
1244 | m->list_req_pending = TRUE; | |
1245 | ||
1246 | vm_page_insert(m, object, cluster_end); | |
1247 | CLUSTER_STAT(pages_at_higher_offsets++;) | |
1248 | object->absent_count++; | |
1249 | } | |
1250 | assert(cluster_end <= cluster_top); | |
1251 | } | |
1252 | else { | |
1253 | cluster_end = offset + PAGE_SIZE_64; | |
1254 | } | |
1255 | give_up: | |
1256 | assert(cluster_end >= offset + PAGE_SIZE_64); | |
1257 | length = cluster_end - cluster_start; | |
1258 | ||
1259 | #if MACH_CLUSTER_STATS | |
1260 | CLUSTER_STAT_HIGHER(pages_at_higher_offsets); | |
1261 | CLUSTER_STAT_LOWER(pages_at_lower_offsets); | |
1262 | CLUSTER_STAT_CLUSTER(length/PAGE_SIZE); | |
1263 | #endif /* MACH_CLUSTER_STATS */ | |
1264 | ||
1265 | no_clustering: | |
0b4e3aa0 A |
1266 | /* |
1267 | * lengthen the cluster by the pages in the working set | |
1268 | */ | |
1269 | if((map != NULL) && | |
1270 | (current_task()->dynamic_working_set != 0)) { | |
1271 | cluster_end = cluster_start + length; | |
1272 | /* tws values for start and end are just a | |
1273 | * suggestions. Therefore, as long as | |
1274 | * build_cluster does not use pointers or | |
1275 | * take action based on values that | |
1276 | * could be affected by re-entrance we | |
1277 | * do not need to take the map lock. | |
1278 | */ | |
1279 | tws_build_cluster((tws_hash_t) | |
1280 | current_task()->dynamic_working_set, | |
1281 | object, &cluster_start, | |
1282 | &cluster_end, 0x16000); | |
1283 | length = cluster_end - cluster_start; | |
1284 | } | |
1c79356b A |
1285 | #if TRACEFAULTPAGE |
1286 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1287 | #endif | |
1288 | /* | |
1289 | * We have a busy page, so we can | |
1290 | * release the object lock. | |
1291 | */ | |
1292 | vm_object_unlock(object); | |
1293 | ||
1294 | /* | |
1295 | * Call the memory manager to retrieve the data. | |
1296 | */ | |
1297 | ||
1298 | if (type_of_fault) | |
1299 | *type_of_fault = DBG_PAGEIN_FAULT; | |
1300 | VM_STAT(pageins++); | |
1301 | current_task()->pageins++; | |
0b4e3aa0 | 1302 | bumped_pagein = TRUE; |
1c79356b A |
1303 | |
1304 | /* | |
1305 | * If this object uses a copy_call strategy, | |
1306 | * and we are interested in a copy of this object | |
1307 | * (having gotten here only by following a | |
1308 | * shadow chain), then tell the memory manager | |
1309 | * via a flag added to the desired_access | |
1310 | * parameter, so that it can detect a race | |
1311 | * between our walking down the shadow chain | |
1312 | * and its pushing pages up into a copy of | |
1313 | * the object that it manages. | |
1314 | */ | |
1315 | ||
1316 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && | |
1317 | object != first_object) { | |
1318 | wants_copy_flag = VM_PROT_WANTS_COPY; | |
1319 | } else { | |
1320 | wants_copy_flag = VM_PROT_NONE; | |
1321 | } | |
1322 | ||
1323 | XPR(XPR_VM_FAULT, | |
1324 | "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n", | |
1325 | (integer_t)object, offset, (integer_t)m, | |
1326 | access_required | wants_copy_flag, 0); | |
1327 | ||
1c79356b | 1328 | rc = memory_object_data_request(object->pager, |
1c79356b A |
1329 | cluster_start + object->paging_offset, |
1330 | length, | |
1331 | access_required | wants_copy_flag); | |
1332 | ||
1c79356b A |
1333 | |
1334 | #if TRACEFAULTPAGE | |
1335 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ | |
1336 | #endif | |
1337 | if (rc != KERN_SUCCESS) { | |
1338 | if (rc != MACH_SEND_INTERRUPTED | |
1339 | && vm_fault_debug) | |
0b4e3aa0 | 1340 | printf("%s(0x%x, 0x%x, 0x%x, 0x%x) failed, rc=%d\n", |
1c79356b A |
1341 | "memory_object_data_request", |
1342 | object->pager, | |
1c79356b | 1343 | cluster_start + object->paging_offset, |
0b4e3aa0 | 1344 | length, access_required, rc); |
1c79356b A |
1345 | /* |
1346 | * Don't want to leave a busy page around, | |
1347 | * but the data request may have blocked, | |
1348 | * so check if it's still there and busy. | |
1349 | */ | |
0b4e3aa0 A |
1350 | if(!object->phys_contiguous) { |
1351 | vm_object_lock(object); | |
1352 | for (; length; length -= PAGE_SIZE, | |
1353 | cluster_start += PAGE_SIZE_64) { | |
1354 | vm_page_t p; | |
1355 | if ((p = vm_page_lookup(object, | |
1c79356b | 1356 | cluster_start)) |
0b4e3aa0 A |
1357 | && p->absent && p->busy |
1358 | && p != first_m) { | |
1359 | VM_PAGE_FREE(p); | |
1360 | } | |
1361 | } | |
1c79356b A |
1362 | } |
1363 | vm_fault_cleanup(object, first_m); | |
1364 | cur_thread->interruptible = interruptible_state; | |
1365 | return((rc == MACH_SEND_INTERRUPTED) ? | |
1366 | VM_FAULT_INTERRUPTED : | |
1367 | VM_FAULT_MEMORY_ERROR); | |
0b4e3aa0 A |
1368 | } else { |
1369 | #ifdef notdefcdy | |
1370 | tws_hash_line_t line; | |
1371 | task_t task; | |
1372 | ||
1373 | task = current_task(); | |
1374 | ||
1375 | if((map != NULL) && | |
1376 | (task->dynamic_working_set != 0)) { | |
1377 | if(tws_lookup | |
1378 | ((tws_hash_t) | |
1379 | task->dynamic_working_set, | |
1380 | offset, object, | |
1381 | &line) == KERN_SUCCESS) { | |
1382 | tws_line_signal((tws_hash_t) | |
1383 | task->dynamic_working_set, | |
1384 | map, line, vaddr); | |
1385 | } | |
1386 | } | |
1387 | #endif | |
1c79356b A |
1388 | } |
1389 | ||
1390 | /* | |
1391 | * Retry with same object/offset, since new data may | |
1392 | * be in a different page (i.e., m is meaningless at | |
1393 | * this point). | |
1394 | */ | |
1395 | vm_object_lock(object); | |
1396 | if ((interruptible != THREAD_UNINT) && | |
1397 | (current_thread()->state & TH_ABORT)) { | |
1398 | vm_fault_cleanup(object, first_m); | |
1399 | cur_thread->interruptible = interruptible_state; | |
1400 | return(VM_FAULT_INTERRUPTED); | |
1401 | } | |
0b4e3aa0 A |
1402 | if(m == VM_PAGE_NULL) |
1403 | break; | |
1c79356b A |
1404 | continue; |
1405 | } | |
1406 | ||
1407 | /* | |
1408 | * The only case in which we get here is if | |
1409 | * object has no pager (or unwiring). If the pager doesn't | |
1410 | * have the page this is handled in the m->absent case above | |
1411 | * (and if you change things here you should look above). | |
1412 | */ | |
1413 | #if TRACEFAULTPAGE | |
1414 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1415 | #endif | |
1416 | if (object == first_object) | |
1417 | first_m = m; | |
1418 | else | |
1419 | assert(m == VM_PAGE_NULL); | |
1420 | ||
1421 | XPR(XPR_VM_FAULT, | |
1422 | "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n", | |
1423 | (integer_t)object, offset, (integer_t)m, | |
1424 | (integer_t)object->shadow, 0); | |
1425 | /* | |
1426 | * Move on to the next object. Lock the next | |
1427 | * object before unlocking the current one. | |
1428 | */ | |
1429 | next_object = object->shadow; | |
1430 | if (next_object == VM_OBJECT_NULL) { | |
1431 | assert(!must_be_resident); | |
1432 | /* | |
1433 | * If there's no object left, fill the page | |
1434 | * in the top object with zeros. But first we | |
1435 | * need to allocate a real page. | |
1436 | */ | |
1437 | ||
1438 | if (object != first_object) { | |
1439 | vm_object_paging_end(object); | |
1440 | vm_object_unlock(object); | |
1441 | ||
1442 | object = first_object; | |
1443 | offset = first_offset; | |
1444 | vm_object_lock(object); | |
1445 | } | |
1446 | ||
1447 | m = first_m; | |
1448 | assert(m->object == object); | |
1449 | first_m = VM_PAGE_NULL; | |
1450 | ||
1451 | if (object->shadow_severed) { | |
1452 | VM_PAGE_FREE(m); | |
1453 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
1454 | cur_thread->interruptible = interruptible_state; | |
1455 | return VM_FAULT_MEMORY_ERROR; | |
1456 | } | |
1457 | ||
1458 | if (VM_PAGE_THROTTLED() || | |
1459 | (m->fictitious && !vm_page_convert(m))) { | |
1460 | VM_PAGE_FREE(m); | |
1461 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
1462 | cur_thread->interruptible = interruptible_state; | |
1463 | return(VM_FAULT_MEMORY_SHORTAGE); | |
1464 | } | |
0b4e3aa0 | 1465 | m->no_isync = FALSE; |
1c79356b A |
1466 | |
1467 | if (!no_zero_fill) { | |
1468 | vm_object_unlock(object); | |
1469 | vm_page_zero_fill(m); | |
1470 | if (type_of_fault) | |
1471 | *type_of_fault = DBG_ZERO_FILL_FAULT; | |
1472 | VM_STAT(zero_fill_count++); | |
0b4e3aa0 A |
1473 | |
1474 | if (bumped_pagein == TRUE) { | |
1475 | VM_STAT(pageins--); | |
1476 | current_task()->pageins--; | |
1477 | } | |
1c79356b A |
1478 | vm_object_lock(object); |
1479 | } | |
1480 | vm_page_lock_queues(); | |
1481 | VM_PAGE_QUEUES_REMOVE(m); | |
0b4e3aa0 A |
1482 | m->page_ticket = vm_page_ticket; |
1483 | vm_page_ticket_roll++; | |
1484 | if(vm_page_ticket_roll == VM_PAGE_TICKETS_IN_ROLL) { | |
1485 | vm_page_ticket_roll = 0; | |
1486 | if(vm_page_ticket == | |
1487 | VM_PAGE_TICKET_ROLL_IDS) | |
1488 | vm_page_ticket= 0; | |
1489 | else | |
1490 | vm_page_ticket++; | |
1491 | } | |
1c79356b A |
1492 | queue_enter(&vm_page_queue_inactive, |
1493 | m, vm_page_t, pageq); | |
1494 | m->inactive = TRUE; | |
1495 | vm_page_inactive_count++; | |
1496 | vm_page_unlock_queues(); | |
1497 | pmap_clear_modify(m->phys_addr); | |
1498 | break; | |
1499 | } | |
1500 | else { | |
1501 | if ((object != first_object) || must_be_resident) | |
1502 | vm_object_paging_end(object); | |
1503 | offset += object->shadow_offset; | |
1504 | hi_offset += object->shadow_offset; | |
1505 | lo_offset += object->shadow_offset; | |
1506 | access_required = VM_PROT_READ; | |
1507 | vm_object_lock(next_object); | |
1508 | vm_object_unlock(object); | |
1509 | object = next_object; | |
1510 | vm_object_paging_begin(object); | |
1511 | } | |
1512 | } | |
1513 | ||
1514 | /* | |
1515 | * PAGE HAS BEEN FOUND. | |
1516 | * | |
1517 | * This page (m) is: | |
1518 | * busy, so that we can play with it; | |
1519 | * not absent, so that nobody else will fill it; | |
1520 | * possibly eligible for pageout; | |
1521 | * | |
1522 | * The top-level page (first_m) is: | |
1523 | * VM_PAGE_NULL if the page was found in the | |
1524 | * top-level object; | |
1525 | * busy, not absent, and ineligible for pageout. | |
1526 | * | |
1527 | * The current object (object) is locked. A paging | |
1528 | * reference is held for the current and top-level | |
1529 | * objects. | |
1530 | */ | |
1531 | ||
1532 | #if TRACEFAULTPAGE | |
1533 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1534 | #endif | |
1535 | #if EXTRA_ASSERTIONS | |
0b4e3aa0 A |
1536 | if(m != VM_PAGE_NULL) { |
1537 | assert(m->busy && !m->absent); | |
1538 | assert((first_m == VM_PAGE_NULL) || | |
1539 | (first_m->busy && !first_m->absent && | |
