]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm_fault.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Page fault handling module. | |
63 | */ | |
1c79356b A |
64 | |
65 | #include <mach_cluster_stats.h> | |
66 | #include <mach_pagemap.h> | |
67 | #include <mach_kdb.h> | |
2d21ac55 | 68 | #include <libkern/OSAtomic.h> |
1c79356b | 69 | |
91447636 | 70 | #include <mach/mach_types.h> |
1c79356b A |
71 | #include <mach/kern_return.h> |
72 | #include <mach/message.h> /* for error codes */ | |
91447636 A |
73 | #include <mach/vm_param.h> |
74 | #include <mach/vm_behavior.h> | |
75 | #include <mach/memory_object.h> | |
76 | /* For memory_object_data_{request,unlock} */ | |
2d21ac55 | 77 | #include <mach/sdt.h> |
91447636 A |
78 | |
79 | #include <kern/kern_types.h> | |
1c79356b A |
80 | #include <kern/host_statistics.h> |
81 | #include <kern/counters.h> | |
82 | #include <kern/task.h> | |
83 | #include <kern/thread.h> | |
84 | #include <kern/sched_prim.h> | |
85 | #include <kern/host.h> | |
86 | #include <kern/xpr.h> | |
91447636 A |
87 | #include <kern/mach_param.h> |
88 | #include <kern/macro_help.h> | |
89 | #include <kern/zalloc.h> | |
90 | #include <kern/misc_protos.h> | |
91 | ||
0b4e3aa0 | 92 | #include <ppc/proc_reg.h> |
91447636 A |
93 | |
94 | #include <vm/vm_fault.h> | |
1c79356b A |
95 | #include <vm/vm_map.h> |
96 | #include <vm/vm_object.h> | |
97 | #include <vm/vm_page.h> | |
55e303ae | 98 | #include <vm/vm_kern.h> |
1c79356b A |
99 | #include <vm/pmap.h> |
100 | #include <vm/vm_pageout.h> | |
91447636 | 101 | #include <vm/vm_protos.h> |
2d21ac55 A |
102 | #include <vm/vm_external.h> |
103 | #include <vm/memory_object.h> | |
104 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ | |
1c79356b A |
105 | |
106 | #include <sys/kdebug.h> | |
107 | ||
108 | #define VM_FAULT_CLASSIFY 0 | |
1c79356b | 109 | |
2d21ac55 A |
110 | /* Zero-filled pages are marked "m->zero_fill" and put on the |
111 | * special zero-fill inactive queue only if they belong to | |
112 | * an object at least this big. | |
113 | */ | |
114 | #define VM_ZF_OBJECT_SIZE_THRESHOLD (0x200000) | |
1c79356b | 115 | |
2d21ac55 | 116 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ |
1c79356b | 117 | |
2d21ac55 | 118 | int vm_object_pagein_throttle = 16; |
1c79356b | 119 | |
2d21ac55 | 120 | extern int cs_debug; |
1c79356b A |
121 | |
122 | #if MACH_KDB | |
123 | extern struct db_watchpoint *db_watchpoint_list; | |
124 | #endif /* MACH_KDB */ | |
125 | ||
91447636 | 126 | |
1c79356b A |
127 | /* Forward declarations of internal routines. */ |
128 | extern kern_return_t vm_fault_wire_fast( | |
129 | vm_map_t map, | |
91447636 | 130 | vm_map_offset_t va, |
1c79356b | 131 | vm_map_entry_t entry, |
9bccf70c | 132 | pmap_t pmap, |
91447636 | 133 | vm_map_offset_t pmap_addr); |
1c79356b A |
134 | |
135 | extern void vm_fault_continue(void); | |
136 | ||
137 | extern void vm_fault_copy_cleanup( | |
138 | vm_page_t page, | |
139 | vm_page_t top_page); | |
140 | ||
141 | extern void vm_fault_copy_dst_cleanup( | |
142 | vm_page_t page); | |
143 | ||
144 | #if VM_FAULT_CLASSIFY | |
145 | extern void vm_fault_classify(vm_object_t object, | |
146 | vm_object_offset_t offset, | |
147 | vm_prot_t fault_type); | |
148 | ||
149 | extern void vm_fault_classify_init(void); | |
150 | #endif | |
151 | ||
4a3eedf9 A |
152 | |
153 | unsigned long vm_cs_validates = 0; | |
154 | unsigned long vm_cs_revalidates = 0; | |
155 | unsigned long vm_cs_query_modified = 0; | |
156 | unsigned long vm_cs_validated_dirtied = 0; | |
157 | ||
593a1d5f A |
158 | #if CONFIG_ENFORCE_SIGNED_CODE |
159 | #if SECURE_KERNEL | |
160 | const int cs_enforcement_disable=0; | |
161 | #else | |
162 | int cs_enforcement_disable=1; | |
163 | #endif | |
164 | #endif | |
165 | ||
1c79356b A |
166 | /* |
167 | * Routine: vm_fault_init | |
168 | * Purpose: | |
169 | * Initialize our private data structures. | |
170 | */ | |
171 | void | |
172 | vm_fault_init(void) | |
173 | { | |
593a1d5f A |
174 | #if !SECURE_KERNEL |
175 | #if CONFIG_ENFORCE_SIGNED_CODE | |
176 | PE_parse_boot_argn("cs_enforcement_disable", &cs_enforcement_disable, sizeof (cs_enforcement_disable)); | |
177 | #endif | |
178 | PE_parse_boot_argn("cs_debug", &cs_debug, sizeof (cs_debug)); | |
179 | #endif | |
1c79356b A |
180 | } |
181 | ||
182 | /* | |
183 | * Routine: vm_fault_cleanup | |
184 | * Purpose: | |
185 | * Clean up the result of vm_fault_page. | |
186 | * Results: | |
187 | * The paging reference for "object" is released. | |
188 | * "object" is unlocked. | |
189 | * If "top_page" is not null, "top_page" is | |
190 | * freed and the paging reference for the object | |
191 | * containing it is released. | |
192 | * | |
193 | * In/out conditions: | |
194 | * "object" must be locked. | |
195 | */ | |
196 | void | |
197 | vm_fault_cleanup( | |
198 | register vm_object_t object, | |
199 | register vm_page_t top_page) | |
200 | { | |
201 | vm_object_paging_end(object); | |
202 | vm_object_unlock(object); | |
203 | ||
204 | if (top_page != VM_PAGE_NULL) { | |
2d21ac55 A |
205 | object = top_page->object; |
206 | ||
207 | vm_object_lock(object); | |
208 | VM_PAGE_FREE(top_page); | |
209 | vm_object_paging_end(object); | |
210 | vm_object_unlock(object); | |
1c79356b A |
211 | } |
212 | } | |
213 | ||
214 | #if MACH_CLUSTER_STATS | |
215 | #define MAXCLUSTERPAGES 16 | |
216 | struct { | |
217 | unsigned long pages_in_cluster; | |
218 | unsigned long pages_at_higher_offsets; | |
219 | unsigned long pages_at_lower_offsets; | |
220 | } cluster_stats_in[MAXCLUSTERPAGES]; | |
221 | #define CLUSTER_STAT(clause) clause | |
222 | #define CLUSTER_STAT_HIGHER(x) \ | |
223 | ((cluster_stats_in[(x)].pages_at_higher_offsets)++) | |
224 | #define CLUSTER_STAT_LOWER(x) \ | |
225 | ((cluster_stats_in[(x)].pages_at_lower_offsets)++) | |
226 | #define CLUSTER_STAT_CLUSTER(x) \ | |
227 | ((cluster_stats_in[(x)].pages_in_cluster)++) | |
228 | #else /* MACH_CLUSTER_STATS */ | |
229 | #define CLUSTER_STAT(clause) | |
230 | #endif /* MACH_CLUSTER_STATS */ | |
231 | ||
55e303ae A |
232 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) |
233 | ||
234 | ||
235 | boolean_t vm_page_deactivate_behind = TRUE; | |
1c79356b | 236 | /* |
2d21ac55 | 237 | * default sizes given VM_BEHAVIOR_DEFAULT reference behavior |
1c79356b | 238 | */ |
55e303ae A |
239 | int vm_default_ahead = 0; |
240 | int vm_default_behind = MAX_UPL_TRANSFER; | |
241 | ||
2d21ac55 A |
242 | #define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024) |
243 | ||
244 | /* | |
245 | * vm_page_is_sequential | |
246 | * | |
247 | * Determine if sequential access is in progress | |
248 | * in accordance with the behavior specified. | |
249 | * Update state to indicate current access pattern. | |
250 | * | |
251 | * object must have at least the shared lock held | |
252 | */ | |
253 | static | |
254 | void | |
255 | vm_fault_is_sequential( | |
256 | vm_object_t object, | |
257 | vm_object_offset_t offset, | |
258 | vm_behavior_t behavior) | |
259 | { | |
260 | vm_object_offset_t last_alloc; | |
261 | int sequential; | |
262 | int orig_sequential; | |
263 | ||
264 | last_alloc = object->last_alloc; | |
265 | sequential = object->sequential; | |
266 | orig_sequential = sequential; | |
267 | ||
268 | switch (behavior) { | |
269 | case VM_BEHAVIOR_RANDOM: | |
270 | /* | |
271 | * reset indicator of sequential behavior | |
272 | */ | |
273 | sequential = 0; | |
274 | break; | |
275 | ||
276 | case VM_BEHAVIOR_SEQUENTIAL: | |
277 | if (offset && last_alloc == offset - PAGE_SIZE_64) { | |
278 | /* | |
279 | * advance indicator of sequential behavior | |
280 | */ | |
281 | if (sequential < MAX_SEQUENTIAL_RUN) | |
282 | sequential += PAGE_SIZE; | |
283 | } else { | |
284 | /* | |
285 | * reset indicator of sequential behavior | |
286 | */ | |
287 | sequential = 0; | |
288 | } | |
289 | break; | |
290 | ||
291 | case VM_BEHAVIOR_RSEQNTL: | |
292 | if (last_alloc && last_alloc == offset + PAGE_SIZE_64) { | |
293 | /* | |
294 | * advance indicator of sequential behavior | |
295 | */ | |
296 | if (sequential > -MAX_SEQUENTIAL_RUN) | |
297 | sequential -= PAGE_SIZE; | |
298 | } else { | |
299 | /* | |
300 | * reset indicator of sequential behavior | |
301 | */ | |
302 | sequential = 0; | |
303 | } | |
304 | break; | |
305 | ||
306 | case VM_BEHAVIOR_DEFAULT: | |
307 | default: | |
308 | if (offset && last_alloc == (offset - PAGE_SIZE_64)) { | |
309 | /* | |
310 | * advance indicator of sequential behavior | |
311 | */ | |
312 | if (sequential < 0) | |
313 | sequential = 0; | |
314 | if (sequential < MAX_SEQUENTIAL_RUN) | |
315 | sequential += PAGE_SIZE; | |
316 | ||
317 | } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) { | |
318 | /* | |
319 | * advance indicator of sequential behavior | |
320 | */ | |
321 | if (sequential > 0) | |
322 | sequential = 0; | |
323 | if (sequential > -MAX_SEQUENTIAL_RUN) | |
324 | sequential -= PAGE_SIZE; | |
325 | } else { | |
326 | /* | |
327 | * reset indicator of sequential behavior | |
328 | */ | |
329 | sequential = 0; | |
330 | } | |
331 | break; | |
332 | } | |
333 | if (sequential != orig_sequential) { | |
334 | if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) { | |
335 | /* | |
336 | * if someone else has already updated object->sequential | |
337 | * don't bother trying to update it or object->last_alloc | |
338 | */ | |
339 | return; | |
340 | } | |
341 | } | |
342 | /* | |
343 | * I'd like to do this with a OSCompareAndSwap64, but that | |
344 | * doesn't exist for PPC... however, it shouldn't matter | |
345 | * that much... last_alloc is maintained so that we can determine | |
346 | * if a sequential access pattern is taking place... if only | |
347 | * one thread is banging on this object, no problem with the unprotected | |
348 | * update... if 2 or more threads are banging away, we run the risk of | |
349 | * someone seeing a mangled update... however, in the face of multiple | |
350 | * accesses, no sequential access pattern can develop anyway, so we | |
351 | * haven't lost any real info. | |
352 | */ | |
353 | object->last_alloc = offset; | |
354 | } | |
355 | ||
356 | ||
55e303ae | 357 | /* |
2d21ac55 A |
358 | * vm_page_deactivate_behind |
359 | * | |
360 | * Determine if sequential access is in progress | |
361 | * in accordance with the behavior specified. If | |
362 | * so, compute a potential page to deactivate and | |
363 | * deactivate it. | |
55e303ae | 364 | * |
2d21ac55 | 365 | * object must be locked. |
55e303ae | 366 | * |
2d21ac55 | 367 | * return TRUE if we actually deactivate a page |
55e303ae A |
368 | */ |
369 | static | |
370 | boolean_t | |
371 | vm_fault_deactivate_behind( | |
91447636 A |
372 | vm_object_t object, |
373 | vm_object_offset_t offset, | |
374 | vm_behavior_t behavior) | |
55e303ae | 375 | { |
2d21ac55 A |
376 | vm_page_t m = NULL; |
377 | int sequential_run; | |
378 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
55e303ae A |
379 | |
380 | #if TRACEFAULTPAGE | |
381 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */ | |
382 | #endif | |
383 | ||
2d21ac55 | 384 | if (object == kernel_object || vm_page_deactivate_behind == FALSE) { |
91447636 A |
385 | /* |
386 | * Do not deactivate pages from the kernel object: they | |
387 | * are not intended to become pageable. | |
2d21ac55 | 388 | * or we've disabled the deactivate behind mechanism |
91447636 A |
389 | */ |
390 | return FALSE; | |
391 | } | |
2d21ac55 A |
392 | if ((sequential_run = object->sequential)) { |
393 | if (sequential_run < 0) { | |
394 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; | |
395 | sequential_run = 0 - sequential_run; | |
396 | } else { | |
397 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
398 | } | |
399 | } | |
55e303ae A |
400 | switch (behavior) { |
401 | case VM_BEHAVIOR_RANDOM: | |
55e303ae A |
402 | break; |
403 | case VM_BEHAVIOR_SEQUENTIAL: | |
2d21ac55 | 404 | if (sequential_run >= (int)PAGE_SIZE) |
55e303ae | 405 | m = vm_page_lookup(object, offset - PAGE_SIZE_64); |
55e303ae A |
406 | break; |
407 | case VM_BEHAVIOR_RSEQNTL: | |
2d21ac55 | 408 | if (sequential_run >= (int)PAGE_SIZE) |
55e303ae | 409 | m = vm_page_lookup(object, offset + PAGE_SIZE_64); |
55e303ae A |
410 | break; |
411 | case VM_BEHAVIOR_DEFAULT: | |
412 | default: | |
2d21ac55 A |
413 | { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; |
414 | ||
415 | /* | |
416 | * determine if the run of sequential accesss has been | |
417 | * long enough on an object with default access behavior | |
418 | * to consider it for deactivation | |
419 | */ | |
420 | if ((uint64_t)sequential_run >= behind) { | |
421 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) { | |
422 | if (offset >= behind) | |
423 | m = vm_page_lookup(object, offset - behind); | |
424 | } else { | |
425 | if (offset < -behind) | |
426 | m = vm_page_lookup(object, offset + behind); | |
427 | } | |
55e303ae A |
428 | } |
429 | break; | |
430 | } | |
2d21ac55 | 431 | } |
55e303ae | 432 | if (m) { |
2d21ac55 A |
433 | if (!m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) { |
434 | pmap_clear_reference(m->phys_page); | |
435 | m->deactivated = TRUE; | |
55e303ae A |
436 | #if TRACEFAULTPAGE |
437 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
438 | #endif | |
2d21ac55 | 439 | return TRUE; |
55e303ae | 440 | } |
55e303ae A |
441 | } |
442 | return FALSE; | |
443 | } | |
1c79356b | 444 | |
1c79356b | 445 | |
2d21ac55 A |
446 | /* |
447 | * check for various conditions that would | |
448 | * prevent us from creating a ZF page... | |
449 | * cleanup is based on being called from vm_fault_page | |
450 | * | |
451 | * object must be locked | |
452 | * object == m->object | |
453 | */ | |
454 | static vm_fault_return_t | |
455 | vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state) | |
456 | { | |
457 | if (object->shadow_severed) { | |
458 | /* | |
459 | * the shadow chain was severed | |
460 | * just have to return an error at this point | |
461 | */ | |
462 | if (m != VM_PAGE_NULL) | |
463 | VM_PAGE_FREE(m); | |
464 | vm_fault_cleanup(object, first_m); | |
465 | ||
466 | thread_interrupt_level(interruptible_state); | |
467 | ||
468 | return (VM_FAULT_MEMORY_ERROR); | |
469 | } | |
470 | if (vm_backing_store_low) { | |
471 | /* | |
472 | * are we protecting the system from | |
473 | * backing store exhaustion. If so | |
474 | * sleep unless we are privileged. | |
475 | */ | |
476 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { | |
477 | ||
478 | if (m != VM_PAGE_NULL) | |
479 | VM_PAGE_FREE(m); | |
480 | vm_fault_cleanup(object, first_m); | |
481 | ||
482 | assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); | |
483 | ||
484 | thread_block(THREAD_CONTINUE_NULL); | |
485 | thread_interrupt_level(interruptible_state); | |
486 | ||
487 | return (VM_FAULT_RETRY); | |
488 | } | |
489 | } | |
490 | if (VM_PAGE_ZFILL_THROTTLED()) { | |
491 | /* | |
492 | * we're throttling zero-fills... | |
493 | * treat this as if we couldn't grab a page | |
494 | */ | |
495 | if (m != VM_PAGE_NULL) | |
496 | VM_PAGE_FREE(m); | |
497 | vm_fault_cleanup(object, first_m); | |
498 | ||
499 | thread_interrupt_level(interruptible_state); | |
500 | ||
501 | return (VM_FAULT_MEMORY_SHORTAGE); | |
502 | } | |
503 | return (VM_FAULT_SUCCESS); | |
504 | } | |
505 | ||
506 | ||
507 | /* | |
508 | * do the work to zero fill a page and | |
509 | * inject it into the correct paging queue | |
510 | * | |
511 | * m->object must be locked | |
512 | * page queue lock must NOT be held | |
513 | */ | |
514 | static int | |
515 | vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill) | |
516 | { | |
517 | int my_fault = DBG_ZERO_FILL_FAULT; | |
518 | ||
519 | /* | |
520 | * This is is a zero-fill page fault... | |
521 | * | |
522 | * Checking the page lock is a waste of | |
523 | * time; this page was absent, so | |
524 | * it can't be page locked by a pager. | |
525 | * | |
526 | * we also consider it undefined | |
527 | * with respect to instruction | |
528 | * execution. i.e. it is the responsibility | |
529 | * of higher layers to call for an instruction | |
530 | * sync after changing the contents and before | |
531 | * sending a program into this area. We | |
532 | * choose this approach for performance | |
533 | */ | |
534 | m->pmapped = TRUE; | |
535 | ||
536 | m->cs_validated = FALSE; | |
537 | m->cs_tainted = FALSE; | |
538 | ||
539 | if (no_zero_fill == TRUE) | |
540 | my_fault = DBG_NZF_PAGE_FAULT; | |
541 | else { | |
542 | vm_page_zero_fill(m); | |
543 | ||
544 | VM_STAT_INCR(zero_fill_count); | |
545 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL); | |
546 | } | |
547 | assert(!m->laundry); | |
548 | assert(m->object != kernel_object); | |
549 | //assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
550 | ||
551 | if (!IP_VALID(memory_manager_default) && | |
552 | (m->object->purgable == VM_PURGABLE_DENY || | |
cf7d32b8 A |
553 | m->object->purgable == VM_PURGABLE_NONVOLATILE || |
554 | m->object->purgable == VM_PURGABLE_VOLATILE )) { | |
2d21ac55 A |
555 | vm_page_lock_queues(); |
556 | ||
557 | queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); | |
558 | m->throttled = TRUE; | |
559 | vm_page_throttled_count++; | |
560 | ||
561 | vm_page_unlock_queues(); | |
562 | } else { | |
563 | if (m->object->size > VM_ZF_OBJECT_SIZE_THRESHOLD) { | |
564 | m->zero_fill = TRUE; | |
565 | OSAddAtomic(1, (SInt32 *)&vm_zf_count); | |
566 | } | |
567 | } | |
568 | return (my_fault); | |
569 | } | |
570 | ||
571 | ||
1c79356b A |
572 | /* |
573 | * Routine: vm_fault_page | |
