]>
Commit | Line | Data |
---|---|---|
fe8ab488 A |
1 | /* |
2 | * Copyright (c) 2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
d9a64523 | 5 | * |
fe8ab488 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
d9a64523 | 14 | * |
fe8ab488 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
d9a64523 | 17 | * |
fe8ab488 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
d9a64523 | 25 | * |
fe8ab488 A |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ | |
28 | ||
fe8ab488 A |
29 | #include <kern/cpu_data.h> |
30 | #include <kern/cpu_number.h> | |
31 | #include <kern/kalloc.h> | |
32 | #include <kern/machine.h> | |
33 | #include <kern/misc_protos.h> | |
d9a64523 | 34 | #include <kern/processor.h> |
fe8ab488 | 35 | #include <kern/sched.h> |
d9a64523 | 36 | #include <kern/startup.h> |
fe8ab488 A |
37 | #include <kern/thread.h> |
38 | #include <kern/thread_call.h> | |
d9a64523 A |
39 | #include <mach/machine.h> |
40 | #include <mach/processor.h> | |
fe8ab488 A |
41 | #include <machine/cpu_data.h> |
42 | #include <machine/simple_lock.h> | |
d9a64523 | 43 | #include <sys/errno.h> |
fe8ab488 A |
44 | #include <sys/kdebug.h> |
45 | #include <sys/random.h> | |
d9a64523 A |
46 | #include <vm/pmap.h> |
47 | #include <vm/vm_page.h> | |
fe8ab488 | 48 | |
d9a64523 | 49 | #include <corecrypto/ccdigest.h> |
fe8ab488 | 50 | #include <corecrypto/ccdrbg.h> |
d9a64523 | 51 | #include <corecrypto/cckprng.h> |
fe8ab488 | 52 | #include <corecrypto/ccsha1.h> |
5ba3f43e | 53 | #include <corecrypto/ccsha2.h> |
d9a64523 | 54 | #include <prng/random.h> |
fe8ab488 | 55 | |
fe8ab488 | 56 | #include <IOKit/IOPlatformExpert.h> |
d9a64523 A |
57 | #include <console/serial_protos.h> |
58 | #include <pexpert/pexpert.h> | |
59 | ||
60 | #include <libkern/section_keywords.h> | |
61 | ||
62 | #if defined(__arm__) || defined(__arm64__) | |
63 | #include <arm/cpu_data_internal.h> // For MAX_CPUS | |
64 | #endif | |
fe8ab488 | 65 | |
5ba3f43e A |
66 | #if defined(__x86_64__) |
67 | #include <i386/cpuid.h> | |
68 | ||
d9a64523 A |
69 | static int |
70 | rdseed_step(uint64_t * seed) | |
5ba3f43e A |
71 | { |
72 | uint8_t ok; | |
d9a64523 A |
73 | |
74 | asm volatile("rdseed %0; setc %1" : "=r"(*seed), "=qm"(ok)); | |
75 | ||
76 | return (int)ok; | |
5ba3f43e A |
77 | } |
78 | ||
d9a64523 A |
79 | static int |
80 | rdseed_retry(uint64_t * seed, size_t nretries) | |
5ba3f43e A |
81 | { |
82 | size_t i; | |
d9a64523 | 83 | |
5ba3f43e A |
84 | for (i = 0; i < nretries; i += 1) { |
85 | if (rdseed_step(seed)) { | |
86 | return 1; | |
87 | } else { | |
d9a64523 | 88 | asm volatile("pause"); |
5ba3f43e A |
89 | } |
90 | } | |
d9a64523 | 91 | |
5ba3f43e A |
92 | return 0; |
93 | } | |
94 | ||
d9a64523 A |
95 | static size_t |
96 | rdseed_seed(void * buf, size_t nwords) | |
5ba3f43e | 97 | { |
d9a64523 | 98 | uint64_t * buf_words; |
5ba3f43e | 99 | size_t i; |
d9a64523 | 100 | |
5ba3f43e A |
101 | if (nwords > 8) { |
102 | nwords = 8; | |
103 | } | |
d9a64523 | 104 | |
5ba3f43e A |
105 | buf_words = buf; |