1540 | !first_m->active && !first_m->inactive)); | |
1541 | } | |
1c79356b A |
1542 | #endif /* EXTRA_ASSERTIONS */ |
1543 | ||
1544 | XPR(XPR_VM_FAULT, | |
1545 | "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n", | |
1546 | (integer_t)object, offset, (integer_t)m, | |
1547 | (integer_t)first_object, (integer_t)first_m); | |
1548 | /* | |
1549 | * If the page is being written, but isn't | |
1550 | * already owned by the top-level object, | |
1551 | * we have to copy it into a new page owned | |
1552 | * by the top-level object. | |
1553 | */ | |
1554 | ||
0b4e3aa0 | 1555 | if ((object != first_object) && (m != VM_PAGE_NULL)) { |
1c79356b A |
1556 | /* |
1557 | * We only really need to copy if we | |
1558 | * want to write it. | |
1559 | */ | |
1560 | ||
1561 | #if TRACEFAULTPAGE | |
1562 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1563 | #endif | |
1564 | if (fault_type & VM_PROT_WRITE) { | |
1565 | vm_page_t copy_m; | |
1566 | ||
1567 | assert(!must_be_resident); | |
1568 | ||
1569 | /* | |
1570 | * If we try to collapse first_object at this | |
1571 | * point, we may deadlock when we try to get | |
1572 | * the lock on an intermediate object (since we | |
1573 | * have the bottom object locked). We can't | |
1574 | * unlock the bottom object, because the page | |
1575 | * we found may move (by collapse) if we do. | |
1576 | * | |
1577 | * Instead, we first copy the page. Then, when | |
1578 | * we have no more use for the bottom object, | |
1579 | * we unlock it and try to collapse. | |
1580 | * | |
1581 | * Note that we copy the page even if we didn't | |
1582 | * need to... that's the breaks. | |
1583 | */ | |
1584 | ||
1585 | /* | |
1586 | * Allocate a page for the copy | |
1587 | */ | |
1588 | copy_m = vm_page_grab(); | |
1589 | if (copy_m == VM_PAGE_NULL) { | |
1590 | RELEASE_PAGE(m); | |
1591 | vm_fault_cleanup(object, first_m); | |
1592 | cur_thread->interruptible = interruptible_state; | |
1593 | return(VM_FAULT_MEMORY_SHORTAGE); | |
1594 | } | |
1595 | ||
1596 | ||
1597 | XPR(XPR_VM_FAULT, | |
1598 | "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n", | |
1599 | (integer_t)object, offset, | |
1600 | (integer_t)m, (integer_t)copy_m, 0); | |
1601 | vm_page_copy(m, copy_m); | |
1602 | ||
1603 | /* | |
1604 | * If another map is truly sharing this | |
1605 | * page with us, we have to flush all | |
1606 | * uses of the original page, since we | |
1607 | * can't distinguish those which want the | |
1608 | * original from those which need the | |
1609 | * new copy. | |
1610 | * | |
1611 | * XXXO If we know that only one map has | |
1612 | * access to this page, then we could | |
1613 | * avoid the pmap_page_protect() call. | |
1614 | */ | |
1615 | ||
1616 | vm_page_lock_queues(); | |
1617 | assert(!m->cleaning); | |
1618 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); | |
1619 | vm_page_deactivate(m); | |
1620 | copy_m->dirty = TRUE; | |
1621 | /* | |
1622 | * Setting reference here prevents this fault from | |
1623 | * being counted as a (per-thread) reactivate as well | |
1624 | * as a copy-on-write. | |
1625 | */ | |
1626 | first_m->reference = TRUE; | |
1627 | vm_page_unlock_queues(); | |
1628 | ||
1629 | /* | |
1630 | * We no longer need the old page or object. | |
1631 | */ | |
1632 | ||
1633 | PAGE_WAKEUP_DONE(m); | |
1634 | vm_object_paging_end(object); | |
1635 | vm_object_unlock(object); | |
1636 | ||
1637 | if (type_of_fault) | |
1638 | *type_of_fault = DBG_COW_FAULT; | |
1639 | VM_STAT(cow_faults++); | |
1640 | current_task()->cow_faults++; | |
1641 | object = first_object; | |
1642 | offset = first_offset; | |
1643 | ||
1644 | vm_object_lock(object); | |
1645 | VM_PAGE_FREE(first_m); | |
1646 | first_m = VM_PAGE_NULL; | |
1647 | assert(copy_m->busy); | |
1648 | vm_page_insert(copy_m, object, offset); | |
1649 | m = copy_m; | |
1650 | ||
1651 | /* | |
1652 | * Now that we've gotten the copy out of the | |
1653 | * way, let's try to collapse the top object. | |
1654 | * But we have to play ugly games with | |
1655 | * paging_in_progress to do that... | |
1656 | */ | |
1657 | ||
1658 | vm_object_paging_end(object); | |
1659 | vm_object_collapse(object); | |
1660 | vm_object_paging_begin(object); | |
1661 | ||
1662 | } | |
1663 | else { | |
1664 | *protection &= (~VM_PROT_WRITE); | |
1665 | } | |
1666 | } | |
1667 | ||
1668 | /* | |
1669 | * Now check whether the page needs to be pushed into the | |
1670 | * copy object. The use of asymmetric copy on write for | |
1671 | * shared temporary objects means that we may do two copies to | |
1672 | * satisfy the fault; one above to get the page from a | |
1673 | * shadowed object, and one here to push it into the copy. | |
1674 | */ | |
1675 | ||
1676 | while (first_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY && | |
0b4e3aa0 A |
1677 | (copy_object = first_object->copy) != VM_OBJECT_NULL && |
1678 | (m!= VM_PAGE_NULL)) { | |
1c79356b A |
1679 | vm_object_offset_t copy_offset; |
1680 | vm_page_t copy_m; | |
1681 | ||
1682 | #if TRACEFAULTPAGE | |
1683 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1684 | #endif | |
1685 | /* | |
1686 | * If the page is being written, but hasn't been | |
1687 | * copied to the copy-object, we have to copy it there. | |
1688 | */ | |
1689 | ||
1690 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
1691 | *protection &= ~VM_PROT_WRITE; | |
1692 | break; | |
1693 | } | |
1694 | ||
1695 | /* | |
1696 | * If the page was guaranteed to be resident, | |
1697 | * we must have already performed the copy. | |
1698 | */ | |
1699 | ||
1700 | if (must_be_resident) | |
1701 | break; | |
1702 | ||
1703 | /* | |
1704 | * Try to get the lock on the copy_object. | |
1705 | */ | |
1706 | if (!vm_object_lock_try(copy_object)) { | |
1707 | vm_object_unlock(object); | |
1708 | ||
1709 | mutex_pause(); /* wait a bit */ | |
1710 | ||
1711 | vm_object_lock(object); | |
1712 | continue; | |
1713 | } | |
1714 | ||
1715 | /* | |
1716 | * Make another reference to the copy-object, | |
1717 | * to keep it from disappearing during the | |
1718 | * copy. | |
1719 | */ | |
1720 | assert(copy_object->ref_count > 0); | |
1721 | copy_object->ref_count++; | |
1722 | VM_OBJ_RES_INCR(copy_object); | |
1723 | ||
1724 | /* | |
1725 | * Does the page exist in the copy? | |
1726 | */ | |
1727 | copy_offset = first_offset - copy_object->shadow_offset; | |
1728 | if (copy_object->size <= copy_offset) | |
1729 | /* | |
1730 | * Copy object doesn't cover this page -- do nothing. | |
1731 | */ | |
1732 | ; | |
1733 | else if ((copy_m = | |
1734 | vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { | |
1735 | /* Page currently exists in the copy object */ | |
1736 | if (copy_m->busy) { | |
1737 | /* | |
1738 | * If the page is being brought | |
1739 | * in, wait for it and then retry. | |
1740 | */ | |
1741 | RELEASE_PAGE(m); | |
1742 | /* take an extra ref so object won't die */ | |
1743 | assert(copy_object->ref_count > 0); | |
1744 | copy_object->ref_count++; | |
1745 | vm_object_res_reference(copy_object); | |
1746 | vm_object_unlock(copy_object); | |
1747 | vm_fault_cleanup(object, first_m); | |
1748 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1749 | vm_object_lock(copy_object); | |
1750 | assert(copy_object->ref_count > 0); | |
1751 | VM_OBJ_RES_DECR(copy_object); | |
1752 | copy_object->ref_count--; | |
1753 | assert(copy_object->ref_count > 0); | |
1754 | copy_m = vm_page_lookup(copy_object, copy_offset); | |
1755 | if (copy_m != VM_PAGE_NULL && copy_m->busy) { | |
1756 | PAGE_ASSERT_WAIT(copy_m, interruptible); | |
1757 | vm_object_unlock(copy_object); | |
1758 | wait_result = thread_block((void (*)(void))0); | |
1759 | vm_object_deallocate(copy_object); | |
1760 | goto backoff; | |
1761 | } else { | |
1762 | vm_object_unlock(copy_object); | |
1763 | vm_object_deallocate(copy_object); | |
1764 | cur_thread->interruptible = interruptible_state; | |
1765 | return VM_FAULT_RETRY; | |
1766 | } | |
1767 | } | |
1768 | } | |
1769 | else if (!PAGED_OUT(copy_object, copy_offset)) { | |
1770 | /* | |
1771 | * If PAGED_OUT is TRUE, then the page used to exist | |
1772 | * in the copy-object, and has already been paged out. | |
1773 | * We don't need to repeat this. If PAGED_OUT is | |
1774 | * FALSE, then either we don't know (!pager_created, | |
1775 | * for example) or it hasn't been paged out. | |
1776 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) | |
1777 | * We must copy the page to the copy object. | |
1778 | */ | |
1779 | ||
1780 | /* | |
1781 | * Allocate a page for the copy | |
1782 | */ | |
1783 | copy_m = vm_page_alloc(copy_object, copy_offset); | |
1784 | if (copy_m == VM_PAGE_NULL) { | |
1785 | RELEASE_PAGE(m); | |
1786 | VM_OBJ_RES_DECR(copy_object); | |
1787 | copy_object->ref_count--; | |
1788 | assert(copy_object->ref_count > 0); | |
1789 | vm_object_unlock(copy_object); | |
1790 | vm_fault_cleanup(object, first_m); | |
1791 | cur_thread->interruptible = interruptible_state; | |
1792 | return(VM_FAULT_MEMORY_SHORTAGE); | |
1793 | } | |
1794 | ||
1795 | /* | |
1796 | * Must copy page into copy-object. | |
1797 | */ | |
1798 | ||
1799 | vm_page_copy(m, copy_m); | |
1800 | ||
1801 | /* | |
1802 | * If the old page was in use by any users | |
1803 | * of the copy-object, it must be removed | |
1804 | * from all pmaps. (We can't know which | |
1805 | * pmaps use it.) | |
1806 | */ | |
1807 | ||
1808 | vm_page_lock_queues(); | |
1809 | assert(!m->cleaning); | |
1810 | pmap_page_protect(m->phys_addr, VM_PROT_NONE); | |
1811 | copy_m->dirty = TRUE; | |
1812 | vm_page_unlock_queues(); | |
1813 | ||
1814 | /* | |
1815 | * If there's a pager, then immediately | |
1816 | * page out this page, using the "initialize" | |
1817 | * option. Else, we use the copy. | |
1818 | */ | |
1819 | ||
1820 | if | |
1821 | #if MACH_PAGEMAP | |
1822 | ((!copy_object->pager_created) || | |
1823 | vm_external_state_get( | |
1824 | copy_object->existence_map, copy_offset) | |
1825 | == VM_EXTERNAL_STATE_ABSENT) | |
1826 | #else | |
1827 | (!copy_object->pager_created) | |
1828 | #endif | |
1829 | { | |
1830 | vm_page_lock_queues(); | |
1831 | vm_page_activate(copy_m); | |
1832 | vm_page_unlock_queues(); | |
1833 | PAGE_WAKEUP_DONE(copy_m); | |
1834 | } | |
1835 | else { | |
1836 | assert(copy_m->busy == TRUE); | |
1837 | ||
1838 | /* | |
1839 | * The page is already ready for pageout: | |
1840 | * not on pageout queues and busy. | |
1841 | * Unlock everything except the | |
1842 | * copy_object itself. | |
1843 | */ | |
1844 | ||