574 | * Purpose: | |
575 | * Find the resident page for the virtual memory | |
576 | * specified by the given virtual memory object | |
577 | * and offset. | |
578 | * Additional arguments: | |
579 | * The required permissions for the page is given | |
580 | * in "fault_type". Desired permissions are included | |
2d21ac55 A |
581 | * in "protection". |
582 | * fault_info is passed along to determine pagein cluster | |
583 | * limits... it contains the expected reference pattern, | |
584 | * cluster size if available, etc... | |
1c79356b A |
585 | * |
586 | * If the desired page is known to be resident (for | |
587 | * example, because it was previously wired down), asserting | |
588 | * the "unwiring" parameter will speed the search. | |
589 | * | |
590 | * If the operation can be interrupted (by thread_abort | |
591 | * or thread_terminate), then the "interruptible" | |
592 | * parameter should be asserted. | |
593 | * | |
594 | * Results: | |
595 | * The page containing the proper data is returned | |
596 | * in "result_page". | |
597 | * | |
598 | * In/out conditions: | |
599 | * The source object must be locked and referenced, | |
600 | * and must donate one paging reference. The reference | |
601 | * is not affected. The paging reference and lock are | |
602 | * consumed. | |
603 | * | |
604 | * If the call succeeds, the object in which "result_page" | |
605 | * resides is left locked and holding a paging reference. | |
606 | * If this is not the original object, a busy page in the | |
607 | * original object is returned in "top_page", to prevent other | |
608 | * callers from pursuing this same data, along with a paging | |
609 | * reference for the original object. The "top_page" should | |
610 | * be destroyed when this guarantee is no longer required. | |
611 | * The "result_page" is also left busy. It is not removed | |
612 | * from the pageout queues. | |
613 | */ | |
614 | ||
615 | vm_fault_return_t | |
616 | vm_fault_page( | |
617 | /* Arguments: */ | |
618 | vm_object_t first_object, /* Object to begin search */ | |
619 | vm_object_offset_t first_offset, /* Offset into object */ | |
620 | vm_prot_t fault_type, /* What access is requested */ | |
621 | boolean_t must_be_resident,/* Must page be resident? */ | |
1c79356b A |
622 | /* Modifies in place: */ |
623 | vm_prot_t *protection, /* Protection for mapping */ | |
624 | /* Returns: */ | |
625 | vm_page_t *result_page, /* Page found, if successful */ | |
626 | vm_page_t *top_page, /* Page in top object, if | |
627 | * not result_page. */ | |
628 | int *type_of_fault, /* if non-null, fill in with type of fault | |
629 | * COW, zero-fill, etc... returned in trace point */ | |
630 | /* More arguments: */ | |
631 | kern_return_t *error_code, /* code if page is in error */ | |
632 | boolean_t no_zero_fill, /* don't zero fill absent pages */ | |
2d21ac55 | 633 | #if MACH_PAGEMAP |
0b4e3aa0 | 634 | boolean_t data_supply, /* treat as data_supply if |
1c79356b A |
635 | * it is a write fault and a full |
636 | * page is provided */ | |
2d21ac55 A |
637 | #else |
638 | __unused boolean_t data_supply, | |
639 | #endif | |
640 | vm_object_fault_info_t fault_info) | |
1c79356b | 641 | { |
1c79356b | 642 | vm_page_t m; |
1c79356b | 643 | vm_object_t object; |
1c79356b A |
644 | vm_object_offset_t offset; |
645 | vm_page_t first_m; | |
646 | vm_object_t next_object; | |
647 | vm_object_t copy_object; | |
648 | boolean_t look_for_page; | |
649 | vm_prot_t access_required = fault_type; | |
650 | vm_prot_t wants_copy_flag; | |
1c79356b A |
651 | CLUSTER_STAT(int pages_at_higher_offsets;) |
652 | CLUSTER_STAT(int pages_at_lower_offsets;) | |
2d21ac55 | 653 | kern_return_t wait_result; |
1c79356b | 654 | boolean_t interruptible_state; |
2d21ac55 A |
655 | vm_fault_return_t error; |
656 | int my_fault; | |
657 | uint32_t try_failed_count; | |
658 | int interruptible; /* how may fault be interrupted? */ | |
659 | memory_object_t pager; | |
1c79356b | 660 | |
1c79356b A |
661 | /* |
662 | * MACH page map - an optional optimization where a bit map is maintained | |
663 | * by the VM subsystem for internal objects to indicate which pages of | |
664 | * the object currently reside on backing store. This existence map | |
665 | * duplicates information maintained by the vnode pager. It is | |
666 | * created at the time of the first pageout against the object, i.e. | |
667 | * at the same time pager for the object is created. The optimization | |
668 | * is designed to eliminate pager interaction overhead, if it is | |
669 | * 'known' that the page does not exist on backing store. | |
670 | * | |
2d21ac55 | 671 | * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is |
1c79356b | 672 | * either marked as paged out in the existence map for the object or no |
2d21ac55 | 673 | * existence map exists for the object. MUST_ASK_PAGER() is one of the |
1c79356b A |
674 | * criteria in the decision to invoke the pager. It is also used as one |
675 | * of the criteria to terminate the scan for adjacent pages in a clustered | |
2d21ac55 | 676 | * pagein operation. Note that MUST_ASK_PAGER() always evaluates to TRUE for |
1c79356b A |
677 | * permanent objects. Note also that if the pager for an internal object |
678 | * has not been created, the pager is not invoked regardless of the value | |
2d21ac55 | 679 | * of MUST_ASK_PAGER() and that clustered pagein scans are only done on an object |
1c79356b A |
680 | * for which a pager has been created. |
681 | * | |
682 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset | |
683 | * is marked as paged out in the existence map for the object. PAGED_OUT() | |
684 | * PAGED_OUT() is used to determine if a page has already been pushed | |
685 | * into a copy object in order to avoid a redundant page out operation. | |
686 | */ | |
2d21ac55 A |
687 | #if MACH_PAGEMAP |
688 | #define MUST_ASK_PAGER(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
1c79356b A |
689 | != VM_EXTERNAL_STATE_ABSENT) |
690 | #define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
691 | == VM_EXTERNAL_STATE_EXISTS) | |
2d21ac55 A |
692 | #else |
693 | #define MUST_ASK_PAGER(o, f) (TRUE) | |
694 | #define PAGED_OUT(o, f) (FALSE) | |
695 | #endif | |
1c79356b A |
696 | |
697 | /* | |
698 | * Recovery actions | |
699 | */ | |
700 | #define PREPARE_RELEASE_PAGE(m) \ | |
701 | MACRO_BEGIN \ | |
702 | vm_page_lock_queues(); \ | |
703 | MACRO_END | |
704 | ||
705 | #define DO_RELEASE_PAGE(m) \ | |
706 | MACRO_BEGIN \ | |
707 | PAGE_WAKEUP_DONE(m); \ | |
2d21ac55 | 708 | if (!m->active && !m->inactive && !m->throttled)\ |
1c79356b A |
709 | vm_page_activate(m); \ |
710 | vm_page_unlock_queues(); \ | |
711 | MACRO_END | |
712 | ||
713 | #define RELEASE_PAGE(m) \ | |
714 | MACRO_BEGIN \ | |
715 | PREPARE_RELEASE_PAGE(m); \ | |
716 | DO_RELEASE_PAGE(m); \ | |
717 | MACRO_END | |
718 | ||
719 | #if TRACEFAULTPAGE | |
720 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ | |
721 | #endif | |
722 | ||
723 | ||
1c79356b A |
724 | #if MACH_KDB |
725 | /* | |
726 | * If there are watchpoints set, then | |
727 | * we don't want to give away write permission | |
728 | * on a read fault. Make the task write fault, | |
729 | * so that the watchpoint code notices the access. | |
730 | */ | |
731 | if (db_watchpoint_list) { | |
732 | /* | |
733 | * If we aren't asking for write permission, | |
734 | * then don't give it away. We're using write | |
735 | * faults to set the dirty bit. | |
736 | */ | |
737 | if (!(fault_type & VM_PROT_WRITE)) | |
738 | *protection &= ~VM_PROT_WRITE; | |
739 | } | |
1c79356b | 740 | #endif /* MACH_KDB */ |
1c79356b | 741 | |
2d21ac55 | 742 | interruptible = fault_info->interruptible; |
9bccf70c | 743 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b A |
744 | |
745 | /* | |
746 | * INVARIANTS (through entire routine): | |
747 | * | |
748 | * 1) At all times, we must either have the object | |
749 | * lock or a busy page in some object to prevent | |
750 | * some other thread from trying to bring in | |
751 | * the same page. | |
752 | * | |
753 | * Note that we cannot hold any locks during the | |
754 | * pager access or when waiting for memory, so | |
755 | * we use a busy page then. | |
756 | * | |
1c79356b A |
757 | * 2) To prevent another thread from racing us down the |
758 | * shadow chain and entering a new page in the top | |
759 | * object before we do, we must keep a busy page in | |
760 | * the top object while following the shadow chain. | |
761 | * | |
762 | * 3) We must increment paging_in_progress on any object | |
2d21ac55 A |
763 | * for which we have a busy page before dropping |
764 | * the object lock | |
1c79356b A |
765 | * |
766 | * 4) We leave busy pages on the pageout queues. | |
767 | * If the pageout daemon comes across a busy page, | |
768 | * it will remove the page from the pageout queues. | |
769 | */ | |
770 | ||
1c79356b A |
771 | object = first_object; |
772 | offset = first_offset; | |
773 | first_m = VM_PAGE_NULL; | |
774 | access_required = fault_type; | |
775 | ||
2d21ac55 | 776 | |
1c79356b A |
777 | XPR(XPR_VM_FAULT, |
778 | "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n", | |
779 | (integer_t)object, offset, fault_type, *protection, 0); | |
780 | ||
781 | /* | |
2d21ac55 | 782 | * default type of fault |
1c79356b | 783 | */ |
2d21ac55 | 784 | my_fault = DBG_CACHE_HIT_FAULT; |
1c79356b A |
785 | |
786 | while (TRUE) { | |
787 | #if TRACEFAULTPAGE | |
788 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
789 | #endif | |
790 | if (!object->alive) { | |
2d21ac55 A |
791 | /* |
792 | * object is no longer valid | |
793 | * clean up and return error | |
794 | */ | |
1c79356b | 795 | vm_fault_cleanup(object, first_m); |
9bccf70c | 796 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
797 | |
798 | return (VM_FAULT_MEMORY_ERROR); | |
1c79356b | 799 | } |
2d21ac55 A |
800 | |
801 | /* | |
802 | * See whether the page at 'offset' is resident | |
803 | */ | |
1c79356b A |
804 | m = vm_page_lookup(object, offset); |
805 | #if TRACEFAULTPAGE | |
806 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
807 | #endif | |
808 | if (m != VM_PAGE_NULL) { | |
1c79356b A |
809 | |
810 | if (m->busy) { | |
2d21ac55 A |
811 | /* |
812 | * The page is being brought in, | |
813 | * wait for it and then retry. | |
814 | * | |
815 | * A possible optimization: if the page | |
816 | * is known to be resident, we can ignore | |
817 | * pages that are absent (regardless of | |
818 | * whether they're busy). | |
819 | */ | |
1c79356b A |
820 | #if TRACEFAULTPAGE |
821 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
822 | #endif | |
9bccf70c | 823 | wait_result = PAGE_SLEEP(object, m, interruptible); |
1c79356b A |
824 | XPR(XPR_VM_FAULT, |
825 | "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n", | |
826 | (integer_t)object, offset, | |
827 | (integer_t)m, 0, 0); | |
828 | counter(c_vm_fault_page_block_busy_kernel++); | |
1c79356b | 829 | |
1c79356b A |
830 | if (wait_result != THREAD_AWAKENED) { |
831 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 832 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 833 | |
1c79356b | 834 | if (wait_result == THREAD_RESTART) |
2d21ac55 | 835 | return (VM_FAULT_RETRY); |
1c79356b | 836 | else |
2d21ac55 | 837 | return (VM_FAULT_INTERRUPTED); |
1c79356b A |
838 | } |
839 | continue; | |
840 | } | |
841 | ||
2d21ac55 | 842 | if (m->phys_page == vm_page_guard_addr) { |
91447636 | 843 | /* |
2d21ac55 | 844 | * Guard page: off limits ! |
91447636 | 845 | */ |
2d21ac55 A |
846 | if (fault_type == VM_PROT_NONE) { |
847 | /* | |
848 | * The fault is not requesting any | |
849 | * access to the guard page, so it must | |
850 | * be just to wire or unwire it. | |
851 | * Let's pretend it succeeded... | |
852 | */ | |
853 | m->busy = TRUE; | |
854 | *result_page = m; | |
855 | assert(first_m == VM_PAGE_NULL); | |
856 | *top_page = first_m; | |
857 | if (type_of_fault) | |
858 | *type_of_fault = DBG_GUARD_FAULT; | |
859 | return VM_FAULT_SUCCESS; | |
860 | } else { | |
861 | /* | |
862 | * The fault requests access to the | |
863 | * guard page: let's deny that ! | |
864 | */ | |
865 | vm_fault_cleanup(object, first_m); | |
866 | thread_interrupt_level(interruptible_state); | |
867 | return VM_FAULT_MEMORY_ERROR; | |
868 | } | |
91447636 | 869 | } |
1c79356b A |
870 | |
871 | if (m->error) { | |
2d21ac55 A |
872 | /* |
873 | * The page is in error, give up now. | |
874 | */ | |
1c79356b A |
875 | #if TRACEFAULTPAGE |
876 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ | |
877 | #endif | |
878 | if (error_code) | |
2d21ac55 | 879 | *error_code = KERN_MEMORY_ERROR; |
1c79356b | 880 | VM_PAGE_FREE(m); |
2d21ac55 | 881 | |
1c79356b | 882 | vm_fault_cleanup(object, first_m); |
9bccf70c | 883 | thread_interrupt_level(interruptible_state); |
1c79356b | 884 | |
2d21ac55 A |
885 | return (VM_FAULT_MEMORY_ERROR); |
886 | } | |
1c79356b | 887 | if (m->restart) { |
2d21ac55 A |
888 | /* |
889 | * The pager wants us to restart | |
890 | * at the top of the chain, | |
891 | * typically because it has moved the | |
892 | * page to another pager, then do so. | |
893 | */ | |
1c79356b A |
894 | #if TRACEFAULTPAGE |
895 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
896 | #endif | |
897 | VM_PAGE_FREE(m); | |
2d21ac55 | 898 | |
1c79356b | 899 | vm_fault_cleanup(object, first_m); |
9bccf70c | 900 | thread_interrupt_level(interruptible_state); |
1c79356b | 901 | |
2d21ac55 A |
902 | return (VM_FAULT_RETRY); |
903 | } | |
1c79356b | 904 | if (m->absent) { |
2d21ac55 A |
905 | /* |
906 | * The page isn't busy, but is absent, | |
907 | * therefore it's deemed "unavailable". | |
908 | * | |
1c79356b A |
909 | * Remove the non-existent page (unless it's |
910 | * in the top object) and move on down to the | |
911 | * next object (if there is one). | |
912 | */ | |
913 | #if TRACEFAULTPAGE | |
914 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ | |
915 | #endif | |
1c79356b | 916 | next_object = object->shadow; |
1c79356b | 917 | |
2d21ac55 | 918 | if (next_object == VM_OBJECT_NULL) { |
1c79356b A |
919 | /* |
920 | * Absent page at bottom of shadow | |
921 | * chain; zero fill the page we left | |
2d21ac55 A |
922 | * busy in the first object, and free |
923 | * the absent page. | |
1c79356b | 924 | */ |
2d21ac55 | 925 | assert(!must_be_resident); |
55e303ae A |
926 | |
927 | /* | |
2d21ac55 A |
928 | * check for any conditions that prevent |
929 | * us from creating a new zero-fill page | |
930 | * vm_fault_check will do all of the | |
931 | * fault cleanup in the case of an error condition | |
932 | * including resetting the thread_interrupt_level | |
55e303ae | 933 | */ |
2d21ac55 | 934 | error = vm_fault_check(object, m, first_m, interruptible_state); |
55e303ae | 935 | |
2d21ac55 A |
936 | if (error != VM_FAULT_SUCCESS) |
937 | return (error); | |
55e303ae | 938 | |
1c79356b | 939 | XPR(XPR_VM_FAULT, |
2d21ac55 | 940 | "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n", |
1c79356b A |
941 | (integer_t)object, offset, |
942 | (integer_t)m, | |
943 | (integer_t)first_object, 0); | |
2d21ac55 | 944 | |
1c79356b | 945 | if (object != first_object) { |
2d21ac55 A |
946 | /* |
947 | * free the absent page we just found | |
948 | */ | |
1c79356b | 949 | VM_PAGE_FREE(m); |
2d21ac55 A |
950 | |
951 | /* | |
952 | * drop reference and lock on current object | |
953 | */ | |
1c79356b A |
954 | vm_object_paging_end(object); |
955 | vm_object_unlock(object); | |
2d21ac55 A |
956 | |
957 | /* | |
958 | * grab the original page we | |
959 | * 'soldered' in place and | |
960 | * retake lock on 'first_object' | |
961 | */ | |
1c79356b A |
962 | m = first_m; |
963 | first_m = VM_PAGE_NULL; | |
1c79356b | 964 | |
2d21ac55 A |
965 | object = first_object; |
966 | offset = first_offset; | |
0b4e3aa0 | 967 | |
1c79356b | 968 | vm_object_lock(object); |
9bccf70c | 969 | } else { |
2d21ac55 A |
970 | /* |
971 | * we're going to use the absent page we just found | |
972 | * so convert it to a 'busy' page | |
973 | */ | |
974 | m->absent = FALSE; | |
975 | m->busy = TRUE; | |
0b4e3aa0 | 976 | } |
2d21ac55 A |
977 | /* |
978 | * zero-fill the page and put it on | |
979 | * the correct paging queue | |
980 | */ | |
981 | my_fault = vm_fault_zero_page(m, no_zero_fill); | |
982 | ||
1c79356b A |
983 | break; |
984 | } else { | |
2d21ac55 | 985 | if (must_be_resident) |
1c79356b | 986 | vm_object_paging_end(object); |
2d21ac55 | 987 | else if (object != first_object) { |
1c79356b A |
988 | vm_object_paging_end(object); |
989 | VM_PAGE_FREE(m); | |
990 | } else { | |
991 | first_m = m; | |
992 | m->absent = FALSE; | |
1c79356b A |
993 | m->busy = TRUE; |
994 | ||
2d21ac55 | 995 | vm_page_lockspin_queues(); |
1c79356b A |
996 | VM_PAGE_QUEUES_REMOVE(m); |
997 | vm_page_unlock_queues(); | |
998 | } | |
999 | XPR(XPR_VM_FAULT, | |
1000 | "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n", | |
1001 | (integer_t)object, offset, | |
1002 | (integer_t)next_object, | |
1003 | offset+object->shadow_offset,0); | |
2d21ac55 | 1004 | |
1c79356b | 1005 | offset += object->shadow_offset; |
2d21ac55 A |
1006 | fault_info->lo_offset += object->shadow_offset; |
1007 | fault_info->hi_offset += object->shadow_offset; | |
1c79356b | 1008 | access_required = VM_PROT_READ; |
2d21ac55 | 1009 | |
1c79356b A |
1010 | vm_object_lock(next_object); |
1011 | vm_object_unlock(object); | |
1012 | object = next_object; | |
1013 | vm_object_paging_begin(object); | |
2d21ac55 A |
1014 | |
1015 | /* | |
1016 | * reset to default type of fault | |