106 | for (i = 0; i < nwords; i += 1) { | |
107 | if (!rdseed_retry(buf_words + i, 10)) { | |
108 | return i; | |
109 | } | |
110 | } | |
d9a64523 | 111 | |
5ba3f43e A |
112 | return nwords; |
113 | } | |
114 | ||
d9a64523 A |
115 | static int |
116 | rdrand_step(uint64_t * rand) | |
5ba3f43e A |
117 | { |
118 | uint8_t ok; | |
d9a64523 A |
119 | |
120 | asm volatile("rdrand %0; setc %1" : "=r"(*rand), "=qm"(ok)); | |
121 | ||
122 | return (int)ok; | |
5ba3f43e A |
123 | } |
124 | ||
d9a64523 A |
125 | static int |
126 | rdrand_retry(uint64_t * rand, size_t nretries) | |
5ba3f43e A |
127 | { |
128 | size_t i; | |
d9a64523 | 129 | |
5ba3f43e A |
130 | for (i = 0; i < nretries; i += 1) { |
131 | if (rdrand_step(rand)) { | |
132 | return 1; | |
133 | } | |
134 | } | |
d9a64523 | 135 | |
5ba3f43e A |
136 | return 0; |
137 | } | |
138 | ||
d9a64523 A |
139 | static size_t |
140 | rdrand_seed(void * buf, size_t nwords) | |
5ba3f43e A |
141 | { |
142 | size_t i; | |
143 | uint64_t w; | |
144 | uint8_t hash[CCSHA256_OUTPUT_SIZE]; | |
d9a64523 A |
145 | const struct ccdigest_info * di = &ccsha256_ltc_di; |
146 | ||
5ba3f43e A |
147 | ccdigest_di_decl(di, ctx); |
148 | ccdigest_init(di, ctx); | |
d9a64523 | 149 | |
5ba3f43e A |
150 | for (i = 0; i < 1023; i += 1) { |
151 | if (!rdrand_retry(&w, 10)) { | |
152 | nwords = 0; | |
153 | goto out; | |
154 | } | |
155 | ccdigest_update(di, ctx, sizeof w, &w); | |
156 | } | |
d9a64523 | 157 | |
5ba3f43e | 158 | ccdigest_final(di, ctx, hash); |
d9a64523 | 159 | |
5ba3f43e A |
160 | if (nwords > 2) { |
161 | nwords = 2; | |
162 | } | |
d9a64523 A |
163 | |
164 | memcpy(buf, hash, nwords * sizeof(uint64_t)); | |
165 | ||
5ba3f43e A |
166 | out: |
167 | ccdigest_di_clear(di, ctx); | |
168 | bzero(hash, sizeof hash); | |
169 | bzero(&w, sizeof w); | |
d9a64523 | 170 | |
5ba3f43e A |
171 | return nwords; |
172 | } | |
173 | ||
d9a64523 A |
174 | static void |
175 | intel_entropysource(void * buf, size_t * nbytes) | |
5ba3f43e A |
176 | { |
177 | size_t nwords; | |
d9a64523 | 178 | |
5ba3f43e | 179 | /* only handle complete words */ |
d9a64523 A |
180 | assert(*nbytes % sizeof(uint64_t) == 0); |
181 | ||
182 | nwords = (*nbytes) / sizeof(uint64_t); | |
5ba3f43e | 183 | if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_RDSEED) { |
d9a64523 A |
184 | nwords = rdseed_seed(buf, nwords); |
185 | *nbytes = nwords * sizeof(uint64_t); | |
5ba3f43e | 186 | } else if (cpuid_features() & CPUID_FEATURE_RDRAND) { |
d9a64523 A |
187 | nwords = rdrand_seed(buf, nwords); |
188 | *nbytes = nwords * sizeof(uint64_t); | |
5ba3f43e A |
189 | } else { |
190 | *nbytes = 0; | |
191 | } | |
192 | } | |
193 | ||
d9a64523 A |
194 | #endif /* defined(__x86_64__) */ |
195 | ||
196 | void entropy_buffer_read(void * buffer, size_t * count); | |
5ba3f43e | 197 | |
d9a64523 | 198 | typedef void (*entropysource)(void * buf, size_t * nbytes); |
5ba3f43e A |
199 | |
200 | static const entropysource entropysources[] = { | |
d9a64523 | 201 | entropy_buffer_read, |
