]>
Commit | Line | Data |
---|---|---|
55e303ae | 1 | /* |
e5568f75 | 2 | * Copyright (c) 2004 Apple Computer, Inc. All rights reserved. |
55e303ae A |
3 | * |
4 | * @APPLE_LICENSE_HEADER_START@ | |
e5568f75 A |
5 | * |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
55e303ae A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
e5568f75 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
55e303ae A |
20 | * @APPLE_LICENSE_HEADER_END@ |
21 | */ | |
e5568f75 | 22 | |
55e303ae | 23 | #include <sys/param.h> |
e5568f75 | 24 | #include <sys/file.h> |
55e303ae A |
25 | #include <sys/fcntl.h> |
26 | #include <sys/kernel.h> | |
27 | #include <sys/lock.h> | |
28 | #include <sys/namei.h> | |
29 | #include <sys/proc.h> | |
30 | #include <sys/queue.h> | |
31 | #include <sys/systm.h> | |
32 | #include <sys/time.h> | |
33 | #include <sys/ucred.h> | |
34 | #include <sys/uio.h> | |
35 | #include <sys/unistd.h> | |
36 | #include <sys/vnode.h> | |
55e303ae | 37 | #include <sys/user.h> |
55e303ae A |
38 | #include <sys/syscall.h> |
39 | #include <sys/malloc.h> | |
40 | #include <sys/un.h> | |
e5568f75 A |
41 | #include <netinet/in.h> |
42 | #include <sys/socketvar.h> | |
43 | #include <sys/protosw.h> | |
44 | #include <sys/domain.h> | |
45 | #include <sys/mount.h> | |
46 | #include <net/route.h> | |
47 | #include <netinet/in_pcb.h> | |
48 | ||
49 | #include <bsm/audit.h> | |
50 | #include <bsm/audit_kevents.h> | |
51 | #include <bsm/audit_klib.h> | |
52 | #include <bsm/audit_kernel.h> | |
53 | ||
54 | #include <mach/message.h> | |
55 | #include <mach/port.h> | |
56 | #include <mach/host_special_ports.h> | |
57 | #include <mach/audit_triggers.h> | |
55e303ae A |
58 | |
59 | #include <kern/lock.h> | |
60 | #include <kern/wait_queue.h> | |
e5568f75 A |
61 | #include <kern/zalloc.h> |
62 | #include <kern/kalloc.h> | |
63 | ||
64 | #include <audit.h> | |
55e303ae A |
65 | |
66 | #ifdef AUDIT | |
67 | ||
68 | /* | |
69 | * The AUDIT_EXCESSIVELY_VERBOSE define enables a number of | |
70 | * gratuitously noisy printf's to the console. Due to the | |
71 | * volume, it should be left off unless you want your system | |
72 | * to churn a lot whenever the audit record flow gets high. | |
73 | */ | |
74 | /* #define AUDIT_EXCESSIVELY_VERBOSE */ | |
75 | #ifdef AUDIT_EXCESSIVELY_VERBOSE | |
76 | #define AUDIT_PRINTF(x) printf x | |
77 | #else | |
78 | #define AUDIT_PRINTF(X) | |
79 | #endif | |
80 | ||
81 | #if DIAGNOSTIC | |
82 | #if defined(assert) | |
83 | #undef assert() | |
84 | #endif | |
85 | #define assert(cond) \ | |
86 | ((void) ((cond) ? 0 : panic("%s:%d (%s)", __FILE__, __LINE__, # cond))) | |
87 | #else | |
88 | #include <kern/assert.h> | |
89 | #endif /* DIAGNOSTIC */ | |
90 | ||
91 | /* | |
92 | * Define the audit control flags. | |
93 | */ | |
94 | int audit_enabled; | |
95 | int audit_suspended; | |
96 | ||
97 | /* | |
98 | * Mutex to protect global variables shared between various threads and | |
99 | * processes. | |
100 | */ | |
101 | static mutex_t *audit_mtx; | |
102 | ||
103 | /* | |
104 | * Queue of audit records ready for delivery to disk. We insert new | |
e5568f75 A |
105 | * records at the tail, and remove records from the head. Also, |
106 | * a count of the number of records used for checking queue depth. | |
107 | * In addition, a counter of records that we have allocated but are | |
108 | * not yet in the queue, which is needed to estimate the total | |
109 | * size of the combined set of records outstanding in the system. | |
55e303ae | 110 | */ |
e5568f75 A |
111 | static TAILQ_HEAD(, kaudit_record) audit_q; |
112 | static int audit_q_len; | |
113 | static int audit_pre_q_len; | |
114 | ||
115 | static wait_queue_t audit_wait_queue; | |
116 | static zone_t audit_zone; | |
55e303ae A |
117 | |
118 | /* | |
119 | * Condition variable to signal to the worker that it has work to do: | |
120 | * either new records are in the queue, or a log replacement is taking | |
121 | * place. | |
122 | */ | |
e5568f75 A |
123 | static int audit_worker_event; |
124 | #define AUDIT_WORKER_EVENT ((event_t)&audit_worker_event) | |
55e303ae A |
125 | |
126 | /* | |
127 | * When an audit log is rotated, the actual rotation must be performed | |
128 | * by the audit worker thread, as it may have outstanding writes on the | |
129 | * current audit log. audit_replacement_vp holds the vnode replacing | |
130 | * the current vnode. We can't let more than one replacement occur | |
131 | * at a time, so if more than one thread requests a replacement, only | |
132 | * one can have the replacement "in progress" at any given moment. If | |
133 | * a thread tries to replace the audit vnode and discovers a replacement | |
134 | * is already in progress (i.e., audit_replacement_flag != 0), then it | |
135 | * will sleep on audit_replacement_cv waiting its turn to perform a | |
136 | * replacement. When a replacement is completed, this cv is signalled | |
137 | * by the worker thread so a waiting thread can start another replacement. | |
138 | * We also store a credential to perform audit log write operations with. | |
139 | */ | |
e5568f75 A |
140 | static int audit_replacement_event; |
141 | #define AUDIT_REPLACEMENT_EVENT ((event_t)&audit_replacement_event) | |
55e303ae | 142 | |
e5568f75 | 143 | static int audit_replacement_flag; |
55e303ae A |
144 | static struct vnode *audit_replacement_vp; |
145 | static struct ucred *audit_replacement_cred; | |
146 | ||
e5568f75 A |
147 | /* |
148 | * Wait queue for auditing threads that cannot commit the audit | |
149 | * record at the present time. Also, the queue control parameter | |
150 | * structure. | |
151 | */ | |
152 | static int audit_commit_event; | |
153 | #define AUDIT_COMMIT_EVENT ((event_t)&audit_commit_event) | |
154 | ||
155 | static struct au_qctrl audit_qctrl; | |
156 | ||
55e303ae A |
157 | /* |
158 | * Flags to use on audit files when opening and closing. | |
159 | */ | |
160 | const static int audit_open_flags = FWRITE | O_APPEND; | |
161 | const static int audit_close_flags = FWRITE | O_APPEND; | |
162 | ||
e5568f75 A |
163 | /* |
164 | * Global audit statistiscs. | |
165 | */ | |
166 | static struct audit_fstat audit_fstat; | |
167 | ||
168 | /* | |
169 | Preselection mask for non-attributable events. | |
170 | */ | |
171 | static struct au_mask audit_nae_mask; | |
172 | ||
173 | /* | |
174 | * Flags related to Kernel->user-space communication. | |
175 | */ | |
176 | static int audit_file_rotate_wait; | |
177 | ||
178 | /* | |
179 | * Flags controlling behavior in low storage situations. | |
180 | * Should we panic if a write fails? Should we fail stop | |
181 | * if we're out of disk space? Are we currently "failing | |
182 | * stop" due to out of disk space? | |
183 | */ | |
184 | static int audit_panic_on_write_fail; | |
185 | static int audit_fail_stop; | |
186 | static int audit_in_failure; | |
187 | ||
188 | /* | |
189 | * When in a fail-stop mode, threads will drop into this wait queue | |
190 | * rather than perform auditable events. They won't ever get woken | |
191 | * up. | |
192 | */ | |
193 | static int audit_failure_event; | |
194 | #define AUDIT_FAILURE_EVENT ((event_t)&audit_failure_event) | |
195 | ||
55e303ae A |
196 | /* |
197 | * XXX: Couldn't find the include file for this, so copied kern_exec.c's | |
198 | * behavior. | |
199 | */ | |
200 | extern task_t kernel_task; | |
201 | ||
202 | static void | |
203 | audit_free(struct kaudit_record *ar) | |
204 | { | |
205 | if (ar->k_ar.ar_arg_upath1 != NULL) { | |
e5568f75 | 206 | kfree((vm_offset_t)ar->k_ar.ar_arg_upath1, MAXPATHLEN); |
55e303ae A |
207 | } |
208 | if (ar->k_ar.ar_arg_upath2 != NULL) { | |
e5568f75 | 209 | kfree((vm_offset_t)ar->k_ar.ar_arg_upath2, MAXPATHLEN); |
55e303ae A |
210 | } |
211 | if (ar->k_ar.ar_arg_kpath1 != NULL) { | |
e5568f75 | 212 | kfree((vm_offset_t)ar->k_ar.ar_arg_kpath1, MAXPATHLEN); |
55e303ae A |
213 | } |
214 | if (ar->k_ar.ar_arg_kpath2 != NULL) { | |
e5568f75 | 215 | kfree((vm_offset_t)ar->k_ar.ar_arg_kpath2, MAXPATHLEN); |
55e303ae A |
216 | } |
217 | if (ar->k_ar.ar_arg_text != NULL) { | |
e5568f75 | 218 | kfree((vm_offset_t)ar->k_ar.ar_arg_text, MAXPATHLEN); |
55e303ae A |
219 | } |
220 | if (ar->k_udata != NULL) { | |
e5568f75 | 221 | kfree((vm_offset_t)ar->k_udata, (vm_size_t)ar->k_ulen); |
55e303ae | 222 | } |
e5568f75 | 223 | zfree(audit_zone, (vm_offset_t)ar); |
55e303ae A |
224 | } |
225 | ||
226 | static int | |
227 | audit_write(struct vnode *vp, struct kaudit_record *ar, struct ucred *cred, | |
228 | struct proc *p) | |
229 | { | |
e5568f75 | 230 | struct statfs *mnt_stat = &vp->v_mount->mnt_stat; |
55e303ae A |
231 | int ret; |
232 | struct au_record *bsm; | |
e5568f75 A |
233 | struct vattr vattr; |
234 | ||
235 | mach_port_t audit_port; | |
236 | ||
237 | /* | |
238 | * First, gather statistics on the audit log file and file system | |
239 | * so that we know how we're doing on space. In both cases, | |
240 | * if we're unable to perform the operation, we drop the record | |
241 | * and return. However, this is arguably an assertion failure. | |
242 | */ | |
243 | ret = VFS_STATFS(vp->v_mount, mnt_stat, p); | |
244 | if (ret) | |
245 | goto out; | |
246 | ||
247 | ret = VOP_GETATTR(vp, &vattr, cred, p); | |
248 | if (ret) | |
249 | goto out; | |
250 | ||
251 | /* update the global stats struct */ | |
252 | audit_fstat.af_currsz = vattr.va_size; | |
253 | ||
254 | /* | |
255 | * Send a message to the audit daemon when disk space is getting | |
256 | * low. | |
257 | * XXX Need to decide what to do if the trigger to the audit daemon | |
258 | * fails. | |
259 | */ | |
260 | if(host_get_audit_control_port(host_priv_self(), &audit_port) | |
261 | != KERN_SUCCESS) | |
262 | printf("Cannot get audit control port\n"); | |
