]>
Commit | Line | Data |
---|---|---|
2d21ac55 A |
1 | /* |
2 | * Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */ | |
30 | #include <kern/thread.h> | |
31 | #include <mach/thread_status.h> | |
32 | ||
33 | typedef x86_saved_state_t savearea_t; | |
34 | ||
35 | #include <stdarg.h> | |
36 | #include <string.h> | |
37 | #include <sys/malloc.h> | |
38 | #include <sys/time.h> | |
39 | #include <sys/systm.h> | |
40 | #include <sys/proc.h> | |
41 | #include <sys/proc_internal.h> | |
42 | #include <sys/kauth.h> | |
43 | #include <sys/dtrace.h> | |
44 | #include <sys/dtrace_impl.h> | |
45 | #include <libkern/OSAtomic.h> | |
46 | #include <kern/thread_call.h> | |
47 | #include <kern/task.h> | |
48 | #include <kern/sched_prim.h> | |
49 | #include <miscfs/devfs/devfs.h> | |
50 | #include <mach/vm_param.h> | |
51 | ||
52 | extern dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ | |
53 | ||
54 | void | |
55 | dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which, | |
56 | int fault, int fltoffs, uint64_t illval) | |
57 | { | |
58 | /* | |
59 | * For the case of the error probe firing lets | |
60 | * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG. | |
61 | */ | |
62 | state->dts_arg_error_illval = illval; | |
63 | dtrace_probe( dtrace_probeid_error, (uint64_t)(uintptr_t)state, epid, which, fault, fltoffs ); | |
64 | } | |
65 | ||
66 | /* | |
67 | * Atomicity and synchronization | |
68 | */ | |
69 | void | |
70 | dtrace_membar_producer(void) | |
71 | { | |
72 | __asm__ volatile("sfence"); | |
73 | } | |
74 | ||
75 | void | |
76 | dtrace_membar_consumer(void) | |
77 | { | |
78 | __asm__ volatile("lfence"); | |
79 | } | |
80 | ||
81 | /* | |
82 | * Interrupt manipulation | |
83 | * XXX dtrace_getipl() can be called from probe context. | |
84 | */ | |
85 | int | |
86 | dtrace_getipl(void) | |
87 | { | |
88 | /* | |
89 | * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE | |
90 | * in osfmk/kern/cpu_data.h | |
91 | */ | |
92 | /* return get_interrupt_level(); */ | |
93 | return (ml_at_interrupt_context() ? 1: 0); | |
94 | } | |
95 | ||
96 | /* | |
97 | * MP coordination | |
98 | */ | |
99 | ||
100 | extern void mp_broadcast( | |
101 | void (*action_func)(void *), | |
102 | void *arg); | |
103 | ||
104 | typedef struct xcArg { | |
105 | processorid_t cpu; | |
106 | dtrace_xcall_t f; | |
107 | void *arg; | |
108 | } xcArg_t; | |
109 | ||
110 | static void | |
111 | xcRemote( void *foo ) | |
112 | { | |
113 | xcArg_t *pArg = (xcArg_t *)foo; | |
114 | ||
115 | if ( pArg->cpu == CPU->cpu_id || pArg->cpu == DTRACE_CPUALL ) { | |
116 | (pArg->f)(pArg->arg); | |
117 | } | |
118 | } | |
119 | ||
120 | /* | |
121 | * dtrace_xcall() is not called from probe context. | |
122 | */ | |
123 | void | |
124 | dtrace_xcall(processorid_t cpu, dtrace_xcall_t f, void *arg) | |
125 | { | |
126 | xcArg_t xcArg; | |
127 | ||
128 | xcArg.cpu = cpu; | |
129 | xcArg.f = f; | |
130 | xcArg.arg = arg; | |
131 | ||
132 | mp_broadcast( xcRemote, (void *)&xcArg); | |
133 | } | |
134 | ||
135 | /* | |