1845 | vm_object_unlock(object); | |
1846 | ||
1847 | /* | |
1848 | * Write the page to the copy-object, | |
1849 | * flushing it from the kernel. | |
1850 | */ | |
1851 | ||
1852 | vm_pageout_initialize_page(copy_m); | |
1853 | ||
1854 | /* | |
1855 | * Since the pageout may have | |
1856 | * temporarily dropped the | |
1857 | * copy_object's lock, we | |
1858 | * check whether we'll have | |
1859 | * to deallocate the hard way. | |
1860 | */ | |
1861 | ||
1862 | if ((copy_object->shadow != object) || | |
1863 | (copy_object->ref_count == 1)) { | |
1864 | vm_object_unlock(copy_object); | |
1865 | vm_object_deallocate(copy_object); | |
1866 | vm_object_lock(object); | |
1867 | continue; | |
1868 | } | |
1869 | ||
1870 | /* | |
1871 | * Pick back up the old object's | |
1872 | * lock. [It is safe to do so, | |
1873 | * since it must be deeper in the | |
1874 | * object tree.] | |
1875 | */ | |
1876 | ||
1877 | vm_object_lock(object); | |
1878 | } | |
1879 | ||
1880 | /* | |
1881 | * Because we're pushing a page upward | |
1882 | * in the object tree, we must restart | |
1883 | * any faults that are waiting here. | |
1884 | * [Note that this is an expansion of | |
1885 | * PAGE_WAKEUP that uses the THREAD_RESTART | |
1886 | * wait result]. Can't turn off the page's | |
1887 | * busy bit because we're not done with it. | |
1888 | */ | |
1889 | ||
1890 | if (m->wanted) { | |
1891 | m->wanted = FALSE; | |
1892 | thread_wakeup_with_result((event_t) m, | |
1893 | THREAD_RESTART); | |
1894 | } | |
1895 | } | |
1896 | ||
1897 | /* | |
1898 | * The reference count on copy_object must be | |
1899 | * at least 2: one for our extra reference, | |
1900 | * and at least one from the outside world | |
1901 | * (we checked that when we last locked | |
1902 | * copy_object). | |
1903 | */ | |
1904 | copy_object->ref_count--; | |
1905 | assert(copy_object->ref_count > 0); | |
1906 | VM_OBJ_RES_DECR(copy_object); | |
1907 | vm_object_unlock(copy_object); | |
1908 | ||
1909 | break; | |
1910 | } | |
1911 | ||
1912 | *result_page = m; | |
1913 | *top_page = first_m; | |
1914 | ||
1915 | XPR(XPR_VM_FAULT, | |
1916 | "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n", | |
1917 | (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0); | |
1918 | /* | |
1919 | * If the page can be written, assume that it will be. | |
1920 | * [Earlier, we restrict the permission to allow write | |
1921 | * access only if the fault so required, so we don't | |
1922 | * mark read-only data as dirty.] | |
1923 | */ | |
1924 | ||
1925 | #if !VM_FAULT_STATIC_CONFIG | |
0b4e3aa0 A |
1926 | if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE) && |
1927 | (m != VM_PAGE_NULL)) { | |
1c79356b | 1928 | m->dirty = TRUE; |
0b4e3aa0 | 1929 | } |
1c79356b A |
1930 | #endif |
1931 | #if TRACEFAULTPAGE | |
1932 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_page_deactivate_behind); /* (TEST/DEBUG) */ | |
1933 | #endif | |
1934 | if (vm_page_deactivate_behind) { | |
1935 | if (offset && /* don't underflow */ | |
1936 | (object->last_alloc == (offset - PAGE_SIZE_64))) { | |
1937 | m = vm_page_lookup(object, object->last_alloc); | |
1938 | if ((m != VM_PAGE_NULL) && !m->busy) { | |
1939 | vm_page_lock_queues(); | |
1940 | vm_page_deactivate(m); | |
1941 | vm_page_unlock_queues(); | |
1942 | } | |
1943 | #if TRACEFAULTPAGE | |
1944 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1945 | #endif | |
1946 | } | |
1947 | object->last_alloc = offset; | |
1948 | } | |
1949 | #if TRACEFAULTPAGE | |
1950 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ | |
1951 | #endif | |
1952 | cur_thread->interruptible = interruptible_state; | |
0b4e3aa0 A |
1953 | if(*result_page == VM_PAGE_NULL) { |
1954 | vm_object_unlock(object); | |
1955 | } | |
1c79356b A |
1956 | return(VM_FAULT_SUCCESS); |
1957 | ||
1958 | #if 0 | |
1959 | block_and_backoff: | |
1960 | vm_fault_cleanup(object, first_m); | |
1961 | ||
1962 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1963 | thread_block((void (*)(void))0); | |
1964 | #endif | |
1965 | ||
1966 | backoff: | |
1967 | cur_thread->interruptible = interruptible_state; | |
1968 | if (wait_result == THREAD_INTERRUPTED) | |
1969 | return VM_FAULT_INTERRUPTED; | |
1970 | return VM_FAULT_RETRY; | |
1971 | ||
1972 | #undef RELEASE_PAGE | |
1973 | } | |
1974 | ||
1975 | /* | |
1976 | * Routine: vm_fault | |
1977 | * Purpose: | |
1978 | * Handle page faults, including pseudo-faults | |
1979 | * used to change the wiring status of pages. | |
1980 | * Returns: | |
1981 | * Explicit continuations have been removed. | |
1982 | * Implementation: | |
1983 | * vm_fault and vm_fault_page save mucho state | |
1984 | * in the moral equivalent of a closure. The state | |
1985 | * structure is allocated when first entering vm_fault | |
1986 | * and deallocated when leaving vm_fault. | |
1987 | */ | |
1988 | ||
1989 | kern_return_t | |
1990 | vm_fault( | |
1991 | vm_map_t map, | |
1992 | vm_offset_t vaddr, | |
1993 | vm_prot_t fault_type, | |
1994 | boolean_t change_wiring, | |
1995 | int interruptible) | |
1996 | { | |
1997 | vm_map_version_t version; /* Map version for verificiation */ | |
1998 | boolean_t wired; /* Should mapping be wired down? */ | |
1999 | vm_object_t object; /* Top-level object */ | |
2000 | vm_object_offset_t offset; /* Top-level offset */ | |
2001 | vm_prot_t prot; /* Protection for mapping */ | |
2002 | vm_behavior_t behavior; /* Expected paging behavior */ | |
2003 | vm_object_offset_t lo_offset, hi_offset; | |
2004 | vm_object_t old_copy_object; /* Saved copy object */ | |
2005 | vm_page_t result_page; /* Result of vm_fault_page */ | |
2006 | vm_page_t top_page; /* Placeholder page */ | |
2007 | kern_return_t kr; | |
2008 | ||
2009 | register | |
2010 | vm_page_t m; /* Fast access to result_page */ | |
2011 | kern_return_t error_code; /* page error reasons */ | |
2012 | register | |
2013 | vm_object_t cur_object; | |
2014 | register | |
2015 | vm_object_offset_t cur_offset; | |
2016 | vm_page_t cur_m; | |
2017 | vm_object_t new_object; | |
2018 | int type_of_fault; | |
2019 | vm_map_t pmap_map = map; | |
2020 | vm_map_t original_map = map; | |
2021 | pmap_t pmap = NULL; | |
2022 | boolean_t funnel_set = FALSE; | |
2023 | funnel_t *curflock; | |
2024 | thread_t cur_thread; | |
2025 | boolean_t interruptible_state; | |
2026 | ||
2027 | ||
2028 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_START, | |
2029 | vaddr, | |
2030 | 0, | |
2031 | 0, | |
2032 | 0, | |
2033 | 0); | |
2034 | ||
2035 | cur_thread = current_thread(); | |
2036 | ||
2037 | interruptible_state = cur_thread->interruptible; | |
2038 | if (interruptible == THREAD_UNINT) | |
2039 | cur_thread->interruptible = FALSE; | |
2040 | ||
2041 | /* | |
2042 | * assume we will hit a page in the cache | |
2043 | * otherwise, explicitly override with | |
2044 | * the real fault type once we determine it | |
2045 | */ | |
2046 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
2047 | ||
2048 | VM_STAT(faults++); | |
2049 | current_task()->faults++; | |
2050 | ||
2051 | /* | |
2052 | * drop funnel if it is already held. Then restore while returning | |
2053 | */ | |
2054 | if ((cur_thread->funnel_state & TH_FN_OWNED) == TH_FN_OWNED) { | |
2055 | funnel_set = TRUE; | |
2056 | curflock = cur_thread->funnel_lock; | |
2057 | thread_funnel_set( curflock , FALSE); | |
2058 | } | |
2059 | ||
2060 | RetryFault: ; | |
2061 | ||
2062 | /* | |
2063 | * Find the backing store object and offset into | |
2064 | * it to begin the search. | |
2065 | */ | |
2066 | map = original_map; | |
2067 | vm_map_lock_read(map); | |
2068 | kr = vm_map_lookup_locked(&map, vaddr, fault_type, &version, | |
2069 | &object, &offset, | |
2070 | &prot, &wired, | |
2071 | &behavior, &lo_offset, &hi_offset, &pmap_map); | |
2072 | ||
2073 | pmap = pmap_map->pmap; | |
2074 | ||
2075 | if (kr != KERN_SUCCESS) { | |
2076 | vm_map_unlock_read(map); | |
2077 | goto done; | |
2078 | } | |
2079 | ||
2080 | /* | |
2081 | * If the page is wired, we must fault for the current protection | |
2082 | * value, to avoid further faults. | |
2083 | */ | |
2084 | ||
2085 | if (wired) | |
2086 | fault_type = prot | VM_PROT_WRITE; | |
2087 | ||
2088 | #if VM_FAULT_CLASSIFY | |
2089 | /* | |
2090 | * Temporary data gathering code | |
2091 | */ | |
2092 | vm_fault_classify(object, offset, fault_type); | |
2093 | #endif | |
2094 | /* | |
2095 | * Fast fault code. The basic idea is to do as much as | |
2096 | * possible while holding the map lock and object locks. | |
2097 | * Busy pages are not used until the object lock has to | |
2098 | * be dropped to do something (copy, zero fill, pmap enter). | |
2099 | * Similarly, paging references aren't acquired until that | |
2100 | * point, and object references aren't used. | |
2101 | * | |
2102 | * If we can figure out what to do | |
2103 | * (zero fill, copy on write, pmap enter) while holding | |
2104 | * the locks, then it gets done. Otherwise, we give up, | |
2105 | * and use the original fault path (which doesn't hold | |
2106 | * the map lock, and relies on busy pages). | |
2107 | * The give up cases include: | |
2108 | * - Have to talk to pager. | |
2109 | * - Page is busy, absent or in error. | |
2110 | * - Pager has locked out desired access. | |
2111 | * - Fault needs to be restarted. | |
2112 | * - Have to push page into copy object. | |
2113 | * | |
2114 | * The code is an infinite loop that moves one level down | |
2115 | * the shadow chain each time. cur_object and cur_offset | |
2116 | * refer to the current object being examined. object and offset | |
2117 | * are the original object from the map. The loop is at the | |
2118 | * top level if and only if object and cur_object are the same. | |
2119 | * | |
2120 | * Invariants: Map lock is held throughout. Lock is held on | |
2121 | * original object and cur_object (if different) when | |
2122 | * continuing or exiting loop. | |
2123 | * | |
2124 | */ | |
2125 | ||
2126 | ||
2127 | /* | |
2128 | * If this page is to be inserted in a copy delay object | |
2129 | * for writing, and if the object has a copy, then the | |
2130 | * copy delay strategy is implemented in the slow fault page. | |
2131 | */ | |
2132 | if (object->copy_strategy != MEMORY_OBJECT_COPY_DELAY || | |
2133 | object->copy == VM_OBJECT_NULL || | |
2134 | (fault_type & VM_PROT_WRITE) == 0) { | |
2135 | cur_object = object; | |
2136 | cur_offset = offset; | |
2137 | ||
2138 | while (TRUE) { | |
2139 | m = vm_page_lookup(cur_object, cur_offset); | |
2140 | if (m != VM_PAGE_NULL) { | |