263 | ||
264 | if (audit_port != MACH_PORT_NULL) { | |
265 | long temp; | |
266 | ||
267 | /* | |
268 | * If we fall below percent free blocks, then trigger the | |
269 | * audit daemon to do something about it. | |
270 | */ | |
271 | if (audit_qctrl.aq_minfree != 0) { | |
272 | temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree); | |
273 | if (mnt_stat->f_bfree < temp) { | |
274 | ret = audit_triggers(audit_port, | |
275 | AUDIT_TRIGGER_LOW_SPACE); | |
276 | if (ret != KERN_SUCCESS) { | |
277 | printf( | |
278 | "Failed audit_triggers(AUDIT_TRIGGER_LOW_SPACE): %d\n", ret); | |
279 | /* | |
280 | * XXX: What to do here? Disable auditing? | |
281 | * panic? | |
282 | */ | |
283 | } | |
284 | } | |
285 | } | |
286 | /* Check if the current log file is full; if so, call for | |
287 | * a log rotate. This is not an exact comparison; we may | |
288 | * write some records over the limit. If that's not | |
289 | * acceptable, then add a fudge factor here. | |
290 | */ | |
291 | if ((audit_fstat.af_filesz != 0) && | |
292 | (audit_file_rotate_wait == 0) && | |
293 | (vattr.va_size >= audit_fstat.af_filesz)) { | |
294 | audit_file_rotate_wait = 1; | |
295 | ret = audit_triggers(audit_port, | |
296 | AUDIT_TRIGGER_FILE_FULL); | |
297 | if (ret != KERN_SUCCESS) { | |
298 | printf( | |
299 | "Failed audit_triggers(AUDIT_TRIGGER_FILE_FULL): %d\n", ret); | |
300 | /* XXX what to do here? */ | |
301 | } | |
302 | } | |
303 | } | |
304 | ||
305 | /* | |
306 | * If the estimated amount of audit data in the audit event queue | |
307 | * (plus records allocated but not yet queued) has reached the | |
308 | * amount of free space on the disk, then we need to go into an | |
309 | * audit fail stop state, in which we do not permit the | |
310 | * allocation/committing of any new audit records. We continue to | |
311 | * process packets but don't allow any activities that might | |
312 | * generate new records. In the future, we might want to detect | |
313 | * when space is available again and allow operation to continue, | |
314 | * but this behavior is sufficient to meet fail stop requirements | |
315 | * in CAPP. | |
316 | */ | |
317 | if (audit_fail_stop && | |
318 | (unsigned long) | |
319 | ((audit_q_len + audit_pre_q_len + 1) * MAX_AUDIT_RECORD_SIZE) / | |
320 | mnt_stat->f_bsize >= (unsigned long)(mnt_stat->f_bfree)) { | |
321 | printf( | |
322 | "audit_worker: free space below size of audit queue, failing stop\n"); | |
323 | audit_in_failure = 1; | |
324 | } | |
55e303ae A |
325 | |
326 | /* | |
327 | * If there is a user audit record attached to the kernel record, | |
328 | * then write the user record. | |
329 | */ | |
330 | /* XXX Need to decide a few things here: IF the user audit | |
331 | * record is written, but the write of the kernel record fails, | |
332 | * what to do? Should the kernel record come before or after the | |
333 | * user record? For now, we write the user record first, and | |
334 | * we ignore errors. | |
335 | */ | |
e5568f75 A |
336 | if (ar->k_ar_commit & AR_COMMIT_USER) { |
337 | ret = vn_rdwr(UIO_WRITE, vp, (void *)ar->k_udata, ar->k_ulen, | |
55e303ae | 338 | (off_t)0, UIO_SYSSPACE, IO_APPEND|IO_UNIT, cred, NULL, p); |
e5568f75 A |
339 | if (ret) |
340 | goto out; | |
55e303ae A |
341 | } |
342 | ||
343 | /* | |
344 | * Convert the internal kernel record to BSM format and write it | |
345 | * out if everything's OK. | |
346 | */ | |
e5568f75 A |
347 | if (!(ar->k_ar_commit & AR_COMMIT_KERNEL)) { |
348 | ret = 0; | |
349 | goto out; | |
350 | } | |
351 | ||
55e303ae | 352 | ret = kaudit_to_bsm(ar, &bsm); |
e5568f75 A |
353 | if (ret == BSM_NOAUDIT) { |
354 | ret = 0; | |
355 | goto out; | |
356 | } | |
55e303ae | 357 | |
e5568f75 A |
358 | /* |
359 | * XXX: We drop the record on BSM conversion failure, but really | |
360 | * this is an assertion failure. | |
361 | */ | |
55e303ae A |
362 | if (ret == BSM_FAILURE) { |
363 | AUDIT_PRINTF(("BSM conversion failure\n")); | |
e5568f75 A |
364 | ret = EINVAL; |
365 | goto out; | |
55e303ae A |
366 | } |
367 | ||
368 | /* XXX This function can be called with the kernel funnel held, | |
369 | * which is not optimal. We should break the write functionality | |
370 | * away from the BSM record generation and have the BSM generation | |
371 | * done before this function is called. This function will then | |
372 | * take the BSM record as a parameter. | |
373 | */ | |
374 | ret = (vn_rdwr(UIO_WRITE, vp, (void *)bsm->data, bsm->len, | |
375 | (off_t)0, UIO_SYSSPACE, IO_APPEND|IO_UNIT, cred, NULL, p)); | |
376 | ||
377 | kau_free(bsm); | |
378 | ||
e5568f75 A |
379 | out: |
380 | /* | |
381 | * When we're done processing the current record, we have to | |
382 | * check to see if we're in a failure mode, and if so, whether | |
383 | * this was the last record left to be drained. If we're done | |
384 | * draining, then we fsync the vnode and panic. | |
385 | */ | |
386 | if (audit_in_failure && | |
387 | audit_q_len == 0 && audit_pre_q_len == 0) { | |
388 | VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p); | |
389 | (void)VOP_FSYNC(vp, cred, MNT_WAIT, p); | |
390 | VOP_UNLOCK(vp, 0, p); | |
391 | panic("Audit store overflow; record queue drained."); | |
392 | } | |
393 | ||
55e303ae A |
394 | return (ret); |
395 | } | |
396 | ||
397 | static void | |
398 | audit_worker() | |
399 | { | |
400 | int do_replacement_signal, error, release_funnel; | |
401 | TAILQ_HEAD(, kaudit_record) ar_worklist; | |
402 | struct kaudit_record *ar, *ar_start, *ar_stop; | |
403 | struct vnode *audit_vp, *old_vp; | |
e5568f75 | 404 | |
55e303ae A |
405 | struct ucred *audit_cred, *old_cred; |
406 | struct proc *audit_p; | |
407 | ||
408 | AUDIT_PRINTF(("audit_worker starting\n")); | |
409 | ||
410 | TAILQ_INIT(&ar_worklist); | |
411 | audit_cred = NULL; | |
412 | audit_p = current_proc(); | |
413 | audit_vp = NULL; | |
414 | ||
415 | /* | |
416 | * XXX: Presumably we can assume Mach threads are started without | |
417 | * holding the BSD kernel funnel? | |
418 | */ | |
419 | thread_funnel_set(kernel_flock, FALSE); | |
420 | ||
421 | mutex_lock(audit_mtx); | |
422 | while (1) { | |
423 | /* | |
424 | * First priority: replace the audit log target if requested. | |
425 | * As we actually close the vnode in the worker thread, we | |
426 | * need to grab the funnel, which means releasing audit_mtx. | |
427 | * In case another replacement was scheduled while the mutex | |
428 | * we released, we loop. | |
429 | * | |
430 | * XXX It could well be we should drain existing records | |
431 | * first to ensure that the timestamps and ordering | |
432 | * are right. | |
433 | */ | |
434 | do_replacement_signal = 0; | |
435 | while (audit_replacement_flag != 0) { | |
436 | old_cred = audit_cred; | |
437 | old_vp = audit_vp; | |
438 | audit_cred = audit_replacement_cred; | |
439 | audit_vp = audit_replacement_vp; | |
440 | audit_replacement_cred = NULL; | |
441 | audit_replacement_vp = NULL; | |
442 | audit_replacement_flag = 0; | |
443 | ||
444 | audit_enabled = (audit_vp != NULL); | |
445 | ||
446 | if (old_vp != NULL || audit_vp != NULL) { | |
447 | mutex_unlock(audit_mtx); | |
448 | thread_funnel_set(kernel_flock, TRUE); | |
449 | release_funnel = 1; | |
450 | } else | |
451 | release_funnel = 0; | |
452 | /* | |
453 | * XXX: What to do about write failures here? | |
454 | */ | |
455 | if (old_vp != NULL) { | |
456 | AUDIT_PRINTF(("Closing old audit file\n")); | |
457 | vn_close(old_vp, audit_close_flags, old_cred, | |
458 | audit_p); | |
459 | crfree(old_cred); | |
460 | old_cred = NULL; | |
461 | old_vp = NULL; | |
462 | AUDIT_PRINTF(("Audit file closed\n")); | |
463 | } | |
464 | if (audit_vp != NULL) { | |
465 | AUDIT_PRINTF(("Opening new audit file\n")); | |
466 | } | |
467 | if (release_funnel) { | |
468 | thread_funnel_set(kernel_flock, FALSE); | |
469 | mutex_lock(audit_mtx); | |
470 | } | |
471 | do_replacement_signal = 1; | |
472 | } | |
473 | /* | |
474 | * Signal that replacement have occurred to wake up and | |
475 | * start any other replacements started in parallel. We can | |
476 | * continue about our business in the mean time. We | |
477 | * broadcast so that both new replacements can be inserted, | |
478 | * but also so that the source(s) of replacement can return | |
479 | * successfully. | |
480 | */ | |
481 | if (do_replacement_signal) | |
e5568f75 A |
482 | wait_queue_wakeup_all(audit_wait_queue, |
483 | AUDIT_REPLACEMENT_EVENT, THREAD_AWAKENED); | |
55e303ae A |
484 | |
485 | /* | |
486 | * Next, check to see if we have any records to drain into | |
487 | * the vnode. If not, go back to waiting for an event. | |
488 | */ | |
489 | if (TAILQ_EMPTY(&audit_q)) { | |
490 | int ret; | |
491 | ||
492 | AUDIT_PRINTF(("audit_worker waiting\n")); | |
e5568f75 A |
493 | ret = wait_queue_assert_wait(audit_wait_queue, |
494 | AUDIT_WORKER_EVENT, | |
495 | THREAD_UNINT); | |
55e303ae A |
496 | mutex_unlock(audit_mtx); |
497 | ||
498 | assert(ret == THREAD_WAITING); | |
499 | ret = thread_block(THREAD_CONTINUE_NULL); | |
500 | assert(ret == THREAD_AWAKENED); | |
501 | AUDIT_PRINTF(("audit_worker woken up\n")); | |
502 | AUDIT_PRINTF(("audit_worker: new vp = %p; value of flag %d\n", | |
503 | audit_replacement_vp, audit_replacement_flag)); | |
55e303ae A |
504 | mutex_lock(audit_mtx); |
505 | continue; | |
506 | } | |
507 | ||
508 | /* | |
509 | * If we have records, but there's no active vnode to | |
510 | * write to, drain the record queue. Generally, we | |
511 | * prevent the unnecessary allocation of records | |
512 | * elsewhere, but we need to allow for races between | |
513 | * conditional allocation and queueing. Go back to | |
514 | * waiting when we're done. | |
515 | * | |