1017 | */ | |
1018 | my_fault = DBG_CACHE_HIT_FAULT; | |
1019 | ||
1c79356b A |
1020 | continue; |
1021 | } | |
1022 | } | |
1c79356b | 1023 | if ((m->cleaning) |
2d21ac55 A |
1024 | && ((object != first_object) || (object->copy != VM_OBJECT_NULL)) |
1025 | && (fault_type & VM_PROT_WRITE)) { | |
1c79356b A |
1026 | /* |
1027 | * This is a copy-on-write fault that will | |
1028 | * cause us to revoke access to this page, but | |
1029 | * this page is in the process of being cleaned | |
1030 | * in a clustered pageout. We must wait until | |
1031 | * the cleaning operation completes before | |
1032 | * revoking access to the original page, | |
1033 | * otherwise we might attempt to remove a | |
1034 | * wired mapping. | |
1035 | */ | |
1036 | #if TRACEFAULTPAGE | |
1037 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ | |
1038 | #endif | |
1039 | XPR(XPR_VM_FAULT, | |
1040 | "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n", | |
1041 | (integer_t)object, offset, | |
1042 | (integer_t)m, 0, 0); | |
2d21ac55 A |
1043 | /* |
1044 | * take an extra ref so that object won't die | |
1045 | */ | |
1046 | vm_object_reference_locked(object); | |
1047 | ||
1c79356b | 1048 | vm_fault_cleanup(object, first_m); |
2d21ac55 | 1049 | |
1c79356b A |
1050 | counter(c_vm_fault_page_block_backoff_kernel++); |
1051 | vm_object_lock(object); | |
1052 | assert(object->ref_count > 0); | |
2d21ac55 | 1053 | |
1c79356b | 1054 | m = vm_page_lookup(object, offset); |
2d21ac55 | 1055 | |
1c79356b A |
1056 | if (m != VM_PAGE_NULL && m->cleaning) { |
1057 | PAGE_ASSERT_WAIT(m, interruptible); | |
2d21ac55 | 1058 | |
1c79356b | 1059 | vm_object_unlock(object); |
9bccf70c | 1060 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 1061 | vm_object_deallocate(object); |
2d21ac55 | 1062 | |
1c79356b A |
1063 | goto backoff; |
1064 | } else { | |
1065 | vm_object_unlock(object); | |
2d21ac55 | 1066 | |
1c79356b | 1067 | vm_object_deallocate(object); |
9bccf70c | 1068 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1069 | |
1070 | return (VM_FAULT_RETRY); | |
1c79356b A |
1071 | } |
1072 | } | |
2d21ac55 A |
1073 | if (type_of_fault == NULL && m->speculative) { |
1074 | /* | |
1075 | * If we were passed a non-NULL pointer for | |
1076 | * "type_of_fault", than we came from | |
1077 | * vm_fault... we'll let it deal with | |
1078 | * this condition, since it | |
1079 | * needs to see m->speculative to correctly | |
1080 | * account the pageins, otherwise... | |
1081 | * take it off the speculative queue, we'll | |
1082 | * let the caller of vm_fault_page deal | |
1083 | * with getting it onto the correct queue | |
1084 | */ | |
1085 | vm_page_lockspin_queues(); | |
1086 | VM_PAGE_QUEUES_REMOVE(m); | |
1087 | vm_page_unlock_queues(); | |
1088 | } | |
1c79356b | 1089 | |
2d21ac55 A |
1090 | if (m->encrypted) { |
1091 | /* | |
1092 | * ENCRYPTED SWAP: | |
1093 | * the user needs access to a page that we | |
1094 | * encrypted before paging it out. | |
1095 | * Decrypt the page now. | |
1096 | * Keep it busy to prevent anyone from | |
1097 | * accessing it during the decryption. | |
1098 | */ | |
1099 | m->busy = TRUE; | |
1100 | vm_page_decrypt(m, 0); | |
1101 | assert(object == m->object); | |
1102 | assert(m->busy); | |
1103 | PAGE_WAKEUP_DONE(m); | |
1c79356b | 1104 | |
2d21ac55 A |
1105 | /* |
1106 | * Retry from the top, in case | |
1107 | * something changed while we were | |
1108 | * decrypting. | |
1109 | */ | |
1110 | continue; | |
1111 | } | |
1112 | ASSERT_PAGE_DECRYPTED(m); | |
1c79356b | 1113 | |
2d21ac55 A |
1114 | if (m->object->code_signed) { |
1115 | /* | |
1116 | * CODE SIGNING: | |
1117 | * We just paged in a page from a signed | |
1118 | * memory object but we don't need to | |
1119 | * validate it now. We'll validate it if | |
1120 | * when it gets mapped into a user address | |
1121 | * space for the first time or when the page | |
1122 | * gets copied to another object as a result | |
1123 | * of a copy-on-write. | |
1124 | */ | |
1c79356b | 1125 | } |
2d21ac55 | 1126 | |
1c79356b | 1127 | /* |
2d21ac55 A |
1128 | * We mark the page busy and leave it on |
1129 | * the pageout queues. If the pageout | |
1130 | * deamon comes across it, then it will | |
1131 | * remove the page from the queue, but not the object | |
1c79356b | 1132 | */ |
1c79356b A |
1133 | #if TRACEFAULTPAGE |
1134 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1135 | #endif | |
1c79356b A |
1136 | XPR(XPR_VM_FAULT, |
1137 | "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n", | |
1138 | (integer_t)object, offset, (integer_t)m, 0, 0); | |
1139 | assert(!m->busy); | |
1c79356b | 1140 | assert(!m->absent); |
2d21ac55 A |
1141 | |
1142 | m->busy = TRUE; | |
1c79356b A |
1143 | break; |
1144 | } | |
2d21ac55 | 1145 | |
1c79356b | 1146 | |
2d21ac55 A |
1147 | /* |
1148 | * we get here when there is no page present in the object at | |
1149 | * the offset we're interested in... we'll allocate a page | |
1150 | * at this point if the pager associated with | |
1151 | * this object can provide the data or we're the top object... | |
1152 | * object is locked; m == NULL | |
1153 | */ | |
1154 | look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset) == TRUE) && !data_supply); | |
1155 | ||
1c79356b A |
1156 | #if TRACEFAULTPAGE |
1157 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ | |
1158 | #endif | |
2d21ac55 | 1159 | if ((look_for_page || (object == first_object)) && !must_be_resident && !object->phys_contiguous) { |
1c79356b | 1160 | /* |
2d21ac55 | 1161 | * Allocate a new page for this object/offset pair |
1c79356b | 1162 | */ |
2d21ac55 | 1163 | m = vm_page_grab(); |
1c79356b A |
1164 | #if TRACEFAULTPAGE |
1165 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
1166 | #endif | |
1167 | if (m == VM_PAGE_NULL) { | |
2d21ac55 | 1168 | |
1c79356b | 1169 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1170 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1171 | |
1172 | return (VM_FAULT_MEMORY_SHORTAGE); | |
1c79356b A |
1173 | } |
1174 | vm_page_insert(m, object, offset); | |
1175 | } | |
2d21ac55 | 1176 | if (look_for_page && !must_be_resident) { |
1c79356b A |
1177 | kern_return_t rc; |
1178 | ||
1179 | /* | |
1180 | * If the memory manager is not ready, we | |
1181 | * cannot make requests. | |
1182 | */ | |
1183 | if (!object->pager_ready) { | |
1184 | #if TRACEFAULTPAGE | |
1185 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1186 | #endif | |
2d21ac55 A |
1187 | if (m != VM_PAGE_NULL) |
1188 | VM_PAGE_FREE(m); | |
1189 | ||
1c79356b A |
1190 | XPR(XPR_VM_FAULT, |
1191 | "vm_f_page: ready wait obj 0x%X, offset 0x%X\n", | |
1192 | (integer_t)object, offset, 0, 0, 0); | |
2d21ac55 A |
1193 | |
1194 | /* | |
1195 | * take an extra ref so object won't die | |
1196 | */ | |
1197 | vm_object_reference_locked(object); | |
1c79356b A |
1198 | vm_fault_cleanup(object, first_m); |
1199 | counter(c_vm_fault_page_block_backoff_kernel++); | |
2d21ac55 | 1200 | |
1c79356b A |
1201 | vm_object_lock(object); |
1202 | assert(object->ref_count > 0); | |
2d21ac55 | 1203 | |
1c79356b | 1204 | if (!object->pager_ready) { |
2d21ac55 A |
1205 | wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible); |
1206 | ||
1c79356b | 1207 | vm_object_unlock(object); |
9bccf70c A |
1208 | if (wait_result == THREAD_WAITING) |
1209 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b | 1210 | vm_object_deallocate(object); |
2d21ac55 | 1211 | |
1c79356b A |
1212 | goto backoff; |
1213 | } else { | |
1214 | vm_object_unlock(object); | |
1215 | vm_object_deallocate(object); | |
9bccf70c | 1216 | thread_interrupt_level(interruptible_state); |
1c79356b | 1217 | |
2d21ac55 | 1218 | return (VM_FAULT_RETRY); |
0b4e3aa0 | 1219 | } |
0b4e3aa0 | 1220 | } |
2d21ac55 | 1221 | if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) { |
1c79356b | 1222 | /* |
2d21ac55 A |
1223 | * If there are too many outstanding page |
1224 | * requests pending on this external object, we | |
1225 | * wait for them to be resolved now. | |
1c79356b | 1226 | */ |
1c79356b | 1227 | #if TRACEFAULTPAGE |
2d21ac55 | 1228 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
1c79356b | 1229 | #endif |
2d21ac55 | 1230 | if (m != VM_PAGE_NULL) |
1c79356b | 1231 | VM_PAGE_FREE(m); |
1c79356b | 1232 | /* |
2d21ac55 | 1233 | * take an extra ref so object won't die |
1c79356b | 1234 | */ |
2d21ac55 | 1235 | vm_object_reference_locked(object); |
1c79356b | 1236 | |
1c79356b | 1237 | vm_fault_cleanup(object, first_m); |
2d21ac55 | 1238 | |
1c79356b | 1239 | counter(c_vm_fault_page_block_backoff_kernel++); |
2d21ac55 | 1240 | |
1c79356b A |
1241 | vm_object_lock(object); |
1242 | assert(object->ref_count > 0); | |
2d21ac55 A |
1243 | |
1244 | if (object->paging_in_progress > vm_object_pagein_throttle) { | |
1245 | vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS, interruptible); | |
1246 | ||
1c79356b | 1247 | vm_object_unlock(object); |
9bccf70c | 1248 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 1249 | vm_object_deallocate(object); |
2d21ac55 | 1250 | |
1c79356b A |
1251 | goto backoff; |
1252 | } else { | |
1253 | vm_object_unlock(object); | |
1254 | vm_object_deallocate(object); | |
9bccf70c | 1255 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1256 | |
1257 | return (VM_FAULT_RETRY); | |
1c79356b A |
1258 | } |
1259 | } | |
2d21ac55 A |
1260 | if (m != VM_PAGE_NULL) { |
1261 | /* | |
1262 | * Indicate that the page is waiting for data | |
1263 | * from the memory manager. | |
1264 | */ | |
1265 | m->list_req_pending = TRUE; | |
0b4e3aa0 | 1266 | m->absent = TRUE; |
0b4e3aa0 | 1267 | } |
1c79356b | 1268 | |
1c79356b A |
1269 | #if TRACEFAULTPAGE |
1270 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1271 | #endif | |
2d21ac55 | 1272 | |
1c79356b | 1273 | /* |
2d21ac55 A |
1274 | * It's possible someone called vm_object_destroy while we weren't |
1275 | * holding the object lock. If that has happened, then bail out | |
1276 | * here. | |
1c79356b | 1277 | */ |
2d21ac55 A |
1278 | |
1279 | pager = object->pager; | |
1280 | ||
1281 | if (pager == MEMORY_OBJECT_NULL) { | |
1282 | vm_fault_cleanup(object, first_m); | |
1283 | thread_interrupt_level(interruptible_state); | |
1284 | return VM_FAULT_MEMORY_ERROR; | |
1285 | } | |
1c79356b A |
1286 | |
1287 | /* | |
2d21ac55 A |
1288 | * We have an absent page in place for the faulting offset, |
1289 | * so we can release the object lock. | |
1c79356b A |
1290 | */ |
1291 | ||
2d21ac55 | 1292 | vm_object_unlock(object); |
1c79356b A |
1293 | |
1294 | /* | |
2d21ac55 A |
1295 | * If this object uses a copy_call strategy, |
1296 | * and we are interested in a copy of this object | |
1297 | * (having gotten here only by following a | |
1298 | * shadow chain), then tell the memory manager | |
1299 | * via a flag added to the desired_access | |
1300 | * parameter, so that it can detect a race | |
1301 | * between our walking down the shadow chain | |
1302 | * and its pushing pages up into a copy of | |
1303 | * the object that it manages. | |
1c79356b | 1304 | */ |
2d21ac55 | 1305 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object) |
1c79356b | 1306 | wants_copy_flag = VM_PROT_WANTS_COPY; |
2d21ac55 | 1307 | else |
1c79356b | 1308 | wants_copy_flag = VM_PROT_NONE; |
1c79356b A |
1309 | |
1310 | XPR(XPR_VM_FAULT, | |
1311 | "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n", | |
1312 | (integer_t)object, offset, (integer_t)m, | |
1313 | access_required | wants_copy_flag, 0); | |
1314 | ||
2d21ac55 A |
1315 | /* |
1316 | * Call the memory manager to retrieve the data. | |
1317 | */ | |
1318 | rc = memory_object_data_request( | |
1319 | pager, | |
1320 | offset + object->paging_offset, | |
1321 | PAGE_SIZE, | |
1322 | access_required | wants_copy_flag, | |
1323 | (memory_object_fault_info_t)fault_info); | |
1c79356b A |
1324 | |
1325 | #if TRACEFAULTPAGE | |
1326 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ | |
1327 | #endif | |
2d21ac55 A |
1328 | vm_object_lock(object); |
1329 | ||
1c79356b | 1330 | if (rc != KERN_SUCCESS) { |
2d21ac55 | 1331 | |
1c79356b | 1332 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1333 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1334 | |
1335 | return ((rc == MACH_SEND_INTERRUPTED) ? | |
1c79356b A |
1336 | VM_FAULT_INTERRUPTED : |
1337 | VM_FAULT_MEMORY_ERROR); | |
1338 | } | |
2d21ac55 A |
1339 | if ((interruptible != THREAD_UNINT) && (current_thread()->sched_mode & TH_MODE_ABORT)) { |
1340 | ||
1c79356b | 1341 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1342 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1343 | |
1344 | return (VM_FAULT_INTERRUPTED); | |
1c79356b | 1345 | } |
2d21ac55 | 1346 | if (m == VM_PAGE_NULL && object->phys_contiguous) { |
91447636 A |
1347 | /* |
1348 | * No page here means that the object we | |
1349 | * initially looked up was "physically | |
1350 | * contiguous" (i.e. device memory). However, | |
1351 | * with Virtual VRAM, the object might not | |
1352 | * be backed by that device memory anymore, | |
1353 | * so we're done here only if the object is | |
1354 | * still "phys_contiguous". | |
1355 | * Otherwise, if the object is no longer | |
1356 | * "phys_contiguous", we need to retry the | |
1357 | * page fault against the object's new backing | |
1358 | * store (different memory object). | |
1359 | */ | |
0b4e3aa0 | 1360 | break; |
91447636 | 1361 | } |
2d21ac55 A |
1362 | /* |
1363 | * potentially a pagein fault | |
1364 | * if we make it through the state checks | |
1365 | * above, than we'll count it as such | |
1366 | */ | |
1367 | my_fault = DBG_PAGEIN_FAULT; | |
91447636 A |
1368 | |
1369 | /* | |
1370 | * Retry with same object/offset, since new data may | |
1371 | * be in a different page (i.e., m is meaningless at | |
1372 | * this point). | |
1373 | */ | |
1c79356b A |
1374 | continue; |
1375 | } | |
1376 | ||
1377 | /* | |
2d21ac55 A |
1378 | * We get here if the object has no pager, or an existence map |
1379 | * exists and indicates the page isn't present on the pager | |
1380 | * or we're unwiring a page. If a pager exists, but there | |
1381 | * is no existence map, then the m->absent case above handles | |
1382 | * the ZF case when the pager can't provide the page | |
1c79356b A |
1383 | */ |
1384 | #if TRACEFAULTPAGE | |
1385 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1386 | #endif | |
1387 | if (object == first_object) | |
1388 | first_m = m; | |
1389 | else | |
1390 | assert(m == VM_PAGE_NULL); | |
1391 | ||
1392 | XPR(XPR_VM_FAULT, | |
1393 | "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n", | |
1394 | (integer_t)object, offset, (integer_t)m, | |
1395 | (integer_t)object->shadow, 0); | |
2d21ac55 | 1396 | |
1c79356b | 1397 | next_object = object->shadow; |
2d21ac55 | 1398 | |
1c79356b | 1399 | if (next_object == VM_OBJECT_NULL) { |
1c79356b | 1400 | /* |
2d21ac55 A |
1401 | * we've hit the bottom of the shadown chain, |
1402 | * fill the page in the top object with zeros. | |
1c79356b | 1403 | */ |
2d21ac55 | 1404 | assert(!must_be_resident); |
1c79356b A |
1405 | |
1406 | if (object != first_object) { | |
1407 | vm_object_paging_end(object); | |
1408 | vm_object_unlock(object); | |
1409 | ||
1410 | object = first_object; | |
1411 | offset = first_offset; | |
1412 | vm_object_lock(object); | |
1413 | } | |
1c79356b A |
1414 | m = first_m; |
1415 | assert(m->object == object); | |
1416 | first_m = VM_PAGE_NULL; | |
1417 | ||
55e303ae | 1418 | /* |
2d21ac55 A |
1419 | * check for any conditions that prevent |
1420 | * us from creating a new zero-fill page | |
1421 | * vm_fault_check will do all of the | |
1422 | * fault cleanup in the case of an error condition | |
1423 | * including resetting the thread_interrupt_level | |
55e303ae | 1424 | */ |
2d21ac55 | 1425 | error = vm_fault_check(object, m, first_m, interruptible_state); |
55e303ae | 1426 | |
2d21ac55 A |
1427 | if (error != VM_FAULT_SUCCESS) |
1428 | return (error); | |
55e303ae | 1429 | |
2d21ac55 A |
1430 | if (m == VM_PAGE_NULL) { |
1431 | m = vm_page_grab(); | |
1c79356b | 1432 | |
2d21ac55 A |
1433 | if (m == VM_PAGE_NULL) { |
1434 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
1435 | thread_interrupt_level(interruptible_state); | |
55e303ae | 1436 | |
2d21ac55 A |
1437 | return (VM_FAULT_MEMORY_SHORTAGE); |
1438 | } | |
1439 | vm_page_insert(m, object, offset); | |
0b4e3aa0 | 1440 | } |
2d21ac55 A |
1441 | my_fault = vm_fault_zero_page(m, no_zero_fill); |
1442 | ||
1c79356b | 1443 | break; |
2d21ac55 A |
1444 | |
1445 | } else { | |
1446 | /* | |
1447 | * Move on to the next object. Lock the next | |
1448 | * object before unlocking the current one. | |
1449 | */ | |
1c79356b A |
1450 | if ((object != first_object) || must_be_resident) |
1451 | vm_object_paging_end(object); | |
2d21ac55 | 1452 | |
1c79356b | 1453 | offset += object->shadow_offset; |
2d21ac55 A |
1454 | fault_info->lo_offset += object->shadow_offset; |
1455 | fault_info->hi_offset += object->shadow_offset; | |
1c79356b | 1456 | access_required = VM_PROT_READ; |
2d21ac55 | 1457 | |
1c79356b A |
1458 | vm_object_lock(next_object); |
1459 | vm_object_unlock(object); | |
2d21ac55 | 1460 | |
1c79356b A |
1461 | object = next_object; |
1462 | vm_object_paging_begin(object); | |
1463 | } | |
1464 | } | |
1465 | ||
1466 | /* | |
1467 | * PAGE HAS BEEN FOUND. | |
1468 | * | |
1469 | * This page (m) is: | |
1470 | * busy, so that we can play with it; | |
1471 | * not absent, so that nobody else will fill it; | |
1472 | * possibly eligible for pageout; | |
1473 | * | |