2141 | if (m->busy) | |
2142 | break; | |
2143 | ||
0b4e3aa0 A |
2144 | if (m->unusual && (m->error || m->restart || m->private |
2145 | || m->absent || (fault_type & m->page_lock))) { | |
1c79356b A |
2146 | |
2147 | /* | |
2148 | * Unusual case. Give up. | |
2149 | */ | |
2150 | break; | |
2151 | } | |
2152 | ||
2153 | /* | |
2154 | * Two cases of map in faults: | |
2155 | * - At top level w/o copy object. | |
2156 | * - Read fault anywhere. | |
2157 | * --> must disallow write. | |
2158 | */ | |
2159 | ||
2160 | if (object == cur_object && | |
2161 | object->copy == VM_OBJECT_NULL) | |
2162 | goto FastMapInFault; | |
2163 | ||
2164 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
2165 | ||
2166 | prot &= ~VM_PROT_WRITE; | |
2167 | ||
2168 | /* | |
2169 | * Set up to map the page ... | |
2170 | * mark the page busy, drop | |
2171 | * locks and take a paging reference | |
2172 | * on the object with the page. | |
2173 | */ | |
2174 | ||
2175 | if (object != cur_object) { | |
2176 | vm_object_unlock(object); | |
2177 | object = cur_object; | |
2178 | } | |
2179 | FastMapInFault: | |
2180 | m->busy = TRUE; | |
2181 | ||
2182 | vm_object_paging_begin(object); | |
2183 | vm_object_unlock(object); | |
2184 | ||
2185 | FastPmapEnter: | |
2186 | /* | |
2187 | * Check a couple of global reasons to | |
2188 | * be conservative about write access. | |
2189 | * Then do the pmap_enter. | |
2190 | */ | |
2191 | #if !VM_FAULT_STATIC_CONFIG | |
2192 | if (vm_fault_dirty_handling | |
2193 | #if MACH_KDB | |
2194 | || db_watchpoint_list | |
2195 | #endif | |
2196 | && (fault_type & VM_PROT_WRITE) == 0) | |
2197 | prot &= ~VM_PROT_WRITE; | |
2198 | #else /* STATIC_CONFIG */ | |
2199 | #if MACH_KDB | |
2200 | if (db_watchpoint_list | |
2201 | && (fault_type & VM_PROT_WRITE) == 0) | |
2202 | prot &= ~VM_PROT_WRITE; | |
2203 | #endif /* MACH_KDB */ | |
2204 | #endif /* STATIC_CONFIG */ | |
2205 | PMAP_ENTER(pmap, vaddr, m, prot, wired); | |
0b4e3aa0 A |
2206 | |
2207 | if (m->no_isync) { | |
2208 | pmap_attribute(pmap, | |
2209 | vaddr, | |
2210 | PAGE_SIZE, | |
2211 | MATTR_CACHE, | |
2212 | &mv_cache_sync); | |
2213 | ||
2214 | } | |
2215 | { | |
2216 | tws_hash_line_t line; | |
2217 | task_t task; | |
2218 | ||
2219 | task = current_task(); | |
2220 | if((map != NULL) && | |
2221 | (task->dynamic_working_set != 0)) { | |
2222 | if(tws_lookup | |
2223 | ((tws_hash_t) | |
2224 | task->dynamic_working_set, | |
2225 | cur_offset, object, | |
2226 | &line) != KERN_SUCCESS) { | |
2227 | if(tws_insert((tws_hash_t) | |
2228 | task->dynamic_working_set, | |
2229 | m->offset, m->object, | |
2230 | vaddr, pmap_map) | |
2231 | == KERN_NO_SPACE) { | |
2232 | tws_expand_working_set( | |
2233 | task->dynamic_working_set, | |
2234 | TWS_HASH_LINE_COUNT); | |
2235 | } | |
2236 | } | |
2237 | } | |
2238 | } | |
1c79356b A |
2239 | |
2240 | if (m->clustered) { | |
2241 | vm_pagein_cluster_used++; | |
2242 | m->clustered = FALSE; | |
1c79356b A |
2243 | } |
2244 | /* | |
2245 | * Grab the object lock to manipulate | |
2246 | * the page queues. Change wiring | |
2247 | * case is obvious. In soft ref bits | |
2248 | * case activate page only if it fell | |
2249 | * off paging queues, otherwise just | |
2250 | * activate it if it's inactive. | |
2251 | * | |
2252 | * NOTE: original vm_fault code will | |
2253 | * move active page to back of active | |
2254 | * queue. This code doesn't. | |
2255 | */ | |
2256 | vm_object_lock(object); | |
2257 | vm_page_lock_queues(); | |
0b4e3aa0 A |
2258 | /* |
2259 | * we did the isync above... we're clearing | |
2260 | * the flag here to avoid holding a lock | |
2261 | * while calling pmap functions, however | |
2262 | * we need hold the object lock before | |
2263 | * we can modify the flag | |
2264 | */ | |
2265 | m->no_isync = FALSE; | |
1c79356b A |
2266 | m->reference = TRUE; |
2267 | ||
2268 | if (change_wiring) { | |
2269 | if (wired) | |
2270 | vm_page_wire(m); | |
2271 | else | |
2272 | vm_page_unwire(m); | |
2273 | } | |
2274 | #if VM_FAULT_STATIC_CONFIG | |
2275 | else { | |
2276 | if (!m->active && !m->inactive) | |
2277 | vm_page_activate(m); | |
2278 | } | |
2279 | #else | |
2280 | else if (software_reference_bits) { | |
2281 | if (!m->active && !m->inactive) | |
2282 | vm_page_activate(m); | |
2283 | } | |
2284 | else if (!m->active) { | |
2285 | vm_page_activate(m); | |
2286 | } | |
2287 | #endif | |
2288 | vm_page_unlock_queues(); | |
2289 | ||
2290 | /* | |
2291 | * That's it, clean up and return. | |
2292 | */ | |
2293 | PAGE_WAKEUP_DONE(m); | |
2294 | vm_object_paging_end(object); | |
2295 | vm_object_unlock(object); | |
2296 | vm_map_unlock_read(map); | |
2297 | if(pmap_map != map) | |
2298 | vm_map_unlock(pmap_map); | |
2299 | ||
2300 | if (funnel_set) { | |
2301 | thread_funnel_set( curflock, TRUE); | |
2302 | funnel_set = FALSE; | |
2303 | } | |
2304 | cur_thread->interruptible = interruptible_state; | |
2305 | ||
2306 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END, | |
2307 | vaddr, | |
2308 | type_of_fault, | |
2309 | KERN_SUCCESS, | |
2310 | 0, | |
2311 | 0); | |
2312 | return KERN_SUCCESS; | |
2313 | } | |
2314 | ||
2315 | /* | |
2316 | * Copy on write fault. If objects match, then | |
2317 | * object->copy must not be NULL (else control | |
2318 | * would be in previous code block), and we | |
2319 | * have a potential push into the copy object | |
2320 | * with which we won't cope here. | |
2321 | */ | |
2322 | ||
2323 | if (cur_object == object) | |
2324 | break; | |
2325 | ||
2326 | /* | |
2327 | * This is now a shadow based copy on write | |
2328 | * fault -- it requires a copy up the shadow | |
2329 | * chain. | |
2330 | * | |
2331 | * Allocate a page in the original top level | |
2332 | * object. Give up if allocate fails. Also | |
2333 | * need to remember current page, as it's the | |
2334 | * source of the copy. | |
2335 | */ | |
2336 | cur_m = m; | |
2337 | m = vm_page_grab(); | |
2338 | if (m == VM_PAGE_NULL) { | |
2339 | break; | |
2340 | } | |
2341 | ||
2342 | /* | |
2343 | * Now do the copy. Mark the source busy | |
2344 | * and take out paging references on both | |
2345 | * objects. | |
2346 | * | |
2347 | * NOTE: This code holds the map lock across | |
2348 | * the page copy. | |
2349 | */ | |
2350 | ||
2351 | cur_m->busy = TRUE; | |
2352 | vm_page_copy(cur_m, m); | |
2353 | vm_page_insert(m, object, offset); | |
2354 | ||
2355 | vm_object_paging_begin(cur_object); | |
2356 | vm_object_paging_begin(object); | |
2357 | ||
2358 | type_of_fault = DBG_COW_FAULT; | |
2359 | VM_STAT(cow_faults++); | |
2360 | current_task()->cow_faults++; | |
2361 | ||
2362 | /* | |
2363 | * Now cope with the source page and object | |
2364 | * If the top object has a ref count of 1 | |
2365 | * then no other map can access it, and hence | |
2366 | * it's not necessary to do the pmap_page_protect. | |
2367 | */ | |
2368 | ||
2369 | ||
2370 | vm_page_lock_queues(); | |
2371 | vm_page_deactivate(cur_m); | |
2372 | m->dirty = TRUE; | |
2373 | pmap_page_protect(cur_m->phys_addr, | |
2374 | VM_PROT_NONE); | |
2375 | vm_page_unlock_queues(); | |
2376 | ||
2377 | PAGE_WAKEUP_DONE(cur_m); | |
2378 | vm_object_paging_end(cur_object); | |
2379 | vm_object_unlock(cur_object); | |
2380 | ||
2381 | /* | |
2382 | * Slight hack to call vm_object collapse | |
2383 | * and then reuse common map in code. | |
2384 | * note that the object lock was taken above. | |
2385 | */ | |
2386 | ||
2387 | vm_object_paging_end(object); | |
2388 | vm_object_collapse(object); | |
2389 | vm_object_paging_begin(object); | |
2390 | vm_object_unlock(object); | |
2391 | ||
2392 | goto FastPmapEnter; | |
2393 | } | |
2394 | else { | |
2395 | ||
2396 | /* | |
2397 | * No page at cur_object, cur_offset | |
2398 | */ | |
2399 | ||
2400 | if (cur_object->pager_created) { | |
2401 | ||
2402 | /* | |
2403 | * Have to talk to the pager. Give up. | |
2404 | */ | |
2405 | ||
2406 | break; | |
2407 | } | |
2408 | ||
2409 | ||
2410 | if (cur_object->shadow == VM_OBJECT_NULL) { | |
2411 | ||
2412 | if (cur_object->shadow_severed) { | |
2413 | vm_object_paging_end(object); | |
2414 | vm_object_unlock(object); | |
2415 | vm_map_unlock_read(map); | |
2416 | if(pmap_map != map) | |
2417 | vm_map_unlock(pmap_map); | |
2418 | ||
2419 | if (funnel_set) { | |
2420 | thread_funnel_set( curflock, TRUE); | |
2421 | funnel_set = FALSE; | |
2422 | } | |
2423 | cur_thread->interruptible = interruptible_state; | |
2424 | ||
2425 | return VM_FAULT_MEMORY_ERROR; | |
2426 | } | |
2427 | ||
2428 | /* | |
2429 | * Zero fill fault. Page gets | |
2430 | * filled in top object. Insert | |
2431 | * page, then drop any lower lock. | |
2432 | * Give up if no page. | |
2433 | */ | |
2434 | if ((vm_page_free_target - | |
2435 | ((vm_page_free_target-vm_page_free_min)>>2)) | |
2436 | > vm_page_free_count) { | |
2437 | break; | |
2438 | } | |
2439 | m = vm_page_alloc(object, offset); | |
2440 | if (m == VM_PAGE_NULL) { | |
2441 | break; | |
2442 | } | |
0b4e3aa0 A |
2443 | /* |
2444 | * This is a zero-fill or initial fill | |
2445 | * page fault. As such, we consider it | |
2446 | * undefined with respect to instruction | |
2447 | * execution. i.e. it is the responsibility | |
2448 | * of higher layers to call for an instruction | |
2449 | * sync after changing the contents and before | |
2450 | * sending a program into this area. We | |
2451 | * choose this approach for performance | |
2452 | */ | |
2453 | ||
2454 | m->no_isync = FALSE; | |
1c79356b A |
2455 | |
2456 | if (cur_object != object) | |
2457 | vm_object_unlock(cur_object); | |
2458 | ||
2459 | vm_object_paging_begin(object); | |
2460 | vm_object_unlock(object); | |
2461 | ||
2462 | /* | |
2463 | * Now zero fill page and map it. | |
2464 | * the page is probably going to | |
2465 | * be written soon, so don't bother | |
2466 | * to clear the modified bit | |
2467 | * | |
2468 | * NOTE: This code holds the map | |
2469 | * lock across the zero fill. | |
2470 | */ | |
2471 | ||
2472 | if (!map->no_zero_fill) { | |
2473 | vm_page_zero_fill(m); | |
2474 | type_of_fault = DBG_ZERO_FILL_FAULT; | |
2475 | VM_STAT(zero_fill_count++); | |
2476 | } | |
2477 | vm_page_lock_queues(); | |
2478 | VM_PAGE_QUEUES_REMOVE(m); | |
0b4e3aa0 A |
2479 | |
2480 | m->page_ticket = vm_page_ticket; | |
2481 | vm_page_ticket_roll++; | |
2482 | if(vm_page_ticket_roll == | |
2483 | VM_PAGE_TICKETS_IN_ROLL) { | |
2484 | vm_page_ticket_roll = 0; | |
2485 | if(vm_page_ticket == | |
2486 | VM_PAGE_TICKET_ROLL_IDS) | |