136 | * Runtime and ABI | |
137 | */ | |
138 | extern greg_t | |
139 | dtrace_getfp(void) | |
140 | { | |
141 | return (greg_t)__builtin_frame_address(0); | |
142 | } | |
143 | ||
144 | uint64_t | |
145 | dtrace_getreg(struct regs *savearea, uint_t reg) | |
146 | { | |
147 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
148 | x86_saved_state_t *regs = (x86_saved_state_t *)savearea; | |
149 | ||
150 | if (is64Bit) { | |
151 | /* beyond register SS */ | |
152 | if (reg > x86_SAVED_STATE64_COUNT - 1) { | |
153 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); | |
154 | return (0); | |
155 | } | |
156 | return ((uint64_t *)(&(regs->ss_64.gs)))[reg]; | |
157 | } else { | |
158 | /* beyond register SS */ | |
159 | if (reg > x86_SAVED_STATE32_COUNT - 1) { | |
160 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); | |
161 | return (0); | |
162 | } | |
163 | return (uint64_t)((unsigned int *)(&(regs->ss_32.gs)))[reg]; | |
164 | } | |
165 | ||
166 | } | |
167 | ||
168 | #define RETURN_OFFSET 4 | |
169 | #define RETURN_OFFSET64 8 | |
170 | ||
171 | static int | |
172 | dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, user_addr_t pc, | |
173 | user_addr_t sp) | |
174 | { | |
175 | #if 0 | |
176 | volatile uint16_t *flags = | |
177 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; | |
178 | ||
179 | uintptr_t oldcontext = lwp->lwp_oldcontext; /* XXX signal stack crawl */ | |
180 | size_t s1, s2; | |
181 | #endif | |
182 | int ret = 0; | |
183 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
184 | ||
185 | ASSERT(pcstack == NULL || pcstack_limit > 0); | |
186 | ||
187 | #if 0 /* XXX signal stack crawl */ | |
188 | if (p->p_model == DATAMODEL_NATIVE) { | |
189 | s1 = sizeof (struct frame) + 2 * sizeof (long); | |
190 | s2 = s1 + sizeof (siginfo_t); | |
191 | } else { | |
192 | s1 = sizeof (struct frame32) + 3 * sizeof (int); | |
193 | s2 = s1 + sizeof (siginfo32_t); | |
194 | } | |
195 | #endif | |
196 | ||
197 | while (pc != 0) { | |
198 | ret++; | |
199 | if (pcstack != NULL) { | |
200 | *pcstack++ = (uint64_t)pc; | |
201 | pcstack_limit--; | |
202 | if (pcstack_limit <= 0) | |
203 | break; | |
204 | } | |
205 | ||
206 | if (sp == 0) | |
207 | break; | |
208 | ||
209 | #if 0 /* XXX signal stack crawl */ | |
210 | if (oldcontext == sp + s1 || oldcontext == sp + s2) { | |
211 | if (p->p_model == DATAMODEL_NATIVE) { | |
212 | ucontext_t *ucp = (ucontext_t *)oldcontext; | |
213 | greg_t *gregs = ucp->uc_mcontext.gregs; | |
214 | ||
215 | sp = dtrace_fulword(&gregs[REG_FP]); | |
216 | pc = dtrace_fulword(&gregs[REG_PC]); | |
217 | ||
218 | oldcontext = dtrace_fulword(&ucp->uc_link); | |
219 | } else { | |
220 | ucontext32_t *ucp = (ucontext32_t *)oldcontext; | |
221 | greg32_t *gregs = ucp->uc_mcontext.gregs; | |
222 | ||
223 | sp = dtrace_fuword32(&gregs[EBP]); | |
224 | pc = dtrace_fuword32(&gregs[EIP]); | |
225 | ||
226 | oldcontext = dtrace_fuword32(&ucp->uc_link); | |
227 | } | |
228 | } | |
229 | else | |
230 | #endif | |
231 | { | |
232 | if (is64Bit) { | |