5ba3f43e | 202 | #if defined(__x86_64__) |
d9a64523 | 203 | intel_entropysource, |
5ba3f43e A |
204 | #endif |
205 | }; | |
206 | ||
207 | static const size_t nsources = sizeof entropysources / sizeof entropysources[0]; | |
208 | ||
d9a64523 A |
209 | static size_t |
210 | entropy_readall(void * buf, size_t nbytes_persource) | |
5ba3f43e | 211 | { |
d9a64523 | 212 | uint8_t * buf_bytes = buf; |
5ba3f43e A |
213 | size_t i; |
214 | size_t nbytes_total = 0; | |
d9a64523 | 215 | |
5ba3f43e A |
216 | for (i = 0; i < nsources; i += 1) { |
217 | size_t nbytes = nbytes_persource; | |
218 | entropysources[i](buf_bytes, &nbytes); | |
219 | bzero(buf_bytes + nbytes, nbytes_persource - nbytes); | |
220 | nbytes_total += nbytes; | |
221 | buf_bytes += nbytes_persource; | |
222 | } | |
d9a64523 | 223 | |
5ba3f43e A |
224 | return nbytes_total; |
225 | } | |
226 | ||
227 | static struct { | |
d9a64523 A |
228 | struct cckprng_ctx ctx; |
229 | struct { | |
230 | lck_grp_t * group; | |
231 | lck_attr_t * attrs; | |
232 | lck_grp_attr_t * group_attrs; | |
233 | lck_mtx_t * mutex; | |
234 | } lock; | |
235 | } prng; | |
236 | ||
237 | static SECURITY_READ_ONLY_LATE(prng_fns_t) prng_fns = NULL; | |
238 | ||
239 | static int | |
240 | prng_init(cckprng_ctx_t ctx, size_t nbytes, const void * seed) | |
241 | { | |
242 | int err = prng_fns->init(ctx, nbytes, seed); | |
243 | if (err == CCKPRNG_ABORT) { | |
244 | panic("prng_init"); | |
245 | } | |
246 | return err; | |
247 | } | |
248 | ||
249 | #define PERMIT_WRITE_RANDOM 0 | |
250 | ||
251 | #if PERMIT_WRITE_RANDOM | |
252 | static int | |
253 | prng_reseed(cckprng_ctx_t ctx, size_t nbytes, const void * seed) | |
254 | { | |
255 | int err = prng_fns->reseed(ctx, nbytes, seed); | |
256 | if (err == CCKPRNG_ABORT) { | |
257 | panic("prng_reseed"); | |
258 | } | |
259 | return err; | |
260 | } | |
261 | #endif | |
262 | ||
263 | static int | |
264 | prng_addentropy(cckprng_ctx_t ctx, size_t nbytes, const void * entropy) | |
265 | { | |
266 | int err = prng_fns->addentropy(ctx, nbytes, entropy); | |
267 | if (err == CCKPRNG_ABORT) { | |
268 | panic("prng_addentropy"); | |
269 | } | |
270 | return err; | |
271 | } | |
272 | ||
273 | static int | |
274 | prng_generate(cckprng_ctx_t ctx, size_t nbytes, void * out) | |
275 | { | |
276 | int err = prng_fns->generate(ctx, nbytes, out); | |
277 | if (err == CCKPRNG_ABORT) { | |
278 | panic("prng_generate"); | |
279 | } | |
280 | return err; | |
281 | } | |
282 | ||
283 | entropy_data_t EntropyData = {.index_ptr = EntropyData.buffer}; | |
fe8ab488 | 284 | |
5ba3f43e A |
285 | static struct { |
286 | uint8_t seed[nsources][EARLY_RANDOM_SEED_SIZE]; | |
d9a64523 | 287 | int seedset; |
5ba3f43e | 288 | uint8_t master_drbg_state[EARLY_RANDOM_STATE_STATIC_SIZE]; |
d9a64523 | 289 | struct ccdrbg_state * drbg_states[MAX_CPUS]; |
5ba3f43e A |
290 | struct ccdrbg_info drbg_info; |
291 | const struct ccdrbg_nisthmac_custom drbg_custom; | |
d9a64523 A |
292 | } erandom = {.drbg_custom = { |
