]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
fe8ab488 | 2 | * Copyright (c) 2000-2014 Apple Inc. All rights reserved. |
5d5c5d0d | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95 | |
62 | */ | |
63 | ||
64 | #include <sys/param.h> | |
91447636 A |
65 | #include <sys/proc_internal.h> |
66 | #include <sys/buf_internal.h> | |
67 | #include <sys/mount_internal.h> | |
68 | #include <sys/vnode_internal.h> | |
1c79356b A |
69 | #include <sys/trace.h> |
70 | #include <sys/malloc.h> | |
55e303ae A |
71 | #include <sys/time.h> |
72 | #include <sys/kernel.h> | |
1c79356b | 73 | #include <sys/resourcevar.h> |
316670eb | 74 | #include <miscfs/specfs/specdev.h> |
91447636 | 75 | #include <sys/uio_internal.h> |
1c79356b | 76 | #include <libkern/libkern.h> |
55e303ae | 77 | #include <machine/machine_routines.h> |
1c79356b | 78 | |
91447636 | 79 | #include <sys/ubc_internal.h> |
2d21ac55 | 80 | #include <vm/vnode_pager.h> |
1c79356b | 81 | |
55e303ae A |
82 | #include <mach/mach_types.h> |
83 | #include <mach/memory_object_types.h> | |
91447636 A |
84 | #include <mach/vm_map.h> |
85 | #include <mach/upl.h> | |
6d2010ae | 86 | #include <kern/task.h> |
39037602 | 87 | #include <kern/policy_internal.h> |
91447636 A |
88 | |
89 | #include <vm/vm_kern.h> | |
90 | #include <vm/vm_map.h> | |
91 | #include <vm/vm_pageout.h> | |
fe8ab488 | 92 | #include <vm/vm_fault.h> |
55e303ae | 93 | |
1c79356b | 94 | #include <sys/kdebug.h> |
b0d623f7 A |
95 | #include <libkern/OSAtomic.h> |
96 | ||
6d2010ae A |
97 | #include <sys/sdt.h> |
98 | ||
3e170ce0 A |
99 | #include <stdbool.h> |
100 | ||
5ba3f43e A |
101 | #include <vfs/vfs_disk_conditioner.h> |
102 | ||
b0d623f7 A |
103 | #if 0 |
104 | #undef KERNEL_DEBUG | |
105 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT | |
106 | #endif | |
107 | ||
1c79356b | 108 | |
2d21ac55 | 109 | #define CL_READ 0x01 |
b0d623f7 | 110 | #define CL_WRITE 0x02 |
cf7d32b8 A |
111 | #define CL_ASYNC 0x04 |
112 | #define CL_COMMIT 0x08 | |
2d21ac55 A |
113 | #define CL_PAGEOUT 0x10 |
114 | #define CL_AGE 0x20 | |
115 | #define CL_NOZERO 0x40 | |
116 | #define CL_PAGEIN 0x80 | |
117 | #define CL_DEV_MEMORY 0x100 | |
118 | #define CL_PRESERVE 0x200 | |
119 | #define CL_THROTTLE 0x400 | |
120 | #define CL_KEEPCACHED 0x800 | |
121 | #define CL_DIRECT_IO 0x1000 | |
122 | #define CL_PASSIVE 0x2000 | |
b0d623f7 | 123 | #define CL_IOSTREAMING 0x4000 |
6d2010ae A |
124 | #define CL_CLOSE 0x8000 |
125 | #define CL_ENCRYPTED 0x10000 | |
316670eb A |
126 | #define CL_RAW_ENCRYPTED 0x20000 |
127 | #define CL_NOCACHE 0x40000 | |
b0d623f7 A |
128 | |
129 | #define MAX_VECTOR_UPL_ELEMENTS 8 | |
fe8ab488 | 130 | #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES) |
b4c24cb9 | 131 | |
39037602 A |
132 | #define CLUSTER_IO_WAITING ((buf_t)1) |
133 | ||
b0d623f7 A |
134 | extern upl_t vector_upl_create(vm_offset_t); |
135 | extern boolean_t vector_upl_is_valid(upl_t); | |
136 | extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t); | |
137 | extern void vector_upl_set_pagelist(upl_t); | |
138 | extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t); | |
d7e50217 | 139 | |
b4c24cb9 | 140 | struct clios { |
6d2010ae | 141 | lck_mtx_t io_mtxp; |
d7e50217 A |
142 | u_int io_completed; /* amount of io that has currently completed */ |
143 | u_int io_issued; /* amount of io that was successfully issued */ | |
144 | int io_error; /* error code of first error encountered */ | |
145 | int io_wanted; /* someone is sleeping waiting for a change in state */ | |
b4c24cb9 A |
146 | }; |
147 | ||
3e170ce0 A |
148 | struct cl_direct_read_lock { |
149 | LIST_ENTRY(cl_direct_read_lock) chain; | |
150 | int32_t ref_count; | |
151 | vnode_t vp; | |
152 | lck_rw_t rw_lock; | |
153 | }; | |
154 | ||
155 | #define CL_DIRECT_READ_LOCK_BUCKETS 61 | |
156 | ||
157 | static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock) | |
158 | cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS]; | |
159 | ||
160 | static lck_spin_t cl_direct_read_spin_lock; | |
161 | ||
91447636 A |
162 | static lck_grp_t *cl_mtx_grp; |
163 | static lck_attr_t *cl_mtx_attr; | |
164 | static lck_grp_attr_t *cl_mtx_grp_attr; | |
060df5ea | 165 | static lck_mtx_t *cl_transaction_mtxp; |
91447636 | 166 | |
2d21ac55 A |
167 | #define IO_UNKNOWN 0 |
168 | #define IO_DIRECT 1 | |
169 | #define IO_CONTIG 2 | |
170 | #define IO_COPY 3 | |
171 | ||
172 | #define PUSH_DELAY 0x01 | |
173 | #define PUSH_ALL 0x02 | |
174 | #define PUSH_SYNC 0x04 | |
175 | ||
176 | ||
177 | static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset); | |
178 | static void cluster_wait_IO(buf_t cbp_head, int async); | |
179 | static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait); | |
180 | ||
181 | static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length); | |
182 | ||
91447636 | 183 | static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
2d21ac55 A |
184 | int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg); |
185 | static int cluster_iodone(buf_t bp, void *callback_arg); | |
39236c6e A |
186 | static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp); |
187 | static int cluster_is_throttled(vnode_t vp); | |
91447636 | 188 | |
6d2010ae A |
189 | static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name); |
190 | ||
fe8ab488 | 191 | static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags); |
2d21ac55 | 192 | |
b0d623f7 | 193 | static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference); |
2d21ac55 A |
194 | static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference); |
195 | ||
196 | static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, | |
197 | int (*)(buf_t, void *), void *callback_arg); | |
198 | static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
199 | int flags, int (*)(buf_t, void *), void *callback_arg); | |
200 | static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
201 | int (*)(buf_t, void *), void *callback_arg, int flags); | |
1c79356b | 202 | |
2d21ac55 A |
203 | static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, |
204 | off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg); | |
205 | static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, | |
206 | int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg); | |
207 | static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, | |
208 | int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag); | |
91447636 | 209 | |
2d21ac55 | 210 | static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg); |
91447636 | 211 | |
2d21ac55 A |
212 | static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag); |
213 | static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag); | |
91447636 | 214 | |
2d21ac55 | 215 | static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg); |
55e303ae | 216 | |
813fb2f6 | 217 | static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg, int *err); |
2d21ac55 A |
218 | |
219 | static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg); | |
813fb2f6 | 220 | static int sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg); |
b0d623f7 | 221 | static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg); |
2d21ac55 A |
222 | |
223 | static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp); | |
55e303ae A |
224 | static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); |
225 | static kern_return_t vfs_drt_control(void **cmapp, int op_type); | |
226 | ||
9bccf70c | 227 | |
316670eb A |
228 | /* |
229 | * For throttled IO to check whether | |
230 | * a block is cached by the boot cache | |
231 | * and thus it can avoid delaying the IO. | |
232 | * | |
233 | * bootcache_contains_block is initially | |
234 | * NULL. The BootCache will set it while | |
235 | * the cache is active and clear it when | |
236 | * the cache is jettisoned. | |
237 | * | |
238 | * Returns 0 if the block is not | |
239 | * contained in the cache, 1 if it is | |
240 | * contained. | |
241 | * | |
242 | * The function pointer remains valid | |
243 | * after the cache has been evicted even | |
244 | * if bootcache_contains_block has been | |
245 | * cleared. | |
246 | * | |
247 | * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs | |
248 | */ | |
249 | int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL; | |
250 | ||
251 | ||
2d21ac55 A |
252 | /* |
253 | * limit the internal I/O size so that we | |
254 | * can represent it in a 32 bit int | |
255 | */ | |
b0d623f7 | 256 | #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512) |
fe8ab488 | 257 | #define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES |
b0d623f7 | 258 | #define MAX_VECTS 16 |
3e170ce0 A |
259 | /* |
260 | * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider | |
261 | * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k), | |
262 | * we have not historically allowed the write to bypass the UBC. | |
263 | */ | |
264 | #define MIN_DIRECT_WRITE_SIZE (16384) | |
2d21ac55 | 265 | |
6d2010ae A |
266 | #define WRITE_THROTTLE 6 |
267 | #define WRITE_THROTTLE_SSD 2 | |
268 | #define WRITE_BEHIND 1 | |
269 | #define WRITE_BEHIND_SSD 1 | |
316670eb | 270 | |
5ba3f43e A |
271 | #if CONFIG_EMBEDDED |
272 | #define PREFETCH 1 | |
273 | #define PREFETCH_SSD 1 | |
274 | uint32_t speculative_prefetch_max = (2048 * 1024); /* maximum bytes in a specluative read-ahead */ | |
275 | uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead */ | |
276 | #else | |
6d2010ae | 277 | #define PREFETCH 3 |
fe8ab488 A |
278 | #define PREFETCH_SSD 2 |
279 | uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */ | |
280 | uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/ | |
5ba3f43e | 281 | #endif |
316670eb | 282 | |
6d2010ae | 283 | |
316670eb | 284 | #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base)) |
b0d623f7 | 285 | #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE)) |
5ba3f43e | 286 | #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd) ? PREFETCH_SSD : PREFETCH))) |
cf7d32b8 | 287 | |
6d2010ae | 288 | int speculative_reads_disabled = 0; |
2d21ac55 | 289 | |
1c79356b A |
290 | /* |
291 | * throttle the number of async writes that | |
292 | * can be outstanding on a single vnode | |
293 | * before we issue a synchronous write | |
294 | */ | |
39236c6e | 295 | #define THROTTLE_MAXCNT 0 |
316670eb | 296 | |
39236c6e | 297 | uint32_t throttle_max_iosize = (128 * 1024); |
316670eb | 298 | |
39236c6e A |
299 | #define THROTTLE_MAX_IOSIZE (throttle_max_iosize) |
300 | ||
301 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, ""); | |
316670eb | 302 | |
55e303ae | 303 | |
91447636 A |
304 | void |
305 | cluster_init(void) { | |
2d21ac55 | 306 | /* |
91447636 A |
307 | * allocate lock group attribute and group |
308 | */ | |
2d21ac55 | 309 | cl_mtx_grp_attr = lck_grp_attr_alloc_init(); |
91447636 A |
310 | cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr); |
311 | ||
312 | /* | |
313 | * allocate the lock attribute | |
314 | */ | |
315 | cl_mtx_attr = lck_attr_alloc_init(); | |
91447636 | 316 | |
060df5ea A |
317 | cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr); |
318 | ||
319 | if (cl_transaction_mtxp == NULL) | |
320 | panic("cluster_init: failed to allocate cl_transaction_mtxp"); | |
3e170ce0 A |
321 | |
322 | lck_spin_init(&cl_direct_read_spin_lock, cl_mtx_grp, cl_mtx_attr); | |
323 | ||
324 | for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i) | |
325 | LIST_INIT(&cl_direct_read_locks[i]); | |
91447636 A |
326 | } |
327 | ||
328 | ||
cf7d32b8 A |
329 | uint32_t |
330 | cluster_max_io_size(mount_t mp, int type) | |
331 | { | |
b0d623f7 A |
332 | uint32_t max_io_size; |
333 | uint32_t segcnt; | |
334 | uint32_t maxcnt; | |
335 | ||
336 | switch(type) { | |
337 | ||
338 | case CL_READ: | |
339 | segcnt = mp->mnt_segreadcnt; | |
340 | maxcnt = mp->mnt_maxreadcnt; | |
341 | break; | |
342 | case CL_WRITE: | |
343 | segcnt = mp->mnt_segwritecnt; | |
344 | maxcnt = mp->mnt_maxwritecnt; | |
345 | break; | |
346 | default: | |
347 | segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt); | |
348 | maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt); | |
349 | break; | |
350 | } | |
fe8ab488 | 351 | if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) { |
cf7d32b8 A |
352 | /* |
353 | * don't allow a size beyond the max UPL size we can create | |
354 | */ | |
fe8ab488 | 355 | segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT; |
cf7d32b8 A |
356 | } |
357 | max_io_size = min((segcnt * PAGE_SIZE), maxcnt); | |
358 | ||
fe8ab488 | 359 | if (max_io_size < MAX_UPL_TRANSFER_BYTES) { |
cf7d32b8 A |
360 | /* |
361 | * don't allow a size smaller than the old fixed limit | |
362 | */ | |
fe8ab488 | 363 | max_io_size = MAX_UPL_TRANSFER_BYTES; |
cf7d32b8 A |
364 | } else { |
365 | /* | |
366 | * make sure the size specified is a multiple of PAGE_SIZE | |
367 | */ | |
368 | max_io_size &= ~PAGE_MASK; | |
369 | } | |
370 | return (max_io_size); | |
371 | } | |
372 | ||
373 | ||
374 | ||
91447636 A |
375 | |
376 | #define CLW_ALLOCATE 0x01 | |
377 | #define CLW_RETURNLOCKED 0x02 | |
2d21ac55 A |
378 | #define CLW_IONOCACHE 0x04 |
379 | #define CLW_IOPASSIVE 0x08 | |
380 | ||
91447636 A |
381 | /* |
382 | * if the read ahead context doesn't yet exist, | |
383 | * allocate and initialize it... | |
384 | * the vnode lock serializes multiple callers | |
385 | * during the actual assignment... first one | |
386 | * to grab the lock wins... the other callers | |
387 | * will release the now unnecessary storage | |
388 | * | |
389 | * once the context is present, try to grab (but don't block on) | |
390 | * the lock associated with it... if someone | |
391 | * else currently owns it, than the read | |
392 | * will run without read-ahead. this allows | |
393 | * multiple readers to run in parallel and | |
394 | * since there's only 1 read ahead context, | |
395 | * there's no real loss in only allowing 1 | |
396 | * reader to have read-ahead enabled. | |
397 | */ | |
398 | static struct cl_readahead * | |
399 | cluster_get_rap(vnode_t vp) | |
400 | { | |
401 | struct ubc_info *ubc; | |
402 | struct cl_readahead *rap; | |
403 | ||
404 | ubc = vp->v_ubcinfo; | |
405 | ||
406 | if ((rap = ubc->cl_rahead) == NULL) { | |
407 | MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK); | |
408 | ||
409 | bzero(rap, sizeof *rap); | |
410 | rap->cl_lastr = -1; | |
411 | lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr); | |
412 | ||
413 | vnode_lock(vp); | |
414 | ||
415 | if (ubc->cl_rahead == NULL) | |
416 | ubc->cl_rahead = rap; | |
417 | else { | |
418 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
419 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
2d21ac55 | 420 | rap = ubc->cl_rahead; |
91447636 A |
421 | } |
422 | vnode_unlock(vp); | |
423 | } | |
424 | if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE) | |
425 | return(rap); | |
426 | ||
427 | return ((struct cl_readahead *)NULL); | |
428 | } | |
429 | ||
430 | ||
431 | /* | |
432 | * if the write behind context doesn't yet exist, | |
433 | * and CLW_ALLOCATE is specified, allocate and initialize it... | |
434 | * the vnode lock serializes multiple callers | |
435 | * during the actual assignment... first one | |
436 | * to grab the lock wins... the other callers | |
437 | * will release the now unnecessary storage | |
438 | * | |
439 | * if CLW_RETURNLOCKED is set, grab (blocking if necessary) | |
440 | * the lock associated with the write behind context before | |
441 | * returning | |
442 | */ | |
443 | ||
444 | static struct cl_writebehind * | |
445 | cluster_get_wbp(vnode_t vp, int flags) | |
446 | { | |
447 | struct ubc_info *ubc; | |
448 | struct cl_writebehind *wbp; | |
449 | ||
450 | ubc = vp->v_ubcinfo; | |
451 | ||
452 | if ((wbp = ubc->cl_wbehind) == NULL) { | |
453 | ||
454 | if ( !(flags & CLW_ALLOCATE)) | |
455 | return ((struct cl_writebehind *)NULL); | |
456 | ||
457 | MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK); | |
458 | ||
459 | bzero(wbp, sizeof *wbp); | |
460 | lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr); | |
461 | ||
462 | vnode_lock(vp); | |
463 | ||
464 | if (ubc->cl_wbehind == NULL) | |
465 | ubc->cl_wbehind = wbp; | |
466 | else { | |
467 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
468 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
2d21ac55 | 469 | wbp = ubc->cl_wbehind; |
91447636 A |
470 | } |
471 | vnode_unlock(vp); | |
472 | } | |
473 | if (flags & CLW_RETURNLOCKED) | |
474 | lck_mtx_lock(&wbp->cl_lockw); | |
475 | ||
476 | return (wbp); | |
477 | } | |
478 | ||
479 | ||
2d21ac55 | 480 | static void |
fe8ab488 | 481 | cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags) |
2d21ac55 A |
482 | { |
483 | struct cl_writebehind *wbp; | |
484 | ||
485 | if ((wbp = cluster_get_wbp(vp, 0)) != NULL) { | |
486 | ||
487 | if (wbp->cl_number) { | |
488 | lck_mtx_lock(&wbp->cl_lockw); | |
489 | ||
813fb2f6 | 490 | cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg, NULL); |
2d21ac55 A |
491 | |
492 | lck_mtx_unlock(&wbp->cl_lockw); | |
493 | } | |
494 | } | |
495 | } | |
496 | ||
497 | ||
316670eb A |
498 | static int |
499 | cluster_io_present_in_BC(vnode_t vp, off_t f_offset) | |
500 | { | |
501 | daddr64_t blkno; | |
502 | size_t io_size; | |
503 | int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block; | |
504 | ||
5ba3f43e A |
505 | if (bootcache_check_fn && vp->v_mount && vp->v_mount->mnt_devvp) { |
506 | if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ | VNODE_BLOCKMAP_NO_TRACK, NULL)) | |
316670eb A |
507 | return(0); |
508 | ||
509 | if (io_size == 0) | |
510 | return (0); | |
511 | ||
512 | if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno)) | |
513 | return(1); | |
514 | } | |
515 | return(0); | |
516 | } | |
517 | ||
518 | ||
55e303ae | 519 | static int |
39236c6e | 520 | cluster_is_throttled(vnode_t vp) |
55e303ae | 521 | { |
39236c6e | 522 | return (throttle_io_will_be_throttled(-1, vp->v_mount)); |
55e303ae A |
523 | } |
524 | ||
1c79356b | 525 | |
6d2010ae A |
526 | static void |
527 | cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name) | |
528 | { | |
529 | ||
530 | lck_mtx_lock(&iostate->io_mtxp); | |
531 | ||
532 | while ((iostate->io_issued - iostate->io_completed) > target) { | |
533 | ||
534 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START, | |
535 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
536 | ||
537 | iostate->io_wanted = 1; | |
538 | msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL); | |
539 | ||
540 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END, | |
541 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
542 | } | |
543 | lck_mtx_unlock(&iostate->io_mtxp); | |
544 | } | |
545 | ||
3e170ce0 A |
546 | static void cluster_handle_associated_upl(struct clios *iostate, upl_t upl, |
547 | upl_offset_t upl_offset, upl_size_t size) | |
548 | { | |
549 | if (!size) | |
550 | return; | |
551 | ||
552 | upl_t associated_upl = upl_associated_upl(upl); | |
553 | ||
554 | if (!associated_upl) | |
555 | return; | |
556 | ||
557 | #if 0 | |
558 | printf("1: %d %d\n", upl_offset, upl_offset + size); | |
559 | #endif | |
560 | ||
561 | /* | |
562 | * The associated UPL is page aligned to file offsets whereas the | |
563 | * UPL it's attached to has different alignment requirements. The | |
564 | * upl_offset that we have refers to @upl. The code that follows | |
565 | * has to deal with the first and last pages in this transaction | |
566 | * which might straddle pages in the associated UPL. To keep | |
567 | * track of these pages, we use the mark bits: if the mark bit is | |
568 | * set, we know another transaction has completed its part of that | |
569 | * page and so we can unlock that page here. | |
570 | * | |
571 | * The following illustrates what we have to deal with: | |
572 | * | |
573 | * MEM u <------------ 1 PAGE ------------> e | |
574 | * +-------------+----------------------+----------------- | |
575 | * | |######################|################# | |
576 | * +-------------+----------------------+----------------- | |
577 | * FILE | <--- a ---> o <------------ 1 PAGE ------------> | |
578 | * | |
579 | * So here we show a write to offset @o. The data that is to be | |
580 | * written is in a buffer that is not page aligned; it has offset | |
581 | * @a in the page. The upl that carries the data starts in memory | |
582 | * at @u. The associated upl starts in the file at offset @o. A | |
583 | * transaction will always end on a page boundary (like @e above) | |
584 | * except for the very last transaction in the group. We cannot | |
585 | * unlock the page at @o in the associated upl until both the | |
586 | * transaction ending at @e and the following transaction (that | |
587 | * starts at @e) has completed. | |
588 | */ | |
589 | ||
590 | /* | |
591 | * We record whether or not the two UPLs are aligned as the mark | |
592 | * bit in the first page of @upl. | |
593 | */ | |
594 | upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
595 | bool is_unaligned = upl_page_get_mark(pl, 0); | |
596 | ||
597 | if (is_unaligned) { | |
598 | upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl); | |
599 | ||
600 | upl_offset_t upl_end = upl_offset + size; | |
601 | assert(upl_end >= PAGE_SIZE); | |
602 | ||
603 | upl_size_t assoc_upl_size = upl_get_size(associated_upl); | |
604 | ||
605 | /* | |
606 | * In the very first transaction in the group, upl_offset will | |
607 | * not be page aligned, but after that it will be and in that | |
608 | * case we want the preceding page in the associated UPL hence | |
609 | * the minus one. | |
610 | */ | |
611 | assert(upl_offset); | |
612 | if (upl_offset) | |
613 | upl_offset = trunc_page_32(upl_offset - 1); | |
614 | ||
615 | lck_mtx_lock_spin(&iostate->io_mtxp); | |
616 | ||
617 | // Look at the first page... | |
618 | if (upl_offset | |
619 | && !upl_page_get_mark(assoc_pl, upl_offset >> PAGE_SHIFT)) { | |
620 | /* | |
621 | * The first page isn't marked so let another transaction | |
622 | * completion handle it. | |
623 | */ | |
624 | upl_page_set_mark(assoc_pl, upl_offset >> PAGE_SHIFT, true); | |
625 | upl_offset += PAGE_SIZE; | |
626 | } | |
627 | ||
628 | // And now the last page... | |
629 | ||
630 | /* | |
631 | * This needs to be > rather than >= because if it's equal, it | |
632 | * means there's another transaction that is sharing the last | |
633 | * page. | |
634 | */ | |
635 | if (upl_end > assoc_upl_size) | |
636 | upl_end = assoc_upl_size; | |
637 | else { | |
638 | upl_end = trunc_page_32(upl_end); | |
639 | const int last_pg = (upl_end >> PAGE_SHIFT) - 1; | |
640 | ||
641 | if (!upl_page_get_mark(assoc_pl, last_pg)) { | |
642 | /* | |
643 | * The last page isn't marked so mark the page and let another | |
644 | * transaction completion handle it. | |
645 | */ | |
646 | upl_page_set_mark(assoc_pl, last_pg, true); | |
647 | upl_end -= PAGE_SIZE; | |
648 | } | |
649 | } | |
650 | ||
651 | lck_mtx_unlock(&iostate->io_mtxp); | |
652 | ||
653 | #if 0 | |
654 | printf("2: %d %d\n", upl_offset, upl_end); | |
655 | #endif | |
656 | ||
657 | if (upl_end <= upl_offset) | |
658 | return; | |
659 | ||
660 | size = upl_end - upl_offset; | |
661 | } else { | |
662 | assert(!(upl_offset & PAGE_MASK)); | |
663 | assert(!(size & PAGE_MASK)); | |
664 | } | |
665 | ||
666 | boolean_t empty; | |
667 | ||
668 | /* | |
669 | * We can unlock these pages now and as this is for a | |
670 | * direct/uncached write, we want to dump the pages too. | |
671 | */ | |
672 | kern_return_t kr = upl_abort_range(associated_upl, upl_offset, size, | |
673 | UPL_ABORT_DUMP_PAGES, &empty); | |
674 | ||
675 | assert(!kr); | |
676 | ||
677 | if (!kr && empty) { | |
678 | upl_set_associated_upl(upl, NULL); | |
679 | upl_deallocate(associated_upl); | |
680 | } | |
681 | } | |
6d2010ae | 682 | |
1c79356b | 683 | static int |
39236c6e | 684 | cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp) |
2d21ac55 A |
685 | { |
686 | int upl_abort_code = 0; | |
687 | int page_in = 0; | |
688 | int page_out = 0; | |
689 | ||
6d2010ae | 690 | if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE)) |
2d21ac55 A |
691 | /* |
692 | * direct write of any flavor, or a direct read that wasn't aligned | |
693 | */ | |
694 | ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY); | |
695 | else { | |
696 | if (io_flags & B_PAGEIO) { | |
697 | if (io_flags & B_READ) | |
698 | page_in = 1; | |
699 | else | |
700 | page_out = 1; | |
701 | } | |
702 | if (io_flags & B_CACHE) | |
703 | /* | |
704 | * leave pages in the cache unchanged on error | |
705 | */ | |
706 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
39236c6e | 707 | else if (page_out && ((error != ENXIO) || vnode_isswap(vp))) |
2d21ac55 A |
708 | /* |
709 | * transient error... leave pages unchanged | |
710 | */ | |
711 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
712 | else if (page_in) | |
713 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; | |
714 | else | |
715 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
716 | ||
717 | ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code); | |
718 | } | |
719 | return (upl_abort_code); | |
720 | } | |
721 | ||
722 | ||
723 | static int | |
724 | cluster_iodone(buf_t bp, void *callback_arg) | |
1c79356b | 725 | { |
91447636 A |
726 | int b_flags; |
727 | int error; | |
728 | int total_size; | |
729 | int total_resid; | |
730 | int upl_offset; | |
731 | int zero_offset; | |
2d21ac55 A |
732 | int pg_offset = 0; |
733 | int commit_size = 0; | |
734 | int upl_flags = 0; | |
735 | int transaction_size = 0; | |
91447636 A |
736 | upl_t upl; |
737 | buf_t cbp; | |
738 | buf_t cbp_head; | |
739 | buf_t cbp_next; | |
740 | buf_t real_bp; | |
39236c6e | 741 | vnode_t vp; |
91447636 | 742 | struct clios *iostate; |
2d21ac55 | 743 | boolean_t transaction_complete = FALSE; |
91447636 | 744 | |
3e170ce0 | 745 | __IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head)); |
1c79356b A |
746 | |
747 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, | |
b0d623f7 | 748 | cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
1c79356b | 749 | |
060df5ea | 750 | if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) { |
060df5ea A |
751 | lck_mtx_lock_spin(cl_transaction_mtxp); |
752 | ||
753 | bp->b_flags |= B_TDONE; | |
3e170ce0 | 754 | |
060df5ea | 755 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { |
6d2010ae | 756 | /* |
060df5ea A |
757 | * all I/O requests that are part of this transaction |
758 | * have to complete before we can process it | |
759 | */ | |
6d2010ae | 760 | if ( !(cbp->b_flags & B_TDONE)) { |
1c79356b | 761 | |
6d2010ae | 762 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
060df5ea A |
763 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); |
764 | ||
765 | lck_mtx_unlock(cl_transaction_mtxp); | |
6d2010ae | 766 | |
39037602 A |
767 | return 0; |
768 | } | |
769 | ||
770 | if (cbp->b_trans_next == CLUSTER_IO_WAITING) { | |
771 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
772 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); | |
773 | ||
774 | lck_mtx_unlock(cl_transaction_mtxp); | |
775 | wakeup(cbp); | |
6d2010ae | 776 | |
060df5ea A |
777 | return 0; |
778 | } | |
39037602 | 779 | |
060df5ea | 780 | if (cbp->b_flags & B_EOT) |
6d2010ae | 781 | transaction_complete = TRUE; |
060df5ea A |
782 | } |
783 | lck_mtx_unlock(cl_transaction_mtxp); | |
784 | ||
785 | if (transaction_complete == FALSE) { | |
6d2010ae | 786 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
060df5ea | 787 | cbp_head, 0, 0, 0, 0); |
2d21ac55 | 788 | return 0; |
1c79356b A |
789 | } |
790 | } | |
791 | error = 0; | |
792 | total_size = 0; | |
793 | total_resid = 0; | |
794 | ||
795 | cbp = cbp_head; | |
39236c6e | 796 | vp = cbp->b_vp; |
1c79356b | 797 | upl_offset = cbp->b_uploffset; |
91447636 | 798 | upl = cbp->b_upl; |
1c79356b A |
799 | b_flags = cbp->b_flags; |
800 | real_bp = cbp->b_real_bp; | |
9bccf70c | 801 | zero_offset= cbp->b_validend; |
b4c24cb9 | 802 | iostate = (struct clios *)cbp->b_iostate; |
1c79356b | 803 | |
91447636 A |
804 | if (real_bp) |
805 | real_bp->b_dev = cbp->b_dev; | |
806 | ||
1c79356b | 807 | while (cbp) { |
1c79356b A |
808 | if ((cbp->b_flags & B_ERROR) && error == 0) |
809 | error = cbp->b_error; | |
810 | ||
811 | total_resid += cbp->b_resid; | |
812 | total_size += cbp->b_bcount; | |
813 | ||
814 | cbp_next = cbp->b_trans_next; | |
815 | ||
2d21ac55 A |
816 | if (cbp_next == NULL) |
817 | /* | |
818 | * compute the overall size of the transaction | |
819 | * in case we created one that has 'holes' in it | |
820 | * 'total_size' represents the amount of I/O we | |
821 | * did, not the span of the transaction w/r to the UPL | |
822 | */ | |
823 | transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset; | |
824 | ||
825 | if (cbp != cbp_head) | |
826 | free_io_buf(cbp); | |
1c79356b A |
827 | |
828 | cbp = cbp_next; | |
829 | } | |
3e170ce0 A |
830 | |
831 | if (ISSET(b_flags, B_COMMIT_UPL)) { | |
832 | cluster_handle_associated_upl(iostate, | |
833 | cbp_head->b_upl, | |
834 | upl_offset, | |
835 | transaction_size); | |
836 | } | |
837 | ||
2d21ac55 A |
838 | if (error == 0 && total_resid) |
839 | error = EIO; | |
840 | ||
841 | if (error == 0) { | |
842 | int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone); | |
843 | ||
844 | if (cliodone_func != NULL) { | |
845 | cbp_head->b_bcount = transaction_size; | |
846 | ||
847 | error = (*cliodone_func)(cbp_head, callback_arg); | |
848 | } | |
849 | } | |
b4c24cb9 A |
850 | if (zero_offset) |
851 | cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); | |
852 | ||
2d21ac55 A |
853 | free_io_buf(cbp_head); |
854 | ||
b4c24cb9 | 855 | if (iostate) { |
91447636 A |
856 | int need_wakeup = 0; |
857 | ||
d7e50217 A |
858 | /* |
859 | * someone has issued multiple I/Os asynchrounsly | |
860 | * and is waiting for them to complete (streaming) | |
861 | */ | |
6d2010ae | 862 | lck_mtx_lock_spin(&iostate->io_mtxp); |
91447636 | 863 | |
d7e50217 A |
864 | if (error && iostate->io_error == 0) |
865 | iostate->io_error = error; | |
9bccf70c | 866 | |
b4c24cb9 A |
867 | iostate->io_completed += total_size; |
868 | ||
869 | if (iostate->io_wanted) { | |
d7e50217 A |
870 | /* |
871 | * someone is waiting for the state of | |
872 | * this io stream to change | |
873 | */ | |
b4c24cb9 | 874 | iostate->io_wanted = 0; |
91447636 | 875 | need_wakeup = 1; |
b4c24cb9 | 876 | } |
6d2010ae | 877 | lck_mtx_unlock(&iostate->io_mtxp); |
91447636 A |
878 | |
879 | if (need_wakeup) | |
880 | wakeup((caddr_t)&iostate->io_wanted); | |
b4c24cb9 | 881 | } |
1c79356b A |
882 | |
883 | if (b_flags & B_COMMIT_UPL) { | |
3e170ce0 | 884 | pg_offset = upl_offset & PAGE_MASK; |
2d21ac55 | 885 | commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 886 | |
2d21ac55 | 887 | if (error) |
39236c6e | 888 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp); |
2d21ac55 | 889 | else { |
3e170ce0 | 890 | upl_flags = UPL_COMMIT_FREE_ON_EMPTY; |
1c79356b | 891 | |
91447636 | 892 | if ((b_flags & B_PHYS) && (b_flags & B_READ)) |
2d21ac55 | 893 | upl_flags |= UPL_COMMIT_SET_DIRTY; |
55e303ae | 894 | |
1c79356b | 895 | if (b_flags & B_AGE) |
2d21ac55 | 896 | upl_flags |= UPL_COMMIT_INACTIVATE; |
1c79356b | 897 | |
2d21ac55 | 898 | ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags); |
1c79356b | 899 | } |
91447636 | 900 | } |
6d2010ae | 901 | if (real_bp) { |
2d21ac55 A |
902 | if (error) { |
903 | real_bp->b_flags |= B_ERROR; | |
904 | real_bp->b_error = error; | |
905 | } | |
906 | real_bp->b_resid = total_resid; | |
907 | ||
908 | buf_biodone(real_bp); | |
909 | } | |
910 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
b0d623f7 | 911 | upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0); |
1c79356b A |
912 | |
913 | return (error); | |
914 | } | |
915 | ||
916 | ||
b0d623f7 | 917 | uint32_t |
39236c6e | 918 | cluster_throttle_io_limit(vnode_t vp, uint32_t *limit) |
b0d623f7 | 919 | { |
39236c6e | 920 | if (cluster_is_throttled(vp)) { |
316670eb | 921 | *limit = THROTTLE_MAX_IOSIZE; |
b0d623f7 A |
922 | return 1; |
923 | } | |
924 | return 0; | |
925 | } | |
926 | ||
927 | ||
91447636 | 928 | void |
b0d623f7 | 929 | cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp) |
1c79356b | 930 | { |
1c79356b | 931 | |
55e303ae | 932 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, |
b0d623f7 | 933 | upl_offset, size, bp, 0, 0); |
9bccf70c | 934 | |
91447636 | 935 | if (bp == NULL || bp->b_datap == 0) { |
2d21ac55 A |
936 | upl_page_info_t *pl; |
937 | addr64_t zero_addr; | |
9bccf70c | 938 | |
55e303ae A |
939 | pl = ubc_upl_pageinfo(upl); |
940 | ||
2d21ac55 | 941 | if (upl_device_page(pl) == TRUE) { |
fe8ab488 | 942 | zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset; |
2d21ac55 A |
943 | |
944 | bzero_phys_nc(zero_addr, size); | |
945 | } else { | |
946 | while (size) { | |
947 | int page_offset; | |
948 | int page_index; | |
949 | int zero_cnt; | |
55e303ae | 950 | |
2d21ac55 A |
951 | page_index = upl_offset / PAGE_SIZE; |
952 | page_offset = upl_offset & PAGE_MASK; | |
55e303ae | 953 | |
fe8ab488 | 954 | zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset; |
2d21ac55 | 955 | zero_cnt = min(PAGE_SIZE - page_offset, size); |
55e303ae | 956 | |
2d21ac55 | 957 | bzero_phys(zero_addr, zero_cnt); |
55e303ae | 958 | |