516 | * XXX: We go out of our way to avoid calling audit_free() | |
517 | * with the audit_mtx held, to avoid a lock order reversal | |
518 | * as free() may grab the funnel. This will be fixed at | |
519 | * some point. | |
520 | */ | |
521 | if (audit_vp == NULL) { | |
522 | while ((ar = TAILQ_FIRST(&audit_q))) { | |
523 | TAILQ_REMOVE(&audit_q, ar, k_q); | |
e5568f75 A |
524 | audit_q_len--; |
525 | if (audit_q_len <= audit_qctrl.aq_lowater) | |
526 | wait_queue_wakeup_one( | |
527 | audit_wait_queue, | |
528 | AUDIT_COMMIT_EVENT, | |
529 | THREAD_AWAKENED); | |
530 | ||
55e303ae A |
531 | TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q); |
532 | } | |
533 | mutex_unlock(audit_mtx); | |
534 | while ((ar = TAILQ_FIRST(&ar_worklist))) { | |
535 | TAILQ_REMOVE(&ar_worklist, ar, k_q); | |
536 | audit_free(ar); | |
537 | } | |
538 | mutex_lock(audit_mtx); | |
539 | continue; | |
540 | } | |
541 | ||
542 | /* | |
543 | * We have both records to write, and an active vnode | |
544 | * to write to. Dequeue a record, and start the write. | |
545 | * Eventually, it might make sense to dequeue several | |
546 | * records and perform our own clustering, if the lower | |
547 | * layers aren't doing it automatically enough. | |
548 | * | |
549 | * XXX: We go out of our way to avoid calling audit_free() | |
550 | * with the audit_mtx held, to avoid a lock order reversal | |
551 | * as free() may grab the funnel. This will be fixed at | |
552 | * some point. | |
553 | */ | |
554 | while ((ar = TAILQ_FIRST(&audit_q))) { | |
555 | TAILQ_REMOVE(&audit_q, ar, k_q); | |
e5568f75 A |
556 | audit_q_len--; |
557 | if (audit_q_len <= audit_qctrl.aq_lowater) { | |
558 | wait_queue_wakeup_one(audit_wait_queue, | |
559 | AUDIT_COMMIT_EVENT, THREAD_AWAKENED); | |
560 | } | |
561 | ||
55e303ae A |
562 | TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q); |
563 | } | |
e5568f75 | 564 | |
55e303ae A |
565 | mutex_unlock(audit_mtx); |
566 | release_funnel = 0; | |
567 | while ((ar = TAILQ_FIRST(&ar_worklist))) { | |
568 | TAILQ_REMOVE(&ar_worklist, ar, k_q); | |
569 | if (audit_vp != NULL) { | |
570 | /* | |
571 | * XXX: What should happen if there's a write | |
572 | * error here? | |
573 | */ | |
574 | if (!release_funnel) { | |
575 | thread_funnel_set(kernel_flock, TRUE); | |
576 | release_funnel = 1; | |
577 | } | |
578 | VOP_LEASE(audit_vp, audit_p, audit_cred, | |
579 | LEASE_WRITE); | |
580 | error = audit_write(audit_vp, ar, audit_cred, | |
581 | audit_p); | |
e5568f75 A |
582 | if (error && audit_panic_on_write_fail) |
583 | panic("audit_worker: write error %d\n", | |
584 | error); | |
585 | else if (error) | |
55e303ae A |
586 | printf("audit_worker: write error %d\n", |
587 | error); | |
588 | } | |
589 | audit_free(ar); | |
590 | } | |
591 | if (release_funnel) | |
592 | thread_funnel_set(kernel_flock, FALSE); | |
593 | mutex_lock(audit_mtx); | |
594 | } | |
595 | } | |
596 | ||
597 | void | |
598 | audit_init(void) | |
599 | { | |
600 | ||
601 | /* Verify that the syscall to audit event table is the same | |
602 | * size as the system call table. | |
603 | */ | |
604 | if (nsys_au_event != nsysent) { | |
605 | printf("Security auditing service initialization failed, "); | |
606 | printf("audit event table doesn't match syscall table.\n"); | |
607 | return; | |
608 | } | |
609 | ||
610 | printf("Security auditing service present\n"); | |
611 | TAILQ_INIT(&audit_q); | |
e5568f75 | 612 | audit_q_len = 0; |
55e303ae A |
613 | audit_enabled = 0; |
614 | audit_suspended = 0; | |
615 | audit_replacement_cred = NULL; | |
616 | audit_replacement_flag = 0; | |
e5568f75 | 617 | audit_file_rotate_wait = 0; |
55e303ae | 618 | audit_replacement_vp = NULL; |
e5568f75 A |
619 | audit_fstat.af_filesz = 0; /* '0' means unset, unbounded */ |
620 | audit_fstat.af_currsz = 0; | |
621 | audit_qctrl.aq_hiwater = AQ_HIWATER; | |
622 | audit_qctrl.aq_lowater = AQ_LOWATER; | |
623 | audit_qctrl.aq_bufsz = AQ_BUFSZ; | |
624 | audit_qctrl.aq_minfree = AU_FS_MINFREE; | |
625 | ||
55e303ae A |
626 | audit_mtx = mutex_alloc(ETAP_NO_TRACE); |
627 | audit_wait_queue = wait_queue_alloc(SYNC_POLICY_FIFO); | |
e5568f75 A |
628 | audit_zone = zinit(sizeof(struct kaudit_record), |
629 | AQ_HIWATER*sizeof(struct kaudit_record), | |
630 | 8192, | |
631 | "audit_zone"); | |
55e303ae A |
632 | |
633 | /* Initialize the BSM audit subsystem. */ | |
634 | kau_init(); | |
635 | ||
636 | kernel_thread(kernel_task, audit_worker); | |
637 | } | |
638 | ||
639 | static void | |
640 | audit_rotate_vnode(struct ucred *cred, struct vnode *vp) | |
641 | { | |
642 | int ret; | |
643 | ||
644 | /* | |
645 | * If other parallel log replacements have been requested, we wait | |
646 | * until they've finished before continuing. | |
647 | */ | |
648 | mutex_lock(audit_mtx); | |
649 | while (audit_replacement_flag != 0) { | |
650 | ||
651 | AUDIT_PRINTF(("audit_rotate_vnode: sleeping to wait for " | |
652 | "flag\n")); | |
e5568f75 A |
653 | ret = wait_queue_assert_wait(audit_wait_queue, |
654 | AUDIT_REPLACEMENT_EVENT, | |
655 | THREAD_UNINT); | |
55e303ae A |
656 | mutex_unlock(audit_mtx); |
657 | ||
658 | assert(ret == THREAD_WAITING); | |
659 | ret = thread_block(THREAD_CONTINUE_NULL); | |
660 | assert(ret == THREAD_AWAKENED); | |
661 | AUDIT_PRINTF(("audit_rotate_vnode: woken up (flag %d)\n", | |
662 | audit_replacement_flag)); | |
663 | ||
664 | mutex_lock(audit_mtx); | |
665 | } | |
666 | audit_replacement_cred = cred; | |
667 | audit_replacement_flag = 1; | |
668 | audit_replacement_vp = vp; | |
669 | ||
670 | /* | |
671 | * Wake up the audit worker to perform the exchange once we | |
672 | * release the mutex. | |
673 | */ | |
e5568f75 | 674 | wait_queue_wakeup_one(audit_wait_queue, AUDIT_WORKER_EVENT, THREAD_AWAKENED); |
55e303ae A |
675 | |
676 | /* | |
677 | * Wait for the audit_worker to broadcast that a replacement has | |
678 | * taken place; we know that once this has happened, our vnode | |
679 | * has been replaced in, so we can return successfully. | |
680 | */ | |
681 | AUDIT_PRINTF(("audit_rotate_vnode: waiting for news of " | |
682 | "replacement\n")); | |
e5568f75 A |
683 | ret = wait_queue_assert_wait(audit_wait_queue, |
684 | AUDIT_REPLACEMENT_EVENT, | |
685 | THREAD_UNINT); | |
55e303ae A |
686 | mutex_unlock(audit_mtx); |
687 | ||
688 | assert(ret == THREAD_WAITING); | |
689 | ret = thread_block(THREAD_CONTINUE_NULL); | |
690 | assert(ret == THREAD_AWAKENED); | |
691 | AUDIT_PRINTF(("audit_rotate_vnode: change acknowledged by " | |
692 | "audit_worker (flag " "now %d)\n", audit_replacement_flag)); | |
e5568f75 A |
693 | |
694 | audit_file_rotate_wait = 0; /* We can now request another rotation */ | |
55e303ae A |
695 | } |
696 | ||
697 | /* | |
698 | * Drain the audit queue and close the log at shutdown. | |
699 | */ | |
700 | void | |
701 | audit_shutdown(void) | |
702 | { | |
55e303ae A |
703 | audit_rotate_vnode(NULL, NULL); |
704 | } | |
705 | ||
706 | static __inline__ struct uthread * | |
707 | curuthread(void) | |
708 | { | |
55e303ae A |
709 | return (get_bsdthread_info(current_act())); |
710 | } | |
711 | ||
712 | static __inline__ struct kaudit_record * | |
713 | currecord(void) | |
714 | { | |
55e303ae A |
715 | return (curuthread()->uu_ar); |
716 | } | |
717 | ||
718 | /********************************** | |
719 | * Begin system calls. * | |
720 | **********************************/ | |
721 | /* | |
722 | * System call to allow a user space application to submit a BSM audit | |
723 | * record to the kernel for inclusion in the audit log. This function | |
724 | * does little verification on the audit record that is submitted. | |
725 | * | |
726 | * XXXAUDIT: Audit preselection for user records does not currently | |
727 | * work, since we pre-select only based on the AUE_audit event type, | |
728 | * not the event type submitted as part of the user audit data. | |
729 | */ | |
730 | struct audit_args { | |
731 | void * record; | |
732 | int length; | |
733 | }; | |
734 | /* ARGSUSED */ | |
735 | int | |
736 | audit(struct proc *p, struct audit_args *uap, register_t *retval) | |
737 | { | |
738 | register struct pcred *pc = p->p_cred; | |
739 | int error; | |
740 | void * rec; | |
741 | struct kaudit_record *ar; | |
e5568f75 | 742 | struct uthread *uthr; |
55e303ae A |
743 | |
744 | error = suser(pc->pc_ucred, &p->p_acflag); | |
745 | if (error) | |
746 | return (error); | |
747 | ||
e5568f75 A |
748 | if ((uap->length <= 0) || (uap->length > audit_qctrl.aq_bufsz)) |
749 | return (EINVAL); | |
750 | ||
751 | ar = currecord(); | |
752 | ||
753 | /* If there's no current audit record (audit() itself not audited) | |
754 | * commit the user audit record. | |
755 | */ | |
756 | if (ar == NULL) { | |
757 | uthr = curuthread(); | |
758 | if (uthr == NULL) /* can this happen? */ | |
759 | return (ENOTSUP); | |
760 | ||
761 | /* This is not very efficient; we're required to allocate | |
762 | * a complete kernel audit record just so the user record | |
763 | * can tag along. | |
764 | */ | |
765 | uthr->uu_ar = audit_new(AUE_NULL, p, uthr); | |
766 | if (uthr->uu_ar == NULL) /* auditing not on, or memory error */ | |
767 | return (ENOTSUP); | |
768 | ar = uthr->uu_ar; | |
769 | } | |
770 | ||
55e303ae A |
771 | if (uap->length > MAX_AUDIT_RECORD_SIZE) |
772 | return (EINVAL); | |
773 | ||
e5568f75 | 774 | rec = (void *)kalloc((vm_size_t)uap->length); |
55e303ae A |
775 | |
776 | error = copyin(uap->record, rec, uap->length); | |
777 | if (error) | |
778 | goto free_out; | |
779 | ||
780 | /* Verify the record */ | |
781 | if (bsm_rec_verify(rec) == 0) { | |
782 | error = EINVAL; | |
783 | goto free_out; | |
784 | } | |
785 | ||
786 | /* Attach the user audit record to the kernel audit record. Because | |