293 | .di = &ccsha1_eay_di, | |
294 | .strictFIPS = 0, | |
295 | }}; | |
fe8ab488 | 296 | |
d9a64523 | 297 | static void read_erandom(void * buf, uint32_t nbytes); |
fe8ab488 | 298 | |
d9a64523 A |
299 | void |
300 | entropy_buffer_read(void * buffer, size_t * count) | |
fe8ab488 | 301 | { |
5ba3f43e A |
302 | boolean_t current_state; |
303 | unsigned int i, j; | |
fe8ab488 | 304 | |
5ba3f43e | 305 | if (!erandom.seedset) { |
fe8ab488 A |
306 | panic("early_random was never invoked"); |
307 | } | |
308 | ||
5ba3f43e A |
309 | if (*count > ENTROPY_BUFFER_BYTE_SIZE) { |
310 | *count = ENTROPY_BUFFER_BYTE_SIZE; | |
311 | } | |
fe8ab488 A |
312 | |
313 | current_state = ml_set_interrupts_enabled(FALSE); | |
fe8ab488 | 314 | |
5ba3f43e | 315 | memcpy(buffer, EntropyData.buffer, *count); |
fe8ab488 | 316 | |
5ba3f43e | 317 | /* Consider removing this mixing step rdar://problem/31668239 */ |
fe8ab488 A |
318 | for (i = 0, j = (ENTROPY_BUFFER_SIZE - 1); i < ENTROPY_BUFFER_SIZE; j = i, i++) |
319 | EntropyData.buffer[i] = EntropyData.buffer[i] ^ EntropyData.buffer[j]; | |
320 | ||
d9a64523 | 321 | (void)ml_set_interrupts_enabled(current_state); |
fe8ab488 A |
322 | |
323 | #if DEVELOPMENT || DEBUG | |
d9a64523 | 324 | uint32_t * word = buffer; |
fe8ab488 A |
325 | /* Good for both 32-bit and 64-bit kernels. */ |
326 | for (i = 0; i < ENTROPY_BUFFER_SIZE; i += 4) | |
5ba3f43e | 327 | /* |
fe8ab488 A |
328 | * We use "EARLY" here so that we can grab early entropy on |
329 | * ARM, where tracing is not started until after PRNG is | |
330 | * initialized. | |
d9a64523 A |
331 | */ |
332 | KERNEL_DEBUG_EARLY(ENTROPY_READ(i / 4), word[i + 0], word[i + 1], word[i + 2], word[i + 3]); | |
fe8ab488 A |
333 | #endif |
334 | } | |
335 | ||
336 | /* | |
337 | * Return a uniformly distributed 64-bit random number. | |
338 | * | |
339 | * This interface should have minimal dependencies on kernel | |
340 | * services, and thus be available very early in the life | |
341 | * of the kernel. | |
342 | * This provides cryptographically secure randomness. | |
343 | * Each processor has its own generator instance. | |
344 | * It is seeded (lazily) with entropy provided by the Booter. | |
5ba3f43e | 345 | * |
fe8ab488 A |
346 | * For <rdar://problem/17292592> the algorithm switched from LCG to |
347 | * NIST HMAC DBRG as follows: | |
348 | * - When first called (on OSX this is very early while page tables are being | |
349 | * built) early_random() calls ccdrbg_factory_hmac() to set-up a ccdbrg info | |
350 | * structure. | |
351 | * - The boot processor's ccdrbg state structure is a statically allocated area | |
352 | * which is then initialized by calling the ccdbrg_init method. | |
353 | * The initial entropy is 16 bytes of boot entropy. | |
354 | * The nonce is the first 8 bytes of entropy xor'ed with a timestamp | |
355 | * from ml_get_timebase(). | |
5ba3f43e | 356 | * The personalization data provided is null. |
fe8ab488 A |
357 | * - The first 64-bit random value is returned on the boot processor from |