2d21ac55 A |
959 | size -= zero_cnt; |
960 | upl_offset += zero_cnt; | |
961 | } | |
55e303ae | 962 | } |
1c79356b | 963 | } else |
91447636 | 964 | bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size); |
1c79356b | 965 | |
55e303ae A |
966 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, |
967 | upl_offset, size, 0, 0, 0); | |
1c79356b A |
968 | } |
969 | ||
91447636 | 970 | |
2d21ac55 A |
971 | static void |
972 | cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset) | |
973 | { | |
974 | cbp_head->b_validend = zero_offset; | |
975 | cbp_tail->b_flags |= B_EOT; | |
976 | } | |
977 | ||
978 | static void | |
979 | cluster_wait_IO(buf_t cbp_head, int async) | |
980 | { | |
981 | buf_t cbp; | |
982 | ||
983 | if (async) { | |
39037602 A |
984 | /* |
985 | * Async callback completion will not normally generate a | |
986 | * wakeup upon I/O completion. To get woken up, we set | |
987 | * b_trans_next (which is safe for us to modify) on the last | |
988 | * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows | |
989 | * to wake us up when all buffers as part of this transaction | |
990 | * are completed. This is done under the umbrella of | |
991 | * cl_transaction_mtxp which is also taken in cluster_iodone. | |
2d21ac55 | 992 | */ |
39037602 A |
993 | bool done = true; |
994 | buf_t last = NULL; | |
995 | ||
6d2010ae | 996 | lck_mtx_lock_spin(cl_transaction_mtxp); |
2d21ac55 | 997 | |
39037602 A |
998 | for (cbp = cbp_head; cbp; last = cbp, cbp = cbp->b_trans_next) { |
999 | if (!ISSET(cbp->b_flags, B_TDONE)) | |
1000 | done = false; | |
1001 | } | |
2d21ac55 | 1002 | |
39037602 A |
1003 | if (!done) { |
1004 | last->b_trans_next = CLUSTER_IO_WAITING; | |
1005 | ||
1006 | DTRACE_IO1(wait__start, buf_t, last); | |
1007 | do { | |
1008 | msleep(last, cl_transaction_mtxp, PSPIN | (PRIBIO+1), "cluster_wait_IO", NULL); | |
6d2010ae | 1009 | |
39037602 A |
1010 | /* |
1011 | * We should only have been woken up if all the | |
1012 | * buffers are completed, but just in case... | |
1013 | */ | |
1014 | done = true; | |
1015 | for (cbp = cbp_head; cbp != CLUSTER_IO_WAITING; cbp = cbp->b_trans_next) { | |
1016 | if (!ISSET(cbp->b_flags, B_TDONE)) { | |
1017 | done = false; | |
1018 | break; | |
1019 | } | |
1020 | } | |
1021 | } while (!done); | |
1022 | DTRACE_IO1(wait__done, buf_t, last); | |
6d2010ae | 1023 | |
39037602 A |
1024 | last->b_trans_next = NULL; |
1025 | } | |
6d2010ae | 1026 | |
39037602 A |
1027 | lck_mtx_unlock(cl_transaction_mtxp); |
1028 | } else { // !async | |
1029 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) | |
1030 | buf_biowait(cbp); | |
2d21ac55 A |
1031 | } |
1032 | } | |
1033 | ||
1034 | static void | |
1035 | cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait) | |
1036 | { | |
1037 | buf_t cbp; | |
1038 | int error; | |
39236c6e | 1039 | boolean_t isswapout = FALSE; |
2d21ac55 A |
1040 | |
1041 | /* | |
1042 | * cluster_complete_transaction will | |
1043 | * only be called if we've issued a complete chain in synchronous mode | |
1044 | * or, we've already done a cluster_wait_IO on an incomplete chain | |
1045 | */ | |
1046 | if (needwait) { | |
1047 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) | |
1048 | buf_biowait(cbp); | |
1049 | } | |
060df5ea A |
1050 | /* |
1051 | * we've already waited on all of the I/Os in this transaction, | |
1052 | * so mark all of the buf_t's in this transaction as B_TDONE | |
1053 | * so that cluster_iodone sees the transaction as completed | |
1054 | */ | |
1055 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) | |
6d2010ae | 1056 | cbp->b_flags |= B_TDONE; |
39236c6e | 1057 | cbp = *cbp_head; |
060df5ea | 1058 | |
39236c6e A |
1059 | if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp)) |
1060 | isswapout = TRUE; | |
1061 | ||
1062 | error = cluster_iodone(cbp, callback_arg); | |
2d21ac55 A |
1063 | |
1064 | if ( !(flags & CL_ASYNC) && error && *retval == 0) { | |
39236c6e A |
1065 | if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO)) |
1066 | *retval = error; | |
1067 | else if (isswapout == TRUE) | |
1068 | *retval = error; | |
2d21ac55 A |
1069 | } |
1070 | *cbp_head = (buf_t)NULL; | |
1071 | } | |
1072 | ||
1073 | ||
1c79356b | 1074 | static int |
91447636 | 1075 | cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
2d21ac55 | 1076 | int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b | 1077 | { |
91447636 A |
1078 | buf_t cbp; |
1079 | u_int size; | |
1080 | u_int io_size; | |
1081 | int io_flags; | |
1082 | int bmap_flags; | |
1083 | int error = 0; | |
1084 | int retval = 0; | |
1085 | buf_t cbp_head = NULL; | |
1086 | buf_t cbp_tail = NULL; | |
1087 | int trans_count = 0; | |
2d21ac55 | 1088 | int max_trans_count; |
91447636 A |
1089 | u_int pg_count; |
1090 | int pg_offset; | |
1091 | u_int max_iosize; | |
1092 | u_int max_vectors; | |
1093 | int priv; | |
1094 | int zero_offset = 0; | |
1095 | int async_throttle = 0; | |
1096 | mount_t mp; | |
2d21ac55 A |
1097 | vm_offset_t upl_end_offset; |
1098 | boolean_t need_EOT = FALSE; | |
1099 | ||
1100 | /* | |
1101 | * we currently don't support buffers larger than a page | |
1102 | */ | |
1103 | if (real_bp && non_rounded_size > PAGE_SIZE) | |
1104 | panic("%s(): Called with real buffer of size %d bytes which " | |
1105 | "is greater than the maximum allowed size of " | |
1106 | "%d bytes (the system PAGE_SIZE).\n", | |
1107 | __FUNCTION__, non_rounded_size, PAGE_SIZE); | |
91447636 A |
1108 | |
1109 | mp = vp->v_mount; | |
1110 | ||
2d21ac55 A |
1111 | /* |
1112 | * we don't want to do any funny rounding of the size for IO requests | |
1113 | * coming through the DIRECT or CONTIGUOUS paths... those pages don't | |
1114 | * belong to us... we can't extend (nor do we need to) the I/O to fill | |
1115 | * out a page | |
1116 | */ | |
1117 | if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) { | |
91447636 A |
1118 | /* |
1119 | * round the requested size up so that this I/O ends on a | |
1120 | * page boundary in case this is a 'write'... if the filesystem | |
1121 | * has blocks allocated to back the page beyond the EOF, we want to | |
1122 | * make sure to write out the zero's that are sitting beyond the EOF | |
1123 | * so that in case the filesystem doesn't explicitly zero this area | |
1124 | * if a hole is created via a lseek/write beyond the current EOF, | |
1125 | * it will return zeros when it's read back from the disk. If the | |
1126 | * physical allocation doesn't extend for the whole page, we'll | |
1127 | * only write/read from the disk up to the end of this allocation | |
1128 | * via the extent info returned from the VNOP_BLOCKMAP call. | |
1129 | */ | |
1130 | pg_offset = upl_offset & PAGE_MASK; | |
55e303ae | 1131 | |
91447636 A |
1132 | size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; |
1133 | } else { | |
1134 | /* | |
1135 | * anyone advertising a blocksize of 1 byte probably | |
1136 | * can't deal with us rounding up the request size | |
1137 | * AFP is one such filesystem/device | |
1138 | */ | |
1139 | size = non_rounded_size; | |
1140 | } | |
2d21ac55 A |
1141 | upl_end_offset = upl_offset + size; |
1142 | ||
1143 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0); | |
1144 | ||
1145 | /* | |
1146 | * Set the maximum transaction size to the maximum desired number of | |
1147 | * buffers. | |
1148 | */ | |
1149 | max_trans_count = 8; | |
1150 | if (flags & CL_DEV_MEMORY) | |
1151 | max_trans_count = 16; | |
55e303ae | 1152 | |
0b4e3aa0 | 1153 | if (flags & CL_READ) { |
2d21ac55 | 1154 | io_flags = B_READ; |
91447636 | 1155 | bmap_flags = VNODE_READ; |
0b4e3aa0 | 1156 | |
91447636 A |
1157 | max_iosize = mp->mnt_maxreadcnt; |
1158 | max_vectors = mp->mnt_segreadcnt; | |
0b4e3aa0 | 1159 | } else { |
2d21ac55 | 1160 | io_flags = B_WRITE; |
91447636 | 1161 | bmap_flags = VNODE_WRITE; |
1c79356b | 1162 | |
91447636 A |
1163 | max_iosize = mp->mnt_maxwritecnt; |
1164 | max_vectors = mp->mnt_segwritecnt; | |
0b4e3aa0 | 1165 | } |
91447636 A |
1166 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); |
1167 | ||
55e303ae | 1168 | /* |
91447636 A |
1169 | * make sure the maximum iosize is a |
1170 | * multiple of the page size | |
55e303ae A |
1171 | */ |
1172 | max_iosize &= ~PAGE_MASK; | |
1173 | ||
2d21ac55 A |
1174 | /* |
1175 | * Ensure the maximum iosize is sensible. | |
1176 | */ | |
1177 | if (!max_iosize) | |
1178 | max_iosize = PAGE_SIZE; | |
1179 | ||
55e303ae | 1180 | if (flags & CL_THROTTLE) { |
39236c6e | 1181 | if ( !(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) { |
316670eb A |
1182 | if (max_iosize > THROTTLE_MAX_IOSIZE) |
1183 | max_iosize = THROTTLE_MAX_IOSIZE; | |
39236c6e | 1184 | async_throttle = THROTTLE_MAXCNT; |
2d21ac55 A |
1185 | } else { |
1186 | if ( (flags & CL_DEV_MEMORY) ) | |
b0d623f7 | 1187 | async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE); |
2d21ac55 A |
1188 | else { |
1189 | u_int max_cluster; | |
cf7d32b8 | 1190 | u_int max_cluster_size; |
6d2010ae A |
1191 | u_int scale; |
1192 | ||
39037602 A |
1193 | if (vp->v_mount->mnt_minsaturationbytecount) { |
1194 | max_cluster_size = vp->v_mount->mnt_minsaturationbytecount; | |
b0d623f7 | 1195 | |
39037602 A |
1196 | scale = 1; |
1197 | } else { | |
1198 | max_cluster_size = MAX_CLUSTER_SIZE(vp); | |
1199 | ||
5ba3f43e | 1200 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) |
39037602 A |
1201 | scale = WRITE_THROTTLE_SSD; |
1202 | else | |
1203 | scale = WRITE_THROTTLE; | |
1204 | } | |
cf7d32b8 | 1205 | if (max_iosize > max_cluster_size) |
b0d623f7 | 1206 | max_cluster = max_cluster_size; |
2d21ac55 A |
1207 | else |
1208 | max_cluster = max_iosize; | |
1209 | ||
1210 | if (size < max_cluster) | |
1211 | max_cluster = size; | |
6d2010ae | 1212 | |
6d2010ae A |
1213 | if (flags & CL_CLOSE) |
1214 | scale += MAX_CLUSTERS; | |
39037602 | 1215 | |
6d2010ae | 1216 | async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1); |
2d21ac55 A |
1217 | } |
1218 | } | |
55e303ae | 1219 | } |
1c79356b A |
1220 | if (flags & CL_AGE) |
1221 | io_flags |= B_AGE; | |
91447636 A |
1222 | if (flags & (CL_PAGEIN | CL_PAGEOUT)) |
1223 | io_flags |= B_PAGEIO; | |
b0d623f7 A |
1224 | if (flags & (CL_IOSTREAMING)) |
1225 | io_flags |= B_IOSTREAMING; | |
b4c24cb9 A |
1226 | if (flags & CL_COMMIT) |
1227 | io_flags |= B_COMMIT_UPL; | |
6d2010ae | 1228 | if (flags & CL_DIRECT_IO) |
b4c24cb9 | 1229 | io_flags |= B_PHYS; |
6d2010ae A |
1230 | if (flags & (CL_PRESERVE | CL_KEEPCACHED)) |
1231 | io_flags |= B_CACHE; | |
2d21ac55 A |
1232 | if (flags & CL_PASSIVE) |
1233 | io_flags |= B_PASSIVE; | |
6d2010ae A |
1234 | if (flags & CL_ENCRYPTED) |
1235 | io_flags |= B_ENCRYPTED_IO; | |
3e170ce0 | 1236 | |
2d21ac55 A |
1237 | if (vp->v_flag & VSYSTEM) |
1238 | io_flags |= B_META; | |
1c79356b | 1239 | |
9bccf70c | 1240 | if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { |
1c79356b A |
1241 | /* |
1242 | * then we are going to end up | |
1243 | * with a page that we can't complete (the file size wasn't a multiple | |
1244 | * of PAGE_SIZE and we're trying to read to the end of the file | |
1245 | * so we'll go ahead and zero out the portion of the page we can't | |
1246 | * read in from the file | |
1247 | */ | |
9bccf70c | 1248 | zero_offset = upl_offset + non_rounded_size; |
3e170ce0 A |
1249 | } else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) { |
1250 | assert(ISSET(flags, CL_COMMIT)); | |
1251 | ||
1252 | // For a direct/uncached write, we need to lock pages... | |
1253 | ||
1254 | upl_t cached_upl; | |
1255 | ||
1256 | /* | |
1257 | * Create a UPL to lock the pages in the cache whilst the | |
1258 | * write is in progress. | |
1259 | */ | |
5ba3f43e A |
1260 | ubc_create_upl_kernel(vp, f_offset, non_rounded_size, &cached_upl, |
1261 | NULL, UPL_SET_LITE, VM_KERN_MEMORY_FILE); | |
3e170ce0 A |
1262 | |
1263 | /* | |
1264 | * Attach this UPL to the other UPL so that we can find it | |
1265 | * later. | |
1266 | */ | |
1267 | upl_set_associated_upl(upl, cached_upl); | |
1268 | ||
1269 | if (upl_offset & PAGE_MASK) { | |
1270 | /* | |
1271 | * The two UPLs are not aligned, so mark the first page in | |
1272 | * @upl so that cluster_handle_associated_upl can handle | |
1273 | * it accordingly. | |
1274 | */ | |
1275 | upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
1276 | upl_page_set_mark(pl, 0, true); | |
1277 | } | |
1c79356b | 1278 | } |
3e170ce0 | 1279 | |
1c79356b | 1280 | while (size) { |
91447636 A |
1281 | daddr64_t blkno; |
1282 | daddr64_t lblkno; | |
2d21ac55 | 1283 | u_int io_size_wanted; |
b0d623f7 | 1284 | size_t io_size_tmp; |
1c79356b | 1285 | |
0b4e3aa0 A |
1286 | if (size > max_iosize) |
1287 | io_size = max_iosize; | |
1c79356b A |
1288 | else |
1289 | io_size = size; | |
2d21ac55 A |
1290 | |
1291 | io_size_wanted = io_size; | |
b0d623f7 | 1292 | io_size_tmp = (size_t)io_size; |
91447636 | 1293 | |
b0d623f7 | 1294 | if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL))) |
1c79356b | 1295 | break; |
2d21ac55 | 1296 | |
b0d623f7 | 1297 | if (io_size_tmp > io_size_wanted) |
2d21ac55 | 1298 | io_size = io_size_wanted; |
b0d623f7 A |
1299 | else |
1300 | io_size = (u_int)io_size_tmp; | |
2d21ac55 | 1301 | |
91447636 A |
1302 | if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) |
1303 | real_bp->b_blkno = blkno; | |
1c79356b A |
1304 | |
1305 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, | |
2d21ac55 | 1306 | (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0); |
1c79356b | 1307 | |
91447636 A |
1308 | if (io_size == 0) { |
1309 | /* | |
1310 | * vnop_blockmap didn't return an error... however, it did | |
1311 | * return an extent size of 0 which means we can't | |
1312 | * make forward progress on this I/O... a hole in the | |
1313 | * file would be returned as a blkno of -1 with a non-zero io_size | |
1314 | * a real extent is returned with a blkno != -1 and a non-zero io_size | |
1315 | */ | |
1316 | error = EINVAL; | |
1317 | break; | |
1318 | } | |
1319 | if ( !(flags & CL_READ) && blkno == -1) { | |
2d21ac55 A |
1320 | off_t e_offset; |
1321 | int pageout_flags; | |
91447636 | 1322 | |
6d2010ae | 1323 | if (upl_get_internal_vectorupl(upl)) |
b0d623f7 | 1324 | panic("Vector UPLs should not take this code-path\n"); |
91447636 A |
1325 | /* |
1326 | * we're writing into a 'hole' | |
1327 | */ | |
0b4e3aa0 | 1328 | if (flags & CL_PAGEOUT) { |
91447636 A |
1329 | /* |
1330 | * if we got here via cluster_pageout | |
1331 | * then just error the request and return | |
1332 | * the 'hole' should already have been covered | |
1333 | */ | |
0b4e3aa0 A |
1334 | error = EINVAL; |
1335 | break; | |
91447636 | 1336 | } |
91447636 A |
1337 | /* |
1338 | * we can get here if the cluster code happens to | |
1339 | * pick up a page that was dirtied via mmap vs | |
1340 | * a 'write' and the page targets a 'hole'... | |
1341 | * i.e. the writes to the cluster were sparse | |
1342 | * and the file was being written for the first time | |
1343 | * | |
1344 | * we can also get here if the filesystem supports | |
1345 | * 'holes' that are less than PAGE_SIZE.... because | |
1346 | * we can't know if the range in the page that covers | |
1347 | * the 'hole' has been dirtied via an mmap or not, | |
1348 | * we have to assume the worst and try to push the | |
1349 | * entire page to storage. | |
1350 | * | |
1351 | * Try paging out the page individually before | |
1352 | * giving up entirely and dumping it (the pageout | |
1353 | * path will insure that the zero extent accounting | |
1354 | * has been taken care of before we get back into cluster_io) | |
2d21ac55 A |
1355 | * |
1356 | * go direct to vnode_pageout so that we don't have to | |
1357 | * unbusy the page from the UPL... we used to do this | |
fe8ab488 | 1358 | * so that we could call ubc_msync, but that results |
2d21ac55 A |
1359 | * in a potential deadlock if someone else races us to acquire |
1360 | * that page and wins and in addition needs one of the pages | |
1361 | * we're continuing to hold in the UPL | |
0b4e3aa0 | 1362 | */ |
2d21ac55 | 1363 | pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT; |
91447636 | 1364 | |
2d21ac55 A |
1365 | if ( !(flags & CL_ASYNC)) |
1366 | pageout_flags |= UPL_IOSYNC; | |
1367 | if ( !(flags & CL_COMMIT)) | |
1368 | pageout_flags |= UPL_NOCOMMIT; | |
1369 | ||
1370 | if (cbp_head) { | |
00867663 A |
1371 | buf_t prev_cbp; |
1372 | int bytes_in_last_page; | |
2d21ac55 A |
1373 | |
1374 | /* | |
1375 | * first we have to wait for the the current outstanding I/Os | |
1376 | * to complete... EOT hasn't been set yet on this transaction | |
00867663 | 1377 | * so the pages won't be released |
2d21ac55 A |
1378 | */ |
1379 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
1380 | ||
00867663 A |
1381 | bytes_in_last_page = cbp_head->b_uploffset & PAGE_MASK; |
1382 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) | |
1383 | bytes_in_last_page += cbp->b_bcount; | |
1384 | bytes_in_last_page &= PAGE_MASK; | |
1385 | ||
1386 | while (bytes_in_last_page) { | |
1387 | /* | |
1388 | * we've got a transcation that | |
1389 | * includes the page we're about to push out through vnode_pageout... | |
1390 | * find the bp's in the list which intersect this page and either | |
1391 | * remove them entirely from the transaction (there could be multiple bp's), or | |
1392 | * round it's iosize down to the page boundary (there can only be one)... | |
1393 | * | |
1394 | * find the last bp in the list and act on it | |
2d21ac55 | 1395 | */ |
00867663 A |
1396 | for (prev_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next) |
1397 | prev_cbp = cbp; | |
2d21ac55 | 1398 | |
00867663 A |
1399 | if (bytes_in_last_page >= cbp->b_bcount) { |
1400 | /* | |
1401 | * this buf no longer has any I/O associated with it | |
2d21ac55 | 1402 | */ |
00867663 A |
1403 | bytes_in_last_page -= cbp->b_bcount; |
1404 | cbp->b_bcount = 0; | |
1405 | ||
1406 | free_io_buf(cbp); | |
1407 | ||
1408 | if (cbp == cbp_head) { | |
1409 | assert(bytes_in_last_page == 0); | |
1410 | /* | |
1411 | * the buf we just freed was the only buf in | |
1412 | * this transaction... so there's no I/O to do | |
1413 | */ | |
1414 | cbp_head = NULL; | |
1415 | cbp_tail = NULL; | |
1416 | } else { | |
1417 | /* | |
1418 | * remove the buf we just freed from | |
1419 | * the transaction list | |
1420 | */ | |
1421 | prev_cbp->b_trans_next = NULL; | |
1422 | cbp_tail = prev_cbp; | |
1423 | } | |
2d21ac55 | 1424 | } else { |
00867663 A |
1425 | /* |
1426 | * this is the last bp that has I/O | |
1427 | * intersecting the page of interest | |
1428 | * only some of the I/O is in the intersection | |
1429 | * so clip the size but keep it in the transaction list | |
2d21ac55 | 1430 | */ |
00867663 A |
1431 | cbp->b_bcount -= bytes_in_last_page; |
1432 | cbp_tail = cbp; | |
1433 | bytes_in_last_page = 0; | |
2d21ac55 A |
1434 | } |
1435 | } | |
1436 | if (cbp_head) { | |
1437 | /* | |
1438 | * there was more to the current transaction | |
1439 | * than just the page we are pushing out via vnode_pageout... | |
1440 | * mark it as finished and complete it... we've already | |
1441 | * waited for the I/Os to complete above in the call to cluster_wait_IO | |
1442 | */ | |
1443 | cluster_EOT(cbp_head, cbp_tail, 0); | |
91447636 | 1444 | |
2d21ac55 A |
1445 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); |
1446 | ||
1447 | trans_count = 0; | |
1448 | } | |
1449 | } | |
1450 | if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) { | |
91447636 | 1451 | error = EINVAL; |
91447636 | 1452 | } |
2d21ac55 | 1453 | e_offset = round_page_64(f_offset + 1); |
91447636 A |
1454 | io_size = e_offset - f_offset; |
1455 | ||
1456 | f_offset += io_size; | |
1457 | upl_offset += io_size; | |
1458 | ||
1459 | if (size >= io_size) | |
1460 | size -= io_size; | |
1461 | else | |
1462 | size = 0; | |
1463 | /* | |
1464 | * keep track of how much of the original request | |
1465 | * that we've actually completed... non_rounded_size | |
1466 | * may go negative due to us rounding the request | |
1467 | * to a page size multiple (i.e. size > non_rounded_size) | |
1468 | */ | |
1469 | non_rounded_size -= io_size; | |
1470 | ||
1471 | if (non_rounded_size <= 0) { | |
1472 | /* | |
1473 | * we've transferred all of the data in the original | |
1474 | * request, but we were unable to complete the tail | |
1475 | * of the last page because the file didn't have | |
1476 | * an allocation to back that portion... this is ok. | |
1477 | */ | |
1478 | size = 0; | |
1479 | } | |
6d2010ae A |
1480 | if (error) { |
1481 | if (size == 0) | |
1482 | flags &= ~CL_COMMIT; | |
1483 | break; | |
1484 | } | |
0b4e3aa0 | 1485 | continue; |
1c79356b | 1486 | } |
fe8ab488 | 1487 | lblkno = (daddr64_t)(f_offset / 0x1000); |
1c79356b A |
1488 | /* |
1489 | * we have now figured out how much I/O we can do - this is in 'io_size' | |
1c79356b A |
1490 | * pg_offset is the starting point in the first page for the I/O |
1491 | * pg_count is the number of full and partial pages that 'io_size' encompasses | |
1492 | */ | |
1c79356b | 1493 | pg_offset = upl_offset & PAGE_MASK; |
1c79356b | 1494 | |
0b4e3aa0 | 1495 | if (flags & CL_DEV_MEMORY) { |
0b4e3aa0 A |
1496 | /* |
1497 | * treat physical requests as one 'giant' page | |
1498 | */ | |
1499 | pg_count = 1; | |
55e303ae A |
1500 | } else |
1501 | pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1502 | ||
91447636 | 1503 | if ((flags & CL_READ) && blkno == -1) { |
2d21ac55 | 1504 | vm_offset_t commit_offset; |
9bccf70c | 1505 | int bytes_to_zero; |
2d21ac55 | 1506 | int complete_transaction_now = 0; |
9bccf70c | 1507 | |
1c79356b A |
1508 | /* |
1509 | * if we're reading and blkno == -1, then we've got a | |
1510 | * 'hole' in the file that we need to deal with by zeroing | |
1511 | * out the affected area in the upl | |
1512 | */ | |
2d21ac55 | 1513 | if (io_size >= (u_int)non_rounded_size) { |
9bccf70c A |
1514 | /* |
1515 | * if this upl contains the EOF and it is not a multiple of PAGE_SIZE | |
1516 | * than 'zero_offset' will be non-zero | |
91447636 | 1517 | * if the 'hole' returned by vnop_blockmap extends all the way to the eof |
9bccf70c A |
1518 | * (indicated by the io_size finishing off the I/O request for this UPL) |
1519 | * than we're not going to issue an I/O for the | |
1520 | * last page in this upl... we need to zero both the hole and the tail | |
1521 | * of the page beyond the EOF, since the delayed zero-fill won't kick in | |
1522 | */ | |
2d21ac55 A |
1523 | bytes_to_zero = non_rounded_size; |
1524 | if (!(flags & CL_NOZERO)) | |
1525 | bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset; | |
1c79356b | 1526 | |
9bccf70c A |
1527 | zero_offset = 0; |
1528 | } else | |
1529 | bytes_to_zero = io_size; | |
1c79356b | 1530 | |
2d21ac55 A |
1531 | pg_count = 0; |
1532 | ||
1533 | cluster_zero(upl, upl_offset, bytes_to_zero, real_bp); | |
9bccf70c | 1534 | |
2d21ac55 A |
1535 | if (cbp_head) { |
1536 | int pg_resid; | |
1537 | ||
9bccf70c A |
1538 | /* |
1539 | * if there is a current I/O chain pending | |
1540 | * then the first page of the group we just zero'd | |
1541 | * will be handled by the I/O completion if the zero | |
1542 | * fill started in the middle of the page | |
1543 | */ | |
2d21ac55 A |
1544 | commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1545 | ||
1546 | pg_resid = commit_offset - upl_offset; | |
1547 | ||
1548 | if (bytes_to_zero >= pg_resid) { | |
1549 | /* | |
1550 | * the last page of the current I/O | |
1551 | * has been completed... | |
1552 | * compute the number of fully zero'd | |
1553 | * pages that are beyond it | |
1554 | * plus the last page if its partial | |
1555 | * and we have no more I/O to issue... | |
1556 | * otherwise a partial page is left | |
1557 | * to begin the next I/O | |
1558 | */ | |
1559 | if ((int)io_size >= non_rounded_size) | |
1560 | pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1561 | else | |
1562 | pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE; | |
1563 | ||
1564 | complete_transaction_now = 1; | |
1565 | } | |
1566 | } else { | |
9bccf70c | 1567 | /* |
2d21ac55 A |
1568 | * no pending I/O to deal with |
1569 | * so, commit all of the fully zero'd pages | |
1570 | * plus the last page if its partial | |
1571 | * and we have no more I/O to issue... | |
1572 | * otherwise a partial page is left | |
1573 | * to begin the next I/O | |
9bccf70c | 1574 | */ |
2d21ac55 A |
1575 | if ((int)io_size >= non_rounded_size) |
1576 | pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1c79356b | 1577 | else |
2d21ac55 | 1578 | pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE; |
9bccf70c | 1579 | |
2d21ac55 A |
1580 | commit_offset = upl_offset & ~PAGE_MASK; |
1581 | } | |
3e170ce0 A |
1582 | |
1583 | // Associated UPL is currently only used in the direct write path | |
1584 | assert(!upl_associated_upl(upl)); | |
1585 | ||
2d21ac55 A |
1586 | if ( (flags & CL_COMMIT) && pg_count) { |
1587 | ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE, | |
1588 | UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); | |
1c79356b A |
1589 | } |
1590 | upl_offset += io_size; | |
1591 | f_offset += io_size; | |
1592 | size -= io_size; | |
2d21ac55 | 1593 | |
91447636 A |
1594 | /* |
1595 | * keep track of how much of the original request | |
1596 | * that we've actually completed... non_rounded_size | |
1597 | * may go negative due to us rounding the request | |
1598 | * to a page size multiple (i.e. size > non_rounded_size) | |
1599 | */ | |
1600 | non_rounded_size -= io_size; | |
1c79356b | 1601 | |
91447636 A |
1602 | if (non_rounded_size <= 0) { |
1603 | /* | |
1604 | * we've transferred all of the data in the original | |
1605 | * request, but we were unable to complete the tail | |
1606 | * of the last page because the file didn't have | |
1607 | * an allocation to back that portion... this is ok. | |
1608 | */ | |
1609 | size = 0; | |
1610 | } | |
2d21ac55 A |
1611 | if (cbp_head && (complete_transaction_now || size == 0)) { |
1612 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
9bccf70c | 1613 | |
2d21ac55 A |
1614 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); |
1615 | ||
1616 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); | |
1617 | ||
1618 | trans_count = 0; | |
1619 | } | |
1620 | continue; | |
1c79356b | 1621 | } |
55e303ae | 1622 | if (pg_count > max_vectors) { |
91447636 | 1623 | if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { |
55e303ae A |
1624 | io_size = PAGE_SIZE - pg_offset; |
1625 | pg_count = 1; | |
91447636 A |
1626 | } else { |
1627 | io_size -= (pg_count - max_vectors) * PAGE_SIZE; | |
55e303ae | 1628 | pg_count = max_vectors; |
91447636 | 1629 | } |
1c79356b | 1630 | } |
2d21ac55 A |
1631 | /* |
1632 | * If the transaction is going to reach the maximum number of | |
1633 | * desired elements, truncate the i/o to the nearest page so | |
1634 | * that the actual i/o is initiated after this buffer is | |
1635 | * created and added to the i/o chain. | |
1636 | * | |
1637 | * I/O directed to physically contiguous memory | |
1638 | * doesn't have a requirement to make sure we 'fill' a page | |
1639 | */ | |
1640 | if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count && | |
1641 | ((upl_offset + io_size) & PAGE_MASK)) { | |
1642 | vm_offset_t aligned_ofs; | |
1643 | ||
1644 | aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK; | |
1645 | /* | |
1646 | * If the io_size does not actually finish off even a | |
1647 | * single page we have to keep adding buffers to the | |
1648 | * transaction despite having reached the desired limit. | |
1649 | * | |
1650 | * Eventually we get here with the page being finished | |
1651 | * off (and exceeded) and then we truncate the size of | |
1652 | * this i/o request so that it is page aligned so that | |
1653 | * we can finally issue the i/o on the transaction. | |
1654 | */ | |
1655 | if (aligned_ofs > upl_offset) { | |
1656 | io_size = aligned_ofs - upl_offset; | |
1657 | pg_count--; | |
1658 | } | |
1659 | } | |
1c79356b | 1660 | |
91447636 | 1661 | if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) |
55e303ae A |
1662 | /* |
1663 | * if we're not targeting a virtual device i.e. a disk image | |
1664 | * it's safe to dip into the reserve pool since real devices | |
1665 | * can complete this I/O request without requiring additional | |
1666 | * bufs from the alloc_io_buf pool | |
1667 | */ | |
1668 | priv = 1; | |
1669 | else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT)) | |
1670 | /* | |
1671 | * Throttle the speculative IO | |
1672 | */ | |
0b4e3aa0 A |
1673 | priv = 0; |
1674 | else | |
1675 | priv = 1; | |
1676 | ||
1677 | cbp = alloc_io_buf(vp, priv); | |
1c79356b | 1678 | |
55e303ae | 1679 | if (flags & CL_PAGEOUT) { |
91447636 A |
1680 | u_int i; |
1681 | ||
3e170ce0 A |
1682 | /* |
1683 | * since blocks are in offsets of 0x1000, scale | |
1684 | * iteration to (PAGE_SIZE * pg_count) of blks. | |
1685 | */ | |
1686 | for (i = 0; i < (PAGE_SIZE * pg_count)/0x1000; i++) { | |
1687 | if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY) | |
1688 | panic("BUSY bp found in cluster_io"); | |
1c79356b | 1689 | } |
1c79356b | 1690 | } |
b4c24cb9 | 1691 | if (flags & CL_ASYNC) { |
2d21ac55 | 1692 | if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg)) |
91447636 | 1693 | panic("buf_setcallback failed\n"); |
b4c24cb9 | 1694 | } |
2d21ac55 | 1695 | cbp->b_cliodone = (void *)callback; |
1c79356b | 1696 | cbp->b_flags |= io_flags; |
316670eb A |
1697 | if (flags & CL_NOCACHE) |
1698 | cbp->b_attr.ba_flags |= BA_NOCACHE; | |
1c79356b A |
1699 | |
1700 | cbp->b_lblkno = lblkno; | |
1701 | cbp->b_blkno = blkno; | |
1702 | cbp->b_bcount = io_size; | |
1c79356b | 1703 | |
91447636 A |
1704 | if (buf_setupl(cbp, upl, upl_offset)) |
1705 | panic("buf_setupl failed\n"); | |
fe8ab488 A |
1706 | #if CONFIG_IOSCHED |
1707 | upl_set_blkno(upl, upl_offset, io_size, blkno); | |
1708 | #endif | |
91447636 A |
1709 | cbp->b_trans_next = (buf_t)NULL; |
1710 | ||
1711 | if ((cbp->b_iostate = (void *)iostate)) | |
d7e50217 A |
1712 | /* |
1713 | * caller wants to track the state of this | |
1714 | * io... bump the amount issued against this stream | |
1715 | */ | |
b4c24cb9 A |
1716 | iostate->io_issued += io_size; |
1717 | ||
91447636 | 1718 | if (flags & CL_READ) { |
1c79356b | 1719 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, |
91447636 A |
1720 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
1721 | } | |
1722 | else { | |
1c79356b | 1723 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, |
91447636 A |
1724 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
1725 | } | |
1c79356b A |
1726 | |
1727 | if (cbp_head) { | |
1728 | cbp_tail->b_trans_next = cbp; | |
1729 | cbp_tail = cbp; | |
1730 | } else { | |
1731 | cbp_head = cbp; | |
1732 | cbp_tail = cbp; | |
2d21ac55 | 1733 | |
6d2010ae | 1734 | if ( (cbp_head->b_real_bp = real_bp) ) |
2d21ac55 | 1735 | real_bp = (buf_t)NULL; |
1c79356b | 1736 | } |
2d21ac55 A |
1737 | *(buf_t *)(&cbp->b_trans_head) = cbp_head; |
1738 | ||
91447636 | 1739 | trans_count++; |
1c79356b A |
1740 | |
1741 | upl_offset += io_size; | |
1742 | f_offset += io_size; | |
1743 | size -= io_size; | |
91447636 A |
1744 | /* |
1745 | * keep track of how much of the original request | |
1746 | * that we've actually completed... non_rounded_size | |
1747 | * may go negative due to us rounding the request | |
1748 | * to a page size multiple (i.e. size > non_rounded_size) | |
1749 | */ | |
1750 | non_rounded_size -= io_size; | |
1c79356b | 1751 | |
91447636 A |
1752 | if (non_rounded_size <= 0) { |
1753 | /* | |
1754 | * we've transferred all of the data in the original | |
1755 | * request, but we were unable to complete the tail | |
1756 | * of the last page because the file didn't have | |
1757 | * an allocation to back that portion... this is ok. | |
1758 | */ | |
1759 | size = 0; | |
1760 | } | |
2d21ac55 A |
1761 | if (size == 0) { |
1762 | /* | |
1763 | * we have no more I/O to issue, so go | |
1764 | * finish the final transaction | |
1765 | */ | |
1766 | need_EOT = TRUE; | |
1767 | } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) && | |
1768 | ((flags & CL_ASYNC) || trans_count > max_trans_count) ) { | |
1c79356b | 1769 | /* |
2d21ac55 A |
1770 | * I/O directed to physically contiguous memory... |
1771 | * which doesn't have a requirement to make sure we 'fill' a page | |
1772 | * or... | |
1c79356b A |
1773 | * the current I/O we've prepared fully |
1774 | * completes the last page in this request | |
2d21ac55 A |
1775 | * and ... |
1776 | * it's either an ASYNC request or | |
9bccf70c | 1777 | * we've already accumulated more than 8 I/O's into |
2d21ac55 A |
1778 | * this transaction so mark it as complete so that |
1779 | * it can finish asynchronously or via the cluster_complete_transaction | |
1780 | * below if the request is synchronous | |
1c79356b | 1781 | */ |
2d21ac55 A |
1782 | need_EOT = TRUE; |
1783 | } | |
1784 | if (need_EOT == TRUE) | |
1785 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); | |
1c79356b | 1786 | |
2d21ac55 A |
1787 | if (flags & CL_THROTTLE) |
1788 | (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io"); | |
1c79356b | 1789 | |
2d21ac55 A |
1790 | if ( !(io_flags & B_READ)) |
1791 | vnode_startwrite(vp); | |
9bccf70c | 1792 | |
316670eb A |
