]>
Commit | Line | Data |
---|---|---|
55e303ae | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2003-2007 Apple Inc. All rights reserved. |
55e303ae | 3 | * |
2d21ac55 A |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce | |
30 | * support for mandatory and extensible security protections. This notice | |
31 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
32 | * Version 2.0. | |
55e303ae A |
33 | */ |
34 | #include <sys/param.h> | |
35 | #include <sys/fcntl.h> | |
36 | #include <sys/kernel.h> | |
37 | #include <sys/lock.h> | |
38 | #include <sys/namei.h> | |
91447636 A |
39 | #include <sys/proc_internal.h> |
40 | #include <sys/kauth.h> | |
55e303ae A |
41 | #include <sys/queue.h> |
42 | #include <sys/systm.h> | |
43 | #include <sys/time.h> | |
44 | #include <sys/ucred.h> | |
45 | #include <sys/uio.h> | |
46 | #include <sys/unistd.h> | |
91447636 A |
47 | #include <sys/file_internal.h> |
48 | #include <sys/vnode_internal.h> | |
55e303ae | 49 | #include <sys/user.h> |
55e303ae A |
50 | #include <sys/syscall.h> |
51 | #include <sys/malloc.h> | |
52 | #include <sys/un.h> | |
91447636 A |
53 | #include <sys/sysent.h> |
54 | #include <sys/sysproto.h> | |
55 | #include <sys/vfs_context.h> | |
e5568f75 | 56 | #include <sys/domain.h> |
91447636 A |
57 | #include <sys/protosw.h> |
58 | #include <sys/socketvar.h> | |
e5568f75 A |
59 | |
60 | #include <bsm/audit.h> | |
61 | #include <bsm/audit_kevents.h> | |
62 | #include <bsm/audit_klib.h> | |
63 | #include <bsm/audit_kernel.h> | |
64 | ||
91447636 | 65 | #include <mach/host_priv.h> |
e5568f75 | 66 | #include <mach/host_special_ports.h> |
91447636 | 67 | #include <mach/audit_triggers_server.h> |
55e303ae | 68 | |
91447636 A |
69 | #include <kern/host.h> |
70 | #include <kern/kalloc.h> | |
71 | #include <kern/zalloc.h> | |
55e303ae A |
72 | #include <kern/lock.h> |
73 | #include <kern/wait_queue.h> | |
91447636 A |
74 | #include <kern/sched_prim.h> |
75 | ||
2d21ac55 A |
76 | #if CONFIG_MACF |
77 | #include <bsm/audit_record.h> | |
78 | #include <security/mac.h> | |
79 | #include <security/mac_framework.h> | |
80 | #include <security/mac_policy.h> | |
81 | #define MAC_ARG_PREFIX "arg: " | |
82 | #define MAC_ARG_PREFIX_LEN 5 | |
83 | #endif | |
84 | ||
91447636 | 85 | #include <net/route.h> |
e5568f75 | 86 | |
91447636 A |
87 | #include <netinet/in.h> |
88 | #include <netinet/in_pcb.h> | |
55e303ae | 89 | |
2d21ac55 | 90 | #if AUDIT |
55e303ae A |
91 | |
92 | /* | |
93 | * The AUDIT_EXCESSIVELY_VERBOSE define enables a number of | |
94 | * gratuitously noisy printf's to the console. Due to the | |
95 | * volume, it should be left off unless you want your system | |
96 | * to churn a lot whenever the audit record flow gets high. | |
97 | */ | |
98 | /* #define AUDIT_EXCESSIVELY_VERBOSE */ | |
99 | #ifdef AUDIT_EXCESSIVELY_VERBOSE | |
91447636 | 100 | #define AUDIT_PRINTF_ONLY |
55e303ae A |
101 | #define AUDIT_PRINTF(x) printf x |
102 | #else | |
91447636 | 103 | #define AUDIT_PRINTF_ONLY __unused |
55e303ae A |
104 | #define AUDIT_PRINTF(X) |
105 | #endif | |
106 | ||
107 | #if DIAGNOSTIC | |
108 | #if defined(assert) | |
109 | #undef assert() | |
110 | #endif | |
111 | #define assert(cond) \ | |
2d21ac55 | 112 | ((void) ((cond) ? 0 : panic("Assert failed: %s", # cond))) |
55e303ae A |
113 | #else |
114 | #include <kern/assert.h> | |
115 | #endif /* DIAGNOSTIC */ | |
116 | ||
117 | /* | |
118 | * Define the audit control flags. | |
119 | */ | |
120 | int audit_enabled; | |
121 | int audit_suspended; | |
122 | ||
123 | /* | |
124 | * Mutex to protect global variables shared between various threads and | |
125 | * processes. | |
126 | */ | |
2d21ac55 A |
127 | static lck_grp_t *audit_grp; |
128 | static lck_attr_t *audit_attr; | |
129 | static lck_grp_attr_t *audit_grp_attr; | |
130 | static lck_mtx_t *audit_mtx; | |
55e303ae A |
131 | |
132 | /* | |
133 | * Queue of audit records ready for delivery to disk. We insert new | |
e5568f75 A |
134 | * records at the tail, and remove records from the head. Also, |
135 | * a count of the number of records used for checking queue depth. | |
136 | * In addition, a counter of records that we have allocated but are | |
137 | * not yet in the queue, which is needed to estimate the total | |
138 | * size of the combined set of records outstanding in the system. | |
55e303ae | 139 | */ |
91447636 A |
140 | static TAILQ_HEAD(, kaudit_record) audit_q; |
141 | static size_t audit_q_len; | |
142 | static size_t audit_pre_q_len; | |
e5568f75 A |
143 | |
144 | static wait_queue_t audit_wait_queue; | |
145 | static zone_t audit_zone; | |
2d21ac55 A |
146 | #if CONFIG_MACF |
147 | static zone_t audit_mac_label_zone; | |
148 | #endif | |
55e303ae A |
149 | |
150 | /* | |
151 | * Condition variable to signal to the worker that it has work to do: | |
152 | * either new records are in the queue, or a log replacement is taking | |
153 | * place. | |
154 | */ | |
e5568f75 A |
155 | static int audit_worker_event; |
156 | #define AUDIT_WORKER_EVENT ((event_t)&audit_worker_event) | |
55e303ae | 157 | |
91447636 A |
158 | /* |
159 | * The audit worker thread (which is lazy started when we first | |
160 | * rotate the audit log. | |
161 | */ | |
162 | static thread_t audit_worker_thread = THREAD_NULL; | |
163 | ||
55e303ae A |
164 | /* |
165 | * When an audit log is rotated, the actual rotation must be performed | |
166 | * by the audit worker thread, as it may have outstanding writes on the | |
167 | * current audit log. audit_replacement_vp holds the vnode replacing | |
168 | * the current vnode. We can't let more than one replacement occur | |
169 | * at a time, so if more than one thread requests a replacement, only | |
170 | * one can have the replacement "in progress" at any given moment. If | |
171 | * a thread tries to replace the audit vnode and discovers a replacement | |
172 | * is already in progress (i.e., audit_replacement_flag != 0), then it | |
173 | * will sleep on audit_replacement_cv waiting its turn to perform a | |
174 | * replacement. When a replacement is completed, this cv is signalled | |
175 | * by the worker thread so a waiting thread can start another replacement. | |
176 | * We also store a credential to perform audit log write operations with. | |
177 | */ | |
e5568f75 A |
178 | static int audit_replacement_event; |
179 | #define AUDIT_REPLACEMENT_EVENT ((event_t)&audit_replacement_event) | |
55e303ae | 180 | |
91447636 | 181 | static int audit_replacement_flag; |
55e303ae | 182 | static struct vnode *audit_replacement_vp; |
91447636 | 183 | static kauth_cred_t audit_replacement_cred; |
55e303ae | 184 | |
e5568f75 A |
185 | /* |
186 | * Wait queue for auditing threads that cannot commit the audit | |
187 | * record at the present time. Also, the queue control parameter | |
188 | * structure. | |
189 | */ | |
190 | static int audit_commit_event; | |
191 | #define AUDIT_COMMIT_EVENT ((event_t)&audit_commit_event) | |
192 | ||
193 | static struct au_qctrl audit_qctrl; | |
194 | ||
55e303ae A |
195 | /* |
196 | * Flags to use on audit files when opening and closing. | |
197 | */ | |
91447636 A |
198 | static const int audit_open_flags = FWRITE | O_APPEND; |
199 | static const int audit_close_flags = FWRITE | O_APPEND; | |
55e303ae | 200 | |
e5568f75 A |
201 | /* |
202 | * Global audit statistiscs. | |
203 | */ | |
204 | static struct audit_fstat audit_fstat; | |
205 | ||
206 | /* | |
207 | Preselection mask for non-attributable events. | |
208 | */ | |
209 | static struct au_mask audit_nae_mask; | |
210 | ||
211 | /* | |
212 | * Flags related to Kernel->user-space communication. | |
213 | */ | |
214 | static int audit_file_rotate_wait; | |
215 | ||
216 | /* | |
217 | * Flags controlling behavior in low storage situations. | |
218 | * Should we panic if a write fails? Should we fail stop | |
219 | * if we're out of disk space? Are we currently "failing | |
220 | * stop" due to out of disk space? | |
221 | */ | |
222 | static int audit_panic_on_write_fail; | |
223 | static int audit_fail_stop; | |
224 | static int audit_in_failure; | |
225 | ||
226 | /* | |
227 | * When in a fail-stop mode, threads will drop into this wait queue | |
228 | * rather than perform auditable events. They won't ever get woken | |
229 | * up. | |
230 | */ | |
231 | static int audit_failure_event; | |
232 | #define AUDIT_FAILURE_EVENT ((event_t)&audit_failure_event) | |
233 | ||
55e303ae A |
234 | /* |
235 | * XXX: Couldn't find the include file for this, so copied kern_exec.c's | |
236 | * behavior. | |
237 | */ | |
238 | extern task_t kernel_task; | |
239 | ||
2d21ac55 | 240 | extern zone_t mac_audit_data_zone; |
55e303ae A |
241 | static void |
242 | audit_free(struct kaudit_record *ar) | |
243 | { | |
244 | if (ar->k_ar.ar_arg_upath1 != NULL) { | |
91447636 | 245 | kfree(ar->k_ar.ar_arg_upath1, MAXPATHLEN); |
55e303ae A |
246 | } |
247 | if (ar->k_ar.ar_arg_upath2 != NULL) { | |
91447636 A |
248 | kfree(ar->k_ar.ar_arg_upath2, MAXPATHLEN); |
249 | ||
55e303ae A |
250 | } |
251 | if (ar->k_ar.ar_arg_kpath1 != NULL) { | |
91447636 A |
252 | kfree(ar->k_ar.ar_arg_kpath1, MAXPATHLEN); |
253 | ||
55e303ae A |
254 | } |
255 | if (ar->k_ar.ar_arg_kpath2 != NULL) { | |
91447636 A |
256 | kfree(ar->k_ar.ar_arg_kpath2, MAXPATHLEN); |
257 | ||
55e303ae A |
258 | } |
259 | if (ar->k_ar.ar_arg_text != NULL) { | |
91447636 A |
260 | kfree(ar->k_ar.ar_arg_text, MAXPATHLEN); |
261 | ||
55e303ae A |
262 | } |
263 | if (ar->k_udata != NULL) { | |
91447636 | 264 | kfree(ar->k_udata, ar->k_ulen); |
2d21ac55 | 265 | } |
91447636 | 266 | |
2d21ac55 A |
267 | #if CONFIG_MACF |
268 | if (ar->k_ar.ar_vnode1_mac_labels != NULL) { | |
269 | zfree(audit_mac_label_zone, ar->k_ar.ar_vnode1_mac_labels); | |
55e303ae | 270 | } |
2d21ac55 A |
271 | if (ar->k_ar.ar_vnode2_mac_labels != NULL) { |
272 | zfree(audit_mac_label_zone, ar->k_ar.ar_vnode2_mac_labels); | |
273 | } | |
274 | if (ar->k_ar.ar_cred_mac_labels != NULL) { | |
275 | zfree(audit_mac_label_zone, ar->k_ar.ar_cred_mac_labels); | |
276 | } | |
277 | if (ar->k_ar.ar_arg_mac_string != NULL) { | |
278 | kfree(ar->k_ar.ar_arg_mac_string, | |
279 | MAC_MAX_LABEL_BUF_LEN + MAC_ARG_PREFIX_LEN); | |
280 | } | |
281 | ||
282 | /* Free the audit data from the MAC policies. */ | |
283 | do { | |
284 | struct mac_audit_record *head, *next; | |
285 | ||
286 | head = LIST_FIRST(ar->k_ar.ar_mac_records); | |
287 | while (head != NULL) { | |
288 | next = LIST_NEXT(head, records); | |
289 | zfree(mac_audit_data_zone, head->data); | |
290 | kfree(head, sizeof(*head)); | |
291 | head = next; | |
292 | } | |
293 | ||
294 | kfree(ar->k_ar.ar_mac_records, | |
295 | sizeof(*ar->k_ar.ar_mac_records)); | |
296 | } while (0); | |
297 | #endif | |
298 | ||
91447636 | 299 | zfree(audit_zone, ar); |
55e303ae A |
300 | } |
301 | ||
2d21ac55 A |
302 | /* |
303 | * Converts an audit record into the BSM format before writing out to the | |
304 | * audit logfile. Will perform it's own vnode iocounting. | |
305 | * | |
306 | * Returns: | |
307 | * -1 if it could not get an ioreference on the vnode. | |
308 | * EINVAL if the kaudit_record ar is not a valid audit record. | |
309 | */ | |
55e303ae | 310 | static int |
2d21ac55 | 311 | audit_write(struct vnode *vp, struct kaudit_record *ar, vfs_context_t ctx) |
55e303ae | 312 | { |
91447636 | 313 | struct vfsstatfs *mnt_stat = &vp->v_mount->mnt_vfsstat; |
2d21ac55 | 314 | int ret = 0; |
55e303ae | 315 | struct au_record *bsm; |
91447636 | 316 | off_t file_size; |
e5568f75 A |
317 | |
318 | mach_port_t audit_port; | |
319 | ||
2d21ac55 A |
320 | if (vnode_getwithref(vp)) |
321 | return ENOENT; | |
322 | ||
91447636 | 323 | /* |
e5568f75 A |
324 | * First, gather statistics on the audit log file and file system |
325 | * so that we know how we're doing on space. In both cases, | |
326 | * if we're unable to perform the operation, we drop the record | |
327 | * and return. However, this is arguably an assertion failure. | |
328 | */ | |
2d21ac55 | 329 | ret = vfs_update_vfsstat(vp->v_mount, ctx, VFS_KERNEL_EVENT); |
e5568f75 A |
330 | if (ret) |
331 | goto out; | |
332 | ||
333 | /* update the global stats struct */ | |
2d21ac55 | 334 | if ((ret = vnode_size(vp, &file_size, ctx)) != 0) |
91447636 A |
335 | goto out; |
336 | audit_fstat.af_currsz = file_size; | |
337 | ||
e5568f75 A |
338 | /* |
339 | * Send a message to the audit daemon when disk space is getting | |