358 | * an invocation of the ccdbrg_generate method. | |
359 | * - Non-boot processor's DRBG state structures are allocated dynamically | |
360 | * from prng_init(). Each is initialized with the same 16 bytes of entropy | |
361 | * but with a different timestamped nonce and cpu number as personalization. | |
362 | * - Subsequent calls to early_random() pass to read_erandom() to generate | |
363 | * an 8-byte random value. read_erandom() ensures that pre-emption is | |
364 | * disabled and selects the DBRG state from the current processor. | |
365 | * The ccdbrg_generate method is called for the required random output. | |
5ba3f43e | 366 | * If this method returns CCDRBG_STATUS_NEED_RESEED, the erandom.seed buffer |
fe8ab488 A |
367 | * is re-filled with kernel-harvested entropy and the ccdbrg_reseed method is |
368 | * called with this new entropy. The kernel panics if a reseed fails. | |
369 | */ | |
370 | uint64_t | |
371 | early_random(void) | |
372 | { | |
d9a64523 A |
373 | uint32_t cnt = 0; |
374 | uint64_t result; | |
375 | uint64_t nonce; | |
376 | int rc; | |
377 | int ps; | |
378 | struct ccdrbg_state * state; | |
fe8ab488 | 379 | |
5ba3f43e A |
380 | if (!erandom.seedset) { |
381 | erandom.seedset = 1; | |
d9a64523 | 382 | cnt = PE_get_random_seed((unsigned char *)EntropyData.buffer, sizeof(EntropyData.buffer)); |
fe8ab488 A |
383 | |
384 | if (cnt < sizeof(EntropyData.buffer)) { | |
385 | /* | |
386 | * Insufficient entropy is fatal. We must fill the | |
387 | * entire entropy buffer during initializaton. | |
388 | */ | |
d9a64523 A |
389 | panic("EntropyData needed %lu bytes, but got %u.\n", sizeof(EntropyData.buffer), cnt); |
390 | } | |
fe8ab488 | 391 | |
5ba3f43e | 392 | entropy_readall(&erandom.seed, EARLY_RANDOM_SEED_SIZE); |
fe8ab488 A |
393 | |
394 | /* Init DRBG for NIST HMAC */ | |
5ba3f43e A |
395 | ccdrbg_factory_nisthmac(&erandom.drbg_info, &erandom.drbg_custom); |
396 | assert(erandom.drbg_info.size <= sizeof(erandom.master_drbg_state)); | |
d9a64523 | 397 | state = (struct ccdrbg_state *)erandom.master_drbg_state; |
5ba3f43e | 398 | erandom.drbg_states[master_cpu] = state; |
fe8ab488 A |
399 | |
400 | /* | |
3e170ce0 A |
401 | * Init our DBRG from the boot entropy and a timestamp as nonce |
402 | * and the cpu number as personalization. | |
fe8ab488 | 403 | */ |
5ba3f43e | 404 | assert(sizeof(erandom.seed) > sizeof(nonce)); |
3e170ce0 | 405 | nonce = ml_get_timebase(); |
d9a64523 A |
406 | ps = 0; /* boot cpu */ |
407 | rc = ccdrbg_init(&erandom.drbg_info, state, sizeof(erandom.seed), erandom.seed, sizeof(nonce), &nonce, sizeof(ps), &ps); | |
3e170ce0 A |
408 | cc_clear(sizeof(nonce), &nonce); |
409 | if (rc != CCDRBG_STATUS_OK) | |
410 | panic("ccdrbg_init() returned %d", rc); | |
fe8ab488 A |
411 | |
412 | /* Generate output */ | |
d9a64523 | 413 | rc = ccdrbg_generate(&erandom.drbg_info, state, sizeof(result), &result, 0, NULL); |
3e170ce0 A |
414 | if (rc != CCDRBG_STATUS_OK) |
415 | panic("ccdrbg_generate() returned %d", rc); | |