2487 | vm_page_ticket= 0; | |
2488 | else | |
2489 | vm_page_ticket++; | |
2490 | } | |
2491 | ||
1c79356b A |
2492 | queue_enter(&vm_page_queue_inactive, |
2493 | m, vm_page_t, pageq); | |
2494 | m->inactive = TRUE; | |
2495 | vm_page_inactive_count++; | |
2496 | vm_page_unlock_queues(); | |
2497 | goto FastPmapEnter; | |
2498 | } | |
2499 | ||
2500 | /* | |
2501 | * On to the next level | |
2502 | */ | |
2503 | ||
2504 | cur_offset += cur_object->shadow_offset; | |
2505 | new_object = cur_object->shadow; | |
2506 | vm_object_lock(new_object); | |
2507 | if (cur_object != object) | |
2508 | vm_object_unlock(cur_object); | |
2509 | cur_object = new_object; | |
2510 | ||
2511 | continue; | |
2512 | } | |
2513 | } | |
2514 | ||
2515 | /* | |
2516 | * Cleanup from fast fault failure. Drop any object | |
2517 | * lock other than original and drop map lock. | |
2518 | */ | |
2519 | ||
2520 | if (object != cur_object) | |
2521 | vm_object_unlock(cur_object); | |
2522 | } | |
2523 | vm_map_unlock_read(map); | |
2524 | if(pmap_map != map) | |
2525 | vm_map_unlock(pmap_map); | |
2526 | ||
2527 | /* | |
2528 | * Make a reference to this object to | |
2529 | * prevent its disposal while we are messing with | |
2530 | * it. Once we have the reference, the map is free | |
2531 | * to be diddled. Since objects reference their | |
2532 | * shadows (and copies), they will stay around as well. | |
2533 | */ | |
2534 | ||
2535 | assert(object->ref_count > 0); | |
2536 | object->ref_count++; | |
2537 | vm_object_res_reference(object); | |
2538 | vm_object_paging_begin(object); | |
2539 | ||
2540 | XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0); | |
2541 | kr = vm_fault_page(object, offset, fault_type, | |
2542 | (change_wiring && !wired), | |
2543 | interruptible, | |
2544 | lo_offset, hi_offset, behavior, | |
2545 | &prot, &result_page, &top_page, | |
2546 | &type_of_fault, | |
0b4e3aa0 | 2547 | &error_code, map->no_zero_fill, FALSE, map, vaddr); |
1c79356b A |
2548 | |
2549 | /* | |
2550 | * If we didn't succeed, lose the object reference immediately. | |
2551 | */ | |
2552 | ||
2553 | if (kr != VM_FAULT_SUCCESS) | |
2554 | vm_object_deallocate(object); | |
2555 | ||
2556 | /* | |
2557 | * See why we failed, and take corrective action. | |
2558 | */ | |
2559 | ||
2560 | switch (kr) { | |
2561 | case VM_FAULT_SUCCESS: | |
2562 | break; | |
2563 | case VM_FAULT_MEMORY_SHORTAGE: | |
2564 | if (vm_page_wait((change_wiring) ? | |
2565 | THREAD_UNINT : | |
2566 | THREAD_ABORTSAFE)) | |
2567 | goto RetryFault; | |
2568 | /* fall thru */ | |
2569 | case VM_FAULT_INTERRUPTED: | |
2570 | kr = KERN_ABORTED; | |
2571 | goto done; | |
2572 | case VM_FAULT_RETRY: | |
2573 | goto RetryFault; | |
2574 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
2575 | vm_page_more_fictitious(); | |
2576 | goto RetryFault; | |
2577 | case VM_FAULT_MEMORY_ERROR: | |
2578 | if (error_code) | |
2579 | kr = error_code; | |
2580 | else | |
2581 | kr = KERN_MEMORY_ERROR; | |
2582 | goto done; | |
2583 | } | |
2584 | ||
2585 | m = result_page; | |
2586 | ||
0b4e3aa0 A |
2587 | if(m != VM_PAGE_NULL) { |
2588 | assert((change_wiring && !wired) ? | |
2589 | (top_page == VM_PAGE_NULL) : | |
2590 | ((top_page == VM_PAGE_NULL) == (m->object == object))); | |
2591 | } | |
1c79356b A |
2592 | |
2593 | /* | |
2594 | * How to clean up the result of vm_fault_page. This | |
2595 | * happens whether the mapping is entered or not. | |
2596 | */ | |
2597 | ||
2598 | #define UNLOCK_AND_DEALLOCATE \ | |
2599 | MACRO_BEGIN \ | |
2600 | vm_fault_cleanup(m->object, top_page); \ | |
2601 | vm_object_deallocate(object); \ | |
2602 | MACRO_END | |
2603 | ||
2604 | /* | |
2605 | * What to do with the resulting page from vm_fault_page | |
2606 | * if it doesn't get entered into the physical map: | |
2607 | */ | |
2608 | ||
2609 | #define RELEASE_PAGE(m) \ | |
2610 | MACRO_BEGIN \ | |
2611 | PAGE_WAKEUP_DONE(m); \ | |
2612 | vm_page_lock_queues(); \ | |
2613 | if (!m->active && !m->inactive) \ | |
2614 | vm_page_activate(m); \ | |
2615 | vm_page_unlock_queues(); \ | |
2616 | MACRO_END | |
2617 | ||
2618 | /* | |
2619 | * We must verify that the maps have not changed | |
2620 | * since our last lookup. | |
2621 | */ | |
2622 | ||
0b4e3aa0 A |
2623 | if(m != VM_PAGE_NULL) { |
2624 | old_copy_object = m->object->copy; | |
1c79356b | 2625 | |
0b4e3aa0 A |
2626 | vm_object_unlock(m->object); |
2627 | } else { | |
2628 | old_copy_object = VM_OBJECT_NULL; | |
2629 | } | |
1c79356b A |
2630 | if ((map != original_map) || !vm_map_verify(map, &version)) { |
2631 | vm_object_t retry_object; | |
2632 | vm_object_offset_t retry_offset; | |
2633 | vm_prot_t retry_prot; | |
2634 | ||
2635 | /* | |
2636 | * To avoid trying to write_lock the map while another | |
2637 | * thread has it read_locked (in vm_map_pageable), we | |
2638 | * do not try for write permission. If the page is | |
2639 | * still writable, we will get write permission. If it | |
2640 | * is not, or has been marked needs_copy, we enter the | |
2641 | * mapping without write permission, and will merely | |
2642 | * take another fault. | |
2643 | */ | |
2644 | map = original_map; | |
2645 | vm_map_lock_read(map); | |
2646 | kr = vm_map_lookup_locked(&map, vaddr, | |
2647 | fault_type & ~VM_PROT_WRITE, &version, | |
2648 | &retry_object, &retry_offset, &retry_prot, | |
2649 | &wired, &behavior, &lo_offset, &hi_offset, | |
2650 | &pmap_map); | |
2651 | pmap = pmap_map->pmap; | |
2652 | ||
2653 | if (kr != KERN_SUCCESS) { | |
2654 | vm_map_unlock_read(map); | |
0b4e3aa0 A |
2655 | if(m != VM_PAGE_NULL) { |
2656 | vm_object_lock(m->object); | |
2657 | RELEASE_PAGE(m); | |
2658 | UNLOCK_AND_DEALLOCATE; | |
2659 | } else { | |
2660 | vm_object_deallocate(object); | |
2661 | } | |
1c79356b A |
2662 | goto done; |
2663 | } | |
2664 | ||
2665 | vm_object_unlock(retry_object); | |
0b4e3aa0 A |
2666 | if(m != VM_PAGE_NULL) { |
2667 | vm_object_lock(m->object); | |
2668 | } else { | |
2669 | vm_object_lock(object); | |
2670 | } | |
1c79356b A |
2671 | |
2672 | if ((retry_object != object) || | |
2673 | (retry_offset != offset)) { | |
2674 | vm_map_unlock_read(map); | |
2675 | if(pmap_map != map) | |
2676 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
2677 | if(m != VM_PAGE_NULL) { |
2678 | RELEASE_PAGE(m); | |
2679 | UNLOCK_AND_DEALLOCATE; | |
2680 | } else { | |
2681 | vm_object_deallocate(object); | |
2682 | } | |
1c79356b A |
2683 | goto RetryFault; |
2684 | } | |
2685 | ||
2686 | /* | |
2687 | * Check whether the protection has changed or the object | |
2688 | * has been copied while we left the map unlocked. | |
2689 | */ | |
2690 | prot &= retry_prot; | |
0b4e3aa0 A |
2691 | if(m != VM_PAGE_NULL) { |
2692 | vm_object_unlock(m->object); | |
2693 | } else { | |
2694 | vm_object_unlock(object); | |
2695 | } | |
2696 | } | |
2697 | if(m != VM_PAGE_NULL) { | |
2698 | vm_object_lock(m->object); | |
2699 | } else { | |
2700 | vm_object_lock(object); | |
1c79356b | 2701 | } |
1c79356b A |
2702 | |
2703 | /* | |
2704 | * If the copy object changed while the top-level object | |
2705 | * was unlocked, then we must take away write permission. | |
2706 | */ | |
2707 | ||
0b4e3aa0 A |
2708 | if(m != VM_PAGE_NULL) { |
2709 | if (m->object->copy != old_copy_object) | |
2710 | prot &= ~VM_PROT_WRITE; | |
2711 | } | |
1c79356b A |
2712 | |
2713 | /* | |
2714 | * If we want to wire down this page, but no longer have | |
2715 | * adequate permissions, we must start all over. | |
2716 | */ | |
2717 | ||
2718 | if (wired && (fault_type != (prot|VM_PROT_WRITE))) { | |
2719 | vm_map_verify_done(map, &version); | |
2720 | if(pmap_map != map) | |
2721 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
2722 | if(m != VM_PAGE_NULL) { |
2723 | RELEASE_PAGE(m); | |
2724 | UNLOCK_AND_DEALLOCATE; | |
2725 | } else { | |
2726 | vm_object_deallocate(object); | |
2727 | } | |
1c79356b A |
2728 | goto RetryFault; |
2729 | } | |
2730 | ||
1c79356b A |
2731 | /* |
2732 | * Put this page into the physical map. | |
2733 | * We had to do the unlock above because pmap_enter | |
2734 | * may cause other faults. The page may be on | |
2735 | * the pageout queues. If the pageout daemon comes | |
2736 | * across the page, it will remove it from the queues. | |
2737 | */ | |
0b4e3aa0 A |
2738 | if(m != VM_PAGE_NULL) { |
2739 | if (m->no_isync) { | |
2740 | m->no_isync = FALSE; | |
2741 | ||
2742 | vm_object_unlock(m->object); | |
2743 | ||
2744 | PMAP_ENTER(pmap, vaddr, m, prot, wired); | |
2745 | ||
2746 | /* | |
2747 | * It's critically important that a wired-down page be faulted | |
2748 | * only once in each map for which it is wired. | |
2749 | */ | |
2750 | /* Sync I & D caches for new mapping */ | |
2751 | pmap_attribute(pmap, | |
2752 | vaddr, | |
2753 | PAGE_SIZE, | |
2754 | MATTR_CACHE, | |
2755 | &mv_cache_sync); | |
2756 | } else { | |
2757 | vm_object_unlock(m->object); | |
2758 | ||
2759 | PMAP_ENTER(pmap, vaddr, m, prot, wired); | |
2760 | } | |
2761 | { | |
2762 | tws_hash_line_t line; | |
2763 | task_t task; | |
2764 | ||
2765 | task = current_task(); | |
2766 | if((map != NULL) && | |
2767 | (task->dynamic_working_set != 0)) { | |
2768 | if(tws_lookup | |
2769 | ((tws_hash_t) | |
2770 | task->dynamic_working_set, | |
2771 | m->offset, m->object, | |
2772 | &line) != KERN_SUCCESS) { | |
2773 | tws_insert((tws_hash_t) | |
2774 | task->dynamic_working_set, | |
2775 | m->offset, m->object, | |
2776 | vaddr, pmap_map); | |
2777 | if(tws_insert((tws_hash_t) | |
2778 | task->dynamic_working_set, | |
2779 | m->offset, m->object, | |
2780 | vaddr, pmap_map) | |
2781 | == KERN_NO_SPACE) { | |
2782 | tws_expand_working_set( | |
2783 | task->dynamic_working_set, | |
2784 | TWS_HASH_LINE_COUNT); | |
2785 | } | |
2786 | } | |
2787 | } | |
2788 | } | |
2789 | } else { | |
2790 | ||
2791 | /* if __ppc__ not working until figure out phys copy on block maps */ | |
2792 | #ifdef notdefcdy | |
2793 | int memattr; | |
2794 | struct phys_entry *pp; | |
2795 | /* | |
2796 | * do a pmap block mapping from the physical address | |
2797 | * in the object | |
2798 | */ | |
2799 | if(pp = pmap_find_physentry( | |
2800 | (vm_offset_t)object->shadow_offset)) { | |
2801 | memattr = ((pp->pte1 & 0x00000078) >> 3); | |
2802 | } else { | |
2803 | memattr = PTE_WIMG_UNCACHED_COHERENT_GUARDED; | |
2804 | } | |
1c79356b | 2805 | |
0b4e3aa0 A |
2806 | pmap_map_block(pmap, vaddr, |
2807 | (vm_offset_t)object->shadow_offset, | |
2808 | object->size, prot, | |
2809 | memattr, 0); /* Set up a block mapped area */ | |