340 | * low. | |
341 | * XXX Need to decide what to do if the trigger to the audit daemon | |
342 | * fails. | |
343 | */ | |
344 | if(host_get_audit_control_port(host_priv_self(), &audit_port) | |
345 | != KERN_SUCCESS) | |
346 | printf("Cannot get audit control port\n"); | |
347 | ||
348 | if (audit_port != MACH_PORT_NULL) { | |
91447636 | 349 | uint64_t temp; |
e5568f75 A |
350 | |
351 | /* | |
352 | * If we fall below percent free blocks, then trigger the | |
353 | * audit daemon to do something about it. | |
354 | */ | |
355 | if (audit_qctrl.aq_minfree != 0) { | |
356 | temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree); | |
357 | if (mnt_stat->f_bfree < temp) { | |
358 | ret = audit_triggers(audit_port, | |
359 | AUDIT_TRIGGER_LOW_SPACE); | |
360 | if (ret != KERN_SUCCESS) { | |
361 | printf( | |
362 | "Failed audit_triggers(AUDIT_TRIGGER_LOW_SPACE): %d\n", ret); | |
363 | /* | |
364 | * XXX: What to do here? Disable auditing? | |
365 | * panic? | |
366 | */ | |
367 | } | |
368 | } | |
369 | } | |
370 | /* Check if the current log file is full; if so, call for | |
371 | * a log rotate. This is not an exact comparison; we may | |
372 | * write some records over the limit. If that's not | |
373 | * acceptable, then add a fudge factor here. | |
374 | */ | |
375 | if ((audit_fstat.af_filesz != 0) && | |
376 | (audit_file_rotate_wait == 0) && | |
2d21ac55 | 377 | (file_size >= (off_t)audit_fstat.af_filesz)) { |
e5568f75 A |
378 | audit_file_rotate_wait = 1; |
379 | ret = audit_triggers(audit_port, | |
380 | AUDIT_TRIGGER_FILE_FULL); | |
381 | if (ret != KERN_SUCCESS) { | |
382 | printf( | |
383 | "Failed audit_triggers(AUDIT_TRIGGER_FILE_FULL): %d\n", ret); | |
384 | /* XXX what to do here? */ | |
385 | } | |
386 | } | |
387 | } | |
388 | ||
389 | /* | |
390 | * If the estimated amount of audit data in the audit event queue | |
391 | * (plus records allocated but not yet queued) has reached the | |
392 | * amount of free space on the disk, then we need to go into an | |
393 | * audit fail stop state, in which we do not permit the | |
394 | * allocation/committing of any new audit records. We continue to | |
395 | * process packets but don't allow any activities that might | |
396 | * generate new records. In the future, we might want to detect | |
397 | * when space is available again and allow operation to continue, | |
398 | * but this behavior is sufficient to meet fail stop requirements | |
399 | * in CAPP. | |
400 | */ | |
401 | if (audit_fail_stop && | |
402 | (unsigned long) | |
403 | ((audit_q_len + audit_pre_q_len + 1) * MAX_AUDIT_RECORD_SIZE) / | |
404 | mnt_stat->f_bsize >= (unsigned long)(mnt_stat->f_bfree)) { | |
405 | printf( | |
406 | "audit_worker: free space below size of audit queue, failing stop\n"); | |
407 | audit_in_failure = 1; | |
408 | } | |
55e303ae A |
409 | |
410 | /* | |
411 | * If there is a user audit record attached to the kernel record, | |
412 | * then write the user record. | |
413 | */ | |
414 | /* XXX Need to decide a few things here: IF the user audit | |
415 | * record is written, but the write of the kernel record fails, | |
416 | * what to do? Should the kernel record come before or after the | |
417 | * user record? For now, we write the user record first, and | |
418 | * we ignore errors. | |
419 | */ | |
e5568f75 | 420 | if (ar->k_ar_commit & AR_COMMIT_USER) { |
2d21ac55 A |
421 | ret = vn_rdwr(UIO_WRITE, vp, (void *)ar->k_udata, ar->k_ulen, |
422 | (off_t)0, UIO_SYSSPACE32, IO_APPEND|IO_UNIT, vfs_context_ucred(ctx), NULL, vfs_context_proc(ctx)); | |
423 | if (ret) | |
e5568f75 | 424 | goto out; |
55e303ae A |
425 | } |
426 | ||
427 | /* | |
428 | * Convert the internal kernel record to BSM format and write it | |
429 | * out if everything's OK. | |
430 | */ | |
e5568f75 A |
431 | if (!(ar->k_ar_commit & AR_COMMIT_KERNEL)) { |
432 | ret = 0; | |
433 | goto out; | |
434 | } | |
435 | ||
55e303ae | 436 | ret = kaudit_to_bsm(ar, &bsm); |
e5568f75 A |
437 | if (ret == BSM_NOAUDIT) { |
438 | ret = 0; | |
439 | goto out; | |
440 | } | |
55e303ae | 441 | |
e5568f75 A |
442 | /* |
443 | * XXX: We drop the record on BSM conversion failure, but really | |
444 | * this is an assertion failure. | |
445 | */ | |
55e303ae A |
446 | if (ret == BSM_FAILURE) { |
447 | AUDIT_PRINTF(("BSM conversion failure\n")); | |
e5568f75 A |
448 | ret = EINVAL; |
449 | goto out; | |
55e303ae A |
450 | } |
451 | ||
2d21ac55 | 452 | /* XXX: We should break the write functionality |
55e303ae A |
453 | * away from the BSM record generation and have the BSM generation |
454 | * done before this function is called. This function will then | |
455 | * take the BSM record as a parameter. | |
456 | */ | |
2d21ac55 A |
457 | ret = (vn_rdwr(UIO_WRITE, vp, (void *)bsm->data, bsm->len, |
458 | (off_t)0, UIO_SYSSPACE32, IO_APPEND|IO_UNIT, vfs_context_ucred(ctx), NULL, vfs_context_proc(ctx))); | |
55e303ae A |
459 | kau_free(bsm); |
460 | ||
e5568f75 A |
461 | out: |
462 | /* | |
463 | * When we're done processing the current record, we have to | |
464 | * check to see if we're in a failure mode, and if so, whether | |
465 | * this was the last record left to be drained. If we're done | |
466 | * draining, then we fsync the vnode and panic. | |
467 | */ | |
468 | if (audit_in_failure && | |
469 | audit_q_len == 0 && audit_pre_q_len == 0) { | |
2d21ac55 | 470 | (void)VNOP_FSYNC(vp, MNT_WAIT, ctx); |
e5568f75 A |
471 | panic("Audit store overflow; record queue drained."); |
472 | } | |
473 | ||
2d21ac55 | 474 | vnode_put(vp); |
55e303ae A |
475 | return (ret); |
476 | } | |
477 | ||
478 | static void | |
91447636 | 479 | audit_worker(void) |
55e303ae | 480 | { |
2d21ac55 | 481 | int do_replacement_signal, error; |
55e303ae | 482 | TAILQ_HEAD(, kaudit_record) ar_worklist; |
91447636 | 483 | struct kaudit_record *ar; |
55e303ae | 484 | struct vnode *audit_vp, *old_vp; |
91447636 | 485 | kauth_cred_t audit_cred; |
2d21ac55 | 486 | proc_t audit_p; |
55e303ae A |
487 | |
488 | AUDIT_PRINTF(("audit_worker starting\n")); | |
489 | ||
490 | TAILQ_INIT(&ar_worklist); | |
0c530ab8 | 491 | audit_cred = NOCRED; |
55e303ae A |
492 | audit_p = current_proc(); |
493 | audit_vp = NULL; | |
494 | ||
55e303ae | 495 | |
2d21ac55 | 496 | lck_mtx_lock(audit_mtx); |
55e303ae | 497 | while (1) { |
2d21ac55 A |
498 | struct vfs_context context; |
499 | ||
55e303ae A |
500 | /* |
501 | * First priority: replace the audit log target if requested. | |
55e303ae A |
502 | * |
503 | * XXX It could well be we should drain existing records | |
504 | * first to ensure that the timestamps and ordering | |
505 | * are right. | |
506 | */ | |
507 | do_replacement_signal = 0; | |
508 | while (audit_replacement_flag != 0) { | |
2d21ac55 A |
509 | kauth_cred_t old_cred = audit_cred; |
510 | ||
55e303ae A |
511 | old_vp = audit_vp; |
512 | audit_cred = audit_replacement_cred; | |
513 | audit_vp = audit_replacement_vp; | |
0c530ab8 | 514 | audit_replacement_cred = NOCRED; |
55e303ae A |
515 | audit_replacement_vp = NULL; |
516 | audit_replacement_flag = 0; | |
517 | ||
518 | audit_enabled = (audit_vp != NULL); | |
519 | ||
55e303ae A |
520 | /* |
521 | * XXX: What to do about write failures here? | |
522 | */ | |
523 | if (old_vp != NULL) { | |
2d21ac55 A |
524 | AUDIT_PRINTF(("Closing old audit file vnode %p\n", old_vp)); |
525 | if (vnode_get(old_vp) == 0) { | |
526 | vn_close(old_vp, audit_close_flags, vfs_context_kernel()); | |
527 | vnode_put(old_vp); | |
528 | AUDIT_PRINTF(("Audit file closed\n")); | |
529 | } | |
530 | else | |
531 | printf("audit_worker(): Couldn't close audit file.\n"); | |
0c530ab8 | 532 | kauth_cred_unref(&old_cred); |
55e303ae | 533 | old_vp = NULL; |
55e303ae A |
534 | } |
535 | if (audit_vp != NULL) { | |
536 | AUDIT_PRINTF(("Opening new audit file\n")); | |
537 | } | |
55e303ae A |
538 | do_replacement_signal = 1; |
539 | } | |
540 | /* | |
541 | * Signal that replacement have occurred to wake up and | |
542 | * start any other replacements started in parallel. We can | |
543 | * continue about our business in the mean time. We | |
544 | * broadcast so that both new replacements can be inserted, | |
545 | * but also so that the source(s) of replacement can return | |
546 | * successfully. | |
547 | */ | |
548 | if (do_replacement_signal) | |
e5568f75 A |
549 | wait_queue_wakeup_all(audit_wait_queue, |
550 | AUDIT_REPLACEMENT_EVENT, THREAD_AWAKENED); | |
55e303ae A |
551 | |
552 | /* | |
553 | * Next, check to see if we have any records to drain into | |
554 | * the vnode. If not, go back to waiting for an event. | |
555 | */ | |
556 | if (TAILQ_EMPTY(&audit_q)) { | |
557 | int ret; | |
558 | ||
559 | AUDIT_PRINTF(("audit_worker waiting\n")); | |
e5568f75 A |
560 | ret = wait_queue_assert_wait(audit_wait_queue, |
561 | AUDIT_WORKER_EVENT, | |
91447636 A |
562 | THREAD_UNINT, |
563 | 0); | |
2d21ac55 | 564 | lck_mtx_unlock(audit_mtx); |
55e303ae A |
565 | |
566 | assert(ret == THREAD_WAITING); | |
567 | ret = thread_block(THREAD_CONTINUE_NULL); | |
568 | assert(ret == THREAD_AWAKENED); | |
569 | AUDIT_PRINTF(("audit_worker woken up\n")); | |
570 | AUDIT_PRINTF(("audit_worker: new vp = %p; value of flag %d\n", | |
571 | audit_replacement_vp, audit_replacement_flag)); | |
91447636 | 572 | |
2d21ac55 | 573 | lck_mtx_lock(audit_mtx); |
55e303ae A |
574 | continue; |
575 | } | |
576 | ||
577 | /* | |
578 | * If we have records, but there's no active vnode to | |
579 | * write to, drain the record queue. Generally, we | |
580 | * prevent the unnecessary allocation of records | |
581 | * elsewhere, but we need to allow for races between | |
582 | * conditional allocation and queueing. Go back to | |
583 | * waiting when we're done. | |
584 | * | |
585 | * XXX: We go out of our way to avoid calling audit_free() | |
586 | * with the audit_mtx held, to avoid a lock order reversal | |
587 | * as free() may grab the funnel. This will be fixed at | |
588 | * some point. | |
589 | */ | |
590 | if (audit_vp == NULL) { | |
591 | while ((ar = TAILQ_FIRST(&audit_q))) { | |
592 | TAILQ_REMOVE(&audit_q, ar, k_q); | |
e5568f75 A |
593 | audit_q_len--; |
594 | if (audit_q_len <= audit_qctrl.aq_lowater) | |
595 | wait_queue_wakeup_one( | |
596 | audit_wait_queue, | |
597 | AUDIT_COMMIT_EVENT, | |
598 | THREAD_AWAKENED); | |
599 | ||
55e303ae A |
600 | TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q); |
601 | } | |
2d21ac55 | 602 | lck_mtx_unlock(audit_mtx); |
55e303ae A |
603 | while ((ar = TAILQ_FIRST(&ar_worklist))) { |
604 | TAILQ_REMOVE(&ar_worklist, ar, k_q); | |
605 | audit_free(ar); | |
606 | } | |
2d21ac55 | 607 | lck_mtx_lock(audit_mtx); |
55e303ae A |
608 | continue; |
609 | } | |
610 | ||
611 | /* | |
612 | * We have both records to write, and an active vnode | |
613 | * to write to. Dequeue a record, and start the write. | |
614 | * Eventually, it might make sense to dequeue several | |
615 | * records and perform our own clustering, if the lower | |
616 | * layers aren't doing it automatically enough. | |
617 | * | |
618 | * XXX: We go out of our way to avoid calling audit_free() | |
619 | * with the audit_mtx held, to avoid a lock order reversal | |
620 | * as free() may grab the funnel. This will be fixed at | |
621 | * some point. | |
622 | */ | |
623 | while ((ar = TAILQ_FIRST(&audit_q))) { | |
624 | TAILQ_REMOVE(&audit_q, ar, k_q); | |
e5568f75 A |
625 | audit_q_len--; |
626 | if (audit_q_len <= audit_qctrl.aq_lowater) { | |
627 | wait_queue_wakeup_one(audit_wait_queue, | |
628 | AUDIT_COMMIT_EVENT, THREAD_AWAKENED); | |
629 | } | |
630 | ||
55e303ae A |
631 | TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q); |
632 | } | |
2d21ac55 A |
633 | lck_mtx_unlock(audit_mtx); |
634 | context.vc_thread = current_thread(); | |
635 | context.vc_ucred = audit_cred; | |
55e303ae A |
636 | while ((ar = TAILQ_FIRST(&ar_worklist))) { |
637 | TAILQ_REMOVE(&ar_worklist, ar, k_q); | |
638 | if (audit_vp != NULL) { | |
639 | /* | |
640 | * XXX: What should happen if there's a write | |
641 | * error here? | |
642 | */ | |
2d21ac55 | 643 | error = audit_write(audit_vp, ar, &context); |
91447636 | 644 | if (error && audit_panic_on_write_fail) { |
e5568f75 A |
645 | panic("audit_worker: write error %d\n", |
646 | error); | |
91447636 | 647 | } else if (error) { |
55e303ae A |
648 | printf("audit_worker: write error %d\n", |
