]>
Commit | Line | Data |
---|---|---|
2d21ac55 | 1 | /* |
39236c6e | 2 | * Copyright (c) 2005-2012 Apple Inc. All rights reserved. |
2d21ac55 A |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */ | |
30 | #include <kern/thread.h> | |
31 | #include <mach/thread_status.h> | |
32 | ||
33 | typedef x86_saved_state_t savearea_t; | |
34 | ||
35 | #include <stdarg.h> | |
36 | #include <string.h> | |
37 | #include <sys/malloc.h> | |
38 | #include <sys/time.h> | |
39 | #include <sys/systm.h> | |
40 | #include <sys/proc.h> | |
41 | #include <sys/proc_internal.h> | |
42 | #include <sys/kauth.h> | |
43 | #include <sys/dtrace.h> | |
44 | #include <sys/dtrace_impl.h> | |
45 | #include <libkern/OSAtomic.h> | |
46 | #include <kern/thread_call.h> | |
47 | #include <kern/task.h> | |
48 | #include <kern/sched_prim.h> | |
49 | #include <miscfs/devfs/devfs.h> | |
50 | #include <mach/vm_param.h> | |
6d2010ae A |
51 | #include <machine/pal_routines.h> |
52 | #include <i386/mp.h> | |
2d21ac55 | 53 | |
b0d623f7 A |
54 | /* |
55 | * APPLE NOTE: The regmap is used to decode which 64bit uregs[] register | |
56 | * is being accessed when passed the 32bit uregs[] constant (based on | |
57 | * the reg.d translator file). The dtrace_getreg() is smart enough to handle | |
58 | * the register mappings. The register set definitions are the same as | |
59 | * those used by the fasttrap_getreg code. | |
60 | */ | |
61 | #include "fasttrap_regset.h" | |
62 | static const uint8_t regmap[19] = { | |
63 | REG_GS, /* GS */ | |
64 | REG_FS, /* FS */ | |
65 | REG_ES, /* ES */ | |
66 | REG_DS, /* DS */ | |
67 | REG_RDI, /* EDI */ | |
68 | REG_RSI, /* ESI */ | |
69 | REG_RBP, /* EBP, REG_FP */ | |
70 | REG_RSP, /* ESP */ | |
71 | REG_RBX, /* EBX */ | |
72 | REG_RDX, /* EDX, REG_R1 */ | |
73 | REG_RCX, /* ECX */ | |
74 | REG_RAX, /* EAX, REG_R0 */ | |
75 | REG_TRAPNO, /* TRAPNO */ | |
76 | REG_ERR, /* ERR */ | |
77 | REG_RIP, /* EIP, REG_PC */ | |
78 | REG_CS, /* CS */ | |
79 | REG_RFL, /* EFL, REG_PS */ | |
80 | REG_RSP, /* UESP, REG_SP */ | |
81 | REG_SS /* SS */ | |
82 | }; | |
83 | ||
2d21ac55 A |
84 | extern dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ |
85 | ||
86 | void | |
87 | dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which, | |
b0d623f7 | 88 | int fltoffs, int fault, uint64_t illval) |
2d21ac55 A |
89 | { |
90 | /* | |
91 | * For the case of the error probe firing lets | |
92 | * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG. | |
93 | */ | |
94 | state->dts_arg_error_illval = illval; | |
b0d623f7 | 95 | dtrace_probe( dtrace_probeid_error, (uint64_t)(uintptr_t)state, epid, which, fltoffs, fault ); |
2d21ac55 A |
96 | } |
97 | ||
98 | /* | |
99 | * Atomicity and synchronization | |
100 | */ | |
101 | void | |
102 | dtrace_membar_producer(void) | |
103 | { | |
104 | __asm__ volatile("sfence"); | |
105 | } | |
106 | ||
107 | void | |
108 | dtrace_membar_consumer(void) | |
109 | { | |
110 | __asm__ volatile("lfence"); | |
111 | } | |
112 | ||
113 | /* | |
114 | * Interrupt manipulation | |
115 | * XXX dtrace_getipl() can be called from probe context. | |
116 | */ | |
117 | int | |
118 | dtrace_getipl(void) | |
119 | { | |
120 | /* | |
121 | * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE | |
122 | * in osfmk/kern/cpu_data.h | |