1793 | if (flags & CL_RAW_ENCRYPTED) { |
1794 | /* | |
1795 | * User requested raw encrypted bytes. | |
1796 | * Twiddle the bit in the ba_flags for the buffer | |
1797 | */ | |
1798 | cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO; | |
1799 | } | |
1800 | ||
2d21ac55 A |
1801 | (void) VNOP_STRATEGY(cbp); |
1802 | ||
1803 | if (need_EOT == TRUE) { | |
1804 | if ( !(flags & CL_ASYNC)) | |
1805 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1); | |
9bccf70c | 1806 | |
2d21ac55 | 1807 | need_EOT = FALSE; |
91447636 | 1808 | trans_count = 0; |
2d21ac55 | 1809 | cbp_head = NULL; |
1c79356b | 1810 | } |
2d21ac55 | 1811 | } |
1c79356b | 1812 | if (error) { |
3e170ce0 | 1813 | int abort_size; |
0b4e3aa0 | 1814 | |
b4c24cb9 | 1815 | io_size = 0; |
3e170ce0 | 1816 | |
2d21ac55 | 1817 | if (cbp_head) { |
3e170ce0 A |
1818 | /* |
1819 | * Wait until all of the outstanding I/O | |
1820 | * for this partial transaction has completed | |
1821 | */ | |
1822 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
0b4e3aa0 | 1823 | |
2d21ac55 A |
1824 | /* |
1825 | * Rewind the upl offset to the beginning of the | |
1826 | * transaction. | |
1827 | */ | |
1828 | upl_offset = cbp_head->b_uploffset; | |
3e170ce0 | 1829 | } |
2d21ac55 | 1830 | |
3e170ce0 A |
1831 | if (ISSET(flags, CL_COMMIT)) { |
1832 | cluster_handle_associated_upl(iostate, upl, upl_offset, | |
1833 | upl_end_offset - upl_offset); | |
1834 | } | |
2d21ac55 | 1835 | |
3e170ce0 A |
1836 | // Free all the IO buffers in this transaction |
1837 | for (cbp = cbp_head; cbp;) { | |
1838 | buf_t cbp_next; | |
1839 | ||
1840 | size += cbp->b_bcount; | |
1841 | io_size += cbp->b_bcount; | |
1842 | ||
1843 | cbp_next = cbp->b_trans_next; | |
1844 | free_io_buf(cbp); | |
1845 | cbp = cbp_next; | |
1c79356b | 1846 | } |
3e170ce0 | 1847 | |
b4c24cb9 | 1848 | if (iostate) { |
91447636 A |
1849 | int need_wakeup = 0; |
1850 | ||
d7e50217 A |
1851 | /* |
1852 | * update the error condition for this stream | |
1853 | * since we never really issued the io | |
1854 | * just go ahead and adjust it back | |
1855 | */ | |
6d2010ae | 1856 | lck_mtx_lock_spin(&iostate->io_mtxp); |
91447636 | 1857 | |
d7e50217 | 1858 | if (iostate->io_error == 0) |
b4c24cb9 | 1859 | iostate->io_error = error; |
b4c24cb9 A |
1860 | iostate->io_issued -= io_size; |
1861 | ||
1862 | if (iostate->io_wanted) { | |
d7e50217 A |
1863 | /* |
1864 | * someone is waiting for the state of | |
1865 | * this io stream to change | |
1866 | */ | |
b4c24cb9 | 1867 | iostate->io_wanted = 0; |
2d21ac55 | 1868 | need_wakeup = 1; |
b4c24cb9 | 1869 | } |
6d2010ae | 1870 | lck_mtx_unlock(&iostate->io_mtxp); |
91447636 A |
1871 | |
1872 | if (need_wakeup) | |
1873 | wakeup((caddr_t)&iostate->io_wanted); | |
b4c24cb9 | 1874 | } |
3e170ce0 | 1875 | |
1c79356b | 1876 | if (flags & CL_COMMIT) { |
2d21ac55 | 1877 | int upl_flags; |
1c79356b | 1878 | |
3e170ce0 | 1879 | pg_offset = upl_offset & PAGE_MASK; |
2d21ac55 | 1880 | abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK; |
3e170ce0 | 1881 | |
39236c6e | 1882 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp); |
2d21ac55 | 1883 | |
1c79356b | 1884 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, |
b0d623f7 | 1885 | upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0); |
1c79356b A |
1886 | } |
1887 | if (retval == 0) | |
1888 | retval = error; | |
2d21ac55 A |
1889 | } else if (cbp_head) |
1890 | panic("%s(): cbp_head is not NULL.\n", __FUNCTION__); | |
1891 | ||
1892 | if (real_bp) { | |
1893 | /* | |
1894 | * can get here if we either encountered an error | |
1895 | * or we completely zero-filled the request and | |
1896 | * no I/O was issued | |
1897 | */ | |
1898 | if (error) { | |
1899 | real_bp->b_flags |= B_ERROR; | |
1900 | real_bp->b_error = error; | |
1901 | } | |
1902 | buf_biodone(real_bp); | |
1c79356b | 1903 | } |
2d21ac55 | 1904 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0); |
1c79356b A |
1905 | |
1906 | return (retval); | |
1907 | } | |
1908 | ||
b0d623f7 A |
1909 | #define reset_vector_run_state() \ |
1910 | issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0; | |
1911 | ||
1912 | static int | |
1913 | vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize, | |
1914 | int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) | |
1915 | { | |
1916 | vector_upl_set_pagelist(vector_upl); | |
1917 | ||
1918 | if(io_flag & CL_READ) { | |
1919 | if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0)) | |
1920 | io_flag &= ~CL_PRESERVE; /*don't zero fill*/ | |
1921 | else | |
1922 | io_flag |= CL_PRESERVE; /*zero fill*/ | |
1923 | } | |
1924 | return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg)); | |
1925 | ||
1926 | } | |
1c79356b A |
1927 | |
1928 | static int | |
2d21ac55 | 1929 | cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag) |
1c79356b | 1930 | { |
55e303ae | 1931 | int pages_in_prefetch; |
1c79356b A |
1932 | |
1933 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, | |
1934 | (int)f_offset, size, (int)filesize, 0, 0); | |
1935 | ||
1936 | if (f_offset >= filesize) { | |
1937 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
1938 | (int)f_offset, 0, 0, 0, 0); | |
1939 | return(0); | |
1940 | } | |
9bccf70c A |
1941 | if ((off_t)size > (filesize - f_offset)) |
1942 | size = filesize - f_offset; | |
55e303ae | 1943 | pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; |
1c79356b | 1944 | |
2d21ac55 | 1945 | advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag); |
1c79356b A |
1946 | |
1947 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
55e303ae | 1948 | (int)f_offset + size, pages_in_prefetch, 0, 1, 0); |
1c79356b | 1949 | |
55e303ae | 1950 | return (pages_in_prefetch); |
1c79356b A |
1951 | } |
1952 | ||
1953 | ||
1954 | ||
1955 | static void | |
2d21ac55 A |
1956 | cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg, |
1957 | int bflag) | |
1c79356b | 1958 | { |
91447636 A |
1959 | daddr64_t r_addr; |
1960 | off_t f_offset; | |
1961 | int size_of_prefetch; | |
b0d623f7 | 1962 | u_int max_prefetch; |
91447636 | 1963 | |
1c79356b A |
1964 | |
1965 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, | |
91447636 | 1966 | (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); |
1c79356b | 1967 | |
91447636 | 1968 | if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { |
1c79356b | 1969 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
91447636 | 1970 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); |
1c79356b A |
1971 | return; |
1972 | } | |
2d21ac55 | 1973 | if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) { |
91447636 A |
1974 | rap->cl_ralen = 0; |
1975 | rap->cl_maxra = 0; | |
1c79356b A |
1976 | |
1977 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 1978 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); |
1c79356b A |
1979 | |
1980 | return; | |
1981 | } | |
5ba3f43e | 1982 | max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), disk_conditioner_mount_is_ssd(vp->v_mount)); |
cf7d32b8 | 1983 | |
fe8ab488 A |
1984 | if (max_prefetch > speculative_prefetch_max) |
1985 | max_prefetch = speculative_prefetch_max; | |
6d2010ae A |
1986 | |
1987 | if (max_prefetch <= PAGE_SIZE) { | |
1988 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1989 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0); | |
1990 | return; | |
1991 | } | |
fe8ab488 A |
1992 | if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) { |
1993 | if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) { | |
1c79356b A |
1994 | |
1995 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 1996 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); |
1c79356b A |
1997 | return; |
1998 | } | |
1999 | } | |
91447636 A |
2000 | r_addr = max(extent->e_addr, rap->cl_maxra) + 1; |
2001 | f_offset = (off_t)(r_addr * PAGE_SIZE_64); | |
1c79356b | 2002 | |
55e303ae A |
2003 | size_of_prefetch = 0; |
2004 | ||
2005 | ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch); | |
2006 | ||
2007 | if (size_of_prefetch) { | |
2008 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 2009 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); |
55e303ae A |
2010 | return; |
2011 | } | |
9bccf70c | 2012 | if (f_offset < filesize) { |
91447636 | 2013 | daddr64_t read_size; |
55e303ae | 2014 | |
cf7d32b8 | 2015 | rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1; |
55e303ae | 2016 | |
91447636 A |
2017 | read_size = (extent->e_addr + 1) - extent->b_addr; |
2018 | ||
2019 | if (read_size > rap->cl_ralen) { | |
cf7d32b8 A |
2020 | if (read_size > max_prefetch / PAGE_SIZE) |
2021 | rap->cl_ralen = max_prefetch / PAGE_SIZE; | |
91447636 A |
2022 | else |
2023 | rap->cl_ralen = read_size; | |
2024 | } | |
2d21ac55 | 2025 | size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag); |
1c79356b | 2026 | |
9bccf70c | 2027 | if (size_of_prefetch) |
91447636 | 2028 | rap->cl_maxra = (r_addr + size_of_prefetch) - 1; |
9bccf70c | 2029 | } |
1c79356b | 2030 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
91447636 | 2031 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); |
1c79356b A |
2032 | } |
2033 | ||
2d21ac55 | 2034 | |
9bccf70c | 2035 | int |
b0d623f7 | 2036 | cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
91447636 | 2037 | int size, off_t filesize, int flags) |
2d21ac55 A |
2038 | { |
2039 | return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
2040 | ||
2041 | } | |
2042 | ||
2043 | ||
2044 | int | |
b0d623f7 | 2045 | cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
2d21ac55 | 2046 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
2047 | { |
2048 | int io_size; | |
55e303ae | 2049 | int rounded_size; |
1c79356b | 2050 | off_t max_size; |
55e303ae A |
2051 | int local_flags; |
2052 | ||
6d2010ae | 2053 | local_flags = CL_PAGEOUT | CL_THROTTLE; |
1c79356b A |
2054 | |
2055 | if ((flags & UPL_IOSYNC) == 0) | |
2056 | local_flags |= CL_ASYNC; | |
2057 | if ((flags & UPL_NOCOMMIT) == 0) | |
2058 | local_flags |= CL_COMMIT; | |
91447636 A |
2059 | if ((flags & UPL_KEEPCACHED)) |
2060 | local_flags |= CL_KEEPCACHED; | |
6d2010ae A |
2061 | if (flags & UPL_PAGING_ENCRYPTED) |
2062 | local_flags |= CL_ENCRYPTED; | |
1c79356b | 2063 | |
1c79356b A |
2064 | |
2065 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, | |
2066 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
2067 | ||
2068 | /* | |
2069 | * If they didn't specify any I/O, then we are done... | |
2070 | * we can't issue an abort because we don't know how | |
2071 | * big the upl really is | |
2072 | */ | |
2073 | if (size <= 0) | |
2074 | return (EINVAL); | |
2075 | ||
2076 | if (vp->v_mount->mnt_flag & MNT_RDONLY) { | |
2077 | if (local_flags & CL_COMMIT) | |
9bccf70c | 2078 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); |
1c79356b A |
2079 | return (EROFS); |
2080 | } | |
2081 | /* | |
2082 | * can't page-in from a negative offset | |
2083 | * or if we're starting beyond the EOF | |
2084 | * or if the file offset isn't page aligned | |
2085 | * or the size requested isn't a multiple of PAGE_SIZE | |
2086 | */ | |
2087 | if (f_offset < 0 || f_offset >= filesize || | |
2088 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) { | |
0b4e3aa0 A |
2089 | if (local_flags & CL_COMMIT) |
2090 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
2091 | return (EINVAL); |
2092 | } | |
2093 | max_size = filesize - f_offset; | |
2094 | ||
2095 | if (size < max_size) | |
2096 | io_size = size; | |
2097 | else | |
9bccf70c | 2098 | io_size = max_size; |
1c79356b | 2099 | |
55e303ae | 2100 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 2101 | |
55e303ae | 2102 | if (size > rounded_size) { |
0b4e3aa0 | 2103 | if (local_flags & CL_COMMIT) |
55e303ae | 2104 | ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, |
1c79356b A |
2105 | UPL_ABORT_FREE_ON_EMPTY); |
2106 | } | |
91447636 | 2107 | return (cluster_io(vp, upl, upl_offset, f_offset, io_size, |
2d21ac55 | 2108 | local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg)); |
1c79356b A |
2109 | } |
2110 | ||
2d21ac55 | 2111 | |
9bccf70c | 2112 | int |
b0d623f7 | 2113 | cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
91447636 | 2114 | int size, off_t filesize, int flags) |
2d21ac55 A |
2115 | { |
2116 | return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
2117 | } | |
2118 | ||
2119 | ||
2120 | int | |
b0d623f7 | 2121 | cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
2d21ac55 | 2122 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
2123 | { |
2124 | u_int io_size; | |
9bccf70c | 2125 | int rounded_size; |
1c79356b A |
2126 | off_t max_size; |
2127 | int retval; | |
2128 | int local_flags = 0; | |
1c79356b | 2129 | |
9bccf70c A |
2130 | if (upl == NULL || size < 0) |
2131 | panic("cluster_pagein: NULL upl passed in"); | |
1c79356b | 2132 | |
9bccf70c A |
2133 | if ((flags & UPL_IOSYNC) == 0) |
2134 | local_flags |= CL_ASYNC; | |
1c79356b | 2135 | if ((flags & UPL_NOCOMMIT) == 0) |
9bccf70c | 2136 | local_flags |= CL_COMMIT; |
b0d623f7 A |
2137 | if (flags & UPL_IOSTREAMING) |
2138 | local_flags |= CL_IOSTREAMING; | |
6d2010ae A |
2139 | if (flags & UPL_PAGING_ENCRYPTED) |
2140 | local_flags |= CL_ENCRYPTED; | |
9bccf70c | 2141 | |
1c79356b A |
2142 | |
2143 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, | |
2144 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
2145 | ||
2146 | /* | |
2147 | * can't page-in from a negative offset | |
2148 | * or if we're starting beyond the EOF | |
2149 | * or if the file offset isn't page aligned | |
2150 | * or the size requested isn't a multiple of PAGE_SIZE | |
2151 | */ | |
2152 | if (f_offset < 0 || f_offset >= filesize || | |
9bccf70c A |
2153 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) { |
2154 | if (local_flags & CL_COMMIT) | |
2155 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
1c79356b A |
2156 | return (EINVAL); |
2157 | } | |
2158 | max_size = filesize - f_offset; | |
2159 | ||
2160 | if (size < max_size) | |
2161 | io_size = size; | |
2162 | else | |
9bccf70c | 2163 | io_size = max_size; |
1c79356b | 2164 | |
9bccf70c | 2165 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 2166 | |
9bccf70c A |
2167 | if (size > rounded_size && (local_flags & CL_COMMIT)) |
2168 | ubc_upl_abort_range(upl, upl_offset + rounded_size, | |
55e303ae | 2169 | size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); |
9bccf70c | 2170 | |
91447636 | 2171 | retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, |
2d21ac55 | 2172 | local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 2173 | |
1c79356b A |
2174 | return (retval); |
2175 | } | |
2176 | ||
2d21ac55 | 2177 | |
9bccf70c | 2178 | int |
91447636 | 2179 | cluster_bp(buf_t bp) |
2d21ac55 A |
2180 | { |
2181 | return cluster_bp_ext(bp, NULL, NULL); | |
2182 | } | |
2183 | ||
2184 | ||
2185 | int | |
2186 | cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
2187 | { |
2188 | off_t f_offset; | |
2189 | int flags; | |
2190 | ||
9bccf70c | 2191 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, |
b0d623f7 | 2192 | bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
9bccf70c | 2193 | |
1c79356b | 2194 | if (bp->b_flags & B_READ) |
9bccf70c | 2195 | flags = CL_ASYNC | CL_READ; |
1c79356b | 2196 | else |
9bccf70c | 2197 | flags = CL_ASYNC; |
2d21ac55 A |
2198 | if (bp->b_flags & B_PASSIVE) |
2199 | flags |= CL_PASSIVE; | |
1c79356b A |
2200 | |
2201 | f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); | |
2202 | ||
2d21ac55 | 2203 | return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg)); |
1c79356b A |
2204 | } |
2205 | ||
2d21ac55 A |
2206 | |
2207 | ||
9bccf70c | 2208 | int |
91447636 | 2209 | cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) |
1c79356b | 2210 | { |
2d21ac55 A |
2211 | return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL); |
2212 | } | |
2213 | ||
2214 | ||
2215 | int | |
2216 | cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, | |
2217 | int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
2218 | { | |
2219 | user_ssize_t cur_resid; | |
2220 | int retval = 0; | |
2221 | int flags; | |
2222 | int zflags; | |
2223 | int bflag; | |
2224 | int write_type = IO_COPY; | |
2225 | u_int32_t write_length; | |
1c79356b | 2226 | |
91447636 A |
2227 | flags = xflags; |
2228 | ||
2d21ac55 | 2229 | if (flags & IO_PASSIVE) |
b0d623f7 | 2230 | bflag = CL_PASSIVE; |
2d21ac55 | 2231 | else |
b0d623f7 | 2232 | bflag = 0; |
2d21ac55 | 2233 | |
316670eb | 2234 | if (vp->v_flag & VNOCACHE_DATA){ |
91447636 | 2235 | flags |= IO_NOCACHE; |
316670eb A |
2236 | bflag |= CL_NOCACHE; |
2237 | } | |
2d21ac55 | 2238 | if (uio == NULL) { |
91447636 | 2239 | /* |
2d21ac55 A |
2240 | * no user data... |
2241 | * this call is being made to zero-fill some range in the file | |
91447636 | 2242 | */ |
2d21ac55 | 2243 | retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg); |
91447636 | 2244 | |
2d21ac55 | 2245 | return(retval); |
91447636 | 2246 | } |
2d21ac55 A |
2247 | /* |
2248 | * do a write through the cache if one of the following is true.... | |
6d2010ae | 2249 | * NOCACHE is not true or NODIRECT is true |
2d21ac55 A |
2250 | * the uio request doesn't target USERSPACE |
2251 | * otherwise, find out if we want the direct or contig variant for | |
2252 | * the first vector in the uio request | |
2253 | */ | |
6d2010ae | 2254 | if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ) |
2d21ac55 A |
2255 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); |
2256 | ||
2257 | if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT) | |
2258 | /* | |
2259 | * must go through the cached variant in this case | |
0b4e3aa0 | 2260 | */ |
2d21ac55 | 2261 | write_type = IO_COPY; |
0b4e3aa0 | 2262 | |
2d21ac55 A |
2263 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) { |
2264 | ||
2265 | switch (write_type) { | |
91447636 | 2266 | |
2d21ac55 | 2267 | case IO_COPY: |
91447636 | 2268 | /* |
2d21ac55 A |
2269 | * make sure the uio_resid isn't too big... |
2270 | * internally, we want to handle all of the I/O in | |
2271 | * chunk sizes that fit in a 32 bit int | |
91447636 | 2272 | */ |
2d21ac55 | 2273 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { |
91447636 | 2274 | /* |
2d21ac55 A |
2275 | * we're going to have to call cluster_write_copy |
2276 | * more than once... | |
2277 | * | |
2278 | * only want the last call to cluster_write_copy to | |
2279 | * have the IO_TAILZEROFILL flag set and only the | |
2280 | * first call should have IO_HEADZEROFILL | |
91447636 | 2281 | */ |
2d21ac55 A |
2282 | zflags = flags & ~IO_TAILZEROFILL; |
2283 | flags &= ~IO_HEADZEROFILL; | |
91447636 | 2284 | |
2d21ac55 A |
2285 | write_length = MAX_IO_REQUEST_SIZE; |
2286 | } else { | |
2287 | /* | |
2288 | * last call to cluster_write_copy | |
91447636 | 2289 | */ |
2d21ac55 A |
2290 | zflags = flags; |
2291 | ||
2292 | write_length = (u_int32_t)cur_resid; | |
2293 | } | |
2294 | retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg); | |
2295 | break; | |
91447636 | 2296 | |
2d21ac55 A |
2297 | case IO_CONTIG: |
2298 | zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL); | |
91447636 | 2299 | |
2d21ac55 A |
2300 | if (flags & IO_HEADZEROFILL) { |
2301 | /* | |
2302 | * only do this once per request | |
91447636 | 2303 | */ |
2d21ac55 | 2304 | flags &= ~IO_HEADZEROFILL; |
91447636 | 2305 | |
2d21ac55 A |
2306 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset, |
2307 | headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2308 | if (retval) | |
2309 | break; | |
91447636 | 2310 | } |
2d21ac55 A |
2311 | retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag); |
2312 | ||
2313 | if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) { | |
2314 | /* | |
2315 | * we're done with the data from the user specified buffer(s) | |
2316 | * and we've been requested to zero fill at the tail | |
2317 | * treat this as an IO_HEADZEROFILL which doesn't require a uio | |
2318 | * by rearranging the args and passing in IO_HEADZEROFILL | |
91447636 | 2319 | */ |
2d21ac55 A |
2320 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset, |
2321 | (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2322 | } | |
2323 | break; | |
91447636 | 2324 | |
2d21ac55 A |
2325 | case IO_DIRECT: |
2326 | /* | |
2327 | * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL | |
2328 | */ | |
2329 | retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg); | |
2330 | break; | |
91447636 | 2331 | |
2d21ac55 A |
2332 | case IO_UNKNOWN: |
2333 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); | |
2334 | break; | |
2335 | } | |
b0d623f7 A |
2336 | /* |
2337 | * in case we end up calling cluster_write_copy (from cluster_write_direct) | |
2338 | * multiple times to service a multi-vector request that is not aligned properly | |
2339 | * we need to update the oldEOF so that we | |
2340 | * don't zero-fill the head of a page if we've successfully written | |
2341 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2342 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2343 | * want that to happen for the very first page of the cluster_write, | |
2344 | * NOT the first page of each vector making up a multi-vector write. | |
2345 | */ | |
2346 | if (uio->uio_offset > oldEOF) | |
2347 | oldEOF = uio->uio_offset; | |
2d21ac55 A |
2348 | } |
2349 | return (retval); | |
1c79356b A |
2350 | } |
2351 | ||
b4c24cb9 | 2352 | |
9bccf70c | 2353 | static int |
2d21ac55 A |
2354 | cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length, |
2355 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
2356 | { |
2357 | upl_t upl; | |
2358 | upl_page_info_t *pl; | |
1c79356b | 2359 | vm_offset_t upl_offset; |
b0d623f7 | 2360 | vm_offset_t vector_upl_offset = 0; |
2d21ac55 A |
2361 | u_int32_t io_req_size; |
2362 | u_int32_t offset_in_file; | |
2363 | u_int32_t offset_in_iovbase; | |
b0d623f7 A |
2364 | u_int32_t io_size; |
2365 | int io_flag = 0; | |
2366 | upl_size_t upl_size, vector_upl_size = 0; | |
2d21ac55 A |
2367 | vm_size_t upl_needed_size; |
2368 | mach_msg_type_number_t pages_in_pl; | |
3e170ce0 | 2369 | upl_control_flags_t upl_flags; |
1c79356b | 2370 | kern_return_t kret; |
2d21ac55 | 2371 | mach_msg_type_number_t i; |
1c79356b | 2372 | int force_data_sync; |
2d21ac55 A |
2373 | int retval = 0; |
2374 | int first_IO = 1; | |
d7e50217 | 2375 | struct clios iostate; |
2d21ac55 A |
2376 | user_addr_t iov_base; |
2377 | u_int32_t mem_alignment_mask; | |
2378 | u_int32_t devblocksize; | |
316670eb | 2379 | u_int32_t max_io_size; |
b0d623f7 | 2380 | u_int32_t max_upl_size; |
316670eb | 2381 | u_int32_t max_vector_size; |
39037602 | 2382 | u_int32_t bytes_outstanding_limit; |
316670eb | 2383 | boolean_t io_throttled = FALSE; |
cf7d32b8 | 2384 | |
b0d623f7 A |
2385 | u_int32_t vector_upl_iosize = 0; |
2386 | int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); | |
2387 | off_t v_upl_uio_offset = 0; | |
2388 | int vector_upl_index=0; | |
2389 | upl_t vector_upl = NULL; | |
cf7d32b8 | 2390 | |
1c79356b A |
2391 | |
2392 | /* | |
2393 | * When we enter this routine, we know | |
1c79356b A |
2394 | * -- the resid will not exceed iov_len |
2395 | */ | |
2d21ac55 A |
2396 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, |
2397 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
91447636 | 2398 | |
b0d623f7 A |
2399 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE); |
2400 | ||
2401 | io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO; | |
2402 | ||
2403 | if (flags & IO_PASSIVE) | |
2404 | io_flag |= CL_PASSIVE; | |
316670eb A |
2405 | |
2406 | if (flags & IO_NOCACHE) | |
2407 | io_flag |= CL_NOCACHE; | |
2408 | ||
fe8ab488 A |
2409 | if (flags & IO_SKIP_ENCRYPTION) |
2410 | io_flag |= CL_ENCRYPTED; | |
2411 | ||
d7e50217 A |
2412 | iostate.io_completed = 0; |
2413 | iostate.io_issued = 0; | |
2414 | iostate.io_error = 0; | |
2415 | iostate.io_wanted = 0; | |
2416 | ||
6d2010ae A |
2417 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
2418 | ||
2d21ac55 A |
2419 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; |
2420 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
2421 | ||
2422 | if (devblocksize == 1) { | |
2423 | /* | |
2424 | * the AFP client advertises a devblocksize of 1 | |
2425 | * however, its BLOCKMAP routine maps to physical | |
2426 | * blocks that are PAGE_SIZE in size... | |
2427 | * therefore we can't ask for I/Os that aren't page aligned | |
2428 | * or aren't multiples of PAGE_SIZE in size | |
2429 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
2430 | * the old behavior we had before the mem_alignment_mask | |
2431 | * changes went in... | |
2432 | */ | |
2433 | devblocksize = PAGE_SIZE; | |
2434 | } | |
2435 | ||
2436 | next_dwrite: | |
2437 | io_req_size = *write_length; | |
2438 | iov_base = uio_curriovbase(uio); | |
cc9f6e38 | 2439 | |
2d21ac55 A |
2440 | offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK; |
2441 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
1c79356b | 2442 | |
2d21ac55 A |
2443 | if (offset_in_file || offset_in_iovbase) { |
2444 | /* | |
2445 | * one of the 2 important offsets is misaligned | |
2446 | * so fire an I/O through the cache for this entire vector | |
2447 | */ | |
2448 | goto wait_for_dwrites; | |
2449 | } | |
2450 | if (iov_base & (devblocksize - 1)) { | |
2451 | /* | |
2452 | * the offset in memory must be on a device block boundary | |
2453 | * so that we can guarantee that we can generate an | |
2454 | * I/O that ends on a page boundary in cluster_io | |
2455 | */ | |
2456 | goto wait_for_dwrites; | |
2457 | } | |
1c79356b | 2458 | |
39037602 | 2459 | task_update_logical_writes(current_task(), (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE, vp); |
2d21ac55 | 2460 | while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) { |
316670eb A |
2461 | int throttle_type; |
2462 | ||
39236c6e | 2463 | if ( (throttle_type = cluster_is_throttled(vp)) ) { |
316670eb A |
2464 | /* |
2465 | * we're in the throttle window, at the very least | |
2466 | * we want to limit the size of the I/O we're about | |
2467 | * to issue | |
2468 | */ | |
39236c6e | 2469 | if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) { |
316670eb A |
2470 | /* |
2471 | * we're in the throttle window and at least 1 I/O | |
2472 | * has already been issued by a throttleable thread | |
2473 | * in this window, so return with EAGAIN to indicate | |
2474 | * to the FS issuing the cluster_write call that it | |
2475 | * should now throttle after dropping any locks | |
2476 | */ | |
2477 | throttle_info_update_by_mount(vp->v_mount); | |
2478 | ||
2479 | io_throttled = TRUE; | |
2480 | goto wait_for_dwrites; | |
2481 | } | |
2482 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
2483 | max_io_size = THROTTLE_MAX_IOSIZE; | |
2484 | } else { | |
2485 | max_vector_size = MAX_VECTOR_UPL_SIZE; | |
2486 | max_io_size = max_upl_size; | |
2487 | } | |
2d21ac55 A |
2488 | |
2489 | if (first_IO) { | |
fe8ab488 | 2490 | cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); |
2d21ac55 A |
2491 | first_IO = 0; |
2492 | } | |
2493 | io_size = io_req_size & ~PAGE_MASK; | |
cc9f6e38 A |
2494 | iov_base = uio_curriovbase(uio); |
2495 | ||
316670eb A |
2496 | if (io_size > max_io_size) |
2497 | io_size = max_io_size; | |
2d21ac55 | 2498 | |
b0d623f7 A |
2499 | if(useVectorUPL && (iov_base & PAGE_MASK)) { |
2500 | /* | |
2501 | * We have an iov_base that's not page-aligned. | |
2502 | * Issue all I/O's that have been collected within | |
2503 | * this Vectored UPL. | |
2504 | */ | |
2505 | if(vector_upl_index) { | |
2506 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2507 | reset_vector_run_state(); | |
2508 | } | |
2509 | ||
2510 | /* | |
2511 | * After this point, if we are using the Vector UPL path and the base is | |
2512 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
2513 | */ | |
2514 | } | |
2515 | ||
2d21ac55 | 2516 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
d7e50217 A |
2517 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; |
2518 | ||
2519 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, | |
cc9f6e38 | 2520 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
d7e50217 | 2521 | |
3e170ce0 | 2522 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
d7e50217 A |
2523 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { |
2524 | pages_in_pl = 0; | |
2525 | upl_size = upl_needed_size; | |
2526 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | | |
5ba3f43e | 2527 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
d7e50217 | 2528 | |
3e170ce0 | 2529 | kret = vm_map_get_upl(map, |
cc9f6e38 | 2530 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
d7e50217 A |
2531 | &upl_size, |
2532 | &upl, | |
2533 | NULL, | |
2534 | &pages_in_pl, | |
2535 | &upl_flags, | |
5ba3f43e | 2536 | VM_KERN_MEMORY_FILE, |
d7e50217 A |
2537 | force_data_sync); |
2538 | ||
2539 | if (kret != KERN_SUCCESS) { | |
2540 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2541 | 0, 0, 0, kret, 0); | |
d7e50217 | 2542 | /* |
2d21ac55 | 2543 | * failed to get pagelist |
d7e50217 A |
2544 | * |
2545 | * we may have already spun some portion of this request | |
2546 | * off as async requests... we need to wait for the I/O | |
2547 | * to complete before returning | |
2548 | */ | |
2d21ac55 | 2549 | goto wait_for_dwrites; |
d7e50217 A |
2550 | } |
2551 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
2552 | pages_in_pl = upl_size / PAGE_SIZE; | |
1c79356b | 2553 | |
d7e50217 A |
2554 | for (i = 0; i < pages_in_pl; i++) { |
2555 | if (!upl_valid_page(pl, i)) | |
2556 | break; | |
2557 | } | |
2558 | if (i == pages_in_pl) | |
2559 | break; | |
1c79356b | 2560 | |
d7e50217 A |
2561 | /* |
2562 | * didn't get all the pages back that we | |
2563 | * needed... release this upl and try again | |
2564 | */ | |
2d21ac55 | 2565 | ubc_upl_abort(upl, 0); |
1c79356b | 2566 | } |
d7e50217 A |
2567 | if (force_data_sync >= 3) { |
2568 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2569 | i, pages_in_pl, upl_size, kret, 0); | |
d7e50217 A |
2570 | /* |
2571 | * for some reason, we couldn't acquire a hold on all | |
2572 | * the pages needed in the user's address space | |
2573 | * | |
2574 | * we may have already spun some portion of this request | |
2575 | * off as async requests... we need to wait for the I/O | |
2576 | * to complete before returning | |
2577 | */ | |
2d21ac55 | 2578 | goto wait_for_dwrites; |
1c79356b | 2579 | } |
0b4e3aa0 | 2580 | |
d7e50217 A |
2581 | /* |
2582 | * Consider the possibility that upl_size wasn't satisfied. | |
2583 | */ | |
2d21ac55 A |
2584 | if (upl_size < upl_needed_size) { |
2585 | if (upl_size && upl_offset == 0) | |
2586 | io_size = upl_size; | |
2587 | else | |
2588 | io_size = 0; | |
2589 | } | |
d7e50217 | 2590 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, |
cc9f6e38 | 2591 | (int)upl_offset, upl_size, (int)iov_base, io_size, 0); |
1c79356b | 2592 | |
d7e50217 | 2593 | if (io_size == 0) { |
2d21ac55 | 2594 | ubc_upl_abort(upl, 0); |
d7e50217 A |
2595 | /* |
2596 | * we may have already spun some portion of this request | |
2597 | * off as async requests... we need to wait for the I/O | |
2598 | * to complete before returning | |
2599 | */ | |
2d21ac55 | 2600 | goto wait_for_dwrites; |
d7e50217 | 2601 | } |
b0d623f7 A |
2602 | |
2603 | if(useVectorUPL) { | |
2604 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
2605 | if(end_off) | |
2606 | issueVectorUPL = 1; | |
2607 | /* | |
2608 | * After this point, if we are using a vector UPL, then | |
2609 | * either all the UPL elements end on a page boundary OR | |
2610 | * this UPL is the last element because it does not end | |
2611 | * on a page boundary. | |
2612 | */ | |
2613 | } | |
2d21ac55 | 2614 | |
d7e50217 A |
2615 | /* |
2616 | * we want push out these writes asynchronously so that we can overlap | |
2617 | * the preparation of the next I/O | |
2618 | * if there are already too many outstanding writes | |
2619 | * wait until some complete before issuing the next | |
2620 | */ | |
39037602 A |
2621 | if (vp->v_mount->mnt_minsaturationbytecount) |
2622 | bytes_outstanding_limit = vp->v_mount->mnt_minsaturationbytecount; | |
2623 | else | |
2624 | bytes_outstanding_limit = max_upl_size * IO_SCALE(vp, 2); | |
2625 | ||
2626 | cluster_iostate_wait(&iostate, bytes_outstanding_limit, "cluster_write_direct"); | |
cf7d32b8 | 2627 | |
d7e50217 A |
2628 | if (iostate.io_error) { |
2629 | /* | |
2630 | * one of the earlier writes we issued ran into a hard error | |
2631 | * don't issue any more writes, cleanup the UPL | |
2632 | * that was just created but not used, then | |
2633 | * go wait for all writes that are part of this stream | |
2634 | * to complete before returning the error to the caller | |
2635 | */ | |
2d21ac55 | 2636 | ubc_upl_abort(upl, 0); |
1c79356b | 2637 | |
2d21ac55 | 2638 | goto wait_for_dwrites; |
d7e50217 | 2639 | } |
1c79356b | 2640 | |
d7e50217 A |
2641 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, |
2642 | (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); | |
1c79356b | 2643 | |
b0d623f7 A |
2644 | if(!useVectorUPL) |
2645 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, | |
2d21ac55 | 2646 | io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
7b1edb79 | 2647 | |
b0d623f7 A |
2648 | else { |
2649 | if(!vector_upl_index) { | |
2650 | vector_upl = vector_upl_create(upl_offset); | |