649 | error); | |
2d21ac55 | 650 | } |
91447636 | 651 | } |
55e303ae A |
652 | audit_free(ar); |
653 | } | |
2d21ac55 | 654 | lck_mtx_lock(audit_mtx); |
55e303ae A |
655 | } |
656 | } | |
657 | ||
658 | void | |
659 | audit_init(void) | |
660 | { | |
55e303ae A |
661 | printf("Security auditing service present\n"); |
662 | TAILQ_INIT(&audit_q); | |
e5568f75 | 663 | audit_q_len = 0; |
55e303ae A |
664 | audit_enabled = 0; |
665 | audit_suspended = 0; | |
666 | audit_replacement_cred = NULL; | |
667 | audit_replacement_flag = 0; | |
e5568f75 | 668 | audit_file_rotate_wait = 0; |
55e303ae | 669 | audit_replacement_vp = NULL; |
e5568f75 A |
670 | audit_fstat.af_filesz = 0; /* '0' means unset, unbounded */ |
671 | audit_fstat.af_currsz = 0; | |
672 | audit_qctrl.aq_hiwater = AQ_HIWATER; | |
673 | audit_qctrl.aq_lowater = AQ_LOWATER; | |
674 | audit_qctrl.aq_bufsz = AQ_BUFSZ; | |
675 | audit_qctrl.aq_minfree = AU_FS_MINFREE; | |
676 | ||
2d21ac55 A |
677 | audit_grp_attr = lck_grp_attr_alloc_init(); |
678 | audit_grp = lck_grp_alloc_init("audit", audit_grp_attr); | |
679 | audit_attr = lck_attr_alloc_init(); | |
680 | audit_mtx = lck_mtx_alloc_init(audit_grp, audit_attr); | |
681 | ||
55e303ae | 682 | audit_wait_queue = wait_queue_alloc(SYNC_POLICY_FIFO); |
e5568f75 A |
683 | audit_zone = zinit(sizeof(struct kaudit_record), |
684 | AQ_HIWATER*sizeof(struct kaudit_record), | |
685 | 8192, | |
686 | "audit_zone"); | |
2d21ac55 A |
687 | #if CONFIG_MACF |
688 | /* Assume 3 MAC labels for each audit record: two for vnodes, | |
689 | * one for creds. | |
690 | */ | |
691 | audit_mac_label_zone = zinit(MAC_AUDIT_LABEL_LEN, | |
692 | AQ_HIWATER * 3*MAC_AUDIT_LABEL_LEN, | |
693 | 8192, | |
694 | "audit_mac_label_zone"); | |
695 | #endif | |
55e303ae A |
696 | |
697 | /* Initialize the BSM audit subsystem. */ | |
698 | kau_init(); | |
55e303ae A |
699 | } |
700 | ||
701 | static void | |
91447636 | 702 | audit_rotate_vnode(kauth_cred_t cred, struct vnode *vp) |
55e303ae A |
703 | { |
704 | int ret; | |
705 | ||
706 | /* | |
707 | * If other parallel log replacements have been requested, we wait | |
708 | * until they've finished before continuing. | |
709 | */ | |
2d21ac55 | 710 | lck_mtx_lock(audit_mtx); |
55e303ae A |
711 | while (audit_replacement_flag != 0) { |
712 | ||
713 | AUDIT_PRINTF(("audit_rotate_vnode: sleeping to wait for " | |
714 | "flag\n")); | |
e5568f75 A |
715 | ret = wait_queue_assert_wait(audit_wait_queue, |
716 | AUDIT_REPLACEMENT_EVENT, | |
91447636 A |
717 | THREAD_UNINT, |
718 | 0); | |
2d21ac55 | 719 | lck_mtx_unlock(audit_mtx); |
55e303ae A |
720 | |
721 | assert(ret == THREAD_WAITING); | |
722 | ret = thread_block(THREAD_CONTINUE_NULL); | |
723 | assert(ret == THREAD_AWAKENED); | |
724 | AUDIT_PRINTF(("audit_rotate_vnode: woken up (flag %d)\n", | |
725 | audit_replacement_flag)); | |
726 | ||
2d21ac55 | 727 | lck_mtx_lock(audit_mtx); |
55e303ae A |
728 | } |
729 | audit_replacement_cred = cred; | |
730 | audit_replacement_flag = 1; | |
731 | audit_replacement_vp = vp; | |
732 | ||
733 | /* | |
91447636 A |
734 | * Start or wake up the audit worker to perform the exchange. |
735 | * It will have to wait until we release the mutex. | |
55e303ae | 736 | */ |
91447636 A |
737 | if (audit_worker_thread == THREAD_NULL) |
738 | audit_worker_thread = kernel_thread(kernel_task, | |
739 | audit_worker); | |
740 | else | |
741 | wait_queue_wakeup_one(audit_wait_queue, | |
742 | AUDIT_WORKER_EVENT, | |
743 | THREAD_AWAKENED); | |
55e303ae A |
744 | |
745 | /* | |
746 | * Wait for the audit_worker to broadcast that a replacement has | |
747 | * taken place; we know that once this has happened, our vnode | |
748 | * has been replaced in, so we can return successfully. | |
749 | */ | |
750 | AUDIT_PRINTF(("audit_rotate_vnode: waiting for news of " | |
751 | "replacement\n")); | |
e5568f75 A |
752 | ret = wait_queue_assert_wait(audit_wait_queue, |
753 | AUDIT_REPLACEMENT_EVENT, | |
91447636 A |
754 | THREAD_UNINT, |
755 | 0); | |
2d21ac55 | 756 | lck_mtx_unlock(audit_mtx); |
55e303ae A |
757 | |
758 | assert(ret == THREAD_WAITING); | |
759 | ret = thread_block(THREAD_CONTINUE_NULL); | |
760 | assert(ret == THREAD_AWAKENED); | |
761 | AUDIT_PRINTF(("audit_rotate_vnode: change acknowledged by " | |
762 | "audit_worker (flag " "now %d)\n", audit_replacement_flag)); | |
e5568f75 A |
763 | |
764 | audit_file_rotate_wait = 0; /* We can now request another rotation */ | |
55e303ae A |
765 | } |
766 | ||
767 | /* | |
768 | * Drain the audit queue and close the log at shutdown. | |
769 | */ | |
770 | void | |
771 | audit_shutdown(void) | |
772 | { | |
2d21ac55 A |
773 | if (audit_mtx) |
774 | audit_rotate_vnode(NULL, NULL); | |
55e303ae A |
775 | } |
776 | ||
777 | static __inline__ struct uthread * | |
778 | curuthread(void) | |
779 | { | |
91447636 | 780 | return (get_bsdthread_info(current_thread())); |
55e303ae A |
781 | } |
782 | ||
783 | static __inline__ struct kaudit_record * | |
784 | currecord(void) | |
785 | { | |
55e303ae A |
786 | return (curuthread()->uu_ar); |
787 | } | |
788 | ||
789 | /********************************** | |
790 | * Begin system calls. * | |
791 | **********************************/ | |
792 | /* | |
793 | * System call to allow a user space application to submit a BSM audit | |
794 | * record to the kernel for inclusion in the audit log. This function | |
795 | * does little verification on the audit record that is submitted. | |
796 | * | |
797 | * XXXAUDIT: Audit preselection for user records does not currently | |
798 | * work, since we pre-select only based on the AUE_audit event type, | |
799 | * not the event type submitted as part of the user audit data. | |
800 | */ | |
55e303ae A |
801 | /* ARGSUSED */ |
802 | int | |
2d21ac55 | 803 | audit(proc_t p, struct audit_args *uap, __unused register_t *retval) |
55e303ae | 804 | { |
55e303ae A |
805 | int error; |
806 | void * rec; | |
807 | struct kaudit_record *ar; | |
e5568f75 | 808 | struct uthread *uthr; |
55e303ae | 809 | |
91447636 | 810 | error = suser(kauth_cred_get(), &p->p_acflag); |
55e303ae A |
811 | if (error) |
812 | return (error); | |
813 | ||
2d21ac55 A |
814 | lck_mtx_lock(audit_mtx); |
815 | if ((uap->length <= 0) || (uap->length > (int)audit_qctrl.aq_bufsz)) { | |
816 | lck_mtx_unlock(audit_mtx); | |
e5568f75 | 817 | return (EINVAL); |
2d21ac55 A |
818 | } |
819 | lck_mtx_unlock(audit_mtx); | |
e5568f75 A |
820 | |
821 | ar = currecord(); | |
822 | ||
823 | /* If there's no current audit record (audit() itself not audited) | |
824 | * commit the user audit record. | |
825 | */ | |
826 | if (ar == NULL) { | |
827 | uthr = curuthread(); | |
828 | if (uthr == NULL) /* can this happen? */ | |
91447636 | 829 | return (ENOTSUP); |
e5568f75 A |
830 | |
831 | /* This is not very efficient; we're required to allocate | |
832 | * a complete kernel audit record just so the user record | |
833 | * can tag along. | |
834 | */ | |
835 | uthr->uu_ar = audit_new(AUE_NULL, p, uthr); | |
836 | if (uthr->uu_ar == NULL) /* auditing not on, or memory error */ | |
837 | return (ENOTSUP); | |
838 | ar = uthr->uu_ar; | |
839 | } | |
840 | ||
55e303ae A |
841 | if (uap->length > MAX_AUDIT_RECORD_SIZE) |
842 | return (EINVAL); | |
843 | ||
e5568f75 | 844 | rec = (void *)kalloc((vm_size_t)uap->length); |
55e303ae A |
845 | |
846 | error = copyin(uap->record, rec, uap->length); | |
847 | if (error) | |
848 | goto free_out; | |
849 | ||
2d21ac55 A |
850 | #if CONFIG_MACF |
851 | error = mac_system_check_audit(kauth_cred_get(), rec, uap->length); | |
852 | if (error) | |
853 | goto free_out; | |
854 | #endif | |
855 | ||
55e303ae A |
856 | /* Verify the record */ |
857 | if (bsm_rec_verify(rec) == 0) { | |
858 | error = EINVAL; | |
859 | goto free_out; | |
860 | } | |
861 | ||
862 | /* Attach the user audit record to the kernel audit record. Because | |
863 | * this system call is an auditable event, we will write the user | |
864 | * record along with the record for this audit event. | |
865 | */ | |
866 | ar->k_udata = rec; | |
e5568f75 | 867 | ar->k_ar_commit |= AR_COMMIT_USER; |
55e303ae A |
868 | ar->k_ulen = uap->length; |
869 | return (0); | |
870 | ||
871 | free_out: | |
e5568f75 A |
872 | /* audit_syscall_exit() will free the audit record on the thread |
873 | * even if we allocated it above. | |
874 | */ | |
91447636 | 875 | kfree(rec, uap->length); |
55e303ae A |
876 | return (error); |
877 | } | |
878 | ||
879 | /* | |
880 | * System call to manipulate auditing. | |
881 | */ | |
55e303ae A |
882 | /* ARGSUSED */ |
883 | int | |
2d21ac55 | 884 | auditon(proc_t p, struct auditon_args *uap, __unused register_t *retval) |
55e303ae | 885 | { |
e5568f75 A |
886 | int ret; |
887 | int len; | |
888 | union auditon_udata udata; | |
2d21ac55 A |
889 | proc_t tp = PROC_NULL; |
890 | kauth_cred_t my_cred; | |
55e303ae | 891 | |
e5568f75 | 892 | AUDIT_ARG(cmd, uap->cmd); |
91447636 | 893 | ret = suser(kauth_cred_get(), &p->p_acflag); |
e5568f75 A |
894 | if (ret) |
895 | return (ret); | |
55e303ae | 896 | |
2d21ac55 A |
897 | #if CONFIG_MACF |
898 | ret = mac_system_check_auditon(kauth_cred_get(), uap->cmd); | |
899 | if (ret) | |
900 | return (ret); | |
901 | #endif | |
902 | ||
e5568f75 | 903 | len = uap->length; |
91447636 | 904 | if ((len <= 0) || (len > (int)sizeof(union auditon_udata))) |
e5568f75 | 905 | return (EINVAL); |
55e303ae | 906 | |
e5568f75 A |
907 | memset((void *)&udata, 0, sizeof(udata)); |
908 | ||
909 | switch (uap->cmd) { | |
910 | /* Some of the GET commands use the arguments too */ | |
911 | case A_SETPOLICY: | |
912 | case A_SETKMASK: | |
913 | case A_SETQCTRL: | |
914 | case A_SETSTAT: | |
915 | case A_SETUMASK: | |
916 | case A_SETSMASK: | |
917 | case A_SETCOND: | |
918 | case A_SETCLASS: | |
919 | case A_SETPMASK: | |
920 | case A_SETFSIZE: | |
921 | case A_SETKAUDIT: | |
922 | case A_GETCLASS: | |
923 | case A_GETPINFO: | |
924 | case A_GETPINFO_ADDR: | |
925 | ret = copyin(uap->data, (void *)&udata, uap->length); | |
926 | if (ret) | |
927 | return (ret); | |
928 | AUDIT_ARG(auditon, &udata); | |
929 | break; | |
2d21ac55 | 930 | } |
e5568f75 A |
931 | |
932 | /* XXX Need to implement these commands by accessing the global | |
933 | * values associated with the commands. | |
934 | */ | |
2d21ac55 | 935 | lck_mtx_lock(audit_mtx); |
e5568f75 A |
936 | switch (uap->cmd) { |
937 | case A_GETPOLICY: | |
938 | if (!audit_fail_stop) | |
939 | udata.au_policy |= AUDIT_CNT; | |
940 | if (audit_panic_on_write_fail) | |
941 | udata.au_policy |= AUDIT_AHLT; | |
942 | break; | |
943 | case A_SETPOLICY: | |
2d21ac55 A |
944 | if (udata.au_policy & ~(AUDIT_CNT|AUDIT_AHLT)) { |
945 | ret = EINVAL; | |
946 | break; | |
947 | } | |
948 | /* | |
e5568f75 | 949 | * XXX - Need to wake up waiters if the policy relaxes? |
2d21ac55 | 950 | */ |
e5568f75 A |
951 | audit_fail_stop = ((udata.au_policy & AUDIT_CNT) == 0); |
952 | audit_panic_on_write_fail = (udata.au_policy & AUDIT_AHLT); | |
953 | break; | |
954 | case A_GETKMASK: | |
955 | udata.au_mask = audit_nae_mask; | |
956 | break; | |
957 | case A_SETKMASK: | |
958 | audit_nae_mask = udata.au_mask; | |
959 | break; | |
960 | case A_GETQCTRL: | |
961 | udata.au_qctrl = audit_qctrl; | |
962 | break; | |
963 | case A_SETQCTRL: | |
964 | if ((udata.au_qctrl.aq_hiwater > AQ_MAXHIGH) || | |
965 | (udata.au_qctrl.aq_lowater >= udata.au_qctrl.aq_hiwater) || | |
966 | (udata.au_qctrl.aq_bufsz > AQ_MAXBUFSZ) || | |
967 | (udata.au_qctrl.aq_minfree < 0) || | |
2d21ac55 A |
968 | (udata.au_qctrl.aq_minfree > 100)) { |
969 | ret = EINVAL; | |
970 | break; | |
971 | } | |
e5568f75 A |
972 | |
973 | audit_qctrl = udata.au_qctrl; | |
974 | /* XXX The queue delay value isn't used with the kernel. */ | |
975 | audit_qctrl.aq_delay = -1; | |
976 | break; | |
977 | case A_GETCWD: | |
2d21ac55 | 978 | ret = ENOSYS; |
e5568f75 A |
979 | break; |
980 | case A_GETCAR: | |
2d21ac55 | 981 | ret = ENOSYS; |
e5568f75 A |
982 | break; |
983 | case A_GETSTAT: | |
2d21ac55 | 984 | ret = ENOSYS; |
e5568f75 A |
985 | break; |
986 | case A_SETSTAT: | |
2d21ac55 | 987 | ret = ENOSYS; |
e5568f75 A |
988 | break; |
989 | case A_SETUMASK: | |
2d21ac55 | 990 | ret = ENOSYS; |
e5568f75 A |
991 | break; |
992 | case A_SETSMASK: | |
2d21ac55 | 993 | ret = ENOSYS; |
e5568f75 A |
994 | break; |
995 | case A_GETCOND: | |
996 | if (audit_enabled && !audit_suspended) | |
