]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | ||
51 | /* | |
52 | */ | |
53 | ||
54 | #include <cpus.h> | |
55 | ||
56 | #if NCPUS > 1 | |
57 | ||
58 | #include <kern/cpu_number.h> | |
59 | #include <kern/cpu_data.h> | |
60 | #include <mach/machine.h> | |
61 | #include <vm/vm_kern.h> | |
62 | ||
63 | #include <i386/mp_desc.h> | |
64 | #include <i386/lock.h> | |
65 | #include <i386/misc_protos.h> | |
66 | ||
67 | #include <kern/misc_protos.h> | |
68 | ||
69 | #include <mach_kdb.h> | |
70 | ||
71 | /* | |
72 | * The i386 needs an interrupt stack to keep the PCB stack from being | |
73 | * overrun by interrupts. All interrupt stacks MUST lie at lower addresses | |
74 | * than any thread`s kernel stack. | |
75 | */ | |
76 | ||
77 | /* | |
78 | * Addresses of bottom and top of interrupt stacks. | |
79 | */ | |
80 | vm_offset_t interrupt_stack[NCPUS]; | |
81 | vm_offset_t int_stack_top[NCPUS]; | |
82 | ||
83 | /* | |
84 | * Barrier address. | |
85 | */ | |
86 | vm_offset_t int_stack_high; | |
87 | ||
88 | /* | |
89 | * First cpu`s interrupt stack. | |
90 | */ | |
91 | extern char intstack[]; /* bottom */ | |
92 | extern char eintstack[]; /* top */ | |
93 | ||
94 | /* | |
95 | * We allocate interrupt stacks from physical memory. | |
96 | */ | |
97 | extern | |
98 | vm_offset_t avail_start; | |
99 | ||
100 | /* | |
101 | * Multiprocessor i386/i486 systems use a separate copy of the | |
102 | * GDT, IDT, LDT, and kernel TSS per processor. The first three | |
103 | * are separate to avoid lock contention: the i386 uses locked | |
104 | * memory cycles to access the descriptor tables. The TSS is | |
105 | * separate since each processor needs its own kernel stack, | |
106 | * and since using a TSS marks it busy. | |
107 | */ | |
108 | ||
109 | /* | |
110 | * Allocated descriptor tables. | |
111 | */ | |
112 | struct mp_desc_table *mp_desc_table[NCPUS] = { 0 }; | |
113 | ||
114 | /* | |
115 | * Pointer to TSS for access in load_context. | |
116 | */ | |
117 | struct i386_tss *mp_ktss[NCPUS] = { 0 }; | |
118 | ||
119 | #if MACH_KDB | |
120 | /* | |
121 | * Pointer to TSS for debugger use. | |
122 | */ | |
123 | struct i386_tss *mp_dbtss[NCPUS] = { 0 }; | |
124 | #endif /* MACH_KDB */ | |
125 | ||
126 | /* | |
127 | * Pointer to GDT to reset the KTSS busy bit. | |
128 | */ | |
129 | struct fake_descriptor *mp_gdt[NCPUS] = { 0 }; | |
130 | struct fake_descriptor *mp_idt[NCPUS] = { 0 }; | |
131 | ||
132 | /* | |
133 | * Allocate and initialize the per-processor descriptor tables. | |
134 | */ | |
135 | ||
136 | struct fake_descriptor ldt_desc_pattern = { | |
137 | (unsigned int) 0, | |
138 | LDTSZ * sizeof(struct fake_descriptor) - 1, | |
139 | 0, | |
140 | ACC_P|ACC_PL_K|ACC_LDT | |
141 | }; | |
142 | struct fake_descriptor tss_desc_pattern = { | |
143 | (unsigned int) 0, | |
144 | sizeof(struct i386_tss), | |
145 | 0, | |
146 | ACC_P|ACC_PL_K|ACC_TSS | |
147 | }; | |
148 | ||
149 | struct fake_descriptor cpudata_desc_pattern = { | |
150 | (unsigned int) 0, | |
151 | sizeof(cpu_data_t)-1, | |
152 | SZ_32, | |
153 | ACC_P|ACC_PL_K|ACC_DATA_W | |
154 | }; | |
155 | ||
156 | struct mp_desc_table * | |
157 | mp_desc_init( | |
158 | int mycpu) | |
159 | { | |
160 | register struct mp_desc_table *mpt; | |
161 | ||
162 | if (mycpu == master_cpu) { | |
163 | /* | |
164 | * Master CPU uses the tables built at boot time. | |
165 | * Just set the TSS and GDT pointers. | |
166 | */ | |
167 | mp_ktss[mycpu] = &ktss; | |
168 | #if MACH_KDB | |
169 | mp_dbtss[mycpu] = &dbtss; | |
170 | #endif /* MACH_KDB */ | |
171 | mp_gdt[mycpu] = gdt; | |
172 | mp_idt[mycpu] = idt; | |
173 | return 0; | |
174 | } | |
175 | else { | |
176 | mpt = mp_desc_table[mycpu]; | |
177 | mp_ktss[mycpu] = &mpt->ktss; | |
178 | mp_gdt[mycpu] = mpt->gdt; | |
179 | mp_idt[mycpu] = mpt->idt; | |
180 | ||
181 | /* | |
182 | * Copy the tables | |
183 | */ | |
184 | bcopy((char *)idt, | |
185 | (char *)mpt->idt, | |
186 | sizeof(idt)); | |
187 | bcopy((char *)gdt, | |
188 | (char *)mpt->gdt, | |
189 | sizeof(gdt)); | |
190 | bcopy((char *)ldt, | |
191 | (char *)mpt->ldt, | |
192 | sizeof(ldt)); | |
193 | bzero((char *)&mpt->ktss, | |
194 | sizeof(struct i386_tss)); | |
195 | bzero((char *)&cpu_data[mycpu], | |