2651 | v_upl_uio_offset = uio->uio_offset; | |
2652 | vector_upl_offset = upl_offset; | |
2653 | } | |
2654 | ||
2655 | vector_upl_set_subupl(vector_upl,upl,upl_size); | |
2656 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
2657 | vector_upl_index++; | |
2658 | vector_upl_iosize += io_size; | |
2659 | vector_upl_size += upl_size; | |
2660 | ||
316670eb | 2661 | if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { |
b0d623f7 A |
2662 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
2663 | reset_vector_run_state(); | |
2664 | } | |
2665 | } | |
2666 | ||
2d21ac55 A |
2667 | /* |
2668 | * update the uio structure to | |
2669 | * reflect the I/O that we just issued | |
2670 | */ | |
cc9f6e38 | 2671 | uio_update(uio, (user_size_t)io_size); |
1c79356b | 2672 | |
b0d623f7 A |
2673 | /* |
2674 | * in case we end up calling through to cluster_write_copy to finish | |
2675 | * the tail of this request, we need to update the oldEOF so that we | |
2676 | * don't zero-fill the head of a page if we've successfully written | |
2677 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2678 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2679 | * want that to happen for the very first page of the cluster_write, | |
2680 | * NOT the first page of each vector making up a multi-vector write. | |
2681 | */ | |
2682 | if (uio->uio_offset > oldEOF) | |
2683 | oldEOF = uio->uio_offset; | |
2684 | ||
2d21ac55 A |
2685 | io_req_size -= io_size; |
2686 | ||
d7e50217 | 2687 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, |
2d21ac55 | 2688 | (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0); |
1c79356b A |
2689 | |
2690 | } /* end while */ | |
2691 | ||
2d21ac55 | 2692 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) { |
91447636 | 2693 | |
2d21ac55 A |
2694 | retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE); |
2695 | ||
2696 | if (retval == 0 && *write_type == IO_DIRECT) { | |
2697 | ||
2698 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE, | |
2699 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
2700 | ||
2701 | goto next_dwrite; | |
2702 | } | |
2703 | } | |
2704 | ||
2705 | wait_for_dwrites: | |
b0d623f7 | 2706 | |
6d2010ae | 2707 | if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { |
b0d623f7 A |
2708 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
2709 | reset_vector_run_state(); | |
2710 | } | |
fe8ab488 A |
2711 | /* |
2712 | * make sure all async writes issued as part of this stream | |
2713 | * have completed before we return | |
2714 | */ | |
2715 | cluster_iostate_wait(&iostate, 0, "cluster_write_direct"); | |
b0d623f7 | 2716 | |
d7e50217 | 2717 | if (iostate.io_error) |
2d21ac55 A |
2718 | retval = iostate.io_error; |
2719 | ||
6d2010ae A |
2720 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
2721 | ||
316670eb A |
2722 | if (io_throttled == TRUE && retval == 0) |
2723 | retval = EAGAIN; | |
2724 | ||
2d21ac55 A |
2725 | if (io_req_size && retval == 0) { |
2726 | /* | |
2727 | * we couldn't handle the tail of this request in DIRECT mode | |
2728 | * so fire it through the copy path | |
2729 | * | |
2730 | * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set | |
2731 | * so we can just pass 0 in for the headOff and tailOff | |
2732 | */ | |
b0d623f7 A |
2733 | if (uio->uio_offset > oldEOF) |
2734 | oldEOF = uio->uio_offset; | |
2735 | ||
2d21ac55 | 2736 | retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg); |
1c79356b | 2737 | |
2d21ac55 A |
2738 | *write_type = IO_UNKNOWN; |
2739 | } | |
1c79356b | 2740 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, |
2d21ac55 | 2741 | (int)uio->uio_offset, io_req_size, retval, 4, 0); |
1c79356b | 2742 | |
2d21ac55 | 2743 | return (retval); |
1c79356b A |
2744 | } |
2745 | ||
b4c24cb9 | 2746 | |
9bccf70c | 2747 | static int |
2d21ac55 A |
2748 | cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length, |
2749 | int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
0b4e3aa0 | 2750 | { |
b4c24cb9 | 2751 | upl_page_info_t *pl; |
2d21ac55 A |
2752 | addr64_t src_paddr = 0; |
2753 | upl_t upl[MAX_VECTS]; | |
0b4e3aa0 | 2754 | vm_offset_t upl_offset; |
2d21ac55 A |
2755 | u_int32_t tail_size = 0; |
2756 | u_int32_t io_size; | |
2757 | u_int32_t xsize; | |
b0d623f7 | 2758 | upl_size_t upl_size; |
2d21ac55 A |
2759 | vm_size_t upl_needed_size; |
2760 | mach_msg_type_number_t pages_in_pl; | |
3e170ce0 | 2761 | upl_control_flags_t upl_flags; |
0b4e3aa0 | 2762 | kern_return_t kret; |
2d21ac55 | 2763 | struct clios iostate; |
0b4e3aa0 | 2764 | int error = 0; |
2d21ac55 A |
2765 | int cur_upl = 0; |
2766 | int num_upl = 0; | |
2767 | int n; | |
cc9f6e38 | 2768 | user_addr_t iov_base; |
2d21ac55 A |
2769 | u_int32_t devblocksize; |
2770 | u_int32_t mem_alignment_mask; | |
0b4e3aa0 A |
2771 | |
2772 | /* | |
2773 | * When we enter this routine, we know | |
2d21ac55 A |
2774 | * -- the io_req_size will not exceed iov_len |
2775 | * -- the target address is physically contiguous | |
0b4e3aa0 | 2776 | */ |
fe8ab488 | 2777 | cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); |
0b4e3aa0 | 2778 | |
2d21ac55 A |
2779 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
2780 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
91447636 | 2781 | |
2d21ac55 A |
2782 | iostate.io_completed = 0; |
2783 | iostate.io_issued = 0; | |
2784 | iostate.io_error = 0; | |
2785 | iostate.io_wanted = 0; | |
2786 | ||
6d2010ae A |
2787 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
2788 | ||
2d21ac55 A |
2789 | next_cwrite: |
2790 | io_size = *write_length; | |
91447636 | 2791 | |
cc9f6e38 A |
2792 | iov_base = uio_curriovbase(uio); |
2793 | ||
2d21ac55 | 2794 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
0b4e3aa0 A |
2795 | upl_needed_size = upl_offset + io_size; |
2796 | ||
2797 | pages_in_pl = 0; | |
2798 | upl_size = upl_needed_size; | |
9bccf70c | 2799 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | |
5ba3f43e | 2800 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
0b4e3aa0 | 2801 | |
3e170ce0 A |
2802 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
2803 | kret = vm_map_get_upl(map, | |
cc9f6e38 | 2804 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
5ba3f43e | 2805 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0); |
0b4e3aa0 | 2806 | |
b4c24cb9 A |
2807 | if (kret != KERN_SUCCESS) { |
2808 | /* | |
2d21ac55 | 2809 | * failed to get pagelist |
b4c24cb9 | 2810 | */ |
2d21ac55 A |
2811 | error = EINVAL; |
2812 | goto wait_for_cwrites; | |
b4c24cb9 | 2813 | } |
2d21ac55 A |
2814 | num_upl++; |
2815 | ||
0b4e3aa0 A |
2816 | /* |
2817 | * Consider the possibility that upl_size wasn't satisfied. | |
0b4e3aa0 | 2818 | */ |
b4c24cb9 | 2819 | if (upl_size < upl_needed_size) { |
2d21ac55 A |
2820 | /* |
2821 | * This is a failure in the physical memory case. | |
2822 | */ | |
2823 | error = EINVAL; | |
2824 | goto wait_for_cwrites; | |
b4c24cb9 | 2825 | } |
2d21ac55 | 2826 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
0b4e3aa0 | 2827 | |
fe8ab488 | 2828 | src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; |
0b4e3aa0 | 2829 | |
b4c24cb9 | 2830 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
2d21ac55 | 2831 | u_int32_t head_size; |
0b4e3aa0 | 2832 | |
2d21ac55 | 2833 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
0b4e3aa0 | 2834 | |
b4c24cb9 A |
2835 | if (head_size > io_size) |
2836 | head_size = io_size; | |
2837 | ||
2d21ac55 | 2838 | error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg); |
b4c24cb9 | 2839 | |
2d21ac55 A |
2840 | if (error) |
2841 | goto wait_for_cwrites; | |
b4c24cb9 | 2842 | |
b4c24cb9 A |
2843 | upl_offset += head_size; |
2844 | src_paddr += head_size; | |
2845 | io_size -= head_size; | |
2d21ac55 A |
2846 | |
2847 | iov_base += head_size; | |
2848 | } | |
2849 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
2850 | /* | |
2851 | * request doesn't set up on a memory boundary | |
2852 | * the underlying DMA engine can handle... | |
2853 | * return an error instead of going through | |
2854 | * the slow copy path since the intent of this | |
2855 | * path is direct I/O from device memory | |
2856 | */ | |
2857 | error = EINVAL; | |
2858 | goto wait_for_cwrites; | |
0b4e3aa0 | 2859 | } |
2d21ac55 | 2860 | |
b4c24cb9 A |
2861 | tail_size = io_size & (devblocksize - 1); |
2862 | io_size -= tail_size; | |
2863 | ||
2d21ac55 A |
2864 | while (io_size && error == 0) { |
2865 | ||
2866 | if (io_size > MAX_IO_CONTIG_SIZE) | |
2867 | xsize = MAX_IO_CONTIG_SIZE; | |
2868 | else | |
2869 | xsize = io_size; | |
2870 | /* | |
2871 | * request asynchronously so that we can overlap | |
2872 | * the preparation of the next I/O... we'll do | |
2873 | * the commit after all the I/O has completed | |
2874 | * since its all issued against the same UPL | |
2875 | * if there are already too many outstanding writes | |
2876 | * wait until some have completed before issuing the next | |
b4c24cb9 | 2877 | */ |
fe8ab488 | 2878 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig"); |
2d21ac55 | 2879 | |
2d21ac55 A |
2880 | if (iostate.io_error) { |
2881 | /* | |
2882 | * one of the earlier writes we issued ran into a hard error | |
2883 | * don't issue any more writes... | |
2884 | * go wait for all writes that are part of this stream | |
2885 | * to complete before returning the error to the caller | |
2886 | */ | |
2887 | goto wait_for_cwrites; | |
2888 | } | |
b4c24cb9 | 2889 | /* |
2d21ac55 | 2890 | * issue an asynchronous write to cluster_io |
b4c24cb9 | 2891 | */ |
2d21ac55 A |
2892 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, |
2893 | xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg); | |
cc9f6e38 | 2894 | |
2d21ac55 A |
2895 | if (error == 0) { |
2896 | /* | |
2897 | * The cluster_io write completed successfully, | |
2898 | * update the uio structure | |
2899 | */ | |
2900 | uio_update(uio, (user_size_t)xsize); | |
b4c24cb9 | 2901 | |
2d21ac55 A |
2902 | upl_offset += xsize; |
2903 | src_paddr += xsize; | |
2904 | io_size -= xsize; | |
2905 | } | |
b4c24cb9 | 2906 | } |
cf7d32b8 | 2907 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) { |
2d21ac55 A |
2908 | |
2909 | error = cluster_io_type(uio, write_type, write_length, 0); | |
2910 | ||
2911 | if (error == 0 && *write_type == IO_CONTIG) { | |
2912 | cur_upl++; | |
2913 | goto next_cwrite; | |
2914 | } | |
2915 | } else | |
2916 | *write_type = IO_UNKNOWN; | |
2917 | ||
2918 | wait_for_cwrites: | |
b4c24cb9 | 2919 | /* |
2d21ac55 A |
2920 | * make sure all async writes that are part of this stream |
2921 | * have completed before we proceed | |
2922 | */ | |
fe8ab488 | 2923 | cluster_iostate_wait(&iostate, 0, "cluster_write_contig"); |
cf7d32b8 | 2924 | |
2d21ac55 A |
2925 | if (iostate.io_error) |
2926 | error = iostate.io_error; | |
2927 | ||
6d2010ae A |
2928 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
2929 | ||
2d21ac55 A |
2930 | if (error == 0 && tail_size) |
2931 | error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg); | |
2932 | ||
2933 | for (n = 0; n < num_upl; n++) | |
2934 | /* | |
2935 | * just release our hold on each physically contiguous | |
2936 | * region without changing any state | |
2937 | */ | |
2938 | ubc_upl_abort(upl[n], 0); | |
0b4e3aa0 A |
2939 | |
2940 | return (error); | |
2941 | } | |
2942 | ||
b4c24cb9 | 2943 | |
b0d623f7 A |
2944 | /* |
2945 | * need to avoid a race between an msync of a range of pages dirtied via mmap | |
2946 | * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's | |
2947 | * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd | |
2948 | * | |
2949 | * we should never force-zero-fill pages that are already valid in the cache... | |
2950 | * the entire page contains valid data (either from disk, zero-filled or dirtied | |
2951 | * via an mmap) so we can only do damage by trying to zero-fill | |
2952 | * | |
2953 | */ | |
2954 | static int | |
2955 | cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero) | |
2956 | { | |
2957 | int zero_pg_index; | |
2958 | boolean_t need_cluster_zero = TRUE; | |
2959 | ||
2960 | if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { | |
2961 | ||
2962 | bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); | |
2963 | zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); | |
2964 | ||
2965 | if (upl_valid_page(pl, zero_pg_index)) { | |
2966 | /* | |
2967 | * never force zero valid pages - dirty or clean | |
2968 | * we'll leave these in the UPL for cluster_write_copy to deal with | |
2969 | */ | |
2970 | need_cluster_zero = FALSE; | |
2971 | } | |
2972 | } | |
2973 | if (need_cluster_zero == TRUE) | |
2974 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
2975 | ||
2976 | return (bytes_to_zero); | |
2977 | } | |
2978 | ||
2979 | ||
9bccf70c | 2980 | static int |
2d21ac55 A |
2981 | cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff, |
2982 | off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
2983 | { |
2984 | upl_page_info_t *pl; | |
2985 | upl_t upl; | |
91447636 | 2986 | vm_offset_t upl_offset = 0; |
2d21ac55 | 2987 | vm_size_t upl_size; |
1c79356b A |
2988 | off_t upl_f_offset; |
2989 | int pages_in_upl; | |
2990 | int start_offset; | |
2991 | int xfer_resid; | |
2992 | int io_size; | |
1c79356b A |
2993 | int io_offset; |
2994 | int bytes_to_zero; | |
2995 | int bytes_to_move; | |
2996 | kern_return_t kret; | |
2997 | int retval = 0; | |
91447636 | 2998 | int io_resid; |
1c79356b A |
2999 | long long total_size; |
3000 | long long zero_cnt; | |
3001 | off_t zero_off; | |
3002 | long long zero_cnt1; | |
3003 | off_t zero_off1; | |
6d2010ae A |
3004 | off_t write_off = 0; |
3005 | int write_cnt = 0; | |
3006 | boolean_t first_pass = FALSE; | |
91447636 | 3007 | struct cl_extent cl; |
91447636 | 3008 | struct cl_writebehind *wbp; |
2d21ac55 | 3009 | int bflag; |
b0d623f7 A |
3010 | u_int max_cluster_pgcount; |
3011 | u_int max_io_size; | |
1c79356b A |
3012 | |
3013 | if (uio) { | |
3014 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
2d21ac55 | 3015 | (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0); |
1c79356b | 3016 | |
2d21ac55 | 3017 | io_resid = io_req_size; |
1c79356b A |
3018 | } else { |
3019 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
3020 | 0, 0, (int)oldEOF, (int)newEOF, 0); | |
3021 | ||
91447636 | 3022 | io_resid = 0; |
1c79356b | 3023 | } |
b0d623f7 A |
3024 | if (flags & IO_PASSIVE) |
3025 | bflag = CL_PASSIVE; | |
3026 | else | |
3027 | bflag = 0; | |
316670eb A |
3028 | if (flags & IO_NOCACHE) |
3029 | bflag |= CL_NOCACHE; | |
3030 | ||
fe8ab488 A |
3031 | if (flags & IO_SKIP_ENCRYPTION) |
3032 | bflag |= CL_ENCRYPTED; | |
3033 | ||
1c79356b A |
3034 | zero_cnt = 0; |
3035 | zero_cnt1 = 0; | |
91447636 A |
3036 | zero_off = 0; |
3037 | zero_off1 = 0; | |
1c79356b | 3038 | |
cf7d32b8 A |
3039 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; |
3040 | max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE); | |
3041 | ||
1c79356b A |
3042 | if (flags & IO_HEADZEROFILL) { |
3043 | /* | |
3044 | * some filesystems (HFS is one) don't support unallocated holes within a file... | |
3045 | * so we zero fill the intervening space between the old EOF and the offset | |
3046 | * where the next chunk of real data begins.... ftruncate will also use this | |
3047 | * routine to zero fill to the new EOF when growing a file... in this case, the | |
3048 | * uio structure will not be provided | |
3049 | */ | |
3050 | if (uio) { | |
3051 | if (headOff < uio->uio_offset) { | |
3052 | zero_cnt = uio->uio_offset - headOff; | |
3053 | zero_off = headOff; | |
3054 | } | |
3055 | } else if (headOff < newEOF) { | |
3056 | zero_cnt = newEOF - headOff; | |
3057 | zero_off = headOff; | |
3058 | } | |
b0d623f7 A |
3059 | } else { |
3060 | if (uio && uio->uio_offset > oldEOF) { | |
3061 | zero_off = uio->uio_offset & ~PAGE_MASK_64; | |
3062 | ||
3063 | if (zero_off >= oldEOF) { | |
3064 | zero_cnt = uio->uio_offset - zero_off; | |
3065 | ||
3066 | flags |= IO_HEADZEROFILL; | |
3067 | } | |
3068 | } | |
1c79356b A |
3069 | } |
3070 | if (flags & IO_TAILZEROFILL) { | |
3071 | if (uio) { | |
2d21ac55 | 3072 | zero_off1 = uio->uio_offset + io_req_size; |
1c79356b A |
3073 | |
3074 | if (zero_off1 < tailOff) | |
3075 | zero_cnt1 = tailOff - zero_off1; | |
3076 | } | |
b0d623f7 A |
3077 | } else { |
3078 | if (uio && newEOF > oldEOF) { | |
3079 | zero_off1 = uio->uio_offset + io_req_size; | |
3080 | ||
3081 | if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) { | |
3082 | zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64); | |
3083 | ||
3084 | flags |= IO_TAILZEROFILL; | |
3085 | } | |
3086 | } | |
1c79356b | 3087 | } |
55e303ae | 3088 | if (zero_cnt == 0 && uio == (struct uio *) 0) { |
91447636 A |
3089 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, |
3090 | retval, 0, 0, 0, 0); | |
3091 | return (0); | |
55e303ae | 3092 | } |
6d2010ae A |
3093 | if (uio) { |
3094 | write_off = uio->uio_offset; | |
3095 | write_cnt = uio_resid(uio); | |
3096 | /* | |
3097 | * delay updating the sequential write info | |
3098 | * in the control block until we've obtained | |
3099 | * the lock for it | |
3100 | */ | |
3101 | first_pass = TRUE; | |
3102 | } | |
91447636 | 3103 | while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { |
1c79356b A |
3104 | /* |
3105 | * for this iteration of the loop, figure out where our starting point is | |
3106 | */ | |
3107 | if (zero_cnt) { | |
3108 | start_offset = (int)(zero_off & PAGE_MASK_64); | |
3109 | upl_f_offset = zero_off - start_offset; | |
91447636 | 3110 | } else if (io_resid) { |
1c79356b A |
3111 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); |
3112 | upl_f_offset = uio->uio_offset - start_offset; | |
3113 | } else { | |
3114 | start_offset = (int)(zero_off1 & PAGE_MASK_64); | |
3115 | upl_f_offset = zero_off1 - start_offset; | |
3116 | } | |
3117 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, | |
3118 | (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); | |
3119 | ||
cf7d32b8 A |
3120 | if (total_size > max_io_size) |
3121 | total_size = max_io_size; | |
1c79356b | 3122 | |
91447636 | 3123 | cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); |
55e303ae | 3124 | |
2d21ac55 | 3125 | if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { |
55e303ae | 3126 | /* |
91447636 | 3127 | * assumption... total_size <= io_resid |
55e303ae A |
3128 | * because IO_HEADZEROFILL and IO_TAILZEROFILL not set |
3129 | */ | |
cf7d32b8 | 3130 | if ((start_offset + total_size) > max_io_size) |
b7266188 | 3131 | total_size = max_io_size - start_offset; |
55e303ae A |
3132 | xfer_resid = total_size; |
3133 | ||
2d21ac55 | 3134 | retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1); |
b0d623f7 | 3135 | |
55e303ae A |
3136 | if (retval) |
3137 | break; | |
3138 | ||
2d21ac55 | 3139 | io_resid -= (total_size - xfer_resid); |
55e303ae A |
3140 | total_size = xfer_resid; |
3141 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
3142 | upl_f_offset = uio->uio_offset - start_offset; | |
3143 | ||
3144 | if (total_size == 0) { | |
3145 | if (start_offset) { | |
3146 | /* | |
3147 | * the write did not finish on a page boundary | |
3148 | * which will leave upl_f_offset pointing to the | |
3149 | * beginning of the last page written instead of | |
3150 | * the page beyond it... bump it in this case | |
3151 | * so that the cluster code records the last page | |
3152 | * written as dirty | |
3153 | */ | |
3154 | upl_f_offset += PAGE_SIZE_64; | |
3155 | } | |
3156 | upl_size = 0; | |
3157 | ||
3158 | goto check_cluster; | |
3159 | } | |
3160 | } | |
1c79356b A |
3161 | /* |
3162 | * compute the size of the upl needed to encompass | |
3163 | * the requested write... limit each call to cluster_io | |
0b4e3aa0 A |
3164 | * to the maximum UPL size... cluster_io will clip if |
3165 | * this exceeds the maximum io_size for the device, | |
3166 | * make sure to account for | |
1c79356b A |
3167 | * a starting offset that's not page aligned |
3168 | */ | |
3169 | upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
3170 | ||
cf7d32b8 A |
3171 | if (upl_size > max_io_size) |
3172 | upl_size = max_io_size; | |
1c79356b A |
3173 | |
3174 | pages_in_upl = upl_size / PAGE_SIZE; | |
3175 | io_size = upl_size - start_offset; | |
3176 | ||
3177 | if ((long long)io_size > total_size) | |
3178 | io_size = total_size; | |
3179 | ||
55e303ae A |
3180 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); |
3181 | ||
1c79356b | 3182 | |
91447636 A |
3183 | /* |
3184 | * Gather the pages from the buffer cache. | |
3185 | * The UPL_WILL_MODIFY flag lets the UPL subsystem know | |
3186 | * that we intend to modify these pages. | |
3187 | */ | |
5ba3f43e | 3188 | kret = ubc_create_upl_kernel(vp, |
91447636 A |
3189 | upl_f_offset, |
3190 | upl_size, | |
3191 | &upl, | |
3192 | &pl, | |
5ba3f43e A |
3193 | UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY), |
3194 | VM_KERN_MEMORY_FILE); | |
1c79356b | 3195 | if (kret != KERN_SUCCESS) |
2d21ac55 | 3196 | panic("cluster_write_copy: failed to get pagelist"); |
1c79356b | 3197 | |
55e303ae | 3198 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, |
b0d623f7 | 3199 | upl, (int)upl_f_offset, start_offset, 0, 0); |
1c79356b | 3200 | |
b0d623f7 | 3201 | if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) { |
0b4e3aa0 | 3202 | int read_size; |
1c79356b | 3203 | |
0b4e3aa0 | 3204 | /* |
1c79356b A |
3205 | * we're starting in the middle of the first page of the upl |
3206 | * and the page isn't currently valid, so we're going to have | |
3207 | * to read it in first... this is a synchronous operation | |
3208 | */ | |
3209 | read_size = PAGE_SIZE; | |
3210 | ||
b0d623f7 A |
3211 | if ((upl_f_offset + read_size) > oldEOF) |
3212 | read_size = oldEOF - upl_f_offset; | |
9bccf70c | 3213 | |
91447636 | 3214 | retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, |
2d21ac55 | 3215 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 3216 | if (retval) { |
0b4e3aa0 | 3217 | /* |
1c79356b A |
3218 | * we had an error during the read which causes us to abort |
3219 | * the current cluster_write request... before we do, we need | |
3220 | * to release the rest of the pages in the upl without modifying | |
3221 | * there state and mark the failed page in error | |
3222 | */ | |
935ed37a | 3223 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); |
91447636 A |
3224 | |
3225 | if (upl_size > PAGE_SIZE) | |
3226 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
3227 | |
3228 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 3229 | upl, 0, 0, retval, 0); |
1c79356b A |
3230 | break; |
3231 | } | |
3232 | } | |
3233 | if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) { | |
3234 | /* | |
3235 | * the last offset we're writing to in this upl does not end on a page | |
3236 | * boundary... if it's not beyond the old EOF, then we'll also need to | |
3237 | * pre-read this page in if it isn't already valid | |
3238 | */ | |
3239 | upl_offset = upl_size - PAGE_SIZE; | |
3240 | ||
3241 | if ((upl_f_offset + start_offset + io_size) < oldEOF && | |
3242 | !upl_valid_page(pl, upl_offset / PAGE_SIZE)) { | |
3243 | int read_size; | |
3244 | ||
3245 | read_size = PAGE_SIZE; | |
3246 | ||
b0d623f7 A |
3247 | if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF) |
3248 | read_size = oldEOF - (upl_f_offset + upl_offset); | |
9bccf70c | 3249 | |
91447636 | 3250 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, |
2d21ac55 | 3251 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 3252 | if (retval) { |
0b4e3aa0 | 3253 | /* |
1c79356b | 3254 | * we had an error during the read which causes us to abort |
0b4e3aa0 A |
3255 | * the current cluster_write request... before we do, we |
3256 | * need to release the rest of the pages in the upl without | |
3257 | * modifying there state and mark the failed page in error | |
1c79356b | 3258 | */ |
935ed37a | 3259 | ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); |
91447636 A |
3260 | |
3261 | if (upl_size > PAGE_SIZE) | |
3262 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
3263 | |
3264 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 3265 | upl, 0, 0, retval, 0); |
1c79356b A |
3266 | break; |
3267 | } | |
3268 | } | |
3269 | } | |
1c79356b A |
3270 | xfer_resid = io_size; |
3271 | io_offset = start_offset; | |
3272 | ||
3273 | while (zero_cnt && xfer_resid) { | |
3274 | ||
3275 | if (zero_cnt < (long long)xfer_resid) | |
3276 | bytes_to_zero = zero_cnt; | |
3277 | else | |
3278 | bytes_to_zero = xfer_resid; | |
3279 | ||
b0d623f7 | 3280 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero); |
9bccf70c | 3281 | |
1c79356b A |
3282 | xfer_resid -= bytes_to_zero; |
3283 | zero_cnt -= bytes_to_zero; | |
3284 | zero_off += bytes_to_zero; | |
3285 | io_offset += bytes_to_zero; | |
3286 | } | |
91447636 | 3287 | if (xfer_resid && io_resid) { |
2d21ac55 A |
3288 | u_int32_t io_requested; |
3289 | ||
91447636 | 3290 | bytes_to_move = min(io_resid, xfer_resid); |
2d21ac55 | 3291 | io_requested = bytes_to_move; |
1c79356b | 3292 | |
2d21ac55 | 3293 | retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested); |
9bccf70c | 3294 | |
1c79356b | 3295 | if (retval) { |
9bccf70c | 3296 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
1c79356b A |
3297 | |
3298 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 3299 | upl, 0, 0, retval, 0); |
1c79356b | 3300 | } else { |
2d21ac55 | 3301 | io_resid -= bytes_to_move; |
1c79356b A |
3302 | xfer_resid -= bytes_to_move; |
3303 | io_offset += bytes_to_move; | |
3304 | } | |
3305 | } | |
3306 | while (xfer_resid && zero_cnt1 && retval == 0) { | |
3307 | ||
3308 | if (zero_cnt1 < (long long)xfer_resid) | |
3309 | bytes_to_zero = zero_cnt1; | |
3310 | else | |
3311 | bytes_to_zero = xfer_resid; | |
3312 | ||
b0d623f7 A |
3313 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero); |
3314 | ||
1c79356b A |
3315 | xfer_resid -= bytes_to_zero; |
3316 | zero_cnt1 -= bytes_to_zero; | |
3317 | zero_off1 += bytes_to_zero; | |
3318 | io_offset += bytes_to_zero; | |
3319 | } | |
1c79356b | 3320 | if (retval == 0) { |
9bccf70c | 3321 | int cl_index; |
2d21ac55 | 3322 | int ret_cluster_try_push; |
1c79356b A |
3323 | |
3324 | io_size += start_offset; | |
3325 | ||
2d21ac55 | 3326 | if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) { |
1c79356b A |
3327 | /* |
3328 | * if we're extending the file with this write | |
3329 | * we'll zero fill the rest of the page so that | |
3330 | * if the file gets extended again in such a way as to leave a | |
3331 | * hole starting at this EOF, we'll have zero's in the correct spot | |
3332 | */ | |
55e303ae | 3333 | cluster_zero(upl, io_size, upl_size - io_size, NULL); |
1c79356b | 3334 | } |
935ed37a A |
3335 | /* |
3336 | * release the upl now if we hold one since... | |
3337 | * 1) pages in it may be present in the sparse cluster map | |
3338 | * and may span 2 separate buckets there... if they do and | |
3339 | * we happen to have to flush a bucket to make room and it intersects | |
3340 | * this upl, a deadlock may result on page BUSY | |
3341 | * 2) we're delaying the I/O... from this point forward we're just updating | |
3342 | * the cluster state... no need to hold the pages, so commit them | |
3343 | * 3) IO_SYNC is set... | |
3344 | * because we had to ask for a UPL that provides currenty non-present pages, the | |
3345 | * UPL has been automatically set to clear the dirty flags (both software and hardware) | |
3346 | * upon committing it... this is not the behavior we want since it's possible for | |
3347 | * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. | |
3348 | * we'll pick these pages back up later with the correct behavior specified. | |
3349 | * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush | |
3350 | * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages | |
3351 | * we hold since the flushing context is holding the cluster lock. | |
3352 | */ | |
3353 | ubc_upl_commit_range(upl, 0, upl_size, | |
3354 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
3355 | check_cluster: | |
3356 | /* | |
3357 | * calculate the last logical block number | |
3358 | * that this delayed I/O encompassed | |
3359 | */ | |
3360 | cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); | |
3361 | ||
b0d623f7 | 3362 | if (flags & IO_SYNC) { |
9bccf70c A |
3363 | /* |
3364 | * if the IO_SYNC flag is set than we need to | |
3365 | * bypass any clusters and immediately issue | |
3366 | * the I/O | |
3367 | */ | |
3368 | goto issue_io; | |
b0d623f7 | 3369 | } |
91447636 A |
3370 | /* |
3371 | * take the lock to protect our accesses | |
3372 | * of the writebehind and sparse cluster state | |
3373 | */ | |
3374 | wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); | |
3375 | ||
91447636 | 3376 | if (wbp->cl_scmap) { |
55e303ae | 3377 | |
91447636 | 3378 | if ( !(flags & IO_NOCACHE)) { |
55e303ae A |
3379 | /* |
3380 | * we've fallen into the sparse | |
3381 | * cluster method of delaying dirty pages | |
55e303ae | 3382 | */ |
b0d623f7 | 3383 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); |
91447636 A |
3384 | |
3385 | lck_mtx_unlock(&wbp->cl_lockw); | |
55e303ae A |
3386 | |
3387 | continue; | |
3388 | } | |
3389 | /* | |
3390 | * must have done cached writes that fell into | |
3391 | * the sparse cluster mechanism... we've switched | |
3392 | * to uncached writes on the file, so go ahead | |
3393 | * and push whatever's in the sparse map | |
3394 | * and switch back to normal clustering | |
55e303ae | 3395 | */ |
91447636 | 3396 | wbp->cl_number = 0; |
935ed37a | 3397 | |
6d2010ae | 3398 | sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg); |
55e303ae A |
3399 | /* |
3400 | * no clusters of either type present at this point | |
3401 | * so just go directly to start_new_cluster since | |
3402 | * we know we need to delay this I/O since we've | |
3403 | * already released the pages back into the cache | |
3404 | * to avoid the deadlock with sparse_cluster_push | |
3405 | */ | |
3406 | goto start_new_cluster; | |
6d2010ae A |
3407 | } |
3408 | if (first_pass) { | |
3409 | if (write_off == wbp->cl_last_write) | |
3410 | wbp->cl_seq_written += write_cnt; | |
3411 | else | |
3412 | wbp->cl_seq_written = write_cnt; | |
3413 | ||
3414 | wbp->cl_last_write = write_off + write_cnt; | |
3415 | ||
3416 | first_pass = FALSE; | |
3417 | } | |
91447636 | 3418 | if (wbp->cl_number == 0) |
9bccf70c A |
3419 | /* |
3420 | * no clusters currently present | |
3421 | */ | |
3422 | goto start_new_cluster; | |
1c79356b | 3423 | |
91447636 | 3424 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
1c79356b | 3425 | /* |
55e303ae A |
3426 | * check each cluster that we currently hold |
3427 | * try to merge some or all of this write into | |
3428 | * one or more of the existing clusters... if | |
3429 | * any portion of the write remains, start a | |
3430 | * new cluster | |
1c79356b | 3431 | */ |
91447636 | 3432 | if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) { |
9bccf70c A |
3433 | /* |
3434 | * the current write starts at or after the current cluster | |
3435 | */ | |
cf7d32b8 | 3436 | if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { |
1c79356b A |
3437 | /* |
3438 | * we have a write that fits entirely | |
3439 | * within the existing cluster limits | |
3440 | */ | |
91447636 | 3441 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) |
1c79356b | 3442 | /* |
9bccf70c | 3443 | * update our idea of where the cluster ends |
1c79356b | 3444 | */ |
91447636 | 3445 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; |
9bccf70c | 3446 | break; |
1c79356b | 3447 | } |
cf7d32b8 | 3448 | if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { |
1c79356b A |
3449 | /* |
3450 | * we have a write that starts in the middle of the current cluster | |
55e303ae A |
3451 | * but extends beyond the cluster's limit... we know this because |
3452 | * of the previous checks | |
3453 | * we'll extend the current cluster to the max | |
91447636 | 3454 | * and update the b_addr for the current write to reflect that |
55e303ae A |
3455 | * the head of it was absorbed into this cluster... |
3456 | * note that we'll always have a leftover tail in this case since | |
3457 | * full absorbtion would have occurred in the clause above | |
1c79356b | 3458 | */ |
cf7d32b8 | 3459 | wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount; |
55e303ae | 3460 | |
91447636 | 3461 | cl.b_addr = wbp->cl_clusters[cl_index].e_addr; |
1c79356b A |
3462 | } |
3463 | /* | |
55e303ae A |
3464 | * we come here for the case where the current write starts |
3465 | * beyond the limit of the existing cluster or we have a leftover | |
3466 | * tail after a partial absorbtion | |
9bccf70c A |
3467 | * |
3468 | * in either case, we'll check the remaining clusters before | |
3469 | * starting a new one | |
1c79356b | 3470 | */ |
9bccf70c | 3471 | } else { |
1c79356b | 3472 | /* |
55e303ae | 3473 | * the current write starts in front of the cluster we're currently considering |
1c79356b | 3474 | */ |
cf7d32b8 | 3475 | if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) { |
1c79356b | 3476 | /* |
55e303ae A |
3477 | * we can just merge the new request into |
3478 | * this cluster and leave it in the cache | |
3479 | * since the resulting cluster is still | |
3480 | * less than the maximum allowable size | |