997 | udata.au_cond = AUC_AUDITING; | |
998 | else | |
999 | udata.au_cond = AUC_NOAUDIT; | |
1000 | break; | |
1001 | case A_SETCOND: | |
1002 | if (udata.au_cond == AUC_NOAUDIT) | |
1003 | audit_suspended = 1; | |
1004 | if (udata.au_cond == AUC_AUDITING) | |
1005 | audit_suspended = 0; | |
1006 | if (udata.au_cond == AUC_DISABLED) { | |
1007 | audit_suspended = 1; | |
1008 | audit_shutdown(); | |
1009 | } | |
1010 | break; | |
1011 | case A_GETCLASS: | |
1012 | udata.au_evclass.ec_class = | |
1013 | au_event_class(udata.au_evclass.ec_number); | |
1014 | break; | |
1015 | case A_SETCLASS: | |
1016 | au_evclassmap_insert(udata.au_evclass.ec_number, | |
1017 | udata.au_evclass.ec_class); | |
1018 | break; | |
1019 | case A_GETPINFO: | |
2d21ac55 A |
1020 | if (udata.au_aupinfo.ap_pid < 1) { |
1021 | ret = EINVAL; | |
1022 | break; | |
1023 | } | |
1024 | if ((tp = proc_find(udata.au_aupinfo.ap_pid)) == NULL) { | |
1025 | ret = EINVAL; | |
1026 | break; | |
1027 | } | |
e5568f75 | 1028 | |
2d21ac55 A |
1029 | lck_mtx_unlock(audit_mtx); |
1030 | my_cred = kauth_cred_proc_ref(tp); | |
1031 | ||
1032 | udata.au_aupinfo.ap_auid = my_cred->cr_au.ai_auid; | |
e5568f75 | 1033 | udata.au_aupinfo.ap_mask.am_success = |
2d21ac55 | 1034 | my_cred->cr_au.ai_mask.am_success; |
e5568f75 | 1035 | udata.au_aupinfo.ap_mask.am_failure = |
2d21ac55 | 1036 | my_cred->cr_au.ai_mask.am_failure; |
e5568f75 | 1037 | udata.au_aupinfo.ap_termid.machine = |
2d21ac55 | 1038 | my_cred->cr_au.ai_termid.machine; |
e5568f75 | 1039 | udata.au_aupinfo.ap_termid.port = |
2d21ac55 A |
1040 | my_cred->cr_au.ai_termid.port; |
1041 | udata.au_aupinfo.ap_asid = my_cred->cr_au.ai_asid; | |
1042 | ||
1043 | kauth_cred_unref(&my_cred); | |
1044 | ||
1045 | proc_rele(tp); | |
1046 | tp = PROC_NULL; | |
1047 | lck_mtx_lock(audit_mtx); | |
e5568f75 A |
1048 | break; |
1049 | case A_SETPMASK: | |
2d21ac55 A |
1050 | if (udata.au_aupinfo.ap_pid < 1) { |
1051 | ret = EINVAL; | |
1052 | break; | |
1053 | } | |
1054 | if ((tp = proc_find(udata.au_aupinfo.ap_pid)) == NULL) { | |
1055 | ret = EINVAL; | |
1056 | break; | |
1057 | } | |
e5568f75 | 1058 | |
91447636 A |
1059 | /* |
1060 | * we are modifying the audit info in a credential so we need a new | |
1061 | * credential (or take another reference on an existing credential that | |
1062 | * matches our new one). We must do this because the audit info in the | |
1063 | * credential is used as part of our hash key. Get current credential | |
1064 | * in the target process and take a reference while we muck with it. | |
1065 | */ | |
2d21ac55 | 1066 | lck_mtx_unlock(audit_mtx); |
91447636 | 1067 | for (;;) { |
2d21ac55 | 1068 | kauth_cred_t my_new_cred; |
91447636 A |
1069 | struct auditinfo temp_auditinfo; |
1070 | ||
1071 | my_cred = kauth_cred_proc_ref(tp); | |
1072 | /* | |
0c530ab8 A |
1073 | * Set the credential with new info. If there is no |
1074 | * change, we get back the same credential we passed | |
1075 | * in; if there is a change, we drop the reference on | |
1076 | * the credential we passed in. The subsequent | |
1077 | * compare is safe, because it is a pointer compare | |
1078 | * rather than a contents compare. | |
91447636 A |
1079 | */ |
1080 | temp_auditinfo = my_cred->cr_au; | |
1081 | temp_auditinfo.ai_mask.am_success = | |
1082 | udata.au_aupinfo.ap_mask.am_success; | |
1083 | temp_auditinfo.ai_mask.am_failure = | |
1084 | udata.au_aupinfo.ap_mask.am_failure; | |
1085 | my_new_cred = kauth_cred_setauditinfo(my_cred, &temp_auditinfo); | |
1086 | ||
1087 | if (my_cred != my_new_cred) { | |
1088 | proc_lock(tp); | |
1089 | /* need to protect for a race where another thread also changed | |
1090 | * the credential after we took our reference. If p_ucred has | |
1091 | * changed then we should restart this again with the new cred. | |
1092 | */ | |
1093 | if (tp->p_ucred != my_cred) { | |
1094 | proc_unlock(tp); | |
0c530ab8 | 1095 | kauth_cred_unref(&my_new_cred); |
91447636 A |
1096 | /* try again */ |
1097 | continue; | |
1098 | } | |
1099 | tp->p_ucred = my_new_cred; | |
1100 | proc_unlock(tp); | |
1101 | } | |
0c530ab8 A |
1102 | /* drop old proc reference or our extra reference */ |
1103 | kauth_cred_unref(&my_cred); | |
91447636 A |
1104 | break; |
1105 | } | |
2d21ac55 A |
1106 | proc_rele(tp); |
1107 | lck_mtx_lock(audit_mtx); | |
e5568f75 A |
1108 | break; |
1109 | case A_SETFSIZE: | |
1110 | if ((udata.au_fstat.af_filesz != 0) && | |
2d21ac55 A |
1111 | (udata.au_fstat.af_filesz < MIN_AUDIT_FILE_SIZE)) { |
1112 | ret = EINVAL; | |
1113 | break; | |
1114 | } | |
e5568f75 A |
1115 | audit_fstat.af_filesz = udata.au_fstat.af_filesz; |
1116 | break; | |
1117 | case A_GETFSIZE: | |
1118 | udata.au_fstat.af_filesz = audit_fstat.af_filesz; | |
1119 | udata.au_fstat.af_currsz = audit_fstat.af_currsz; | |
1120 | break; | |
1121 | case A_GETPINFO_ADDR: | |
2d21ac55 | 1122 | ret = ENOSYS; |
e5568f75 A |
1123 | break; |
1124 | case A_GETKAUDIT: | |
2d21ac55 | 1125 | ret = ENOSYS; |
e5568f75 A |
1126 | break; |
1127 | case A_SETKAUDIT: | |
2d21ac55 | 1128 | ret = ENOSYS; |
e5568f75 | 1129 | break; |
2d21ac55 | 1130 | } |
e5568f75 | 1131 | /* Copy data back to userspace for the GET comands */ |
2d21ac55 A |
1132 | if (ret == 0) { |
1133 | switch (uap->cmd) { | |
1134 | case A_GETPOLICY: | |
1135 | case A_GETKMASK: | |
1136 | case A_GETQCTRL: | |
1137 | case A_GETCWD: | |
1138 | case A_GETCAR: | |
1139 | case A_GETSTAT: | |
1140 | case A_GETCOND: | |
1141 | case A_GETCLASS: | |
1142 | case A_GETPINFO: | |
1143 | case A_GETFSIZE: | |
1144 | case A_GETPINFO_ADDR: | |
1145 | case A_GETKAUDIT: | |
1146 | ret = copyout((void *)&udata, uap->data, uap->length); | |
1147 | break; | |
1148 | } | |
e5568f75 A |
1149 | } |
1150 | ||
2d21ac55 A |
1151 | lck_mtx_unlock(audit_mtx); |
1152 | return (ret); | |
55e303ae A |
1153 | } |
1154 | ||
1155 | /* | |
1156 | * System calls to manage the user audit information. | |
55e303ae | 1157 | */ |
55e303ae A |
1158 | /* ARGSUSED */ |
1159 | int | |
2d21ac55 | 1160 | getauid(__unused proc_t p, struct getauid_args *uap, __unused register_t *retval) |
55e303ae | 1161 | { |
55e303ae A |
1162 | int error; |
1163 | ||
2d21ac55 A |
1164 | #if CONFIG_MACF |
1165 | error = mac_proc_check_getauid(p); | |
1166 | if (error) | |
1167 | return (error); | |
1168 | #endif | |
1169 | ||
91447636 A |
1170 | error = copyout((void *)&kauth_cred_get()->cr_au.ai_auid, |
1171 | uap->auid, sizeof(au_id_t)); | |
55e303ae A |
1172 | if (error) |
1173 | return (error); | |
1174 | ||
1175 | return (0); | |
1176 | } | |
1177 | ||
55e303ae A |
1178 | /* ARGSUSED */ |
1179 | int | |
2d21ac55 | 1180 | setauid(proc_t p, struct setauid_args *uap, __unused register_t *retval) |
55e303ae | 1181 | { |
55e303ae | 1182 | int error; |
91447636 | 1183 | au_id_t temp_au_id; |
55e303ae | 1184 | |
91447636 | 1185 | error = suser(kauth_cred_get(), &p->p_acflag); |
55e303ae A |
1186 | if (error) |
1187 | return (error); | |
1188 | ||
91447636 A |
1189 | error = copyin(uap->auid, |
1190 | (void *)&temp_au_id, | |
1191 | sizeof(au_id_t)); | |
55e303ae A |
1192 | if (error) |
1193 | return (error); | |
2d21ac55 A |
1194 | #if CONFIG_MACF |
1195 | error = mac_proc_check_setauid(p, temp_au_id); | |
1196 | if (error) | |
1197 | return (error); | |
1198 | #endif | |
55e303ae | 1199 | |
91447636 A |
1200 | /* |
1201 | * we are modifying the audit info in a credential so we need a new | |
1202 | * credential (or take another reference on an existing credential that | |
1203 | * matches our new one). We must do this because the audit info in the | |
1204 | * credential is used as part of our hash key. Get current credential | |
1205 | * in the target process and take a reference while we muck with it. | |
1206 | */ | |
1207 | for (;;) { | |
1208 | kauth_cred_t my_cred, my_new_cred; | |
1209 | struct auditinfo temp_auditinfo; | |
1210 | ||
1211 | my_cred = kauth_cred_proc_ref(p); | |
1212 | /* | |
0c530ab8 A |
1213 | * Set the credential with new info. If there is no change, |
1214 | * we get back the same credential we passed in; if there is | |
1215 | * a change, we drop the reference on the credential we | |
1216 | * passed in. The subsequent compare is safe, because it is | |
1217 | * a pointer compare rather than a contents compare. | |
91447636 A |
1218 | */ |
1219 | temp_auditinfo = my_cred->cr_au; | |
1220 | temp_auditinfo.ai_auid = temp_au_id; | |
1221 | my_new_cred = kauth_cred_setauditinfo(my_cred, &temp_auditinfo); | |
1222 | ||
1223 | if (my_cred != my_new_cred) { | |
1224 | proc_lock(p); | |
1225 | /* need to protect for a race where another thread also changed | |
1226 | * the credential after we took our reference. If p_ucred has | |
1227 | * changed then we should restart this again with the new cred. | |
1228 | */ | |
1229 | if (p->p_ucred != my_cred) { | |
1230 | proc_unlock(p); | |
0c530ab8 | 1231 | kauth_cred_unref(&my_new_cred); |
91447636 A |
1232 | /* try again */ |
1233 | continue; | |
1234 | } | |
1235 | p->p_ucred = my_new_cred; | |
1236 | proc_unlock(p); | |
1237 | } | |
0c530ab8 A |
1238 | /* drop old proc reference or our extra reference */ |
1239 | kauth_cred_unref(&my_cred); | |
91447636 A |
1240 | break; |
1241 | } | |
1242 | ||
e5568f75 A |
1243 | /* propagate the change from the process to Mach task */ |
1244 | set_security_token(p); | |
1245 | ||
91447636 | 1246 | audit_arg_auid(kauth_cred_get()->cr_au.ai_auid); |
55e303ae A |
1247 | return (0); |
1248 | } | |
1249 | ||
1250 | /* | |
1251 | * System calls to get and set process audit information. | |
a3d08fcd A |
1252 | * If the caller is privileged, they get the whole set of |
1253 | * audit information. Otherwise, the real audit mask is | |
1254 | * filtered out - but the rest of the information is | |
1255 | * returned. | |
55e303ae | 1256 | */ |
55e303ae A |
1257 | /* ARGSUSED */ |
1258 | int | |
2d21ac55 | 1259 | getaudit(proc_t p, struct getaudit_args *uap, __unused register_t *retval) |
55e303ae | 1260 | { |
91447636 | 1261 | struct auditinfo ai; |
55e303ae A |
1262 | int error; |
1263 | ||
2d21ac55 A |
1264 | #if CONFIG_MACF |
1265 | error = mac_proc_check_getaudit(p); | |
1266 | if (error) | |
1267 | return (error); | |
1268 | #endif | |
1269 | ||
91447636 A |
1270 | ai = kauth_cred_get()->cr_au; |
1271 | ||
a3d08fcd | 1272 | /* only superuser gets to see the real mask */ |
91447636 | 1273 | error = suser(kauth_cred_get(), &p->p_acflag); |
a3d08fcd A |
1274 | if (error) { |
1275 | ai.ai_mask.am_success = ~0; | |
1276 | ai.ai_mask.am_failure = ~0; | |
1277 | } | |
1278 | ||
91447636 | 1279 | error = copyout(&ai, uap->auditinfo, sizeof(ai)); |
55e303ae A |
1280 | if (error) |
1281 | return (error); | |
1282 | ||
1283 | return (0); | |
1284 | } | |
1285 | ||
55e303ae A |
1286 | /* ARGSUSED */ |
1287 | int | |
2d21ac55 | 1288 | setaudit(proc_t p, struct setaudit_args *uap, __unused register_t *retval) |
55e303ae | 1289 | { |
55e303ae | 1290 | int error; |
91447636 | 1291 | struct auditinfo temp_auditinfo; |
0c530ab8 | 1292 | kauth_cred_t safecred; |
55e303ae | 1293 | |
91447636 | 1294 | error = suser(kauth_cred_get(), &p->p_acflag); |
55e303ae A |
1295 | if (error) |
1296 | return (error); | |
91447636 A |
1297 | error = copyin(uap->auditinfo, |
1298 | (void *)&temp_auditinfo, | |
1299 | sizeof(temp_auditinfo)); | |
55e303ae A |
1300 | if (error) |
1301 | return (error); | |
2d21ac55 A |
1302 | #if CONFIG_MACF |
1303 | error = mac_proc_check_setaudit(p, &temp_auditinfo); | |
1304 | if (error) | |
1305 | return (error); | |
1306 | ||
1307 | #endif | |
1308 | ||
55e303ae | 1309 | |
91447636 A |
1310 | /* |
1311 | * we are modifying the audit info in a credential so we need a new | |
1312 | * credential (or take another reference on an existing credential that | |
1313 | * matches our new one). We must do this because the audit info in the | |
1314 | * credential is used as part of our hash key. Get current credential | |
1315 | * in the target process and take a reference while we muck with it. | |
1316 | */ | |
1317 | for (;;) { | |
1318 | kauth_cred_t my_cred, my_new_cred; | |
1319 | ||
1320 | my_cred = kauth_cred_proc_ref(p); | |
1321 | /* | |
0c530ab8 A |
1322 | * Set the credential with new info. If there is no change, |
1323 | * we get back the same credential we passed in; if there is | |
1324 | * a change, we drop the reference on the credential we | |