123 | */ | |
124 | /* return get_interrupt_level(); */ | |
125 | return (ml_at_interrupt_context() ? 1: 0); | |
126 | } | |
127 | ||
128 | /* | |
129 | * MP coordination | |
130 | */ | |
2d21ac55 A |
131 | typedef struct xcArg { |
132 | processorid_t cpu; | |
133 | dtrace_xcall_t f; | |
134 | void *arg; | |
135 | } xcArg_t; | |
136 | ||
137 | static void | |
138 | xcRemote( void *foo ) | |
139 | { | |
140 | xcArg_t *pArg = (xcArg_t *)foo; | |
141 | ||
142 | if ( pArg->cpu == CPU->cpu_id || pArg->cpu == DTRACE_CPUALL ) { | |
143 | (pArg->f)(pArg->arg); | |
144 | } | |
145 | } | |
146 | ||
6d2010ae | 147 | |
2d21ac55 A |
148 | /* |
149 | * dtrace_xcall() is not called from probe context. | |
150 | */ | |
151 | void | |
152 | dtrace_xcall(processorid_t cpu, dtrace_xcall_t f, void *arg) | |
153 | { | |
154 | xcArg_t xcArg; | |
155 | ||
156 | xcArg.cpu = cpu; | |
157 | xcArg.f = f; | |
158 | xcArg.arg = arg; | |
159 | ||
6d2010ae | 160 | if (cpu == DTRACE_CPUALL) { |
fe8ab488 | 161 | mp_cpus_call (CPUMASK_ALL, ASYNC, xcRemote, (void*)&xcArg); |
6d2010ae A |
162 | } |
163 | else { | |
fe8ab488 | 164 | mp_cpus_call (cpu_to_cpumask((cpu_t)cpu), ASYNC, xcRemote, (void*)&xcArg); |
6d2010ae | 165 | } |
2d21ac55 A |
166 | } |
167 | ||
316670eb A |
168 | /* |
169 | * Initialization | |
170 | */ | |
171 | void | |
172 | dtrace_isa_init(void) | |
173 | { | |
174 | return; | |
175 | } | |
176 | ||
2d21ac55 A |
177 | /* |
178 | * Runtime and ABI | |
179 | */ | |
2d21ac55 A |
180 | uint64_t |
181 | dtrace_getreg(struct regs *savearea, uint_t reg) | |
182 | { | |
183 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
184 | x86_saved_state_t *regs = (x86_saved_state_t *)savearea; | |
b0d623f7 | 185 | |
d9a64523 A |
186 | if (regs == NULL) { |
187 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); | |
188 | return (0); | |
189 | } | |
190 | ||
2d21ac55 | 191 | if (is64Bit) { |
b0d623f7 A |
192 | if (reg <= SS) { |
193 | reg = regmap[reg]; | |
194 | } else { | |
195 | reg -= (SS + 1); | |
196 | } | |
197 | ||
198 | switch (reg) { | |
199 | case REG_RDI: | |
200 | return (uint64_t)(regs->ss_64.rdi); | |
201 | case REG_RSI: | |
202 | return (uint64_t)(regs->ss_64.rsi); | |
203 | case REG_RDX: | |
204 | return (uint64_t)(regs->ss_64.rdx); | |
205 | case REG_RCX: | |
206 | return (uint64_t)(regs->ss_64.rcx); | |
207 | case REG_R8: | |
208 | return (uint64_t)(regs->ss_64.r8); | |
209 | case REG_R9: | |
210 | return (uint64_t)(regs->ss_64.r9); | |
211 | case REG_RAX: | |
212 | return (uint64_t)(regs->ss_64.rax); | |
213 | case REG_RBX: | |
214 | return (uint64_t)(regs->ss_64.rbx); | |
215 | case REG_RBP: | |
216 | return (uint64_t)(regs->ss_64.rbp); | |
217 | case REG_R10: | |
218 | return (uint64_t)(regs->ss_64.r10); | |
219 | case REG_R11: | |
220 | return (uint64_t)(regs->ss_64.r11); | |
221 | case REG_R12: | |
222 | return (uint64_t)(regs->ss_64.r12); | |
223 | case REG_R13: | |
224 | return (uint64_t)(regs->ss_64.r13); | |
225 | case REG_R14: | |
226 | return (uint64_t)(regs->ss_64.r14); | |
227 | case REG_R15: | |
228 | return (uint64_t)(regs->ss_64.r15); | |
229 | case REG_FS: | |
230 | return (uint64_t)(regs->ss_64.fs); | |
231 | case REG_GS: | |
232 | return (uint64_t)(regs->ss_64.gs); | |
233 | case REG_TRAPNO: | |