1c79356b | 3481 | */ |
91447636 | 3482 | wbp->cl_clusters[cl_index].b_addr = cl.b_addr; |
1c79356b | 3483 | |
91447636 | 3484 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) { |
9bccf70c A |
3485 | /* |
3486 | * the current write completely | |
55e303ae | 3487 | * envelops the existing cluster and since |
cf7d32b8 | 3488 | * each write is limited to at most max_cluster_pgcount pages |
55e303ae A |
3489 | * we can just use the start and last blocknos of the write |
3490 | * to generate the cluster limits | |
9bccf70c | 3491 | */ |
91447636 | 3492 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; |
9bccf70c A |
3493 | } |
3494 | break; | |
1c79356b | 3495 | } |
9bccf70c | 3496 | |
1c79356b | 3497 | /* |
9bccf70c A |
3498 | * if we were to combine this write with the current cluster |
3499 | * we would exceed the cluster size limit.... so, | |
3500 | * let's see if there's any overlap of the new I/O with | |
55e303ae A |
3501 | * the cluster we're currently considering... in fact, we'll |
3502 | * stretch the cluster out to it's full limit and see if we | |
3503 | * get an intersection with the current write | |
9bccf70c | 3504 | * |
1c79356b | 3505 | */ |
cf7d32b8 | 3506 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) { |
1c79356b | 3507 | /* |
55e303ae A |
3508 | * the current write extends into the proposed cluster |
3509 | * clip the length of the current write after first combining it's | |
3510 | * tail with the newly shaped cluster | |
1c79356b | 3511 | */ |
cf7d32b8 | 3512 | wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount; |
55e303ae | 3513 | |
91447636 | 3514 | cl.e_addr = wbp->cl_clusters[cl_index].b_addr; |
55e303ae | 3515 | } |
9bccf70c A |
3516 | /* |
3517 | * if we get here, there was no way to merge | |
55e303ae A |
3518 | * any portion of this write with this cluster |
3519 | * or we could only merge part of it which | |
3520 | * will leave a tail... | |
9bccf70c A |
3521 | * we'll check the remaining clusters before starting a new one |
3522 | */ | |
1c79356b | 3523 | } |
9bccf70c | 3524 | } |
91447636 | 3525 | if (cl_index < wbp->cl_number) |
9bccf70c | 3526 | /* |
55e303ae A |
3527 | * we found an existing cluster(s) that we |
3528 | * could entirely merge this I/O into | |
9bccf70c A |
3529 | */ |
3530 | goto delay_io; | |
3531 | ||
6d2010ae A |
3532 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && |
3533 | wbp->cl_number == MAX_CLUSTERS && | |
3534 | wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) { | |
3535 | uint32_t n; | |
3536 | ||
39037602 A |
3537 | if (vp->v_mount->mnt_minsaturationbytecount) { |
3538 | n = vp->v_mount->mnt_minsaturationbytecount / MAX_CLUSTER_SIZE(vp); | |
3539 | ||
3540 | if (n > MAX_CLUSTERS) | |
3541 | n = MAX_CLUSTERS; | |
3542 | } else | |
3543 | n = 0; | |
6d2010ae | 3544 | |
39037602 | 3545 | if (n == 0) { |
5ba3f43e | 3546 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) |
39037602 A |
3547 | n = WRITE_BEHIND_SSD; |
3548 | else | |
3549 | n = WRITE_BEHIND; | |
3550 | } | |
6d2010ae | 3551 | while (n--) |
813fb2f6 | 3552 | cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg, NULL); |
6d2010ae A |
3553 | } |
3554 | if (wbp->cl_number < MAX_CLUSTERS) { | |
9bccf70c A |
3555 | /* |
3556 | * we didn't find an existing cluster to | |
3557 | * merge into, but there's room to start | |
1c79356b A |
3558 | * a new one |
3559 | */ | |
9bccf70c | 3560 | goto start_new_cluster; |
6d2010ae | 3561 | } |
9bccf70c A |
3562 | /* |
3563 | * no exisitng cluster to merge with and no | |
3564 | * room to start a new one... we'll try | |
55e303ae A |
3565 | * pushing one of the existing ones... if none of |
3566 | * them are able to be pushed, we'll switch | |
3567 | * to the sparse cluster mechanism | |
91447636 | 3568 | * cluster_try_push updates cl_number to the |
55e303ae A |
3569 | * number of remaining clusters... and |
3570 | * returns the number of currently unused clusters | |
9bccf70c | 3571 | */ |
2d21ac55 A |
3572 | ret_cluster_try_push = 0; |
3573 | ||
3574 | /* | |
3575 | * if writes are not deferred, call cluster push immediately | |
3576 | */ | |
91447636 | 3577 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) { |
91447636 | 3578 | |
813fb2f6 | 3579 | ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg, NULL); |
91447636 | 3580 | } |
9bccf70c | 3581 | |
2d21ac55 A |
3582 | /* |
3583 | * execute following regardless of writes being deferred or not | |
3584 | */ | |
91447636 | 3585 | if (ret_cluster_try_push == 0) { |
55e303ae A |
3586 | /* |
3587 | * no more room in the normal cluster mechanism | |
3588 | * so let's switch to the more expansive but expensive | |
3589 | * sparse mechanism.... | |
55e303ae | 3590 | */ |
2d21ac55 | 3591 | sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg); |
b0d623f7 | 3592 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); |
91447636 A |
3593 | |
3594 | lck_mtx_unlock(&wbp->cl_lockw); | |
55e303ae A |
3595 | |
3596 | continue; | |
9bccf70c A |
3597 | } |
3598 | start_new_cluster: | |
91447636 A |
3599 | wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr; |
3600 | wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr; | |
9bccf70c | 3601 | |
2d21ac55 A |
3602 | wbp->cl_clusters[wbp->cl_number].io_flags = 0; |
3603 | ||
91447636 | 3604 | if (flags & IO_NOCACHE) |
2d21ac55 A |
3605 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE; |
3606 | ||
3607 | if (bflag & CL_PASSIVE) | |
3608 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE; | |
3609 | ||
91447636 | 3610 | wbp->cl_number++; |
55e303ae | 3611 | delay_io: |
91447636 A |
3612 | lck_mtx_unlock(&wbp->cl_lockw); |
3613 | ||
9bccf70c A |
3614 | continue; |
3615 | issue_io: | |
3616 | /* | |
935ed37a | 3617 | * we don't hold the lock at this point |
91447636 | 3618 | * |
935ed37a | 3619 | * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set |
91447636 | 3620 | * so that we correctly deal with a change in state of the hardware modify bit... |
2d21ac55 A |
3621 | * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force |
3622 | * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also | |
91447636 | 3623 | * responsible for generating the correct sized I/O(s) |
9bccf70c | 3624 | */ |
2d21ac55 | 3625 | retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg); |
1c79356b A |
3626 | } |
3627 | } | |
2d21ac55 | 3628 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0); |
1c79356b A |
3629 | |
3630 | return (retval); | |
3631 | } | |
3632 | ||
2d21ac55 A |
3633 | |
3634 | ||
9bccf70c | 3635 | int |
91447636 | 3636 | cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) |
1c79356b | 3637 | { |
2d21ac55 A |
3638 | return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL); |
3639 | } | |
3640 | ||
3641 | ||
3642 | int | |
3643 | cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
3644 | { | |
3645 | int retval = 0; | |
3646 | int flags; | |
3647 | user_ssize_t cur_resid; | |
3648 | u_int32_t io_size; | |
3649 | u_int32_t read_length = 0; | |
3650 | int read_type = IO_COPY; | |
1c79356b | 3651 | |
91447636 | 3652 | flags = xflags; |
1c79356b | 3653 | |
91447636 A |
3654 | if (vp->v_flag & VNOCACHE_DATA) |
3655 | flags |= IO_NOCACHE; | |
2d21ac55 | 3656 | if ((vp->v_flag & VRAOFF) || speculative_reads_disabled) |
91447636 | 3657 | flags |= IO_RAOFF; |
3e170ce0 | 3658 | |
fe8ab488 A |
3659 | if (flags & IO_SKIP_ENCRYPTION) |
3660 | flags |= IO_ENCRYPTED; | |
91447636 | 3661 | |
316670eb | 3662 | /* |
2d21ac55 A |
3663 | * do a read through the cache if one of the following is true.... |
3664 | * NOCACHE is not true | |
3665 | * the uio request doesn't target USERSPACE | |
316670eb A |
3666 | * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well. |
3667 | * Reading encrypted data from a CP filesystem should never result in the data touching | |
3668 | * the UBC. | |
3669 | * | |
2d21ac55 A |
3670 | * otherwise, find out if we want the direct or contig variant for |
3671 | * the first vector in the uio request | |
3672 | */ | |
fe8ab488 | 3673 | if ( ((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED) ) { |
39236c6e | 3674 | |
fe8ab488 | 3675 | retval = cluster_io_type(uio, &read_type, &read_length, 0); |
316670eb | 3676 | } |
39037602 | 3677 | |
2d21ac55 | 3678 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) { |
91447636 | 3679 | |
2d21ac55 A |
3680 | switch (read_type) { |
3681 | ||
3682 | case IO_COPY: | |
91447636 | 3683 | /* |
2d21ac55 A |
3684 | * make sure the uio_resid isn't too big... |
3685 | * internally, we want to handle all of the I/O in | |
3686 | * chunk sizes that fit in a 32 bit int | |
91447636 | 3687 | */ |
2d21ac55 A |
3688 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) |
3689 | io_size = MAX_IO_REQUEST_SIZE; | |
3690 | else | |
3691 | io_size = (u_int32_t)cur_resid; | |
91447636 | 3692 | |
2d21ac55 A |
3693 | retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg); |
3694 | break; | |
1c79356b | 3695 | |
2d21ac55 A |
3696 | case IO_DIRECT: |
3697 | retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg); | |
3698 | break; | |
91447636 | 3699 | |
2d21ac55 A |
3700 | case IO_CONTIG: |
3701 | retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags); | |
3702 | break; | |
3703 | ||
3704 | case IO_UNKNOWN: | |
3705 | retval = cluster_io_type(uio, &read_type, &read_length, 0); | |
3706 | break; | |
3707 | } | |
3708 | } | |
3709 | return (retval); | |
3710 | } | |
91447636 | 3711 | |
91447636 | 3712 | |
91447636 | 3713 | |
2d21ac55 | 3714 | static void |
b0d623f7 | 3715 | cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference) |
2d21ac55 A |
3716 | { |
3717 | int range; | |
3718 | int abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
1c79356b | 3719 | |
2d21ac55 | 3720 | if ((range = last_pg - start_pg)) { |
b0d623f7 | 3721 | if (take_reference) |
2d21ac55 A |
3722 | abort_flags |= UPL_ABORT_REFERENCE; |
3723 | ||
3724 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags); | |
3725 | } | |
1c79356b A |
3726 | } |
3727 | ||
2d21ac55 | 3728 | |
9bccf70c | 3729 | static int |
2d21ac55 | 3730 | cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
3731 | { |
3732 | upl_page_info_t *pl; | |
3733 | upl_t upl; | |
3734 | vm_offset_t upl_offset; | |
b0d623f7 | 3735 | u_int32_t upl_size; |
1c79356b A |
3736 | off_t upl_f_offset; |
3737 | int start_offset; | |
3738 | int start_pg; | |
3739 | int last_pg; | |
91447636 | 3740 | int uio_last = 0; |
1c79356b A |
3741 | int pages_in_upl; |
3742 | off_t max_size; | |
55e303ae A |
3743 | off_t last_ioread_offset; |
3744 | off_t last_request_offset; | |
1c79356b | 3745 | kern_return_t kret; |
1c79356b A |
3746 | int error = 0; |
3747 | int retval = 0; | |
2d21ac55 A |
3748 | u_int32_t size_of_prefetch; |
3749 | u_int32_t xsize; | |
3750 | u_int32_t io_size; | |
cf7d32b8 | 3751 | u_int32_t max_rd_size; |
b0d623f7 A |
3752 | u_int32_t max_io_size; |
3753 | u_int32_t max_prefetch; | |
55e303ae A |
3754 | u_int rd_ahead_enabled = 1; |
3755 | u_int prefetch_enabled = 1; | |
91447636 A |
3756 | struct cl_readahead * rap; |
3757 | struct clios iostate; | |
3758 | struct cl_extent extent; | |
2d21ac55 A |
3759 | int bflag; |
3760 | int take_reference = 1; | |
2d21ac55 | 3761 | int policy = IOPOL_DEFAULT; |
6d2010ae | 3762 | boolean_t iolock_inited = FALSE; |
b0d623f7 A |
3763 | |
3764 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, | |
3765 | (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0); | |
316670eb A |
3766 | |
3767 | if (flags & IO_ENCRYPTED) { | |
3768 | panic ("encrypted blocks will hit UBC!"); | |
3769 | } | |
b0d623f7 | 3770 | |
39236c6e | 3771 | policy = throttle_get_io_policy(NULL); |
2d21ac55 | 3772 | |
39236c6e | 3773 | if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE)) |
2d21ac55 A |
3774 | take_reference = 0; |
3775 | ||
3776 | if (flags & IO_PASSIVE) | |
cf7d32b8 | 3777 | bflag = CL_PASSIVE; |
2d21ac55 | 3778 | else |
b0d623f7 | 3779 | bflag = 0; |
cf7d32b8 | 3780 | |
316670eb A |
3781 | if (flags & IO_NOCACHE) |
3782 | bflag |= CL_NOCACHE; | |
3783 | ||
fe8ab488 A |
3784 | if (flags & IO_SKIP_ENCRYPTION) |
3785 | bflag |= CL_ENCRYPTED; | |
3786 | ||
b0d623f7 | 3787 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); |
5ba3f43e | 3788 | max_prefetch = MAX_PREFETCH(vp, max_io_size, disk_conditioner_mount_is_ssd(vp->v_mount)); |
b0d623f7 | 3789 | max_rd_size = max_prefetch; |
55e303ae | 3790 | |
2d21ac55 | 3791 | last_request_offset = uio->uio_offset + io_req_size; |
55e303ae | 3792 | |
b0d623f7 A |
3793 | if (last_request_offset > filesize) |
3794 | last_request_offset = filesize; | |
3795 | ||
2d21ac55 | 3796 | if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { |
55e303ae | 3797 | rd_ahead_enabled = 0; |
91447636 A |
3798 | rap = NULL; |
3799 | } else { | |
39236c6e | 3800 | if (cluster_is_throttled(vp)) { |
316670eb A |
3801 | /* |
3802 | * we're in the throttle window, at the very least | |
3803 | * we want to limit the size of the I/O we're about | |
3804 | * to issue | |
3805 | */ | |
91447636 A |
3806 | rd_ahead_enabled = 0; |
3807 | prefetch_enabled = 0; | |
55e303ae | 3808 | |
316670eb | 3809 | max_rd_size = THROTTLE_MAX_IOSIZE; |
91447636 A |
3810 | } |
3811 | if ((rap = cluster_get_rap(vp)) == NULL) | |
3812 | rd_ahead_enabled = 0; | |
b0d623f7 A |
3813 | else { |
3814 | extent.b_addr = uio->uio_offset / PAGE_SIZE_64; | |
3815 | extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; | |
3816 | } | |
55e303ae | 3817 | } |
91447636 | 3818 | if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { |
55e303ae A |
3819 | /* |
3820 | * determine if we already have a read-ahead in the pipe courtesy of the | |
3821 | * last read systemcall that was issued... | |
3822 | * if so, pick up it's extent to determine where we should start | |
3823 | * with respect to any read-ahead that might be necessary to | |
3824 | * garner all the data needed to complete this read systemcall | |
3825 | */ | |
91447636 | 3826 | last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; |
1c79356b | 3827 | |
55e303ae A |
3828 | if (last_ioread_offset < uio->uio_offset) |
3829 | last_ioread_offset = (off_t)0; | |
3830 | else if (last_ioread_offset > last_request_offset) | |
3831 | last_ioread_offset = last_request_offset; | |
3832 | } else | |
3833 | last_ioread_offset = (off_t)0; | |
1c79356b | 3834 | |
2d21ac55 | 3835 | while (io_req_size && uio->uio_offset < filesize && retval == 0) { |
b0d623f7 A |
3836 | |
3837 | max_size = filesize - uio->uio_offset; | |
1c79356b | 3838 | |
2d21ac55 A |
3839 | if ((off_t)(io_req_size) < max_size) |
3840 | io_size = io_req_size; | |
1c79356b A |
3841 | else |
3842 | io_size = max_size; | |
9bccf70c | 3843 | |
91447636 | 3844 | if (!(flags & IO_NOCACHE)) { |
1c79356b | 3845 | |
55e303ae | 3846 | while (io_size) { |
2d21ac55 A |
3847 | u_int32_t io_resid; |
3848 | u_int32_t io_requested; | |
1c79356b | 3849 | |
55e303ae A |
3850 | /* |
3851 | * if we keep finding the pages we need already in the cache, then | |
2d21ac55 | 3852 | * don't bother to call cluster_read_prefetch since it costs CPU cycles |
55e303ae A |
3853 | * to determine that we have all the pages we need... once we miss in |
3854 | * the cache and have issued an I/O, than we'll assume that we're likely | |
3855 | * to continue to miss in the cache and it's to our advantage to try and prefetch | |
3856 | */ | |
3857 | if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) { | |
3858 | if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) { | |
3859 | /* | |
3860 | * we've already issued I/O for this request and | |
3861 | * there's still work to do and | |
3862 | * our prefetch stream is running dry, so issue a | |
3863 | * pre-fetch I/O... the I/O latency will overlap | |
3864 | * with the copying of the data | |
3865 | */ | |
3866 | if (size_of_prefetch > max_rd_size) | |
3867 | size_of_prefetch = max_rd_size; | |
1c79356b | 3868 | |
2d21ac55 | 3869 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); |
1c79356b | 3870 | |
55e303ae A |
3871 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); |
3872 | ||
3873 | if (last_ioread_offset > last_request_offset) | |
3874 | last_ioread_offset = last_request_offset; | |
3875 | } | |
3876 | } | |
3877 | /* | |
3878 | * limit the size of the copy we're about to do so that | |
3879 | * we can notice that our I/O pipe is running dry and | |
3880 | * get the next I/O issued before it does go dry | |
3881 | */ | |
cf7d32b8 A |
3882 | if (last_ioread_offset && io_size > (max_io_size / 4)) |
3883 | io_resid = (max_io_size / 4); | |
55e303ae A |
3884 | else |
3885 | io_resid = io_size; | |
1c79356b | 3886 | |
55e303ae | 3887 | io_requested = io_resid; |
1c79356b | 3888 | |
6d2010ae | 3889 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference); |
2d21ac55 A |
3890 | |
3891 | xsize = io_requested - io_resid; | |
1c79356b | 3892 | |
2d21ac55 A |
3893 | io_size -= xsize; |
3894 | io_req_size -= xsize; | |
1c79356b | 3895 | |
55e303ae A |
3896 | if (retval || io_resid) |
3897 | /* | |
3898 | * if we run into a real error or | |
3899 | * a page that is not in the cache | |
3900 | * we need to leave streaming mode | |
3901 | */ | |
3902 | break; | |
3903 | ||
b0d623f7 | 3904 | if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) { |
55e303ae A |
3905 | /* |
3906 | * we're already finished the I/O for this read request | |
3907 | * let's see if we should do a read-ahead | |
3908 | */ | |
2d21ac55 | 3909 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); |
55e303ae | 3910 | } |
1c79356b | 3911 | } |
1c79356b A |
3912 | if (retval) |
3913 | break; | |
1c79356b | 3914 | if (io_size == 0) { |
91447636 A |
3915 | if (rap != NULL) { |
3916 | if (extent.e_addr < rap->cl_lastr) | |
3917 | rap->cl_maxra = 0; | |
3918 | rap->cl_lastr = extent.e_addr; | |
3919 | } | |
1c79356b A |
3920 | break; |
3921 | } | |
b0d623f7 A |
3922 | /* |
3923 | * recompute max_size since cluster_copy_ubc_data_internal | |
3924 | * may have advanced uio->uio_offset | |
3925 | */ | |
3926 | max_size = filesize - uio->uio_offset; | |
1c79356b | 3927 | } |
316670eb A |
3928 | |
3929 | iostate.io_completed = 0; | |
3930 | iostate.io_issued = 0; | |
3931 | iostate.io_error = 0; | |
3932 | iostate.io_wanted = 0; | |
3933 | ||
3934 | if ( (flags & IO_RETURN_ON_THROTTLE) ) { | |
39236c6e | 3935 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { |
316670eb A |
3936 | if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) { |
3937 | /* | |
3938 | * we're in the throttle window and at least 1 I/O | |
3939 | * has already been issued by a throttleable thread | |
3940 | * in this window, so return with EAGAIN to indicate | |
3941 | * to the FS issuing the cluster_read call that it | |
3942 | * should now throttle after dropping any locks | |
3943 | */ | |
3944 | throttle_info_update_by_mount(vp->v_mount); | |
3945 | ||
3946 | retval = EAGAIN; | |
3947 | break; | |
3948 | } | |
3949 | } | |
3950 | } | |
3951 | ||
b0d623f7 A |
3952 | /* |
3953 | * compute the size of the upl needed to encompass | |
3954 | * the requested read... limit each call to cluster_io | |
3955 | * to the maximum UPL size... cluster_io will clip if | |
3956 | * this exceeds the maximum io_size for the device, | |
3957 | * make sure to account for | |
3958 | * a starting offset that's not page aligned | |
3959 | */ | |
3960 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
3961 | upl_f_offset = uio->uio_offset - (off_t)start_offset; | |
3962 | ||
55e303ae A |
3963 | if (io_size > max_rd_size) |
3964 | io_size = max_rd_size; | |
3965 | ||
1c79356b | 3966 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
55e303ae | 3967 | |
2d21ac55 | 3968 | if (flags & IO_NOCACHE) { |
cf7d32b8 A |
3969 | if (upl_size > max_io_size) |
3970 | upl_size = max_io_size; | |
2d21ac55 | 3971 | } else { |
fe8ab488 | 3972 | if (upl_size > max_io_size / 4) { |
cf7d32b8 | 3973 | upl_size = max_io_size / 4; |
fe8ab488 A |
3974 | upl_size &= ~PAGE_MASK; |
3975 | ||
3976 | if (upl_size == 0) | |
3977 | upl_size = PAGE_SIZE; | |
3978 | } | |
2d21ac55 | 3979 | } |
1c79356b A |
3980 | pages_in_upl = upl_size / PAGE_SIZE; |
3981 | ||
3982 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, | |
b0d623f7 | 3983 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
1c79356b | 3984 | |
5ba3f43e | 3985 | kret = ubc_create_upl_kernel(vp, |
91447636 A |
3986 | upl_f_offset, |
3987 | upl_size, | |
3988 | &upl, | |
3989 | &pl, | |
5ba3f43e A |
3990 | UPL_FILE_IO | UPL_SET_LITE, |
3991 | VM_KERN_MEMORY_FILE); | |
1c79356b | 3992 | if (kret != KERN_SUCCESS) |
2d21ac55 | 3993 | panic("cluster_read_copy: failed to get pagelist"); |
1c79356b | 3994 | |
1c79356b | 3995 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, |
b0d623f7 | 3996 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
1c79356b A |
3997 | |
3998 | /* | |
3999 | * scan from the beginning of the upl looking for the first | |
4000 | * non-valid page.... this will become the first page in | |
4001 | * the request we're going to make to 'cluster_io'... if all | |
4002 | * of the pages are valid, we won't call through to 'cluster_io' | |
4003 | */ | |
4004 | for (start_pg = 0; start_pg < pages_in_upl; start_pg++) { | |
4005 | if (!upl_valid_page(pl, start_pg)) | |
4006 | break; | |
4007 | } | |
4008 | ||
4009 | /* | |
4010 | * scan from the starting invalid page looking for a valid | |
4011 | * page before the end of the upl is reached, if we | |
4012 | * find one, then it will be the last page of the request to | |
4013 | * 'cluster_io' | |
4014 | */ | |
4015 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
4016 | if (upl_valid_page(pl, last_pg)) | |
4017 | break; | |
4018 | } | |
4019 | ||
4020 | if (start_pg < last_pg) { | |
4021 | /* | |
4022 | * we found a range of 'invalid' pages that must be filled | |
4023 | * if the last page in this range is the last page of the file | |
4024 | * we may have to clip the size of it to keep from reading past | |
4025 | * the end of the last physical block associated with the file | |
4026 | */ | |
6d2010ae A |
4027 | if (iolock_inited == FALSE) { |
4028 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); | |
4029 | ||
4030 | iolock_inited = TRUE; | |
4031 | } | |
1c79356b A |
4032 | upl_offset = start_pg * PAGE_SIZE; |
4033 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
4034 | ||
b0d623f7 | 4035 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) |
1c79356b | 4036 | io_size = filesize - (upl_f_offset + upl_offset); |
9bccf70c | 4037 | |
1c79356b | 4038 | /* |
55e303ae | 4039 | * issue an asynchronous read to cluster_io |
1c79356b A |
4040 | */ |
4041 | ||
4042 | error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, | |
2d21ac55 | 4043 | io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg); |
6d2010ae A |
4044 | |
4045 | if (rap) { | |
4046 | if (extent.e_addr < rap->cl_maxra) { | |
4047 | /* | |
4048 | * we've just issued a read for a block that should have been | |
4049 | * in the cache courtesy of the read-ahead engine... something | |
4050 | * has gone wrong with the pipeline, so reset the read-ahead | |
4051 | * logic which will cause us to restart from scratch | |
4052 | */ | |
4053 | rap->cl_maxra = 0; | |
4054 | } | |
4055 | } | |
1c79356b A |
4056 | } |
4057 | if (error == 0) { | |
4058 | /* | |
4059 | * if the read completed successfully, or there was no I/O request | |
55e303ae A |
4060 | * issued, than copy the data into user land via 'cluster_upl_copy_data' |
4061 | * we'll first add on any 'valid' | |
1c79356b A |
4062 | * pages that were present in the upl when we acquired it. |
4063 | */ | |
4064 | u_int val_size; | |
1c79356b A |
4065 | |
4066 | for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { | |
4067 | if (!upl_valid_page(pl, uio_last)) | |
4068 | break; | |
4069 | } | |
2d21ac55 A |
4070 | if (uio_last < pages_in_upl) { |
4071 | /* | |
4072 | * there were some invalid pages beyond the valid pages | |
4073 | * that we didn't issue an I/O for, just release them | |
4074 | * unchanged now, so that any prefetch/readahed can | |
4075 | * include them | |
4076 | */ | |
4077 | ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, | |
4078 | (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
4079 | } | |
4080 | ||
1c79356b | 4081 | /* |
2d21ac55 | 4082 | * compute size to transfer this round, if io_req_size is |
55e303ae | 4083 | * still non-zero after this attempt, we'll loop around and |
1c79356b A |
4084 | * set up for another I/O. |
4085 | */ | |
4086 | val_size = (uio_last * PAGE_SIZE) - start_offset; | |
4087 | ||
55e303ae | 4088 | if (val_size > max_size) |
1c79356b A |
4089 | val_size = max_size; |
4090 | ||
2d21ac55 A |
4091 | if (val_size > io_req_size) |
4092 | val_size = io_req_size; | |
1c79356b | 4093 | |
2d21ac55 | 4094 | if ((uio->uio_offset + val_size) > last_ioread_offset) |
55e303ae | 4095 | last_ioread_offset = uio->uio_offset + val_size; |
1c79356b | 4096 | |
55e303ae | 4097 | if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) { |
1c79356b | 4098 | |
2d21ac55 A |
4099 | if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) { |
4100 | /* | |
4101 | * if there's still I/O left to do for this request, and... | |
4102 | * we're not in hard throttle mode, and... | |
4103 | * we're close to using up the previous prefetch, then issue a | |
4104 | * new pre-fetch I/O... the I/O latency will overlap | |
4105 | * with the copying of the data | |
4106 | */ | |
4107 | if (size_of_prefetch > max_rd_size) | |
4108 | size_of_prefetch = max_rd_size; | |
4109 | ||
4110 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); | |
4111 | ||
4112 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); | |
55e303ae | 4113 | |
2d21ac55 A |
4114 | if (last_ioread_offset > last_request_offset) |
4115 | last_ioread_offset = last_request_offset; | |
4116 | } | |
1c79356b | 4117 | |
55e303ae A |
4118 | } else if ((uio->uio_offset + val_size) == last_request_offset) { |
4119 | /* | |
4120 | * this transfer will finish this request, so... | |
4121 | * let's try to read ahead if we're in | |
4122 | * a sequential access pattern and we haven't | |
4123 | * explicitly disabled it | |
4124 | */ | |
4125 | if (rd_ahead_enabled) | |
2d21ac55 | 4126 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); |
91447636 A |
4127 | |
4128 | if (rap != NULL) { | |
4129 | if (extent.e_addr < rap->cl_lastr) | |
4130 | rap->cl_maxra = 0; | |
4131 | rap->cl_lastr = extent.e_addr; | |
4132 | } | |
9bccf70c | 4133 | } |
fe8ab488 | 4134 | if (iolock_inited == TRUE) |
6d2010ae | 4135 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); |
cf7d32b8 | 4136 | |
55e303ae A |
4137 | if (iostate.io_error) |
4138 | error = iostate.io_error; | |
2d21ac55 A |
4139 | else { |
4140 | u_int32_t io_requested; | |
4141 | ||
4142 | io_requested = val_size; | |
4143 | ||
4144 | retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested); | |
4145 | ||
4146 | io_req_size -= (val_size - io_requested); | |
4147 | } | |
6d2010ae | 4148 | } else { |
fe8ab488 | 4149 | if (iolock_inited == TRUE) |
6d2010ae | 4150 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); |
1c79356b A |
4151 | } |
4152 | if (start_pg < last_pg) { | |
4153 | /* | |
4154 | * compute the range of pages that we actually issued an I/O for | |
4155 | * and either commit them as valid if the I/O succeeded | |
2d21ac55 A |
4156 | * or abort them if the I/O failed or we're not supposed to |
4157 | * keep them in the cache | |
1c79356b A |
4158 | */ |
4159 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
4160 | ||
b0d623f7 | 4161 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0); |
1c79356b | 4162 | |
91447636 | 4163 | if (error || (flags & IO_NOCACHE)) |
0b4e3aa0 | 4164 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, |
2d21ac55 | 4165 | UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
b0d623f7 A |
4166 | else { |
4167 | int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY; | |
4168 | ||
4169 | if (take_reference) | |
4170 | commit_flags |= UPL_COMMIT_INACTIVATE; | |
4171 | else | |
4172 | commit_flags |= UPL_COMMIT_SPECULATE; | |
1c79356b | 4173 | |
b0d623f7 A |
4174 | ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags); |
4175 | } | |
4176 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0); | |
1c79356b A |
4177 | } |
4178 | if ((last_pg - start_pg) < pages_in_upl) { | |
1c79356b A |
4179 | /* |
4180 | * the set of pages that we issued an I/O for did not encompass | |
4181 | * the entire upl... so just release these without modifying | |
55e303ae | 4182 | * their state |
1c79356b A |
4183 | */ |
4184 | if (error) | |
9bccf70c | 4185 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); |
1c79356b | 4186 | else { |
1c79356b | 4187 | |
2d21ac55 | 4188 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, |
b0d623f7 | 4189 | upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); |
2d21ac55 A |
4190 | |
4191 | /* | |
4192 | * handle any valid pages at the beginning of | |
4193 | * the upl... release these appropriately | |
4194 | */ | |
b0d623f7 | 4195 | cluster_read_upl_release(upl, 0, start_pg, take_reference); |
2d21ac55 A |
4196 | |
4197 | /* | |
4198 | * handle any valid pages immediately after the | |
4199 | * pages we issued I/O for... ... release these appropriately | |
4200 | */ | |
b0d623f7 | 4201 | cluster_read_upl_release(upl, last_pg, uio_last, take_reference); |
2d21ac55 | 4202 | |
b0d623f7 | 4203 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0); |
1c79356b A |
4204 | } |
4205 | } | |
4206 | if (retval == 0) | |
4207 | retval = error; | |
91447636 | 4208 | |
2d21ac55 | 4209 | if (io_req_size) { |
39236c6e | 4210 | if (cluster_is_throttled(vp)) { |
316670eb A |
4211 | /* |
4212 | * we're in the throttle window, at the very least | |
4213 | * we want to limit the size of the I/O we're about | |
4214 | * to issue | |
4215 | */ | |
91447636 A |
4216 | rd_ahead_enabled = 0; |
4217 | prefetch_enabled = 0; | |
316670eb | 4218 | max_rd_size = THROTTLE_MAX_IOSIZE; |
91447636 | 4219 | } else { |
316670eb | 4220 | if (max_rd_size == THROTTLE_MAX_IOSIZE) { |
2d21ac55 A |
4221 | /* |
4222 | * coming out of throttled state | |
4223 | */ | |
39236c6e | 4224 | if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) { |
b0d623f7 A |
4225 | if (rap != NULL) |
4226 | rd_ahead_enabled = 1; | |
4227 | prefetch_enabled = 1; | |
4228 | } | |
cf7d32b8 | 4229 | max_rd_size = max_prefetch; |
2d21ac55 A |
4230 | last_ioread_offset = 0; |
4231 | } | |
91447636 A |
4232 | } |
4233 | } | |
4234 | } | |
6d2010ae | 4235 | if (iolock_inited == TRUE) { |
fe8ab488 A |
4236 | /* |
4237 | * cluster_io returned an error after it | |
4238 | * had already issued some I/O. we need | |
4239 | * to wait for that I/O to complete before | |
4240 | * we can destroy the iostate mutex... | |
4241 | * 'retval' already contains the early error | |
4242 | * so no need to pick it up from iostate.io_error | |
4243 | */ | |
4244 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
4245 | ||
6d2010ae A |
4246 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
4247 | } | |
91447636 A |
4248 | if (rap != NULL) { |
4249 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
2d21ac55 | 4250 | (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0); |
91447636 A |
4251 | |
4252 | lck_mtx_unlock(&rap->cl_lockr); | |
4253 | } else { | |
4254 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
2d21ac55 | 4255 | (int)uio->uio_offset, io_req_size, 0, retval, 0); |
1c79356b A |
4256 | } |
4257 | ||
4258 | return (retval); | |
4259 | } | |
4260 | ||
3e170ce0 A |
4261 | /* |
4262 | * We don't want another read/write lock for every vnode in the system | |
4263 | * so we keep a hash of them here. There should never be very many of | |
4264 | * these around at any point in time. | |
4265 | */ | |
4266 | cl_direct_read_lock_t *cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type) | |
4267 | { | |
4268 | struct cl_direct_read_locks *head | |
4269 | = &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp) | |
4270 | % CL_DIRECT_READ_LOCK_BUCKETS]; | |
4271 | ||
4272 | struct cl_direct_read_lock *lck, *new_lck = NULL; | |
4273 | ||
4274 | for (;;) { | |
4275 | lck_spin_lock(&cl_direct_read_spin_lock); | |
4276 | ||
4277 | LIST_FOREACH(lck, head, chain) { | |
4278 | if (lck->vp == vp) { | |
4279 | ++lck->ref_count; | |
4280 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4281 | if (new_lck) { | |
4282 | // Someone beat us to it, ditch the allocation | |
4283 | lck_rw_destroy(&new_lck->rw_lock, cl_mtx_grp); | |
4284 | FREE(new_lck, M_TEMP); | |
4285 | } | |
4286 | lck_rw_lock(&lck->rw_lock, type); | |
4287 | return lck; | |
4288 | } | |
4289 | } | |
4290 | ||
4291 | if (new_lck) { | |
4292 | // Use the lock we allocated | |
4293 | LIST_INSERT_HEAD(head, new_lck, chain); | |
4294 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4295 | lck_rw_lock(&new_lck->rw_lock, type); | |
4296 | return new_lck; | |
4297 | } | |
4298 | ||
4299 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4300 | ||
4301 | // Allocate a new lock | |
4302 | MALLOC(new_lck, cl_direct_read_lock_t *, sizeof(*new_lck), | |
4303 | M_TEMP, M_WAITOK); | |
4304 | lck_rw_init(&new_lck->rw_lock, cl_mtx_grp, cl_mtx_attr); | |
4305 | new_lck->vp = vp; | |
4306 | new_lck->ref_count = 1; | |
4307 | ||
4308 | // Got to go round again | |
4309 | } | |
4310 | } | |
4311 | ||