1325 | * passed in. The subsequent compare is safe, because it is | |
1326 | * a pointer compare rather than a contents compare. | |
91447636 A |
1327 | */ |
1328 | my_new_cred = kauth_cred_setauditinfo(my_cred, &temp_auditinfo); | |
1329 | ||
1330 | if (my_cred != my_new_cred) { | |
1331 | proc_lock(p); | |
1332 | /* need to protect for a race where another thread also changed | |
1333 | * the credential after we took our reference. If p_ucred has | |
1334 | * changed then we should restart this again with the new cred. | |
1335 | */ | |
1336 | if (p->p_ucred != my_cred) { | |
1337 | proc_unlock(p); | |
0c530ab8 | 1338 | kauth_cred_unref(&my_new_cred); |
91447636 A |
1339 | /* try again */ |
1340 | continue; | |
1341 | } | |
1342 | p->p_ucred = my_new_cred; | |
1343 | proc_unlock(p); | |
1344 | } | |
0c530ab8 A |
1345 | /* drop old proc reference or our extra reference */ |
1346 | kauth_cred_unref(&my_cred); | |
91447636 A |
1347 | break; |
1348 | } | |
1349 | ||
e5568f75 A |
1350 | /* propagate the change from the process to Mach task */ |
1351 | set_security_token(p); | |
1352 | ||
0c530ab8 A |
1353 | safecred = kauth_cred_proc_ref(p); |
1354 | audit_arg_auditinfo(&safecred->cr_au); | |
1355 | kauth_cred_unref(&safecred); | |
e5568f75 | 1356 | |
55e303ae A |
1357 | return (0); |
1358 | } | |
1359 | ||
55e303ae A |
1360 | /* ARGSUSED */ |
1361 | int | |
2d21ac55 | 1362 | getaudit_addr(__unused proc_t p, __unused struct getaudit_addr_args *uap, __unused register_t *retval) |
55e303ae | 1363 | { |
55e303ae A |
1364 | return (ENOSYS); |
1365 | } | |
1366 | ||
55e303ae A |
1367 | /* ARGSUSED */ |
1368 | int | |
2d21ac55 | 1369 | setaudit_addr(proc_t p, __unused struct setaudit_addr_args *uap, __unused register_t *retval) |
55e303ae | 1370 | { |
55e303ae A |
1371 | int error; |
1372 | ||
91447636 | 1373 | error = suser(kauth_cred_get(), &p->p_acflag); |
55e303ae A |
1374 | if (error) |
1375 | return (error); | |
1376 | return (ENOSYS); | |
1377 | } | |
1378 | ||
1379 | /* | |
1380 | * Syscall to manage audit files. | |
1381 | * | |
55e303ae | 1382 | */ |
55e303ae A |
1383 | /* ARGSUSED */ |
1384 | int | |
2d21ac55 | 1385 | auditctl(proc_t p, struct auditctl_args *uap, __unused register_t *retval) |
55e303ae | 1386 | { |
55e303ae | 1387 | struct nameidata nd; |
91447636 | 1388 | kauth_cred_t cred; |
55e303ae | 1389 | struct vnode *vp; |
2d21ac55 | 1390 | int error; |
55e303ae | 1391 | |
91447636 | 1392 | error = suser(kauth_cred_get(), &p->p_acflag); |
55e303ae A |
1393 | if (error) |
1394 | return (error); | |
1395 | ||
1396 | vp = NULL; | |
1397 | cred = NULL; | |
1398 | ||
1399 | /* | |
1400 | * If a path is specified, open the replacement vnode, perform | |
1401 | * validity checks, and grab another reference to the current | |
1402 | * credential. | |
1403 | */ | |
2d21ac55 | 1404 | if (uap->path != USER_ADDR_NULL) { |
e5568f75 | 1405 | NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNPATH1, |
91447636 | 1406 | (IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32), |
2d21ac55 A |
1407 | uap->path, vfs_context_current()); |
1408 | error = vn_open(&nd, audit_open_flags, 0); | |
55e303ae A |
1409 | if (error) |
1410 | goto out; | |
55e303ae | 1411 | vp = nd.ni_vp; |
2d21ac55 | 1412 | |
55e303ae | 1413 | if (vp->v_type != VREG) { |
2d21ac55 | 1414 | vn_close(vp, audit_close_flags, vfs_context_current()); |
91447636 | 1415 | vnode_put(vp); |
55e303ae A |
1416 | error = EINVAL; |
1417 | goto out; | |
1418 | } | |
2d21ac55 A |
1419 | #if CONFIG_MACF |
1420 | /* | |
1421 | * Accessibility of the vnode was determined in | |
1422 | * vn_open; the mac_system_check_auditctl should only | |
1423 | * determine whether that vnode is appropriate for | |
1424 | * storing audit data, or that the caller was | |
1425 | * permitted to control the auditing system at all. | |
1426 | * For example, a confidentiality policy may want to | |
1427 | * ensure that audit files are always high | |
1428 | * sensitivity. | |
1429 | */ | |
1430 | ||
1431 | error = mac_system_check_auditctl(kauth_cred_get(), vp); | |
1432 | if (error) { | |
1433 | vn_close(vp, audit_close_flags, vfs_context_current()); | |
1434 | vnode_put(vp); | |
1435 | goto out; | |
1436 | } | |
1437 | #endif | |
91447636 | 1438 | cred = kauth_cred_get_with_ref(); |
2d21ac55 | 1439 | lck_mtx_lock(audit_mtx); |
e5568f75 | 1440 | audit_suspended = 0; |
2d21ac55 | 1441 | lck_mtx_unlock(audit_mtx); |
55e303ae | 1442 | } |
2d21ac55 A |
1443 | #if CONFIG_MACF |
1444 | else { | |
1445 | error = mac_system_check_auditctl(kauth_cred_get(), NULL); | |
1446 | if (error) | |
1447 | return (error); | |
1448 | } | |
1449 | #endif | |
1450 | ||
91447636 A |
1451 | /* |
1452 | * a vp and cred of NULL is valid at this point | |
1453 | * and indicates we're to turn off auditing... | |
1454 | */ | |
55e303ae | 1455 | audit_rotate_vnode(cred, vp); |
91447636 A |
1456 | if (vp) |
1457 | vnode_put(vp); | |
55e303ae A |
1458 | out: |
1459 | return (error); | |
1460 | } | |
1461 | ||
1462 | /********************************** | |
1463 | * End of system calls. * | |
1464 | **********************************/ | |
1465 | ||
1466 | /* | |
1467 | * MPSAFE | |
1468 | */ | |
1469 | struct kaudit_record * | |
2d21ac55 | 1470 | audit_new(int event, proc_t p, __unused struct uthread *uthread) |
55e303ae A |
1471 | { |
1472 | struct kaudit_record *ar; | |
1473 | int no_record; | |
0c530ab8 | 1474 | kauth_cred_t safecred; |
55e303ae A |
1475 | |
1476 | /* | |
1477 | * Eventually, there may be certain classes of events that | |
1478 | * we will audit regardless of the audit state at the time | |
1479 | * the record is created. These events will generally | |
1480 | * correspond to changes in the audit state. The dummy | |
1481 | * code below is from our first prototype, but may also | |
1482 | * be used in the final version (with modified event numbers). | |
1483 | */ | |
1484 | #if 0 | |
1485 | if (event != AUDIT_EVENT_FILESTOP && event != AUDIT_EVENT_FILESTART) { | |
1486 | #endif | |
2d21ac55 | 1487 | lck_mtx_lock(audit_mtx); |
55e303ae | 1488 | no_record = (audit_suspended || !audit_enabled); |
2d21ac55 | 1489 | lck_mtx_unlock(audit_mtx); |
55e303ae A |
1490 | if (no_record) |
1491 | return (NULL); | |
1492 | #if 0 | |
1493 | } | |
1494 | #endif | |
1495 | ||
55e303ae A |
1496 | /* |
1497 | * Initialize the audit record header. | |
55e303ae | 1498 | * XXX: We may want to fail-stop if allocation fails. |
e5568f75 A |
1499 | * XXX: The number of outstanding uncommitted audit records is |
1500 | * limited by the number of concurrent threads servicing system | |
1501 | * calls in the kernel. | |
55e303ae | 1502 | */ |
e5568f75 A |
1503 | |
1504 | ar = (struct kaudit_record *)zalloc(audit_zone); | |
55e303ae A |
1505 | if (ar == NULL) |
1506 | return NULL; | |
1507 | ||
1508 | bzero(ar, sizeof(*ar)); | |
1509 | ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; | |
1510 | ar->k_ar.ar_event = event; | |
1511 | nanotime(&ar->k_ar.ar_starttime); | |
1512 | ||
0c530ab8 | 1513 | safecred = kauth_cred_proc_ref(p); |
55e303ae | 1514 | /* Export the subject credential. */ |
0c530ab8 A |
1515 | cru2x(safecred, &ar->k_ar.ar_subj_cred); |
1516 | ||
1517 | ar->k_ar.ar_subj_ruid = safecred->cr_ruid; | |
1518 | ar->k_ar.ar_subj_rgid = safecred->cr_rgid; | |
1519 | ar->k_ar.ar_subj_egid = safecred->cr_groups[0]; | |
1520 | ar->k_ar.ar_subj_auid = safecred->cr_au.ai_auid; | |
1521 | ar->k_ar.ar_subj_asid = safecred->cr_au.ai_asid; | |
1522 | ar->k_ar.ar_subj_amask = safecred->cr_au.ai_mask; | |
1523 | ar->k_ar.ar_subj_term = safecred->cr_au.ai_termid; | |
1524 | kauth_cred_unref(&safecred); | |
1525 | ||
55e303ae A |
1526 | ar->k_ar.ar_subj_pid = p->p_pid; |
1527 | bcopy(p->p_comm, ar->k_ar.ar_subj_comm, MAXCOMLEN); | |
55e303ae | 1528 | |
2d21ac55 A |
1529 | #if CONFIG_MACF |
1530 | do { | |
1531 | struct mac mac; | |
1532 | ||
1533 | /* Retrieve the MAC labels for the process. */ | |
1534 | ar->k_ar.ar_cred_mac_labels = | |
1535 | (char *)zalloc(audit_mac_label_zone); | |
1536 | if (ar->k_ar.ar_cred_mac_labels == NULL) { | |
1537 | zfree(audit_zone, ar); | |
1538 | return (NULL); | |
1539 | } | |
1540 | mac.m_buflen = MAC_AUDIT_LABEL_LEN; | |
1541 | mac.m_string = ar->k_ar.ar_cred_mac_labels; | |
1542 | mac_cred_label_externalize_audit(p, &mac); | |
1543 | ||
1544 | /* | |
1545 | * grab space for the reconds. | |
1546 | */ | |
1547 | ar->k_ar.ar_mac_records = (struct mac_audit_record_list_t *) | |
1548 | kalloc(sizeof(*ar->k_ar.ar_mac_records)); | |
1549 | if (ar->k_ar.ar_mac_records == NULL) { | |
1550 | zfree(audit_mac_label_zone, | |
1551 | ar->k_ar.ar_cred_mac_labels); | |
1552 | zfree(audit_zone, ar); | |
1553 | return (NULL); | |
1554 | } | |
1555 | ||
1556 | LIST_INIT(ar->k_ar.ar_mac_records); | |
1557 | ||
1558 | ar->k_ar.ar_forced_by_mac = 0; | |
1559 | ||
1560 | } while (0); | |
1561 | #endif | |
1562 | ||
1563 | lck_mtx_lock(audit_mtx); | |
1564 | audit_pre_q_len++; | |
1565 | lck_mtx_unlock(audit_mtx); | |
1566 | ||
55e303ae A |
1567 | return (ar); |
1568 | } | |
1569 | ||
1570 | /* | |
1571 | * MPSAFE | |
1572 | * XXXAUDIT: So far, this is unused, and should probably be GC'd. | |
1573 | */ | |
1574 | void | |
1575 | audit_abort(struct kaudit_record *ar) | |
1576 | { | |
2d21ac55 | 1577 | lck_mtx_lock(audit_mtx); |
e5568f75 | 1578 | audit_pre_q_len--; |
2d21ac55 | 1579 | lck_mtx_unlock(audit_mtx); |
55e303ae A |
1580 | audit_free(ar); |
1581 | } | |
1582 | ||
1583 | /* | |
1584 | * MPSAFE | |
1585 | */ | |
1586 | void | |
1587 | audit_commit(struct kaudit_record *ar, int error, int retval) | |
1588 | { | |
e5568f75 A |
1589 | int ret; |
1590 | int sorf; | |
1591 | struct au_mask *aumask; | |
55e303ae A |
1592 | |
1593 | if (ar == NULL) | |
1594 | return; | |
1595 | ||
e5568f75 A |
1596 | /* |
1597 | * Decide whether to commit the audit record by checking the | |
1598 | * error value from the system call and using the appropriate | |
1599 | * audit mask. | |
1600 | */ | |
1601 | if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) | |
1602 | aumask = &audit_nae_mask; | |
1603 | else | |
1604 | aumask = &ar->k_ar.ar_subj_amask; | |
1605 | ||
1606 | if (error) | |
1607 | sorf = AU_PRS_FAILURE; | |
1608 | else | |
1609 | sorf = AU_PRS_SUCCESS; | |
1610 | ||
1611 | switch(ar->k_ar.ar_event) { | |
1612 | ||
1613 | case AUE_OPEN_RWTC: | |
1614 | /* The open syscall always writes a OPEN_RWTC event; limit the | |
1615 | * to the proper type of event based on the flags and the error | |
1616 | * value. | |
1617 | */ | |
1618 | ar->k_ar.ar_event = flags_and_error_to_openevent(ar->k_ar.ar_arg_fflags, error); | |
1619 | break; | |
1620 | ||
1621 | case AUE_SYSCTL: | |
1622 | ar->k_ar.ar_event = ctlname_to_sysctlevent(ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); | |
1623 | break; | |
1624 | ||
1625 | case AUE_AUDITON: | |
1626 | /* Convert the auditon() command to an event */ | |
1627 | ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); | |
1628 | break; | |
1629 | } | |
1630 | ||
1631 | if (au_preselect(ar->k_ar.ar_event, aumask, sorf) != 0) | |
1632 | ar->k_ar_commit |= AR_COMMIT_KERNEL; | |
1633 | ||
91447636 | 1634 | if ((ar->k_ar_commit & (AR_COMMIT_USER | AR_COMMIT_KERNEL)) == 0) { |
2d21ac55 | 1635 | lck_mtx_lock(audit_mtx); |
e5568f75 | 1636 | audit_pre_q_len--; |
2d21ac55 | 1637 | lck_mtx_unlock(audit_mtx); |
e5568f75 A |
1638 | audit_free(ar); |
1639 | return; | |
1640 | } | |
1641 | ||
55e303ae A |
1642 | ar->k_ar.ar_errno = error; |
1643 | ar->k_ar.ar_retval = retval; | |
1644 | ||
1645 | /* | |
1646 | * We might want to do some system-wide post-filtering | |
1647 | * here at some point. | |
1648 | */ | |
1649 | ||
1650 | /* | |
1651 | * Timestamp system call end. | |
1652 | */ | |
1653 | nanotime(&ar->k_ar.ar_endtime); | |
1654 | ||
2d21ac55 | 1655 | lck_mtx_lock(audit_mtx); |
55e303ae A |
1656 | /* |
1657 | * Note: it could be that some records initiated while audit was | |
1658 | * enabled should still be committed? | |
1659 | */ | |
1660 | if (audit_suspended || !audit_enabled) { | |
e5568f75 | 1661 | audit_pre_q_len--; |
2d21ac55 | 1662 | lck_mtx_unlock(audit_mtx); |
55e303ae A |
1663 | audit_free(ar); |
1664 | return; | |
1665 | } | |
91447636 | 1666 | |
e5568f75 A |
1667 | /* |
1668 | * Constrain the number of committed audit records based on | |
1669 | * the configurable parameter. | |
1670 | */ | |