233 | pc = dtrace_fuword64((sp + RETURN_OFFSET64)); | |
234 | sp = dtrace_fuword64(sp); | |
235 | } else { | |
236 | pc = dtrace_fuword32((sp + RETURN_OFFSET)); | |
237 | sp = dtrace_fuword32(sp); | |
238 | } | |
239 | } | |
240 | ||
241 | #if 0 /* XXX */ | |
242 | /* | |
243 | * This is totally bogus: if we faulted, we're going to clear | |
244 | * the fault and break. This is to deal with the apparently | |
245 | * broken Java stacks on x86. | |
246 | */ | |
247 | if (*flags & CPU_DTRACE_FAULT) { | |
248 | *flags &= ~CPU_DTRACE_FAULT; | |
249 | break; | |
250 | } | |
251 | #endif | |
252 | } | |
253 | ||
254 | return (ret); | |
255 | } | |
256 | ||
257 | void | |
258 | dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) | |
259 | { | |
260 | thread_t thread = current_thread(); | |
261 | x86_saved_state_t *regs; | |
262 | user_addr_t pc, sp, fp; | |
263 | volatile uint16_t *flags = | |
264 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; | |
265 | int n; | |
266 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
267 | ||
268 | if (*flags & CPU_DTRACE_FAULT) | |
269 | return; | |
270 | ||
271 | if (pcstack_limit <= 0) | |
272 | return; | |
273 | ||
274 | /* | |
275 | * If there's no user context we still need to zero the stack. | |
276 | */ | |
277 | if (thread == NULL) | |
278 | goto zero; | |
279 | ||
280 | regs = (x86_saved_state_t *)find_user_regs(thread); | |
281 | if (regs == NULL) | |
282 | goto zero; | |
283 | ||
284 | *pcstack++ = (uint64_t)proc_selfpid(); | |
285 | pcstack_limit--; | |
286 | ||
287 | if (pcstack_limit <= 0) | |
288 | return; | |
289 | ||
290 | if (is64Bit) { | |
291 | pc = regs->ss_64.isf.rip; | |
292 | sp = regs->ss_64.isf.rsp; | |
293 | fp = regs->ss_64.rbp; | |
294 | } else { | |
295 | pc = regs->ss_32.eip; | |
296 | sp = regs->ss_32.uesp; | |
297 | fp = regs->ss_32.ebp; | |
298 | } | |
299 | ||
300 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { | |
301 | *pcstack++ = (uint64_t)pc; | |
302 | pcstack_limit--; | |
303 | if (pcstack_limit <= 0) | |
304 | return; | |
305 | ||
306 | if (is64Bit) | |
307 | pc = dtrace_fuword64(sp); | |
308 | else | |
309 | pc = dtrace_fuword32(sp); | |
310 | } | |
311 | ||
312 | /* | |
313 | * Note that unlike ppc, the x86 code does not use | |
314 | * CPU_DTRACE_USTACK_FP. This is because x86 always | |
315 | * traces from the fp, even in syscall/profile/fbt | |
316 | * providers. | |
317 | */ | |
318 | n = dtrace_getustack_common(pcstack, pcstack_limit, pc, fp); | |
319 | ASSERT(n >= 0); | |
320 | ASSERT(n <= pcstack_limit); | |
321 | ||
322 | pcstack += n; | |
323 | pcstack_limit -= n; | |
324 | ||
325 | zero: | |
326 | while (pcstack_limit-- > 0) | |
327 | *pcstack++ = 0; | |
328 | } | |
329 | ||
330 | int | |
331 | dtrace_getustackdepth(void) | |
332 | { | |
333 | thread_t thread = current_thread(); | |
334 | x86_saved_state_t *regs; | |
335 | user_addr_t pc, sp, fp; | |
336 | int n = 0; | |
337 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
338 | ||
339 | if (thread == NULL) | |
340 | return 0; | |
341 | ||
