]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
d7e50217 | 6 | * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. |
1c79356b | 7 | * |
d7e50217 A |
8 | * This file contains Original Code and/or Modifications of Original Code |
9 | * as defined in and that are subject to the Apple Public Source License | |
10 | * Version 2.0 (the 'License'). You may not use this file except in | |
11 | * compliance with the License. Please obtain a copy of the License at | |
12 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
13 | * file. | |
14 | * | |
15 | * The Original Code and all software distributed under the License are | |
16 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
17 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
18 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
d7e50217 A |
19 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
20 | * Please see the License for the specific language governing rights and | |
21 | * limitations under the License. | |
1c79356b A |
22 | * |
23 | * @APPLE_LICENSE_HEADER_END@ | |
24 | */ | |
25 | /* | |
26 | * @OSF_COPYRIGHT@ | |
27 | */ | |
28 | /* | |
29 | * Mach Operating System | |
30 | * Copyright (c) 1991,1990 Carnegie Mellon University | |
31 | * All Rights Reserved. | |
32 | * | |
33 | * Permission to use, copy, modify and distribute this software and its | |
34 | * documentation is hereby granted, provided that both the copyright | |
35 | * notice and this permission notice appear in all copies of the | |
36 | * software, derivative works or modified versions, and any portions | |
37 | * thereof, and that both notices appear in supporting documentation. | |
38 | * | |
39 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
40 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
41 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
42 | * | |
43 | * Carnegie Mellon requests users of this software to return to | |
44 | * | |
45 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
46 | * School of Computer Science | |
47 | * Carnegie Mellon University | |
48 | * Pittsburgh PA 15213-3890 | |
49 | * | |
50 | * any improvements or extensions that they make and grant Carnegie Mellon | |
51 | * the rights to redistribute these changes. | |
52 | */ | |
53 | ||
54 | /* | |
55 | */ | |
56 | ||
57 | #include <cpus.h> | |
58 | ||
59 | #if NCPUS > 1 | |
60 | ||
61 | #include <kern/cpu_number.h> | |
62 | #include <kern/cpu_data.h> | |
63 | #include <mach/machine.h> | |
64 | #include <vm/vm_kern.h> | |
65 | ||
66 | #include <i386/mp_desc.h> | |
67 | #include <i386/lock.h> | |
68 | #include <i386/misc_protos.h> | |
69 | ||
70 | #include <kern/misc_protos.h> | |
71 | ||
72 | #include <mach_kdb.h> | |
73 | ||
74 | /* | |
75 | * The i386 needs an interrupt stack to keep the PCB stack from being | |
76 | * overrun by interrupts. All interrupt stacks MUST lie at lower addresses | |
77 | * than any thread`s kernel stack. | |
78 | */ | |
79 | ||
80 | /* | |
81 | * Addresses of bottom and top of interrupt stacks. | |
82 | */ | |
83 | vm_offset_t interrupt_stack[NCPUS]; | |
84 | vm_offset_t int_stack_top[NCPUS]; | |
85 | ||
86 | /* | |
87 | * Barrier address. | |
88 | */ | |
89 | vm_offset_t int_stack_high; | |
90 | ||
91 | /* | |
92 | * First cpu`s interrupt stack. | |
93 | */ | |
94 | extern char intstack[]; /* bottom */ | |
95 | extern char eintstack[]; /* top */ | |
96 | ||
97 | /* | |
98 | * We allocate interrupt stacks from physical memory. | |
99 | */ | |
100 | extern | |
101 | vm_offset_t avail_start; | |
102 | ||
103 | /* | |