4312 | void cluster_unlock_direct_read(cl_direct_read_lock_t *lck) | |
4313 | { | |
4314 | lck_rw_done(&lck->rw_lock); | |
4315 | ||
4316 | lck_spin_lock(&cl_direct_read_spin_lock); | |
4317 | if (lck->ref_count == 1) { | |
4318 | LIST_REMOVE(lck, chain); | |
4319 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4320 | lck_rw_destroy(&lck->rw_lock, cl_mtx_grp); | |
4321 | FREE(lck, M_TEMP); | |
4322 | } else { | |
4323 | --lck->ref_count; | |
4324 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4325 | } | |
4326 | } | |
4327 | ||
9bccf70c | 4328 | static int |
2d21ac55 A |
4329 | cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
4330 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
4331 | { |
4332 | upl_t upl; | |
4333 | upl_page_info_t *pl; | |
2d21ac55 | 4334 | off_t max_io_size; |
b0d623f7 A |
4335 | vm_offset_t upl_offset, vector_upl_offset = 0; |
4336 | upl_size_t upl_size, vector_upl_size = 0; | |
2d21ac55 A |
4337 | vm_size_t upl_needed_size; |
4338 | unsigned int pages_in_pl; | |
3e170ce0 | 4339 | upl_control_flags_t upl_flags; |
1c79356b | 4340 | kern_return_t kret; |
2d21ac55 | 4341 | unsigned int i; |
1c79356b | 4342 | int force_data_sync; |
1c79356b | 4343 | int retval = 0; |
91447636 | 4344 | int no_zero_fill = 0; |
2d21ac55 A |
4345 | int io_flag = 0; |
4346 | int misaligned = 0; | |
d7e50217 | 4347 | struct clios iostate; |
2d21ac55 A |
4348 | user_addr_t iov_base; |
4349 | u_int32_t io_req_size; | |
4350 | u_int32_t offset_in_file; | |
4351 | u_int32_t offset_in_iovbase; | |
4352 | u_int32_t io_size; | |
4353 | u_int32_t io_min; | |
4354 | u_int32_t xsize; | |
4355 | u_int32_t devblocksize; | |
4356 | u_int32_t mem_alignment_mask; | |
b0d623f7 A |
4357 | u_int32_t max_upl_size; |
4358 | u_int32_t max_rd_size; | |
4359 | u_int32_t max_rd_ahead; | |
316670eb | 4360 | u_int32_t max_vector_size; |
6d2010ae | 4361 | boolean_t strict_uncached_IO = FALSE; |
316670eb | 4362 | boolean_t io_throttled = FALSE; |
cf7d32b8 | 4363 | |
b0d623f7 A |
4364 | u_int32_t vector_upl_iosize = 0; |
4365 | int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); | |
4366 | off_t v_upl_uio_offset = 0; | |
4367 | int vector_upl_index=0; | |
4368 | upl_t vector_upl = NULL; | |
3e170ce0 | 4369 | cl_direct_read_lock_t *lock = NULL; |
cf7d32b8 | 4370 | |
fe8ab488 A |
4371 | user_addr_t orig_iov_base = 0; |
4372 | user_addr_t last_iov_base = 0; | |
4373 | user_addr_t next_iov_base = 0; | |
4374 | ||
b0d623f7 A |
4375 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, |
4376 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
cf7d32b8 | 4377 | |
b0d623f7 | 4378 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ); |
2d21ac55 | 4379 | |
b0d623f7 A |
4380 | max_rd_size = max_upl_size; |
4381 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); | |
1c79356b | 4382 | |
b0d623f7 | 4383 | io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO; |
6d2010ae | 4384 | |
b0d623f7 A |
4385 | if (flags & IO_PASSIVE) |
4386 | io_flag |= CL_PASSIVE; | |
1c79356b | 4387 | |
316670eb A |
4388 | if (flags & IO_ENCRYPTED) { |
4389 | io_flag |= CL_RAW_ENCRYPTED; | |
4390 | } | |
4391 | ||
4392 | if (flags & IO_NOCACHE) { | |
4393 | io_flag |= CL_NOCACHE; | |
4394 | } | |
4395 | ||
fe8ab488 A |
4396 | if (flags & IO_SKIP_ENCRYPTION) |
4397 | io_flag |= CL_ENCRYPTED; | |
4398 | ||
d7e50217 A |
4399 | iostate.io_completed = 0; |
4400 | iostate.io_issued = 0; | |
4401 | iostate.io_error = 0; | |
4402 | iostate.io_wanted = 0; | |
4403 | ||
6d2010ae A |
4404 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
4405 | ||
2d21ac55 A |
4406 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
4407 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
4408 | ||
4409 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
4410 | (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0); | |
4411 | ||
4412 | if (devblocksize == 1) { | |
4413 | /* | |
4414 | * the AFP client advertises a devblocksize of 1 | |
4415 | * however, its BLOCKMAP routine maps to physical | |
4416 | * blocks that are PAGE_SIZE in size... | |
4417 | * therefore we can't ask for I/Os that aren't page aligned | |
4418 | * or aren't multiples of PAGE_SIZE in size | |
4419 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
4420 | * the old behavior we had before the mem_alignment_mask | |
4421 | * changes went in... | |
4422 | */ | |
4423 | devblocksize = PAGE_SIZE; | |
4424 | } | |
6d2010ae A |
4425 | |
4426 | strict_uncached_IO = ubc_strict_uncached_IO(vp); | |
4427 | ||
fe8ab488 A |
4428 | orig_iov_base = uio_curriovbase(uio); |
4429 | last_iov_base = orig_iov_base; | |
4430 | ||
2d21ac55 A |
4431 | next_dread: |
4432 | io_req_size = *read_length; | |
4433 | iov_base = uio_curriovbase(uio); | |
4434 | ||
2d21ac55 A |
4435 | offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1); |
4436 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
4437 | ||
4438 | if (offset_in_file || offset_in_iovbase) { | |
4439 | /* | |
4440 | * one of the 2 important offsets is misaligned | |
4441 | * so fire an I/O through the cache for this entire vector | |
4442 | */ | |
4443 | misaligned = 1; | |
4444 | } | |
4445 | if (iov_base & (devblocksize - 1)) { | |
4446 | /* | |
4447 | * the offset in memory must be on a device block boundary | |
4448 | * so that we can guarantee that we can generate an | |
4449 | * I/O that ends on a page boundary in cluster_io | |
4450 | */ | |
4451 | misaligned = 1; | |
316670eb A |
4452 | } |
4453 | ||
39037602 A |
4454 | max_io_size = filesize - uio->uio_offset; |
4455 | ||
316670eb A |
4456 | /* |
4457 | * The user must request IO in aligned chunks. If the | |
4458 | * offset into the file is bad, or the userland pointer | |
4459 | * is non-aligned, then we cannot service the encrypted IO request. | |
4460 | */ | |
39037602 A |
4461 | if (flags & IO_ENCRYPTED) { |
4462 | if (misaligned || (io_req_size & (devblocksize - 1))) | |
4463 | retval = EINVAL; | |
4464 | ||
4465 | max_io_size = roundup(max_io_size, devblocksize); | |
316670eb A |
4466 | } |
4467 | ||
39037602 A |
4468 | if ((off_t)io_req_size > max_io_size) |
4469 | io_req_size = max_io_size; | |
4470 | ||
2d21ac55 A |
4471 | /* |
4472 | * When we get to this point, we know... | |
4473 | * -- the offset into the file is on a devblocksize boundary | |
4474 | */ | |
4475 | ||
4476 | while (io_req_size && retval == 0) { | |
4477 | u_int32_t io_start; | |
1c79356b | 4478 | |
39236c6e | 4479 | if (cluster_is_throttled(vp)) { |
316670eb A |
4480 | /* |
4481 | * we're in the throttle window, at the very least | |
4482 | * we want to limit the size of the I/O we're about | |
4483 | * to issue | |
4484 | */ | |
4485 | max_rd_size = THROTTLE_MAX_IOSIZE; | |
4486 | max_rd_ahead = THROTTLE_MAX_IOSIZE - 1; | |
4487 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
91447636 | 4488 | } else { |
cf7d32b8 | 4489 | max_rd_size = max_upl_size; |
b0d623f7 | 4490 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); |
316670eb | 4491 | max_vector_size = MAX_VECTOR_UPL_SIZE; |
91447636 | 4492 | } |
2d21ac55 | 4493 | io_start = io_size = io_req_size; |
1c79356b | 4494 | |
d7e50217 A |
4495 | /* |
4496 | * First look for pages already in the cache | |
316670eb A |
4497 | * and move them to user space. But only do this |
4498 | * check if we are not retrieving encrypted data directly | |
4499 | * from the filesystem; those blocks should never | |
4500 | * be in the UBC. | |
2d21ac55 A |
4501 | * |
4502 | * cluster_copy_ubc_data returns the resid | |
4503 | * in io_size | |
d7e50217 | 4504 | */ |
316670eb | 4505 | if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) { |
6d2010ae A |
4506 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0); |
4507 | } | |
2d21ac55 A |
4508 | /* |
4509 | * calculate the number of bytes actually copied | |
4510 | * starting size - residual | |
4511 | */ | |
4512 | xsize = io_start - io_size; | |
4513 | ||
4514 | io_req_size -= xsize; | |
4515 | ||
b0d623f7 A |
4516 | if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) { |
4517 | /* | |
4518 | * We found something in the cache or we have an iov_base that's not | |
4519 | * page-aligned. | |
4520 | * | |
4521 | * Issue all I/O's that have been collected within this Vectored UPL. | |
4522 | */ | |
4523 | if(vector_upl_index) { | |
4524 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4525 | reset_vector_run_state(); | |
4526 | } | |
4527 | ||
4528 | if(xsize) | |
4529 | useVectorUPL = 0; | |
4530 | ||
4531 | /* | |
4532 | * After this point, if we are using the Vector UPL path and the base is | |
4533 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
4534 | */ | |
4535 | } | |
4536 | ||
2d21ac55 | 4537 | /* |
316670eb A |
4538 | * check to see if we are finished with this request. |
4539 | * | |
4540 | * If we satisfied this IO already, then io_req_size will be 0. | |
4541 | * Otherwise, see if the IO was mis-aligned and needs to go through | |
4542 | * the UBC to deal with the 'tail'. | |
4543 | * | |
2d21ac55 | 4544 | */ |
316670eb | 4545 | if (io_req_size == 0 || (misaligned)) { |
2d21ac55 A |
4546 | /* |
4547 | * see if there's another uio vector to | |
4548 | * process that's of type IO_DIRECT | |
4549 | * | |
4550 | * break out of while loop to get there | |
d7e50217 | 4551 | */ |
2d21ac55 | 4552 | break; |
0b4e3aa0 | 4553 | } |
d7e50217 | 4554 | /* |
2d21ac55 | 4555 | * assume the request ends on a device block boundary |
d7e50217 | 4556 | */ |
2d21ac55 A |
4557 | io_min = devblocksize; |
4558 | ||
4559 | /* | |
4560 | * we can handle I/O's in multiples of the device block size | |
4561 | * however, if io_size isn't a multiple of devblocksize we | |
4562 | * want to clip it back to the nearest page boundary since | |
4563 | * we are going to have to go through cluster_read_copy to | |
4564 | * deal with the 'overhang'... by clipping it to a PAGE_SIZE | |
4565 | * multiple, we avoid asking the drive for the same physical | |
4566 | * blocks twice.. once for the partial page at the end of the | |
4567 | * request and a 2nd time for the page we read into the cache | |
4568 | * (which overlaps the end of the direct read) in order to | |
4569 | * get at the overhang bytes | |
4570 | */ | |
39037602 A |
4571 | if (io_size & (devblocksize - 1)) { |
4572 | assert(!(flags & IO_ENCRYPTED)); | |
4573 | /* | |
4574 | * Clip the request to the previous page size boundary | |
4575 | * since request does NOT end on a device block boundary | |
4576 | */ | |
4577 | io_size &= ~PAGE_MASK; | |
4578 | io_min = PAGE_SIZE; | |
2d21ac55 A |
4579 | } |
4580 | if (retval || io_size < io_min) { | |
4581 | /* | |
4582 | * either an error or we only have the tail left to | |
4583 | * complete via the copy path... | |
d7e50217 A |
4584 | * we may have already spun some portion of this request |
4585 | * off as async requests... we need to wait for the I/O | |
4586 | * to complete before returning | |
4587 | */ | |
2d21ac55 | 4588 | goto wait_for_dreads; |
d7e50217 | 4589 | } |
55e303ae | 4590 | |
3e170ce0 | 4591 | /* |
316670eb A |
4592 | * Don't re-check the UBC data if we are looking for uncached IO |
4593 | * or asking for encrypted blocks. | |
4594 | */ | |
4595 | if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) { | |
1c79356b | 4596 | |
6d2010ae | 4597 | if ((xsize = io_size) > max_rd_size) |
316670eb | 4598 | xsize = max_rd_size; |
55e303ae | 4599 | |
6d2010ae A |
4600 | io_size = 0; |
4601 | ||
3e170ce0 A |
4602 | if (!lock) { |
4603 | /* | |
4604 | * We hold a lock here between the time we check the | |
4605 | * cache and the time we issue I/O. This saves us | |
4606 | * from having to lock the pages in the cache. Not | |
4607 | * all clients will care about this lock but some | |
4608 | * clients may want to guarantee stability between | |
4609 | * here and when the I/O is issued in which case they | |
4610 | * will take the lock exclusively. | |
4611 | */ | |
4612 | lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED); | |
4613 | } | |
4614 | ||
6d2010ae A |
4615 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size); |
4616 | ||
4617 | if (io_size == 0) { | |
4618 | /* | |
4619 | * a page must have just come into the cache | |
4620 | * since the first page in this range is no | |
4621 | * longer absent, go back and re-evaluate | |
4622 | */ | |
4623 | continue; | |
4624 | } | |
2d21ac55 | 4625 | } |
316670eb | 4626 | if ( (flags & IO_RETURN_ON_THROTTLE) ) { |
39236c6e | 4627 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { |
316670eb A |
4628 | if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) { |
4629 | /* | |
4630 | * we're in the throttle window and at least 1 I/O | |
4631 | * has already been issued by a throttleable thread | |
4632 | * in this window, so return with EAGAIN to indicate | |
4633 | * to the FS issuing the cluster_read call that it | |
4634 | * should now throttle after dropping any locks | |
4635 | */ | |
4636 | throttle_info_update_by_mount(vp->v_mount); | |
4637 | ||
4638 | io_throttled = TRUE; | |
4639 | goto wait_for_dreads; | |
4640 | } | |
4641 | } | |
4642 | } | |
4643 | if (io_size > max_rd_size) | |
4644 | io_size = max_rd_size; | |
6d2010ae | 4645 | |
cc9f6e38 | 4646 | iov_base = uio_curriovbase(uio); |
1c79356b | 4647 | |
2d21ac55 | 4648 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
d7e50217 | 4649 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; |
1c79356b | 4650 | |
d7e50217 | 4651 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, |
cc9f6e38 | 4652 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
1c79356b | 4653 | |
0b4c1975 | 4654 | if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) |
91447636 | 4655 | no_zero_fill = 1; |
0b4c1975 | 4656 | else |
91447636 | 4657 | no_zero_fill = 0; |
0b4c1975 | 4658 | |
3e170ce0 | 4659 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
d7e50217 A |
4660 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { |
4661 | pages_in_pl = 0; | |
4662 | upl_size = upl_needed_size; | |
5ba3f43e | 4663 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
91447636 A |
4664 | if (no_zero_fill) |
4665 | upl_flags |= UPL_NOZEROFILL; | |
4666 | if (force_data_sync) | |
4667 | upl_flags |= UPL_FORCE_DATA_SYNC; | |
4668 | ||
3e170ce0 | 4669 | kret = vm_map_create_upl(map, |
cc9f6e38 | 4670 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
5ba3f43e | 4671 | &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE); |
1c79356b | 4672 | |
d7e50217 A |
4673 | if (kret != KERN_SUCCESS) { |
4674 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4675 | (int)upl_offset, upl_size, io_size, kret, 0); | |
d7e50217 | 4676 | /* |
2d21ac55 | 4677 | * failed to get pagelist |
d7e50217 A |
4678 | * |
4679 | * we may have already spun some portion of this request | |
4680 | * off as async requests... we need to wait for the I/O | |
4681 | * to complete before returning | |
4682 | */ | |
2d21ac55 | 4683 | goto wait_for_dreads; |
d7e50217 A |
4684 | } |
4685 | pages_in_pl = upl_size / PAGE_SIZE; | |
4686 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
1c79356b | 4687 | |
d7e50217 | 4688 | for (i = 0; i < pages_in_pl; i++) { |
0b4c1975 | 4689 | if (!upl_page_present(pl, i)) |
d7e50217 A |
4690 | break; |
4691 | } | |
4692 | if (i == pages_in_pl) | |
4693 | break; | |
0b4e3aa0 | 4694 | |
0b4c1975 | 4695 | ubc_upl_abort(upl, 0); |
1c79356b | 4696 | } |
d7e50217 A |
4697 | if (force_data_sync >= 3) { |
4698 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4699 | (int)upl_offset, upl_size, io_size, kret, 0); | |
1c79356b | 4700 | |
2d21ac55 | 4701 | goto wait_for_dreads; |
d7e50217 A |
4702 | } |
4703 | /* | |
4704 | * Consider the possibility that upl_size wasn't satisfied. | |
4705 | */ | |
2d21ac55 A |
4706 | if (upl_size < upl_needed_size) { |
4707 | if (upl_size && upl_offset == 0) | |
4708 | io_size = upl_size; | |
4709 | else | |
4710 | io_size = 0; | |
4711 | } | |
d7e50217 | 4712 | if (io_size == 0) { |
0b4c1975 | 4713 | ubc_upl_abort(upl, 0); |
2d21ac55 | 4714 | goto wait_for_dreads; |
d7e50217 A |
4715 | } |
4716 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4717 | (int)upl_offset, upl_size, io_size, kret, 0); | |
1c79356b | 4718 | |
b0d623f7 A |
4719 | if(useVectorUPL) { |
4720 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
4721 | if(end_off) | |
4722 | issueVectorUPL = 1; | |
4723 | /* | |
4724 | * After this point, if we are using a vector UPL, then | |
4725 | * either all the UPL elements end on a page boundary OR | |
4726 | * this UPL is the last element because it does not end | |
4727 | * on a page boundary. | |
4728 | */ | |
4729 | } | |
4730 | ||
d7e50217 A |
4731 | /* |
4732 | * request asynchronously so that we can overlap | |
4733 | * the preparation of the next I/O | |
4734 | * if there are already too many outstanding reads | |
4735 | * wait until some have completed before issuing the next read | |
4736 | */ | |
fe8ab488 | 4737 | cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct"); |
91447636 | 4738 | |
d7e50217 A |
4739 | if (iostate.io_error) { |
4740 | /* | |
4741 | * one of the earlier reads we issued ran into a hard error | |
4742 | * don't issue any more reads, cleanup the UPL | |
4743 | * that was just created but not used, then | |
4744 | * go wait for any other reads to complete before | |
4745 | * returning the error to the caller | |
4746 | */ | |
0b4c1975 | 4747 | ubc_upl_abort(upl, 0); |
1c79356b | 4748 | |
2d21ac55 | 4749 | goto wait_for_dreads; |
d7e50217 A |
4750 | } |
4751 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, | |
b0d623f7 | 4752 | upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); |
1c79356b | 4753 | |
b0d623f7 A |
4754 | if(!useVectorUPL) { |
4755 | if (no_zero_fill) | |
4756 | io_flag &= ~CL_PRESERVE; | |
4757 | else | |
4758 | io_flag |= CL_PRESERVE; | |
4759 | ||
4760 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4761 | ||
4762 | } else { | |
1c79356b | 4763 | |
b0d623f7 A |
4764 | if(!vector_upl_index) { |
4765 | vector_upl = vector_upl_create(upl_offset); | |
4766 | v_upl_uio_offset = uio->uio_offset; | |
4767 | vector_upl_offset = upl_offset; | |
4768 | } | |
4769 | ||
4770 | vector_upl_set_subupl(vector_upl,upl, upl_size); | |
4771 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
4772 | vector_upl_index++; | |
4773 | vector_upl_size += upl_size; | |
4774 | vector_upl_iosize += io_size; | |
4775 | ||
316670eb | 4776 | if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { |
b0d623f7 A |
4777 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
4778 | reset_vector_run_state(); | |
4779 | } | |
fe8ab488 A |
4780 | } |
4781 | last_iov_base = iov_base + io_size; | |
4782 | ||
3e170ce0 A |
4783 | if (lock) { |
4784 | // We don't need to wait for the I/O to complete | |
4785 | cluster_unlock_direct_read(lock); | |
4786 | lock = NULL; | |
4787 | } | |
4788 | ||
d7e50217 A |
4789 | /* |
4790 | * update the uio structure | |
4791 | */ | |
316670eb A |
4792 | if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) { |
4793 | uio_update(uio, (user_size_t)max_io_size); | |
4794 | } | |
4795 | else { | |
4796 | uio_update(uio, (user_size_t)io_size); | |
4797 | } | |
39037602 A |
4798 | |
4799 | io_req_size -= io_size; | |
2d21ac55 | 4800 | |
d7e50217 | 4801 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, |
b0d623f7 | 4802 | upl, (int)uio->uio_offset, io_req_size, retval, 0); |
1c79356b A |
4803 | |
4804 | } /* end while */ | |
4805 | ||
2d21ac55 | 4806 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) { |
91447636 | 4807 | |
2d21ac55 A |
4808 | retval = cluster_io_type(uio, read_type, read_length, 0); |
4809 | ||
4810 | if (retval == 0 && *read_type == IO_DIRECT) { | |
4811 | ||
4812 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
4813 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
4814 | ||
4815 | goto next_dread; | |
4816 | } | |
4817 | } | |
4818 | ||
4819 | wait_for_dreads: | |
b0d623f7 A |
4820 | |
4821 | if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { | |
4822 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4823 | reset_vector_run_state(); | |
4824 | } | |
3e170ce0 A |
4825 | |
4826 | // We don't need to wait for the I/O to complete | |
4827 | if (lock) | |
4828 | cluster_unlock_direct_read(lock); | |
4829 | ||
b0d623f7 A |
4830 | /* |
4831 | * make sure all async reads that are part of this stream | |
4832 | * have completed before we return | |
4833 | */ | |
fe8ab488 | 4834 | cluster_iostate_wait(&iostate, 0, "cluster_read_direct"); |
b0d623f7 | 4835 | |
d7e50217 | 4836 | if (iostate.io_error) |
2d21ac55 A |
4837 | retval = iostate.io_error; |
4838 | ||
6d2010ae A |
4839 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
4840 | ||
316670eb A |
4841 | if (io_throttled == TRUE && retval == 0) |
4842 | retval = EAGAIN; | |
4843 | ||
fe8ab488 A |
4844 | for (next_iov_base = orig_iov_base; next_iov_base < last_iov_base; next_iov_base += PAGE_SIZE) { |
4845 | /* | |
4846 | * This is specifically done for pmap accounting purposes. | |
4847 | * vm_pre_fault() will call vm_fault() to enter the page into | |
4848 | * the pmap if there isn't _a_ physical page for that VA already. | |
4849 | */ | |
4850 | vm_pre_fault(vm_map_trunc_page(next_iov_base, PAGE_MASK)); | |
4851 | } | |
4852 | ||
2d21ac55 A |
4853 | if (io_req_size && retval == 0) { |
4854 | /* | |
4855 | * we couldn't handle the tail of this request in DIRECT mode | |
4856 | * so fire it through the copy path | |
4857 | */ | |
4858 | retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg); | |
1c79356b | 4859 | |
2d21ac55 A |
4860 | *read_type = IO_UNKNOWN; |
4861 | } | |
1c79356b | 4862 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, |
2d21ac55 | 4863 | (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0); |
1c79356b A |
4864 | |
4865 | return (retval); | |
4866 | } | |
4867 | ||
4868 | ||
9bccf70c | 4869 | static int |
2d21ac55 A |
4870 | cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
4871 | int (*callback)(buf_t, void *), void *callback_arg, int flags) | |
0b4e3aa0 | 4872 | { |
b4c24cb9 | 4873 | upl_page_info_t *pl; |
2d21ac55 | 4874 | upl_t upl[MAX_VECTS]; |
0b4e3aa0 | 4875 | vm_offset_t upl_offset; |
2d21ac55 | 4876 | addr64_t dst_paddr = 0; |
cc9f6e38 | 4877 | user_addr_t iov_base; |
2d21ac55 | 4878 | off_t max_size; |
b0d623f7 | 4879 | upl_size_t upl_size; |
2d21ac55 A |
4880 | vm_size_t upl_needed_size; |
4881 | mach_msg_type_number_t pages_in_pl; | |
3e170ce0 | 4882 | upl_control_flags_t upl_flags; |
0b4e3aa0 | 4883 | kern_return_t kret; |
b4c24cb9 | 4884 | struct clios iostate; |
2d21ac55 A |
4885 | int error= 0; |
4886 | int cur_upl = 0; | |
4887 | int num_upl = 0; | |
4888 | int n; | |
4889 | u_int32_t xsize; | |
4890 | u_int32_t io_size; | |
4891 | u_int32_t devblocksize; | |
4892 | u_int32_t mem_alignment_mask; | |
4893 | u_int32_t tail_size = 0; | |
4894 | int bflag; | |
4895 | ||
4896 | if (flags & IO_PASSIVE) | |
b0d623f7 | 4897 | bflag = CL_PASSIVE; |
2d21ac55 | 4898 | else |
b0d623f7 | 4899 | bflag = 0; |
316670eb A |
4900 | |
4901 | if (flags & IO_NOCACHE) | |
4902 | bflag |= CL_NOCACHE; | |
4903 | ||
0b4e3aa0 A |
4904 | /* |
4905 | * When we enter this routine, we know | |
2d21ac55 A |
4906 | * -- the read_length will not exceed the current iov_len |
4907 | * -- the target address is physically contiguous for read_length | |
0b4e3aa0 | 4908 | */ |
fe8ab488 | 4909 | cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC); |
0b4e3aa0 | 4910 | |
2d21ac55 A |
4911 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
4912 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
91447636 | 4913 | |
2d21ac55 A |
4914 | iostate.io_completed = 0; |
4915 | iostate.io_issued = 0; | |
4916 | iostate.io_error = 0; | |
4917 | iostate.io_wanted = 0; | |
4918 | ||
6d2010ae A |
4919 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
4920 | ||
2d21ac55 A |
4921 | next_cread: |
4922 | io_size = *read_length; | |
0b4e3aa0 A |
4923 | |
4924 | max_size = filesize - uio->uio_offset; | |
4925 | ||
2d21ac55 | 4926 | if (io_size > max_size) |
b4c24cb9 | 4927 | io_size = max_size; |
0b4e3aa0 | 4928 | |
2d21ac55 A |
4929 | iov_base = uio_curriovbase(uio); |
4930 | ||
4931 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
0b4e3aa0 A |
4932 | upl_needed_size = upl_offset + io_size; |
4933 | ||
4934 | pages_in_pl = 0; | |
4935 | upl_size = upl_needed_size; | |
5ba3f43e | 4936 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
0b4e3aa0 | 4937 | |
2d21ac55 A |
4938 | |
4939 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START, | |
4940 | (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0); | |
4941 | ||
3e170ce0 A |
4942 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
4943 | kret = vm_map_get_upl(map, | |
cc9f6e38 | 4944 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
5ba3f43e | 4945 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0); |
2d21ac55 A |
4946 | |
4947 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END, | |
4948 | (int)upl_offset, upl_size, io_size, kret, 0); | |
0b4e3aa0 | 4949 | |
b4c24cb9 A |
4950 | if (kret != KERN_SUCCESS) { |
4951 | /* | |
2d21ac55 | 4952 | * failed to get pagelist |
b4c24cb9 | 4953 | */ |
2d21ac55 A |
4954 | error = EINVAL; |
4955 | goto wait_for_creads; | |
b4c24cb9 | 4956 | } |
2d21ac55 A |
4957 | num_upl++; |
4958 | ||
b4c24cb9 A |
4959 | if (upl_size < upl_needed_size) { |
4960 | /* | |
4961 | * The upl_size wasn't satisfied. | |
4962 | */ | |
2d21ac55 A |
4963 | error = EINVAL; |
4964 | goto wait_for_creads; | |
b4c24cb9 | 4965 | } |
2d21ac55 | 4966 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
b4c24cb9 | 4967 | |
fe8ab488 | 4968 | dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; |
0b4e3aa0 | 4969 | |
b4c24cb9 | 4970 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
2d21ac55 | 4971 | u_int32_t head_size; |
b4c24cb9 | 4972 | |
2d21ac55 | 4973 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
b4c24cb9 A |
4974 | |
4975 | if (head_size > io_size) | |
4976 | head_size = io_size; | |
4977 | ||
2d21ac55 | 4978 | error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg); |
b4c24cb9 | 4979 | |
2d21ac55 A |
4980 | if (error) |
4981 | goto wait_for_creads; | |
b4c24cb9 | 4982 | |
b4c24cb9 A |
4983 | upl_offset += head_size; |
4984 | dst_paddr += head_size; | |
4985 | io_size -= head_size; | |
2d21ac55 A |
4986 | |
4987 | iov_base += head_size; | |
4988 | } | |
4989 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
4990 | /* | |
4991 | * request doesn't set up on a memory boundary | |
4992 | * the underlying DMA engine can handle... | |
4993 | * return an error instead of going through | |
4994 | * the slow copy path since the intent of this | |
4995 | * path is direct I/O to device memory | |
4996 | */ | |
4997 | error = EINVAL; | |
4998 | goto wait_for_creads; | |
b4c24cb9 | 4999 | } |
2d21ac55 | 5000 | |
b4c24cb9 | 5001 | tail_size = io_size & (devblocksize - 1); |
b4c24cb9 | 5002 | |
2d21ac55 | 5003 | io_size -= tail_size; |
b4c24cb9 A |
5004 | |
5005 | while (io_size && error == 0) { | |
b4c24cb9 | 5006 | |
2d21ac55 A |
5007 | if (io_size > MAX_IO_CONTIG_SIZE) |
5008 | xsize = MAX_IO_CONTIG_SIZE; | |
b4c24cb9 A |
5009 | else |
5010 | xsize = io_size; | |
5011 | /* | |
5012 | * request asynchronously so that we can overlap | |
5013 | * the preparation of the next I/O... we'll do | |
5014 | * the commit after all the I/O has completed | |
5015 | * since its all issued against the same UPL | |
5016 | * if there are already too many outstanding reads | |
d7e50217 | 5017 | * wait until some have completed before issuing the next |
b4c24cb9 | 5018 | */ |
fe8ab488 | 5019 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig"); |
cf7d32b8 | 5020 | |
2d21ac55 A |
5021 | if (iostate.io_error) { |
5022 | /* | |
5023 | * one of the earlier reads we issued ran into a hard error | |
5024 | * don't issue any more reads... | |
5025 | * go wait for any other reads to complete before | |
5026 | * returning the error to the caller | |
5027 | */ | |
5028 | goto wait_for_creads; | |
5029 | } | |
5030 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize, | |
5031 | CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag, | |
5032 | (buf_t)NULL, &iostate, callback, callback_arg); | |
b4c24cb9 A |
5033 | /* |
5034 | * The cluster_io read was issued successfully, | |
5035 | * update the uio structure | |
5036 | */ | |
5037 | if (error == 0) { | |
cc9f6e38 A |
5038 | uio_update(uio, (user_size_t)xsize); |
5039 | ||
5040 | dst_paddr += xsize; | |
5041 | upl_offset += xsize; | |
5042 | io_size -= xsize; | |
b4c24cb9 A |
5043 | } |
5044 | } | |
2d21ac55 A |
5045 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) { |
5046 | ||
5047 | error = cluster_io_type(uio, read_type, read_length, 0); | |
5048 | ||
5049 | if (error == 0 && *read_type == IO_CONTIG) { | |
5050 | cur_upl++; | |
5051 | goto next_cread; | |
5052 | } | |
5053 | } else | |
5054 | *read_type = IO_UNKNOWN; | |
5055 | ||
5056 | wait_for_creads: | |
0b4e3aa0 | 5057 | /* |
d7e50217 A |
5058 | * make sure all async reads that are part of this stream |
5059 | * have completed before we proceed | |
0b4e3aa0 | 5060 | */ |
fe8ab488 | 5061 | cluster_iostate_wait(&iostate, 0, "cluster_read_contig"); |
91447636 A |
5062 | |
5063 | if (iostate.io_error) | |
b4c24cb9 | 5064 | error = iostate.io_error; |
91447636 | 5065 | |
6d2010ae A |
5066 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
5067 | ||
b4c24cb9 | 5068 | if (error == 0 && tail_size) |
2d21ac55 | 5069 | error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg); |
0b4e3aa0 | 5070 | |
2d21ac55 A |
5071 | for (n = 0; n < num_upl; n++) |
5072 | /* | |
5073 | * just release our hold on each physically contiguous | |
5074 | * region without changing any state | |
5075 | */ | |
5076 | ubc_upl_abort(upl[n], 0); | |
0b4e3aa0 A |
5077 | |
5078 | return (error); | |
5079 | } | |
1c79356b | 5080 | |
b4c24cb9 | 5081 | |
2d21ac55 A |
5082 | static int |
5083 | cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length) | |
5084 | { | |
5085 | user_size_t iov_len; | |
5086 | user_addr_t iov_base = 0; | |
5087 | upl_t upl; | |
b0d623f7 | 5088 | upl_size_t upl_size; |
3e170ce0 | 5089 | upl_control_flags_t upl_flags; |
2d21ac55 A |
5090 | int retval = 0; |
5091 | ||
5092 | /* | |
5093 | * skip over any emtpy vectors | |
5094 | */ | |
5095 | uio_update(uio, (user_size_t)0); | |
5096 | ||
5097 | iov_len = uio_curriovlen(uio); | |
5098 | ||
b0d623f7 | 5099 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0); |
2d21ac55 A |
5100 | |
5101 | if (iov_len) { | |
5102 | iov_base = uio_curriovbase(uio); | |
5103 | /* | |
5104 | * make sure the size of the vector isn't too big... | |
5105 | * internally, we want to handle all of the I/O in | |
5106 | * chunk sizes that fit in a 32 bit int | |
5107 | */ | |
5108 | if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE) | |
5109 | upl_size = MAX_IO_REQUEST_SIZE; | |
5110 | else | |
5111 | upl_size = (u_int32_t)iov_len; | |
5112 | ||
5ba3f43e | 5113 | upl_flags = UPL_QUERY_OBJECT_TYPE; |
3e170ce0 A |
5114 | |
5115 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; | |
5116 | if ((vm_map_get_upl(map, | |
2d21ac55 | 5117 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
5ba3f43e | 5118 | &upl_size, &upl, NULL, NULL, &upl_flags, VM_KERN_MEMORY_FILE, 0)) != KERN_SUCCESS) { |
2d21ac55 A |
5119 | /* |
5120 | * the user app must have passed in an invalid address | |
5121 | */ | |
5122 | retval = EFAULT; | |
5123 | } | |
5124 | if (upl_size == 0) | |
5125 | retval = EFAULT; | |
5126 | ||
5127 | *io_length = upl_size; | |
5128 | ||
5129 | if (upl_flags & UPL_PHYS_CONTIG) | |
5130 | *io_type = IO_CONTIG; | |
5131 | else if (iov_len >= min_length) | |
5132 | *io_type = IO_DIRECT; | |
5133 | else | |
5134 | *io_type = IO_COPY; | |
5135 | } else { | |
5136 | /* | |
5137 | * nothing left to do for this uio | |
5138 | */ | |
5139 | *io_length = 0; | |
5140 | *io_type = IO_UNKNOWN; | |
5141 | } | |
b0d623f7 | 5142 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0); |
2d21ac55 A |
5143 | |
5144 | return (retval); | |
5145 | } | |
5146 | ||
5147 | ||
1c79356b A |
5148 | /* |
5149 | * generate advisory I/O's in the largest chunks possible | |
5150 | * the completed pages will be released into the VM cache | |
5151 | */ | |
9bccf70c | 5152 | int |
91447636 | 5153 | advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) |
2d21ac55 A |
5154 | { |
5155 | return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE); | |
5156 | } | |
5157 | ||
5158 | int | |
5159 | advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
1c79356b | 5160 | { |
1c79356b A |
5161 | upl_page_info_t *pl; |
5162 | upl_t upl; | |
5163 | vm_offset_t upl_offset; | |
b0d623f7 | 5164 | int upl_size; |
1c79356b A |
5165 | off_t upl_f_offset; |
5166 | int start_offset; | |
5167 | int start_pg; | |
5168 | int last_pg; | |
5169 | int pages_in_upl; | |
5170 | off_t max_size; | |
5171 | int io_size; | |
5172 | kern_return_t kret; | |
5173 | int retval = 0; | |
9bccf70c | 5174 | int issued_io; |
55e303ae | 5175 | int skip_range; |
b0d623f7 A |
5176 | uint32_t max_io_size; |
5177 | ||
5178 | ||
91447636 | 5179 | if ( !UBCINFOEXISTS(vp)) |
1c79356b A |
5180 | return(EINVAL); |
5181 | ||
ca66cea6 A |
5182 | if (resid < 0) |
5183 | return(EINVAL); | |
5184 | ||
cf7d32b8 | 5185 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); |