342 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) | |
343 | return (-1); | |
344 | ||
345 | regs = (x86_saved_state_t *)find_user_regs(thread); | |
346 | if (regs == NULL) | |
347 | return 0; | |
348 | ||
349 | if (is64Bit) { | |
350 | pc = regs->ss_64.isf.rip; | |
351 | sp = regs->ss_64.isf.rsp; | |
352 | fp = regs->ss_64.rbp; | |
353 | } else { | |
354 | pc = regs->ss_32.eip; | |
355 | sp = regs->ss_32.uesp; | |
356 | fp = regs->ss_32.ebp; | |
357 | } | |
358 | ||
359 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { | |
360 | n++; | |
361 | ||
362 | if (is64Bit) | |
363 | pc = dtrace_fuword64(sp); | |
364 | else | |
365 | pc = dtrace_fuword32(sp); | |
366 | } | |
367 | ||
368 | /* | |
369 | * Note that unlike ppc, the x86 code does not use | |
370 | * CPU_DTRACE_USTACK_FP. This is because x86 always | |
371 | * traces from the fp, even in syscall/profile/fbt | |
372 | * providers. | |
373 | */ | |
374 | ||
375 | n += dtrace_getustack_common(NULL, 0, pc, fp); | |
376 | ||
377 | return (n); | |
378 | } | |
379 | ||
380 | void | |
381 | dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) | |
382 | { | |
383 | thread_t thread = current_thread(); | |
384 | savearea_t *regs; | |
385 | user_addr_t pc, sp; | |
386 | volatile uint16_t *flags = | |
387 | (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; | |
388 | #if 0 | |
389 | uintptr_t oldcontext; | |
390 | size_t s1, s2; | |
391 | #endif | |
392 | boolean_t is64Bit = proc_is64bit(current_proc()); | |
393 | ||
394 | if (*flags & CPU_DTRACE_FAULT) | |
395 | return; | |
396 | ||
397 | if (pcstack_limit <= 0) | |
398 | return; | |
399 | ||
400 | /* | |
401 | * If there's no user context we still need to zero the stack. | |
402 | */ | |
403 | if (thread == NULL) | |
404 | goto zero; | |
405 | ||
406 | regs = (savearea_t *)find_user_regs(thread); | |
407 | if (regs == NULL) | |
408 | goto zero; | |
409 | ||
410 | *pcstack++ = (uint64_t)proc_selfpid(); | |
411 | pcstack_limit--; | |
412 | ||
413 | if (pcstack_limit <= 0) | |
414 | return; | |
415 | ||
416 | pc = regs->ss_32.eip; | |
417 | sp = regs->ss_32.ebp; | |
418 | ||
419 | #if 0 /* XXX signal stack crawl */ | |
420 | oldcontext = lwp->lwp_oldcontext; | |
421 | ||
422 | if (p->p_model == DATAMODEL_NATIVE) { | |
423 | s1 = sizeof (struct frame) + 2 * sizeof (long); | |
424 | s2 = s1 + sizeof (siginfo_t); | |
425 | } else { | |
426 | s1 = sizeof (struct frame32) + 3 * sizeof (int); | |
427 | s2 = s1 + sizeof (siginfo32_t); | |
428 | } | |
429 | #endif | |
430 | ||
431 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { | |
432 | *pcstack++ = (uint64_t)pc; | |
433 | *fpstack++ = 0; | |
434 | pcstack_limit--; | |
435 | if (pcstack_limit <= 0) | |
436 | return; | |
437 | ||
438 | if (is64Bit) | |
439 | pc = dtrace_fuword64(sp); | |
440 | else | |
441 | pc = dtrace_fuword32(sp); | |
442 | } | |
443 | ||
444 | while (pc != 0) { | |
445 | *pcstack++ = (uint64_t)pc; | |
446 | *fpstack++ = sp; | |
447 | pcstack_limit--; | |
448 | if (pcstack_limit <= 0) | |
449 | break; | |
450 | ||
451 | if (sp == 0) | |