234 | return (uint64_t)(regs->ss_64.isf.trapno); | |
235 | case REG_ERR: | |
236 | return (uint64_t)(regs->ss_64.isf.err); | |
237 | case REG_RIP: | |
238 | return (uint64_t)(regs->ss_64.isf.rip); | |
239 | case REG_CS: | |
240 | return (uint64_t)(regs->ss_64.isf.cs); | |
241 | case REG_SS: | |
242 | return (uint64_t)(regs->ss_64.isf.ss); | |
243 | case REG_RFL: | |
244 | return (uint64_t)(regs->ss_64.isf.rflags); | |
245 | case REG_RSP: | |
246 | return (uint64_t)(regs->ss_64.isf.rsp); | |
247 | case REG_DS: | |
248 | case REG_ES: | |
249 | default: | |
250 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); | |
251 | return (0); | |
252 | } | |
253 | ||
254 | } else { /* is 32bit user */ | |
2d21ac55 A |
255 | /* beyond register SS */ |
256 | if (reg > x86_SAVED_STATE32_COUNT - 1) { | |
257 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); | |
258 | return (0); | |
259 | } | |
260 | return (uint64_t)((unsigned int *)(&(regs->ss_32.gs)))[reg]; | |
261 | } | |
2d21ac55 A |
262 | } |
263 | ||
264 | #define RETURN_OFFSET 4 | |
265 | #define RETURN_OFFSET64 8 | |
266 | ||
267 | static int | |
268 | dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, user_addr_t pc, | |
269 | user_addr_t sp) | |
270 | { | |
271 | #if 0 | |
272 | volatile uint16_t *flags = | |
273 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; | |
274 | ||
275 | uintptr_t oldcontext = lwp->lwp_oldcontext; /* XXX signal stack crawl */ | |
276 | size_t s1, s2; | |
277 | #endif | |
278 | int ret = 0; | |
279 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
280 | ||
281 | ASSERT(pcstack == NULL || pcstack_limit > 0); | |
282 | ||
283 | #if 0 /* XXX signal stack crawl */ | |
284 | if (p->p_model == DATAMODEL_NATIVE) { | |
285 | s1 = sizeof (struct frame) + 2 * sizeof (long); | |
286 | s2 = s1 + sizeof (siginfo_t); | |
287 | } else { | |
288 | s1 = sizeof (struct frame32) + 3 * sizeof (int); | |
289 | s2 = s1 + sizeof (siginfo32_t); | |
290 | } | |
291 | #endif | |
292 | ||
293 | while (pc != 0) { | |
294 | ret++; | |
295 | if (pcstack != NULL) { | |
296 | *pcstack++ = (uint64_t)pc; | |
297 | pcstack_limit--; | |
298 | if (pcstack_limit <= 0) | |
299 | break; | |
300 | } | |
301 | ||
302 | if (sp == 0) | |
303 | break; | |
304 | ||
305 | #if 0 /* XXX signal stack crawl */ | |
306 | if (oldcontext == sp + s1 || oldcontext == sp + s2) { | |
307 | if (p->p_model == DATAMODEL_NATIVE) { | |
308 | ucontext_t *ucp = (ucontext_t *)oldcontext; | |
309 | greg_t *gregs = ucp->uc_mcontext.gregs; | |
310 | ||
311 | sp = dtrace_fulword(&gregs[REG_FP]); | |
312 | pc = dtrace_fulword(&gregs[REG_PC]); | |
313 | ||
314 | oldcontext = dtrace_fulword(&ucp->uc_link); | |
315 | } else { | |
316 | ucontext32_t *ucp = (ucontext32_t *)oldcontext; | |
317 | greg32_t *gregs = ucp->uc_mcontext.gregs; | |
318 | ||
319 | sp = dtrace_fuword32(&gregs[EBP]); | |
320 | pc = dtrace_fuword32(&gregs[EIP]); | |
321 | ||
322 | oldcontext = dtrace_fuword32(&ucp->uc_link); | |
323 | } | |
324 | } | |
325 | else | |
326 | #endif | |
327 | { | |
328 | if (is64Bit) { | |
329 | pc = dtrace_fuword64((sp + RETURN_OFFSET64)); | |
330 | sp = dtrace_fuword64(sp); | |
331 | } else { | |
332 | pc = dtrace_fuword32((sp + RETURN_OFFSET)); | |
333 | sp = dtrace_fuword32(sp); | |
334 | } | |
335 | } | |
336 | ||