787 | * this system call is an auditable event, we will write the user | |
788 | * record along with the record for this audit event. | |
789 | */ | |
790 | ar->k_udata = rec; | |
e5568f75 | 791 | ar->k_ar_commit |= AR_COMMIT_USER; |
55e303ae A |
792 | ar->k_ulen = uap->length; |
793 | return (0); | |
794 | ||
795 | free_out: | |
e5568f75 A |
796 | /* audit_syscall_exit() will free the audit record on the thread |
797 | * even if we allocated it above. | |
798 | */ | |
799 | kfree((vm_offset_t)rec, (vm_size_t)uap->length); | |
55e303ae A |
800 | return (error); |
801 | } | |
802 | ||
803 | /* | |
804 | * System call to manipulate auditing. | |
805 | */ | |
806 | struct auditon_args { | |
807 | int cmd; | |
808 | void * data; | |
809 | int length; | |
810 | }; | |
811 | /* ARGSUSED */ | |
812 | int | |
813 | auditon(struct proc *p, struct auditon_args *uap, register_t *retval) | |
814 | { | |
815 | register struct pcred *pc = p->p_cred; | |
e5568f75 A |
816 | int ret; |
817 | int len; | |
818 | union auditon_udata udata; | |
819 | struct proc *tp; | |
55e303ae | 820 | |
e5568f75 A |
821 | AUDIT_ARG(cmd, uap->cmd); |
822 | ret = suser(pc->pc_ucred, &p->p_acflag); | |
823 | if (ret) | |
824 | return (ret); | |
55e303ae | 825 | |
e5568f75 A |
826 | len = uap->length; |
827 | if ((len <= 0) || (len > sizeof(union auditon_udata))) | |
828 | return (EINVAL); | |
55e303ae | 829 | |
e5568f75 A |
830 | memset((void *)&udata, 0, sizeof(udata)); |
831 | ||
832 | switch (uap->cmd) { | |
833 | /* Some of the GET commands use the arguments too */ | |
834 | case A_SETPOLICY: | |
835 | case A_SETKMASK: | |
836 | case A_SETQCTRL: | |
837 | case A_SETSTAT: | |
838 | case A_SETUMASK: | |
839 | case A_SETSMASK: | |
840 | case A_SETCOND: | |
841 | case A_SETCLASS: | |
842 | case A_SETPMASK: | |
843 | case A_SETFSIZE: | |
844 | case A_SETKAUDIT: | |
845 | case A_GETCLASS: | |
846 | case A_GETPINFO: | |
847 | case A_GETPINFO_ADDR: | |
848 | ret = copyin(uap->data, (void *)&udata, uap->length); | |
849 | if (ret) | |
850 | return (ret); | |
851 | AUDIT_ARG(auditon, &udata); | |
852 | break; | |
853 | } | |
854 | ||
855 | /* XXX Need to implement these commands by accessing the global | |
856 | * values associated with the commands. | |
857 | */ | |
858 | switch (uap->cmd) { | |
859 | case A_GETPOLICY: | |
860 | if (!audit_fail_stop) | |
861 | udata.au_policy |= AUDIT_CNT; | |
862 | if (audit_panic_on_write_fail) | |
863 | udata.au_policy |= AUDIT_AHLT; | |
864 | break; | |
865 | case A_SETPOLICY: | |
866 | if (udata.au_policy & ~(AUDIT_CNT|AUDIT_AHLT)) | |
867 | return (EINVAL); | |
868 | /* | |
869 | * XXX - Need to wake up waiters if the policy relaxes? | |
870 | */ | |
871 | audit_fail_stop = ((udata.au_policy & AUDIT_CNT) == 0); | |
872 | audit_panic_on_write_fail = (udata.au_policy & AUDIT_AHLT); | |
873 | break; | |
874 | case A_GETKMASK: | |
875 | udata.au_mask = audit_nae_mask; | |
876 | break; | |
877 | case A_SETKMASK: | |
878 | audit_nae_mask = udata.au_mask; | |
879 | break; | |
880 | case A_GETQCTRL: | |
881 | udata.au_qctrl = audit_qctrl; | |
882 | break; | |
883 | case A_SETQCTRL: | |
884 | if ((udata.au_qctrl.aq_hiwater > AQ_MAXHIGH) || | |
885 | (udata.au_qctrl.aq_lowater >= udata.au_qctrl.aq_hiwater) || | |
886 | (udata.au_qctrl.aq_bufsz > AQ_MAXBUFSZ) || | |
887 | (udata.au_qctrl.aq_minfree < 0) || | |
888 | (udata.au_qctrl.aq_minfree > 100)) | |
889 | return (EINVAL); | |
890 | ||
891 | audit_qctrl = udata.au_qctrl; | |
892 | /* XXX The queue delay value isn't used with the kernel. */ | |
893 | audit_qctrl.aq_delay = -1; | |
894 | break; | |
895 | case A_GETCWD: | |
896 | return (ENOSYS); | |
897 | break; | |
898 | case A_GETCAR: | |
899 | return (ENOSYS); | |
900 | break; | |
901 | case A_GETSTAT: | |
902 | return (ENOSYS); | |
903 | break; | |
904 | case A_SETSTAT: | |
905 | return (ENOSYS); | |
906 | break; | |
907 | case A_SETUMASK: | |
908 | return (ENOSYS); | |
909 | break; | |
910 | case A_SETSMASK: | |
911 | return (ENOSYS); | |
912 | break; | |
913 | case A_GETCOND: | |
914 | if (audit_enabled && !audit_suspended) | |
915 | udata.au_cond = AUC_AUDITING; | |
916 | else | |
917 | udata.au_cond = AUC_NOAUDIT; | |
918 | break; | |
919 | case A_SETCOND: | |
920 | if (udata.au_cond == AUC_NOAUDIT) | |
921 | audit_suspended = 1; | |
922 | if (udata.au_cond == AUC_AUDITING) | |
923 | audit_suspended = 0; | |
924 | if (udata.au_cond == AUC_DISABLED) { | |
925 | audit_suspended = 1; | |
926 | audit_shutdown(); | |
927 | } | |
928 | break; | |
929 | case A_GETCLASS: | |
930 | udata.au_evclass.ec_class = | |
931 | au_event_class(udata.au_evclass.ec_number); | |
932 | break; | |
933 | case A_SETCLASS: | |
934 | au_evclassmap_insert(udata.au_evclass.ec_number, | |
935 | udata.au_evclass.ec_class); | |
936 | break; | |
937 | case A_GETPINFO: | |
938 | if (udata.au_aupinfo.ap_pid < 1) | |
939 | return (EINVAL); | |
940 | if ((tp = pfind(udata.au_aupinfo.ap_pid)) == NULL) | |
941 | return (EINVAL); | |
942 | ||
943 | udata.au_aupinfo.ap_auid = tp->p_au->ai_auid; | |
944 | udata.au_aupinfo.ap_mask.am_success = | |
945 | tp->p_au->ai_mask.am_success; | |
946 | udata.au_aupinfo.ap_mask.am_failure = | |
947 | tp->p_au->ai_mask.am_failure; | |
948 | udata.au_aupinfo.ap_termid.machine = | |
949 | tp->p_au->ai_termid.machine; | |
950 | udata.au_aupinfo.ap_termid.port = | |
951 | tp->p_au->ai_termid.port; | |
952 | udata.au_aupinfo.ap_asid = tp->p_au->ai_asid; | |
953 | break; | |
954 | case A_SETPMASK: | |
955 | if (udata.au_aupinfo.ap_pid < 1) | |
956 | return (EINVAL); | |
957 | if ((tp = pfind(udata.au_aupinfo.ap_pid)) == NULL) | |
958 | return (EINVAL); | |
959 | ||
960 | tp->p_au->ai_mask.am_success = | |
961 | udata.au_aupinfo.ap_mask.am_success; | |
962 | tp->p_au->ai_mask.am_failure = | |
963 | udata.au_aupinfo.ap_mask.am_failure; | |
964 | break; | |
965 | case A_SETFSIZE: | |
966 | if ((udata.au_fstat.af_filesz != 0) && | |
967 | (udata.au_fstat.af_filesz < MIN_AUDIT_FILE_SIZE)) | |
968 | return (EINVAL); | |
969 | audit_fstat.af_filesz = udata.au_fstat.af_filesz; | |
970 | break; | |
971 | case A_GETFSIZE: | |
972 | udata.au_fstat.af_filesz = audit_fstat.af_filesz; | |
973 | udata.au_fstat.af_currsz = audit_fstat.af_currsz; | |
974 | break; | |
975 | case A_GETPINFO_ADDR: | |
976 | return (ENOSYS); | |
977 | break; | |
978 | case A_GETKAUDIT: | |
979 | return (ENOSYS); | |
980 | break; | |
981 | case A_SETKAUDIT: | |
982 | return (ENOSYS); | |
983 | break; | |
984 | } | |
985 | /* Copy data back to userspace for the GET comands */ | |
986 | switch (uap->cmd) { | |
987 | case A_GETPOLICY: | |
988 | case A_GETKMASK: | |
989 | case A_GETQCTRL: | |
990 | case A_GETCWD: | |
991 | case A_GETCAR: | |
992 | case A_GETSTAT: | |
993 | case A_GETCOND: | |
994 | case A_GETCLASS: | |
995 | case A_GETPINFO: | |
996 | case A_GETFSIZE: | |
997 | case A_GETPINFO_ADDR: | |
998 | case A_GETKAUDIT: | |
999 | ret = copyout((void *)&udata, uap->data, uap->length); | |
1000 | if (ret) | |
1001 | return (ret); | |
1002 | break; | |
1003 | } | |
1004 | ||
1005 | return (0); | |
55e303ae A |
1006 | } |
1007 | ||
1008 | /* | |
1009 | * System calls to manage the user audit information. | |
1010 | * XXXAUDIT May need to lock the proc structure. | |
1011 | */ | |
1012 | struct getauid_args { | |
1013 | au_id_t *auid; | |
1014 | }; | |
1015 | /* ARGSUSED */ | |
1016 | int | |
1017 | getauid(struct proc *p, struct getauid_args *uap, register_t *retval) | |
1018 | { | |
1019 | register struct pcred *pc = p->p_cred; | |
1020 | int error; | |
1021 | ||
1022 | error = suser(pc->pc_ucred, &p->p_acflag); | |
1023 | if (error) | |
1024 | return (error); | |
1025 | ||
1026 | error = copyout((void *)&p->p_au->ai_auid, (void *)uap->auid, | |
1027 | sizeof(*uap->auid)); | |
1028 | if (error) | |
1029 | return (error); | |
1030 | ||
1031 | return (0); | |
1032 | } | |
1033 | ||
1034 | struct setauid_args { | |
1035 | au_id_t *auid; | |
1036 | }; | |
1037 | /* ARGSUSED */ | |
1038 | int | |
1039 | setauid(struct proc *p, struct setauid_args *uap, register_t *retval) | |
1040 | { | |
1041 | register struct pcred *pc = p->p_cred; | |
1042 | int error; | |
1043 | ||
1044 | error = suser(pc->pc_ucred, &p->p_acflag); | |
1045 | if (error) | |
1046 | return (error); | |
1047 | ||
1048 | error = copyin((void *)uap->auid, (void *)&p->p_au->ai_auid, | |
1049 | sizeof(p->p_au->ai_auid)); | |
1050 | if (error) | |
1051 | return (error); | |
1052 | ||
e5568f75 A |
1053 | /* propagate the change from the process to Mach task */ |
1054 | set_security_token(p); | |
1055 | ||
55e303ae A |
1056 | audit_arg_auid(p->p_au->ai_auid); |
1057 | return (0); | |
1058 | } | |
1059 | ||
1060 | /* | |
1061 | * System calls to get and set process audit information. | |
1062 | */ | |
1063 | struct getaudit_args { | |
1064 | struct auditinfo *auditinfo; | |
1065 | }; | |
1066 | /* ARGSUSED */ | |
1067 | int | |
1068 | getaudit(struct proc *p, struct getaudit_args *uap, register_t *retval) | |
1069 | { | |
1070 | register struct pcred *pc = p->p_cred; | |
1071 | int error; | |
1072 | ||
1073 | error = suser(pc->pc_ucred, &p->p_acflag); | |
1074 | if (error) | |
1075 | return (error); | |
1076 | error = copyout((void *)p->p_au, (void *)uap->auditinfo, | |
1077 | sizeof(*uap->auditinfo)); | |
1078 | if (error) | |
1079 | return (error); | |
1080 | ||
1081 | return (0); | |
1082 | } | |
1083 | ||
1084 | struct setaudit_args { | |
1085 | struct auditinfo *auditinfo; | |
1086 | }; | |
1087 | /* ARGSUSED */ | |
1088 | int | |
1089 | setaudit(struct proc *p, struct setaudit_args *uap, register_t *retval) | |
1090 | { | |
1091 | register struct pcred *pc = p->p_cred; | |
1092 | int error; | |
1093 | ||
1094 | error = suser(pc->pc_ucred, &p->p_acflag); | |