1474 | * The top-level page (first_m) is: | |
1475 | * VM_PAGE_NULL if the page was found in the | |
1476 | * top-level object; | |
1477 | * busy, not absent, and ineligible for pageout. | |
1478 | * | |
1479 | * The current object (object) is locked. A paging | |
1480 | * reference is held for the current and top-level | |
1481 | * objects. | |
1482 | */ | |
1483 | ||
1484 | #if TRACEFAULTPAGE | |
1485 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1486 | #endif | |
1487 | #if EXTRA_ASSERTIONS | |
2d21ac55 | 1488 | if (m != VM_PAGE_NULL) { |
0b4e3aa0 A |
1489 | assert(m->busy && !m->absent); |
1490 | assert((first_m == VM_PAGE_NULL) || | |
1491 | (first_m->busy && !first_m->absent && | |
1492 | !first_m->active && !first_m->inactive)); | |
1493 | } | |
1c79356b A |
1494 | #endif /* EXTRA_ASSERTIONS */ |
1495 | ||
91447636 A |
1496 | /* |
1497 | * ENCRYPTED SWAP: | |
1498 | * If we found a page, we must have decrypted it before we | |
1499 | * get here... | |
1500 | */ | |
1501 | if (m != VM_PAGE_NULL) { | |
1502 | ASSERT_PAGE_DECRYPTED(m); | |
1503 | } | |
1504 | ||
1c79356b | 1505 | XPR(XPR_VM_FAULT, |
2d21ac55 | 1506 | "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n", |
1c79356b A |
1507 | (integer_t)object, offset, (integer_t)m, |
1508 | (integer_t)first_object, (integer_t)first_m); | |
2d21ac55 | 1509 | |
1c79356b | 1510 | /* |
2d21ac55 A |
1511 | * If the page is being written, but isn't |
1512 | * already owned by the top-level object, | |
1513 | * we have to copy it into a new page owned | |
1514 | * by the top-level object. | |
1c79356b | 1515 | */ |
0b4e3aa0 | 1516 | if ((object != first_object) && (m != VM_PAGE_NULL)) { |
1c79356b A |
1517 | |
1518 | #if TRACEFAULTPAGE | |
2d21ac55 | 1519 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ |
1c79356b A |
1520 | #endif |
1521 | if (fault_type & VM_PROT_WRITE) { | |
1522 | vm_page_t copy_m; | |
1523 | ||
2d21ac55 A |
1524 | /* |
1525 | * We only really need to copy if we | |
1526 | * want to write it. | |
1527 | */ | |
1c79356b A |
1528 | assert(!must_be_resident); |
1529 | ||
55e303ae A |
1530 | /* |
1531 | * are we protecting the system from | |
1532 | * backing store exhaustion. If so | |
1533 | * sleep unless we are privileged. | |
1534 | */ | |
2d21ac55 A |
1535 | if (vm_backing_store_low) { |
1536 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { | |
55e303ae | 1537 | |
55e303ae A |
1538 | RELEASE_PAGE(m); |
1539 | vm_fault_cleanup(object, first_m); | |
2d21ac55 A |
1540 | |
1541 | assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); | |
1542 | ||
91447636 | 1543 | thread_block(THREAD_CONTINUE_NULL); |
2d21ac55 A |
1544 | thread_interrupt_level(interruptible_state); |
1545 | ||
1546 | return (VM_FAULT_RETRY); | |
55e303ae A |
1547 | } |
1548 | } | |
1c79356b | 1549 | /* |
2d21ac55 A |
1550 | * If we try to collapse first_object at this |
1551 | * point, we may deadlock when we try to get | |
1552 | * the lock on an intermediate object (since we | |
1553 | * have the bottom object locked). We can't | |
1554 | * unlock the bottom object, because the page | |
1555 | * we found may move (by collapse) if we do. | |
1c79356b | 1556 | * |
2d21ac55 A |
1557 | * Instead, we first copy the page. Then, when |
1558 | * we have no more use for the bottom object, | |
1559 | * we unlock it and try to collapse. | |
1c79356b | 1560 | * |
2d21ac55 A |
1561 | * Note that we copy the page even if we didn't |
1562 | * need to... that's the breaks. | |
1c79356b A |
1563 | */ |
1564 | ||
1565 | /* | |
2d21ac55 | 1566 | * Allocate a page for the copy |
1c79356b A |
1567 | */ |
1568 | copy_m = vm_page_grab(); | |
2d21ac55 | 1569 | |
1c79356b A |
1570 | if (copy_m == VM_PAGE_NULL) { |
1571 | RELEASE_PAGE(m); | |
2d21ac55 | 1572 | |
1c79356b | 1573 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1574 | thread_interrupt_level(interruptible_state); |
1c79356b | 1575 | |
2d21ac55 A |
1576 | return (VM_FAULT_MEMORY_SHORTAGE); |
1577 | } | |
1c79356b A |
1578 | XPR(XPR_VM_FAULT, |
1579 | "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n", | |
1580 | (integer_t)object, offset, | |
1581 | (integer_t)m, (integer_t)copy_m, 0); | |
2d21ac55 | 1582 | |
1c79356b A |
1583 | vm_page_copy(m, copy_m); |
1584 | ||
1585 | /* | |
2d21ac55 A |
1586 | * If another map is truly sharing this |
1587 | * page with us, we have to flush all | |
1588 | * uses of the original page, since we | |
1589 | * can't distinguish those which want the | |
1590 | * original from those which need the | |
1591 | * new copy. | |
1c79356b | 1592 | * |
2d21ac55 A |
1593 | * XXXO If we know that only one map has |
1594 | * access to this page, then we could | |
1595 | * avoid the pmap_disconnect() call. | |
1c79356b | 1596 | */ |
2d21ac55 A |
1597 | if (m->pmapped) |
1598 | pmap_disconnect(m->phys_page); | |
1c79356b | 1599 | |
1c79356b | 1600 | assert(!m->cleaning); |
1c79356b A |
1601 | |
1602 | /* | |
2d21ac55 | 1603 | * We no longer need the old page or object. |
1c79356b | 1604 | */ |
1c79356b A |
1605 | PAGE_WAKEUP_DONE(m); |
1606 | vm_object_paging_end(object); | |
1607 | vm_object_unlock(object); | |
1608 | ||
2d21ac55 A |
1609 | my_fault = DBG_COW_FAULT; |
1610 | VM_STAT_INCR(cow_faults); | |
1611 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); | |
1c79356b | 1612 | current_task()->cow_faults++; |
2d21ac55 | 1613 | |
1c79356b A |
1614 | object = first_object; |
1615 | offset = first_offset; | |
1616 | ||
1617 | vm_object_lock(object); | |
2d21ac55 A |
1618 | /* |
1619 | * get rid of the place holder | |
1620 | * page that we soldered in earlier | |
1621 | */ | |
1c79356b A |
1622 | VM_PAGE_FREE(first_m); |
1623 | first_m = VM_PAGE_NULL; | |
2d21ac55 A |
1624 | |
1625 | /* | |
1626 | * and replace it with the | |
1627 | * page we just copied into | |
1628 | */ | |
1c79356b A |
1629 | assert(copy_m->busy); |
1630 | vm_page_insert(copy_m, object, offset); | |
2d21ac55 | 1631 | copy_m->dirty = TRUE; |
1c79356b | 1632 | |
2d21ac55 | 1633 | m = copy_m; |
1c79356b | 1634 | /* |
2d21ac55 A |
1635 | * Now that we've gotten the copy out of the |
1636 | * way, let's try to collapse the top object. | |
1637 | * But we have to play ugly games with | |
1638 | * paging_in_progress to do that... | |
1c79356b | 1639 | */ |
1c79356b | 1640 | vm_object_paging_end(object); |
0c530ab8 | 1641 | vm_object_collapse(object, offset, TRUE); |
1c79356b A |
1642 | vm_object_paging_begin(object); |
1643 | ||
2d21ac55 | 1644 | } else |
1c79356b | 1645 | *protection &= (~VM_PROT_WRITE); |
1c79356b | 1646 | } |
1c79356b | 1647 | /* |
2d21ac55 A |
1648 | * Now check whether the page needs to be pushed into the |
1649 | * copy object. The use of asymmetric copy on write for | |
1650 | * shared temporary objects means that we may do two copies to | |
1651 | * satisfy the fault; one above to get the page from a | |
1652 | * shadowed object, and one here to push it into the copy. | |
1c79356b | 1653 | */ |
2d21ac55 | 1654 | try_failed_count = 0; |
1c79356b | 1655 | |
2d21ac55 | 1656 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL && (m != VM_PAGE_NULL)) { |
1c79356b A |
1657 | vm_object_offset_t copy_offset; |
1658 | vm_page_t copy_m; | |
1659 | ||
1660 | #if TRACEFAULTPAGE | |
1661 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1662 | #endif | |
1663 | /* | |
2d21ac55 A |
1664 | * If the page is being written, but hasn't been |
1665 | * copied to the copy-object, we have to copy it there. | |
1c79356b | 1666 | */ |
1c79356b A |
1667 | if ((fault_type & VM_PROT_WRITE) == 0) { |
1668 | *protection &= ~VM_PROT_WRITE; | |
1669 | break; | |
1670 | } | |
1671 | ||
1672 | /* | |
2d21ac55 A |
1673 | * If the page was guaranteed to be resident, |
1674 | * we must have already performed the copy. | |
1c79356b | 1675 | */ |
1c79356b A |
1676 | if (must_be_resident) |
1677 | break; | |
1678 | ||
1679 | /* | |
2d21ac55 | 1680 | * Try to get the lock on the copy_object. |
1c79356b A |
1681 | */ |
1682 | if (!vm_object_lock_try(copy_object)) { | |
1c79356b | 1683 | |
2d21ac55 A |
1684 | vm_object_unlock(object); |
1685 | try_failed_count++; | |
1c79356b | 1686 | |
2d21ac55 | 1687 | mutex_pause(try_failed_count); /* wait a bit */ |
1c79356b | 1688 | vm_object_lock(object); |
2d21ac55 | 1689 | |
1c79356b A |
1690 | continue; |
1691 | } | |
2d21ac55 | 1692 | try_failed_count = 0; |
1c79356b A |
1693 | |
1694 | /* | |
2d21ac55 A |
1695 | * Make another reference to the copy-object, |
1696 | * to keep it from disappearing during the | |
1697 | * copy. | |
1c79356b | 1698 | */ |
2d21ac55 | 1699 | vm_object_reference_locked(copy_object); |
1c79356b A |
1700 | |
1701 | /* | |
2d21ac55 | 1702 | * Does the page exist in the copy? |
1c79356b A |
1703 | */ |
1704 | copy_offset = first_offset - copy_object->shadow_offset; | |
2d21ac55 | 1705 | |
1c79356b A |
1706 | if (copy_object->size <= copy_offset) |
1707 | /* | |
1708 | * Copy object doesn't cover this page -- do nothing. | |
1709 | */ | |
1710 | ; | |
2d21ac55 A |
1711 | else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { |
1712 | /* | |
1713 | * Page currently exists in the copy object | |
1714 | */ | |
1c79356b A |
1715 | if (copy_m->busy) { |
1716 | /* | |
2d21ac55 A |
1717 | * If the page is being brought |
1718 | * in, wait for it and then retry. | |
1c79356b A |
1719 | */ |
1720 | RELEASE_PAGE(m); | |
2d21ac55 A |
1721 | |
1722 | /* | |
1723 | * take an extra ref so object won't die | |
1724 | */ | |
1725 | vm_object_reference_locked(copy_object); | |
1c79356b A |
1726 | vm_object_unlock(copy_object); |
1727 | vm_fault_cleanup(object, first_m); | |
1728 | counter(c_vm_fault_page_block_backoff_kernel++); | |
2d21ac55 | 1729 | |
1c79356b A |
1730 | vm_object_lock(copy_object); |
1731 | assert(copy_object->ref_count > 0); | |
1732 | VM_OBJ_RES_DECR(copy_object); | |
2d21ac55 | 1733 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
1734 | copy_object->ref_count--; |
1735 | assert(copy_object->ref_count > 0); | |
1736 | copy_m = vm_page_lookup(copy_object, copy_offset); | |
91447636 A |
1737 | /* |
1738 | * ENCRYPTED SWAP: | |
1739 | * it's OK if the "copy_m" page is encrypted, | |
1740 | * because we're not moving it nor handling its | |
1741 | * contents. | |
1742 | */ | |
1c79356b A |
1743 | if (copy_m != VM_PAGE_NULL && copy_m->busy) { |
1744 | PAGE_ASSERT_WAIT(copy_m, interruptible); | |
2d21ac55 | 1745 | |
1c79356b | 1746 | vm_object_unlock(copy_object); |
9bccf70c | 1747 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 1748 | vm_object_deallocate(copy_object); |
2d21ac55 | 1749 | |
1c79356b A |
1750 | goto backoff; |
1751 | } else { | |
1752 | vm_object_unlock(copy_object); | |
1753 | vm_object_deallocate(copy_object); | |
9bccf70c | 1754 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1755 | |
1756 | return (VM_FAULT_RETRY); | |
1c79356b A |
1757 | } |
1758 | } | |
1759 | } | |
1760 | else if (!PAGED_OUT(copy_object, copy_offset)) { | |
1761 | /* | |
1762 | * If PAGED_OUT is TRUE, then the page used to exist | |
1763 | * in the copy-object, and has already been paged out. | |
1764 | * We don't need to repeat this. If PAGED_OUT is | |
1765 | * FALSE, then either we don't know (!pager_created, | |
1766 | * for example) or it hasn't been paged out. | |
1767 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) | |
1768 | * We must copy the page to the copy object. | |
1769 | */ | |
1770 | ||
2d21ac55 A |
1771 | if (vm_backing_store_low) { |
1772 | /* | |
1773 | * we are protecting the system from | |
1774 | * backing store exhaustion. If so | |
1775 | * sleep unless we are privileged. | |
1776 | */ | |
1777 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { | |
1778 | assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); | |
55e303ae | 1779 | |
55e303ae A |
1780 | RELEASE_PAGE(m); |
1781 | VM_OBJ_RES_DECR(copy_object); | |
2d21ac55 | 1782 | vm_object_lock_assert_exclusive(copy_object); |
55e303ae A |
1783 | copy_object->ref_count--; |
1784 | assert(copy_object->ref_count > 0); | |
2d21ac55 | 1785 | |
55e303ae A |
1786 | vm_object_unlock(copy_object); |
1787 | vm_fault_cleanup(object, first_m); | |
91447636 | 1788 | thread_block(THREAD_CONTINUE_NULL); |
2d21ac55 A |
1789 | thread_interrupt_level(interruptible_state); |
1790 | ||
1791 | return (VM_FAULT_RETRY); | |
55e303ae A |
1792 | } |
1793 | } | |
1c79356b | 1794 | /* |
2d21ac55 | 1795 | * Allocate a page for the copy |
1c79356b A |
1796 | */ |
1797 | copy_m = vm_page_alloc(copy_object, copy_offset); | |
2d21ac55 | 1798 | |
1c79356b A |
1799 | if (copy_m == VM_PAGE_NULL) { |
1800 | RELEASE_PAGE(m); | |
2d21ac55 | 1801 | |
1c79356b | 1802 | VM_OBJ_RES_DECR(copy_object); |
2d21ac55 | 1803 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
1804 | copy_object->ref_count--; |
1805 | assert(copy_object->ref_count > 0); | |
2d21ac55 | 1806 | |
1c79356b A |
1807 | vm_object_unlock(copy_object); |
1808 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1809 | thread_interrupt_level(interruptible_state); |
1c79356b | 1810 | |
2d21ac55 A |
1811 | return (VM_FAULT_MEMORY_SHORTAGE); |
1812 | } | |
1c79356b | 1813 | /* |
2d21ac55 | 1814 | * Must copy page into copy-object. |
1c79356b | 1815 | */ |
1c79356b A |
1816 | vm_page_copy(m, copy_m); |
1817 | ||
1818 | /* | |
2d21ac55 A |
1819 | * If the old page was in use by any users |
1820 | * of the copy-object, it must be removed | |
1821 | * from all pmaps. (We can't know which | |
1822 | * pmaps use it.) | |
1c79356b | 1823 | */ |
2d21ac55 A |
1824 | if (m->pmapped) |
1825 | pmap_disconnect(m->phys_page); | |
1c79356b A |
1826 | |
1827 | /* | |
2d21ac55 A |
1828 | * If there's a pager, then immediately |
1829 | * page out this page, using the "initialize" | |
1830 | * option. Else, we use the copy. | |
1c79356b | 1831 | */ |
2d21ac55 A |
1832 | if ((!copy_object->pager_created) |
1833 | #if MACH_PAGEMAP | |
1834 | || vm_external_state_get(copy_object->existence_map, copy_offset) == VM_EXTERNAL_STATE_ABSENT | |
1c79356b | 1835 | #endif |
2d21ac55 A |
1836 | ) { |
1837 | ||
1838 | vm_page_lockspin_queues(); | |
1839 | assert(!m->cleaning); | |
1c79356b A |
1840 | vm_page_activate(copy_m); |
1841 | vm_page_unlock_queues(); | |
2d21ac55 A |
1842 | |
1843 | copy_m->dirty = TRUE; | |
1c79356b A |
1844 | PAGE_WAKEUP_DONE(copy_m); |
1845 | } | |
1846 | else { | |
1847 | assert(copy_m->busy == TRUE); | |
2d21ac55 | 1848 | assert(!m->cleaning); |
1c79356b A |
1849 | |
1850 | /* | |
2d21ac55 | 1851 | * dirty is protected by the object lock |
1c79356b | 1852 | */ |
2d21ac55 | 1853 | copy_m->dirty = TRUE; |
1c79356b | 1854 | |
2d21ac55 A |
1855 | /* |
1856 | * The page is already ready for pageout: | |
1857 | * not on pageout queues and busy. | |
1858 | * Unlock everything except the | |
1859 | * copy_object itself. | |
1860 | */ | |
1c79356b A |
1861 | vm_object_unlock(object); |
1862 | ||
1863 | /* | |
2d21ac55 A |
1864 | * Write the page to the copy-object, |
1865 | * flushing it from the kernel. | |
1c79356b | 1866 | */ |
1c79356b A |
1867 | vm_pageout_initialize_page(copy_m); |
1868 | ||
1869 | /* | |
2d21ac55 A |
1870 | * Since the pageout may have |
1871 | * temporarily dropped the | |
1872 | * copy_object's lock, we | |
1873 | * check whether we'll have | |
1874 | * to deallocate the hard way. | |
1c79356b | 1875 | */ |
2d21ac55 | 1876 | if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) { |
1c79356b A |
1877 | vm_object_unlock(copy_object); |
1878 | vm_object_deallocate(copy_object); | |
1879 | vm_object_lock(object); | |
2d21ac55 | 1880 | |
1c79356b A |
1881 | continue; |
1882 | } | |
1c79356b | 1883 | /* |
2d21ac55 A |
1884 | * Pick back up the old object's |
1885 | * lock. [It is safe to do so, | |
1886 | * since it must be deeper in the | |
1887 | * object tree.] | |
1c79356b | 1888 | */ |
1c79356b A |
1889 | vm_object_lock(object); |
1890 | } | |
1c79356b | 1891 | /* |
2d21ac55 A |
1892 | * Because we're pushing a page upward |
1893 | * in the object tree, we must restart | |
1894 | * any faults that are waiting here. | |
1895 | * [Note that this is an expansion of | |
1896 | * PAGE_WAKEUP that uses the THREAD_RESTART | |
1897 | * wait result]. Can't turn off the page's | |
1898 | * busy bit because we're not done with it. | |
1c79356b | 1899 | */ |
1c79356b A |
1900 | if (m->wanted) { |
1901 | m->wanted = FALSE; | |
2d21ac55 | 1902 | thread_wakeup_with_result((event_t) m, THREAD_RESTART); |
1c79356b A |
1903 | } |
1904 | } | |
1c79356b | 1905 | /* |
2d21ac55 A |
1906 | * The reference count on copy_object must be |
1907 | * at least 2: one for our extra reference, | |
1908 | * and at least one from the outside world | |
1909 | * (we checked that when we last locked | |
1910 | * copy_object). | |
1c79356b | 1911 | */ |
2d21ac55 | 1912 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
1913 | copy_object->ref_count--; |
1914 | assert(copy_object->ref_count > 0); | |
2d21ac55 | 1915 | |
1c79356b A |
1916 | VM_OBJ_RES_DECR(copy_object); |
1917 | vm_object_unlock(copy_object); | |
1918 | ||
1919 | break; | |
1920 | } | |
1c79356b A |
1921 | *result_page = m; |
1922 | *top_page = first_m; | |
1923 | ||
1924 | XPR(XPR_VM_FAULT, | |
1925 | "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n", | |
1926 | (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0); | |
1c79356b | 1927 | |
2d21ac55 A |
1928 | if (m != VM_PAGE_NULL) { |
1929 | if (my_fault == DBG_PAGEIN_FAULT) { | |
55e303ae | 1930 | |
2d21ac55 A |
1931 | VM_STAT_INCR(pageins); |
1932 | DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL); | |
1933 | DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL); | |