2810 | //#else | |
2811 | vm_offset_t off; | |
2812 | for (off = 0; off < object->size; off += page_size) { | |
2813 | pmap_enter(pmap, vaddr + off, | |
2814 | object->shadow_offset + off, prot, TRUE); | |
2815 | /* Map it in */ | |
2816 | } | |
2817 | #endif | |
2818 | ||
2819 | } | |
1c79356b A |
2820 | |
2821 | /* | |
2822 | * If the page is not wired down and isn't already | |
2823 | * on a pageout queue, then put it where the | |
2824 | * pageout daemon can find it. | |
2825 | */ | |
0b4e3aa0 A |
2826 | if(m != VM_PAGE_NULL) { |
2827 | vm_object_lock(m->object); | |
2828 | vm_page_lock_queues(); | |
2829 | ||
2830 | if (change_wiring) { | |
2831 | if (wired) | |
2832 | vm_page_wire(m); | |
2833 | else | |
2834 | vm_page_unwire(m); | |
2835 | } | |
1c79356b | 2836 | #if VM_FAULT_STATIC_CONFIG |
0b4e3aa0 A |
2837 | else { |
2838 | if (!m->active && !m->inactive) | |
2839 | vm_page_activate(m); | |
2840 | m->reference = TRUE; | |
2841 | } | |
1c79356b | 2842 | #else |
0b4e3aa0 A |
2843 | else if (software_reference_bits) { |
2844 | if (!m->active && !m->inactive) | |
2845 | vm_page_activate(m); | |
2846 | m->reference = TRUE; | |
2847 | } else { | |
1c79356b | 2848 | vm_page_activate(m); |
0b4e3aa0 | 2849 | } |
1c79356b | 2850 | #endif |
0b4e3aa0 A |
2851 | vm_page_unlock_queues(); |
2852 | } | |
1c79356b A |
2853 | |
2854 | /* | |
2855 | * Unlock everything, and return | |
2856 | */ | |
2857 | ||
2858 | vm_map_verify_done(map, &version); | |
2859 | if(pmap_map != map) | |
2860 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
2861 | if(m != VM_PAGE_NULL) { |
2862 | PAGE_WAKEUP_DONE(m); | |
2863 | UNLOCK_AND_DEALLOCATE; | |
2864 | } else { | |
2865 | vm_fault_cleanup(object, top_page); | |
2866 | vm_object_deallocate(object); | |
2867 | } | |
1c79356b | 2868 | kr = KERN_SUCCESS; |
1c79356b A |
2869 | |
2870 | #undef UNLOCK_AND_DEALLOCATE | |
2871 | #undef RELEASE_PAGE | |
2872 | ||
2873 | done: | |
2874 | if (funnel_set) { | |
2875 | thread_funnel_set( curflock, TRUE); | |
2876 | funnel_set = FALSE; | |
2877 | } | |
2878 | cur_thread->interruptible = interruptible_state; | |
2879 | ||
2880 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END, | |
2881 | vaddr, | |
2882 | type_of_fault, | |
2883 | kr, | |
2884 | 0, | |
2885 | 0); | |
2886 | return(kr); | |
2887 | } | |
2888 | ||
2889 | /* | |
2890 | * vm_fault_wire: | |
2891 | * | |
2892 | * Wire down a range of virtual addresses in a map. | |
2893 | */ | |
2894 | kern_return_t | |
2895 | vm_fault_wire( | |
2896 | vm_map_t map, | |
2897 | vm_map_entry_t entry, | |
2898 | pmap_t pmap) | |
2899 | { | |
2900 | ||
2901 | register vm_offset_t va; | |
2902 | register vm_offset_t end_addr = entry->vme_end; | |
2903 | register kern_return_t rc; | |
2904 | ||
2905 | assert(entry->in_transition); | |
2906 | ||
2907 | /* | |
2908 | * Inform the physical mapping system that the | |
2909 | * range of addresses may not fault, so that | |
2910 | * page tables and such can be locked down as well. | |
2911 | */ | |
2912 | ||
2913 | pmap_pageable(pmap, entry->vme_start, end_addr, FALSE); | |
2914 | ||
2915 | /* | |
2916 | * We simulate a fault to get the page and enter it | |
2917 | * in the physical map. | |
2918 | */ | |
2919 | ||
2920 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
2921 | if ((rc = vm_fault_wire_fast( | |
2922 | map, va, entry, pmap)) != KERN_SUCCESS) { | |
2923 | rc = vm_fault(map, va, VM_PROT_NONE, TRUE, | |
2924 | (pmap == kernel_pmap) ? THREAD_UNINT : THREAD_ABORTSAFE); | |
2925 | } | |
2926 | ||
2927 | if (rc != KERN_SUCCESS) { | |
2928 | struct vm_map_entry tmp_entry = *entry; | |
2929 | ||
2930 | /* unwire wired pages */ | |
2931 | tmp_entry.vme_end = va; | |
2932 | vm_fault_unwire(map, &tmp_entry, FALSE, pmap); | |
2933 | ||
2934 | return rc; | |
2935 | } | |
2936 | } | |
2937 | return KERN_SUCCESS; | |
2938 | } | |
2939 | ||
2940 | /* | |
2941 | * vm_fault_unwire: | |
2942 | * | |
2943 | * Unwire a range of virtual addresses in a map. | |
2944 | */ | |
2945 | void | |
2946 | vm_fault_unwire( | |
2947 | vm_map_t map, | |
2948 | vm_map_entry_t entry, | |
2949 | boolean_t deallocate, | |
2950 | pmap_t pmap) | |
2951 | { | |
2952 | register vm_offset_t va; | |
2953 | register vm_offset_t end_addr = entry->vme_end; | |
2954 | vm_object_t object; | |
2955 | ||
2956 | object = (entry->is_sub_map) | |
2957 | ? VM_OBJECT_NULL : entry->object.vm_object; | |
2958 | ||
2959 | /* | |
2960 | * Since the pages are wired down, we must be able to | |
2961 | * get their mappings from the physical map system. | |
2962 | */ | |
2963 | ||
2964 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
2965 | pmap_change_wiring(pmap, va, FALSE); | |
2966 | ||
2967 | if (object == VM_OBJECT_NULL) { | |
2968 | (void) vm_fault(map, va, VM_PROT_NONE, TRUE, THREAD_UNINT); | |
2969 | } else { | |
2970 | vm_prot_t prot; | |
2971 | vm_page_t result_page; | |
2972 | vm_page_t top_page; | |
2973 | vm_object_t result_object; | |
2974 | vm_fault_return_t result; | |
2975 | ||
2976 | do { | |
2977 | prot = VM_PROT_NONE; | |
2978 | ||
2979 | vm_object_lock(object); | |
2980 | vm_object_paging_begin(object); | |
2981 | XPR(XPR_VM_FAULT, | |
2982 | "vm_fault_unwire -> vm_fault_page\n", | |
2983 | 0,0,0,0,0); | |
2984 | result = vm_fault_page(object, | |
2985 | entry->offset + | |
2986 | (va - entry->vme_start), | |
2987 | VM_PROT_NONE, TRUE, | |
2988 | THREAD_UNINT, | |
2989 | entry->offset, | |
2990 | entry->offset + | |
2991 | (entry->vme_end | |
2992 | - entry->vme_start), | |
2993 | entry->behavior, | |
2994 | &prot, | |
2995 | &result_page, | |
2996 | &top_page, | |
2997 | (int *)0, | |
2998 | 0, map->no_zero_fill, | |
0b4e3aa0 | 2999 | FALSE, NULL, 0); |
1c79356b A |
3000 | } while (result == VM_FAULT_RETRY); |
3001 | ||
3002 | if (result != VM_FAULT_SUCCESS) | |
3003 | panic("vm_fault_unwire: failure"); | |
3004 | ||
3005 | result_object = result_page->object; | |
3006 | if (deallocate) { | |
3007 | assert(!result_page->fictitious); | |
3008 | pmap_page_protect(result_page->phys_addr, | |
3009 | VM_PROT_NONE); | |
3010 | VM_PAGE_FREE(result_page); | |
3011 | } else { | |
3012 | vm_page_lock_queues(); | |
3013 | vm_page_unwire(result_page); | |
3014 | vm_page_unlock_queues(); | |
3015 | PAGE_WAKEUP_DONE(result_page); | |
3016 | } | |
3017 | ||
3018 | vm_fault_cleanup(result_object, top_page); | |
3019 | } | |
3020 | } | |
3021 | ||
3022 | /* | |
3023 | * Inform the physical mapping system that the range | |
3024 | * of addresses may fault, so that page tables and | |
3025 | * such may be unwired themselves. | |
3026 | */ | |
3027 | ||
3028 | pmap_pageable(pmap, entry->vme_start, end_addr, TRUE); | |
3029 | ||
3030 | } | |
3031 | ||
3032 | /* | |
3033 | * vm_fault_wire_fast: | |
3034 | * | |
3035 | * Handle common case of a wire down page fault at the given address. | |
3036 | * If successful, the page is inserted into the associated physical map. | |
3037 | * The map entry is passed in to avoid the overhead of a map lookup. | |
3038 | * | |
3039 | * NOTE: the given address should be truncated to the | |
3040 | * proper page address. | |
3041 | * | |
3042 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, | |
3043 | * a standard error specifying why the fault is fatal is returned. | |
3044 | * | |
3045 | * The map in question must be referenced, and remains so. | |
3046 | * Caller has a read lock on the map. | |
3047 | * | |
3048 | * This is a stripped version of vm_fault() for wiring pages. Anything | |
3049 | * other than the common case will return KERN_FAILURE, and the caller | |
3050 | * is expected to call vm_fault(). | |
3051 | */ | |
3052 | kern_return_t | |
3053 | vm_fault_wire_fast( | |
3054 | vm_map_t map, | |
3055 | vm_offset_t va, | |
3056 | vm_map_entry_t entry, | |
3057 | pmap_t pmap) | |
3058 | { | |
3059 | vm_object_t object; | |
3060 | vm_object_offset_t offset; | |
3061 | register vm_page_t m; | |
3062 | vm_prot_t prot; | |
3063 | thread_act_t thr_act; | |
3064 | ||
3065 | VM_STAT(faults++); | |
3066 | ||
3067 | if((thr_act=current_act()) && (thr_act->task != TASK_NULL)) | |
3068 | thr_act->task->faults++; | |
3069 | ||
3070 | /* | |
3071 | * Recovery actions | |
3072 | */ | |
3073 | ||
3074 | #undef RELEASE_PAGE | |
3075 | #define RELEASE_PAGE(m) { \ | |
3076 | PAGE_WAKEUP_DONE(m); \ | |
3077 | vm_page_lock_queues(); \ | |
3078 | vm_page_unwire(m); \ | |
3079 | vm_page_unlock_queues(); \ | |
3080 | } | |
3081 | ||
3082 | ||
3083 | #undef UNLOCK_THINGS | |
3084 | #define UNLOCK_THINGS { \ | |
3085 | object->paging_in_progress--; \ | |
3086 | vm_object_unlock(object); \ | |
3087 | } | |
3088 | ||
3089 | #undef UNLOCK_AND_DEALLOCATE | |
3090 | #define UNLOCK_AND_DEALLOCATE { \ | |
3091 | UNLOCK_THINGS; \ | |
3092 | vm_object_deallocate(object); \ | |
3093 | } | |
3094 | /* | |
3095 | * Give up and have caller do things the hard way. | |
3096 | */ | |
3097 | ||
3098 | #define GIVE_UP { \ | |
3099 | UNLOCK_AND_DEALLOCATE; \ | |
3100 | return(KERN_FAILURE); \ | |
3101 | } | |
3102 | ||
3103 | ||
3104 | /* | |
3105 | * If this entry is not directly to a vm_object, bail out. | |
3106 | */ | |
3107 | if (entry->is_sub_map) | |
3108 | return(KERN_FAILURE); | |
3109 | ||
3110 | /* | |
3111 | * Find the backing store object and offset into it. | |
3112 | */ | |
3113 | ||
3114 | object = entry->object.vm_object; | |
3115 | offset = (va - entry->vme_start) + entry->offset; | |
3116 | prot = entry->protection; | |
3117 | ||
3118 | /* | |
3119 | * Make a reference to this object to prevent its | |
3120 | * disposal while we are messing with it. | |
3121 | */ | |
3122 | ||
3123 | vm_object_lock(object); | |
3124 | assert(object->ref_count > 0); | |
3125 | object->ref_count++; | |
3126 | vm_object_res_reference(object); | |
3127 | object->paging_in_progress++; | |
3128 | ||
3129 | /* | |
3130 | * INVARIANTS (through entire routine): | |
3131 | * | |
3132 | * 1) At all times, we must either have the object | |
3133 | * lock or a busy page in some object to prevent | |
3134 | * some other thread from trying to bring in | |
3135 | * the same page. | |
3136 | * | |
3137 | * 2) Once we have a busy page, we must remove it from | |
3138 | * the pageout queues, so that the pageout daemon | |
3139 | * will not grab it away. | |
3140 | * | |
3141 | */ | |
3142 | ||
3143 | /* | |
3144 | * Look for page in top-level object. If it's not there or | |
3145 | * there's something going on, give up. | |
3146 | */ | |
3147 | m = vm_page_lookup(object, offset); | |