104 | * Multiprocessor i386/i486 systems use a separate copy of the | |
105 | * GDT, IDT, LDT, and kernel TSS per processor. The first three | |
106 | * are separate to avoid lock contention: the i386 uses locked | |
107 | * memory cycles to access the descriptor tables. The TSS is | |
108 | * separate since each processor needs its own kernel stack, | |
109 | * and since using a TSS marks it busy. | |
110 | */ | |
111 | ||
112 | /* | |
113 | * Allocated descriptor tables. | |
114 | */ | |
115 | struct mp_desc_table *mp_desc_table[NCPUS] = { 0 }; | |
116 | ||
117 | /* | |
118 | * Pointer to TSS for access in load_context. | |
119 | */ | |
120 | struct i386_tss *mp_ktss[NCPUS] = { 0 }; | |
121 | ||
122 | #if MACH_KDB | |
123 | /* | |
124 | * Pointer to TSS for debugger use. | |
125 | */ | |
126 | struct i386_tss *mp_dbtss[NCPUS] = { 0 }; | |
127 | #endif /* MACH_KDB */ | |
128 | ||
129 | /* | |
130 | * Pointer to GDT to reset the KTSS busy bit. | |
131 | */ | |
132 | struct fake_descriptor *mp_gdt[NCPUS] = { 0 }; | |
133 | struct fake_descriptor *mp_idt[NCPUS] = { 0 }; | |
134 | ||
135 | /* | |
136 | * Allocate and initialize the per-processor descriptor tables. | |
137 | */ | |
138 | ||
139 | struct fake_descriptor ldt_desc_pattern = { | |
140 | (unsigned int) 0, | |
141 | LDTSZ * sizeof(struct fake_descriptor) - 1, | |
142 | 0, | |
143 | ACC_P|ACC_PL_K|ACC_LDT | |
144 | }; | |
145 | struct fake_descriptor tss_desc_pattern = { | |
146 | (unsigned int) 0, | |
147 | sizeof(struct i386_tss), | |
148 | 0, | |
149 | ACC_P|ACC_PL_K|ACC_TSS | |
150 | }; | |
151 | ||
152 | struct fake_descriptor cpudata_desc_pattern = { | |
153 | (unsigned int) 0, | |
154 | sizeof(cpu_data_t)-1, | |
155 | SZ_32, | |
156 | ACC_P|ACC_PL_K|ACC_DATA_W | |
157 | }; | |
158 | ||
159 | struct mp_desc_table * | |
160 | mp_desc_init( | |
161 | int mycpu) | |
162 | { | |
163 | register struct mp_desc_table *mpt; | |
164 | ||
165 | if (mycpu == master_cpu) { | |
166 | /* | |
167 | * Master CPU uses the tables built at boot time. | |
168 | * Just set the TSS and GDT pointers. | |
169 | */ | |
170 | mp_ktss[mycpu] = &ktss; | |
171 | #if MACH_KDB | |
172 | mp_dbtss[mycpu] = &dbtss; | |
173 | #endif /* MACH_KDB */ | |
174 | mp_gdt[mycpu] = gdt; | |
175 | mp_idt[mycpu] = idt; | |
176 | return 0; | |
177 | } | |
178 | else { | |
179 | mpt = mp_desc_table[mycpu]; | |
180 | mp_ktss[mycpu] = &mpt->ktss; | |
181 | mp_gdt[mycpu] = mpt->gdt; | |
182 | mp_idt[mycpu] = mpt->idt; | |
183 | ||
184 | /* | |
185 | * Copy the tables | |
186 | */ | |
187 | bcopy((char *)idt, | |
188 | (char *)mpt->idt, | |
189 | sizeof(idt)); | |
190 | bcopy((char *)gdt, | |
191 | (char *)mpt->gdt, | |
192 | sizeof(gdt)); | |
193 | bcopy((char *)ldt, | |
194 | (char *)mpt->ldt, | |
195 | sizeof(ldt)); | |
196 | bzero((char *)&mpt->ktss, | |
197 | sizeof(struct i386_tss)); | |
198 | bzero((char *)&cpu_data[mycpu], | |
199 | sizeof(cpu_data_t)); | |
200 | #if MACH_KDB | |
201 | mp_dbtss[mycpu] = &mpt->dbtss; | |
202 | bcopy((char *)&dbtss, | |
203 | (char *)&mpt->dbtss, | |
204 | sizeof(struct i386_tss)); | |
205 | #endif /* MACH_KDB */ | |
206 | ||
207 | /* | |
208 | * Fix up the entries in the GDT to point to | |
209 | * this LDT and this TSS. | |
210 | */ | |
211 | mpt->gdt[sel_idx(KERNEL_LDT)] = ldt_desc_pattern; | |
212 | mpt->gdt[sel_idx(KERNEL_LDT)].offset = | |
213 | LINEAR_KERNEL_ADDRESS + (unsigned int) mpt->ldt; | |
214 | fix_desc(&mpt->gdt[sel_idx(KERNEL_LDT)], 1); | |
215 | ||
216 | mpt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern; | |