1934 | current_task()->pageins++; | |
1935 | ||
1936 | if (m->object->internal) { | |
1937 | DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL); | |
1938 | } else { | |
1939 | DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL); | |
1940 | } | |
1941 | ||
1942 | /* | |
1943 | * evaluate access pattern and update state | |
1944 | * vm_fault_deactivate_behind depends on the | |
1945 | * state being up to date | |
1946 | */ | |
1947 | vm_fault_is_sequential(object, offset, fault_info->behavior); | |
1948 | ||
1949 | vm_fault_deactivate_behind(object, offset, fault_info->behavior); | |
1950 | } | |
1951 | if (type_of_fault) | |
1952 | *type_of_fault = my_fault; | |
1953 | } else | |
55e303ae | 1954 | vm_object_unlock(object); |
2d21ac55 | 1955 | |
55e303ae A |
1956 | thread_interrupt_level(interruptible_state); |
1957 | ||
1c79356b A |
1958 | #if TRACEFAULTPAGE |
1959 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ | |
1960 | #endif | |
2d21ac55 | 1961 | return (VM_FAULT_SUCCESS); |
1c79356b | 1962 | |
2d21ac55 | 1963 | backoff: |
9bccf70c | 1964 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 1965 | |
1c79356b | 1966 | if (wait_result == THREAD_INTERRUPTED) |
2d21ac55 A |
1967 | return (VM_FAULT_INTERRUPTED); |
1968 | return (VM_FAULT_RETRY); | |
1c79356b A |
1969 | |
1970 | #undef RELEASE_PAGE | |
1971 | } | |
1972 | ||
2d21ac55 A |
1973 | |
1974 | ||
593a1d5f A |
1975 | /* |
1976 | * CODE SIGNING: | |
1977 | * When soft faulting a page, we have to validate the page if: | |
1978 | * 1. the page is being mapped in user space | |
1979 | * 2. the page hasn't already been found to be "tainted" | |
1980 | * 3. the page belongs to a code-signed object | |
1981 | * 4. the page has not been validated yet or has been mapped for write. | |
1982 | */ | |
1983 | #define VM_FAULT_NEED_CS_VALIDATION(pmap, page) \ | |
1984 | ((pmap) != kernel_pmap /*1*/ && \ | |
1985 | !(page)->cs_tainted /*2*/ && \ | |
1986 | (page)->object->code_signed /*3*/ && \ | |
1987 | (!(page)->cs_validated || (page)->wpmapped /*4*/)) | |
1988 | ||
1989 | ||
55e303ae | 1990 | /* |
2d21ac55 A |
1991 | * page queue lock must NOT be held |
1992 | * m->object must be locked | |
1993 | * | |
1994 | * NOTE: m->object could be locked "shared" only if we are called | |
1995 | * from vm_fault() as part of a soft fault. If so, we must be | |
1996 | * careful not to modify the VM object in any way that is not | |
1997 | * legal under a shared lock... | |
55e303ae | 1998 | */ |
2d21ac55 A |
1999 | unsigned long cs_enter_tainted_rejected = 0; |
2000 | unsigned long cs_enter_tainted_accepted = 0; | |
2001 | kern_return_t | |
2002 | vm_fault_enter(vm_page_t m, | |
2003 | pmap_t pmap, | |
2004 | vm_map_offset_t vaddr, | |
2005 | vm_prot_t prot, | |
2006 | boolean_t wired, | |
2007 | boolean_t change_wiring, | |
2008 | boolean_t no_cache, | |
2009 | int *type_of_fault) | |
55e303ae | 2010 | { |
2d21ac55 | 2011 | unsigned int cache_attr; |
55e303ae | 2012 | kern_return_t kr; |
2d21ac55 A |
2013 | boolean_t previously_pmapped = m->pmapped; |
2014 | ||
2015 | vm_object_lock_assert_held(m->object); | |
2016 | #if DEBUG | |
2017 | mutex_assert(&vm_page_queue_lock, MA_NOTOWNED); | |
2018 | #endif /* DEBUG */ | |
2019 | ||
2020 | if (m->phys_page == vm_page_guard_addr) { | |
2021 | assert(m->fictitious); | |
2022 | return KERN_SUCCESS; | |
2023 | } | |
2024 | ||
2025 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; | |
2026 | ||
2d21ac55 A |
2027 | if (m->pmapped == FALSE) { |
2028 | /* | |
2029 | * This is the first time this page is being | |
2030 | * mapped in an address space (pmapped == FALSE). | |
2031 | * | |
2032 | * Part of that page may still be in the data cache | |
2033 | * and not flushed to memory. In case we end up | |
2034 | * accessing that page via the instruction cache, | |
2035 | * we need to ensure that the 2 caches are in sync. | |
2036 | */ | |
2037 | pmap_sync_page_data_phys(m->phys_page); | |
2038 | ||
2039 | if ((*type_of_fault == DBG_CACHE_HIT_FAULT) && m->clustered) { | |
2040 | /* | |
2041 | * found it in the cache, but this | |
2042 | * is the first fault-in of the page (m->pmapped == FALSE) | |
2043 | * so it must have come in as part of | |
2044 | * a cluster... account 1 pagein against it | |
2045 | */ | |
2046 | VM_STAT_INCR(pageins); | |
2047 | DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL); | |
2048 | ||
2049 | if (m->object->internal) { | |
2050 | DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL); | |
2051 | } else { | |
2052 | DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL); | |
55e303ae | 2053 | } |
2d21ac55 A |
2054 | |
2055 | current_task()->pageins++; | |
2056 | ||
2057 | *type_of_fault = DBG_PAGEIN_FAULT; | |
2058 | } | |
2059 | VM_PAGE_CONSUME_CLUSTERED(m); | |
2060 | ||
2061 | } else if (cache_attr != VM_WIMG_DEFAULT) | |
2062 | pmap_sync_page_attributes_phys(m->phys_page); | |
2063 | ||
2064 | if (*type_of_fault != DBG_COW_FAULT) { | |
2065 | DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL); | |
2066 | ||
2067 | if (pmap == kernel_pmap) { | |
2068 | DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL); | |
2069 | } | |
2070 | } | |
2071 | ||
593a1d5f A |
2072 | if (VM_FAULT_NEED_CS_VALIDATION(pmap, m)) { |
2073 | vm_object_lock_assert_exclusive(m->object); | |
2074 | ||
2075 | if (m->cs_validated) { | |
2076 | vm_cs_revalidates++; | |
2077 | } | |
2078 | ||
2079 | /* VM map is locked, so 1 ref will remain on VM object */ | |
2080 | vm_page_validate_cs(m); | |
2081 | } | |
2082 | ||
2083 | if (m->cs_tainted /* always invalidate a tainted page */ | |
2084 | #if CONFIG_ENFORCE_SIGNED_CODE | |
2085 | /* | |
2086 | * Code Signing enforcement invalidates an executable page that | |
2087 | * has no code directory, and thus could not be validated. | |
2088 | */ | |
2089 | || ((prot & VM_PROT_EXECUTE) && !m->cs_validated ) | |
2090 | #endif | |
2091 | ) { | |
2d21ac55 A |
2092 | /* |
2093 | * CODE SIGNING: | |
2094 | * This page has been tainted and can not be trusted. | |
2095 | * Let's notify the current process and let it take any | |
2096 | * necessary precautions before we enter the tainted page | |
2097 | * into its address space. | |
2098 | */ | |
593a1d5f A |
2099 | kr = KERN_SUCCESS; |
2100 | #if CONFIG_ENFORCE_SIGNED_CODE | |
2101 | if (!cs_enforcement_disable) { | |
2102 | #endif | |
2103 | if (cs_invalid_page((addr64_t) vaddr)) { | |
2104 | /* reject the tainted page: abort the page fault */ | |
2105 | kr = KERN_MEMORY_ERROR; | |
2106 | cs_enter_tainted_rejected++; | |
2107 | } else { | |
2108 | /* proceed with the tainted page */ | |
2109 | kr = KERN_SUCCESS; | |
2110 | cs_enter_tainted_accepted++; | |
2111 | } | |
2112 | #if CONFIG_ENFORCE_SIGNED_CODE | |
2d21ac55 | 2113 | } |
593a1d5f | 2114 | #endif |
2d21ac55 A |
2115 | if (cs_debug || kr != KERN_SUCCESS) { |
2116 | printf("CODESIGNING: vm_fault_enter(0x%llx): " | |
593a1d5f | 2117 | "page %p obj %p off 0x%llx *** INVALID PAGE ***\n", |
2d21ac55 A |
2118 | (long long)vaddr, m, m->object, m->offset); |
2119 | } | |
2120 | } else { | |
2121 | /* proceed with the valid page */ | |
2122 | kr = KERN_SUCCESS; | |
2123 | } | |
2124 | ||
2125 | if (kr == KERN_SUCCESS) { | |
2126 | /* | |
2127 | * NOTE: we may only hold the vm_object lock SHARED | |
2128 | * at this point, but the update of pmapped is ok | |
2129 | * since this is the ONLY bit updated behind the SHARED | |
2130 | * lock... however, we need to figure out how to do an atomic | |
2131 | * update on a bit field to make this less fragile... right | |
593a1d5f | 2132 | * now I don't know how to coerce 'C' to give me the offset info |
2d21ac55 A |
2133 | * that's needed for an AtomicCompareAndSwap |
2134 | */ | |
2135 | m->pmapped = TRUE; | |
4a3eedf9 A |
2136 | if (prot & VM_PROT_WRITE) { |
2137 | vm_object_lock_assert_exclusive(m->object); | |
2138 | m->wpmapped = TRUE; | |
2139 | } | |
2d21ac55 A |
2140 | |
2141 | PMAP_ENTER(pmap, vaddr, m, prot, cache_attr, wired); | |
2142 | } | |
2143 | ||
2144 | /* | |
2145 | * Hold queues lock to manipulate | |
2146 | * the page queues. Change wiring | |
2147 | * case is obvious. | |
2148 | */ | |
2149 | if (change_wiring) { | |
2150 | vm_page_lockspin_queues(); | |
2151 | ||
2152 | if (wired) { | |
2153 | if (kr == KERN_SUCCESS) { | |
2154 | vm_page_wire(m); | |
55e303ae | 2155 | } |
2d21ac55 A |
2156 | } else { |
2157 | vm_page_unwire(m); | |
2158 | } | |
2159 | vm_page_unlock_queues(); | |
2160 | ||
2161 | } else { | |
2162 | if (kr != KERN_SUCCESS) { | |
2163 | vm_page_lock_queues(); | |
2164 | vm_page_deactivate(m); | |
2165 | vm_page_unlock_queues(); | |
2166 | } else { | |
2167 | if (((!m->active && !m->inactive) || no_cache) && !m->wire_count && !m->throttled) { | |
2168 | vm_page_lockspin_queues(); | |
2169 | /* | |
2170 | * test again now that we hold the page queue lock | |
2171 | */ | |
2172 | if (((!m->active && !m->inactive) || no_cache) && !m->wire_count) { | |
2173 | ||
2174 | /* | |
2175 | * If this is a no_cache mapping and the page has never been | |
2176 | * mapped before or was previously a no_cache page, then we | |
2177 | * want to leave pages in the speculative state so that they | |
2178 | * can be readily recycled if free memory runs low. Otherwise | |
2179 | * the page is activated as normal. | |
2180 | */ | |
2181 | ||
2182 | if (no_cache && (!previously_pmapped || m->no_cache)) { | |
2183 | m->no_cache = TRUE; | |
2184 | ||
2185 | if (m->active || m->inactive) | |
2186 | VM_PAGE_QUEUES_REMOVE(m); | |
2187 | ||
2188 | if (!m->speculative) | |
2189 | vm_page_speculate(m, TRUE); | |
2190 | ||
2191 | } else if (!m->active && !m->inactive) | |
2192 | vm_page_activate(m); | |
2193 | ||
2194 | } | |
2195 | ||
2196 | vm_page_unlock_queues(); | |
55e303ae | 2197 | } |
55e303ae A |
2198 | } |
2199 | } | |
2d21ac55 | 2200 | return kr; |
55e303ae A |
2201 | } |
2202 | ||
2d21ac55 | 2203 | |
1c79356b A |
2204 | /* |
2205 | * Routine: vm_fault | |
2206 | * Purpose: | |
2207 | * Handle page faults, including pseudo-faults | |
2208 | * used to change the wiring status of pages. | |
2209 | * Returns: | |
2210 | * Explicit continuations have been removed. | |
2211 | * Implementation: | |
2212 | * vm_fault and vm_fault_page save mucho state | |
2213 | * in the moral equivalent of a closure. The state | |
2214 | * structure is allocated when first entering vm_fault | |
2215 | * and deallocated when leaving vm_fault. | |
2216 | */ | |
2217 | ||
91447636 A |
2218 | extern int _map_enter_debug; |
2219 | ||
2d21ac55 A |
2220 | unsigned long vm_fault_collapse_total = 0; |
2221 | unsigned long vm_fault_collapse_skipped = 0; | |
2222 | ||
1c79356b A |
2223 | kern_return_t |
2224 | vm_fault( | |
2225 | vm_map_t map, | |
91447636 | 2226 | vm_map_offset_t vaddr, |
1c79356b A |
2227 | vm_prot_t fault_type, |
2228 | boolean_t change_wiring, | |
9bccf70c A |
2229 | int interruptible, |
2230 | pmap_t caller_pmap, | |
91447636 | 2231 | vm_map_offset_t caller_pmap_addr) |
1c79356b A |
2232 | { |
2233 | vm_map_version_t version; /* Map version for verificiation */ | |
2234 | boolean_t wired; /* Should mapping be wired down? */ | |
2235 | vm_object_t object; /* Top-level object */ | |
2236 | vm_object_offset_t offset; /* Top-level offset */ | |
2237 | vm_prot_t prot; /* Protection for mapping */ | |
1c79356b A |
2238 | vm_object_t old_copy_object; /* Saved copy object */ |
2239 | vm_page_t result_page; /* Result of vm_fault_page */ | |
2240 | vm_page_t top_page; /* Placeholder page */ | |
2241 | kern_return_t kr; | |
2242 | ||
1c79356b | 2243 | vm_page_t m; /* Fast access to result_page */ |
2d21ac55 | 2244 | kern_return_t error_code; |
1c79356b | 2245 | vm_object_t cur_object; |
1c79356b A |
2246 | vm_object_offset_t cur_offset; |
2247 | vm_page_t cur_m; | |
2248 | vm_object_t new_object; | |
2249 | int type_of_fault; | |
2d21ac55 A |
2250 | pmap_t pmap; |
2251 | boolean_t interruptible_state; | |
91447636 | 2252 | vm_map_t real_map = map; |
1c79356b | 2253 | vm_map_t original_map = map; |
0c530ab8 | 2254 | vm_prot_t original_fault_type; |
2d21ac55 A |
2255 | struct vm_object_fault_info fault_info; |
2256 | boolean_t need_collapse = FALSE; | |
2257 | int object_lock_type = 0; | |
2258 | int cur_object_lock_type; | |
c910b4d9 | 2259 | vm_object_t top_object = VM_OBJECT_NULL; |
1c79356b | 2260 | |
de355530 | 2261 | |
2d21ac55 A |
2262 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START, |
2263 | (int)((uint64_t)vaddr >> 32), | |
2264 | (int)vaddr, | |
1c79356b A |
2265 | 0, |
2266 | 0, | |
2267 | 0); | |
2268 | ||
0c530ab8 | 2269 | if (get_preemption_level() != 0) { |
2d21ac55 A |
2270 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, |
2271 | (int)((uint64_t)vaddr >> 32), | |
2272 | (int)vaddr, | |
0c530ab8 A |
2273 | KERN_FAILURE, |
2274 | 0, | |
2275 | 0); | |
2276 | ||
2277 | return (KERN_FAILURE); | |
9bccf70c | 2278 | } |
9bccf70c | 2279 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b | 2280 | |
2d21ac55 A |
2281 | VM_STAT_INCR(faults); |
2282 | current_task()->faults++; | |
2283 | original_fault_type = fault_type; | |
2284 | ||
2285 | if (fault_type & VM_PROT_WRITE) | |
2286 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2287 | else | |
2288 | object_lock_type = OBJECT_LOCK_SHARED; | |
2289 | ||
2290 | cur_object_lock_type = OBJECT_LOCK_SHARED; | |
2291 | ||
2292 | RetryFault: | |
1c79356b A |
2293 | /* |
2294 | * assume we will hit a page in the cache | |
2295 | * otherwise, explicitly override with | |
2296 | * the real fault type once we determine it | |
2297 | */ | |
2298 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
2299 | ||
1c79356b A |
2300 | /* |
2301 | * Find the backing store object and offset into | |
2302 | * it to begin the search. | |
2303 | */ | |
0c530ab8 | 2304 | fault_type = original_fault_type; |
1c79356b A |
2305 | map = original_map; |
2306 | vm_map_lock_read(map); | |
1c79356b | 2307 | |
2d21ac55 A |
2308 | kr = vm_map_lookup_locked(&map, vaddr, fault_type, |
2309 | object_lock_type, &version, | |
2310 | &object, &offset, &prot, &wired, | |
2311 | &fault_info, | |
2312 | &real_map); | |
1c79356b A |
2313 | |
2314 | if (kr != KERN_SUCCESS) { | |
2315 | vm_map_unlock_read(map); | |
2316 | goto done; | |
2317 | } | |
2d21ac55 A |
2318 | pmap = real_map->pmap; |
2319 | fault_info.interruptible = interruptible; | |
1c79356b A |
2320 | |
2321 | /* | |
2d21ac55 A |
2322 | * If the page is wired, we must fault for the current protection |
2323 | * value, to avoid further faults. | |
1c79356b | 2324 | */ |
2d21ac55 | 2325 | if (wired) { |
1c79356b | 2326 | fault_type = prot | VM_PROT_WRITE; |
2d21ac55 A |
2327 | /* |
2328 | * since we're treating this fault as a 'write' | |
2329 | * we must hold the top object lock exclusively | |
2330 | */ | |
2331 | if (object_lock_type == OBJECT_LOCK_SHARED) { | |
2332 | ||
2333 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2334 | ||
2335 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2336 | /* | |
2337 | * couldn't upgrade, so explictly | |
2338 | * take the lock exclusively | |
2339 | */ | |
2340 | vm_object_lock(object); | |
2341 | } | |
2342 | } | |
2343 | } | |
1c79356b A |
2344 | |
2345 | #if VM_FAULT_CLASSIFY | |
2346 | /* | |
2347 | * Temporary data gathering code | |
2348 | */ | |
2349 | vm_fault_classify(object, offset, fault_type); | |
2350 | #endif | |
2351 | /* | |
2352 | * Fast fault code. The basic idea is to do as much as | |
2353 | * possible while holding the map lock and object locks. | |
2354 | * Busy pages are not used until the object lock has to | |
2355 | * be dropped to do something (copy, zero fill, pmap enter). | |
2356 | * Similarly, paging references aren't acquired until that | |
2357 | * point, and object references aren't used. | |
2358 | * | |
2359 | * If we can figure out what to do | |
2360 | * (zero fill, copy on write, pmap enter) while holding | |
2361 | * the locks, then it gets done. Otherwise, we give up, | |
2362 | * and use the original fault path (which doesn't hold | |
2363 | * the map lock, and relies on busy pages). | |
2364 | * The give up cases include: | |
2365 | * - Have to talk to pager. | |
2366 | * - Page is busy, absent or in error. | |
2367 | * - Pager has locked out desired access. | |
2368 | * - Fault needs to be restarted. | |
2369 | * - Have to push page into copy object. | |
2370 | * | |
2371 | * The code is an infinite loop that moves one level down | |
2372 | * the shadow chain each time. cur_object and cur_offset | |
2373 | * refer to the current object being examined. object and offset | |
2374 | * are the original object from the map. The loop is at the | |
2375 | * top level if and only if object and cur_object are the same. | |
2376 | * | |
2377 | * Invariants: Map lock is held throughout. Lock is held on | |
2378 | * original object and cur_object (if different) when | |
2379 | * continuing or exiting loop. | |
2380 | * | |
2381 | */ | |
2382 | ||
2383 | ||
2384 | /* | |
2d21ac55 A |
2385 | * If this page is to be inserted in a copy delay object |
2386 | * for writing, and if the object has a copy, then the | |
2387 | * copy delay strategy is implemented in the slow fault page. | |
1c79356b | 2388 | */ |
2d21ac55 A |
2389 | if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY && |
2390 | object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE)) | |
2391 | goto handle_copy_delay; | |
2392 | ||
1c79356b A |
2393 | cur_object = object; |
2394 | cur_offset = offset; | |
2395 | ||
2396 | while (TRUE) { | |
2397 | m = vm_page_lookup(cur_object, cur_offset); | |