1095 | if (error) | |
1096 | return (error); | |
1097 | error = copyin((void *)uap->auditinfo, (void *)p->p_au, | |
1098 | sizeof(*p->p_au)); | |
1099 | if (error) | |
1100 | return (error); | |
1101 | ||
e5568f75 A |
1102 | /* propagate the change from the process to Mach task */ |
1103 | set_security_token(p); | |
1104 | ||
1105 | audit_arg_auditinfo(p->p_au); | |
1106 | ||
55e303ae A |
1107 | return (0); |
1108 | } | |
1109 | ||
1110 | struct getaudit_addr_args { | |
1111 | struct auditinfo_addr *auditinfo_addr; | |
1112 | int length; | |
1113 | }; | |
1114 | /* ARGSUSED */ | |
1115 | int | |
1116 | getaudit_addr(struct proc *p, struct getaudit_addr_args *uap, register_t *retval) | |
1117 | { | |
1118 | register struct pcred *pc = p->p_cred; | |
1119 | int error; | |
1120 | ||
1121 | error = suser(pc->pc_ucred, &p->p_acflag); | |
1122 | if (error) | |
1123 | return (error); | |
1124 | return (ENOSYS); | |
1125 | } | |
1126 | ||
1127 | struct setaudit_addr_args { | |
1128 | struct auditinfo_addr *auditinfo_addr; | |
1129 | int length; | |
1130 | }; | |
1131 | /* ARGSUSED */ | |
1132 | int | |
1133 | setaudit_addr(struct proc *p, struct setaudit_addr_args *uap, register_t *retval) | |
1134 | { | |
1135 | register struct pcred *pc = p->p_cred; | |
1136 | int error; | |
1137 | ||
1138 | error = suser(pc->pc_ucred, &p->p_acflag); | |
1139 | if (error) | |
1140 | return (error); | |
1141 | return (ENOSYS); | |
1142 | } | |
1143 | ||
1144 | /* | |
1145 | * Syscall to manage audit files. | |
1146 | * | |
55e303ae A |
1147 | */ |
1148 | struct auditctl_args { | |
1149 | char *path; | |
1150 | }; | |
1151 | /* ARGSUSED */ | |
1152 | int | |
1153 | auditctl(struct proc *p, struct auditctl_args *uap) | |
1154 | { | |
1155 | struct kaudit_record *ar; | |
1156 | struct nameidata nd; | |
1157 | struct ucred *cred; | |
1158 | struct vnode *vp; | |
1159 | int error, flags, ret; | |
1160 | ||
1161 | error = suser(p->p_ucred, &p->p_acflag); | |
1162 | if (error) | |
1163 | return (error); | |
1164 | ||
1165 | vp = NULL; | |
1166 | cred = NULL; | |
1167 | ||
1168 | /* | |
1169 | * If a path is specified, open the replacement vnode, perform | |
1170 | * validity checks, and grab another reference to the current | |
1171 | * credential. | |
1172 | */ | |
1173 | if (uap->path != NULL) { | |
e5568f75 A |
1174 | NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNPATH1, |
1175 | UIO_USERSPACE, uap->path, p); | |
55e303ae A |
1176 | flags = audit_open_flags; |
1177 | error = vn_open(&nd, flags, 0); | |
1178 | if (error) | |
1179 | goto out; | |
1180 | VOP_UNLOCK(nd.ni_vp, 0, p); | |
1181 | vp = nd.ni_vp; | |
1182 | if (vp->v_type != VREG) { | |
1183 | vn_close(vp, audit_close_flags, p->p_ucred, p); | |
1184 | error = EINVAL; | |
1185 | goto out; | |
1186 | } | |
1187 | cred = p->p_ucred; | |
1188 | crhold(cred); | |
e5568f75 | 1189 | audit_suspended = 0; |
55e303ae A |
1190 | } |
1191 | ||
1192 | audit_rotate_vnode(cred, vp); | |
1193 | out: | |
1194 | return (error); | |
1195 | } | |
1196 | ||
1197 | /********************************** | |
1198 | * End of system calls. * | |
1199 | **********************************/ | |
1200 | ||
1201 | /* | |
1202 | * MPSAFE | |
1203 | */ | |
1204 | struct kaudit_record * | |
1205 | audit_new(int event, struct proc *p, struct uthread *uthread) | |
1206 | { | |
1207 | struct kaudit_record *ar; | |
1208 | int no_record; | |
1209 | ||
1210 | /* | |
1211 | * Eventually, there may be certain classes of events that | |
1212 | * we will audit regardless of the audit state at the time | |
1213 | * the record is created. These events will generally | |
1214 | * correspond to changes in the audit state. The dummy | |
1215 | * code below is from our first prototype, but may also | |
1216 | * be used in the final version (with modified event numbers). | |
1217 | */ | |
1218 | #if 0 | |
1219 | if (event != AUDIT_EVENT_FILESTOP && event != AUDIT_EVENT_FILESTART) { | |
1220 | #endif | |
1221 | mutex_lock(audit_mtx); | |
1222 | no_record = (audit_suspended || !audit_enabled); | |
1223 | mutex_unlock(audit_mtx); | |
1224 | if (no_record) | |
1225 | return (NULL); | |
1226 | #if 0 | |
1227 | } | |
1228 | #endif | |
1229 | ||
55e303ae A |
1230 | /* |
1231 | * Initialize the audit record header. | |
55e303ae | 1232 | * XXX: We may want to fail-stop if allocation fails. |
e5568f75 A |
1233 | * XXX: The number of outstanding uncommitted audit records is |
1234 | * limited by the number of concurrent threads servicing system | |
1235 | * calls in the kernel. | |
55e303ae | 1236 | */ |
e5568f75 A |
1237 | |
1238 | ar = (struct kaudit_record *)zalloc(audit_zone); | |
55e303ae A |
1239 | if (ar == NULL) |
1240 | return NULL; | |
1241 | ||
e5568f75 A |
1242 | mutex_lock(audit_mtx); |
1243 | audit_pre_q_len++; | |
1244 | mutex_unlock(audit_mtx); | |
1245 | ||
55e303ae A |
1246 | bzero(ar, sizeof(*ar)); |
1247 | ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; | |
1248 | ar->k_ar.ar_event = event; | |
1249 | nanotime(&ar->k_ar.ar_starttime); | |
1250 | ||
1251 | /* Export the subject credential. */ | |
1252 | cru2x(p->p_ucred, &ar->k_ar.ar_subj_cred); | |
1253 | ar->k_ar.ar_subj_ruid = p->p_cred->p_ruid; | |
1254 | ar->k_ar.ar_subj_rgid = p->p_cred->p_rgid; | |
1255 | ar->k_ar.ar_subj_egid = p->p_ucred->cr_groups[0]; | |
1256 | ar->k_ar.ar_subj_auid = p->p_au->ai_auid; | |
e5568f75 | 1257 | ar->k_ar.ar_subj_asid = p->p_au->ai_asid; |
55e303ae | 1258 | ar->k_ar.ar_subj_pid = p->p_pid; |
e5568f75 A |
1259 | ar->k_ar.ar_subj_amask = p->p_au->ai_mask; |
1260 | ar->k_ar.ar_subj_term = p->p_au->ai_termid; | |
55e303ae | 1261 | bcopy(p->p_comm, ar->k_ar.ar_subj_comm, MAXCOMLEN); |
55e303ae A |
1262 | |
1263 | return (ar); | |
1264 | } | |
1265 | ||
1266 | /* | |
1267 | * MPSAFE | |
1268 | * XXXAUDIT: So far, this is unused, and should probably be GC'd. | |
1269 | */ | |
1270 | void | |
1271 | audit_abort(struct kaudit_record *ar) | |
1272 | { | |
1273 | ||
e5568f75 A |
1274 | mutex_lock(audit_mtx); |
1275 | audit_pre_q_len--; | |
1276 | mutex_unlock(audit_mtx); | |
55e303ae A |
1277 | audit_free(ar); |
1278 | } | |
1279 | ||
1280 | /* | |
1281 | * MPSAFE | |
1282 | */ | |
1283 | void | |
1284 | audit_commit(struct kaudit_record *ar, int error, int retval) | |
1285 | { | |
e5568f75 A |
1286 | int ret; |
1287 | int sorf; | |
1288 | struct au_mask *aumask; | |
55e303ae A |
1289 | |
1290 | if (ar == NULL) | |
1291 | return; | |
1292 | ||
e5568f75 A |
1293 | /* |
1294 | * Decide whether to commit the audit record by checking the | |
1295 | * error value from the system call and using the appropriate | |
1296 | * audit mask. | |
1297 | */ | |
1298 | if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) | |
1299 | aumask = &audit_nae_mask; | |
1300 | else | |
1301 | aumask = &ar->k_ar.ar_subj_amask; | |
1302 | ||
1303 | if (error) | |
1304 | sorf = AU_PRS_FAILURE; | |
1305 | else | |
1306 | sorf = AU_PRS_SUCCESS; | |
1307 | ||
1308 | switch(ar->k_ar.ar_event) { | |
1309 | ||
1310 | case AUE_OPEN_RWTC: | |
1311 | /* The open syscall always writes a OPEN_RWTC event; limit the | |
1312 | * to the proper type of event based on the flags and the error | |
1313 | * value. | |
1314 | */ | |
1315 | ar->k_ar.ar_event = flags_and_error_to_openevent(ar->k_ar.ar_arg_fflags, error); | |
1316 | break; | |
1317 | ||
1318 | case AUE_SYSCTL: | |
1319 | ar->k_ar.ar_event = ctlname_to_sysctlevent(ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); | |
1320 | break; | |
1321 | ||
1322 | case AUE_AUDITON: | |
1323 | /* Convert the auditon() command to an event */ | |
1324 | ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); | |
1325 | break; | |
1326 | } | |
1327 | ||
1328 | if (au_preselect(ar->k_ar.ar_event, aumask, sorf) != 0) | |
1329 | ar->k_ar_commit |= AR_COMMIT_KERNEL; | |
1330 | ||
1331 | if (ar->k_ar_commit & (AR_COMMIT_USER | AR_COMMIT_KERNEL) == 0) { | |
1332 | mutex_lock(audit_mtx); | |
1333 | audit_pre_q_len--; | |
1334 | mutex_unlock(audit_mtx); | |
1335 | audit_free(ar); | |
1336 | return; | |
1337 | } | |
1338 | ||
55e303ae A |
1339 | ar->k_ar.ar_errno = error; |
1340 | ar->k_ar.ar_retval = retval; | |
1341 | ||
1342 | /* | |
1343 | * We might want to do some system-wide post-filtering | |
1344 | * here at some point. | |
1345 | */ | |
1346 | ||
1347 | /* | |
1348 | * Timestamp system call end. | |
1349 | */ | |
1350 | nanotime(&ar->k_ar.ar_endtime); | |
1351 | ||
55e303ae | 1352 | mutex_lock(audit_mtx); |
e5568f75 | 1353 | |
55e303ae A |
1354 | /* |
1355 | * Note: it could be that some records initiated while audit was | |
1356 | * enabled should still be committed? | |
1357 | */ | |
1358 | if (audit_suspended || !audit_enabled) { | |
e5568f75 | 1359 | audit_pre_q_len--; |
55e303ae A |
1360 | mutex_unlock(audit_mtx); |
1361 | audit_free(ar); | |
1362 | return; | |
1363 | } | |
e5568f75 A |
1364 | |
1365 | /* | |
1366 | * Constrain the number of committed audit records based on | |
1367 | * the configurable parameter. | |
1368 | */ | |
1369 | while (audit_q_len >= audit_qctrl.aq_hiwater) { | |
1370 | ||
1371 | ret = wait_queue_assert_wait(audit_wait_queue, | |
1372 | AUDIT_COMMIT_EVENT, | |
1373 | THREAD_UNINT); | |
1374 | mutex_unlock(audit_mtx); | |
1375 | ||
1376 | assert(ret == THREAD_WAITING); | |
1377 | ||
1378 | ret = thread_block(THREAD_CONTINUE_NULL); | |
1379 | assert(ret == THREAD_AWAKENED); | |
1380 | mutex_lock(audit_mtx); | |
1381 | } | |
1382 | ||
55e303ae | 1383 | TAILQ_INSERT_TAIL(&audit_q, ar, k_q); |
e5568f75 A |
1384 | audit_q_len++; |
1385 | audit_pre_q_len--; | |
1386 | wait_queue_wakeup_one(audit_wait_queue, AUDIT_WORKER_EVENT, THREAD_AWAKENED); | |
55e303ae A |
1387 | mutex_unlock(audit_mtx); |
1388 | } | |
1389 | ||
1390 | /* | |