b0d623f7 | 5186 | |
5ba3f43e A |
5187 | #if CONFIG_EMBEDDED |
5188 | if (max_io_size > speculative_prefetch_max_iosize) | |
5189 | max_io_size = speculative_prefetch_max_iosize; | |
5190 | #else | |
5191 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) { | |
316670eb A |
5192 | if (max_io_size > speculative_prefetch_max_iosize) |
5193 | max_io_size = speculative_prefetch_max_iosize; | |
5194 | } | |
5ba3f43e | 5195 | #endif |
316670eb | 5196 | |
1c79356b | 5197 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, |
b0d623f7 | 5198 | (int)f_offset, resid, (int)filesize, 0, 0); |
1c79356b A |
5199 | |
5200 | while (resid && f_offset < filesize && retval == 0) { | |
5201 | /* | |
5202 | * compute the size of the upl needed to encompass | |
5203 | * the requested read... limit each call to cluster_io | |
0b4e3aa0 A |
5204 | * to the maximum UPL size... cluster_io will clip if |
5205 | * this exceeds the maximum io_size for the device, | |
5206 | * make sure to account for | |
1c79356b A |
5207 | * a starting offset that's not page aligned |
5208 | */ | |
5209 | start_offset = (int)(f_offset & PAGE_MASK_64); | |
5210 | upl_f_offset = f_offset - (off_t)start_offset; | |
5211 | max_size = filesize - f_offset; | |
5212 | ||
5213 | if (resid < max_size) | |
5214 | io_size = resid; | |
5215 | else | |
5216 | io_size = max_size; | |
5217 | ||
5218 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
cf7d32b8 A |
5219 | if ((uint32_t)upl_size > max_io_size) |
5220 | upl_size = max_io_size; | |
55e303ae A |
5221 | |
5222 | skip_range = 0; | |
5223 | /* | |
5224 | * return the number of contiguously present pages in the cache | |
5225 | * starting at upl_f_offset within the file | |
5226 | */ | |
5227 | ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range); | |
5228 | ||
5229 | if (skip_range) { | |
5230 | /* | |
5231 | * skip over pages already present in the cache | |
5232 | */ | |
5233 | io_size = skip_range - start_offset; | |
5234 | ||
5235 | f_offset += io_size; | |
5236 | resid -= io_size; | |
5237 | ||
5238 | if (skip_range == upl_size) | |
5239 | continue; | |
5240 | /* | |
5241 | * have to issue some real I/O | |
5242 | * at this point, we know it's starting on a page boundary | |
5243 | * because we've skipped over at least the first page in the request | |
5244 | */ | |
5245 | start_offset = 0; | |
5246 | upl_f_offset += skip_range; | |
5247 | upl_size -= skip_range; | |
5248 | } | |
1c79356b A |
5249 | pages_in_upl = upl_size / PAGE_SIZE; |
5250 | ||
55e303ae | 5251 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, |
b0d623f7 | 5252 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
55e303ae | 5253 | |
5ba3f43e | 5254 | kret = ubc_create_upl_kernel(vp, |
91447636 A |
5255 | upl_f_offset, |
5256 | upl_size, | |
5257 | &upl, | |
5258 | &pl, | |
5ba3f43e A |
5259 | UPL_RET_ONLY_ABSENT | UPL_SET_LITE, |
5260 | VM_KERN_MEMORY_FILE); | |
1c79356b | 5261 | if (kret != KERN_SUCCESS) |
9bccf70c A |
5262 | return(retval); |
5263 | issued_io = 0; | |
1c79356b A |
5264 | |
5265 | /* | |
9bccf70c A |
5266 | * before we start marching forward, we must make sure we end on |
5267 | * a present page, otherwise we will be working with a freed | |
5268 | * upl | |
1c79356b | 5269 | */ |
9bccf70c A |
5270 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { |
5271 | if (upl_page_present(pl, last_pg)) | |
5272 | break; | |
1c79356b | 5273 | } |
9bccf70c | 5274 | pages_in_upl = last_pg + 1; |
1c79356b | 5275 | |
1c79356b | 5276 | |
55e303ae | 5277 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, |
b0d623f7 | 5278 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
9bccf70c A |
5279 | |
5280 | ||
5281 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
1c79356b | 5282 | /* |
9bccf70c A |
5283 | * scan from the beginning of the upl looking for the first |
5284 | * page that is present.... this will become the first page in | |
5285 | * the request we're going to make to 'cluster_io'... if all | |
5286 | * of the pages are absent, we won't call through to 'cluster_io' | |
1c79356b | 5287 | */ |
9bccf70c A |
5288 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
5289 | if (upl_page_present(pl, start_pg)) | |
5290 | break; | |
1c79356b | 5291 | } |
1c79356b | 5292 | |
1c79356b | 5293 | /* |
9bccf70c A |
5294 | * scan from the starting present page looking for an absent |
5295 | * page before the end of the upl is reached, if we | |
5296 | * find one, then it will terminate the range of pages being | |
5297 | * presented to 'cluster_io' | |
1c79356b | 5298 | */ |
9bccf70c A |
5299 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
5300 | if (!upl_page_present(pl, last_pg)) | |
5301 | break; | |
5302 | } | |
5303 | ||
5304 | if (last_pg > start_pg) { | |
5305 | /* | |
5306 | * we found a range of pages that must be filled | |
5307 | * if the last page in this range is the last page of the file | |
5308 | * we may have to clip the size of it to keep from reading past | |
5309 | * the end of the last physical block associated with the file | |
5310 | */ | |
5311 | upl_offset = start_pg * PAGE_SIZE; | |
5312 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
5313 | ||
b0d623f7 | 5314 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) |
9bccf70c A |
5315 | io_size = filesize - (upl_f_offset + upl_offset); |
5316 | ||
5317 | /* | |
5318 | * issue an asynchronous read to cluster_io | |
5319 | */ | |
91447636 | 5320 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, |
2d21ac55 | 5321 | CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 5322 | |
9bccf70c A |
5323 | issued_io = 1; |
5324 | } | |
1c79356b | 5325 | } |
9bccf70c A |
5326 | if (issued_io == 0) |
5327 | ubc_upl_abort(upl, 0); | |
5328 | ||
5329 | io_size = upl_size - start_offset; | |
1c79356b A |
5330 | |
5331 | if (io_size > resid) | |
5332 | io_size = resid; | |
5333 | f_offset += io_size; | |
5334 | resid -= io_size; | |
5335 | } | |
9bccf70c | 5336 | |
1c79356b A |
5337 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END, |
5338 | (int)f_offset, resid, retval, 0, 0); | |
5339 | ||
5340 | return(retval); | |
5341 | } | |
5342 | ||
5343 | ||
9bccf70c | 5344 | int |
91447636 | 5345 | cluster_push(vnode_t vp, int flags) |
2d21ac55 A |
5346 | { |
5347 | return cluster_push_ext(vp, flags, NULL, NULL); | |
5348 | } | |
5349 | ||
5350 | ||
5351 | int | |
5352 | cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
813fb2f6 A |
5353 | { |
5354 | return cluster_push_err(vp, flags, callback, callback_arg, NULL); | |
5355 | } | |
5356 | ||
5357 | /* write errors via err, but return the number of clusters written */ | |
5358 | int | |
5359 | cluster_push_err(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg, int *err) | |
9bccf70c | 5360 | { |
91447636 | 5361 | int retval; |
b0d623f7 | 5362 | int my_sparse_wait = 0; |
91447636 | 5363 | struct cl_writebehind *wbp; |
9bccf70c | 5364 | |
813fb2f6 A |
5365 | if (err) |
5366 | *err = 0; | |
5367 | ||
91447636 | 5368 | if ( !UBCINFOEXISTS(vp)) { |
39037602 | 5369 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -1, 0); |
91447636 A |
5370 | return (0); |
5371 | } | |
5372 | /* return if deferred write is set */ | |
5373 | if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { | |
5374 | return (0); | |
5375 | } | |
5376 | if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { | |
39037602 | 5377 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -2, 0); |
91447636 A |
5378 | return (0); |
5379 | } | |
fe8ab488 | 5380 | if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) { |
91447636 | 5381 | lck_mtx_unlock(&wbp->cl_lockw); |
9bccf70c | 5382 | |
39037602 | 5383 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -3, 0); |
91447636 A |
5384 | return(0); |
5385 | } | |
9bccf70c | 5386 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, |
b0d623f7 A |
5387 | wbp->cl_scmap, wbp->cl_number, flags, 0, 0); |
5388 | ||
5389 | /* | |
5390 | * if we have an fsync in progress, we don't want to allow any additional | |
5391 | * sync/fsync/close(s) to occur until it finishes. | |
5392 | * note that its possible for writes to continue to occur to this file | |
5393 | * while we're waiting and also once the fsync starts to clean if we're | |
5394 | * in the sparse map case | |
5395 | */ | |
5396 | while (wbp->cl_sparse_wait) { | |
39037602 | 5397 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5398 | |
5399 | msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5400 | ||
39037602 | 5401 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5402 | } |
5403 | if (flags & IO_SYNC) { | |
5404 | my_sparse_wait = 1; | |
5405 | wbp->cl_sparse_wait = 1; | |
9bccf70c | 5406 | |
b0d623f7 A |
5407 | /* |
5408 | * this is an fsync (or equivalent)... we must wait for any existing async | |
5409 | * cleaning operations to complete before we evaulate the current state | |
5410 | * and finish cleaning... this insures that all writes issued before this | |
5411 | * fsync actually get cleaned to the disk before this fsync returns | |
5412 | */ | |
5413 | while (wbp->cl_sparse_pushes) { | |
39037602 | 5414 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5415 | |
5416 | msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5417 | ||
39037602 | 5418 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5419 | } |
5420 | } | |
91447636 | 5421 | if (wbp->cl_scmap) { |
b0d623f7 A |
5422 | void *scmap; |
5423 | ||
5424 | if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) { | |
5425 | ||
5426 | scmap = wbp->cl_scmap; | |
5427 | wbp->cl_scmap = NULL; | |
5428 | ||
5429 | wbp->cl_sparse_pushes++; | |
5430 | ||
5431 | lck_mtx_unlock(&wbp->cl_lockw); | |
5432 | ||
813fb2f6 | 5433 | retval = sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg); |
b0d623f7 A |
5434 | |
5435 | lck_mtx_lock(&wbp->cl_lockw); | |
9bccf70c | 5436 | |
b0d623f7 A |
5437 | wbp->cl_sparse_pushes--; |
5438 | ||
5439 | if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0) | |
5440 | wakeup((caddr_t)&wbp->cl_sparse_pushes); | |
5441 | } else { | |
813fb2f6 | 5442 | retval = sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg); |
b0d623f7 | 5443 | } |
813fb2f6 A |
5444 | if (err) |
5445 | *err = retval; | |
55e303ae | 5446 | retval = 1; |
813fb2f6 A |
5447 | } else { |
5448 | retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, err); | |
b0d623f7 | 5449 | } |
91447636 A |
5450 | lck_mtx_unlock(&wbp->cl_lockw); |
5451 | ||
5452 | if (flags & IO_SYNC) | |
2d21ac55 | 5453 | (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push"); |
9bccf70c | 5454 | |
b0d623f7 A |
5455 | if (my_sparse_wait) { |
5456 | /* | |
5457 | * I'm the owner of the serialization token | |
5458 | * clear it and wakeup anyone that is waiting | |
5459 | * for me to finish | |
5460 | */ | |
5461 | lck_mtx_lock(&wbp->cl_lockw); | |
5462 | ||
5463 | wbp->cl_sparse_wait = 0; | |
5464 | wakeup((caddr_t)&wbp->cl_sparse_wait); | |
5465 | ||
5466 | lck_mtx_unlock(&wbp->cl_lockw); | |
5467 | } | |
55e303ae | 5468 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, |
b0d623f7 | 5469 | wbp->cl_scmap, wbp->cl_number, retval, 0, 0); |
9bccf70c | 5470 | |
55e303ae A |
5471 | return (retval); |
5472 | } | |
9bccf70c | 5473 | |
9bccf70c | 5474 | |
91447636 A |
5475 | __private_extern__ void |
5476 | cluster_release(struct ubc_info *ubc) | |
55e303ae | 5477 | { |
91447636 A |
5478 | struct cl_writebehind *wbp; |
5479 | struct cl_readahead *rap; | |
5480 | ||
5481 | if ((wbp = ubc->cl_wbehind)) { | |
9bccf70c | 5482 | |
b0d623f7 | 5483 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0); |
91447636 A |
5484 | |
5485 | if (wbp->cl_scmap) | |
5486 | vfs_drt_control(&(wbp->cl_scmap), 0); | |
5487 | } else { | |
b0d623f7 | 5488 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0); |
91447636 | 5489 | } |
9bccf70c | 5490 | |
91447636 | 5491 | rap = ubc->cl_rahead; |
55e303ae | 5492 | |
91447636 A |
5493 | if (wbp != NULL) { |
5494 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
5495 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
5496 | } | |
5497 | if ((rap = ubc->cl_rahead)) { | |
5498 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
5499 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
55e303ae | 5500 | } |
91447636 A |
5501 | ubc->cl_rahead = NULL; |
5502 | ubc->cl_wbehind = NULL; | |
5503 | ||
b0d623f7 | 5504 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0); |
91447636 A |
5505 | } |
5506 | ||
5507 | ||
9bccf70c | 5508 | static int |
813fb2f6 | 5509 | cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg, int *err) |
9bccf70c A |
5510 | { |
5511 | int cl_index; | |
5512 | int cl_index1; | |
5513 | int min_index; | |
5514 | int cl_len; | |
55e303ae | 5515 | int cl_pushed = 0; |
91447636 | 5516 | struct cl_wextent l_clusters[MAX_CLUSTERS]; |
b0d623f7 | 5517 | u_int max_cluster_pgcount; |
813fb2f6 | 5518 | int error = 0; |
b0d623f7 A |
5519 | |
5520 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; | |
9bccf70c | 5521 | /* |
91447636 A |
5522 | * the write behind context exists and has |
5523 | * already been locked... | |
2d21ac55 A |
5524 | */ |
5525 | if (wbp->cl_number == 0) | |
5526 | /* | |
5527 | * no clusters to push | |
5528 | * return number of empty slots | |
5529 | */ | |
5530 | return (MAX_CLUSTERS); | |
5531 | ||
5532 | /* | |
9bccf70c | 5533 | * make a local 'sorted' copy of the clusters |
91447636 | 5534 | * and clear wbp->cl_number so that new clusters can |
9bccf70c A |
5535 | * be developed |
5536 | */ | |
91447636 A |
5537 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
5538 | for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { | |
5539 | if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) | |
9bccf70c A |
5540 | continue; |
5541 | if (min_index == -1) | |
5542 | min_index = cl_index1; | |
91447636 | 5543 | else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) |
9bccf70c A |
5544 | min_index = cl_index1; |
5545 | } | |
5546 | if (min_index == -1) | |
5547 | break; | |
b0d623f7 | 5548 | |
91447636 A |
5549 | l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; |
5550 | l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; | |
2d21ac55 | 5551 | l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags; |
9bccf70c | 5552 | |
91447636 | 5553 | wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; |
9bccf70c | 5554 | } |
91447636 A |
5555 | wbp->cl_number = 0; |
5556 | ||
5557 | cl_len = cl_index; | |
9bccf70c | 5558 | |
39037602 A |
5559 | /* skip switching to the sparse cluster mechanism if on diskimage */ |
5560 | if ( ((push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) && | |
5561 | !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) ) { | |
55e303ae A |
5562 | int i; |
5563 | ||
5564 | /* | |
5565 | * determine if we appear to be writing the file sequentially | |
5566 | * if not, by returning without having pushed any clusters | |
5567 | * we will cause this vnode to be pushed into the sparse cluster mechanism | |
5568 | * used for managing more random I/O patterns | |
5569 | * | |
5570 | * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... | |
2d21ac55 | 5571 | * that's why we're in try_push with PUSH_DELAY... |
55e303ae A |
5572 | * |
5573 | * check to make sure that all the clusters except the last one are 'full'... and that each cluster | |
5574 | * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above | |
91447636 A |
5575 | * so we can just make a simple pass through, up to, but not including the last one... |
5576 | * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they | |
55e303ae A |
5577 | * are sequential |
5578 | * | |
5579 | * we let the last one be partial as long as it was adjacent to the previous one... | |
5580 | * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out | |
5581 | * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... | |
5582 | */ | |
5583 | for (i = 0; i < MAX_CLUSTERS - 1; i++) { | |
cf7d32b8 | 5584 | if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount) |
55e303ae | 5585 | goto dont_try; |
91447636 | 5586 | if (l_clusters[i].e_addr != l_clusters[i+1].b_addr) |
55e303ae A |
5587 | goto dont_try; |
5588 | } | |
5589 | } | |
5590 | for (cl_index = 0; cl_index < cl_len; cl_index++) { | |
2d21ac55 A |
5591 | int flags; |
5592 | struct cl_extent cl; | |
813fb2f6 | 5593 | int retval; |
91447636 | 5594 | |
6d2010ae A |
5595 | flags = io_flags & (IO_PASSIVE|IO_CLOSE); |
5596 | ||
9bccf70c | 5597 | /* |
91447636 | 5598 | * try to push each cluster in turn... |
9bccf70c | 5599 | */ |
2d21ac55 | 5600 | if (l_clusters[cl_index].io_flags & CLW_IONOCACHE) |
6d2010ae | 5601 | flags |= IO_NOCACHE; |
2d21ac55 | 5602 | |
6d2010ae | 5603 | if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE) |
2d21ac55 A |
5604 | flags |= IO_PASSIVE; |
5605 | ||
5606 | if (push_flag & PUSH_SYNC) | |
5607 | flags |= IO_SYNC; | |
5608 | ||
91447636 A |
5609 | cl.b_addr = l_clusters[cl_index].b_addr; |
5610 | cl.e_addr = l_clusters[cl_index].e_addr; | |
9bccf70c | 5611 | |
813fb2f6 A |
5612 | retval = cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg); |
5613 | ||
5614 | if (error == 0 && retval) | |
5615 | error = retval; | |
9bccf70c | 5616 | |
91447636 A |
5617 | l_clusters[cl_index].b_addr = 0; |
5618 | l_clusters[cl_index].e_addr = 0; | |
5619 | ||
5620 | cl_pushed++; | |
5621 | ||
2d21ac55 | 5622 | if ( !(push_flag & PUSH_ALL) ) |
91447636 | 5623 | break; |
9bccf70c | 5624 | } |
813fb2f6 A |
5625 | if (err) |
5626 | *err = error; | |
5627 | ||
55e303ae | 5628 | dont_try: |
9bccf70c A |
5629 | if (cl_len > cl_pushed) { |
5630 | /* | |
5631 | * we didn't push all of the clusters, so | |
5632 | * lets try to merge them back in to the vnode | |
5633 | */ | |
91447636 | 5634 | if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { |
9bccf70c A |
5635 | /* |
5636 | * we picked up some new clusters while we were trying to | |
91447636 A |
5637 | * push the old ones... this can happen because I've dropped |
5638 | * the vnode lock... the sum of the | |
9bccf70c | 5639 | * leftovers plus the new cluster count exceeds our ability |
55e303ae | 5640 | * to represent them, so switch to the sparse cluster mechanism |
91447636 A |
5641 | * |
5642 | * collect the active public clusters... | |
9bccf70c | 5643 | */ |
2d21ac55 | 5644 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); |
55e303ae A |
5645 | |
5646 | for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { | |
91447636 | 5647 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) |
9bccf70c | 5648 | continue; |
91447636 A |
5649 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; |
5650 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
2d21ac55 | 5651 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
9bccf70c | 5652 | |
55e303ae | 5653 | cl_index1++; |
9bccf70c | 5654 | } |
55e303ae A |
5655 | /* |
5656 | * update the cluster count | |
5657 | */ | |
91447636 | 5658 | wbp->cl_number = cl_index1; |
55e303ae A |
5659 | |
5660 | /* | |
5661 | * and collect the original clusters that were moved into the | |
5662 | * local storage for sorting purposes | |
5663 | */ | |
2d21ac55 | 5664 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); |
55e303ae | 5665 | |
9bccf70c A |
5666 | } else { |
5667 | /* | |
5668 | * we've got room to merge the leftovers back in | |
5669 | * just append them starting at the next 'hole' | |
91447636 | 5670 | * represented by wbp->cl_number |
9bccf70c | 5671 | */ |
91447636 A |
5672 | for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { |
5673 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) | |
9bccf70c A |
5674 | continue; |
5675 | ||
91447636 A |
5676 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; |
5677 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
2d21ac55 | 5678 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
9bccf70c | 5679 | |
9bccf70c A |
5680 | cl_index1++; |
5681 | } | |
5682 | /* | |
5683 | * update the cluster count | |
5684 | */ | |
91447636 | 5685 | wbp->cl_number = cl_index1; |
9bccf70c A |
5686 | } |
5687 | } | |
2d21ac55 | 5688 | return (MAX_CLUSTERS - wbp->cl_number); |
9bccf70c A |
5689 | } |
5690 | ||
5691 | ||
5692 | ||
5693 | static int | |
2d21ac55 | 5694 | cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b | 5695 | { |
1c79356b A |
5696 | upl_page_info_t *pl; |
5697 | upl_t upl; | |
5698 | vm_offset_t upl_offset; | |
5699 | int upl_size; | |
5700 | off_t upl_f_offset; | |
5701 | int pages_in_upl; | |
5702 | int start_pg; | |
5703 | int last_pg; | |
5704 | int io_size; | |
5705 | int io_flags; | |
55e303ae | 5706 | int upl_flags; |
2d21ac55 | 5707 | int bflag; |
1c79356b | 5708 | int size; |
91447636 A |
5709 | int error = 0; |
5710 | int retval; | |
1c79356b A |
5711 | kern_return_t kret; |
5712 | ||
2d21ac55 | 5713 | if (flags & IO_PASSIVE) |
6d2010ae | 5714 | bflag = CL_PASSIVE; |
2d21ac55 | 5715 | else |
6d2010ae | 5716 | bflag = 0; |
1c79356b | 5717 | |
fe8ab488 A |
5718 | if (flags & IO_SKIP_ENCRYPTION) |
5719 | bflag |= CL_ENCRYPTED; | |
5720 | ||
9bccf70c | 5721 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, |
91447636 | 5722 | (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); |
9bccf70c | 5723 | |
91447636 | 5724 | if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { |
9bccf70c | 5725 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); |
1c79356b | 5726 | |
91447636 | 5727 | return (0); |
9bccf70c | 5728 | } |
1c79356b | 5729 | upl_size = pages_in_upl * PAGE_SIZE; |
91447636 | 5730 | upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
1c79356b | 5731 | |
9bccf70c A |
5732 | if (upl_f_offset + upl_size >= EOF) { |
5733 | ||
5734 | if (upl_f_offset >= EOF) { | |
5735 | /* | |
5736 | * must have truncated the file and missed | |
5737 | * clearing a dangling cluster (i.e. it's completely | |
5738 | * beyond the new EOF | |
5739 | */ | |
5740 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); | |
5741 | ||
91447636 | 5742 | return(0); |
9bccf70c A |
5743 | } |
5744 | size = EOF - upl_f_offset; | |
1c79356b | 5745 | |
55e303ae | 5746 | upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
9bccf70c | 5747 | pages_in_upl = upl_size / PAGE_SIZE; |
55e303ae | 5748 | } else |
9bccf70c | 5749 | size = upl_size; |
55e303ae A |
5750 | |
5751 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); | |
5752 | ||
91447636 A |
5753 | /* |
5754 | * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior | |
5755 | * | |
5756 | * - only pages that are currently dirty are returned... these are the ones we need to clean | |
5757 | * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set | |
5758 | * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page | |
5759 | * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if | |
5760 | * someone dirties this page while the I/O is in progress, we don't lose track of the new state | |
5761 | * | |
5762 | * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) | |
5763 | */ | |
5764 | ||
5765 | if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) | |
55e303ae A |
5766 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; |
5767 | else | |
5768 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; | |
5769 | ||
5ba3f43e | 5770 | kret = ubc_create_upl_kernel(vp, |
0b4e3aa0 A |
5771 | upl_f_offset, |
5772 | upl_size, | |
5773 | &upl, | |
9bccf70c | 5774 | &pl, |
5ba3f43e A |
5775 | upl_flags, |
5776 | VM_KERN_MEMORY_FILE); | |
1c79356b A |
5777 | if (kret != KERN_SUCCESS) |
5778 | panic("cluster_push: failed to get pagelist"); | |
5779 | ||
b0d623f7 | 5780 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0); |
9bccf70c | 5781 | |
55e303ae A |
5782 | /* |
5783 | * since we only asked for the dirty pages back | |
5784 | * it's possible that we may only get a few or even none, so... | |
5785 | * before we start marching forward, we must make sure we know | |
5786 | * where the last present page is in the UPL, otherwise we could | |
5787 | * end up working with a freed upl due to the FREE_ON_EMPTY semantics | |
5788 | * employed by commit_range and abort_range. | |
5789 | */ | |
5790 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { | |
5791 | if (upl_page_present(pl, last_pg)) | |
5792 | break; | |
9bccf70c | 5793 | } |
55e303ae | 5794 | pages_in_upl = last_pg + 1; |
1c79356b | 5795 | |
55e303ae A |
5796 | if (pages_in_upl == 0) { |
5797 | ubc_upl_abort(upl, 0); | |
1c79356b | 5798 | |
55e303ae | 5799 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); |
91447636 | 5800 | return(0); |
55e303ae A |
5801 | } |
5802 | ||
5803 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
5804 | /* | |
5805 | * find the next dirty page in the UPL | |
5806 | * this will become the first page in the | |
5807 | * next I/O to generate | |
5808 | */ | |
1c79356b | 5809 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
55e303ae | 5810 | if (upl_dirty_page(pl, start_pg)) |
1c79356b | 5811 | break; |
55e303ae A |
5812 | if (upl_page_present(pl, start_pg)) |
5813 | /* | |
5814 | * RET_ONLY_DIRTY will return non-dirty 'precious' pages | |
5815 | * just release these unchanged since we're not going | |
5816 | * to steal them or change their state | |
5817 | */ | |
5818 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b | 5819 | } |
55e303ae A |
5820 | if (start_pg >= pages_in_upl) |
5821 | /* | |
5822 | * done... no more dirty pages to push | |
5823 | */ | |
5824 | break; | |
5825 | if (start_pg > last_pg) | |
5826 | /* | |
5827 | * skipped over some non-dirty pages | |
5828 | */ | |
5829 | size -= ((start_pg - last_pg) * PAGE_SIZE); | |
1c79356b | 5830 | |
55e303ae A |
5831 | /* |
5832 | * find a range of dirty pages to write | |
5833 | */ | |
1c79356b | 5834 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
55e303ae | 5835 | if (!upl_dirty_page(pl, last_pg)) |
1c79356b A |
5836 | break; |
5837 | } | |
5838 | upl_offset = start_pg * PAGE_SIZE; | |
5839 | ||
5840 | io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); | |
5841 | ||
2d21ac55 | 5842 | io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag; |
91447636 A |
5843 | |
5844 | if ( !(flags & IO_SYNC)) | |
5845 | io_flags |= CL_ASYNC; | |
5846 | ||
6d2010ae A |
5847 | if (flags & IO_CLOSE) |
5848 | io_flags |= CL_CLOSE; | |
5849 | ||
316670eb A |
5850 | if (flags & IO_NOCACHE) |
5851 | io_flags |= CL_NOCACHE; | |
5852 | ||
91447636 | 5853 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, |
2d21ac55 | 5854 | io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 5855 | |
91447636 A |
5856 | if (error == 0 && retval) |
5857 | error = retval; | |
1c79356b A |
5858 | |
5859 | size -= io_size; | |
5860 | } | |
9bccf70c A |
5861 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0); |
5862 | ||
91447636 | 5863 | return(error); |
1c79356b | 5864 | } |
b4c24cb9 A |
5865 | |
5866 | ||
91447636 A |
5867 | /* |
5868 | * sparse_cluster_switch is called with the write behind lock held | |
5869 | */ | |
5870 | static void | |
2d21ac55 | 5871 | sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) |
b4c24cb9 | 5872 | { |
91447636 | 5873 | int cl_index; |
b4c24cb9 | 5874 | |
39037602 | 5875 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0); |
91447636 A |
5876 | |
5877 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
5878 | int flags; | |
5879 | struct cl_extent cl; | |
5880 | ||
5881 | for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { | |
b4c24cb9 | 5882 | |
2d21ac55 | 5883 | if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) { |
91447636 A |
5884 | if (flags & UPL_POP_DIRTY) { |
5885 | cl.e_addr = cl.b_addr + 1; | |
b4c24cb9 | 5886 | |
b0d623f7 | 5887 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg); |
91447636 | 5888 | } |
55e303ae A |
5889 | } |
5890 | } | |
5891 | } | |
91447636 A |
5892 | wbp->cl_number = 0; |
5893 | ||
39037602 | 5894 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0); |
55e303ae A |
5895 | } |
5896 | ||
5897 | ||
91447636 | 5898 | /* |
b0d623f7 A |
5899 | * sparse_cluster_push must be called with the write-behind lock held if the scmap is |
5900 | * still associated with the write-behind context... however, if the scmap has been disassociated | |
5901 | * from the write-behind context (the cluster_push case), the wb lock is not held | |
91447636 | 5902 | */ |
813fb2f6 | 5903 | static int |
6d2010ae | 5904 | sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5905 | { |
91447636 A |
5906 | struct cl_extent cl; |
5907 | off_t offset; | |
5908 | u_int length; | |
813fb2f6 | 5909 | int error = 0; |
55e303ae | 5910 | |
39037602 | 5911 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, kdebug_vnode(vp), (*scmap), 0, push_flag, 0); |
55e303ae | 5912 | |
2d21ac55 | 5913 | if (push_flag & PUSH_ALL) |
b0d623f7 | 5914 | vfs_drt_control(scmap, 1); |
55e303ae A |
5915 | |
5916 | for (;;) { | |
813fb2f6 | 5917 | int retval; |
b0d623f7 | 5918 | if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS) |
55e303ae | 5919 | break; |
55e303ae | 5920 | |
91447636 A |
5921 | cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); |
5922 | cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); | |
5923 | ||
813fb2f6 A |
5924 | retval = cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg); |
5925 | if (error == 0 && retval) | |
5926 | error = retval; | |
2d21ac55 | 5927 | |
2d21ac55 | 5928 | if ( !(push_flag & PUSH_ALL) ) |
55e303ae A |
5929 | break; |
5930 | } | |
39037602 | 5931 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0); |
813fb2f6 A |
5932 | |
5933 | return error; | |
55e303ae A |
5934 | } |
5935 | ||
5936 | ||
91447636 A |
5937 | /* |
5938 | * sparse_cluster_add is called with the write behind lock held | |
5939 | */ | |
5940 | static void | |
b0d623f7 | 5941 | sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5942 | { |
91447636 A |
5943 | u_int new_dirty; |
5944 | u_int length; | |
5945 | off_t offset; | |
55e303ae | 5946 | |
b0d623f7 | 5947 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0); |
55e303ae | 5948 | |
91447636 A |
5949 | offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
5950 | length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; | |
55e303ae | 5951 | |
b0d623f7 | 5952 | while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) { |
55e303ae A |
5953 | /* |
5954 | * no room left in the map | |
5955 | * only a partial update was done | |
5956 | * push out some pages and try again | |
5957 | */ | |
6d2010ae | 5958 | sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg); |
55e303ae A |
5959 | |
5960 | offset += (new_dirty * PAGE_SIZE_64); | |
5961 | length -= (new_dirty * PAGE_SIZE); | |
5962 | } | |
39037602 | 5963 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0); |
55e303ae A |
5964 | } |
5965 | ||
5966 | ||
5967 | static int | |
2d21ac55 | 5968 | cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5969 | { |
55e303ae A |
5970 | upl_page_info_t *pl; |
5971 | upl_t upl; | |
5972 | addr64_t ubc_paddr; | |
5973 | kern_return_t kret; | |
5974 | int error = 0; | |
91447636 A |
5975 | int did_read = 0; |
5976 | int abort_flags; | |
5977 | int upl_flags; | |
2d21ac55 A |
5978 | int bflag; |
5979 | ||
5980 | if (flags & IO_PASSIVE) | |
6d2010ae | 5981 | bflag = CL_PASSIVE; |
2d21ac55 | 5982 | else |
6d2010ae | 5983 | bflag = 0; |
55e303ae | 5984 | |
316670eb A |
5985 | if (flags & IO_NOCACHE) |
5986 | bflag |= CL_NOCACHE; | |
5987 | ||
91447636 | 5988 | upl_flags = UPL_SET_LITE; |
2d21ac55 A |
5989 | |
5990 | if ( !(flags & CL_READ) ) { | |
91447636 A |
5991 | /* |
5992 | * "write" operation: let the UPL subsystem know | |
5993 | * that we intend to modify the buffer cache pages | |
5994 | * we're gathering. | |
5995 | */ | |
5996 | upl_flags |= UPL_WILL_MODIFY; | |
2d21ac55 A |
5997 | } else { |
5998 | /* | |
5999 | * indicate that there is no need to pull the | |
6000 | * mapping for this page... we're only going | |
6001 | * to read from it, not modify it. | |
6002 | */ | |
6003 | upl_flags |= UPL_FILE_IO; | |
91447636 | 6004 | } |
5ba3f43e | 6005 | kret = ubc_create_upl_kernel(vp, |
55e303ae A |
6006 | uio->uio_offset & ~PAGE_MASK_64, |
6007 | PAGE_SIZE, | |
6008 | &upl, | |
6009 | &pl, | |
5ba3f43e A |
6010 | upl_flags, |
6011 | VM_KERN_MEMORY_FILE); | |
55e303ae A |
6012 | |
6013 | if (kret != KERN_SUCCESS) | |
6014 | return(EINVAL); | |
6015 | ||
6016 | if (!upl_valid_page(pl, 0)) { | |
6017 | /* | |
6018 | * issue a synchronous read to cluster_io | |
6019 | */ | |
91447636 | 6020 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, |
2d21ac55 | 6021 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
55e303ae | 6022 | if (error) { |
b4c24cb9 A |
6023 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
6024 | ||
6025 | return(error); | |
6026 | } | |
91447636 | 6027 | did_read = 1; |
b4c24cb9 | 6028 | } |
fe8ab488 | 6029 | ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); |
b4c24cb9 | 6030 | |
55e303ae A |
6031 | /* |
6032 | * NOTE: There is no prototype for the following in BSD. It, and the definitions | |
6033 | * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in | |
6034 | * osfmk/ppc/mappings.h. They are not included here because there appears to be no | |
6035 | * way to do so without exporting them to kexts as well. | |
6036 | */ | |
de355530 | 6037 | if (flags & CL_READ) |
55e303ae A |
6038 | // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ |
6039 | copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */ | |
de355530 | 6040 | else |