452 | break; | |
453 | ||
454 | #if 0 /* XXX signal stack crawl */ | |
455 | if (oldcontext == sp + s1 || oldcontext == sp + s2) { | |
456 | if (p->p_model == DATAMODEL_NATIVE) { | |
457 | ucontext_t *ucp = (ucontext_t *)oldcontext; | |
458 | greg_t *gregs = ucp->uc_mcontext.gregs; | |
459 | ||
460 | sp = dtrace_fulword(&gregs[REG_FP]); | |
461 | pc = dtrace_fulword(&gregs[REG_PC]); | |
462 | ||
463 | oldcontext = dtrace_fulword(&ucp->uc_link); | |
464 | } else { | |
465 | ucontext_t *ucp = (ucontext_t *)oldcontext; | |
466 | greg_t *gregs = ucp->uc_mcontext.gregs; | |
467 | ||
468 | sp = dtrace_fuword32(&gregs[EBP]); | |
469 | pc = dtrace_fuword32(&gregs[EIP]); | |
470 | ||
471 | oldcontext = dtrace_fuword32(&ucp->uc_link); | |
472 | } | |
473 | } | |
474 | else | |
475 | #endif | |
476 | { | |
477 | if (is64Bit) { | |
478 | pc = dtrace_fuword64((sp + RETURN_OFFSET64)); | |
479 | sp = dtrace_fuword64(sp); | |
480 | } else { | |
481 | pc = dtrace_fuword32((sp + RETURN_OFFSET)); | |
482 | sp = dtrace_fuword32(sp); | |
483 | } | |
484 | } | |
485 | ||
486 | #if 0 /* XXX */ | |
487 | /* | |
488 | * This is totally bogus: if we faulted, we're going to clear | |
489 | * the fault and break. This is to deal with the apparently | |
490 | * broken Java stacks on x86. | |
491 | */ | |
492 | if (*flags & CPU_DTRACE_FAULT) { | |
493 | *flags &= ~CPU_DTRACE_FAULT; | |
494 | break; | |
495 | } | |
496 | #endif | |
497 | } | |
498 | ||
499 | zero: | |
500 | while (pcstack_limit-- > 0) | |
501 | *pcstack++ = 0; | |
502 | } | |
503 | ||
504 | void | |
505 | dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, | |
506 | uint32_t *intrpc) | |
507 | { | |
508 | struct frame *fp = (struct frame *)dtrace_getfp(); | |
509 | struct frame *nextfp, *minfp, *stacktop; | |
510 | int depth = 0; | |
511 | int last = 0; | |
512 | uintptr_t pc; | |
513 | uintptr_t caller = CPU->cpu_dtrace_caller; | |
514 | int on_intr; | |
515 | ||
516 | if ((on_intr = CPU_ON_INTR(CPU)) != 0) | |
517 | stacktop = (struct frame *)dtrace_get_cpu_int_stack_top(); | |
518 | else | |
519 | stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + KERNEL_STACK_SIZE); | |
520 | ||
521 | minfp = fp; | |
522 | ||
523 | aframes++; | |
524 | ||
525 | if (intrpc != NULL && depth < pcstack_limit) | |
526 | pcstack[depth++] = (pc_t)intrpc; | |
527 | ||
528 | while (depth < pcstack_limit) { | |
529 | nextfp = *(struct frame **)fp; | |
530 | pc = *(uintptr_t *)(((uint32_t)fp) + RETURN_OFFSET); | |
531 | ||
532 | if (nextfp <= minfp || nextfp >= stacktop) { | |
533 | if (on_intr) { | |
534 | /* | |
535 | * Hop from interrupt stack to thread stack. | |
536 | */ | |
537 | vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread()); | |
538 | ||
539 | minfp = (struct frame *)kstack_base; | |
540 | stacktop = (struct frame *)(kstack_base + KERNEL_STACK_SIZE); | |
541 | ||
542 | on_intr = 0; | |
543 | continue; | |
544 | } | |
545 | /* | |
546 | * This is the last frame we can process; indicate | |
547 | * that we should return after processing this frame. | |