1391 | * Calls to set up and tear down audit structures associated with | |
1392 | * each system call. | |
1393 | */ | |
1394 | void | |
1395 | audit_syscall_enter(unsigned short code, struct proc *proc, | |
1396 | struct uthread *uthread) | |
1397 | { | |
1398 | int audit_event; | |
e5568f75 | 1399 | struct au_mask *aumask; |
55e303ae A |
1400 | |
1401 | audit_event = sys_au_event[code]; | |
e5568f75 A |
1402 | if (audit_event == AUE_NULL) |
1403 | return; | |
1404 | ||
1405 | assert(uthread->uu_ar == NULL); | |
55e303ae | 1406 | |
e5568f75 A |
1407 | /* Check which audit mask to use; either the kernel non-attributable |
1408 | * event mask or the process audit mask. | |
1409 | */ | |
1410 | if (proc->p_au->ai_auid == AU_DEFAUDITID) | |
1411 | aumask = &audit_nae_mask; | |
1412 | else | |
1413 | aumask = &proc->p_au->ai_mask; | |
1414 | ||
55e303ae | 1415 | /* |
e5568f75 A |
1416 | * Allocate an audit record, if preselection allows it, and store |
1417 | * in the BSD thread for later use. | |
55e303ae | 1418 | */ |
e5568f75 A |
1419 | if (au_preselect(audit_event, aumask, |
1420 | AU_PRS_FAILURE | AU_PRS_SUCCESS)) { | |
1421 | /* | |
1422 | * If we're out of space and need to suspend unprivileged | |
1423 | * processes, do that here rather than trying to allocate | |
1424 | * another audit record. | |
1425 | */ | |
1426 | if (audit_in_failure && | |
1427 | suser(proc->p_ucred, &proc->p_acflag) != 0) { | |
1428 | int ret; | |
1429 | ||
1430 | ret = wait_queue_assert_wait(audit_wait_queue, | |
1431 | AUDIT_FAILURE_EVENT, THREAD_UNINT); | |
1432 | assert(ret == THREAD_WAITING); | |
1433 | (void)thread_block(THREAD_CONTINUE_NULL); | |
1434 | panic("audit_failing_stop: thread continued"); | |
55e303ae | 1435 | } |
e5568f75 A |
1436 | uthread->uu_ar = audit_new(audit_event, proc, uthread); |
1437 | } else | |
1438 | uthread->uu_ar = NULL; | |
55e303ae A |
1439 | } |
1440 | ||
1441 | void | |
1442 | audit_syscall_exit(int error, struct proc *proc, struct uthread *uthread) | |
1443 | { | |
1444 | int retval; | |
1445 | ||
1446 | /* | |
1447 | * Commit the audit record as desired; once we pass the record | |
1448 | * into audit_commit(), the memory is owned by the audit | |
1449 | * subsystem. | |
1450 | * The return value from the system call is stored on the user | |
1451 | * thread. If there was an error, the return value is set to -1, | |
1452 | * imitating the behavior of the cerror routine. | |
1453 | */ | |
1454 | if (error) | |
1455 | retval = -1; | |
1456 | else | |
1457 | retval = uthread->uu_rval[0]; | |
1458 | ||
1459 | audit_commit(uthread->uu_ar, error, retval); | |
1460 | if (uthread->uu_ar != NULL) | |
1461 | AUDIT_PRINTF(("audit record committed by pid %d\n", proc->p_pid)); | |
1462 | uthread->uu_ar = NULL; | |
1463 | ||
1464 | } | |
1465 | ||
e5568f75 A |
1466 | /* |
1467 | * Calls to set up and tear down audit structures used during Mach | |
1468 | * system calls. | |
1469 | */ | |
1470 | void | |
1471 | audit_mach_syscall_enter(unsigned short audit_event) | |
1472 | { | |
1473 | struct uthread *uthread; | |
1474 | struct proc *proc; | |
1475 | struct au_mask *aumask; | |
1476 | ||
1477 | if (audit_event == AUE_NULL) | |
1478 | return; | |
1479 | ||
1480 | uthread = curuthread(); | |
1481 | if (uthread == NULL) | |
1482 | return; | |
1483 | ||
1484 | proc = current_proc(); | |
1485 | if (proc == NULL) | |
1486 | return; | |
1487 | ||
1488 | assert(uthread->uu_ar == NULL); | |
1489 | ||
1490 | /* Check which audit mask to use; either the kernel non-attributable | |
1491 | * event mask or the process audit mask. | |
1492 | */ | |
1493 | if (proc->p_au->ai_auid == AU_DEFAUDITID) | |
1494 | aumask = &audit_nae_mask; | |
1495 | else | |
1496 | aumask = &proc->p_au->ai_mask; | |
1497 | ||
1498 | /* | |
1499 | * Allocate an audit record, if desired, and store in the BSD | |
1500 | * thread for later use. | |
1501 | */ | |
1502 | if (au_preselect(audit_event, aumask, | |
1503 | AU_PRS_FAILURE | AU_PRS_SUCCESS)) { | |
1504 | uthread->uu_ar = audit_new(audit_event, proc, uthread); | |
1505 | } else { | |
1506 | uthread->uu_ar = NULL; | |
1507 | } | |
1508 | } | |
1509 | ||
1510 | void | |
1511 | audit_mach_syscall_exit(int retval, struct uthread *uthread) | |
1512 | { | |
1513 | /* The error code from Mach system calls is the same as the | |
1514 | * return value | |
1515 | */ | |
1516 | /* XXX Is the above statement always true? */ | |
1517 | audit_commit(uthread->uu_ar, retval, retval); | |
1518 | uthread->uu_ar = NULL; | |
1519 | ||
1520 | } | |
1521 | ||
55e303ae A |
1522 | /* |
1523 | * Calls to manipulate elements of the audit record structure from system | |
1524 | * call code. Macro wrappers will prevent this functions from being | |
1525 | * entered if auditing is disabled, avoiding the function call cost. We | |
1526 | * check the thread audit record pointer anyway, as the audit condition | |
1527 | * could change, and pre-selection may not have allocated an audit | |
1528 | * record for this event. | |
1529 | */ | |
1530 | void | |
e5568f75 | 1531 | audit_arg_addr(void * addr) |
55e303ae A |
1532 | { |
1533 | struct kaudit_record *ar; | |
1534 | ||
1535 | ar = currecord(); | |
1536 | if (ar == NULL) | |
1537 | return; | |
1538 | ||
e5568f75 A |
1539 | ar->k_ar.ar_arg_addr = addr; |
1540 | ar->k_ar.ar_valid_arg |= ARG_ADDR; | |
55e303ae A |
1541 | } |
1542 | ||
1543 | void | |
e5568f75 | 1544 | audit_arg_len(int len) |
55e303ae A |
1545 | { |
1546 | struct kaudit_record *ar; | |
1547 | ||
1548 | ar = currecord(); | |
1549 | if (ar == NULL) | |
1550 | return; | |
1551 | ||
e5568f75 A |
1552 | ar->k_ar.ar_arg_len = len; |
1553 | ar->k_ar.ar_valid_arg |= ARG_LEN; | |
55e303ae A |
1554 | } |
1555 | ||
1556 | void | |
1557 | audit_arg_fd(int fd) | |
1558 | { | |
1559 | struct kaudit_record *ar; | |
1560 | ||
1561 | ar = currecord(); | |
1562 | if (ar == NULL) | |
1563 | return; | |
1564 | ||
1565 | ar->k_ar.ar_arg_fd = fd; | |
1566 | ar->k_ar.ar_valid_arg |= ARG_FD; | |
1567 | } | |
1568 | ||
1569 | void | |
1570 | audit_arg_fflags(int fflags) | |
1571 | { | |
1572 | struct kaudit_record *ar; | |
1573 | ||
1574 | ar = currecord(); | |
1575 | if (ar == NULL) | |
1576 | return; | |
1577 | ||
1578 | ar->k_ar.ar_arg_fflags = fflags; | |
1579 | ar->k_ar.ar_valid_arg |= ARG_FFLAGS; | |
1580 | } | |
1581 | ||
1582 | void | |
1583 | audit_arg_gid(gid_t gid, gid_t egid, gid_t rgid, gid_t sgid) | |
1584 | { | |
1585 | struct kaudit_record *ar; | |
1586 | ||
1587 | ar = currecord(); | |
1588 | if (ar == NULL) | |
1589 | return; | |
1590 | ||
1591 | ar->k_ar.ar_arg_gid = gid; | |
1592 | ar->k_ar.ar_arg_egid = egid; | |
1593 | ar->k_ar.ar_arg_rgid = rgid; | |
1594 | ar->k_ar.ar_arg_sgid = sgid; | |
1595 | ar->k_ar.ar_valid_arg |= (ARG_GID | ARG_EGID | ARG_RGID | ARG_SGID); | |
1596 | } | |
1597 | ||
1598 | void | |
1599 | audit_arg_uid(uid_t uid, uid_t euid, uid_t ruid, uid_t suid) | |
1600 | { | |
1601 | struct kaudit_record *ar; | |
1602 | ||
1603 | ar = currecord(); | |
1604 | if (ar == NULL) | |
1605 | return; | |
1606 | ||
1607 | ar->k_ar.ar_arg_uid = uid; | |
1608 | ar->k_ar.ar_arg_euid = euid; | |
1609 | ar->k_ar.ar_arg_ruid = ruid; | |
1610 | ar->k_ar.ar_arg_suid = suid; | |
1611 | ar->k_ar.ar_valid_arg |= (ARG_UID | ARG_EUID | ARG_RUID | ARG_SUID); | |
1612 | } | |
1613 | ||
1614 | void | |
1615 | audit_arg_groupset(gid_t *gidset, u_int gidset_size) | |
1616 | { | |
1617 | int i; | |
1618 | struct kaudit_record *ar; | |
1619 | ||
1620 | ar = currecord(); | |
1621 | if (ar == NULL) | |
1622 | return; | |
1623 | ||
1624 | for (i = 0; i < gidset_size; i++) | |
1625 | ar->k_ar.ar_arg_groups.gidset[i] = gidset[i]; | |
1626 | ar->k_ar.ar_arg_groups.gidset_size = gidset_size; | |
1627 | ar->k_ar.ar_valid_arg |= ARG_GROUPSET; | |
1628 | } | |
1629 | ||
1630 | void | |
1631 | audit_arg_login(char *login) | |
1632 | { | |
1633 | struct kaudit_record *ar; | |
1634 | ||
1635 | ar = currecord(); | |
1636 | if (ar == NULL) | |
1637 | return; | |
1638 | ||
1639 | #if 0 | |
1640 | /* | |
1641 | * XXX: Add strlcpy() to Darwin for improved safety. | |
1642 | */ | |
1643 | strlcpy(ar->k_ar.ar_arg_login, login, MAXLOGNAME); | |
1644 | #else | |
1645 | strcpy(ar->k_ar.ar_arg_login, login); | |
1646 | #endif | |
1647 | ||
1648 | ar->k_ar.ar_valid_arg |= ARG_LOGIN; | |
1649 | } | |
1650 | ||
e5568f75 A |
1651 | void |
1652 | audit_arg_ctlname(int *name, int namelen) | |
1653 | { | |
1654 | struct kaudit_record *ar; | |
1655 | ||
1656 | ar = currecord(); | |
1657 | if (ar == NULL) | |
1658 | return; | |
1659 | ||
1660 | bcopy(name, &ar->k_ar.ar_arg_ctlname, namelen * sizeof(int)); | |
1661 | ar->k_ar.ar_arg_len = namelen; | |
1662 | ar->k_ar.ar_valid_arg |= (ARG_CTLNAME | ARG_LEN); | |
1663 | } | |
1664 | ||
55e303ae A |
1665 | void |
1666 | audit_arg_mask(int mask) | |
1667 | { | |
1668 | struct kaudit_record *ar; | |
1669 | ||
1670 | ar = currecord(); | |
1671 | if (ar == NULL) | |
1672 | return; | |
1673 | ||
1674 | ar->k_ar.ar_arg_mask = mask; | |
1675 | ar->k_ar.ar_valid_arg |= ARG_MASK; | |
1676 | } | |
1677 | ||
1678 | void | |
1679 | audit_arg_mode(mode_t mode) | |
1680 | { | |
1681 | struct kaudit_record *ar; | |
1682 | ||
1683 | ar = currecord(); | |
1684 | if (ar == NULL) | |
1685 | return; | |
1686 | ||
1687 | ar->k_ar.ar_arg_mode = mode; | |
1688 | ar->k_ar.ar_valid_arg |= ARG_MODE; | |
1689 | } | |
1690 | ||
1691 | void | |
1692 | audit_arg_dev(int dev) | |
1693 | { | |
1694 | struct kaudit_record *ar; | |
1695 | ||
1696 | ar = currecord(); | |
1697 | if (ar == NULL) | |
1698 | return; | |
1699 | ||
1700 | ar->k_ar.ar_arg_dev = dev; | |
1701 | ar->k_ar.ar_valid_arg |= ARG_DEV; | |
1702 | } | |
1703 | ||
e5568f75 A |
1704 | void |
1705 | audit_arg_value(long value) | |