d9a64523 | 416 | |
fe8ab488 A |
417 | return result; |
418 | }; | |
419 | ||
420 | read_erandom(&result, sizeof(result)); | |
421 | ||
422 | return result; | |
423 | } | |
424 | ||
3e170ce0 | 425 | static void |
d9a64523 | 426 | read_erandom(void * buffer, u_int numBytes) |
fe8ab488 | 427 | { |
d9a64523 A |
428 | int cpu; |
429 | int rc; | |
5ba3f43e | 430 | size_t nbytes; |
d9a64523 | 431 | struct ccdrbg_state * state; |
fe8ab488 A |
432 | |
433 | mp_disable_preemption(); | |
d9a64523 | 434 | cpu = cpu_number(); |
5ba3f43e | 435 | state = erandom.drbg_states[cpu]; |
fe8ab488 | 436 | assert(state); |
5ba3f43e | 437 | for (;;) { |
fe8ab488 | 438 | /* Generate output */ |
d9a64523 | 439 | rc = ccdrbg_generate(&erandom.drbg_info, state, numBytes, buffer, 0, NULL); |
fe8ab488 A |
440 | if (rc == CCDRBG_STATUS_OK) |
441 | break; | |
442 | if (rc == CCDRBG_STATUS_NEED_RESEED) { | |
443 | /* It's time to reseed. Get more entropy */ | |
5ba3f43e A |
444 | nbytes = entropy_readall(erandom.seed, EARLY_RANDOM_SEED_SIZE); |
445 | assert(nbytes >= EARLY_RANDOM_SEED_SIZE); | |
d9a64523 | 446 | rc = ccdrbg_reseed(&erandom.drbg_info, state, sizeof(erandom.seed), erandom.seed, 0, NULL); |
5ba3f43e | 447 | cc_clear(sizeof(erandom.seed), erandom.seed); |
fe8ab488 A |
448 | if (rc == CCDRBG_STATUS_OK) |
449 | continue; | |
450 | panic("read_erandom reseed error %d\n", rc); | |
451 | } | |
452 | panic("read_erandom ccdrbg error %d\n", rc); | |
453 | } | |
454 | mp_enable_preemption(); | |
455 | } | |
456 | ||
457 | void | |
d9a64523 | 458 | read_frandom(void * buffer, u_int numBytes) |
fe8ab488 | 459 | { |
d9a64523 | 460 | uint8_t * buffer_bytes = buffer; |
5ba3f43e | 461 | int nbytes; |
fe8ab488 A |
462 | |
463 | /* | |
464 | * Split up into requests for blocks smaller than | |
465 | * than the DBRG request limit. iThis limit is private but | |
466 | * for NISTHMAC it's known to be greater then 4096. | |
467 | */ | |
468 | while (numBytes) { | |
469 | nbytes = MIN(numBytes, PAGE_SIZE); | |
5ba3f43e A |
470 | read_erandom(buffer_bytes, nbytes); |
471 | buffer_bytes += nbytes; | |
fe8ab488 A |
472 | numBytes -= nbytes; |
473 | } | |
474 | } | |
475 | ||
fe8ab488 | 476 | void |
d9a64523 | 477 | early_random_cpu_init(int cpu) |
fe8ab488 | 478 | { |
d9a64523 A |
479 | uint64_t nonce; |
480 | int rc; | |
481 | struct ccdrbg_state * state; | |
fe8ab488 A |
482 | |
483 | /* | |
484 | * Allocate state and initialize DBRG state for early_random() | |
d9a64523 | 485 | * for this processor. |
fe8ab488 | 486 | */ |
d9a64523 A |
487 | assert(cpu != master_cpu); |
488 | assert(erandom.drbg_states[cpu] == NULL); | |
fe8ab488 | 489 | |
d9a64523 A |
490 | state = kalloc(erandom.drbg_info.size); |
491 | if (state == NULL) { | |
492 | panic("prng_init kalloc failed\n"); | |
fe8ab488 | 493 | } |
d9a64523 | 494 | erandom.drbg_states[cpu] = state; |
fe8ab488 | 495 | |
d9a64523 A |
496 | /* |
497 | * Init our DBRG from boot entropy, nonce as timestamp | |