1671 | while (audit_q_len >= audit_qctrl.aq_hiwater) { | |
1672 | ||
1673 | ret = wait_queue_assert_wait(audit_wait_queue, | |
1674 | AUDIT_COMMIT_EVENT, | |
91447636 A |
1675 | THREAD_UNINT, |
1676 | 0); | |
2d21ac55 | 1677 | lck_mtx_unlock(audit_mtx); |
e5568f75 A |
1678 | |
1679 | assert(ret == THREAD_WAITING); | |
1680 | ||
1681 | ret = thread_block(THREAD_CONTINUE_NULL); | |
1682 | assert(ret == THREAD_AWAKENED); | |
2d21ac55 | 1683 | lck_mtx_lock(audit_mtx); |
e5568f75 A |
1684 | } |
1685 | ||
55e303ae | 1686 | TAILQ_INSERT_TAIL(&audit_q, ar, k_q); |
e5568f75 A |
1687 | audit_q_len++; |
1688 | audit_pre_q_len--; | |
1689 | wait_queue_wakeup_one(audit_wait_queue, AUDIT_WORKER_EVENT, THREAD_AWAKENED); | |
2d21ac55 A |
1690 | lck_mtx_unlock(audit_mtx); |
1691 | } | |
1692 | ||
1693 | /* | |
1694 | * If we're out of space and need to suspend unprivileged | |
1695 | * processes, do that here rather than trying to allocate | |
1696 | * another audit record. | |
1697 | */ | |
1698 | static void | |
1699 | audit_new_wait(int audit_event, proc_t proc, struct uthread *uthread) | |
1700 | { | |
1701 | int ret; | |
1702 | ||
1703 | if (audit_in_failure && | |
1704 | suser(kauth_cred_get(), &proc->p_acflag) != 0) { | |
1705 | ret = wait_queue_assert_wait(audit_wait_queue, | |
1706 | AUDIT_FAILURE_EVENT, THREAD_UNINT, 0); | |
1707 | assert(ret == THREAD_WAITING); | |
1708 | (void)thread_block(THREAD_CONTINUE_NULL); | |
1709 | panic("audit_failing_stop: thread continued"); | |
1710 | } | |
1711 | uthread->uu_ar = audit_new(audit_event, proc, uthread); | |
55e303ae A |
1712 | } |
1713 | ||
1714 | /* | |
1715 | * Calls to set up and tear down audit structures associated with | |
1716 | * each system call. | |
1717 | */ | |
1718 | void | |
2d21ac55 | 1719 | audit_syscall_enter(unsigned short code, proc_t proc, |
55e303ae A |
1720 | struct uthread *uthread) |
1721 | { | |
1722 | int audit_event; | |
e5568f75 | 1723 | struct au_mask *aumask; |
2d21ac55 | 1724 | kauth_cred_t my_cred; |
55e303ae A |
1725 | |
1726 | audit_event = sys_au_event[code]; | |
e5568f75 A |
1727 | if (audit_event == AUE_NULL) |
1728 | return; | |
1729 | ||
1730 | assert(uthread->uu_ar == NULL); | |
55e303ae | 1731 | |
e5568f75 A |
1732 | /* Check which audit mask to use; either the kernel non-attributable |
1733 | * event mask or the process audit mask. | |
1734 | */ | |
2d21ac55 A |
1735 | my_cred = kauth_cred_proc_ref(proc); |
1736 | ||
1737 | if (my_cred->cr_au.ai_auid == AU_DEFAUDITID) | |
e5568f75 A |
1738 | aumask = &audit_nae_mask; |
1739 | else | |
2d21ac55 | 1740 | aumask = &my_cred->cr_au.ai_mask; |
91447636 | 1741 | |
55e303ae | 1742 | /* |
e5568f75 A |
1743 | * Allocate an audit record, if preselection allows it, and store |
1744 | * in the BSD thread for later use. | |
55e303ae | 1745 | */ |
e5568f75 | 1746 | |
2d21ac55 A |
1747 | #if CONFIG_MACF |
1748 | do { | |
1749 | int error; | |
1750 | ||
1751 | error = mac_audit_check_preselect(my_cred, code, | |
1752 | (void *) uthread->uu_arg); | |
1753 | ||
1754 | if (error == MAC_AUDIT_YES) { | |
91447636 | 1755 | uthread->uu_ar = audit_new(audit_event, proc, uthread); |
2d21ac55 A |
1756 | uthread->uu_ar->k_ar.ar_forced_by_mac = 1; |
1757 | au_to_text("Forced by a MAC policy"); | |
1758 | } | |
1759 | else if (error == MAC_AUDIT_NO) { | |
91447636 A |
1760 | uthread->uu_ar = NULL; |
1761 | } | |
2d21ac55 A |
1762 | else if (error == MAC_AUDIT_DEFAULT && |
1763 | au_preselect(audit_event, &my_cred->cr_au.ai_mask, | |
1764 | AU_PRS_FAILURE | AU_PRS_SUCCESS)) | |
1765 | audit_new_wait(audit_event, proc, uthread); | |
1766 | } while (0); | |
1767 | #else | |
1768 | if (au_preselect(audit_event, &my_cred->cr_au.ai_mask, | |
1769 | AU_PRS_FAILURE | AU_PRS_SUCCESS)) { | |
1770 | audit_new_wait(audit_event, proc, uthread); | |
1771 | } else { | |
1772 | uthread->uu_ar = NULL; | |
91447636 | 1773 | } |
2d21ac55 A |
1774 | #endif |
1775 | kauth_cred_unref(&my_cred); | |
1776 | } | |
55e303ae | 1777 | |
2d21ac55 A |
1778 | /* |
1779 | * Note: The audit_syscall_exit() parameter list was modified to support | |
1780 | * mac_audit_check_postselect(), which requires the Darwin syscall number. | |
1781 | */ | |
1782 | #if CONFIG_MACF | |
1783 | void | |
1784 | audit_syscall_exit(unsigned short code, int error, AUDIT_PRINTF_ONLY proc_t proc, struct uthread *uthread) | |
1785 | #else | |
55e303ae | 1786 | void |
2d21ac55 A |
1787 | audit_syscall_exit(int error, AUDIT_PRINTF_ONLY proc_t proc, struct uthread *uthread) |
1788 | #endif | |
55e303ae A |
1789 | { |
1790 | int retval; | |
1791 | ||
1792 | /* | |
1793 | * Commit the audit record as desired; once we pass the record | |
1794 | * into audit_commit(), the memory is owned by the audit | |
1795 | * subsystem. | |
1796 | * The return value from the system call is stored on the user | |
1797 | * thread. If there was an error, the return value is set to -1, | |
1798 | * imitating the behavior of the cerror routine. | |
1799 | */ | |
1800 | if (error) | |
1801 | retval = -1; | |
1802 | else | |
1803 | retval = uthread->uu_rval[0]; | |
1804 | ||
2d21ac55 A |
1805 | #if CONFIG_MACF |
1806 | do { | |
1807 | int mac_error; | |
1808 | ||
1809 | if (uthread->uu_ar == NULL) /* syscall wasn't audited */ | |
1810 | goto out; | |
1811 | ||
1812 | /* | |
1813 | * Note, no other postselect mechanism exists. If | |
1814 | * mac_audit_check_postselect returns MAC_AUDIT_NO, the | |
1815 | * record will be suppressed. Other values at this | |
1816 | * point result in the audit record being committed. | |
1817 | * This suppression behavior will probably go away in | |
1818 | * the port to 10.3.4. | |
1819 | */ | |
1820 | mac_error = mac_audit_check_postselect(kauth_cred_get(), code, | |
1821 | (void *) uthread->uu_arg, error, retval, | |
1822 | uthread->uu_ar->k_ar.ar_forced_by_mac); | |
1823 | ||
1824 | if (mac_error == MAC_AUDIT_YES) | |
1825 | uthread->uu_ar->k_ar_commit |= AR_COMMIT_KERNEL; | |
1826 | else if (mac_error == MAC_AUDIT_NO) { | |
1827 | audit_free(uthread->uu_ar); | |
1828 | goto out; | |
1829 | } | |
1830 | ||
1831 | } while (0); | |
1832 | ||
1833 | #endif | |
55e303ae | 1834 | audit_commit(uthread->uu_ar, error, retval); |
91447636 | 1835 | if (uthread->uu_ar != NULL) { |
55e303ae | 1836 | AUDIT_PRINTF(("audit record committed by pid %d\n", proc->p_pid)); |
91447636 | 1837 | } |
2d21ac55 A |
1838 | |
1839 | #if CONFIG_MACF | |
1840 | out: | |
1841 | #endif | |
55e303ae A |
1842 | uthread->uu_ar = NULL; |
1843 | ||
1844 | } | |
1845 | ||
e5568f75 A |
1846 | /* |
1847 | * Calls to set up and tear down audit structures used during Mach | |
1848 | * system calls. | |
1849 | */ | |
1850 | void | |
1851 | audit_mach_syscall_enter(unsigned short audit_event) | |
1852 | { | |
1853 | struct uthread *uthread; | |
2d21ac55 | 1854 | proc_t proc; |
e5568f75 | 1855 | struct au_mask *aumask; |
2d21ac55 | 1856 | kauth_cred_t my_cred; |
e5568f75 A |
1857 | |
1858 | if (audit_event == AUE_NULL) | |
1859 | return; | |
1860 | ||
1861 | uthread = curuthread(); | |
1862 | if (uthread == NULL) | |
1863 | return; | |
1864 | ||
1865 | proc = current_proc(); | |
1866 | if (proc == NULL) | |
1867 | return; | |
1868 | ||
1869 | assert(uthread->uu_ar == NULL); | |
1870 | ||
2d21ac55 A |
1871 | my_cred = kauth_cred_proc_ref(proc); |
1872 | ||
e5568f75 A |
1873 | /* Check which audit mask to use; either the kernel non-attributable |
1874 | * event mask or the process audit mask. | |
1875 | */ | |
2d21ac55 | 1876 | if (my_cred->cr_au.ai_auid == AU_DEFAUDITID) |
e5568f75 A |
1877 | aumask = &audit_nae_mask; |
1878 | else | |
2d21ac55 A |
1879 | aumask = &my_cred->cr_au.ai_mask; |
1880 | ||
1881 | kauth_cred_unref(&my_cred); | |
e5568f75 A |
1882 | |
1883 | /* | |
1884 | * Allocate an audit record, if desired, and store in the BSD | |
1885 | * thread for later use. | |
1886 | */ | |
1887 | if (au_preselect(audit_event, aumask, | |
1888 | AU_PRS_FAILURE | AU_PRS_SUCCESS)) { | |
1889 | uthread->uu_ar = audit_new(audit_event, proc, uthread); | |
1890 | } else { | |
1891 | uthread->uu_ar = NULL; | |
1892 | } | |
1893 | } | |
1894 | ||
1895 | void | |
1896 | audit_mach_syscall_exit(int retval, struct uthread *uthread) | |
1897 | { | |
1898 | /* The error code from Mach system calls is the same as the | |
1899 | * return value | |
1900 | */ | |
1901 | /* XXX Is the above statement always true? */ | |
1902 | audit_commit(uthread->uu_ar, retval, retval); | |
1903 | uthread->uu_ar = NULL; | |
1904 | ||
1905 | } | |
1906 | ||
55e303ae A |
1907 | /* |
1908 | * Calls to manipulate elements of the audit record structure from system | |
1909 | * call code. Macro wrappers will prevent this functions from being | |
1910 | * entered if auditing is disabled, avoiding the function call cost. We | |
1911 | * check the thread audit record pointer anyway, as the audit condition | |
1912 | * could change, and pre-selection may not have allocated an audit | |
1913 | * record for this event. | |
1914 | */ | |
1915 | void | |
91447636 | 1916 | audit_arg_addr(user_addr_t addr) |
55e303ae A |
1917 | { |
1918 | struct kaudit_record *ar; | |
1919 | ||
1920 | ar = currecord(); | |
1921 | if (ar == NULL) | |
1922 | return; | |
1923 | ||
91447636 | 1924 | ar->k_ar.ar_arg_addr = CAST_DOWN(void *, addr); /* XXX */ |
e5568f75 | 1925 | ar->k_ar.ar_valid_arg |= ARG_ADDR; |
55e303ae A |
1926 | } |
1927 | ||
1928 | void | |
91447636 | 1929 | audit_arg_len(user_size_t len) |
55e303ae A |
1930 | { |
1931 | struct kaudit_record *ar; | |
1932 | ||
1933 | ar = currecord(); | |
1934 | if (ar == NULL) | |
1935 | return; | |
1936 | ||
91447636 | 1937 | ar->k_ar.ar_arg_len = CAST_DOWN(int, len); /* XXX */ |
e5568f75 | 1938 | ar->k_ar.ar_valid_arg |= ARG_LEN; |
55e303ae A |
1939 | } |
1940 | ||
1941 | void | |
1942 | audit_arg_fd(int fd) | |
1943 | { | |
1944 | struct kaudit_record *ar; | |
1945 | ||
1946 | ar = currecord(); | |
1947 | if (ar == NULL) | |
1948 | return; | |
1949 | ||
1950 | ar->k_ar.ar_arg_fd = fd; | |
1951 | ar->k_ar.ar_valid_arg |= ARG_FD; | |
1952 | } | |
1953 | ||
1954 | void | |
1955 | audit_arg_fflags(int fflags) | |
1956 | { | |
1957 | struct kaudit_record *ar; | |
1958 | ||
1959 | ar = currecord(); | |
1960 | if (ar == NULL) | |
1961 | return; | |
1962 | ||
1963 | ar->k_ar.ar_arg_fflags = fflags; | |
1964 | ar->k_ar.ar_valid_arg |= ARG_FFLAGS; | |
1965 | } | |
1966 | ||
1967 | void | |
1968 | audit_arg_gid(gid_t gid, gid_t egid, gid_t rgid, gid_t sgid) | |
1969 | { | |
1970 | struct kaudit_record *ar; | |
1971 | ||
1972 | ar = currecord(); | |
1973 | if (ar == NULL) | |
1974 | return; | |
1975 | ||
1976 | ar->k_ar.ar_arg_gid = gid; | |
1977 | ar->k_ar.ar_arg_egid = egid; | |
1978 | ar->k_ar.ar_arg_rgid = rgid; | |
1979 | ar->k_ar.ar_arg_sgid = sgid; | |
1980 | ar->k_ar.ar_valid_arg |= (ARG_GID | ARG_EGID | ARG_RGID | ARG_SGID); | |
1981 | } | |
1982 | ||
1983 | void | |
1984 | audit_arg_uid(uid_t uid, uid_t euid, uid_t ruid, uid_t suid) | |
1985 | { | |
1986 | struct kaudit_record *ar; | |
1987 | ||
1988 | ar = currecord(); | |
1989 | if (ar == NULL) | |
1990 | return; | |
1991 | ||
1992 | ar->k_ar.ar_arg_uid = uid; | |
1993 | ar->k_ar.ar_arg_euid = euid; | |
1994 | ar->k_ar.ar_arg_ruid = ruid; | |
1995 | ar->k_ar.ar_arg_suid = suid; | |
1996 | ar->k_ar.ar_valid_arg |= (ARG_UID | ARG_EUID | ARG_RUID | ARG_SUID); | |
1997 | } | |
1998 | ||
1999 | void | |
91447636 | 2000 | audit_arg_groupset(const gid_t *gidset, u_int gidset_size) |
55e303ae | 2001 | { |
91447636 | 2002 | uint i; |
55e303ae A |
2003 | struct kaudit_record *ar; |
2004 | ||
2005 | ar = currecord(); | |
2006 | if (ar == NULL) | |
2007 | return; | |
2008 | ||
2009 | for (i = 0; i < gidset_size; i++) | |
2010 | ar->k_ar.ar_arg_groups.gidset[i] = gidset[i]; | |
2011 | ar->k_ar.ar_arg_groups.gidset_size = gidset_size; | |
2012 | ar->k_ar.ar_valid_arg |= ARG_GROUPSET; | |
2013 | } | |
2014 | ||
2015 | void | |
91447636 | 2016 | audit_arg_login(const char *login) |
55e303ae A |
2017 | { |
2018 | struct kaudit_record *ar; | |
2019 | ||
2020 | ar = currecord(); | |
2021 | if (ar == NULL) | |
2022 | return; | |
2023 | ||
55e303ae | 2024 | strlcpy(ar->k_ar.ar_arg_login, login, MAXLOGNAME); |
55e303ae A |
2025 | |
2026 | ar->k_ar.ar_valid_arg |= ARG_LOGIN; | |
2027 | } | |
2028 | ||
e5568f75 | 2029 | void |
91447636 | 2030 | audit_arg_ctlname(const int *name, int namelen) |
e5568f75 A |
2031 | { |