2d21ac55 | 2398 | |
1c79356b | 2399 | if (m != VM_PAGE_NULL) { |
55e303ae | 2400 | if (m->busy) { |
143cc14e A |
2401 | wait_result_t result; |
2402 | ||
2d21ac55 A |
2403 | /* |
2404 | * in order to do the PAGE_ASSERT_WAIT, we must | |
2405 | * have object that 'm' belongs to locked exclusively | |
2406 | */ | |
2407 | if (object != cur_object) { | |
143cc14e A |
2408 | vm_object_unlock(object); |
2409 | ||
2d21ac55 A |
2410 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
2411 | ||
2412 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2413 | ||
2414 | if (vm_object_lock_upgrade(cur_object) == FALSE) { | |
2415 | /* | |
2416 | * couldn't upgrade so go do a full retry | |
2417 | * immediately since we've already dropped | |
2418 | * the top object lock associated with this page | |
2419 | * and the current one got dropped due to the | |
2420 | * failed upgrade... the state is no longer valid | |
2421 | */ | |
2422 | vm_map_unlock_read(map); | |
2423 | if (real_map != map) | |
2424 | vm_map_unlock(real_map); | |
2425 | ||
2426 | goto RetryFault; | |
2427 | } | |
2428 | } | |
2429 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
2430 | ||
2431 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2432 | ||
2433 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2434 | /* | |
2435 | * couldn't upgrade, so explictly take the lock | |
2436 | * exclusively and go relookup the page since we | |
2437 | * will have dropped the object lock and | |
2438 | * a different thread could have inserted | |
2439 | * a page at this offset | |
2440 | * no need for a full retry since we're | |
2441 | * at the top level of the object chain | |
2442 | */ | |
2443 | vm_object_lock(object); | |
2444 | ||
2445 | continue; | |
2446 | } | |
2447 | } | |
143cc14e | 2448 | vm_map_unlock_read(map); |
91447636 A |
2449 | if (real_map != map) |
2450 | vm_map_unlock(real_map); | |
143cc14e | 2451 | |
143cc14e | 2452 | result = PAGE_ASSERT_WAIT(m, interruptible); |
1c79356b | 2453 | |
143cc14e A |
2454 | vm_object_unlock(cur_object); |
2455 | ||
2456 | if (result == THREAD_WAITING) { | |
2457 | result = thread_block(THREAD_CONTINUE_NULL); | |
2458 | ||
2459 | counter(c_vm_fault_page_block_busy_kernel++); | |
2460 | } | |
2461 | if (result == THREAD_AWAKENED || result == THREAD_RESTART) | |
2462 | goto RetryFault; | |
2463 | ||
2464 | kr = KERN_ABORTED; | |
2465 | goto done; | |
2466 | } | |
2d21ac55 A |
2467 | if (m->phys_page == vm_page_guard_addr) { |
2468 | /* | |
2469 | * Guard page: let the slow path deal with it | |
2470 | */ | |
2471 | break; | |
2472 | } | |
2473 | if (m->unusual && (m->error || m->restart || m->private || m->absent)) { | |
143cc14e | 2474 | /* |
2d21ac55 | 2475 | * Unusual case... let the slow path deal with it |
1c79356b A |
2476 | */ |
2477 | break; | |
2478 | } | |
91447636 A |
2479 | if (m->encrypted) { |
2480 | /* | |
2481 | * ENCRYPTED SWAP: | |
2482 | * We've soft-faulted (because it's not in the page | |
2483 | * table) on an encrypted page. | |
2d21ac55 | 2484 | * Keep the page "busy" so that no one messes with |
91447636 A |
2485 | * it during the decryption. |
2486 | * Release the extra locks we're holding, keep only | |
2487 | * the page's VM object lock. | |
2d21ac55 A |
2488 | * |
2489 | * in order to set 'busy' on 'm', we must | |
2490 | * have object that 'm' belongs to locked exclusively | |
91447636 | 2491 | */ |
2d21ac55 | 2492 | if (object != cur_object) { |
91447636 | 2493 | vm_object_unlock(object); |
2d21ac55 A |
2494 | |
2495 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
2496 | ||
2497 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2498 | ||
2499 | if (vm_object_lock_upgrade(cur_object) == FALSE) { | |
2500 | /* | |
2501 | * couldn't upgrade so go do a full retry | |
2502 | * immediately since we've already dropped | |
2503 | * the top object lock associated with this page | |
2504 | * and the current one got dropped due to the | |
2505 | * failed upgrade... the state is no longer valid | |
2506 | */ | |
2507 | vm_map_unlock_read(map); | |
2508 | if (real_map != map) | |
2509 | vm_map_unlock(real_map); | |
2510 | ||
2511 | goto RetryFault; | |
2512 | } | |
2513 | } | |
2514 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
2515 | ||
2516 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2517 | ||
2518 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2519 | /* | |
2520 | * couldn't upgrade, so explictly take the lock | |
2521 | * exclusively and go relookup the page since we | |
2522 | * will have dropped the object lock and | |
2523 | * a different thread could have inserted | |
2524 | * a page at this offset | |
2525 | * no need for a full retry since we're | |
2526 | * at the top level of the object chain | |
2527 | */ | |
2528 | vm_object_lock(object); | |
2529 | ||
2530 | continue; | |
2531 | } | |
91447636 | 2532 | } |
2d21ac55 A |
2533 | m->busy = TRUE; |
2534 | ||
91447636 A |
2535 | vm_map_unlock_read(map); |
2536 | if (real_map != map) | |
2537 | vm_map_unlock(real_map); | |
2538 | ||
2539 | vm_page_decrypt(m, 0); | |
2540 | ||
2541 | assert(m->busy); | |
2542 | PAGE_WAKEUP_DONE(m); | |
91447636 | 2543 | |
2d21ac55 | 2544 | vm_object_unlock(cur_object); |
91447636 A |
2545 | /* |
2546 | * Retry from the top, in case anything | |
2547 | * changed while we were decrypting... | |
2548 | */ | |
2549 | goto RetryFault; | |
2550 | } | |
2551 | ASSERT_PAGE_DECRYPTED(m); | |
2552 | ||
593a1d5f | 2553 | if (VM_FAULT_NEED_CS_VALIDATION(map->pmap, m)) { |
2d21ac55 | 2554 | /* |
4a3eedf9 | 2555 | * We might need to validate this page |
2d21ac55 A |
2556 | * against its code signature, so we |
2557 | * want to hold the VM object exclusively. | |
2558 | */ | |
2559 | if (object != cur_object) { | |
2560 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
2561 | vm_object_unlock(object); | |
2562 | vm_object_unlock(cur_object); | |
2563 | ||
2564 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2565 | ||
2566 | vm_map_unlock_read(map); | |
2567 | if (real_map != map) | |
2568 | vm_map_unlock(real_map); | |
2569 | ||
2570 | goto RetryFault; | |
2571 | } | |
2572 | ||
2573 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
2574 | ||
2575 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2576 | ||
2577 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2578 | /* | |
2579 | * couldn't upgrade, so explictly take the lock | |
2580 | * exclusively and go relookup the page since we | |
2581 | * will have dropped the object lock and | |
2582 | * a different thread could have inserted | |
2583 | * a page at this offset | |
2584 | * no need for a full retry since we're | |
2585 | * at the top level of the object chain | |
2586 | */ | |
2587 | vm_object_lock(object); | |
2588 | ||
2589 | continue; | |
2590 | } | |
2591 | } | |
2592 | } | |
1c79356b A |
2593 | /* |
2594 | * Two cases of map in faults: | |
2595 | * - At top level w/o copy object. | |
2596 | * - Read fault anywhere. | |
2597 | * --> must disallow write. | |
2598 | */ | |
2599 | ||
4a3eedf9 A |
2600 | if (object == cur_object && object->copy == VM_OBJECT_NULL) { |
2601 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
2602 | /* | |
2603 | * This is not a "write" fault, so we | |
2604 | * might not have taken the object lock | |
2605 | * exclusively and we might not be able | |
2606 | * to update the "wpmapped" bit in | |
2607 | * vm_fault_enter(). | |
2608 | * Let's just grant read access to | |
2609 | * the page for now and we'll | |
2610 | * soft-fault again if we need write | |
2611 | * access later... | |
2612 | */ | |
2613 | prot &= ~VM_PROT_WRITE; | |
2614 | } | |
2d21ac55 | 2615 | goto FastPmapEnter; |
4a3eedf9 | 2616 | } |
1c79356b A |
2617 | |
2618 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
2619 | ||
2620 | prot &= ~VM_PROT_WRITE; | |
2621 | ||
1c79356b | 2622 | if (object != cur_object) { |
c910b4d9 A |
2623 | /* |
2624 | * We still need to hold the top object | |
2625 | * lock here to prevent a race between | |
2626 | * a read fault (taking only "shared" | |
2627 | * locks) and a write fault (taking | |
2628 | * an "exclusive" lock on the top | |
2629 | * object. | |
2630 | * Otherwise, as soon as we release the | |
2631 | * top lock, the write fault could | |
2632 | * proceed and actually complete before | |
2633 | * the read fault, and the copied page's | |
2634 | * translation could then be overwritten | |
2635 | * by the read fault's translation for | |
2636 | * the original page. | |
2637 | * | |
2638 | * Let's just record what the top object | |
2639 | * is and we'll release it later. | |
2d21ac55 | 2640 | */ |
c910b4d9 | 2641 | top_object = object; |
2d21ac55 A |
2642 | |
2643 | /* | |
2644 | * switch to the object that has the new page | |
2645 | */ | |
1c79356b | 2646 | object = cur_object; |
2d21ac55 | 2647 | object_lock_type = cur_object_lock_type; |
1c79356b | 2648 | } |
1c79356b A |
2649 | FastPmapEnter: |
2650 | /* | |
2d21ac55 A |
2651 | * prepare for the pmap_enter... |
2652 | * object and map are both locked | |
2653 | * m contains valid data | |
2654 | * object == m->object | |
2655 | * cur_object == NULL or it's been unlocked | |
2656 | * no paging references on either object or cur_object | |
1c79356b | 2657 | */ |
1c79356b | 2658 | #if MACH_KDB |
2d21ac55 | 2659 | if (db_watchpoint_list && (fault_type & VM_PROT_WRITE) == 0) |
1c79356b | 2660 | prot &= ~VM_PROT_WRITE; |
2d21ac55 A |
2661 | #endif |
2662 | if (caller_pmap) { | |
2663 | kr = vm_fault_enter(m, | |
2664 | caller_pmap, | |
2665 | caller_pmap_addr, | |
2666 | prot, | |
2667 | wired, | |
2668 | change_wiring, | |
2669 | fault_info.no_cache, | |
2670 | &type_of_fault); | |
9bccf70c | 2671 | } else { |
2d21ac55 A |
2672 | kr = vm_fault_enter(m, |
2673 | pmap, | |
2674 | vaddr, | |
2675 | prot, | |
2676 | wired, | |
2677 | change_wiring, | |
2678 | fault_info.no_cache, | |
2679 | &type_of_fault); | |
9bccf70c | 2680 | } |
0b4e3aa0 | 2681 | |
c910b4d9 A |
2682 | if (top_object != VM_OBJECT_NULL) { |
2683 | /* | |
2684 | * It's safe to drop the top object | |
2685 | * now that we've done our | |
2686 | * vm_fault_enter(). Any other fault | |
2687 | * in progress for that virtual | |
2688 | * address will either find our page | |
2689 | * and translation or put in a new page | |
2690 | * and translation. | |
2691 | */ | |
2692 | vm_object_unlock(top_object); | |
2693 | top_object = VM_OBJECT_NULL; | |
2694 | } | |
2695 | ||
2d21ac55 A |
2696 | if (need_collapse == TRUE) |
2697 | vm_object_collapse(object, offset, TRUE); | |
0c530ab8 | 2698 | |
2d21ac55 A |
2699 | if (type_of_fault == DBG_PAGEIN_FAULT) { |
2700 | /* | |
2701 | * evaluate access pattern and update state | |
2702 | * vm_fault_deactivate_behind depends on the | |
2703 | * state being up to date | |
2704 | */ | |
2705 | vm_fault_is_sequential(object, cur_offset, fault_info.behavior); | |
0c530ab8 | 2706 | |
2d21ac55 | 2707 | vm_fault_deactivate_behind(object, cur_offset, fault_info.behavior); |
1c79356b | 2708 | } |
1c79356b | 2709 | /* |
2d21ac55 | 2710 | * That's it, clean up and return. |
1c79356b | 2711 | */ |
2d21ac55 A |
2712 | if (m->busy) |
2713 | PAGE_WAKEUP_DONE(m); | |
6601e61a | 2714 | |
1c79356b | 2715 | vm_object_unlock(object); |
143cc14e | 2716 | |
1c79356b | 2717 | vm_map_unlock_read(map); |
2d21ac55 | 2718 | if (real_map != map) |
91447636 | 2719 | vm_map_unlock(real_map); |
1c79356b | 2720 | |
2d21ac55 | 2721 | goto done; |
1c79356b | 2722 | } |
1c79356b | 2723 | /* |
2d21ac55 A |
2724 | * COPY ON WRITE FAULT |
2725 | * | |
2726 | * If objects match, then | |
2727 | * object->copy must not be NULL (else control | |
2728 | * would be in previous code block), and we | |
2729 | * have a potential push into the copy object | |
2730 | * with which we can't cope with here. | |
1c79356b | 2731 | */ |
2d21ac55 A |
2732 | if (cur_object == object) { |
2733 | /* | |
2734 | * must take the slow path to | |
2735 | * deal with the copy push | |
2736 | */ | |
1c79356b | 2737 | break; |
2d21ac55 A |
2738 | } |
2739 | assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE); | |
2740 | ||
1c79356b | 2741 | /* |
2d21ac55 A |
2742 | * This is now a shadow based copy on write |
2743 | * fault -- it requires a copy up the shadow | |
2744 | * chain. | |
2745 | * | |
2746 | * Allocate a page in the original top level | |
2747 | * object. Give up if allocate fails. Also | |
2748 | * need to remember current page, as it's the | |
2749 | * source of the copy. | |
1c79356b | 2750 | * |
2d21ac55 A |
2751 | * at this point we hold locks on both |
2752 | * object and cur_object... no need to take | |
2753 | * paging refs or mark pages BUSY since | |
2754 | * we don't drop either object lock until | |
2755 | * the page has been copied and inserted | |
1c79356b A |
2756 | */ |
2757 | cur_m = m; | |
2758 | m = vm_page_grab(); | |
2d21ac55 | 2759 | |
1c79356b | 2760 | if (m == VM_PAGE_NULL) { |
2d21ac55 A |
2761 | /* |
2762 | * no free page currently available... | |
2763 | * must take the slow path | |
2764 | */ | |
1c79356b A |
2765 | break; |
2766 | } | |
1c79356b | 2767 | /* |
2d21ac55 | 2768 | * Now do the copy. Mark the source page busy... |
1c79356b A |
2769 | * |
2770 | * NOTE: This code holds the map lock across | |
2771 | * the page copy. | |
2772 | */ | |
1c79356b A |
2773 | vm_page_copy(cur_m, m); |
2774 | vm_page_insert(m, object, offset); | |
2d21ac55 | 2775 | m->dirty = TRUE; |
1c79356b A |
2776 | |
2777 | /* | |
2d21ac55 | 2778 | * Now cope with the source page and object |
1c79356b | 2779 | */ |
2d21ac55 A |
2780 | if (object->ref_count > 1 && cur_m->pmapped) |
2781 | pmap_disconnect(cur_m->phys_page); | |
1c79356b | 2782 | |
2d21ac55 | 2783 | need_collapse = TRUE; |
1c79356b | 2784 | |
2d21ac55 A |
2785 | if (!cur_object->internal && |
2786 | cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) { | |
2787 | /* | |
2788 | * The object from which we've just | |
2789 | * copied a page is most probably backed | |
2790 | * by a vnode. We don't want to waste too | |
2791 | * much time trying to collapse the VM objects | |
2792 | * and create a bottleneck when several tasks | |
2793 | * map the same file. | |
2794 | */ | |
2795 | if (cur_object->copy == object) { | |
2796 | /* | |
2797 | * Shared mapping or no COW yet. | |
2798 | * We can never collapse a copy | |
2799 | * object into its backing object. | |
2800 | */ | |
2801 | need_collapse = FALSE; | |
2802 | } else if (cur_object->copy == object->shadow && | |
2803 | object->shadow->resident_page_count == 0) { | |
2804 | /* | |
2805 | * Shared mapping after a COW occurred. | |
2806 | */ | |
2807 | need_collapse = FALSE; | |
2808 | } | |
2809 | } | |
1c79356b A |
2810 | vm_object_unlock(cur_object); |
2811 | ||
2d21ac55 A |
2812 | if (need_collapse == FALSE) |
2813 | vm_fault_collapse_skipped++; | |
2814 | vm_fault_collapse_total++; | |
2815 | ||
2816 | type_of_fault = DBG_COW_FAULT; | |
2817 | VM_STAT_INCR(cow_faults); | |
2818 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); | |
2819 | current_task()->cow_faults++; | |
1c79356b A |
2820 | |
2821 | goto FastPmapEnter; | |
1c79356b | 2822 | |
2d21ac55 | 2823 | } else { |
1c79356b | 2824 | /* |
2d21ac55 | 2825 | * No page at cur_object, cur_offset... m == NULL |
1c79356b | 2826 | */ |
1c79356b | 2827 | if (cur_object->pager_created) { |
2d21ac55 A |
2828 | if (MUST_ASK_PAGER(cur_object, cur_offset) == TRUE) { |
2829 | /* | |
2830 | * May have to talk to a pager... | |
2831 | * take the slow path. | |
2832 | */ | |
2833 | break; | |
2834 | } | |
1c79356b | 2835 | /* |
2d21ac55 A |
2836 | * existence map present and indicates |
2837 | * that the pager doesn't have this page | |
1c79356b | 2838 | */ |
1c79356b | 2839 | } |
1c79356b | 2840 | if (cur_object->shadow == VM_OBJECT_NULL) { |
2d21ac55 A |
2841 | /* |
2842 | * Zero fill fault. Page gets | |
2843 | * inserted into the original object. | |
2844 | */ | |
1c79356b | 2845 | if (cur_object->shadow_severed) { |
2d21ac55 A |
2846 | |
2847 | if (object != cur_object) | |
2848 | vm_object_unlock(cur_object); | |
1c79356b | 2849 | vm_object_unlock(object); |
2d21ac55 | 2850 | |
1c79356b | 2851 | vm_map_unlock_read(map); |
2d21ac55 | 2852 | if (real_map != map) |
91447636 | 2853 | vm_map_unlock(real_map); |
1c79356b | 2854 | |
2d21ac55 A |
2855 | kr = KERN_MEMORY_ERROR; |
2856 | goto done; | |
2857 | } | |
2858 | if (VM_PAGE_ZFILL_THROTTLED()) { | |
2859 | /* | |
2860 | * drop all of our locks... | |
2861 | * wait until the free queue is | |
2862 | * pumped back up and then | |
2863 | * redrive the fault | |
2864 | */ | |
2865 | if (object != cur_object) | |
2866 | vm_object_unlock(cur_object); | |
2867 | vm_object_unlock(object); | |
2868 | vm_map_unlock_read(map); | |
2869 | if (real_map != map) | |
2870 | vm_map_unlock(real_map); | |
9bccf70c | 2871 | |
2d21ac55 A |
2872 | if (vm_page_wait((change_wiring) ? |
2873 | THREAD_UNINT : | |
2874 | THREAD_ABORTSAFE)) | |
2875 | goto RetryFault; | |
1c79356b | 2876 | |
2d21ac55 A |
2877 | kr = KERN_ABORTED; |
2878 | goto done; | |
2879 | } | |
2880 | if (vm_backing_store_low) { | |
2881 | /* | |
2882 | * we are protecting the system from | |
2883 | * backing store exhaustion... | |
2884 | * must take the slow path if we're | |
2885 | * not privileged | |
2886 | */ | |
2887 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) | |
2888 | break; | |
1c79356b | 2889 | } |
2d21ac55 A |
2890 | if (cur_object != object) { |
2891 | vm_object_unlock(cur_object); | |
1c79356b | 2892 | |
2d21ac55 | 2893 | cur_object = object; |
55e303ae | 2894 | } |
2d21ac55 | 2895 | if (object_lock_type == OBJECT_LOCK_SHARED) { |