4a249263 A |
6041 | // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ |
6042 | copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */ | |
55e303ae A |
6043 | |
6044 | if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) { | |
6045 | /* | |
6046 | * issue a synchronous write to cluster_io | |
6047 | */ | |
91447636 | 6048 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, |
2d21ac55 | 6049 | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
de355530 | 6050 | } |
2d21ac55 | 6051 | if (error == 0) |
cc9f6e38 A |
6052 | uio_update(uio, (user_size_t)xsize); |
6053 | ||
91447636 A |
6054 | if (did_read) |
6055 | abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
6056 | else | |
6057 | abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
6058 | ||
6059 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); | |
55e303ae A |
6060 | |
6061 | return (error); | |
6062 | } | |
6063 | ||
55e303ae | 6064 | int |
2d21ac55 | 6065 | cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid) |
55e303ae A |
6066 | { |
6067 | int pg_offset; | |
6068 | int pg_index; | |
6069 | int csize; | |
6070 | int segflg; | |
6071 | int retval = 0; | |
2d21ac55 | 6072 | int xsize; |
55e303ae | 6073 | upl_page_info_t *pl; |
4bd07ac2 | 6074 | int dirty_count; |
55e303ae | 6075 | |
2d21ac55 A |
6076 | xsize = *io_resid; |
6077 | ||
55e303ae | 6078 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, |
2d21ac55 | 6079 | (int)uio->uio_offset, upl_offset, xsize, 0, 0); |
55e303ae A |
6080 | |
6081 | segflg = uio->uio_segflg; | |
6082 | ||
6083 | switch(segflg) { | |
6084 | ||
91447636 A |
6085 | case UIO_USERSPACE32: |
6086 | case UIO_USERISPACE32: | |
6087 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
6088 | break; | |
6089 | ||
55e303ae A |
6090 | case UIO_USERSPACE: |
6091 | case UIO_USERISPACE: | |
6092 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
6093 | break; | |
6094 | ||
91447636 A |
6095 | case UIO_USERSPACE64: |
6096 | case UIO_USERISPACE64: | |
6097 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
6098 | break; | |
6099 | ||
55e303ae A |
6100 | case UIO_SYSSPACE: |
6101 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
6102 | break; | |
91447636 | 6103 | |
55e303ae A |
6104 | } |
6105 | pl = ubc_upl_pageinfo(upl); | |
6106 | ||
6107 | pg_index = upl_offset / PAGE_SIZE; | |
6108 | pg_offset = upl_offset & PAGE_MASK; | |
6109 | csize = min(PAGE_SIZE - pg_offset, xsize); | |
6110 | ||
4bd07ac2 | 6111 | dirty_count = 0; |
55e303ae A |
6112 | while (xsize && retval == 0) { |
6113 | addr64_t paddr; | |
6114 | ||
fe8ab488 | 6115 | paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset; |
4bd07ac2 A |
6116 | if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(pl, pg_index) == FALSE)) |
6117 | dirty_count++; | |
de355530 | 6118 | |
55e303ae A |
6119 | retval = uiomove64(paddr, csize, uio); |
6120 | ||
6121 | pg_index += 1; | |
6122 | pg_offset = 0; | |
6123 | xsize -= csize; | |
6124 | csize = min(PAGE_SIZE, xsize); | |
6125 | } | |
2d21ac55 A |
6126 | *io_resid = xsize; |
6127 | ||
55e303ae A |
6128 | uio->uio_segflg = segflg; |
6129 | ||
39037602 | 6130 | task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED, upl_lookup_vnode(upl)); |
55e303ae | 6131 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
2d21ac55 | 6132 | (int)uio->uio_offset, xsize, retval, segflg, 0); |
39037602 | 6133 | |
55e303ae A |
6134 | return (retval); |
6135 | } | |
6136 | ||
6137 | ||
6138 | int | |
91447636 | 6139 | cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) |
2d21ac55 A |
6140 | { |
6141 | ||
6142 | return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1)); | |
6143 | } | |
6144 | ||
6145 | ||
6146 | static int | |
6147 | cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference) | |
55e303ae A |
6148 | { |
6149 | int segflg; | |
6150 | int io_size; | |
6151 | int xsize; | |
6152 | int start_offset; | |
55e303ae A |
6153 | int retval = 0; |
6154 | memory_object_control_t control; | |
55e303ae | 6155 | |
2d21ac55 | 6156 | io_size = *io_resid; |
55e303ae A |
6157 | |
6158 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, | |
6d2010ae | 6159 | (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0); |
55e303ae A |
6160 | |
6161 | control = ubc_getobject(vp, UBC_FLAGS_NONE); | |
2d21ac55 | 6162 | |
55e303ae A |
6163 | if (control == MEMORY_OBJECT_CONTROL_NULL) { |
6164 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
2d21ac55 | 6165 | (int)uio->uio_offset, io_size, retval, 3, 0); |
55e303ae A |
6166 | |
6167 | return(0); | |
6168 | } | |
55e303ae A |
6169 | segflg = uio->uio_segflg; |
6170 | ||
6171 | switch(segflg) { | |
6172 | ||
91447636 A |
6173 | case UIO_USERSPACE32: |
6174 | case UIO_USERISPACE32: | |
6175 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
6176 | break; | |
6177 | ||
6178 | case UIO_USERSPACE64: | |
6179 | case UIO_USERISPACE64: | |
6180 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
6181 | break; | |
6182 | ||
55e303ae A |
6183 | case UIO_USERSPACE: |
6184 | case UIO_USERISPACE: | |
6185 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
6186 | break; | |
6187 | ||
6188 | case UIO_SYSSPACE: | |
6189 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
6190 | break; | |
6191 | } | |
55e303ae | 6192 | |
91447636 A |
6193 | if ( (io_size = *io_resid) ) { |
6194 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
6195 | xsize = uio_resid(uio); | |
55e303ae | 6196 | |
2d21ac55 A |
6197 | retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio, |
6198 | start_offset, io_size, mark_dirty, take_reference); | |
91447636 A |
6199 | xsize -= uio_resid(uio); |
6200 | io_size -= xsize; | |
55e303ae A |
6201 | } |
6202 | uio->uio_segflg = segflg; | |
6203 | *io_resid = io_size; | |
6204 | ||
55e303ae | 6205 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
2d21ac55 | 6206 | (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0); |
55e303ae A |
6207 | |
6208 | return(retval); | |
6209 | } | |
6210 | ||
6211 | ||
6212 | int | |
91447636 | 6213 | is_file_clean(vnode_t vp, off_t filesize) |
55e303ae A |
6214 | { |
6215 | off_t f_offset; | |
6216 | int flags; | |
6217 | int total_dirty = 0; | |
6218 | ||
6219 | for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { | |
2d21ac55 | 6220 | if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) { |
55e303ae A |
6221 | if (flags & UPL_POP_DIRTY) { |
6222 | total_dirty++; | |
6223 | } | |
6224 | } | |
6225 | } | |
6226 | if (total_dirty) | |
6227 | return(EINVAL); | |
6228 | ||
6229 | return (0); | |
6230 | } | |
6231 | ||
6232 | ||
6233 | ||
6234 | /* | |
6235 | * Dirty region tracking/clustering mechanism. | |
6236 | * | |
6237 | * This code (vfs_drt_*) provides a mechanism for tracking and clustering | |
6238 | * dirty regions within a larger space (file). It is primarily intended to | |
6239 | * support clustering in large files with many dirty areas. | |
6240 | * | |
6241 | * The implementation assumes that the dirty regions are pages. | |
6242 | * | |
6243 | * To represent dirty pages within the file, we store bit vectors in a | |
6244 | * variable-size circular hash. | |
6245 | */ | |
6246 | ||
6247 | /* | |
6248 | * Bitvector size. This determines the number of pages we group in a | |
6249 | * single hashtable entry. Each hashtable entry is aligned to this | |
6250 | * size within the file. | |
6251 | */ | |
3e170ce0 | 6252 | #define DRT_BITVECTOR_PAGES ((1024 * 1024) / PAGE_SIZE) |
55e303ae A |
6253 | |
6254 | /* | |
6255 | * File offset handling. | |
6256 | * | |
3e170ce0 A |
6257 | * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES; |
6258 | * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) | |
55e303ae | 6259 | */ |
3e170ce0 | 6260 | #define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) |
55e303ae A |
6261 | #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK) |
6262 | ||
6263 | /* | |
6264 | * Hashtable address field handling. | |
6265 | * | |
6266 | * The low-order bits of the hashtable address are used to conserve | |
6267 | * space. | |
6268 | * | |
6269 | * DRT_HASH_COUNT_MASK must be large enough to store the range | |
6270 | * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value | |
6271 | * to indicate that the bucket is actually unoccupied. | |
6272 | */ | |
6273 | #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK) | |
6274 | #define DRT_HASH_SET_ADDRESS(scm, i, a) \ | |
6275 | do { \ | |
6276 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
6277 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \ | |
6278 | } while (0) | |
6279 | #define DRT_HASH_COUNT_MASK 0x1ff | |
6280 | #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK) | |
6281 | #define DRT_HASH_SET_COUNT(scm, i, c) \ | |
6282 | do { \ | |
6283 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
6284 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \ | |
6285 | } while (0) | |
6286 | #define DRT_HASH_CLEAR(scm, i) \ | |
6287 | do { \ | |
6288 | (scm)->scm_hashtable[(i)].dhe_control = 0; \ | |
6289 | } while (0) | |
6290 | #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK) | |
6291 | #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK) | |
6292 | #define DRT_HASH_COPY(oscm, oi, scm, i) \ | |
6293 | do { \ | |
6294 | (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \ | |
6295 | DRT_BITVECTOR_COPY(oscm, oi, scm, i); \ | |
6296 | } while(0); | |
6297 | ||
6298 | ||
6299 | /* | |
6300 | * Hash table moduli. | |
6301 | * | |
6302 | * Since the hashtable entry's size is dependent on the size of | |
6303 | * the bitvector, and since the hashtable size is constrained to | |
6304 | * both being prime and fitting within the desired allocation | |
6305 | * size, these values need to be manually determined. | |
6306 | * | |
6307 | * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes. | |
6308 | * | |
6309 | * The small hashtable allocation is 1024 bytes, so the modulus is 23. | |
6310 | * The large hashtable allocation is 16384 bytes, so the modulus is 401. | |
6311 | */ | |
6312 | #define DRT_HASH_SMALL_MODULUS 23 | |
6313 | #define DRT_HASH_LARGE_MODULUS 401 | |
6314 | ||
b7266188 A |
6315 | /* |
6316 | * Physical memory required before the large hash modulus is permitted. | |
6317 | * | |
6318 | * On small memory systems, the large hash modulus can lead to phsyical | |
6319 | * memory starvation, so we avoid using it there. | |
6320 | */ | |
6321 | #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */ | |
6322 | ||
55e303ae A |
6323 | #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */ |
6324 | #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */ | |
6325 | ||
6326 | /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */ | |
6327 | ||
6328 | /* | |
6329 | * Hashtable bitvector handling. | |
6330 | * | |
6331 | * Bitvector fields are 32 bits long. | |
6332 | */ | |
6333 | ||
6334 | #define DRT_HASH_SET_BIT(scm, i, bit) \ | |
6335 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32)) | |
6336 | ||
6337 | #define DRT_HASH_CLEAR_BIT(scm, i, bit) \ | |
6338 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32)) | |
6339 | ||
6340 | #define DRT_HASH_TEST_BIT(scm, i, bit) \ | |
6341 | ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32))) | |
6342 | ||
6343 | #define DRT_BITVECTOR_CLEAR(scm, i) \ | |
6344 | bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
6345 | ||
6346 | #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \ | |
6347 | bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \ | |
6348 | &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \ | |
6349 | (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
6350 | ||
6351 | ||
6352 | ||
6353 | /* | |
6354 | * Hashtable entry. | |
6355 | */ | |
6356 | struct vfs_drt_hashentry { | |
6357 | u_int64_t dhe_control; | |
3e170ce0 A |
6358 | /* |
6359 | * dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32]; | |
6360 | * DRT_BITVECTOR_PAGES is defined as ((1024 * 1024) / PAGE_SIZE) | |
6361 | * Since PAGE_SIZE is only known at boot time, | |
6362 | * -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k) | |
6363 | * -declare dhe_bitvector array for largest possible length | |
6364 | */ | |
6365 | #define MAX_DRT_BITVECTOR_PAGES (1024 * 1024)/( 4 * 1024) | |
6366 | u_int32_t dhe_bitvector[MAX_DRT_BITVECTOR_PAGES/32]; | |
55e303ae A |
6367 | }; |
6368 | ||
6369 | /* | |
6370 | * Dirty Region Tracking structure. | |
6371 | * | |
6372 | * The hashtable is allocated entirely inside the DRT structure. | |
6373 | * | |
6374 | * The hash is a simple circular prime modulus arrangement, the structure | |
6375 | * is resized from small to large if it overflows. | |
6376 | */ | |
6377 | ||
6378 | struct vfs_drt_clustermap { | |
6379 | u_int32_t scm_magic; /* sanity/detection */ | |
6380 | #define DRT_SCM_MAGIC 0x12020003 | |
6381 | u_int32_t scm_modulus; /* current ring size */ | |
6382 | u_int32_t scm_buckets; /* number of occupied buckets */ | |
6383 | u_int32_t scm_lastclean; /* last entry we cleaned */ | |
6384 | u_int32_t scm_iskips; /* number of slot skips */ | |
6385 | ||
6386 | struct vfs_drt_hashentry scm_hashtable[0]; | |
6387 | }; | |
6388 | ||
6389 | ||
6390 | #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus) | |
6391 | #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus) | |
6392 | ||
6393 | /* | |
6394 | * Debugging codes and arguments. | |
6395 | */ | |
6396 | #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */ | |
6397 | #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */ | |
6398 | #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */ | |
6399 | #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */ | |
6400 | #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length, | |
6401 | * dirty */ | |
6402 | /* 0, setcount */ | |
6403 | /* 1 (clean, no map) */ | |
6404 | /* 2 (map alloc fail) */ | |
6405 | /* 3, resid (partial) */ | |
6406 | #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87)) | |
6407 | #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets, | |
6408 | * lastclean, iskips */ | |
6409 | ||
6410 | ||
55e303ae A |
6411 | static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); |
6412 | static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); | |
6413 | static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, | |
6414 | u_int64_t offset, int *indexp); | |
6415 | static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, | |
6416 | u_int64_t offset, | |
6417 | int *indexp, | |
6418 | int recursed); | |
6419 | static kern_return_t vfs_drt_do_mark_pages( | |
6420 | void **cmapp, | |
6421 | u_int64_t offset, | |
6422 | u_int length, | |
2d21ac55 | 6423 | u_int *setcountp, |
55e303ae A |
6424 | int dirty); |
6425 | static void vfs_drt_trace( | |
6426 | struct vfs_drt_clustermap *cmap, | |
6427 | int code, | |
6428 | int arg1, | |
6429 | int arg2, | |
6430 | int arg3, | |
6431 | int arg4); | |
6432 | ||
6433 | ||
6434 | /* | |
6435 | * Allocate and initialise a sparse cluster map. | |
6436 | * | |
6437 | * Will allocate a new map, resize or compact an existing map. | |
6438 | * | |
6439 | * XXX we should probably have at least one intermediate map size, | |
6440 | * as the 1:16 ratio seems a bit drastic. | |
6441 | */ | |
6442 | static kern_return_t | |
6443 | vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) | |
6444 | { | |
6445 | struct vfs_drt_clustermap *cmap, *ocmap; | |
6446 | kern_return_t kret; | |
6447 | u_int64_t offset; | |
2d21ac55 A |
6448 | u_int32_t i; |
6449 | int nsize, active_buckets, index, copycount; | |
55e303ae A |
6450 | |
6451 | ocmap = NULL; | |
6452 | if (cmapp != NULL) | |
6453 | ocmap = *cmapp; | |
6454 | ||
6455 | /* | |
6456 | * Decide on the size of the new map. | |
6457 | */ | |
6458 | if (ocmap == NULL) { | |
6459 | nsize = DRT_HASH_SMALL_MODULUS; | |
6460 | } else { | |
6461 | /* count the number of active buckets in the old map */ | |
6462 | active_buckets = 0; | |
6463 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6464 | if (!DRT_HASH_VACANT(ocmap, i) && | |
6465 | (DRT_HASH_GET_COUNT(ocmap, i) != 0)) | |
6466 | active_buckets++; | |
6467 | } | |
6468 | /* | |
6469 | * If we're currently using the small allocation, check to | |
6470 | * see whether we should grow to the large one. | |
6471 | */ | |
6472 | if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { | |
b7266188 A |
6473 | /* |
6474 | * If the ring is nearly full and we are allowed to | |
6475 | * use the large modulus, upgrade. | |
6476 | */ | |
6477 | if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) && | |
6478 | (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) { | |
55e303ae A |
6479 | nsize = DRT_HASH_LARGE_MODULUS; |
6480 | } else { | |
6481 | nsize = DRT_HASH_SMALL_MODULUS; | |
6482 | } | |
6483 | } else { | |
6484 | /* already using the large modulus */ | |
6485 | nsize = DRT_HASH_LARGE_MODULUS; | |
6486 | /* | |
6487 | * If the ring is completely full, there's | |
6488 | * nothing useful for us to do. Behave as | |
6489 | * though we had compacted into the new | |
6490 | * array and return. | |
6491 | */ | |
6492 | if (active_buckets >= DRT_HASH_LARGE_MODULUS) | |
6493 | return(KERN_SUCCESS); | |
6494 | } | |
6495 | } | |
6496 | ||
6497 | /* | |
6498 | * Allocate and initialise the new map. | |
6499 | */ | |
6500 | ||
6501 | kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap, | |
3e170ce0 | 6502 | (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION, VM_KERN_MEMORY_FILE); |
55e303ae A |
6503 | if (kret != KERN_SUCCESS) |
6504 | return(kret); | |
6505 | cmap->scm_magic = DRT_SCM_MAGIC; | |
6506 | cmap->scm_modulus = nsize; | |
6507 | cmap->scm_buckets = 0; | |
6508 | cmap->scm_lastclean = 0; | |
6509 | cmap->scm_iskips = 0; | |
6510 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6511 | DRT_HASH_CLEAR(cmap, i); | |
6512 | DRT_HASH_VACATE(cmap, i); | |
6513 | DRT_BITVECTOR_CLEAR(cmap, i); | |
6514 | } | |
6515 | ||
6516 | /* | |
6517 | * If there's an old map, re-hash entries from it into the new map. | |
6518 | */ | |
6519 | copycount = 0; | |
6520 | if (ocmap != NULL) { | |
6521 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6522 | /* skip empty buckets */ | |
6523 | if (DRT_HASH_VACANT(ocmap, i) || | |
6524 | (DRT_HASH_GET_COUNT(ocmap, i) == 0)) | |
6525 | continue; | |
6526 | /* get new index */ | |
6527 | offset = DRT_HASH_GET_ADDRESS(ocmap, i); | |
6528 | kret = vfs_drt_get_index(&cmap, offset, &index, 1); | |
6529 | if (kret != KERN_SUCCESS) { | |
6530 | /* XXX need to bail out gracefully here */ | |
6531 | panic("vfs_drt: new cluster map mysteriously too small"); | |
2d21ac55 | 6532 | index = 0; |
55e303ae A |
6533 | } |
6534 | /* copy */ | |
6535 | DRT_HASH_COPY(ocmap, i, cmap, index); | |
6536 | copycount++; | |
6537 | } | |
6538 | } | |
6539 | ||
6540 | /* log what we've done */ | |
6541 | vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0); | |
6542 | ||
6543 | /* | |
6544 | * It's important to ensure that *cmapp always points to | |
6545 | * a valid map, so we must overwrite it before freeing | |
6546 | * the old map. | |
6547 | */ | |
6548 | *cmapp = cmap; | |
6549 | if (ocmap != NULL) { | |
6550 | /* emit stats into trace buffer */ | |
6551 | vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA, | |
6552 | ocmap->scm_modulus, | |
6553 | ocmap->scm_buckets, | |
6554 | ocmap->scm_lastclean, | |
6555 | ocmap->scm_iskips); | |
6556 | ||
6557 | vfs_drt_free_map(ocmap); | |
6558 | } | |
6559 | return(KERN_SUCCESS); | |
6560 | } | |
6561 | ||
6562 | ||
6563 | /* | |
6564 | * Free a sparse cluster map. | |
6565 | */ | |
6566 | static kern_return_t | |
6567 | vfs_drt_free_map(struct vfs_drt_clustermap *cmap) | |
6568 | { | |
55e303ae A |
6569 | kmem_free(kernel_map, (vm_offset_t)cmap, |
6570 | (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); | |
6571 | return(KERN_SUCCESS); | |
6572 | } | |
6573 | ||
6574 | ||
6575 | /* | |
6576 | * Find the hashtable slot currently occupied by an entry for the supplied offset. | |
6577 | */ | |
6578 | static kern_return_t | |
6579 | vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) | |
6580 | { | |
2d21ac55 A |
6581 | int index; |
6582 | u_int32_t i; | |
55e303ae A |
6583 | |
6584 | offset = DRT_ALIGN_ADDRESS(offset); | |
6585 | index = DRT_HASH(cmap, offset); | |
6586 | ||
6587 | /* traverse the hashtable */ | |
6588 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6589 | ||
6590 | /* | |
6591 | * If the slot is vacant, we can stop. | |
6592 | */ | |
6593 | if (DRT_HASH_VACANT(cmap, index)) | |
6594 | break; | |
6595 | ||
6596 | /* | |
6597 | * If the address matches our offset, we have success. | |
6598 | */ | |
6599 | if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) { | |
6600 | *indexp = index; | |
6601 | return(KERN_SUCCESS); | |
6602 | } | |
6603 | ||
6604 | /* | |
6605 | * Move to the next slot, try again. | |
6606 | */ | |
6607 | index = DRT_HASH_NEXT(cmap, index); | |
6608 | } | |
6609 | /* | |
6610 | * It's not there. | |
6611 | */ | |
6612 | return(KERN_FAILURE); | |
6613 | } | |
6614 | ||
6615 | /* | |
6616 | * Find the hashtable slot for the supplied offset. If we haven't allocated | |
6617 | * one yet, allocate one and populate the address field. Note that it will | |
6618 | * not have a nonzero page count and thus will still technically be free, so | |
6619 | * in the case where we are called to clean pages, the slot will remain free. | |
6620 | */ | |
6621 | static kern_return_t | |
6622 | vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed) | |
6623 | { | |
6624 | struct vfs_drt_clustermap *cmap; | |
6625 | kern_return_t kret; | |
2d21ac55 A |
6626 | u_int32_t index; |
6627 | u_int32_t i; | |
55e303ae A |
6628 | |
6629 | cmap = *cmapp; | |
6630 | ||
6631 | /* look for an existing entry */ | |
6632 | kret = vfs_drt_search_index(cmap, offset, indexp); | |
6633 | if (kret == KERN_SUCCESS) | |
6634 | return(kret); | |
6635 | ||
6636 | /* need to allocate an entry */ | |
6637 | offset = DRT_ALIGN_ADDRESS(offset); | |
6638 | index = DRT_HASH(cmap, offset); | |
6639 | ||
6640 | /* scan from the index forwards looking for a vacant slot */ | |
6641 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6642 | /* slot vacant? */ | |
6643 | if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) { | |
6644 | cmap->scm_buckets++; | |
6645 | if (index < cmap->scm_lastclean) | |
6646 | cmap->scm_lastclean = index; | |
6647 | DRT_HASH_SET_ADDRESS(cmap, index, offset); | |
6648 | DRT_HASH_SET_COUNT(cmap, index, 0); | |
6649 | DRT_BITVECTOR_CLEAR(cmap, index); | |
6650 | *indexp = index; | |
6651 | vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0); | |
6652 | return(KERN_SUCCESS); | |
6653 | } | |
6654 | cmap->scm_iskips += i; | |
6655 | index = DRT_HASH_NEXT(cmap, index); | |
6656 | } | |
6657 | ||
6658 | /* | |
6659 | * We haven't found a vacant slot, so the map is full. If we're not | |
6660 | * already recursed, try reallocating/compacting it. | |
6661 | */ | |
6662 | if (recursed) | |
6663 | return(KERN_FAILURE); | |
6664 | kret = vfs_drt_alloc_map(cmapp); | |
6665 | if (kret == KERN_SUCCESS) { | |
6666 | /* now try to insert again */ | |
6667 | kret = vfs_drt_get_index(cmapp, offset, indexp, 1); | |
6668 | } | |
6669 | return(kret); | |
6670 | } | |
6671 | ||
6672 | /* | |
6673 | * Implementation of set dirty/clean. | |
6674 | * | |
6675 | * In the 'clean' case, not finding a map is OK. | |
6676 | */ | |
6677 | static kern_return_t | |
6678 | vfs_drt_do_mark_pages( | |
6679 | void **private, | |
6680 | u_int64_t offset, | |
6681 | u_int length, | |
2d21ac55 | 6682 | u_int *setcountp, |
55e303ae A |
6683 | int dirty) |
6684 | { | |
6685 | struct vfs_drt_clustermap *cmap, **cmapp; | |
6686 | kern_return_t kret; | |
6687 | int i, index, pgoff, pgcount, setcount, ecount; | |
6688 | ||
6689 | cmapp = (struct vfs_drt_clustermap **)private; | |
6690 | cmap = *cmapp; | |
6691 | ||
6692 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0); | |
6693 | ||
6694 | if (setcountp != NULL) | |
6695 | *setcountp = 0; | |
6696 | ||
6697 | /* allocate a cluster map if we don't already have one */ | |
6698 | if (cmap == NULL) { | |
6699 | /* no cluster map, nothing to clean */ | |
6700 | if (!dirty) { | |
6701 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0); | |
6702 | return(KERN_SUCCESS); | |
6703 | } | |
6704 | kret = vfs_drt_alloc_map(cmapp); | |
6705 | if (kret != KERN_SUCCESS) { | |
6706 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0); | |
6707 | return(kret); | |
6708 | } | |
6709 | } | |
6710 | setcount = 0; | |
6711 | ||
6712 | /* | |
6713 | * Iterate over the length of the region. | |
6714 | */ | |
6715 | while (length > 0) { | |
6716 | /* | |
6717 | * Get the hashtable index for this offset. | |
6718 | * | |
6719 | * XXX this will add blank entries if we are clearing a range | |
6720 | * that hasn't been dirtied. | |
6721 | */ | |
6722 | kret = vfs_drt_get_index(cmapp, offset, &index, 0); | |
6723 | cmap = *cmapp; /* may have changed! */ | |
6724 | /* this may be a partial-success return */ | |
6725 | if (kret != KERN_SUCCESS) { | |
6726 | if (setcountp != NULL) | |
6727 | *setcountp = setcount; | |
6728 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0); | |
6729 | ||
6730 | return(kret); | |
6731 | } | |
6732 | ||
6733 | /* | |
6734 | * Work out how many pages we're modifying in this | |
6735 | * hashtable entry. | |
6736 | */ | |
6737 | pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE; | |
6738 | pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff)); | |
6739 | ||
6740 | /* | |
6741 | * Iterate over pages, dirty/clearing as we go. | |
6742 | */ | |
6743 | ecount = DRT_HASH_GET_COUNT(cmap, index); | |
6744 | for (i = 0; i < pgcount; i++) { | |
6745 | if (dirty) { | |
6746 | if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
6747 | DRT_HASH_SET_BIT(cmap, index, pgoff + i); | |
6748 | ecount++; | |
6749 | setcount++; | |
6750 | } | |
6751 | } else { | |
6752 | if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
6753 | DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i); | |
6754 | ecount--; | |
6755 | setcount++; | |
6756 | } | |
6757 | } | |
6758 | } | |
6759 | DRT_HASH_SET_COUNT(cmap, index, ecount); | |
91447636 | 6760 | |
55e303ae A |
6761 | offset += pgcount * PAGE_SIZE; |
6762 | length -= pgcount * PAGE_SIZE; | |
6763 | } | |
6764 | if (setcountp != NULL) | |
6765 | *setcountp = setcount; | |
6766 | ||
6767 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0); | |
6768 | ||
6769 | return(KERN_SUCCESS); | |
6770 | } | |
6771 | ||
6772 | /* | |
6773 | * Mark a set of pages as dirty/clean. | |
6774 | * | |
6775 | * This is a public interface. | |
6776 | * | |
6777 | * cmapp | |
6778 | * Pointer to storage suitable for holding a pointer. Note that | |
6779 | * this must either be NULL or a value set by this function. | |
6780 | * | |
6781 | * size | |
6782 | * Current file size in bytes. | |
6783 | * | |
6784 | * offset | |
6785 | * Offset of the first page to be marked as dirty, in bytes. Must be | |
6786 | * page-aligned. | |
6787 | * | |
6788 | * length | |
6789 | * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE. | |
6790 | * | |
6791 | * setcountp | |
6792 | * Number of pages newly marked dirty by this call (optional). | |
6793 | * | |
6794 | * Returns KERN_SUCCESS if all the pages were successfully marked. | |
6795 | */ | |
6796 | static kern_return_t | |
2d21ac55 | 6797 | vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp) |
55e303ae A |
6798 | { |
6799 | /* XXX size unused, drop from interface */ | |
6800 | return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1)); | |
6801 | } | |
6802 | ||
91447636 | 6803 | #if 0 |
55e303ae A |
6804 | static kern_return_t |
6805 | vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) | |
6806 | { | |
6807 | return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0)); | |
6808 | } | |
91447636 | 6809 | #endif |
55e303ae A |
6810 | |
6811 | /* | |
6812 | * Get a cluster of dirty pages. | |
6813 | * | |
6814 | * This is a public interface. | |
6815 | * | |
6816 | * cmapp | |
6817 | * Pointer to storage managed by drt_mark_pages. Note that this must | |
6818 | * be NULL or a value set by drt_mark_pages. | |
6819 | * | |
6820 | * offsetp | |
6821 | * Returns the byte offset into the file of the first page in the cluster. | |
6822 | * | |
6823 | * lengthp | |
6824 | * Returns the length in bytes of the cluster of dirty pages. | |
6825 | * | |
6826 | * Returns success if a cluster was found. If KERN_FAILURE is returned, there | |
6827 | * are no dirty pages meeting the minmum size criteria. Private storage will | |
6828 | * be released if there are no more dirty pages left in the map | |
6829 | * | |
6830 | */ | |
6831 | static kern_return_t | |
6832 | vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) | |
6833 | { | |
6834 | struct vfs_drt_clustermap *cmap; | |
6835 | u_int64_t offset; | |
6836 | u_int length; | |
2d21ac55 A |
6837 | u_int32_t j; |
6838 | int index, i, fs, ls; | |
55e303ae A |
6839 | |
6840 | /* sanity */ | |
6841 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
6842 | return(KERN_FAILURE); | |
6843 | cmap = *cmapp; | |
6844 | ||
6845 | /* walk the hashtable */ | |
6846 | for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) { | |
6847 | index = DRT_HASH(cmap, offset); | |
6848 | ||
6849 | if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0)) | |
6850 | continue; | |
6851 | ||
6852 | /* scan the bitfield for a string of bits */ | |
6853 | fs = -1; | |
6854 | ||
6855 | for (i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
6856 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { | |
6857 | fs = i; | |
6858 | break; | |
6859 | } | |
6860 | } | |
6861 | if (fs == -1) { | |
6862 | /* didn't find any bits set */ | |
6863 | panic("vfs_drt: entry summary count > 0 but no bits set in map"); | |
6864 | } | |
6865 | for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) { | |
6866 | if (!DRT_HASH_TEST_BIT(cmap, index, i)) | |
6867 | break; | |
6868 | } | |
6869 | ||
6870 | /* compute offset and length, mark pages clean */ | |
6871 | offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs); | |
6872 | length = ls * PAGE_SIZE; | |
6873 | vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); | |
6874 | cmap->scm_lastclean = index; | |
6875 | ||
6876 | /* return successful */ | |
6877 | *offsetp = (off_t)offset; | |
6878 | *lengthp = length; | |
6879 | ||
6880 | vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0); | |
6881 | return(KERN_SUCCESS); | |
6882 | } | |
6883 | /* | |
6884 | * We didn't find anything... hashtable is empty | |
6885 | * emit stats into trace buffer and | |
6886 | * then free it | |
6887 | */ | |
6888 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
6889 | cmap->scm_modulus, | |
6890 | cmap->scm_buckets, | |
6891 | cmap->scm_lastclean, | |
6892 | cmap->scm_iskips); | |
6893 | ||
6894 | vfs_drt_free_map(cmap); | |
6895 | *cmapp = NULL; | |
6896 | ||
6897 | return(KERN_FAILURE); | |
6898 | } | |
6899 | ||
6900 | ||
6901 | static kern_return_t | |
6902 | vfs_drt_control(void **cmapp, int op_type) | |
6903 | { | |
6904 | struct vfs_drt_clustermap *cmap; | |
6905 | ||
6906 | /* sanity */ | |
6907 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
6908 | return(KERN_FAILURE); | |
6909 | cmap = *cmapp; | |
6910 | ||
6911 | switch (op_type) { | |
6912 | case 0: | |
6913 | /* emit stats into trace buffer */ | |
6914 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
6915 | cmap->scm_modulus, | |
6916 | cmap->scm_buckets, | |
6917 | cmap->scm_lastclean, | |
6918 | cmap->scm_iskips); | |
6919 | ||
6920 | vfs_drt_free_map(cmap); | |
6921 | *cmapp = NULL; | |
6922 | break; | |
6923 | ||
6924 | case 1: | |
6925 | cmap->scm_lastclean = 0; | |
6926 | break; | |
6927 | } | |
6928 | return(KERN_SUCCESS); | |
6929 | } | |
6930 | ||
6931 | ||
6932 | ||
6933 | /* | |
6934 | * Emit a summary of the state of the clustermap into the trace buffer | |
6935 | * along with some caller-provided data. | |
6936 | */ | |
91447636 | 6937 | #if KDEBUG |
55e303ae | 6938 | static void |
91447636 | 6939 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) |
55e303ae A |
6940 | { |
6941 | KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); | |
6942 | } | |
91447636 A |
6943 | #else |
6944 | static void | |
6945 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, | |
6946 | __unused int arg1, __unused int arg2, __unused int arg3, | |
6947 | __unused int arg4) | |
6948 | { | |
6949 | } | |
6950 | #endif | |
55e303ae | 6951 | |
91447636 | 6952 | #if 0 |
55e303ae A |
6953 | /* |
6954 | * Perform basic sanity check on the hash entry summary count | |
6955 | * vs. the actual bits set in the entry. | |
6956 | */ | |
6957 | static void | |
6958 | vfs_drt_sanity(struct vfs_drt_clustermap *cmap) | |
6959 | { | |
6960 | int index, i; | |
6961 | int bits_on; | |
6962 | ||
6963 | for (index = 0; index < cmap->scm_modulus; index++) { | |
6964 | if (DRT_HASH_VACANT(cmap, index)) | |
6965 | continue; | |
6966 | ||
6967 | for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
6968 | if (DRT_HASH_TEST_BIT(cmap, index, i)) | |
6969 | bits_on++; | |
6970 | } | |
6971 | if (bits_on != DRT_HASH_GET_COUNT(cmap, index)) | |
6972 | panic("bits_on = %d, index = %d\n", bits_on, index); | |
6973 | } | |
b4c24cb9 | 6974 | } |
91447636 | 6975 | #endif |