2032 | struct kaudit_record *ar; | |
2033 | ||
2034 | ar = currecord(); | |
2035 | if (ar == NULL) | |
2036 | return; | |
2037 | ||
2038 | bcopy(name, &ar->k_ar.ar_arg_ctlname, namelen * sizeof(int)); | |
2039 | ar->k_ar.ar_arg_len = namelen; | |
2040 | ar->k_ar.ar_valid_arg |= (ARG_CTLNAME | ARG_LEN); | |
2041 | } | |
2042 | ||
55e303ae A |
2043 | void |
2044 | audit_arg_mask(int mask) | |
2045 | { | |
2046 | struct kaudit_record *ar; | |
2047 | ||
2048 | ar = currecord(); | |
2049 | if (ar == NULL) | |
2050 | return; | |
2051 | ||
2052 | ar->k_ar.ar_arg_mask = mask; | |
2053 | ar->k_ar.ar_valid_arg |= ARG_MASK; | |
2054 | } | |
2055 | ||
2056 | void | |
2057 | audit_arg_mode(mode_t mode) | |
2058 | { | |
2059 | struct kaudit_record *ar; | |
2060 | ||
2061 | ar = currecord(); | |
2062 | if (ar == NULL) | |
2063 | return; | |
2064 | ||
2065 | ar->k_ar.ar_arg_mode = mode; | |
2066 | ar->k_ar.ar_valid_arg |= ARG_MODE; | |
2067 | } | |
2068 | ||
2069 | void | |
2070 | audit_arg_dev(int dev) | |
2071 | { | |
2072 | struct kaudit_record *ar; | |
2073 | ||
2074 | ar = currecord(); | |
2075 | if (ar == NULL) | |
2076 | return; | |
2077 | ||
2078 | ar->k_ar.ar_arg_dev = dev; | |
2079 | ar->k_ar.ar_valid_arg |= ARG_DEV; | |
2080 | } | |
2081 | ||
e5568f75 A |
2082 | void |
2083 | audit_arg_value(long value) | |
2084 | { | |
2085 | struct kaudit_record *ar; | |
2086 | ||
2087 | ar = currecord(); | |
2088 | if (ar == NULL) | |
2089 | return; | |
2090 | ||
2091 | ar->k_ar.ar_arg_value = value; | |
2092 | ar->k_ar.ar_valid_arg |= ARG_VALUE; | |
2093 | } | |
2094 | ||
55e303ae A |
2095 | void |
2096 | audit_arg_owner(uid_t uid, gid_t gid) | |
2097 | { | |
2098 | struct kaudit_record *ar; | |
2099 | ||
2100 | ar = currecord(); | |
2101 | if (ar == NULL) | |
2102 | return; | |
2103 | ||
2104 | ar->k_ar.ar_arg_uid = uid; | |
2105 | ar->k_ar.ar_arg_gid = gid; | |
2106 | ar->k_ar.ar_valid_arg |= (ARG_UID | ARG_GID); | |
2107 | } | |
2108 | ||
2109 | void | |
2110 | audit_arg_pid(pid_t pid) | |
2111 | { | |
2112 | struct kaudit_record *ar; | |
2113 | ||
2114 | ar = currecord(); | |
2115 | if (ar == NULL) | |
2116 | return; | |
2117 | ||
2118 | ar->k_ar.ar_arg_pid = pid; | |
2119 | ar->k_ar.ar_valid_arg |= ARG_PID; | |
e5568f75 A |
2120 | } |
2121 | ||
2122 | void | |
2d21ac55 | 2123 | audit_arg_process(proc_t p) |
e5568f75 A |
2124 | { |
2125 | struct kaudit_record *ar; | |
2d21ac55 | 2126 | kauth_cred_t my_cred; |
e5568f75 A |
2127 | |
2128 | ar = currecord(); | |
2129 | if ((ar == NULL) || (p == NULL)) | |
2130 | return; | |
2131 | ||
2d21ac55 A |
2132 | my_cred = kauth_cred_proc_ref(p); |
2133 | ar->k_ar.ar_arg_auid = my_cred->cr_au.ai_auid; | |
2134 | ar->k_ar.ar_arg_euid = my_cred->cr_uid; | |
2135 | ar->k_ar.ar_arg_egid = my_cred->cr_groups[0]; | |
2136 | ar->k_ar.ar_arg_ruid = my_cred->cr_ruid; | |
2137 | ar->k_ar.ar_arg_rgid = my_cred->cr_rgid; | |
2138 | ar->k_ar.ar_arg_asid = my_cred->cr_au.ai_asid; | |
2139 | ar->k_ar.ar_arg_termid = my_cred->cr_au.ai_termid; | |
2140 | kauth_cred_unref(&my_cred); | |
e5568f75 A |
2141 | |
2142 | ar->k_ar.ar_valid_arg |= ARG_AUID | ARG_EUID | ARG_EGID | ARG_RUID | | |
2143 | ARG_RGID | ARG_ASID | ARG_TERMID | ARG_PROCESS; | |
55e303ae A |
2144 | } |
2145 | ||
2146 | void | |
2147 | audit_arg_signum(u_int signum) | |
2148 | { | |
2149 | struct kaudit_record *ar; | |
2150 | ||
2151 | ar = currecord(); | |
2152 | if (ar == NULL) | |
2153 | return; | |
2154 | ||
2155 | ar->k_ar.ar_arg_signum = signum; | |
2156 | ar->k_ar.ar_valid_arg |= ARG_SIGNUM; | |
2157 | } | |
2158 | ||
2159 | void | |
2160 | audit_arg_socket(int sodomain, int sotype, int soprotocol) | |
2161 | { | |
2162 | ||
2163 | struct kaudit_record *ar; | |
2164 | ||
2165 | ar = currecord(); | |
2166 | if (ar == NULL) | |
2167 | return; | |
2168 | ||
e5568f75 A |
2169 | ar->k_ar.ar_arg_sockinfo.so_domain = sodomain; |
2170 | ar->k_ar.ar_arg_sockinfo.so_type = sotype; | |
2171 | ar->k_ar.ar_arg_sockinfo.so_protocol = soprotocol; | |
55e303ae A |
2172 | ar->k_ar.ar_valid_arg |= ARG_SOCKINFO; |
2173 | } | |
2174 | ||
2d21ac55 A |
2175 | /* |
2176 | * Note that the current working directory vp must be supplied at the audit | |
2177 | * call site to permit per thread current working directories, and that it | |
2178 | * must take a upath starting with '/' into account for chroot if the path | |
2179 | * is absolute. This results in the real (non-chroot) path being recorded | |
2180 | * in the audit record. | |
2181 | */ | |
55e303ae | 2182 | void |
2d21ac55 | 2183 | audit_arg_sockaddr(struct vnode *cwd_vp, struct sockaddr *so) |
55e303ae A |
2184 | { |
2185 | struct kaudit_record *ar; | |
2186 | ||
2187 | ar = currecord(); | |
2d21ac55 | 2188 | if (ar == NULL || cwd_vp == NULL || so == NULL) |
55e303ae A |
2189 | return; |
2190 | ||
2191 | bcopy(so, &ar->k_ar.ar_arg_sockaddr, sizeof(ar->k_ar.ar_arg_sockaddr)); | |
2192 | switch (so->sa_family) { | |
2193 | case AF_INET: | |
2194 | ar->k_ar.ar_valid_arg |= ARG_SADDRINET; | |
2195 | break; | |
2196 | case AF_INET6: | |
2197 | ar->k_ar.ar_valid_arg |= ARG_SADDRINET6; | |
2198 | break; | |
2199 | case AF_UNIX: | |
2d21ac55 | 2200 | audit_arg_upath(cwd_vp, ((struct sockaddr_un *)so)->sun_path, |
55e303ae A |
2201 | ARG_UPATH1); |
2202 | ar->k_ar.ar_valid_arg |= ARG_SADDRUNIX; | |
2203 | break; | |
2204 | } | |
2205 | } | |
2206 | ||
2207 | void | |
2208 | audit_arg_auid(uid_t auid) | |
2209 | { | |
2210 | struct kaudit_record *ar; | |
2211 | ||
2212 | ar = currecord(); | |
2213 | if (ar == NULL) | |
2214 | return; | |
2215 | ||
2216 | ar->k_ar.ar_arg_auid = auid; | |
2217 | ar->k_ar.ar_valid_arg |= ARG_AUID; | |
2218 | } | |
2219 | ||
e5568f75 | 2220 | void |
91447636 | 2221 | audit_arg_auditinfo(const struct auditinfo *au_info) |
e5568f75 A |
2222 | { |
2223 | struct kaudit_record *ar; | |
2224 | ||
2225 | ar = currecord(); | |
2226 | if (ar == NULL) | |
2227 | return; | |
2228 | ||
2229 | ar->k_ar.ar_arg_auid = au_info->ai_auid; | |
2230 | ar->k_ar.ar_arg_asid = au_info->ai_asid; | |
2231 | ar->k_ar.ar_arg_amask.am_success = au_info->ai_mask.am_success; | |
2232 | ar->k_ar.ar_arg_amask.am_failure = au_info->ai_mask.am_failure; | |
2233 | ar->k_ar.ar_arg_termid.port = au_info->ai_termid.port; | |
2234 | ar->k_ar.ar_arg_termid.machine = au_info->ai_termid.machine; | |
2235 | ar->k_ar.ar_valid_arg |= ARG_AUID | ARG_ASID | ARG_AMASK | ARG_TERMID; | |
2236 | } | |
2237 | ||
55e303ae | 2238 | void |
91447636 | 2239 | audit_arg_text(const char *text) |
55e303ae A |
2240 | { |
2241 | struct kaudit_record *ar; | |
2242 | ||
2243 | ar = currecord(); | |
2244 | if (ar == NULL) | |
2245 | return; | |
2246 | ||
2247 | /* Invalidate the text string */ | |
2248 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_TEXT); | |
2249 | if (text == NULL) | |
2250 | return; | |
2251 | ||
2252 | if (ar->k_ar.ar_arg_text == NULL) { | |
e5568f75 | 2253 | ar->k_ar.ar_arg_text = (char *)kalloc(MAXPATHLEN); |
55e303ae A |
2254 | if (ar->k_ar.ar_arg_text == NULL) |
2255 | return; | |
2256 | } | |
2257 | ||
2d21ac55 | 2258 | strlcpy(ar->k_ar.ar_arg_text, text, MAXPATHLEN); |
55e303ae A |
2259 | ar->k_ar.ar_valid_arg |= ARG_TEXT; |
2260 | } | |
2261 | ||
2262 | void | |
2263 | audit_arg_cmd(int cmd) | |
2264 | { | |
2265 | struct kaudit_record *ar; | |
2266 | ||
2267 | ar = currecord(); | |
2268 | if (ar == NULL) | |
2269 | return; | |
2270 | ||
2271 | ar->k_ar.ar_arg_cmd = cmd; | |
2272 | ar->k_ar.ar_valid_arg |= ARG_CMD; | |
2273 | } | |
2274 | ||
2275 | void | |
2276 | audit_arg_svipc_cmd(int cmd) | |
2277 | { | |
2278 | struct kaudit_record *ar; | |
2279 | ||
2280 | ar = currecord(); | |
2281 | if (ar == NULL) | |
2282 | return; | |
2283 | ||
2284 | ar->k_ar.ar_arg_svipc_cmd = cmd; | |
2285 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_CMD; | |
2286 | } | |
2287 | ||
2288 | void | |
91447636 | 2289 | audit_arg_svipc_perm(const struct ipc_perm *perm) |
55e303ae A |
2290 | { |
2291 | struct kaudit_record *ar; | |
2292 | ||
2293 | ar = currecord(); | |
2294 | if (ar == NULL) | |
2295 | return; | |
2296 | ||
2297 | bcopy(perm, &ar->k_ar.ar_arg_svipc_perm, | |
2298 | sizeof(ar->k_ar.ar_arg_svipc_perm)); | |
2299 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_PERM; | |
2300 | } | |
2301 | ||
2302 | void | |
2303 | audit_arg_svipc_id(int id) | |
2304 | { | |
2305 | struct kaudit_record *ar; | |
2306 | ||
2307 | ar = currecord(); | |
2308 | if (ar == NULL) | |
2309 | return; | |
2310 | ||
2311 | ar->k_ar.ar_arg_svipc_id = id; | |
2312 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_ID; | |
2313 | } | |
2314 | ||
2315 | void | |
2d21ac55 | 2316 | audit_arg_svipc_addr(user_addr_t addr) |
55e303ae A |
2317 | { |
2318 | struct kaudit_record *ar; | |
2319 | ||
2320 | ar = currecord(); | |
2321 | if (ar == NULL) | |
2322 | return; | |
2323 | ||
2324 | ar->k_ar.ar_arg_svipc_addr = addr; | |
2325 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_ADDR; | |
2326 | } | |
2327 | ||
e5568f75 A |
2328 | void |
2329 | audit_arg_posix_ipc_perm(uid_t uid, gid_t gid, mode_t mode) | |
2330 | { | |
2331 | struct kaudit_record *ar; | |
2332 | ||
2333 | ar = currecord(); | |
2334 | if (ar == NULL) | |
2335 | return; | |
2336 | ||
2337 | ar->k_ar.ar_arg_pipc_perm.pipc_uid = uid; | |
2338 | ar->k_ar.ar_arg_pipc_perm.pipc_gid = gid; | |
2339 | ar->k_ar.ar_arg_pipc_perm.pipc_mode = mode; | |
2340 | ar->k_ar.ar_valid_arg |= ARG_POSIX_IPC_PERM; | |
2341 | } | |
2342 | ||
2343 | void | |
91447636 | 2344 | audit_arg_auditon(const union auditon_udata *udata) |
e5568f75 A |
2345 | { |
2346 | struct kaudit_record *ar; | |
2347 | ||
2348 | ar = currecord(); | |
2349 | if (ar == NULL) | |
2350 | return; | |
2351 | ||
91447636 | 2352 | bcopy((const void *)udata, &ar->k_ar.ar_arg_auditon, |
e5568f75 A |
2353 | sizeof(ar->k_ar.ar_arg_auditon)); |
2354 | ar->k_ar.ar_valid_arg |= ARG_AUDITON; | |
2355 | } | |
2356 | ||
91447636 | 2357 | /* |
e5568f75 A |
2358 | * Audit information about a file, either the file's vnode info, or its |
2359 | * socket address info. | |
2360 | */ | |
2361 | void | |
2d21ac55 | 2362 | audit_arg_file(__unused proc_t p, const struct fileproc *fp) |
e5568f75 A |
2363 | { |
2364 | struct kaudit_record *ar; | |
2365 | struct socket *so; | |
2366 | struct inpcb *pcb; | |
2367 | ||
91447636 A |
2368 | if (fp->f_fglob->fg_type == DTYPE_VNODE) { |
2369 | audit_arg_vnpath_withref((struct vnode *)fp->f_fglob->fg_data, ARG_VNODE1); | |
e5568f75 A |
2370 | return; |
2371 | } | |
2372 | ||
91447636 | 2373 | if (fp->f_fglob->fg_type == DTYPE_SOCKET) { |
e5568f75 A |
2374 | ar = currecord(); |
2375 | if (ar == NULL) | |
2376 | return; | |
91447636 | 2377 | so = (struct socket *)fp->f_fglob->fg_data; |
e5568f75 A |
2378 | if (INP_CHECK_SOCKAF(so, PF_INET)) { |
2379 | if (so->so_pcb == NULL) | |
2380 | return; | |
2381 | ar->k_ar.ar_arg_sockinfo.so_type = | |
2382 | so->so_type; | |
2383 | ar->k_ar.ar_arg_sockinfo.so_domain = | |
2384 | INP_SOCKAF(so); | |
2385 | ar->k_ar.ar_arg_sockinfo.so_protocol = | |
2386 | so->so_proto->pr_protocol; | |
2387 | pcb = (struct inpcb *)so->so_pcb; | |
2388 | ar->k_ar.ar_arg_sockinfo.so_raddr = | |
2389 | pcb->inp_faddr.s_addr; | |
2390 | ar->k_ar.ar_arg_sockinfo.so_laddr = | |
2391 | pcb->inp_laddr.s_addr; | |
2392 | ar->k_ar.ar_arg_sockinfo.so_rport = | |
2393 | pcb->inp_fport; | |
2394 | ar->k_ar.ar_arg_sockinfo.so_lport = | |
2395 | pcb->inp_lport; | |
2396 | ar->k_ar.ar_valid_arg |= ARG_SOCKINFO; | |
2397 | } | |
2398 | } | |
2399 | ||
2400 | } | |
2401 | ||
55e303ae A |
2402 | |
2403 | /* | |
2404 | * Store a path as given by the user process for auditing into the audit | |
2405 | * record stored on the user thread. This function will allocate the memory to | |
2406 | * store the path info if not already available. This memory will be | |
2d21ac55 A |
2407 | * freed when the audit record is freed. Note that the current working |
2408 | * directory vp must be supplied at the audit call site to permit per thread | |
2409 | * current working directories, and that it must take a upath starting with | |
2410 | * '/' into account for chroot if the path is absolute. This results in the | |
2411 | * real (non-chroot) path being recorded in the audit record. | |
55e303ae A |
2412 | */ |
2413 | void | |
2d21ac55 | 2414 | audit_arg_upath(struct vnode *cwd_vp, char *upath, u_int64_t flags) |
55e303ae A |
2415 | { |
2416 | struct kaudit_record *ar; | |