55e303ae | 2896 | |
2d21ac55 A |
2897 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
2898 | ||
2899 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2900 | /* | |
2901 | * couldn't upgrade so do a full retry on the fault | |
2902 | * since we dropped the object lock which | |
2903 | * could allow another thread to insert | |
2904 | * a page at this offset | |
2905 | */ | |
2906 | vm_map_unlock_read(map); | |
2907 | if (real_map != map) | |
2908 | vm_map_unlock(real_map); | |
2909 | ||
2910 | goto RetryFault; | |
2911 | } | |
1c79356b A |
2912 | } |
2913 | m = vm_page_alloc(object, offset); | |
2d21ac55 | 2914 | |
1c79356b | 2915 | if (m == VM_PAGE_NULL) { |
2d21ac55 A |
2916 | /* |
2917 | * no free page currently available... | |
2918 | * must take the slow path | |
2919 | */ | |
1c79356b A |
2920 | break; |
2921 | } | |
1c79356b | 2922 | |
1c79356b | 2923 | /* |
2d21ac55 A |
2924 | * Now zero fill page... |
2925 | * the page is probably going to | |
2926 | * be written soon, so don't bother | |
2927 | * to clear the modified bit | |
1c79356b | 2928 | * |
2d21ac55 A |
2929 | * NOTE: This code holds the map |
2930 | * lock across the zero fill. | |
1c79356b | 2931 | */ |
2d21ac55 | 2932 | type_of_fault = vm_fault_zero_page(m, map->no_zero_fill); |
143cc14e | 2933 | |
1c79356b A |
2934 | goto FastPmapEnter; |
2935 | } | |
1c79356b | 2936 | /* |
2d21ac55 | 2937 | * On to the next level in the shadow chain |
1c79356b | 2938 | */ |
1c79356b A |
2939 | cur_offset += cur_object->shadow_offset; |
2940 | new_object = cur_object->shadow; | |
2d21ac55 A |
2941 | |
2942 | /* | |
2943 | * take the new_object's lock with the indicated state | |
2944 | */ | |
2945 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) | |
2946 | vm_object_lock_shared(new_object); | |
2947 | else | |
2948 | vm_object_lock(new_object); | |
2949 | ||
1c79356b A |
2950 | if (cur_object != object) |
2951 | vm_object_unlock(cur_object); | |
2d21ac55 | 2952 | |
1c79356b A |
2953 | cur_object = new_object; |
2954 | ||
2955 | continue; | |
2956 | } | |
2957 | } | |
1c79356b | 2958 | /* |
2d21ac55 A |
2959 | * Cleanup from fast fault failure. Drop any object |
2960 | * lock other than original and drop map lock. | |
1c79356b | 2961 | */ |
1c79356b A |
2962 | if (object != cur_object) |
2963 | vm_object_unlock(cur_object); | |
2d21ac55 A |
2964 | |
2965 | /* | |
2966 | * must own the object lock exclusively at this point | |
2967 | */ | |
2968 | if (object_lock_type == OBJECT_LOCK_SHARED) { | |
2969 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2970 | ||
2971 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2972 | /* | |
2973 | * couldn't upgrade, so explictly | |
2974 | * take the lock exclusively | |
2975 | * no need to retry the fault at this | |
2976 | * point since "vm_fault_page" will | |
2977 | * completely re-evaluate the state | |
2978 | */ | |
2979 | vm_object_lock(object); | |
2980 | } | |
1c79356b | 2981 | } |
143cc14e | 2982 | |
2d21ac55 A |
2983 | handle_copy_delay: |
2984 | vm_map_unlock_read(map); | |
2985 | if (real_map != map) | |
91447636 | 2986 | vm_map_unlock(real_map); |
1c79356b A |
2987 | |
2988 | /* | |
2d21ac55 A |
2989 | * Make a reference to this object to |
2990 | * prevent its disposal while we are messing with | |
2991 | * it. Once we have the reference, the map is free | |
2992 | * to be diddled. Since objects reference their | |
2993 | * shadows (and copies), they will stay around as well. | |
1c79356b | 2994 | */ |
2d21ac55 | 2995 | vm_object_reference_locked(object); |
1c79356b A |
2996 | vm_object_paging_begin(object); |
2997 | ||
2998 | XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0); | |
55e303ae | 2999 | |
2d21ac55 | 3000 | error_code = 0; |
55e303ae | 3001 | |
1c79356b A |
3002 | kr = vm_fault_page(object, offset, fault_type, |
3003 | (change_wiring && !wired), | |
1c79356b A |
3004 | &prot, &result_page, &top_page, |
3005 | &type_of_fault, | |
2d21ac55 A |
3006 | &error_code, map->no_zero_fill, |
3007 | FALSE, &fault_info); | |
1c79356b A |
3008 | |
3009 | /* | |
2d21ac55 A |
3010 | * if kr != VM_FAULT_SUCCESS, then the paging reference |
3011 | * has been dropped and the object unlocked... the ref_count | |
3012 | * is still held | |
3013 | * | |
3014 | * if kr == VM_FAULT_SUCCESS, then the paging reference | |
3015 | * is still held along with the ref_count on the original object | |
3016 | * | |
3017 | * if m != NULL, then the object it belongs to | |
3018 | * is returned locked with a paging reference | |
3019 | * | |
3020 | * if top_page != NULL, then it's BUSY and the | |
3021 | * object it belongs to has a paging reference | |
3022 | * but is returned unlocked | |
1c79356b | 3023 | */ |
2d21ac55 A |
3024 | if (kr != VM_FAULT_SUCCESS) { |
3025 | /* | |
3026 | * we didn't succeed, lose the object reference immediately. | |
3027 | */ | |
1c79356b A |
3028 | vm_object_deallocate(object); |
3029 | ||
2d21ac55 A |
3030 | /* |
3031 | * See why we failed, and take corrective action. | |
3032 | */ | |
3033 | switch (kr) { | |
1c79356b A |
3034 | case VM_FAULT_MEMORY_SHORTAGE: |
3035 | if (vm_page_wait((change_wiring) ? | |
3036 | THREAD_UNINT : | |
3037 | THREAD_ABORTSAFE)) | |
3038 | goto RetryFault; | |
2d21ac55 A |
3039 | /* |
3040 | * fall thru | |
3041 | */ | |
1c79356b A |
3042 | case VM_FAULT_INTERRUPTED: |
3043 | kr = KERN_ABORTED; | |
3044 | goto done; | |
3045 | case VM_FAULT_RETRY: | |
3046 | goto RetryFault; | |
1c79356b A |
3047 | case VM_FAULT_MEMORY_ERROR: |
3048 | if (error_code) | |
3049 | kr = error_code; | |
3050 | else | |
3051 | kr = KERN_MEMORY_ERROR; | |
3052 | goto done; | |
2d21ac55 | 3053 | } |
1c79356b | 3054 | } |
1c79356b A |
3055 | m = result_page; |
3056 | ||
2d21ac55 | 3057 | if (m != VM_PAGE_NULL) { |
0b4e3aa0 A |
3058 | assert((change_wiring && !wired) ? |
3059 | (top_page == VM_PAGE_NULL) : | |
3060 | ((top_page == VM_PAGE_NULL) == (m->object == object))); | |
3061 | } | |
1c79356b A |
3062 | |
3063 | /* | |
2d21ac55 A |
3064 | * What to do with the resulting page from vm_fault_page |
3065 | * if it doesn't get entered into the physical map: | |
1c79356b | 3066 | */ |
1c79356b A |
3067 | #define RELEASE_PAGE(m) \ |
3068 | MACRO_BEGIN \ | |
3069 | PAGE_WAKEUP_DONE(m); \ | |
2d21ac55 A |
3070 | vm_page_lockspin_queues(); \ |
3071 | if (!m->active && !m->inactive && !m->throttled)\ | |
1c79356b A |
3072 | vm_page_activate(m); \ |
3073 | vm_page_unlock_queues(); \ | |
3074 | MACRO_END | |
3075 | ||
3076 | /* | |
2d21ac55 A |
3077 | * We must verify that the maps have not changed |
3078 | * since our last lookup. | |
1c79356b | 3079 | */ |
2d21ac55 | 3080 | if (m != VM_PAGE_NULL) { |
0b4e3aa0 | 3081 | old_copy_object = m->object->copy; |
0b4e3aa0 | 3082 | vm_object_unlock(m->object); |
2d21ac55 | 3083 | } else |
0b4e3aa0 | 3084 | old_copy_object = VM_OBJECT_NULL; |
2d21ac55 A |
3085 | |
3086 | /* | |
3087 | * no object locks are held at this point | |
3088 | */ | |
1c79356b A |
3089 | if ((map != original_map) || !vm_map_verify(map, &version)) { |
3090 | vm_object_t retry_object; | |
3091 | vm_object_offset_t retry_offset; | |
3092 | vm_prot_t retry_prot; | |
3093 | ||
3094 | /* | |
2d21ac55 A |
3095 | * To avoid trying to write_lock the map while another |
3096 | * thread has it read_locked (in vm_map_pageable), we | |
3097 | * do not try for write permission. If the page is | |
3098 | * still writable, we will get write permission. If it | |
3099 | * is not, or has been marked needs_copy, we enter the | |
3100 | * mapping without write permission, and will merely | |
3101 | * take another fault. | |
1c79356b A |
3102 | */ |
3103 | map = original_map; | |
3104 | vm_map_lock_read(map); | |
2d21ac55 | 3105 | |
1c79356b | 3106 | kr = vm_map_lookup_locked(&map, vaddr, |
2d21ac55 A |
3107 | fault_type & ~VM_PROT_WRITE, |
3108 | OBJECT_LOCK_EXCLUSIVE, &version, | |
3109 | &retry_object, &retry_offset, &retry_prot, | |
3110 | &wired, | |
3111 | &fault_info, | |
3112 | &real_map); | |
91447636 | 3113 | pmap = real_map->pmap; |
1c79356b A |
3114 | |
3115 | if (kr != KERN_SUCCESS) { | |
3116 | vm_map_unlock_read(map); | |
2d21ac55 A |
3117 | |
3118 | if (m != VM_PAGE_NULL) { | |
3119 | /* | |
3120 | * retake the lock so that | |
3121 | * we can drop the paging reference | |
3122 | * in vm_fault_cleanup and do the | |
3123 | * PAGE_WAKEUP_DONE in RELEASE_PAGE | |
3124 | */ | |
0b4e3aa0 | 3125 | vm_object_lock(m->object); |
2d21ac55 | 3126 | |
0b4e3aa0 | 3127 | RELEASE_PAGE(m); |
2d21ac55 A |
3128 | |
3129 | vm_fault_cleanup(m->object, top_page); | |
0b4e3aa0 | 3130 | } else { |
2d21ac55 A |
3131 | /* |
3132 | * retake the lock so that | |
3133 | * we can drop the paging reference | |
3134 | * in vm_fault_cleanup | |
3135 | */ | |
3136 | vm_object_lock(object); | |
3137 | ||
3138 | vm_fault_cleanup(object, top_page); | |
0b4e3aa0 | 3139 | } |
2d21ac55 A |
3140 | vm_object_deallocate(object); |
3141 | ||
1c79356b A |
3142 | goto done; |
3143 | } | |
1c79356b | 3144 | vm_object_unlock(retry_object); |
1c79356b | 3145 | |
2d21ac55 A |
3146 | if ((retry_object != object) || (retry_offset != offset)) { |
3147 | ||
1c79356b | 3148 | vm_map_unlock_read(map); |
2d21ac55 | 3149 | if (real_map != map) |
91447636 | 3150 | vm_map_unlock(real_map); |
2d21ac55 A |
3151 | |
3152 | if (m != VM_PAGE_NULL) { | |
3153 | /* | |
3154 | * retake the lock so that | |
3155 | * we can drop the paging reference | |
3156 | * in vm_fault_cleanup and do the | |
3157 | * PAGE_WAKEUP_DONE in RELEASE_PAGE | |
3158 | */ | |
3159 | vm_object_lock(m->object); | |
3160 | ||
0b4e3aa0 | 3161 | RELEASE_PAGE(m); |
2d21ac55 A |
3162 | |
3163 | vm_fault_cleanup(m->object, top_page); | |
0b4e3aa0 | 3164 | } else { |
2d21ac55 A |
3165 | /* |
3166 | * retake the lock so that | |
3167 | * we can drop the paging reference | |
3168 | * in vm_fault_cleanup | |
3169 | */ | |
3170 | vm_object_lock(object); | |
3171 | ||
3172 | vm_fault_cleanup(object, top_page); | |
0b4e3aa0 | 3173 | } |
2d21ac55 A |
3174 | vm_object_deallocate(object); |
3175 | ||
1c79356b A |
3176 | goto RetryFault; |
3177 | } | |
1c79356b | 3178 | /* |
2d21ac55 A |
3179 | * Check whether the protection has changed or the object |
3180 | * has been copied while we left the map unlocked. | |
1c79356b A |
3181 | */ |
3182 | prot &= retry_prot; | |
0b4e3aa0 | 3183 | } |
2d21ac55 | 3184 | if (m != VM_PAGE_NULL) { |
0b4e3aa0 | 3185 | vm_object_lock(m->object); |
1c79356b | 3186 | |
2d21ac55 A |
3187 | if (m->object->copy != old_copy_object) { |
3188 | /* | |
3189 | * The copy object changed while the top-level object | |
3190 | * was unlocked, so take away write permission. | |
3191 | */ | |
0b4e3aa0 | 3192 | prot &= ~VM_PROT_WRITE; |
2d21ac55 A |
3193 | } |
3194 | } else | |
3195 | vm_object_lock(object); | |
1c79356b A |
3196 | |
3197 | /* | |
2d21ac55 A |
3198 | * If we want to wire down this page, but no longer have |
3199 | * adequate permissions, we must start all over. | |
1c79356b | 3200 | */ |
2d21ac55 | 3201 | if (wired && (fault_type != (prot | VM_PROT_WRITE))) { |
1c79356b | 3202 | |
1c79356b | 3203 | vm_map_verify_done(map, &version); |
2d21ac55 | 3204 | if (real_map != map) |
91447636 | 3205 | vm_map_unlock(real_map); |
1c79356b | 3206 | |
2d21ac55 A |
3207 | if (m != VM_PAGE_NULL) { |
3208 | RELEASE_PAGE(m); | |
91447636 | 3209 | |
2d21ac55 A |
3210 | vm_fault_cleanup(m->object, top_page); |
3211 | } else | |
3212 | vm_fault_cleanup(object, top_page); | |
0b4e3aa0 | 3213 | |
2d21ac55 | 3214 | vm_object_deallocate(object); |
55e303ae | 3215 | |
2d21ac55 A |
3216 | goto RetryFault; |
3217 | } | |
3218 | if (m != VM_PAGE_NULL) { | |
55e303ae | 3219 | /* |
2d21ac55 A |
3220 | * Put this page into the physical map. |
3221 | * We had to do the unlock above because pmap_enter | |
3222 | * may cause other faults. The page may be on | |
3223 | * the pageout queues. If the pageout daemon comes | |
3224 | * across the page, it will remove it from the queues. | |
55e303ae | 3225 | */ |
2d21ac55 A |
3226 | if (caller_pmap) { |
3227 | kr = vm_fault_enter(m, | |
3228 | caller_pmap, | |
3229 | caller_pmap_addr, | |
3230 | prot, | |
3231 | wired, | |
3232 | change_wiring, | |
3233 | fault_info.no_cache, | |
3234 | &type_of_fault); | |
3235 | } else { | |
3236 | kr = vm_fault_enter(m, | |
3237 | pmap, | |
3238 | vaddr, | |
3239 | prot, | |
3240 | wired, | |
3241 | change_wiring, | |
3242 | fault_info.no_cache, | |
3243 | &type_of_fault); | |
3244 | } | |
3245 | if (kr != KERN_SUCCESS) { | |
3246 | /* abort this page fault */ | |
3247 | vm_map_verify_done(map, &version); | |
3248 | if (real_map != map) | |
3249 | vm_map_unlock(real_map); | |
3250 | PAGE_WAKEUP_DONE(m); | |
3251 | vm_fault_cleanup(m->object, top_page); | |
3252 | vm_object_deallocate(object); | |
3253 | goto done; | |
0b4e3aa0 A |
3254 | } |
3255 | } else { | |
3256 | ||
9bccf70c | 3257 | vm_map_entry_t entry; |
91447636 A |
3258 | vm_map_offset_t laddr; |
3259 | vm_map_offset_t ldelta, hdelta; | |
143cc14e | 3260 | |
0b4e3aa0 A |
3261 | /* |
3262 | * do a pmap block mapping from the physical address | |
3263 | * in the object | |
3264 | */ | |
9bccf70c | 3265 | |
2d21ac55 | 3266 | #ifdef ppc |
55e303ae A |
3267 | /* While we do not worry about execution protection in */ |
3268 | /* general, certian pages may have instruction execution */ | |
3269 | /* disallowed. We will check here, and if not allowed */ | |
3270 | /* to execute, we return with a protection failure. */ | |
9bccf70c | 3271 | |
2d21ac55 A |
3272 | if ((fault_type & VM_PROT_EXECUTE) && |
3273 | (!pmap_eligible_for_execute((ppnum_t)(object->shadow_offset >> 12)))) { | |
9bccf70c | 3274 | |
9bccf70c | 3275 | vm_map_verify_done(map, &version); |
2d21ac55 A |
3276 | |
3277 | if (real_map != map) | |
91447636 | 3278 | vm_map_unlock(real_map); |
2d21ac55 | 3279 | |
9bccf70c A |
3280 | vm_fault_cleanup(object, top_page); |
3281 | vm_object_deallocate(object); | |
2d21ac55 | 3282 | |
9bccf70c A |
3283 | kr = KERN_PROTECTION_FAILURE; |
3284 | goto done; | |
0b4e3aa0 | 3285 | } |
2d21ac55 | 3286 | #endif /* ppc */ |
1c79356b | 3287 | |
2d21ac55 | 3288 | if (real_map != map) |
91447636 | 3289 | vm_map_unlock(real_map); |
2d21ac55 | 3290 | |
9bccf70c A |
3291 | if (original_map != map) { |
3292 | vm_map_unlock_read(map); | |
3293 | vm_map_lock_read(original_map); | |
3294 | map = original_map; | |
3295 | } | |
91447636 | 3296 | real_map = map; |
9bccf70c A |
3297 | |
3298 | laddr = vaddr; | |
3299 | hdelta = 0xFFFFF000; | |
3300 | ldelta = 0xFFFFF000; | |
3301 | ||
2d21ac55 A |
3302 | while (vm_map_lookup_entry(map, laddr, &entry)) { |
3303 | if (ldelta > (laddr - entry->vme_start)) | |
9bccf70c | 3304 | ldelta = laddr - entry->vme_start; |
2d21ac55 | 3305 | if (hdelta > (entry->vme_end - laddr)) |
9bccf70c | 3306 | hdelta = entry->vme_end - laddr; |
2d21ac55 | 3307 | if (entry->is_sub_map) { |
9bccf70c A |
3308 | |
3309 | laddr = (laddr - entry->vme_start) | |
3310 | + entry->offset; | |
3311 | vm_map_lock_read(entry->object.sub_map); | |
2d21ac55 A |
3312 | |
3313 | if (map != real_map) | |
9bccf70c | 3314 | vm_map_unlock_read(map); |
2d21ac55 | 3315 | if (entry->use_pmap) { |
91447636 A |
3316 | vm_map_unlock_read(real_map); |
3317 | real_map = entry->object.sub_map; | |
9bccf70c A |
3318 | } |
3319 | map = entry->object.sub_map; | |
3320 | ||
3321 | } else { | |
3322 | break; | |
3323 | } | |
3324 | } | |
3325 | ||
2d21ac55 A |
3326 | if (vm_map_lookup_entry(map, laddr, &entry) && |
3327 | (entry->object.vm_object != NULL) && | |
3328 | (entry->object.vm_object == object)) { | |
3329 | ||
3330 | if (caller_pmap) { | |
3331 | /* | |
3332 | * Set up a block mapped area | |
3333 | */ | |
3334 | pmap_map_block(caller_pmap, | |
3335 | (addr64_t)(caller_pmap_addr - ldelta), | |
3336 | (((vm_map_offset_t) (entry->object.vm_object->shadow_offset)) + | |
3337 | entry->offset + (laddr - entry->vme_start) - ldelta) >> 12, | |
3338 | ((ldelta + hdelta) >> 12), prot, | |
3339 | (VM_WIMG_MASK & (int)object->wimg_bits), 0); | |
55e303ae | 3340 | } else { |
2d21ac55 A |
3341 | /* |
3342 | * Set up a block mapped area | |
3343 | */ | |
3344 | pmap_map_block(real_map->pmap, | |
3345 | (addr64_t)(vaddr - ldelta), | |
3346 | (((vm_map_offset_t)(entry->object.vm_object->shadow_offset)) + | |
3347 | entry->offset + (laddr - entry->vme_start) - ldelta) >> 12, | |
3348 | ((ldelta + hdelta) >> 12), prot, | |
3349 | (VM_WIMG_MASK & (int)object->wimg_bits), 0); | |
9bccf70c A |
3350 | } |
3351 | } | |
0b4e3aa0 | 3352 | } |
1c79356b A |
3353 | |
3354 | /* | |
2d21ac55 | 3355 | * Unlock everything, and return |
1c79356b | 3356 | */ |
1c79356b | 3357 | vm_map_verify_done(map, &version); |
2d21ac55 | 3358 | if (real_map != map) |
91447636 | 3359 | vm_map_unlock(real_map); |
2d21ac55 A |
3360 | |
3361 | if (m != VM_PAGE_NULL) { | |
0b4e3aa0 | 3362 | PAGE_WAKEUP_DONE(m); |
1c79356b | 3363 | |
2d21ac55 A |
3364 | vm_fault_cleanup(m->object, top_page); |
3365 | } else | |
3366 | vm_fault_cleanup(object, top_page); | |
1c79356b | 3367 | |
2d21ac55 A |
3368 | vm_object_deallocate(object); |
3369 | ||
3370 | #undef RELEASE_PAGE | |
91447636 | 3371 | |
2d21ac55 A |
3372 | kr = KERN_SUCCESS; |
3373 | done: | |
9bccf70c | 3374 | thread_interrupt_level(interruptible_state); |
1c79356b | 3375 | |
2d21ac55 A |
3376 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, |
3377 | (int)((uint64_t)vaddr >> 32), | |
3378 | (int)vaddr, | |
1c79356b | 3379 | kr, |
2d21ac55 | 3380 | type_of_fault, |
1c79356b | 3381 | 0); |
143cc14e | 3382 | |
2d21ac55 | 3383 | return (kr); |
1c79356b A |