337 | #if 0 /* XXX */ | |
338 | /* | |
339 | * This is totally bogus: if we faulted, we're going to clear | |
340 | * the fault and break. This is to deal with the apparently | |
341 | * broken Java stacks on x86. | |
342 | */ | |
343 | if (*flags & CPU_DTRACE_FAULT) { | |
344 | *flags &= ~CPU_DTRACE_FAULT; | |
345 | break; | |
346 | } | |
347 | #endif | |
348 | } | |
349 | ||
350 | return (ret); | |
351 | } | |
352 | ||
b0d623f7 A |
353 | |
354 | /* | |
355 | * The return value indicates if we've modified the stack. | |
356 | */ | |
357 | static int | |
358 | dtrace_adjust_stack(uint64_t **pcstack, int *pcstack_limit, user_addr_t *pc, | |
359 | user_addr_t sp) | |
360 | { | |
361 | int64_t missing_tos; | |
362 | int rc = 0; | |
363 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
364 | ||
365 | ASSERT(pc != NULL); | |
366 | ||
367 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { | |
368 | /* | |
369 | * If we found ourselves in an entry probe, the frame pointer has not | |
370 | * yet been pushed (that happens in the | |
371 | * function prologue). The best approach is to | |
372 | * add the current pc as a missing top of stack, | |
373 | * and back the pc up to the caller, which is stored at the | |
374 | * current stack pointer address since the call | |
375 | * instruction puts it there right before | |
376 | * the branch. | |
377 | */ | |
378 | ||
379 | missing_tos = *pc; | |
380 | ||
381 | if (is64Bit) | |
382 | *pc = dtrace_fuword64(sp); | |
383 | else | |
384 | *pc = dtrace_fuword32(sp); | |
385 | } else { | |
386 | /* | |
387 | * We might have a top of stack override, in which case we just | |
388 | * add that frame without question to the top. This | |
389 | * happens in return probes where you have a valid | |
390 | * frame pointer, but it's for the callers frame | |
391 | * and you'd like to add the pc of the return site | |
392 | * to the frame. | |
393 | */ | |
394 | missing_tos = cpu_core[CPU->cpu_id].cpuc_missing_tos; | |
395 | } | |
396 | ||
397 | if (missing_tos != 0) { | |
398 | if (pcstack != NULL && pcstack_limit != NULL) { | |
399 | /* | |
400 | * If the missing top of stack has been filled out, then | |
401 | * we add it and adjust the size. | |
402 | */ | |
403 | *(*pcstack)++ = missing_tos; | |
404 | (*pcstack_limit)--; | |
405 | } | |
406 | /* | |
407 | * return 1 because we would have changed the | |
408 | * stack whether or not it was passed in. This | |
409 | * ensures the stack count is correct | |
410 | */ | |
411 | rc = 1; | |
412 | } | |
413 | return rc; | |
414 | } | |
415 | ||
2d21ac55 A |
416 | void |
417 | dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) | |
418 | { | |
419 | thread_t thread = current_thread(); | |
420 | x86_saved_state_t *regs; | |
421 | user_addr_t pc, sp, fp; | |
422 | volatile uint16_t *flags = | |
423 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; | |
424 | int n; | |
425 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
426 | ||
427 | if (*flags & CPU_DTRACE_FAULT) | |
428 | return; | |
429 | ||
430 | if (pcstack_limit <= 0) | |
431 | return; | |
432 | ||
433 | /* | |
434 | * If there's no user context we still need to zero the stack. | |
435 | */ | |
436 | if (thread == NULL) | |
437 | goto zero; | |
438 | ||
6d2010ae | 439 | pal_register_cache_state(thread, VALID); |