3148 | if ((m == VM_PAGE_NULL) || (m->busy) || | |
3149 | (m->unusual && ( m->error || m->restart || m->absent || | |
3150 | prot & m->page_lock))) { | |
3151 | ||
3152 | GIVE_UP; | |
3153 | } | |
3154 | ||
3155 | /* | |
3156 | * Wire the page down now. All bail outs beyond this | |
3157 | * point must unwire the page. | |
3158 | */ | |
3159 | ||
3160 | vm_page_lock_queues(); | |
3161 | vm_page_wire(m); | |
3162 | vm_page_unlock_queues(); | |
3163 | ||
3164 | /* | |
3165 | * Mark page busy for other threads. | |
3166 | */ | |
3167 | assert(!m->busy); | |
3168 | m->busy = TRUE; | |
3169 | assert(!m->absent); | |
3170 | ||
3171 | /* | |
3172 | * Give up if the page is being written and there's a copy object | |
3173 | */ | |
3174 | if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { | |
3175 | RELEASE_PAGE(m); | |
3176 | GIVE_UP; | |
3177 | } | |
3178 | ||
3179 | /* | |
3180 | * Put this page into the physical map. | |
3181 | * We have to unlock the object because pmap_enter | |
3182 | * may cause other faults. | |
3183 | */ | |
0b4e3aa0 A |
3184 | if (m->no_isync) { |
3185 | m->no_isync = FALSE; | |
3186 | ||
3187 | vm_object_unlock(object); | |
3188 | ||
3189 | PMAP_ENTER(pmap, va, m, prot, TRUE); | |
1c79356b | 3190 | |
0b4e3aa0 A |
3191 | /* Sync I & D caches for new mapping */ |
3192 | pmap_attribute(pmap, | |
3193 | va, | |
3194 | PAGE_SIZE, | |
3195 | MATTR_CACHE, | |
3196 | &mv_cache_sync); | |
3197 | ||
3198 | } else { | |
3199 | vm_object_unlock(object); | |
3200 | ||
3201 | PMAP_ENTER(pmap, va, m, prot, TRUE); | |
3202 | } | |
1c79356b A |
3203 | |
3204 | /* | |
3205 | * Must relock object so that paging_in_progress can be cleared. | |
3206 | */ | |
3207 | vm_object_lock(object); | |
3208 | ||
3209 | /* | |
3210 | * Unlock everything, and return | |
3211 | */ | |
3212 | ||
3213 | PAGE_WAKEUP_DONE(m); | |
3214 | UNLOCK_AND_DEALLOCATE; | |
3215 | ||
3216 | return(KERN_SUCCESS); | |
3217 | ||
3218 | } | |
3219 | ||
3220 | /* | |
3221 | * Routine: vm_fault_copy_cleanup | |
3222 | * Purpose: | |
3223 | * Release a page used by vm_fault_copy. | |
3224 | */ | |
3225 | ||
3226 | void | |
3227 | vm_fault_copy_cleanup( | |
3228 | vm_page_t page, | |
3229 | vm_page_t top_page) | |
3230 | { | |
3231 | vm_object_t object = page->object; | |
3232 | ||
3233 | vm_object_lock(object); | |
3234 | PAGE_WAKEUP_DONE(page); | |
3235 | vm_page_lock_queues(); | |
3236 | if (!page->active && !page->inactive) | |
3237 | vm_page_activate(page); | |
3238 | vm_page_unlock_queues(); | |
3239 | vm_fault_cleanup(object, top_page); | |
3240 | } | |
3241 | ||
3242 | void | |
3243 | vm_fault_copy_dst_cleanup( | |
3244 | vm_page_t page) | |
3245 | { | |
3246 | vm_object_t object; | |
3247 | ||
3248 | if (page != VM_PAGE_NULL) { | |
3249 | object = page->object; | |
3250 | vm_object_lock(object); | |
3251 | vm_page_lock_queues(); | |
3252 | vm_page_unwire(page); | |
3253 | vm_page_unlock_queues(); | |
3254 | vm_object_paging_end(object); | |
3255 | vm_object_unlock(object); | |
3256 | } | |
3257 | } | |
3258 | ||
3259 | /* | |
3260 | * Routine: vm_fault_copy | |
3261 | * | |
3262 | * Purpose: | |
3263 | * Copy pages from one virtual memory object to another -- | |
3264 | * neither the source nor destination pages need be resident. | |
3265 | * | |
3266 | * Before actually copying a page, the version associated with | |
3267 | * the destination address map wil be verified. | |
3268 | * | |
3269 | * In/out conditions: | |
3270 | * The caller must hold a reference, but not a lock, to | |
3271 | * each of the source and destination objects and to the | |
3272 | * destination map. | |
3273 | * | |
3274 | * Results: | |
3275 | * Returns KERN_SUCCESS if no errors were encountered in | |
3276 | * reading or writing the data. Returns KERN_INTERRUPTED if | |
3277 | * the operation was interrupted (only possible if the | |
3278 | * "interruptible" argument is asserted). Other return values | |
3279 | * indicate a permanent error in copying the data. | |
3280 | * | |
3281 | * The actual amount of data copied will be returned in the | |
3282 | * "copy_size" argument. In the event that the destination map | |
3283 | * verification failed, this amount may be less than the amount | |
3284 | * requested. | |
3285 | */ | |
3286 | kern_return_t | |
3287 | vm_fault_copy( | |
3288 | vm_object_t src_object, | |
3289 | vm_object_offset_t src_offset, | |
3290 | vm_size_t *src_size, /* INOUT */ | |
3291 | vm_object_t dst_object, | |
3292 | vm_object_offset_t dst_offset, | |
3293 | vm_map_t dst_map, | |
3294 | vm_map_version_t *dst_version, | |
3295 | int interruptible) | |
3296 | { | |
3297 | vm_page_t result_page; | |
3298 | ||
3299 | vm_page_t src_page; | |
3300 | vm_page_t src_top_page; | |
3301 | vm_prot_t src_prot; | |
3302 | ||
3303 | vm_page_t dst_page; | |
3304 | vm_page_t dst_top_page; | |
3305 | vm_prot_t dst_prot; | |
3306 | ||
3307 | vm_size_t amount_left; | |
3308 | vm_object_t old_copy_object; | |
3309 | kern_return_t error = 0; | |
3310 | ||
3311 | vm_size_t part_size; | |
3312 | ||
3313 | /* | |
3314 | * In order not to confuse the clustered pageins, align | |
3315 | * the different offsets on a page boundary. | |
3316 | */ | |
3317 | vm_object_offset_t src_lo_offset = trunc_page_64(src_offset); | |
3318 | vm_object_offset_t dst_lo_offset = trunc_page_64(dst_offset); | |
3319 | vm_object_offset_t src_hi_offset = round_page_64(src_offset + *src_size); | |
3320 | vm_object_offset_t dst_hi_offset = round_page_64(dst_offset + *src_size); | |
3321 | ||
3322 | #define RETURN(x) \ | |
3323 | MACRO_BEGIN \ | |
3324 | *src_size -= amount_left; \ | |
3325 | MACRO_RETURN(x); \ | |
3326 | MACRO_END | |
3327 | ||
3328 | amount_left = *src_size; | |
3329 | do { /* while (amount_left > 0) */ | |
3330 | /* | |
3331 | * There may be a deadlock if both source and destination | |
3332 | * pages are the same. To avoid this deadlock, the copy must | |
3333 | * start by getting the destination page in order to apply | |
3334 | * COW semantics if any. | |
3335 | */ | |
3336 | ||
3337 | RetryDestinationFault: ; | |
3338 | ||
3339 | dst_prot = VM_PROT_WRITE|VM_PROT_READ; | |
3340 | ||
3341 | vm_object_lock(dst_object); | |
3342 | vm_object_paging_begin(dst_object); | |
3343 | ||
3344 | XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0); | |
3345 | switch (vm_fault_page(dst_object, | |
3346 | trunc_page_64(dst_offset), | |
3347 | VM_PROT_WRITE|VM_PROT_READ, | |
3348 | FALSE, | |
3349 | interruptible, | |
3350 | dst_lo_offset, | |
3351 | dst_hi_offset, | |
3352 | VM_BEHAVIOR_SEQUENTIAL, | |
3353 | &dst_prot, | |
3354 | &dst_page, | |
3355 | &dst_top_page, | |
3356 | (int *)0, | |
3357 | &error, | |
3358 | dst_map->no_zero_fill, | |
0b4e3aa0 | 3359 | FALSE, NULL, 0)) { |
1c79356b A |
3360 | case VM_FAULT_SUCCESS: |
3361 | break; | |
3362 | case VM_FAULT_RETRY: | |
3363 | goto RetryDestinationFault; | |
3364 | case VM_FAULT_MEMORY_SHORTAGE: | |
3365 | if (vm_page_wait(interruptible)) | |
3366 | goto RetryDestinationFault; | |
3367 | /* fall thru */ | |
3368 | case VM_FAULT_INTERRUPTED: | |
3369 | RETURN(MACH_SEND_INTERRUPTED); | |
3370 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
3371 | vm_page_more_fictitious(); | |
3372 | goto RetryDestinationFault; | |
3373 | case VM_FAULT_MEMORY_ERROR: | |
3374 | if (error) | |
3375 | return (error); | |
3376 | else | |
3377 | return(KERN_MEMORY_ERROR); | |
3378 | } | |
3379 | assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); | |
3380 | ||
3381 | old_copy_object = dst_page->object->copy; | |
3382 | ||
3383 | /* | |
3384 | * There exists the possiblity that the source and | |
3385 | * destination page are the same. But we can't | |
3386 | * easily determine that now. If they are the | |
3387 | * same, the call to vm_fault_page() for the | |
3388 | * destination page will deadlock. To prevent this we | |
3389 | * wire the page so we can drop busy without having | |
3390 | * the page daemon steal the page. We clean up the | |
3391 | * top page but keep the paging reference on the object | |
3392 | * holding the dest page so it doesn't go away. | |
3393 | */ | |
3394 | ||
3395 | vm_page_lock_queues(); | |
3396 | vm_page_wire(dst_page); | |
3397 | vm_page_unlock_queues(); | |
3398 | PAGE_WAKEUP_DONE(dst_page); | |
3399 | vm_object_unlock(dst_page->object); | |
3400 | ||
3401 | if (dst_top_page != VM_PAGE_NULL) { | |
3402 | vm_object_lock(dst_object); | |
3403 | VM_PAGE_FREE(dst_top_page); | |
3404 | vm_object_paging_end(dst_object); | |
3405 | vm_object_unlock(dst_object); | |
3406 | } | |
3407 | ||
3408 | RetrySourceFault: ; | |
3409 | ||
3410 | if (src_object == VM_OBJECT_NULL) { | |
3411 | /* | |
3412 | * No source object. We will just | |
3413 | * zero-fill the page in dst_object. | |
3414 | */ | |
3415 | src_page = VM_PAGE_NULL; | |
e3027f41 | 3416 | result_page = VM_PAGE_NULL; |
1c79356b A |
3417 | } else { |
3418 | vm_object_lock(src_object); | |
3419 | src_page = vm_page_lookup(src_object, | |
3420 | trunc_page_64(src_offset)); | |
e3027f41 | 3421 | if (src_page == dst_page) { |
1c79356b | 3422 | src_prot = dst_prot; |
e3027f41 A |
3423 | result_page = VM_PAGE_NULL; |
3424 | } else { | |
1c79356b A |
3425 | src_prot = VM_PROT_READ; |
3426 | vm_object_paging_begin(src_object); | |
3427 | ||
3428 | XPR(XPR_VM_FAULT, | |
3429 | "vm_fault_copy(2) -> vm_fault_page\n", | |
3430 | 0,0,0,0,0); | |
3431 | switch (vm_fault_page(src_object, | |
3432 | trunc_page_64(src_offset), | |
3433 | VM_PROT_READ, | |
3434 | FALSE, | |
3435 | interruptible, | |
3436 | src_lo_offset, | |
3437 | src_hi_offset, | |
3438 | VM_BEHAVIOR_SEQUENTIAL, | |
3439 | &src_prot, | |
3440 | &result_page, | |
3441 | &src_top_page, | |
3442 | (int *)0, | |
3443 | &error, | |
3444 | FALSE, | |
0b4e3aa0 | 3445 | FALSE, NULL, 0)) { |
1c79356b A |
3446 | |
3447 | case VM_FAULT_SUCCESS: | |
3448 | break; | |
3449 | case VM_FAULT_RETRY: | |
3450 | goto RetrySourceFault; | |
3451 | case VM_FAULT_MEMORY_SHORTAGE: | |
3452 | if (vm_page_wait(interruptible)) | |
3453 | goto RetrySourceFault; | |
3454 | /* fall thru */ | |
3455 | case VM_FAULT_INTERRUPTED: | |
3456 | vm_fault_copy_dst_cleanup(dst_page); | |
3457 | RETURN(MACH_SEND_INTERRUPTED); | |
3458 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
3459 | vm_page_more_fictitious(); | |
3460 | goto RetrySourceFault; | |
3461 | case VM_FAULT_MEMORY_ERROR: | |
3462 | vm_fault_copy_dst_cleanup(dst_page); | |
3463 | if (error) | |
3464 | return (error); | |
3465 | else | |
3466 | return(KERN_MEMORY_ERROR); | |
3467 | } | |
3468 | ||