498 | * and use the cpu number as the personalization parameter. | |
499 | */ | |
500 | nonce = ml_get_timebase(); | |
501 | rc = ccdrbg_init(&erandom.drbg_info, state, sizeof(erandom.seed), erandom.seed, sizeof(nonce), &nonce, sizeof(cpu), &cpu); | |
502 | cc_clear(sizeof(nonce), &nonce); | |
503 | if (rc != CCDRBG_STATUS_OK) | |
504 | panic("ccdrbg_init() returned %d", rc); | |
fe8ab488 A |
505 | } |
506 | ||
d9a64523 A |
507 | void |
508 | register_and_init_prng(prng_fns_t fns) | |
fe8ab488 | 509 | { |
5ba3f43e A |
510 | uint8_t buf[nsources][ENTROPY_BUFFER_BYTE_SIZE]; |
511 | size_t nbytes; | |
fe8ab488 | 512 | |
d9a64523 A |
513 | assert(cpu_number() == master_cpu); |
514 | assert(prng_fns == NULL); | |
fe8ab488 | 515 | |
d9a64523 | 516 | prng_fns = fns; |
fe8ab488 | 517 | |
d9a64523 A |
518 | /* make a mutex to control access */ |
519 | prng.lock.group_attrs = lck_grp_attr_alloc_init(); | |
520 | prng.lock.group = lck_grp_alloc_init("random", prng.lock.group_attrs); | |
521 | prng.lock.attrs = lck_attr_alloc_init(); | |
522 | prng.lock.mutex = lck_mtx_alloc_init(prng.lock.group, prng.lock.attrs); | |
fe8ab488 | 523 | |
5ba3f43e | 524 | nbytes = entropy_readall(buf, ENTROPY_BUFFER_BYTE_SIZE); |
d9a64523 A |
525 | (void)prng_init(&prng.ctx, nbytes, buf); |
526 | cc_clear(sizeof(buf), buf); | |
fe8ab488 A |
527 | } |
528 | ||
529 | static void | |
d9a64523 | 530 | Reseed(void) |
fe8ab488 | 531 | { |
5ba3f43e A |
532 | uint8_t buf[nsources][ENTROPY_BUFFER_BYTE_SIZE]; |
533 | size_t nbytes; | |
fe8ab488 | 534 | |
d9a64523 | 535 | lck_mtx_assert(prng.lock.mutex, LCK_MTX_ASSERT_OWNED); |
fe8ab488 | 536 | |
d9a64523 A |
537 | nbytes = entropy_readall(buf, ENTROPY_BUFFER_BYTE_SIZE); |
538 | PRNG_CCKPRNG((void)prng_addentropy(&prng.ctx, nbytes, buf)); | |
539 | cc_clear(sizeof(buf), buf); | |
fe8ab488 A |
540 | } |
541 | ||
fe8ab488 A |
542 | /* export good random numbers to the rest of the kernel */ |
543 | void | |
d9a64523 | 544 | read_random(void * buffer, u_int numbytes) |
fe8ab488 | 545 | { |
d9a64523 | 546 | int err; |
fe8ab488 | 547 | |
d9a64523 | 548 | lck_mtx_lock(prng.lock.mutex); |
fe8ab488 A |
549 | |
550 | /* | |
d9a64523 | 551 | * Call PRNG, reseeding and retrying if requested. |
fe8ab488 | 552 | */ |
5ba3f43e | 553 | for (;;) { |
d9a64523 A |
554 | PRNG_CCKPRNG(err = prng_generate(&prng.ctx, numbytes, buffer)); |
555 | if (err == CCKPRNG_OK) | |
fe8ab488 | 556 | break; |
d9a64523 A |
557 | if (err == CCKPRNG_NEED_ENTROPY) { |
558 | Reseed(); | |
fe8ab488 A |
559 | continue; |
560 | } | |
d9a64523 | 561 | panic("read_random() error %d\n", err); |
fe8ab488 A |
562 | } |
563 | ||
d9a64523 | 564 | lck_mtx_unlock(prng.lock.mutex); |
fe8ab488 A |
565 | } |
566 | ||
567 | int | |
d9a64523 | 568 | write_random(void * buffer, u_int numbytes) |
fe8ab488 | 569 | { |
d9a64523 A |
570 | #if PERMIT_WRITE_RANDOM |
571 | int err; | |
fe8ab488 | 572 | |
d9a64523 A |
573 | lck_mtx_lock(prng.lock.mutex); |
574 | err = prng_reseed(&prng.ctx, numbytes, buffer); | |
575 | lck_mtx_unlock(prng.lock.mutex); | |