1706 | { | |
1707 | struct kaudit_record *ar; | |
1708 | ||
1709 | ar = currecord(); | |
1710 | if (ar == NULL) | |
1711 | return; | |
1712 | ||
1713 | ar->k_ar.ar_arg_value = value; | |
1714 | ar->k_ar.ar_valid_arg |= ARG_VALUE; | |
1715 | } | |
1716 | ||
55e303ae A |
1717 | void |
1718 | audit_arg_owner(uid_t uid, gid_t gid) | |
1719 | { | |
1720 | struct kaudit_record *ar; | |
1721 | ||
1722 | ar = currecord(); | |
1723 | if (ar == NULL) | |
1724 | return; | |
1725 | ||
1726 | ar->k_ar.ar_arg_uid = uid; | |
1727 | ar->k_ar.ar_arg_gid = gid; | |
1728 | ar->k_ar.ar_valid_arg |= (ARG_UID | ARG_GID); | |
1729 | } | |
1730 | ||
1731 | void | |
1732 | audit_arg_pid(pid_t pid) | |
1733 | { | |
1734 | struct kaudit_record *ar; | |
e5568f75 | 1735 | struct proc *p; |
55e303ae A |
1736 | |
1737 | ar = currecord(); | |
1738 | if (ar == NULL) | |
1739 | return; | |
1740 | ||
1741 | ar->k_ar.ar_arg_pid = pid; | |
1742 | ar->k_ar.ar_valid_arg |= ARG_PID; | |
e5568f75 A |
1743 | |
1744 | } | |
1745 | ||
1746 | void | |
1747 | audit_arg_process(struct proc *p) | |
1748 | { | |
1749 | struct kaudit_record *ar; | |
1750 | ||
1751 | ar = currecord(); | |
1752 | if ((ar == NULL) || (p == NULL)) | |
1753 | return; | |
1754 | ||
1755 | /* XXX May need to lock the credentials structures */ | |
1756 | ar->k_ar.ar_arg_auid = p->p_au->ai_auid; | |
1757 | ar->k_ar.ar_arg_euid = p->p_ucred->cr_uid; | |
1758 | ar->k_ar.ar_arg_egid = p->p_ucred->cr_groups[0]; | |
1759 | ar->k_ar.ar_arg_ruid = p->p_cred->p_ruid; | |
1760 | ar->k_ar.ar_arg_rgid = p->p_cred->p_rgid; | |
1761 | ar->k_ar.ar_arg_asid = p->p_au->ai_asid; | |
1762 | ||
1763 | ar->k_ar.ar_arg_termid = p->p_au->ai_termid; | |
1764 | ||
1765 | ar->k_ar.ar_valid_arg |= ARG_AUID | ARG_EUID | ARG_EGID | ARG_RUID | | |
1766 | ARG_RGID | ARG_ASID | ARG_TERMID | ARG_PROCESS; | |
55e303ae A |
1767 | } |
1768 | ||
1769 | void | |
1770 | audit_arg_signum(u_int signum) | |
1771 | { | |
1772 | struct kaudit_record *ar; | |
1773 | ||
1774 | ar = currecord(); | |
1775 | if (ar == NULL) | |
1776 | return; | |
1777 | ||
1778 | ar->k_ar.ar_arg_signum = signum; | |
1779 | ar->k_ar.ar_valid_arg |= ARG_SIGNUM; | |
1780 | } | |
1781 | ||
1782 | void | |
1783 | audit_arg_socket(int sodomain, int sotype, int soprotocol) | |
1784 | { | |
1785 | ||
1786 | struct kaudit_record *ar; | |
1787 | ||
1788 | ar = currecord(); | |
1789 | if (ar == NULL) | |
1790 | return; | |
1791 | ||
e5568f75 A |
1792 | ar->k_ar.ar_arg_sockinfo.so_domain = sodomain; |
1793 | ar->k_ar.ar_arg_sockinfo.so_type = sotype; | |
1794 | ar->k_ar.ar_arg_sockinfo.so_protocol = soprotocol; | |
55e303ae A |
1795 | ar->k_ar.ar_valid_arg |= ARG_SOCKINFO; |
1796 | } | |
1797 | ||
1798 | void | |
1799 | audit_arg_sockaddr(struct proc *p, struct sockaddr *so) | |
1800 | { | |
1801 | struct kaudit_record *ar; | |
1802 | ||
1803 | ar = currecord(); | |
1804 | if (ar == NULL || p == NULL || so == NULL) | |
1805 | return; | |
1806 | ||
1807 | bcopy(so, &ar->k_ar.ar_arg_sockaddr, sizeof(ar->k_ar.ar_arg_sockaddr)); | |
1808 | switch (so->sa_family) { | |
1809 | case AF_INET: | |
1810 | ar->k_ar.ar_valid_arg |= ARG_SADDRINET; | |
1811 | break; | |
1812 | case AF_INET6: | |
1813 | ar->k_ar.ar_valid_arg |= ARG_SADDRINET6; | |
1814 | break; | |
1815 | case AF_UNIX: | |
1816 | audit_arg_upath(p, ((struct sockaddr_un *)so)->sun_path, | |
1817 | ARG_UPATH1); | |
1818 | ar->k_ar.ar_valid_arg |= ARG_SADDRUNIX; | |
1819 | break; | |
1820 | } | |
1821 | } | |
1822 | ||
1823 | void | |
1824 | audit_arg_auid(uid_t auid) | |
1825 | { | |
1826 | struct kaudit_record *ar; | |
1827 | ||
1828 | ar = currecord(); | |
1829 | if (ar == NULL) | |
1830 | return; | |
1831 | ||
1832 | ar->k_ar.ar_arg_auid = auid; | |
1833 | ar->k_ar.ar_valid_arg |= ARG_AUID; | |
1834 | } | |
1835 | ||
e5568f75 A |
1836 | void |
1837 | audit_arg_auditinfo(struct auditinfo *au_info) | |
1838 | { | |
1839 | struct kaudit_record *ar; | |
1840 | ||
1841 | ar = currecord(); | |
1842 | if (ar == NULL) | |
1843 | return; | |
1844 | ||
1845 | ar->k_ar.ar_arg_auid = au_info->ai_auid; | |
1846 | ar->k_ar.ar_arg_asid = au_info->ai_asid; | |
1847 | ar->k_ar.ar_arg_amask.am_success = au_info->ai_mask.am_success; | |
1848 | ar->k_ar.ar_arg_amask.am_failure = au_info->ai_mask.am_failure; | |
1849 | ar->k_ar.ar_arg_termid.port = au_info->ai_termid.port; | |
1850 | ar->k_ar.ar_arg_termid.machine = au_info->ai_termid.machine; | |
1851 | ar->k_ar.ar_valid_arg |= ARG_AUID | ARG_ASID | ARG_AMASK | ARG_TERMID; | |
1852 | } | |
1853 | ||
55e303ae A |
1854 | void |
1855 | audit_arg_text(char *text) | |
1856 | { | |
1857 | struct kaudit_record *ar; | |
1858 | ||
1859 | ar = currecord(); | |
1860 | if (ar == NULL) | |
1861 | return; | |
1862 | ||
1863 | /* Invalidate the text string */ | |
1864 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_TEXT); | |
1865 | if (text == NULL) | |
1866 | return; | |
1867 | ||
1868 | if (ar->k_ar.ar_arg_text == NULL) { | |
e5568f75 | 1869 | ar->k_ar.ar_arg_text = (char *)kalloc(MAXPATHLEN); |
55e303ae A |
1870 | if (ar->k_ar.ar_arg_text == NULL) |
1871 | return; | |
1872 | } | |
1873 | ||
e5568f75 | 1874 | strncpy(ar->k_ar.ar_arg_text, text, MAXPATHLEN); |
55e303ae A |
1875 | ar->k_ar.ar_valid_arg |= ARG_TEXT; |
1876 | } | |
1877 | ||
1878 | void | |
1879 | audit_arg_cmd(int cmd) | |
1880 | { | |
1881 | struct kaudit_record *ar; | |
1882 | ||
1883 | ar = currecord(); | |
1884 | if (ar == NULL) | |
1885 | return; | |
1886 | ||
1887 | ar->k_ar.ar_arg_cmd = cmd; | |
1888 | ar->k_ar.ar_valid_arg |= ARG_CMD; | |
1889 | } | |
1890 | ||
1891 | void | |
1892 | audit_arg_svipc_cmd(int cmd) | |
1893 | { | |
1894 | struct kaudit_record *ar; | |
1895 | ||
1896 | ar = currecord(); | |
1897 | if (ar == NULL) | |
1898 | return; | |
1899 | ||
1900 | ar->k_ar.ar_arg_svipc_cmd = cmd; | |
1901 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_CMD; | |
1902 | } | |
1903 | ||
1904 | void | |
1905 | audit_arg_svipc_perm(struct ipc_perm *perm) | |
1906 | { | |
1907 | struct kaudit_record *ar; | |
1908 | ||
1909 | ar = currecord(); | |
1910 | if (ar == NULL) | |
1911 | return; | |
1912 | ||
1913 | bcopy(perm, &ar->k_ar.ar_arg_svipc_perm, | |
1914 | sizeof(ar->k_ar.ar_arg_svipc_perm)); | |
1915 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_PERM; | |
1916 | } | |
1917 | ||
1918 | void | |
1919 | audit_arg_svipc_id(int id) | |
1920 | { | |
1921 | struct kaudit_record *ar; | |
1922 | ||
1923 | ar = currecord(); | |
1924 | if (ar == NULL) | |
1925 | return; | |
1926 | ||
1927 | ar->k_ar.ar_arg_svipc_id = id; | |
1928 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_ID; | |
1929 | } | |
1930 | ||
1931 | void | |
1932 | audit_arg_svipc_addr(void * addr) | |
1933 | { | |
1934 | struct kaudit_record *ar; | |
1935 | ||
1936 | ar = currecord(); | |
1937 | if (ar == NULL) | |
1938 | return; | |
1939 | ||
1940 | ar->k_ar.ar_arg_svipc_addr = addr; | |
1941 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_ADDR; | |
1942 | } | |
1943 | ||
e5568f75 A |
1944 | void |
1945 | audit_arg_posix_ipc_perm(uid_t uid, gid_t gid, mode_t mode) | |
1946 | { | |
1947 | struct kaudit_record *ar; | |
1948 | ||
1949 | ar = currecord(); | |
1950 | if (ar == NULL) | |
1951 | return; | |
1952 | ||
1953 | ar->k_ar.ar_arg_pipc_perm.pipc_uid = uid; | |
1954 | ar->k_ar.ar_arg_pipc_perm.pipc_gid = gid; | |
1955 | ar->k_ar.ar_arg_pipc_perm.pipc_mode = mode; | |
1956 | ar->k_ar.ar_valid_arg |= ARG_POSIX_IPC_PERM; | |
1957 | } | |
1958 | ||
1959 | void | |
1960 | audit_arg_auditon(union auditon_udata *udata) | |
1961 | { | |
1962 | struct kaudit_record *ar; | |
1963 | ||
1964 | ar = currecord(); | |
1965 | if (ar == NULL) | |
1966 | return; | |
1967 | ||
1968 | bcopy((void *)udata, &ar->k_ar.ar_arg_auditon, | |
1969 | sizeof(ar->k_ar.ar_arg_auditon)); | |
1970 | ar->k_ar.ar_valid_arg |= ARG_AUDITON; | |
1971 | } | |
1972 | ||
1973 | /* | |
1974 | * Audit information about a file, either the file's vnode info, or its | |
1975 | * socket address info. | |
1976 | */ | |
1977 | void | |
1978 | audit_arg_file(struct proc *p, struct file *fp) | |
1979 | { | |
1980 | struct kaudit_record *ar; | |
1981 | struct socket *so; | |
1982 | struct inpcb *pcb; | |
1983 | ||
1984 | if (fp->f_type == DTYPE_VNODE) { | |
1985 | audit_arg_vnpath((struct vnode *)fp->f_data, ARG_VNODE1); | |
1986 | return; | |
1987 | } | |
1988 | ||
1989 | if (fp->f_type == DTYPE_SOCKET) { | |
1990 | ar = currecord(); | |
1991 | if (ar == NULL) | |
1992 | return; | |
1993 | so = (struct socket *)fp->f_data; | |
1994 | if (INP_CHECK_SOCKAF(so, PF_INET)) { | |
1995 | if (so->so_pcb == NULL) | |
1996 | return; | |
1997 | ar->k_ar.ar_arg_sockinfo.so_type = | |
1998 | so->so_type; | |
1999 | ar->k_ar.ar_arg_sockinfo.so_domain = | |
2000 | INP_SOCKAF(so); | |
2001 | ar->k_ar.ar_arg_sockinfo.so_protocol = | |
2002 | so->so_proto->pr_protocol; | |
2003 | pcb = (struct inpcb *)so->so_pcb; | |
2004 | ar->k_ar.ar_arg_sockinfo.so_raddr = | |
2005 | pcb->inp_faddr.s_addr; | |
2006 | ar->k_ar.ar_arg_sockinfo.so_laddr = | |
2007 | pcb->inp_laddr.s_addr; | |
2008 | ar->k_ar.ar_arg_sockinfo.so_rport = | |
2009 | pcb->inp_fport; | |
2010 | ar->k_ar.ar_arg_sockinfo.so_lport = | |
2011 | pcb->inp_lport; | |
2012 | ar->k_ar.ar_valid_arg |= ARG_SOCKINFO; | |
2013 | } | |
2014 | } | |
2015 | ||
2016 | } | |
2017 | ||
55e303ae A |
2018 | /* |
2019 | * Initialize the audit information for the a process, presumably the first | |
e5568f75 A |
2020 | * process in the system. |
2021 | * XXX It is not clear what the initial values should be for session ID, | |
2022 | * terminal ID etc. | |
55e303ae A |
2023 | */ |
2024 | void | |
2025 | audit_proc_init(struct proc *p) | |
2026 | { | |
2027 | MALLOC_ZONE(p->p_au, struct auditinfo *, sizeof(*p->p_au), | |