1c79356b A |
3469 | |
3470 | assert((src_top_page == VM_PAGE_NULL) == | |
e3027f41 | 3471 | (result_page->object == src_object)); |
1c79356b A |
3472 | } |
3473 | assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE); | |
e3027f41 | 3474 | vm_object_unlock(result_page->object); |
1c79356b A |
3475 | } |
3476 | ||
3477 | if (!vm_map_verify(dst_map, dst_version)) { | |
e3027f41 A |
3478 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3479 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3480 | vm_fault_copy_dst_cleanup(dst_page); |
3481 | break; | |
3482 | } | |
3483 | ||
3484 | vm_object_lock(dst_page->object); | |
3485 | ||
3486 | if (dst_page->object->copy != old_copy_object) { | |
3487 | vm_object_unlock(dst_page->object); | |
3488 | vm_map_verify_done(dst_map, dst_version); | |
e3027f41 A |
3489 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3490 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3491 | vm_fault_copy_dst_cleanup(dst_page); |
3492 | break; | |
3493 | } | |
3494 | vm_object_unlock(dst_page->object); | |
3495 | ||
3496 | /* | |
3497 | * Copy the page, and note that it is dirty | |
3498 | * immediately. | |
3499 | */ | |
3500 | ||
3501 | if (!page_aligned(src_offset) || | |
3502 | !page_aligned(dst_offset) || | |
3503 | !page_aligned(amount_left)) { | |
3504 | ||
3505 | vm_object_offset_t src_po, | |
3506 | dst_po; | |
3507 | ||
3508 | src_po = src_offset - trunc_page_64(src_offset); | |
3509 | dst_po = dst_offset - trunc_page_64(dst_offset); | |
3510 | ||
3511 | if (dst_po > src_po) { | |
3512 | part_size = PAGE_SIZE - dst_po; | |
3513 | } else { | |
3514 | part_size = PAGE_SIZE - src_po; | |
3515 | } | |
3516 | if (part_size > (amount_left)){ | |
3517 | part_size = amount_left; | |
3518 | } | |
3519 | ||
e3027f41 | 3520 | if (result_page == VM_PAGE_NULL) { |
1c79356b A |
3521 | vm_page_part_zero_fill(dst_page, |
3522 | dst_po, part_size); | |
3523 | } else { | |
e3027f41 | 3524 | vm_page_part_copy(result_page, src_po, |
1c79356b A |
3525 | dst_page, dst_po, part_size); |
3526 | if(!dst_page->dirty){ | |
3527 | vm_object_lock(dst_object); | |
3528 | dst_page->dirty = TRUE; | |
3529 | vm_object_unlock(dst_page->object); | |
3530 | } | |
3531 | ||
3532 | } | |
3533 | } else { | |
3534 | part_size = PAGE_SIZE; | |
3535 | ||
e3027f41 | 3536 | if (result_page == VM_PAGE_NULL) |
1c79356b A |
3537 | vm_page_zero_fill(dst_page); |
3538 | else{ | |
e3027f41 | 3539 | vm_page_copy(result_page, dst_page); |
1c79356b A |
3540 | if(!dst_page->dirty){ |
3541 | vm_object_lock(dst_object); | |
3542 | dst_page->dirty = TRUE; | |
3543 | vm_object_unlock(dst_page->object); | |
3544 | } | |
3545 | } | |
3546 | ||
3547 | } | |
3548 | ||
3549 | /* | |
3550 | * Unlock everything, and return | |
3551 | */ | |
3552 | ||
3553 | vm_map_verify_done(dst_map, dst_version); | |
3554 | ||
e3027f41 A |
3555 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3556 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3557 | vm_fault_copy_dst_cleanup(dst_page); |
3558 | ||
3559 | amount_left -= part_size; | |
3560 | src_offset += part_size; | |
3561 | dst_offset += part_size; | |
3562 | } while (amount_left > 0); | |
3563 | ||
3564 | RETURN(KERN_SUCCESS); | |
3565 | #undef RETURN | |
3566 | ||
3567 | /*NOTREACHED*/ | |
3568 | } | |
3569 | ||
3570 | #ifdef notdef | |
3571 | ||
3572 | /* | |
3573 | * Routine: vm_fault_page_overwrite | |
3574 | * | |
3575 | * Description: | |
3576 | * A form of vm_fault_page that assumes that the | |
3577 | * resulting page will be overwritten in its entirety, | |
3578 | * making it unnecessary to obtain the correct *contents* | |
3579 | * of the page. | |
3580 | * | |
3581 | * Implementation: | |
3582 | * XXX Untested. Also unused. Eventually, this technology | |
3583 | * could be used in vm_fault_copy() to advantage. | |
3584 | */ | |
3585 | vm_fault_return_t | |
3586 | vm_fault_page_overwrite( | |
3587 | register | |
3588 | vm_object_t dst_object, | |
3589 | vm_object_offset_t dst_offset, | |
3590 | vm_page_t *result_page) /* OUT */ | |
3591 | { | |
3592 | register | |
3593 | vm_page_t dst_page; | |
3594 | kern_return_t wait_result; | |
3595 | ||
3596 | #define interruptible THREAD_UNINT /* XXX */ | |
3597 | ||
3598 | while (TRUE) { | |
3599 | /* | |
3600 | * Look for a page at this offset | |
3601 | */ | |
3602 | ||
3603 | while ((dst_page = vm_page_lookup(dst_object, dst_offset)) | |
3604 | == VM_PAGE_NULL) { | |
3605 | /* | |
3606 | * No page, no problem... just allocate one. | |
3607 | */ | |
3608 | ||
3609 | dst_page = vm_page_alloc(dst_object, dst_offset); | |
3610 | if (dst_page == VM_PAGE_NULL) { | |
3611 | vm_object_unlock(dst_object); | |
3612 | VM_PAGE_WAIT(); | |
3613 | vm_object_lock(dst_object); | |
3614 | continue; | |
3615 | } | |
3616 | ||
3617 | /* | |
3618 | * Pretend that the memory manager | |
3619 | * write-protected the page. | |
3620 | * | |
3621 | * Note that we will be asking for write | |
3622 | * permission without asking for the data | |
3623 | * first. | |
3624 | */ | |
3625 | ||
3626 | dst_page->overwriting = TRUE; | |
3627 | dst_page->page_lock = VM_PROT_WRITE; | |
3628 | dst_page->absent = TRUE; | |
3629 | dst_page->unusual = TRUE; | |
3630 | dst_object->absent_count++; | |
3631 | ||
3632 | break; | |
3633 | ||
3634 | /* | |
3635 | * When we bail out, we might have to throw | |
3636 | * away the page created here. | |
3637 | */ | |
3638 | ||
3639 | #define DISCARD_PAGE \ | |
3640 | MACRO_BEGIN \ | |
3641 | vm_object_lock(dst_object); \ | |
3642 | dst_page = vm_page_lookup(dst_object, dst_offset); \ | |
3643 | if ((dst_page != VM_PAGE_NULL) && dst_page->overwriting) \ | |
3644 | VM_PAGE_FREE(dst_page); \ | |
3645 | vm_object_unlock(dst_object); \ | |
3646 | MACRO_END | |
3647 | } | |
3648 | ||
3649 | /* | |
3650 | * If the page is write-protected... | |
3651 | */ | |
3652 | ||
3653 | if (dst_page->page_lock & VM_PROT_WRITE) { | |
3654 | /* | |
3655 | * ... and an unlock request hasn't been sent | |
3656 | */ | |
3657 | ||
3658 | if ( ! (dst_page->unlock_request & VM_PROT_WRITE)) { | |
3659 | vm_prot_t u; | |
3660 | kern_return_t rc; | |
3661 | ||
3662 | /* | |
3663 | * ... then send one now. | |
3664 | */ | |
3665 | ||
3666 | if (!dst_object->pager_ready) { | |
3667 | vm_object_assert_wait(dst_object, | |
3668 | VM_OBJECT_EVENT_PAGER_READY, | |
3669 | interruptible); | |
3670 | vm_object_unlock(dst_object); | |
3671 | wait_result = thread_block((void (*)(void))0); | |
3672 | if (wait_result != THREAD_AWAKENED) { | |
3673 | DISCARD_PAGE; | |
3674 | return(VM_FAULT_INTERRUPTED); | |
3675 | } | |
3676 | continue; | |
3677 | } | |
3678 | ||
3679 | u = dst_page->unlock_request |= VM_PROT_WRITE; | |
3680 | vm_object_unlock(dst_object); | |
3681 | ||
3682 | if ((rc = memory_object_data_unlock( | |
3683 | dst_object->pager, | |
1c79356b A |
3684 | dst_offset + dst_object->paging_offset, |
3685 | PAGE_SIZE, | |
3686 | u)) != KERN_SUCCESS) { | |
3687 | if (vm_fault_debug) | |
3688 | printf("vm_object_overwrite: memory_object_data_unlock failed\n"); | |
3689 | DISCARD_PAGE; | |
3690 | return((rc == MACH_SEND_INTERRUPTED) ? | |
3691 | VM_FAULT_INTERRUPTED : | |
3692 | VM_FAULT_MEMORY_ERROR); | |
3693 | } | |
3694 | vm_object_lock(dst_object); | |
3695 | continue; | |
3696 | } | |
3697 | ||
3698 | /* ... fall through to wait below */ | |
3699 | } else { | |
3700 | /* | |
3701 | * If the page isn't being used for other | |
3702 | * purposes, then we're done. | |
3703 | */ | |
3704 | if ( ! (dst_page->busy || dst_page->absent || | |
3705 | dst_page->error || dst_page->restart) ) | |
3706 | break; | |
3707 | } | |
3708 | ||
3709 | PAGE_ASSERT_WAIT(dst_page, interruptible); | |
3710 | vm_object_unlock(dst_object); | |
3711 | wait_result = thread_block((void (*)(void))0); | |
3712 | if (wait_result != THREAD_AWAKENED) { | |
3713 | DISCARD_PAGE; | |
3714 | return(VM_FAULT_INTERRUPTED); | |
3715 | } | |
3716 | } | |
3717 | ||
3718 | *result_page = dst_page; | |
3719 | return(VM_FAULT_SUCCESS); | |
3720 | ||
3721 | #undef interruptible | |
3722 | #undef DISCARD_PAGE | |
3723 | } | |
3724 | ||
3725 | #endif /* notdef */ | |
3726 | ||
3727 | #if VM_FAULT_CLASSIFY | |
3728 | /* | |
3729 | * Temporary statistics gathering support. | |
3730 | */ | |
3731 | ||
3732 | /* | |
3733 | * Statistics arrays: | |
3734 | */ | |
3735 | #define VM_FAULT_TYPES_MAX 5 | |
3736 | #define VM_FAULT_LEVEL_MAX 8 | |
3737 | ||
3738 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; | |
3739 | ||
3740 | #define VM_FAULT_TYPE_ZERO_FILL 0 | |
3741 | #define VM_FAULT_TYPE_MAP_IN 1 | |
3742 | #define VM_FAULT_TYPE_PAGER 2 | |
3743 | #define VM_FAULT_TYPE_COPY 3 | |
3744 | #define VM_FAULT_TYPE_OTHER 4 | |
3745 | ||
3746 | ||
3747 | void | |
3748 | vm_fault_classify(vm_object_t object, | |
3749 | vm_object_offset_t offset, | |
3750 | vm_prot_t fault_type) | |
3751 | { | |
3752 | int type, level = 0; | |
3753 | vm_page_t m; | |
3754 | ||
3755 | while (TRUE) { | |
3756 | m = vm_page_lookup(object, offset); | |
3757 | if (m != VM_PAGE_NULL) { | |
3758 | if (m->busy || m->error || m->restart || m->absent || | |
3759 | fault_type & m->page_lock) { | |
3760 | type = VM_FAULT_TYPE_OTHER; | |
3761 | break; | |
3762 | } | |
3763 | if (((fault_type & VM_PROT_WRITE) == 0) || | |
3764 | ((level == 0) && object->copy == VM_OBJECT_NULL)) { | |
3765 | type = VM_FAULT_TYPE_MAP_IN; | |
3766 | break; | |
3767 | } | |
3768 | type = VM_FAULT_TYPE_COPY; | |
3769 | break; | |
3770 | } | |
3771 | else { | |
3772 | if (object->pager_created) { | |
3773 | type = VM_FAULT_TYPE_PAGER; | |
3774 | break; | |
3775 | } | |
3776 | if (object->shadow == VM_OBJECT_NULL) { | |
3777 | type = VM_FAULT_TYPE_ZERO_FILL; | |
3778 | break; | |
3779 | } | |
3780 | ||
3781 | offset += object->shadow_offset; | |
3782 | object = object->shadow; | |
3783 | level++; | |
3784 | continue; | |
3785 | } | |
3786 | } | |
3787 | ||
3788 | if (level > VM_FAULT_LEVEL_MAX) | |
3789 | level = VM_FAULT_LEVEL_MAX; | |
3790 | ||
3791 | vm_fault_stats[type][level] += 1; | |
3792 | ||
3793 | return; | |
3794 | } | |
3795 | ||
3796 | /* cleanup routine to call from debugger */ | |
3797 | ||
3798 | void | |
3799 | vm_fault_classify_init(void) | |
3800 | { | |
3801 | int type, level; | |
3802 | ||
3803 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { | |
3804 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { | |
3805 | vm_fault_stats[type][level] = 0; | |
3806 | } | |
3807 | } | |
3808 | ||
3809 | return; | |
3810 | } | |
3811 | #endif /* VM_FAULT_CLASSIFY */ |