548 | */ | |
549 | last = 1; | |
550 | } | |
551 | ||
552 | if (aframes > 0) { | |
553 | if (--aframes == 0 && caller != 0) { | |
554 | /* | |
555 | * We've just run out of artificial frames, | |
556 | * and we have a valid caller -- fill it in | |
557 | * now. | |
558 | */ | |
559 | ASSERT(depth < pcstack_limit); | |
560 | pcstack[depth++] = (pc_t)caller; | |
561 | caller = 0; | |
562 | } | |
563 | } else { | |
564 | if (depth < pcstack_limit) | |
565 | pcstack[depth++] = (pc_t)pc; | |
566 | } | |
567 | ||
568 | if (last) { | |
569 | while (depth < pcstack_limit) | |
570 | pcstack[depth++] = 0; | |
571 | return; | |
572 | } | |
573 | ||
574 | fp = nextfp; | |
575 | minfp = fp; | |
576 | } | |
577 | } | |
578 | ||
579 | struct frame { | |
580 | struct frame *backchain; | |
581 | uintptr_t retaddr; | |
582 | }; | |
583 | ||
584 | uint64_t | |
585 | dtrace_getarg(int arg, int aframes) | |
586 | { | |
587 | uint64_t val; | |
588 | struct frame *fp = (struct frame *)dtrace_getfp(); | |
589 | uintptr_t *stack; | |
590 | uintptr_t pc; | |
591 | int i; | |
592 | ||
593 | for (i = 1; i <= aframes; i++) { | |
594 | fp = fp->backchain; | |
595 | pc = fp->retaddr; | |
596 | ||
597 | if (pc == (uintptr_t)dtrace_invop_callsite) { | |
598 | /* | |
599 | * If we pass through the invalid op handler, we will | |
600 | * use the pointer that it passed to the stack as the | |
601 | * second argument to dtrace_invop() as the pointer to | |
602 | * the frame we're hunting for. | |
603 | */ | |
604 | ||
605 | stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */ | |
606 | fp = (struct frame *)stack[1]; /* Grab *second* argument */ | |
607 | stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */ | |
608 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
609 | val = (uint64_t)(stack[arg]); | |
610 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
611 | return val; | |
612 | } | |
613 | } | |
614 | ||
615 | /* | |
616 | * Arrive here when provider has called dtrace_probe directly. | |
617 | */ | |
618 | stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */ | |
619 | stack++; /* Advance past probeID */ | |
620 | ||
621 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
622 | val = *(((uint64_t *)stack) + arg); /* dtrace_probe arguments arg0 .. arg4 are 64bits wide */ | |
623 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
624 | ||
625 | return (val); | |
626 | } | |
627 | ||
628 | /* | |
629 | * Load/Store Safety | |
630 | */ | |
631 | void | |
632 | dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) | |
633 | { | |
634 | /* | |
635 | * "base" is the smallest toxic address in the range, "limit" is the first | |
636 | * VALID address greater than "base". | |
637 | */ | |
638 | func(0x0, VM_MIN_KERNEL_ADDRESS); | |
639 | func(VM_MAX_KERNEL_ADDRESS + 1, ~(uintptr_t)0); | |
640 | } | |
641 | ||
642 | extern boolean_t pmap_valid_page(ppnum_t pn); | |
643 | ||
644 | boolean_t | |
645 | dtxnu_is_RAM_page(ppnum_t pn) | |
646 | { | |
647 | return pmap_valid_page(pn); | |
648 | } | |
649 |