217 | mpt->gdt[sel_idx(KERNEL_TSS)].offset = | |
218 | LINEAR_KERNEL_ADDRESS + (unsigned int) &mpt->ktss; | |
219 | fix_desc(&mpt->gdt[sel_idx(KERNEL_TSS)], 1); | |
220 | ||
221 | mpt->gdt[sel_idx(CPU_DATA)] = cpudata_desc_pattern; | |
222 | mpt->gdt[sel_idx(CPU_DATA)].offset = | |
223 | LINEAR_KERNEL_ADDRESS + (unsigned int) &cpu_data[mycpu]; | |
224 | fix_desc(&mpt->gdt[sel_idx(CPU_DATA)], 1); | |
225 | ||
226 | #if MACH_KDB | |
227 | mpt->gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern; | |
228 | mpt->gdt[sel_idx(DEBUG_TSS)].offset = | |
229 | LINEAR_KERNEL_ADDRESS + (unsigned int) &mpt->dbtss; | |
230 | fix_desc(&mpt->gdt[sel_idx(DEBUG_TSS)], 1); | |
231 | ||
232 | mpt->dbtss.esp0 = (int)(db_task_stack_store + | |
233 | (INTSTACK_SIZE * (mycpu + 1)) - sizeof (natural_t)); | |
234 | mpt->dbtss.esp = mpt->dbtss.esp0; | |
235 | mpt->dbtss.eip = (int)&db_task_start; | |
236 | #endif /* MACH_KDB */ | |
237 | ||
238 | mpt->ktss.ss0 = KERNEL_DS; | |
239 | mpt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */ | |
240 | ||
241 | return mpt; | |
242 | } | |
243 | } | |
244 | ||
245 | /* | |
246 | * Called after all CPUs have been found, but before the VM system | |
247 | * is running. The machine array must show which CPUs exist. | |
248 | */ | |
249 | void | |
250 | interrupt_stack_alloc(void) | |
251 | { | |
252 | register int i; | |
253 | int cpu_count; | |
254 | vm_offset_t stack_start; | |
255 | struct mp_desc_table *mpt; | |
256 | ||
257 | /* | |
258 | * Count the number of CPUs. | |
259 | */ | |
260 | cpu_count = 0; | |
261 | for (i = 0; i < NCPUS; i++) | |
262 | if (machine_slot[i].is_cpu) | |
263 | cpu_count++; | |
264 | ||
265 | /* | |
266 | * Allocate an interrupt stack for each CPU except for | |
267 | * the master CPU (which uses the bootstrap stack) | |
268 | */ | |
269 | stack_start = phystokv(avail_start); | |
270 | avail_start = round_page(avail_start + INTSTACK_SIZE*(cpu_count-1)); | |
271 | bzero((char *)stack_start, INTSTACK_SIZE*(cpu_count-1)); | |
272 | ||
273 | /* | |
274 | * Set up pointers to the top of the interrupt stack. | |
275 | */ | |
276 | for (i = 0; i < NCPUS; i++) { | |
277 | if (i == master_cpu) { | |
278 | interrupt_stack[i] = (vm_offset_t) intstack; | |
279 | int_stack_top[i] = (vm_offset_t) eintstack; | |
280 | } | |
281 | else if (machine_slot[i].is_cpu) { | |
282 | interrupt_stack[i] = stack_start; | |
283 | int_stack_top[i] = stack_start + INTSTACK_SIZE; | |
284 | ||
285 | stack_start += INTSTACK_SIZE; | |
286 | } | |
287 | } | |
288 | ||
289 | /* | |
290 | * Allocate descriptor tables for each CPU except for | |
291 | * the master CPU (which already has them initialized) | |
292 | */ | |
293 | ||
294 | mpt = (struct mp_desc_table *) phystokv(avail_start); | |
295 | avail_start = round_page((vm_offset_t)avail_start + | |
296 | sizeof(struct mp_desc_table)*(cpu_count-1)); | |
297 | for (i = 0; i < NCPUS; i++) | |
298 | if (i != master_cpu) | |
299 | mp_desc_table[i] = mpt++; | |
300 | ||
301 | ||
302 | /* | |
303 | * Set up the barrier address. All thread stacks MUST | |
304 | * be above this address. | |
305 | */ | |
306 | /* | |
307 | * intstack is at higher addess than stack_start for AT mps | |
308 | * so int_stack_high must point at eintstack. | |
309 | * XXX | |
310 | * But what happens if a kernel stack gets allocated below | |
311 | * 1 Meg ? Probably never happens, there is only 640 K available | |
312 | * There. | |
313 | */ | |
314 | int_stack_high = (vm_offset_t) eintstack; | |
315 | } | |
316 | ||
317 | #endif /* NCPUS > 1 */ |