2d21ac55 A |
440 | regs = (x86_saved_state_t *)find_user_regs(thread); |
441 | if (regs == NULL) | |
442 | goto zero; | |
443 | ||
39236c6e | 444 | *pcstack++ = (uint64_t)dtrace_proc_selfpid(); |
2d21ac55 A |
445 | pcstack_limit--; |
446 | ||
447 | if (pcstack_limit <= 0) | |
448 | return; | |
449 | ||
450 | if (is64Bit) { | |
451 | pc = regs->ss_64.isf.rip; | |
452 | sp = regs->ss_64.isf.rsp; | |
453 | fp = regs->ss_64.rbp; | |
454 | } else { | |
455 | pc = regs->ss_32.eip; | |
456 | sp = regs->ss_32.uesp; | |
457 | fp = regs->ss_32.ebp; | |
458 | } | |
459 | ||
b0d623f7 A |
460 | /* |
461 | * The return value indicates if we've modified the stack. | |
462 | * Since there is nothing else to fix up in either case, | |
463 | * we can safely ignore it here. | |
464 | */ | |
465 | (void)dtrace_adjust_stack(&pcstack, &pcstack_limit, &pc, sp); | |
2d21ac55 | 466 | |
b0d623f7 A |
467 | if(pcstack_limit <= 0) |
468 | return; | |
2d21ac55 A |
469 | |
470 | /* | |
471 | * Note that unlike ppc, the x86 code does not use | |
472 | * CPU_DTRACE_USTACK_FP. This is because x86 always | |
473 | * traces from the fp, even in syscall/profile/fbt | |
474 | * providers. | |
475 | */ | |
476 | n = dtrace_getustack_common(pcstack, pcstack_limit, pc, fp); | |
477 | ASSERT(n >= 0); | |
478 | ASSERT(n <= pcstack_limit); | |
479 | ||
480 | pcstack += n; | |
481 | pcstack_limit -= n; | |
482 | ||
483 | zero: | |
484 | while (pcstack_limit-- > 0) | |
485 | *pcstack++ = 0; | |
486 | } | |
487 | ||
488 | int | |
489 | dtrace_getustackdepth(void) | |
490 | { | |
491 | thread_t thread = current_thread(); | |
492 | x86_saved_state_t *regs; | |
493 | user_addr_t pc, sp, fp; | |
494 | int n = 0; | |
495 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
496 | ||
497 | if (thread == NULL) | |
498 | return 0; | |
499 | ||
500 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) | |
501 | return (-1); | |
502 | ||
6d2010ae | 503 | pal_register_cache_state(thread, VALID); |
2d21ac55 A |
504 | regs = (x86_saved_state_t *)find_user_regs(thread); |
505 | if (regs == NULL) | |
506 | return 0; | |
507 | ||
508 | if (is64Bit) { | |
509 | pc = regs->ss_64.isf.rip; | |
510 | sp = regs->ss_64.isf.rsp; | |
511 | fp = regs->ss_64.rbp; | |
512 | } else { | |
513 | pc = regs->ss_32.eip; | |
514 | sp = regs->ss_32.uesp; | |
515 | fp = regs->ss_32.ebp; | |
516 | } | |
517 | ||
b0d623f7 A |
518 | if (dtrace_adjust_stack(NULL, NULL, &pc, sp) == 1) { |
519 | /* | |
520 | * we would have adjusted the stack if we had | |
521 | * supplied one (that is what rc == 1 means). | |
522 | * Also, as a side effect, the pc might have | |
523 | * been fixed up, which is good for calling | |
524 | * in to dtrace_getustack_common. | |
525 | */ | |
526 | n++; | |
2d21ac55 | 527 | } |
b0d623f7 | 528 | |
2d21ac55 A |
529 | /* |
530 | * Note that unlike ppc, the x86 code does not use | |
531 | * CPU_DTRACE_USTACK_FP. This is because x86 always | |
532 | * traces from the fp, even in syscall/profile/fbt | |
533 | * providers. | |
534 | */ | |
535 | ||
536 | n += dtrace_getustack_common(NULL, 0, pc, fp); | |
537 | ||
538 | return (n); | |
539 | } | |
540 | ||
541 | void | |
542 | dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) | |
543 | { | |
544 | thread_t thread = current_thread(); | |