2028 | M_SUBPROC, M_WAITOK); | |
2029 | ||
2030 | bzero((void *)p->p_au, sizeof(*p->p_au)); | |
e5568f75 A |
2031 | |
2032 | p->p_au->ai_auid = AU_DEFAUDITID; | |
55e303ae A |
2033 | } |
2034 | ||
2035 | /* | |
2036 | * Copy the audit info from the parent process to the child process when | |
2037 | * a fork takes place. | |
2038 | * XXX Need to check for failure from the memory allocation, in here | |
2039 | * as well as in any functions that use the process auditing info. | |
2040 | */ | |
2041 | void | |
2042 | audit_proc_fork(struct proc *parent, struct proc *child) | |
2043 | { | |
2044 | /* Always set up the audit information pointer as this function | |
2045 | * should only be called when the proc is new. If proc structures | |
2046 | * are ever cached and reused, then this behavior will leak memory. | |
2047 | */ | |
2048 | MALLOC_ZONE(child->p_au, struct auditinfo *, sizeof(*child->p_au), | |
2049 | M_SUBPROC, M_WAITOK); | |
2050 | ||
2051 | bcopy(parent->p_au, child->p_au, sizeof(*child->p_au)); | |
2052 | } | |
2053 | ||
2054 | /* | |
2055 | * Free the auditing structure for the process. | |
2056 | */ | |
2057 | void | |
2058 | audit_proc_free(struct proc *p) | |
2059 | { | |
2060 | FREE_ZONE((void *)p->p_au, sizeof(*p->p_au), M_SUBPROC); | |
2061 | p->p_au = NULL; | |
2062 | } | |
2063 | ||
2064 | /* | |
2065 | * Store a path as given by the user process for auditing into the audit | |
2066 | * record stored on the user thread. This function will allocate the memory to | |
2067 | * store the path info if not already available. This memory will be | |
2068 | * freed when the audit record is freed. | |
2069 | */ | |
2070 | void | |
2071 | audit_arg_upath(struct proc *p, char *upath, u_int64_t flags) | |
2072 | { | |
2073 | struct kaudit_record *ar; | |
2074 | char **pathp; | |
2075 | ||
2076 | if (p == NULL || upath == NULL) | |
2077 | return; /* nothing to do! */ | |
2078 | ||
2079 | if (flags & (ARG_UPATH1 | ARG_UPATH2) == 0) | |
2080 | return; | |
2081 | ||
2082 | ar = currecord(); | |
2083 | if (ar == NULL) /* This will be the case for unaudited system calls */ | |
2084 | return; | |
2085 | ||
2086 | if (flags & ARG_UPATH1) { | |
2087 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_UPATH1); | |
2088 | pathp = &ar->k_ar.ar_arg_upath1; | |
2089 | } | |
2090 | else { | |
2091 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_UPATH2); | |
2092 | pathp = &ar->k_ar.ar_arg_upath2; | |
2093 | } | |
2094 | ||
2095 | if (*pathp == NULL) { | |
e5568f75 | 2096 | *pathp = (char *)kalloc(MAXPATHLEN); |
55e303ae A |
2097 | if (*pathp == NULL) |
2098 | return; | |
2099 | } | |
2100 | ||
e5568f75 A |
2101 | if (canon_path(p, upath, *pathp) == 0) { |
2102 | if (flags & ARG_UPATH1) | |
2103 | ar->k_ar.ar_valid_arg |= ARG_UPATH1; | |
2104 | else | |
2105 | ar->k_ar.ar_valid_arg |= ARG_UPATH2; | |
2106 | } else { | |
2107 | kfree((vm_offset_t)*pathp, MAXPATHLEN); | |
2108 | *pathp = NULL; | |
2109 | } | |
55e303ae A |
2110 | } |
2111 | ||
2112 | /* | |
2113 | * Function to save the path and vnode attr information into the audit | |
2114 | * record. | |
2115 | * | |
2116 | * It is assumed that the caller will hold any vnode locks necessary to | |
2117 | * perform a VOP_GETATTR() on the passed vnode. | |
2118 | * | |
2119 | * XXX: The attr code is very similar to vfs_vnops.c:vn_stat(), but | |
2120 | * always provides access to the generation number as we need that | |
2121 | * to construct the BSM file ID. | |
2122 | * XXX: We should accept the process argument from the caller, since | |
2123 | * it's very likely they already have a reference. | |
2124 | * XXX: Error handling in this function is poor. | |
2125 | */ | |
2126 | void | |
2127 | audit_arg_vnpath(struct vnode *vp, u_int64_t flags) | |
2128 | { | |
2129 | struct kaudit_record *ar; | |
2130 | struct vattr vattr; | |
2131 | int error; | |
2132 | int len; | |
2133 | char **pathp; | |
2134 | struct vnode_au_info *vnp; | |
2135 | struct proc *p; | |
2136 | ||
2137 | if (vp == NULL) | |
2138 | return; | |
2139 | ||
2140 | ar = currecord(); | |
2141 | if (ar == NULL) /* This will be the case for unaudited system calls */ | |
2142 | return; | |
2143 | ||
2144 | if (flags & (ARG_VNODE1 | ARG_VNODE2) == 0) | |
2145 | return; | |
2146 | ||
2147 | p = current_proc(); | |
2148 | ||
2149 | if (flags & ARG_VNODE1) { | |
2150 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_KPATH1); | |
2151 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_VNODE1); | |
2152 | pathp = &ar->k_ar.ar_arg_kpath1; | |
2153 | vnp = &ar->k_ar.ar_arg_vnode1; | |
2154 | } | |
2155 | else { | |
2156 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_KPATH2); | |
2157 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_VNODE2); | |
2158 | pathp = &ar->k_ar.ar_arg_kpath2; | |
2159 | vnp = &ar->k_ar.ar_arg_vnode2; | |
2160 | } | |
2161 | ||
2162 | if (*pathp == NULL) { | |
e5568f75 | 2163 | *pathp = (char *)kalloc(MAXPATHLEN); |
55e303ae A |
2164 | if (*pathp == NULL) |
2165 | return; | |
2166 | } | |
2167 | ||
e5568f75 A |
2168 | /* |
2169 | * If vn_getpath() succeeds, place it in a string buffer | |
2170 | * attached to the audit record, and set a flag indicating | |
2171 | * it is present. | |
2172 | */ | |
55e303ae | 2173 | len = MAXPATHLEN; |
e5568f75 A |
2174 | if (vn_getpath(vp, *pathp, &len) == 0) { |
2175 | if (flags & ARG_VNODE1) | |
2176 | ar->k_ar.ar_valid_arg |= ARG_KPATH1; | |
2177 | else | |
2178 | ar->k_ar.ar_valid_arg |= ARG_KPATH2; | |
2179 | } else { | |
2180 | kfree((vm_offset_t)*pathp, MAXPATHLEN); | |
2181 | *pathp = NULL; | |
2182 | } | |
55e303ae A |
2183 | |
2184 | /* | |
2185 | * XXX: We'd assert the vnode lock here, only Darwin doesn't | |
2186 | * appear to have vnode locking assertions. | |
2187 | */ | |
2188 | error = VOP_GETATTR(vp, &vattr, p->p_ucred, p); | |
2189 | if (error) { | |
2190 | /* XXX: How to handle this case? */ | |
2191 | return; | |
2192 | } | |
2193 | ||
2194 | vnp->vn_mode = vattr.va_mode; | |
2195 | vnp->vn_uid = vattr.va_uid; | |
2196 | vnp->vn_gid = vattr.va_gid; | |
2197 | vnp->vn_dev = vattr.va_rdev; | |
2198 | vnp->vn_fsid = vattr.va_fsid; | |
2199 | vnp->vn_fileid = vattr.va_fileid; | |
2200 | vnp->vn_gen = vattr.va_gen; | |
2201 | if (flags & ARG_VNODE1) | |
2202 | ar->k_ar.ar_valid_arg |= ARG_VNODE1; | |
2203 | else | |
2204 | ar->k_ar.ar_valid_arg |= ARG_VNODE2; | |
2205 | ||
2206 | } | |
2207 | ||
e5568f75 A |
2208 | void |
2209 | audit_arg_mach_port1(mach_port_t port) | |
2210 | { | |
2211 | struct kaudit_record *ar; | |
2212 | ||
2213 | ar = currecord(); | |
2214 | if (ar == NULL) | |
2215 | return; | |
2216 | ||
2217 | ar->k_ar.ar_arg_mach_port1 = port; | |
2218 | ar->k_ar.ar_valid_arg |= ARG_MACHPORT1; | |
2219 | } | |
2220 | ||
2221 | void | |
2222 | audit_arg_mach_port2(mach_port_t port) | |
2223 | { | |
2224 | struct kaudit_record *ar; | |
2225 | ||
2226 | ar = currecord(); | |
2227 | if (ar == NULL) | |
2228 | return; | |
2229 | ||
2230 | ar->k_ar.ar_arg_mach_port2 = port; | |
2231 | ar->k_ar.ar_valid_arg |= ARG_MACHPORT2; | |
2232 | } | |
2233 | ||
2234 | /* | |
2235 | * The close() system call uses it's own audit call to capture the | |
2236 | * path/vnode information because those pieces are not easily obtained | |
2237 | * within the system call itself. | |
2238 | */ | |
2239 | void | |
2240 | audit_sysclose(struct proc *p, int fd) | |
2241 | { | |
2242 | struct file *fp; | |
2243 | ||
2244 | audit_arg_fd(fd); | |
2245 | ||
2246 | if (getvnode(p, fd, &fp) != 0) | |
2247 | return; | |
2248 | ||
2249 | audit_arg_vnpath((struct vnode *)fp->f_data, ARG_VNODE1); | |
2250 | ||
2251 | } | |
2252 | ||
55e303ae A |
2253 | #else /* !AUDIT */ |
2254 | ||
2255 | void | |
2256 | audit_init(void) | |
2257 | { | |
2258 | ||
2259 | } | |
2260 | ||
2261 | void | |
2262 | audit_shutdown(void) | |
2263 | { | |
2264 | ||
2265 | } | |
2266 | ||
2267 | int | |
2268 | audit(struct proc *p, struct audit_args *uap, register_t *retval) | |
2269 | { | |
2270 | return (ENOSYS); | |
2271 | } | |
2272 | ||
2273 | int | |
2274 | auditon(struct proc *p, struct auditon_args *uap, register_t *retval) | |
2275 | { | |
2276 | return (ENOSYS); | |
2277 | } | |
2278 | ||
55e303ae A |
2279 | int |
2280 | getauid(struct proc *p, struct getauid_args *uap, register_t *retval) | |
2281 | { | |
2282 | return (ENOSYS); | |
2283 | } | |
2284 | ||
2285 | int | |
2286 | setauid(struct proc *p, struct setauid_args *uap, register_t *retval) | |
2287 | { | |
2288 | return (ENOSYS); | |
2289 | } | |
2290 | ||
2291 | int | |
2292 | getaudit(struct proc *p, struct getaudit_args *uap, register_t *retval) | |
2293 | { | |
2294 | return (ENOSYS); | |
2295 | } | |
2296 | ||
2297 | int | |
2298 | setaudit(struct proc *p, struct setaudit_args *uap, register_t *retval) | |
2299 | { | |
2300 | return (ENOSYS); | |
2301 | } | |
2302 | ||
2303 | int | |
2304 | getaudit_addr(struct proc *p, struct getaudit_addr_args *uap, register_t *retval) | |
2305 | { | |
2306 | return (ENOSYS); | |
2307 | } | |
2308 | ||
2309 | int | |
2310 | setaudit_addr(struct proc *p, struct setaudit_addr_args *uap, register_t *retval) | |
2311 | { | |
2312 | return (ENOSYS); | |
2313 | } | |
2314 | ||
2315 | int | |
2316 | auditctl(struct proc *p, struct auditctl_args *uap, register_t *retval) | |
2317 | { | |
2318 | return (ENOSYS); | |
2319 | } | |
2320 | ||
2321 | void | |
2322 | audit_proc_init(struct proc *p) | |
2323 | { | |
2324 | ||
2325 | } | |
2326 | ||
2327 | void | |
2328 | audit_proc_fork(struct proc *parent, struct proc *child) | |
2329 | { | |
2330 | ||
2331 | } | |
2332 | ||
2333 | void | |
2334 | audit_proc_free(struct proc *p) | |
2335 | { | |
2336 | ||
2337 | } | |
2338 | ||
2339 | #endif /* AUDIT */ |