196 | sizeof(cpu_data_t)); | |
197 | #if MACH_KDB | |
198 | mp_dbtss[mycpu] = &mpt->dbtss; | |
199 | bcopy((char *)&dbtss, | |
200 | (char *)&mpt->dbtss, | |
201 | sizeof(struct i386_tss)); | |
202 | #endif /* MACH_KDB */ | |
203 | ||
204 | /* | |
205 | * Fix up the entries in the GDT to point to | |
206 | * this LDT and this TSS. | |
207 | */ | |
208 | mpt->gdt[sel_idx(KERNEL_LDT)] = ldt_desc_pattern; | |
209 | mpt->gdt[sel_idx(KERNEL_LDT)].offset = | |
210 | LINEAR_KERNEL_ADDRESS + (unsigned int) mpt->ldt; | |
211 | fix_desc(&mpt->gdt[sel_idx(KERNEL_LDT)], 1); | |
212 | ||
213 | mpt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern; | |
214 | mpt->gdt[sel_idx(KERNEL_TSS)].offset = | |
215 | LINEAR_KERNEL_ADDRESS + (unsigned int) &mpt->ktss; | |
216 | fix_desc(&mpt->gdt[sel_idx(KERNEL_TSS)], 1); | |
217 | ||
218 | mpt->gdt[sel_idx(CPU_DATA)] = cpudata_desc_pattern; | |
219 | mpt->gdt[sel_idx(CPU_DATA)].offset = | |
220 | LINEAR_KERNEL_ADDRESS + (unsigned int) &cpu_data[mycpu]; | |
221 | fix_desc(&mpt->gdt[sel_idx(CPU_DATA)], 1); | |
222 | ||
223 | #if MACH_KDB | |
224 | mpt->gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern; | |
225 | mpt->gdt[sel_idx(DEBUG_TSS)].offset = | |
226 | LINEAR_KERNEL_ADDRESS + (unsigned int) &mpt->dbtss; | |
227 | fix_desc(&mpt->gdt[sel_idx(DEBUG_TSS)], 1); | |
228 | ||
229 | mpt->dbtss.esp0 = (int)(db_task_stack_store + | |
230 | (INTSTACK_SIZE * (mycpu + 1)) - sizeof (natural_t)); | |
231 | mpt->dbtss.esp = mpt->dbtss.esp0; | |
232 | mpt->dbtss.eip = (int)&db_task_start; | |
233 | #endif /* MACH_KDB */ | |
234 | ||
235 | mpt->ktss.ss0 = KERNEL_DS; | |
236 | mpt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */ | |
237 | ||
238 | return mpt; | |
239 | } | |
240 | } | |
241 | ||
242 | /* | |
243 | * Called after all CPUs have been found, but before the VM system | |
244 | * is running. The machine array must show which CPUs exist. | |
245 | */ | |
246 | void | |
247 | interrupt_stack_alloc(void) | |
248 | { | |
249 | register int i; | |
250 | int cpu_count; | |
251 | vm_offset_t stack_start; | |
252 | struct mp_desc_table *mpt; | |
253 | ||
254 | /* | |
255 | * Count the number of CPUs. | |
256 | */ | |
257 | cpu_count = 0; | |
258 | for (i = 0; i < NCPUS; i++) | |
259 | if (machine_slot[i].is_cpu) | |
260 | cpu_count++; | |
261 | ||
262 | /* | |
263 | * Allocate an interrupt stack for each CPU except for | |
264 | * the master CPU (which uses the bootstrap stack) | |
265 | */ | |
266 | stack_start = phystokv(avail_start); | |
267 | avail_start = round_page(avail_start + INTSTACK_SIZE*(cpu_count-1)); | |
268 | bzero((char *)stack_start, INTSTACK_SIZE*(cpu_count-1)); | |
269 | ||
270 | /* | |
271 | * Set up pointers to the top of the interrupt stack. | |
272 | */ | |
273 | for (i = 0; i < NCPUS; i++) { | |
274 | if (i == master_cpu) { | |
275 | interrupt_stack[i] = (vm_offset_t) intstack; | |
276 | int_stack_top[i] = (vm_offset_t) eintstack; | |
277 | } | |
278 | else if (machine_slot[i].is_cpu) { | |
279 | interrupt_stack[i] = stack_start; | |
280 | int_stack_top[i] = stack_start + INTSTACK_SIZE; | |
281 | ||
282 | stack_start += INTSTACK_SIZE; | |
283 | } | |
284 | } | |
285 | ||
286 | /* | |
287 | * Allocate descriptor tables for each CPU except for | |
288 | * the master CPU (which already has them initialized) | |
289 | */ | |
290 | ||
291 | mpt = (struct mp_desc_table *) phystokv(avail_start); | |
292 | avail_start = round_page((vm_offset_t)avail_start + | |
293 | sizeof(struct mp_desc_table)*(cpu_count-1)); | |
294 | for (i = 0; i < NCPUS; i++) | |
295 | if (i != master_cpu) | |
296 | mp_desc_table[i] = mpt++; | |
297 | ||
298 | ||
299 | /* | |
300 | * Set up the barrier address. All thread stacks MUST | |
301 | * be above this address. | |
302 | */ | |
303 | /* | |
304 | * intstack is at higher addess than stack_start for AT mps | |
305 | * so int_stack_high must point at eintstack. | |
306 | * XXX | |
307 | * But what happens if a kernel stack gets allocated below | |
308 | * 1 Meg ? Probably never happens, there is only 640 K available | |
309 | * There. | |
310 | */ | |
311 | int_stack_high = (vm_offset_t) eintstack; | |
312 | } | |
313 | ||
314 | #endif /* NCPUS > 1 */ |