fe8ab488 | 576 | |
d9a64523 | 577 | return err ? EIO : 0; |
fe8ab488 | 578 | #else |
5ba3f43e A |
579 | #pragma unused(buffer, numbytes) |
580 | return 0; | |
fe8ab488 A |
581 | #endif |
582 | } | |
5c9f4661 | 583 | |
5c9f4661 A |
584 | /* |
585 | * Boolean PRNG for generating booleans to randomize order of elements | |
586 | * in certain kernel data structures. The algorithm is a | |
587 | * modified version of the KISS RNG proposed in the paper: | |
588 | * http://stat.fsu.edu/techreports/M802.pdf | |
589 | * The modifications have been documented in the technical paper | |
590 | * paper from UCL: | |
591 | * http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf | |
592 | */ | |
593 | ||
594 | /* Initialize the PRNG structures. */ | |
d9a64523 A |
595 | void |
596 | random_bool_init(struct bool_gen * bg) | |
5c9f4661 A |
597 | { |
598 | /* Seed the random boolean generator */ | |
599 | for (int i = 0; i < RANDOM_BOOL_GEN_SEED_COUNT; i++) { | |
600 | bg->seed[i] = (unsigned int)early_random(); | |
601 | } | |
602 | bg->state = 0; | |
603 | simple_lock_init(&bg->lock, 0); | |
604 | } | |
605 | ||
606 | /* Generate random bits and add them to an entropy pool. */ | |
d9a64523 A |
607 | void |
608 | random_bool_gen_entropy(struct bool_gen * bg, unsigned int * buffer, int count) | |
5c9f4661 | 609 | { |
5c9f4661 A |
610 | simple_lock(&bg->lock); |
611 | int i, t; | |
612 | for (i = 0; i < count; i++) { | |
613 | bg->seed[1] ^= (bg->seed[1] << 5); | |
614 | bg->seed[1] ^= (bg->seed[1] >> 7); | |
615 | bg->seed[1] ^= (bg->seed[1] << 22); | |
d9a64523 | 616 | t = bg->seed[2] + bg->seed[3] + bg->state; |
5c9f4661 | 617 | bg->seed[2] = bg->seed[3]; |
d9a64523 | 618 | bg->state = t < 0; |
5c9f4661 A |
619 | bg->seed[3] = t & 2147483647; |
620 | bg->seed[0] += 1411392427; | |
621 | buffer[i] = (bg->seed[0] + bg->seed[1] + bg->seed[3]); | |
622 | } | |
623 | simple_unlock(&bg->lock); | |
624 | } | |
625 | ||
626 | /* Get some number of bits from the entropy pool, refilling if necessary. */ | |
d9a64523 A |
627 | unsigned int |
628 | random_bool_gen_bits(struct bool_gen * bg, unsigned int * buffer, unsigned int count, unsigned int numbits) | |
5c9f4661 A |
629 | { |
630 | unsigned int index = 0; | |
631 | unsigned int rbits = 0; | |
632 | for (unsigned int bitct = 0; bitct < numbits; bitct++) { | |
633 | /* | |
634 | * Find a portion of the buffer that hasn't been emptied. | |
635 | * We might have emptied our last index in the previous iteration. | |
636 | */ | |
637 | while (index < count && buffer[index] == 0) | |
638 | index++; | |
639 | ||
640 | /* If we've exhausted the pool, refill it. */ | |
641 | if (index == count) { | |
642 | random_bool_gen_entropy(bg, buffer, count); | |
643 | index = 0; | |
644 | } | |
645 | ||
646 | /* Collect-a-bit */ | |
647 | unsigned int bit = buffer[index] & 1; | |
d9a64523 A |
648 | buffer[index] = buffer[index] >> 1; |
649 | rbits = bit | (rbits << 1); | |
5c9f4661 A |
650 | } |
651 | return rbits; | |
652 | } |