2417 | char **pathp; | |
2418 | ||
2d21ac55 | 2419 | if (cwd_vp == NULL || upath == NULL) |
55e303ae A |
2420 | return; /* nothing to do! */ |
2421 | ||
91447636 | 2422 | if ((flags & (ARG_UPATH1 | ARG_UPATH2)) == 0) |
55e303ae A |
2423 | return; |
2424 | ||
2425 | ar = currecord(); | |
2426 | if (ar == NULL) /* This will be the case for unaudited system calls */ | |
2427 | return; | |
2428 | ||
2429 | if (flags & ARG_UPATH1) { | |
2430 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_UPATH1); | |
2431 | pathp = &ar->k_ar.ar_arg_upath1; | |
2432 | } | |
2433 | else { | |
2434 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_UPATH2); | |
2435 | pathp = &ar->k_ar.ar_arg_upath2; | |
2436 | } | |
2437 | ||
2438 | if (*pathp == NULL) { | |
e5568f75 | 2439 | *pathp = (char *)kalloc(MAXPATHLEN); |
55e303ae A |
2440 | if (*pathp == NULL) |
2441 | return; | |
2442 | } | |
2443 | ||
2d21ac55 | 2444 | if (canon_path(cwd_vp, upath, *pathp) == 0) { |
e5568f75 A |
2445 | if (flags & ARG_UPATH1) |
2446 | ar->k_ar.ar_valid_arg |= ARG_UPATH1; | |
2447 | else | |
2448 | ar->k_ar.ar_valid_arg |= ARG_UPATH2; | |
91447636 A |
2449 | } else { |
2450 | kfree(*pathp, MAXPATHLEN); | |
2451 | *pathp = NULL; | |
e5568f75 | 2452 | } |
55e303ae A |
2453 | } |
2454 | ||
2455 | /* | |
2456 | * Function to save the path and vnode attr information into the audit | |
2457 | * record. | |
2458 | * | |
2459 | * It is assumed that the caller will hold any vnode locks necessary to | |
91447636 | 2460 | * perform a VNOP_GETATTR() on the passed vnode. |
55e303ae A |
2461 | * |
2462 | * XXX: The attr code is very similar to vfs_vnops.c:vn_stat(), but | |
2463 | * always provides access to the generation number as we need that | |
2464 | * to construct the BSM file ID. | |
2465 | * XXX: We should accept the process argument from the caller, since | |
2466 | * it's very likely they already have a reference. | |
2467 | * XXX: Error handling in this function is poor. | |
2468 | */ | |
2469 | void | |
2470 | audit_arg_vnpath(struct vnode *vp, u_int64_t flags) | |
2471 | { | |
2472 | struct kaudit_record *ar; | |
91447636 | 2473 | struct vnode_attr va; |
55e303ae A |
2474 | int error; |
2475 | int len; | |
2476 | char **pathp; | |
2477 | struct vnode_au_info *vnp; | |
2d21ac55 A |
2478 | proc_t p; |
2479 | #if CONFIG_MACF | |
2480 | char **vnode_mac_labelp; | |
2481 | struct mac mac; | |
2482 | #endif | |
55e303ae A |
2483 | |
2484 | if (vp == NULL) | |
2485 | return; | |
2486 | ||
2487 | ar = currecord(); | |
2488 | if (ar == NULL) /* This will be the case for unaudited system calls */ | |
2489 | return; | |
2490 | ||
91447636 | 2491 | if ((flags & (ARG_VNODE1 | ARG_VNODE2)) == 0) |
55e303ae A |
2492 | return; |
2493 | ||
2494 | p = current_proc(); | |
2495 | ||
2496 | if (flags & ARG_VNODE1) { | |
2497 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_KPATH1); | |
2498 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_VNODE1); | |
2499 | pathp = &ar->k_ar.ar_arg_kpath1; | |
2500 | vnp = &ar->k_ar.ar_arg_vnode1; | |
2d21ac55 A |
2501 | #if CONFIG_MACF |
2502 | vnode_mac_labelp = &ar->k_ar.ar_vnode1_mac_labels; | |
2503 | #endif | |
55e303ae A |
2504 | } |
2505 | else { | |
2506 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_KPATH2); | |
2507 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_VNODE2); | |
2508 | pathp = &ar->k_ar.ar_arg_kpath2; | |
2509 | vnp = &ar->k_ar.ar_arg_vnode2; | |
2d21ac55 A |
2510 | #if CONFIG_MACF |
2511 | vnode_mac_labelp = &ar->k_ar.ar_vnode2_mac_labels; | |
2512 | #endif | |
55e303ae A |
2513 | } |
2514 | ||
2515 | if (*pathp == NULL) { | |
e5568f75 | 2516 | *pathp = (char *)kalloc(MAXPATHLEN); |
55e303ae A |
2517 | if (*pathp == NULL) |
2518 | return; | |
2519 | } | |
2520 | ||
e5568f75 A |
2521 | /* |
2522 | * If vn_getpath() succeeds, place it in a string buffer | |
2523 | * attached to the audit record, and set a flag indicating | |
2524 | * it is present. | |
2525 | */ | |
55e303ae | 2526 | len = MAXPATHLEN; |
e5568f75 | 2527 | if (vn_getpath(vp, *pathp, &len) == 0) { |
91447636 A |
2528 | if (flags & ARG_VNODE1) |
2529 | ar->k_ar.ar_valid_arg |= ARG_KPATH1; | |
2530 | else | |
2531 | ar->k_ar.ar_valid_arg |= ARG_KPATH2; | |
e5568f75 | 2532 | } else { |
91447636 | 2533 | kfree(*pathp, MAXPATHLEN); |
e5568f75 A |
2534 | *pathp = NULL; |
2535 | } | |
55e303ae | 2536 | |
91447636 A |
2537 | VATTR_INIT(&va); |
2538 | VATTR_WANTED(&va, va_mode); | |
2539 | VATTR_WANTED(&va, va_uid); | |
2540 | VATTR_WANTED(&va, va_gid); | |
2541 | VATTR_WANTED(&va, va_rdev); | |
2542 | VATTR_WANTED(&va, va_fsid); | |
2543 | VATTR_WANTED(&va, va_fileid); | |
2544 | VATTR_WANTED(&va, va_gen); | |
2d21ac55 | 2545 | error = vnode_getattr(vp, &va, vfs_context_current()); |
55e303ae A |
2546 | if (error) { |
2547 | /* XXX: How to handle this case? */ | |
2548 | return; | |
2549 | } | |
2550 | ||
2d21ac55 A |
2551 | #if CONFIG_MACF |
2552 | if (*vnode_mac_labelp == NULL) { | |
2553 | *vnode_mac_labelp = (char *)zalloc(audit_mac_label_zone); | |
2554 | if (*vnode_mac_labelp != NULL) { | |
2555 | mac.m_buflen = MAC_AUDIT_LABEL_LEN; | |
2556 | mac.m_string = *vnode_mac_labelp; | |
2557 | mac_vnode_label_externalize_audit(vp, &mac); | |
2558 | } | |
2559 | ||
2560 | ||
2561 | ||
2562 | } | |
2563 | #endif | |
2564 | ||
91447636 A |
2565 | /* XXX do we want to fall back here when these aren't supported? */ |
2566 | vnp->vn_mode = va.va_mode; | |
2567 | vnp->vn_uid = va.va_uid; | |
2568 | vnp->vn_gid = va.va_gid; | |
2569 | vnp->vn_dev = va.va_rdev; | |
2570 | vnp->vn_fsid = va.va_fsid; | |
2571 | vnp->vn_fileid = (u_long)va.va_fileid; | |
2572 | vnp->vn_gen = va.va_gen; | |
55e303ae A |
2573 | if (flags & ARG_VNODE1) |
2574 | ar->k_ar.ar_valid_arg |= ARG_VNODE1; | |
2575 | else | |
2576 | ar->k_ar.ar_valid_arg |= ARG_VNODE2; | |
2577 | ||
2578 | } | |
2579 | ||
e5568f75 | 2580 | void |
91447636 A |
2581 | audit_arg_vnpath_withref(struct vnode *vp, u_int64_t flags) |
2582 | { | |
2583 | if (vp == NULL || vnode_getwithref(vp)) | |
2584 | return; | |
2585 | audit_arg_vnpath(vp, flags); | |
2586 | (void)vnode_put(vp); | |
2587 | } | |
2588 | ||
2589 | void | |
2590 | audit_arg_mach_port1(mach_port_name_t port) | |
e5568f75 A |
2591 | { |
2592 | struct kaudit_record *ar; | |
2593 | ||
2594 | ar = currecord(); | |
2595 | if (ar == NULL) | |
2596 | return; | |
2597 | ||
2598 | ar->k_ar.ar_arg_mach_port1 = port; | |
2599 | ar->k_ar.ar_valid_arg |= ARG_MACHPORT1; | |
2600 | } | |
2601 | ||
2602 | void | |
91447636 | 2603 | audit_arg_mach_port2(mach_port_name_t port) |
e5568f75 A |
2604 | { |
2605 | struct kaudit_record *ar; | |
2606 | ||
2607 | ar = currecord(); | |
2608 | if (ar == NULL) | |
2609 | return; | |
2610 | ||
2611 | ar->k_ar.ar_arg_mach_port2 = port; | |
2612 | ar->k_ar.ar_valid_arg |= ARG_MACHPORT2; | |
2613 | } | |
2614 | ||
2615 | /* | |
2616 | * The close() system call uses it's own audit call to capture the | |
2617 | * path/vnode information because those pieces are not easily obtained | |
2618 | * within the system call itself. | |
2619 | */ | |
2620 | void | |
2d21ac55 | 2621 | audit_sysclose(proc_t p, int fd) |
e5568f75 | 2622 | { |
91447636 A |
2623 | struct fileproc *fp; |
2624 | struct vnode *vp; | |
e5568f75 A |
2625 | |
2626 | audit_arg_fd(fd); | |
2627 | ||
91447636 | 2628 | if (fp_getfvp(p, fd, &fp, &vp) != 0) |
e5568f75 A |
2629 | return; |
2630 | ||
91447636 A |
2631 | audit_arg_vnpath_withref((struct vnode *)fp->f_fglob->fg_data, ARG_VNODE1); |
2632 | file_drop(fd); | |
e5568f75 A |
2633 | } |
2634 | ||
2d21ac55 A |
2635 | #if CONFIG_MACF |
2636 | /* | |
2637 | * This function is called by the MAC Framework to add audit data | |
2638 | * from a policy to the current audit record. | |
2639 | */ | |
2640 | int | |
2641 | audit_mac_data(int type, int len, u_char *data) { | |
2642 | struct kaudit_record *cur; | |
2643 | struct mac_audit_record *record; | |
2644 | int ret = 0; | |
2645 | ||
2646 | if (audit_enabled == 0) { | |
2647 | ret = ENOTSUP; | |
2648 | goto out_fail; | |
2649 | } | |
2650 | ||
2651 | cur = currecord(); | |
2652 | if (cur == NULL) { | |
2653 | ret = ENOTSUP; | |
2654 | goto out_fail; | |
2655 | } | |
2656 | ||
2657 | /* | |
2658 | * XXX: Note that we silently drop the audit data if this | |
2659 | * allocation fails - this is consistent with the rest of the | |
2660 | * audit implementation. | |
2661 | */ | |
2662 | record = (struct mac_audit_record *)kalloc(sizeof(*record)); | |
2663 | if (record == NULL) | |
2664 | goto out_fail; | |
2665 | ||
2666 | record->type = type; | |
2667 | record->length = len; | |
2668 | record->data = data; | |
2669 | LIST_INSERT_HEAD(cur->k_ar.ar_mac_records, record, records); | |
2670 | ||
2671 | return (0); | |
2672 | ||
2673 | out_fail: | |
2674 | kfree(data, len); | |
2675 | return (ret); | |
2676 | } | |
2677 | ||
2678 | void | |
2679 | audit_arg_mac_string(const char *string) | |
2680 | { | |
2681 | struct kaudit_record *ar; | |
2682 | ||
2683 | ar = currecord(); | |
2684 | if (ar == NULL) | |
2685 | return; | |
2686 | ||
2687 | if (ar->k_ar.ar_arg_mac_string == NULL) { | |
2688 | ar->k_ar.ar_arg_mac_string = | |
2689 | (char *)kalloc(MAC_MAX_LABEL_BUF_LEN + MAC_ARG_PREFIX_LEN); | |
2690 | /* This should be a rare event. If kalloc() returns NULL, the | |
2691 | * system is low on kernel virtual memory. To be consistent with the | |
2692 | * rest of audit, just return (may need to panic if required to for audit6). | |
2693 | */ | |
2694 | if (ar->k_ar.ar_arg_mac_string == NULL) | |
2695 | return; | |
2696 | } | |
2697 | strncpy(ar->k_ar.ar_arg_mac_string, MAC_ARG_PREFIX, MAC_ARG_PREFIX_LEN); | |
2698 | strncpy(ar->k_ar.ar_arg_mac_string + MAC_ARG_PREFIX_LEN, string, MAC_MAX_LABEL_BUF_LEN); | |
2699 | ar->k_ar.ar_valid_arg |= ARG_MAC_STRING; | |
2700 | ||
2701 | } | |
2702 | #endif /* MAC */ | |
2703 | ||
2704 | /* | |
2705 | * kau_will_audit can be used by a security policy to determine | |
2706 | * if an audit record will be stored, reducing wasted memory allocation | |
2707 | * and string handling. | |
2708 | */ | |
2709 | ||
2710 | int | |
2711 | kau_will_audit(void) | |
2712 | { | |
2713 | ||
2714 | return (audit_enabled && currecord() != NULL); | |
2715 | } | |
2716 | ||
55e303ae A |
2717 | #else /* !AUDIT */ |
2718 | ||
2719 | void | |
2720 | audit_init(void) | |
2721 | { | |
2722 | ||
2723 | } | |
2724 | ||
2725 | void | |
2726 | audit_shutdown(void) | |
2727 | { | |
2728 | ||
2729 | } | |
2730 | ||
2731 | int | |
2d21ac55 | 2732 | audit(proc_t p, struct audit_args *uap, register_t *retval) |
55e303ae A |
2733 | { |
2734 | return (ENOSYS); | |
2735 | } | |
2736 | ||
2737 | int | |
2d21ac55 | 2738 | auditon(proc_t p, struct auditon_args *uap, register_t *retval) |
55e303ae A |
2739 | { |
2740 | return (ENOSYS); | |
2741 | } | |
2742 | ||
55e303ae | 2743 | int |
2d21ac55 | 2744 | getauid(proc_t p, struct getauid_args *uap, register_t *retval) |
55e303ae A |
2745 | { |
2746 | return (ENOSYS); | |
2747 | } | |
2748 | ||
2749 | int | |
2d21ac55 | 2750 | setauid(proc_t p, struct setauid_args *uap, register_t *retval) |
55e303ae A |
2751 | { |
2752 | return (ENOSYS); | |
2753 | } | |
2754 | ||
2755 | int | |
2d21ac55 | 2756 | getaudit(proc_t p, struct getaudit_args *uap, register_t *retval) |
55e303ae A |
2757 | { |
2758 | return (ENOSYS); | |
2759 | } | |
2760 | ||
2761 | int | |
2d21ac55 | 2762 | setaudit(proc_t p, struct setaudit_args *uap, register_t *retval) |
55e303ae A |
2763 | { |
2764 | return (ENOSYS); | |
2765 | } | |
2766 | ||
2767 | int | |
2d21ac55 | 2768 | getaudit_addr(proc_t p, struct getaudit_addr_args *uap, register_t *retval) |
55e303ae A |
2769 | { |
2770 | return (ENOSYS); | |
2771 | } | |
2772 | ||
2773 | int | |
2d21ac55 | 2774 | setaudit_addr(proc_t p, struct setaudit_addr_args *uap, register_t *retval) |
55e303ae A |
2775 | { |
2776 | return (ENOSYS); | |
2777 | } | |
2778 | ||
2779 | int | |
2d21ac55 | 2780 | auditctl(proc_t p, struct auditctl_args *uap, register_t *retval) |
55e303ae A |
2781 | { |
2782 | return (ENOSYS); | |
2783 | } | |
2784 | ||
2d21ac55 A |
2785 | #if CONFIG_MACF |
2786 | void | |
2787 | audit_mac_data(int type, int len, u_char *data) | |
2788 | { | |
2789 | } | |
2790 | ||
2791 | int | |
2792 | kau_will_audit() | |
2793 | { | |
2794 | return (0); | |
2795 | } | |
2796 | #endif | |
2797 | ||
55e303ae | 2798 | #endif /* AUDIT */ |