545 | savearea_t *regs; | |
546 | user_addr_t pc, sp; | |
547 | volatile uint16_t *flags = | |
548 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; | |
549 | #if 0 | |
550 | uintptr_t oldcontext; | |
551 | size_t s1, s2; | |
552 | #endif | |
553 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
554 | ||
555 | if (*flags & CPU_DTRACE_FAULT) | |
556 | return; | |
557 | ||
558 | if (pcstack_limit <= 0) | |
559 | return; | |
560 | ||
561 | /* | |
562 | * If there's no user context we still need to zero the stack. | |
563 | */ | |
564 | if (thread == NULL) | |
565 | goto zero; | |
566 | ||
567 | regs = (savearea_t *)find_user_regs(thread); | |
568 | if (regs == NULL) | |
569 | goto zero; | |
570 | ||
39236c6e | 571 | *pcstack++ = (uint64_t)dtrace_proc_selfpid(); |
2d21ac55 A |
572 | pcstack_limit--; |
573 | ||
574 | if (pcstack_limit <= 0) | |
575 | return; | |
576 | ||
577 | pc = regs->ss_32.eip; | |
578 | sp = regs->ss_32.ebp; | |
579 | ||
580 | #if 0 /* XXX signal stack crawl */ | |
581 | oldcontext = lwp->lwp_oldcontext; | |
582 | ||
583 | if (p->p_model == DATAMODEL_NATIVE) { | |
584 | s1 = sizeof (struct frame) + 2 * sizeof (long); | |
585 | s2 = s1 + sizeof (siginfo_t); | |
586 | } else { | |
587 | s1 = sizeof (struct frame32) + 3 * sizeof (int); | |
588 | s2 = s1 + sizeof (siginfo32_t); | |
589 | } | |
590 | #endif | |
591 | ||
b0d623f7 A |
592 | if(dtrace_adjust_stack(&pcstack, &pcstack_limit, &pc, sp) == 1) { |
593 | /* | |
594 | * we made a change. | |
595 | */ | |
596 | *fpstack++ = 0; | |
597 | if (pcstack_limit <= 0) | |
598 | return; | |
2d21ac55 A |
599 | } |
600 | ||
601 | while (pc != 0) { | |
602 | *pcstack++ = (uint64_t)pc; | |
603 | *fpstack++ = sp; | |
604 | pcstack_limit--; | |
605 | if (pcstack_limit <= 0) | |
606 | break; | |
607 | ||
608 | if (sp == 0) | |
609 | break; | |
610 | ||
611 | #if 0 /* XXX signal stack crawl */ | |
612 | if (oldcontext == sp + s1 || oldcontext == sp + s2) { | |
613 | if (p->p_model == DATAMODEL_NATIVE) { | |
614 | ucontext_t *ucp = (ucontext_t *)oldcontext; | |
615 | greg_t *gregs = ucp->uc_mcontext.gregs; | |
616 | ||
617 | sp = dtrace_fulword(&gregs[REG_FP]); | |
618 | pc = dtrace_fulword(&gregs[REG_PC]); | |
619 | ||
620 | oldcontext = dtrace_fulword(&ucp->uc_link); | |
621 | } else { | |
622 | ucontext_t *ucp = (ucontext_t *)oldcontext; | |
623 | greg_t *gregs = ucp->uc_mcontext.gregs; | |
624 | ||
625 | sp = dtrace_fuword32(&gregs[EBP]); | |
626 | pc = dtrace_fuword32(&gregs[EIP]); | |
627 | ||
628 | oldcontext = dtrace_fuword32(&ucp->uc_link); | |
629 | } | |
630 | } | |
631 | else | |
632 | #endif | |
633 | { | |
634 | if (is64Bit) { | |
635 | pc = dtrace_fuword64((sp + RETURN_OFFSET64)); | |
636 | sp = dtrace_fuword64(sp); | |
637 | } else { | |
638 | pc = dtrace_fuword32((sp + RETURN_OFFSET)); | |
639 | sp = dtrace_fuword32(sp); | |
640 | } | |
641 | } | |
642 | ||
643 | #if 0 /* XXX */ | |
644 | /* | |
645 | * This is totally bogus: if we faulted, we're going to clear | |
646 | * the fault and break. This is to deal with the apparently | |
647 | * broken Java stacks on x86. | |
648 | */ | |
649 | if (*flags & CPU_DTRACE_FAULT) { | |
650 | *flags &= ~CPU_DTRACE_FAULT; | |
651 | break; | |
652 | } | |
653 | #endif | |
654 | } | |
655 | ||
656 | zero: | |
657 | while (pcstack_limit-- > 0) | |
658 | *pcstack++ = 0; | |
659 | } | |
660 | ||
661 | void | |
662 | dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, | |
663 | uint32_t *intrpc) | |
664 | { | |
b0d623f7 | 665 | struct frame *fp = (struct frame *)__builtin_frame_address(0); |
2d21ac55 A |
666 | struct frame *nextfp, *minfp, *stacktop; |
667 | int depth = 0; | |
668 | int last = 0; | |
669 | uintptr_t pc; | |
670 | uintptr_t caller = CPU->cpu_dtrace_caller; | |
671 | int on_intr; | |
672 | ||
673 | if ((on_intr = CPU_ON_INTR(CPU)) != 0) | |
674 | stacktop = (struct frame *)dtrace_get_cpu_int_stack_top(); | |
675 | else | |
b0d623f7 | 676 | stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size); |
2d21ac55 A |
677 | |
678 | minfp = fp; | |
679 | ||
680 | aframes++; | |
681 | ||
682 | if (intrpc != NULL && depth < pcstack_limit) | |
683 | pcstack[depth++] = (pc_t)intrpc; | |
684 | ||
685 | while (depth < pcstack_limit) { | |
686 | nextfp = *(struct frame **)fp; | |
b0d623f7 | 687 | pc = *(uintptr_t *)(((uintptr_t)fp) + RETURN_OFFSET64); |
2d21ac55 A |
688 | |
689 | if (nextfp <= minfp || nextfp >= stacktop) { | |
690 | if (on_intr) { | |
691 | /* | |
692 | * Hop from interrupt stack to thread stack. | |
693 | */ | |
694 | vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread()); | |
695 | ||
696 | minfp = (struct frame *)kstack_base; | |
b0d623f7 | 697 | stacktop = (struct frame *)(kstack_base + kernel_stack_size); |
2d21ac55 A |
698 | |
699 | on_intr = 0; | |
700 | continue; | |
701 | } | |
702 | /* | |
703 | * This is the last frame we can process; indicate | |
704 | * that we should return after processing this frame. | |
705 | */ | |
706 | last = 1; | |
707 | } | |
708 | ||
709 | if (aframes > 0) { | |
710 | if (--aframes == 0 && caller != 0) { | |
711 | /* | |
712 | * We've just run out of artificial frames, | |
713 | * and we have a valid caller -- fill it in | |
714 | * now. | |
715 | */ | |
716 | ASSERT(depth < pcstack_limit); | |
717 | pcstack[depth++] = (pc_t)caller; | |
718 | caller = 0; | |
719 | } | |
720 | } else { | |
721 | if (depth < pcstack_limit) | |
722 | pcstack[depth++] = (pc_t)pc; | |
723 | } | |
724 | ||
725 | if (last) { | |
726 | while (depth < pcstack_limit) | |
727 | pcstack[depth++] = 0; | |
728 | return; | |
729 | } | |
730 | ||
731 | fp = nextfp; | |
732 | minfp = fp; | |
733 | } | |
734 | } | |
735 | ||
736 | struct frame { | |
737 | struct frame *backchain; | |
738 | uintptr_t retaddr; | |
739 | }; | |
740 | ||
741 | uint64_t | |
5ba3f43e | 742 | dtrace_getarg(int arg, int aframes, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
2d21ac55 | 743 | { |
5ba3f43e | 744 | uint64_t val = 0; |
b0d623f7 | 745 | struct frame *fp = (struct frame *)__builtin_frame_address(0); |
2d21ac55 A |
746 | uintptr_t *stack; |
747 | uintptr_t pc; | |
748 | int i; | |
749 | ||
b0d623f7 | 750 | |
b0d623f7 A |
751 | /* |
752 | * A total of 6 arguments are passed via registers; any argument with | |
753 | * index of 5 or lower is therefore in a register. | |
754 | */ | |
755 | int inreg = 5; | |
b0d623f7 | 756 | |
2d21ac55 A |
757 | for (i = 1; i <= aframes; i++) { |
758 | fp = fp->backchain; | |
759 | pc = fp->retaddr; | |
760 | ||
6d2010ae A |
761 | if (dtrace_invop_callsite_pre != NULL |
762 | && pc > (uintptr_t)dtrace_invop_callsite_pre | |
763 | && pc <= (uintptr_t)dtrace_invop_callsite_post) { | |
b0d623f7 A |
764 | /* |
765 | * In the case of x86_64, we will use the pointer to the | |
766 | * save area structure that was pushed when we took the | |
767 | * trap. To get this structure, we must increment | |
768 | * beyond the frame structure. If the | |
769 | * argument that we're seeking is passed on the stack, | |
770 | * we'll pull the true stack pointer out of the saved | |
771 | * registers and decrement our argument by the number | |
772 | * of arguments passed in registers; if the argument | |
773 | * we're seeking is passed in regsiters, we can just | |
774 | * load it directly. | |
775 | */ | |
776 | ||
777 | /* fp points to frame of dtrace_invop() activation. */ | |
778 | fp = fp->backchain; /* to fbt_perfcallback() activation. */ | |
779 | fp = fp->backchain; /* to kernel_trap() activation. */ | |
780 | fp = fp->backchain; /* to trap_from_kernel() activation. */ | |
781 | ||
782 | x86_saved_state_t *tagged_regs = (x86_saved_state_t *)&fp[1]; | |
783 | x86_saved_state64_t *saved_state = saved_state64(tagged_regs); | |
784 | ||
785 | if (arg <= inreg) { | |
5ba3f43e | 786 | stack = (uintptr_t *)(void*)&saved_state->rdi; |
b0d623f7 | 787 | } else { |
6d2010ae A |
788 | fp = (struct frame *)(saved_state->isf.rsp); |
789 | stack = (uintptr_t *)&fp[1]; /* Find marshalled | |
790 | arguments */ | |
791 | arg -= inreg + 1; | |
b0d623f7 | 792 | } |
b0d623f7 | 793 | goto load; |
2d21ac55 A |
794 | } |
795 | } | |
796 | ||
797 | /* | |
6d2010ae A |
798 | * We know that we did not come through a trap to get into |
799 | * dtrace_probe() -- We arrive here when the provider has | |
800 | * called dtrace_probe() directly. | |
801 | * The probe ID is the first argument to dtrace_probe(). | |
802 | * We must advance beyond that to get the argX. | |
2d21ac55 | 803 | */ |
b0d623f7 A |
804 | arg++; /* Advance past probeID */ |
805 | ||
b0d623f7 A |
806 | if (arg <= inreg) { |
807 | /* | |
808 | * This shouldn't happen. If the argument is passed in a | |
809 | * register then it should have been, well, passed in a | |
810 | * register... | |
811 | */ | |
812 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); | |
813 | return (0); | |
814 | } | |
815 | ||
816 | arg -= (inreg + 1); | |
2d21ac55 | 817 | stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */ |
2d21ac55 | 818 | |
b0d623f7 | 819 | load: |
5ba3f43e A |
820 | if (dtrace_canload((uint64_t)(stack + arg), sizeof(uint64_t), |
821 | mstate, vstate)) { | |
822 | /* dtrace_probe arguments arg0 ... arg4 are 64bits wide */ | |
823 | val = dtrace_load64((uint64_t)(stack + arg)); | |
824 | } | |
2d21ac55 A |
825 | |
826 | return (val); | |
827 | } | |
828 | ||
829 | /* | |
830 | * Load/Store Safety | |
831 | */ | |
832 | void | |
833 | dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) | |
834 | { | |
835 | /* | |
836 | * "base" is the smallest toxic address in the range, "limit" is the first | |
837 | * VALID address greater than "base". | |
838 | */ | |
b0d623f7 A |
839 | func(0x0, VM_MIN_KERNEL_AND_KEXT_ADDRESS); |
840 | if (VM_MAX_KERNEL_ADDRESS < ~(uintptr_t)0) | |
841 | func(VM_MAX_KERNEL_ADDRESS + 1, ~(uintptr_t)0); | |
2d21ac55 A |
842 | } |
843 |