3384 | } |
3385 | ||
3386 | /* | |
3387 | * vm_fault_wire: | |
3388 | * | |
3389 | * Wire down a range of virtual addresses in a map. | |
3390 | */ | |
3391 | kern_return_t | |
3392 | vm_fault_wire( | |
3393 | vm_map_t map, | |
3394 | vm_map_entry_t entry, | |
9bccf70c | 3395 | pmap_t pmap, |
91447636 | 3396 | vm_map_offset_t pmap_addr) |
1c79356b A |
3397 | { |
3398 | ||
91447636 A |
3399 | register vm_map_offset_t va; |
3400 | register vm_map_offset_t end_addr = entry->vme_end; | |
1c79356b A |
3401 | register kern_return_t rc; |
3402 | ||
3403 | assert(entry->in_transition); | |
3404 | ||
9bccf70c A |
3405 | if ((entry->object.vm_object != NULL) && |
3406 | !entry->is_sub_map && | |
3407 | entry->object.vm_object->phys_contiguous) { | |
3408 | return KERN_SUCCESS; | |
3409 | } | |
3410 | ||
1c79356b A |
3411 | /* |
3412 | * Inform the physical mapping system that the | |
3413 | * range of addresses may not fault, so that | |
3414 | * page tables and such can be locked down as well. | |
3415 | */ | |
3416 | ||
9bccf70c A |
3417 | pmap_pageable(pmap, pmap_addr, |
3418 | pmap_addr + (end_addr - entry->vme_start), FALSE); | |
1c79356b A |
3419 | |
3420 | /* | |
3421 | * We simulate a fault to get the page and enter it | |
3422 | * in the physical map. | |
3423 | */ | |
3424 | ||
3425 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
3426 | if ((rc = vm_fault_wire_fast( | |
9bccf70c A |
3427 | map, va, entry, pmap, |
3428 | pmap_addr + (va - entry->vme_start) | |
3429 | )) != KERN_SUCCESS) { | |
1c79356b | 3430 | rc = vm_fault(map, va, VM_PROT_NONE, TRUE, |
9bccf70c A |
3431 | (pmap == kernel_pmap) ? |
3432 | THREAD_UNINT : THREAD_ABORTSAFE, | |
3433 | pmap, pmap_addr + (va - entry->vme_start)); | |
2d21ac55 | 3434 | DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL); |
1c79356b A |
3435 | } |
3436 | ||
3437 | if (rc != KERN_SUCCESS) { | |
3438 | struct vm_map_entry tmp_entry = *entry; | |
3439 | ||
3440 | /* unwire wired pages */ | |
3441 | tmp_entry.vme_end = va; | |
9bccf70c A |
3442 | vm_fault_unwire(map, |
3443 | &tmp_entry, FALSE, pmap, pmap_addr); | |
1c79356b A |
3444 | |
3445 | return rc; | |
3446 | } | |
3447 | } | |
3448 | return KERN_SUCCESS; | |
3449 | } | |
3450 | ||
3451 | /* | |
3452 | * vm_fault_unwire: | |
3453 | * | |
3454 | * Unwire a range of virtual addresses in a map. | |
3455 | */ | |
3456 | void | |
3457 | vm_fault_unwire( | |
3458 | vm_map_t map, | |
3459 | vm_map_entry_t entry, | |
3460 | boolean_t deallocate, | |
9bccf70c | 3461 | pmap_t pmap, |
91447636 | 3462 | vm_map_offset_t pmap_addr) |
1c79356b | 3463 | { |
91447636 A |
3464 | register vm_map_offset_t va; |
3465 | register vm_map_offset_t end_addr = entry->vme_end; | |
1c79356b | 3466 | vm_object_t object; |
2d21ac55 | 3467 | struct vm_object_fault_info fault_info; |
1c79356b A |
3468 | |
3469 | object = (entry->is_sub_map) | |
3470 | ? VM_OBJECT_NULL : entry->object.vm_object; | |
3471 | ||
2d21ac55 A |
3472 | /* |
3473 | * If it's marked phys_contiguous, then vm_fault_wire() didn't actually | |
3474 | * do anything since such memory is wired by default. So we don't have | |
3475 | * anything to undo here. | |
3476 | */ | |
3477 | ||
3478 | if (object != VM_OBJECT_NULL && object->phys_contiguous) | |
3479 | return; | |
3480 | ||
3481 | fault_info.interruptible = THREAD_UNINT; | |
3482 | fault_info.behavior = entry->behavior; | |
3483 | fault_info.user_tag = entry->alias; | |
3484 | fault_info.lo_offset = entry->offset; | |
3485 | fault_info.hi_offset = (entry->vme_end - entry->vme_start) + entry->offset; | |
3486 | fault_info.no_cache = entry->no_cache; | |
3487 | ||
1c79356b A |
3488 | /* |
3489 | * Since the pages are wired down, we must be able to | |
3490 | * get their mappings from the physical map system. | |
3491 | */ | |
3492 | ||
3493 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
1c79356b A |
3494 | |
3495 | if (object == VM_OBJECT_NULL) { | |
593a1d5f A |
3496 | if (pmap) { |
3497 | pmap_change_wiring(pmap, | |
3498 | pmap_addr + (va - entry->vme_start), FALSE); | |
3499 | } | |
9bccf70c A |
3500 | (void) vm_fault(map, va, VM_PROT_NONE, |
3501 | TRUE, THREAD_UNINT, pmap, pmap_addr); | |
1c79356b A |
3502 | } else { |
3503 | vm_prot_t prot; | |
3504 | vm_page_t result_page; | |
3505 | vm_page_t top_page; | |
3506 | vm_object_t result_object; | |
3507 | vm_fault_return_t result; | |
3508 | ||
2d21ac55 A |
3509 | fault_info.cluster_size = end_addr - va; |
3510 | ||
1c79356b A |
3511 | do { |
3512 | prot = VM_PROT_NONE; | |
3513 | ||
3514 | vm_object_lock(object); | |
3515 | vm_object_paging_begin(object); | |
3516 | XPR(XPR_VM_FAULT, | |
3517 | "vm_fault_unwire -> vm_fault_page\n", | |
3518 | 0,0,0,0,0); | |
2d21ac55 A |
3519 | result = vm_fault_page( |
3520 | object, | |
3521 | entry->offset + (va - entry->vme_start), | |
3522 | VM_PROT_NONE, TRUE, | |
3523 | &prot, &result_page, &top_page, | |
3524 | (int *)0, | |
3525 | NULL, map->no_zero_fill, | |
3526 | FALSE, &fault_info); | |
1c79356b A |
3527 | } while (result == VM_FAULT_RETRY); |
3528 | ||
2d21ac55 A |
3529 | /* |
3530 | * If this was a mapping to a file on a device that has been forcibly | |
3531 | * unmounted, then we won't get a page back from vm_fault_page(). Just | |
3532 | * move on to the next one in case the remaining pages are mapped from | |
3533 | * different objects. During a forced unmount, the object is terminated | |
3534 | * so the alive flag will be false if this happens. A forced unmount will | |
3535 | * will occur when an external disk is unplugged before the user does an | |
3536 | * eject, so we don't want to panic in that situation. | |
3537 | */ | |
3538 | ||
3539 | if (result == VM_FAULT_MEMORY_ERROR && !object->alive) | |
3540 | continue; | |
3541 | ||
1c79356b A |
3542 | if (result != VM_FAULT_SUCCESS) |
3543 | panic("vm_fault_unwire: failure"); | |
3544 | ||
3545 | result_object = result_page->object; | |
2d21ac55 | 3546 | |
593a1d5f A |
3547 | if ((pmap) && (result_page->phys_page != vm_page_guard_addr)) { |
3548 | pmap_change_wiring(pmap, | |
3549 | pmap_addr + (va - entry->vme_start), FALSE); | |
3550 | } | |
1c79356b | 3551 | if (deallocate) { |
2d21ac55 A |
3552 | assert(result_page->phys_page != |
3553 | vm_page_fictitious_addr); | |
91447636 | 3554 | pmap_disconnect(result_page->phys_page); |
1c79356b A |
3555 | VM_PAGE_FREE(result_page); |
3556 | } else { | |
2d21ac55 | 3557 | vm_page_lockspin_queues(); |
1c79356b A |
3558 | vm_page_unwire(result_page); |
3559 | vm_page_unlock_queues(); | |
3560 | PAGE_WAKEUP_DONE(result_page); | |
3561 | } | |
1c79356b A |
3562 | vm_fault_cleanup(result_object, top_page); |
3563 | } | |
3564 | } | |
3565 | ||
3566 | /* | |
3567 | * Inform the physical mapping system that the range | |
3568 | * of addresses may fault, so that page tables and | |
3569 | * such may be unwired themselves. | |
3570 | */ | |
3571 | ||
9bccf70c A |
3572 | pmap_pageable(pmap, pmap_addr, |
3573 | pmap_addr + (end_addr - entry->vme_start), TRUE); | |
1c79356b A |
3574 | |
3575 | } | |
3576 | ||
3577 | /* | |
3578 | * vm_fault_wire_fast: | |
3579 | * | |
3580 | * Handle common case of a wire down page fault at the given address. | |
3581 | * If successful, the page is inserted into the associated physical map. | |
3582 | * The map entry is passed in to avoid the overhead of a map lookup. | |
3583 | * | |
3584 | * NOTE: the given address should be truncated to the | |
3585 | * proper page address. | |
3586 | * | |
3587 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, | |
3588 | * a standard error specifying why the fault is fatal is returned. | |
3589 | * | |
3590 | * The map in question must be referenced, and remains so. | |
3591 | * Caller has a read lock on the map. | |
3592 | * | |
3593 | * This is a stripped version of vm_fault() for wiring pages. Anything | |
3594 | * other than the common case will return KERN_FAILURE, and the caller | |
3595 | * is expected to call vm_fault(). | |
3596 | */ | |
3597 | kern_return_t | |
3598 | vm_fault_wire_fast( | |
91447636 A |
3599 | __unused vm_map_t map, |
3600 | vm_map_offset_t va, | |
1c79356b | 3601 | vm_map_entry_t entry, |
91447636 A |
3602 | pmap_t pmap, |
3603 | vm_map_offset_t pmap_addr) | |
1c79356b A |
3604 | { |
3605 | vm_object_t object; | |
3606 | vm_object_offset_t offset; | |
3607 | register vm_page_t m; | |
3608 | vm_prot_t prot; | |
91447636 | 3609 | thread_t thread = current_thread(); |
2d21ac55 A |
3610 | int type_of_fault; |
3611 | kern_return_t kr; | |
1c79356b | 3612 | |
2d21ac55 | 3613 | VM_STAT_INCR(faults); |
1c79356b | 3614 | |
91447636 A |
3615 | if (thread != THREAD_NULL && thread->task != TASK_NULL) |
3616 | thread->task->faults++; | |
1c79356b A |
3617 | |
3618 | /* | |
3619 | * Recovery actions | |
3620 | */ | |
3621 | ||
3622 | #undef RELEASE_PAGE | |
3623 | #define RELEASE_PAGE(m) { \ | |
3624 | PAGE_WAKEUP_DONE(m); \ | |
2d21ac55 | 3625 | vm_page_lockspin_queues(); \ |
1c79356b A |
3626 | vm_page_unwire(m); \ |
3627 | vm_page_unlock_queues(); \ | |
3628 | } | |
3629 | ||
3630 | ||
3631 | #undef UNLOCK_THINGS | |
3632 | #define UNLOCK_THINGS { \ | |
ff6e181a A |
3633 | vm_object_paging_end(object); \ |
3634 | vm_object_unlock(object); \ | |
1c79356b A |
3635 | } |
3636 | ||
3637 | #undef UNLOCK_AND_DEALLOCATE | |
3638 | #define UNLOCK_AND_DEALLOCATE { \ | |
3639 | UNLOCK_THINGS; \ | |
3640 | vm_object_deallocate(object); \ | |
3641 | } | |
3642 | /* | |
3643 | * Give up and have caller do things the hard way. | |
3644 | */ | |
3645 | ||
3646 | #define GIVE_UP { \ | |
3647 | UNLOCK_AND_DEALLOCATE; \ | |
3648 | return(KERN_FAILURE); \ | |
3649 | } | |
3650 | ||
3651 | ||
3652 | /* | |
3653 | * If this entry is not directly to a vm_object, bail out. | |
3654 | */ | |
3655 | if (entry->is_sub_map) | |
3656 | return(KERN_FAILURE); | |
3657 | ||
3658 | /* | |
3659 | * Find the backing store object and offset into it. | |
3660 | */ | |
3661 | ||
3662 | object = entry->object.vm_object; | |
3663 | offset = (va - entry->vme_start) + entry->offset; | |
3664 | prot = entry->protection; | |
3665 | ||
3666 | /* | |
3667 | * Make a reference to this object to prevent its | |
3668 | * disposal while we are messing with it. | |
3669 | */ | |
3670 | ||
3671 | vm_object_lock(object); | |
2d21ac55 | 3672 | vm_object_reference_locked(object); |
ff6e181a | 3673 | vm_object_paging_begin(object); |
1c79356b A |
3674 | |
3675 | /* | |
3676 | * INVARIANTS (through entire routine): | |
3677 | * | |
3678 | * 1) At all times, we must either have the object | |
3679 | * lock or a busy page in some object to prevent | |
3680 | * some other thread from trying to bring in | |
3681 | * the same page. | |
3682 | * | |
3683 | * 2) Once we have a busy page, we must remove it from | |
3684 | * the pageout queues, so that the pageout daemon | |
3685 | * will not grab it away. | |
3686 | * | |
3687 | */ | |
3688 | ||
3689 | /* | |
3690 | * Look for page in top-level object. If it's not there or | |
3691 | * there's something going on, give up. | |
91447636 A |
3692 | * ENCRYPTED SWAP: use the slow fault path, since we'll need to |
3693 | * decrypt the page before wiring it down. | |
1c79356b A |
3694 | */ |
3695 | m = vm_page_lookup(object, offset); | |
91447636 | 3696 | if ((m == VM_PAGE_NULL) || (m->busy) || (m->encrypted) || |
2d21ac55 | 3697 | (m->unusual && ( m->error || m->restart || m->absent))) { |
1c79356b A |
3698 | |
3699 | GIVE_UP; | |
3700 | } | |
91447636 | 3701 | ASSERT_PAGE_DECRYPTED(m); |
1c79356b | 3702 | |
2d21ac55 A |
3703 | if (m->fictitious && |
3704 | m->phys_page == vm_page_guard_addr) { | |
3705 | /* | |
3706 | * Guard pages are fictitious pages and are never | |
3707 | * entered into a pmap, so let's say it's been wired... | |
3708 | */ | |
3709 | kr = KERN_SUCCESS; | |
3710 | goto done; | |
3711 | } | |
3712 | ||
1c79356b A |
3713 | /* |
3714 | * Wire the page down now. All bail outs beyond this | |
3715 | * point must unwire the page. | |
3716 | */ | |
3717 | ||
2d21ac55 | 3718 | vm_page_lockspin_queues(); |
1c79356b A |
3719 | vm_page_wire(m); |
3720 | vm_page_unlock_queues(); | |
3721 | ||
3722 | /* | |
3723 | * Mark page busy for other threads. | |
3724 | */ | |
3725 | assert(!m->busy); | |
3726 | m->busy = TRUE; | |
3727 | assert(!m->absent); | |
3728 | ||
3729 | /* | |
3730 | * Give up if the page is being written and there's a copy object | |
3731 | */ | |
3732 | if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { | |
3733 | RELEASE_PAGE(m); | |
3734 | GIVE_UP; | |
3735 | } | |
3736 | ||
3737 | /* | |
3738 | * Put this page into the physical map. | |
1c79356b | 3739 | */ |
2d21ac55 A |
3740 | type_of_fault = DBG_CACHE_HIT_FAULT; |
3741 | kr = vm_fault_enter(m, | |
3742 | pmap, | |
3743 | pmap_addr, | |
3744 | prot, | |
3745 | TRUE, | |
3746 | FALSE, | |
3747 | FALSE, | |
3748 | &type_of_fault); | |
3749 | ||
3750 | done: | |
1c79356b A |
3751 | /* |
3752 | * Unlock everything, and return | |
3753 | */ | |
3754 | ||
3755 | PAGE_WAKEUP_DONE(m); | |
3756 | UNLOCK_AND_DEALLOCATE; | |
3757 | ||
2d21ac55 | 3758 | return kr; |
1c79356b A |
3759 | |
3760 | } | |
3761 | ||
3762 | /* | |
3763 | * Routine: vm_fault_copy_cleanup | |
3764 | * Purpose: | |
3765 | * Release a page used by vm_fault_copy. | |
3766 | */ | |
3767 | ||
3768 | void | |
3769 | vm_fault_copy_cleanup( | |
3770 | vm_page_t page, | |
3771 | vm_page_t top_page) | |
3772 | { | |
3773 | vm_object_t object = page->object; | |
3774 | ||
3775 | vm_object_lock(object); | |
3776 | PAGE_WAKEUP_DONE(page); | |
2d21ac55 A |
3777 | vm_page_lockspin_queues(); |
3778 | if (!page->active && !page->inactive && !page->throttled) | |
1c79356b A |
3779 | vm_page_activate(page); |
3780 | vm_page_unlock_queues(); | |
3781 | vm_fault_cleanup(object, top_page); | |
3782 | } | |
3783 | ||
3784 | void | |
3785 | vm_fault_copy_dst_cleanup( | |
3786 | vm_page_t page) | |
3787 | { | |
3788 | vm_object_t object; | |
3789 | ||
3790 | if (page != VM_PAGE_NULL) { | |
3791 | object = page->object; | |
3792 | vm_object_lock(object); | |
2d21ac55 | 3793 | vm_page_lockspin_queues(); |
1c79356b A |
3794 | vm_page_unwire(page); |
3795 | vm_page_unlock_queues(); | |
3796 | vm_object_paging_end(object); | |
3797 | vm_object_unlock(object); | |
3798 | } | |
3799 | } | |
3800 | ||
3801 | /* | |
3802 | * Routine: vm_fault_copy | |
3803 | * | |
3804 | * Purpose: | |
3805 | * Copy pages from one virtual memory object to another -- | |
3806 | * neither the source nor destination pages need be resident. | |
3807 | * | |
3808 | * Before actually copying a page, the version associated with | |
3809 | * the destination address map wil be verified. | |
3810 | * | |
3811 | * In/out conditions: | |
3812 | * The caller must hold a reference, but not a lock, to | |
3813 | * each of the source and destination objects and to the | |
3814 | * destination map. | |
3815 | * | |
3816 | * Results: | |
3817 | * Returns KERN_SUCCESS if no errors were encountered in | |
3818 | * reading or writing the data. Returns KERN_INTERRUPTED if | |
3819 | * the operation was interrupted (only possible if the | |
3820 | * "interruptible" argument is asserted). Other return values | |
3821 | * indicate a permanent error in copying the data. | |
3822 | * | |
3823 | * The actual amount of data copied will be returned in the | |
3824 | * "copy_size" argument. In the event that the destination map | |
3825 | * verification failed, this amount may be less than the amount | |
3826 | * requested. | |
3827 | */ | |
3828 | kern_return_t | |
3829 | vm_fault_copy( | |
3830 | vm_object_t src_object, | |
3831 | vm_object_offset_t src_offset, | |
91447636 | 3832 | vm_map_size_t *copy_size, /* INOUT */ |
1c79356b A |
3833 | vm_object_t dst_object, |
3834 | vm_object_offset_t dst_offset, | |
3835 | vm_map_t dst_map, | |
3836 | vm_map_version_t *dst_version, | |
3837 | int interruptible) | |
3838 | { | |
3839 | vm_page_t result_page; | |
3840 | ||
3841 | vm_page_t src_page; | |
3842 | vm_page_t src_top_page; | |
3843 | vm_prot_t src_prot; | |
3844 | ||
3845 | vm_page_t dst_page; | |
3846 | vm_page_t dst_top_page; | |
3847 | vm_prot_t dst_prot; | |
3848 | ||
91447636 | 3849 | vm_map_size_t amount_left; |
1c79356b A |
3850 | vm_object_t old_copy_object; |
3851 | kern_return_t error = 0; | |
3852 | ||
91447636 | 3853 | vm_map_size_t part_size; |
2d21ac55 A |
3854 | struct vm_object_fault_info fault_info_src; |
3855 | struct vm_object_fault_info fault_info_dst; | |
1c79356b A |
3856 | |
3857 | /* | |
3858 | * In order not to confuse the clustered pageins, align | |
3859 | * the different offsets on a page boundary. | |
3860 | */ | |
1c79356b A |
3861 | |
3862 | #define RETURN(x) \ | |
3863 | MACRO_BEGIN \ | |
91447636 | 3864 | *copy_size -= amount_left; \ |
1c79356b A |
3865 | MACRO_RETURN(x); \ |
3866 | MACRO_END | |
3867 | ||
91447636 | 3868 | amount_left = *copy_size; |
2d21ac55 A |
3869 | |
3870 | fault_info_src.interruptible = interruptible; | |
3871 | fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
3872 | fault_info_src.user_tag = 0; | |
3873 | fault_info_src.lo_offset = vm_object_trunc_page(src_offset); | |
3874 | fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left; | |
3875 | fault_info_src.no_cache = FALSE; | |
3876 | ||
3877 | fault_info_dst.interruptible = interruptible; | |
3878 | fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
3879 | fault_info_dst.user_tag = 0; | |
3880 | fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset); | |
3881 | fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left; | |
3882 | fault_info_dst.no_cache = FALSE; | |
3883 | ||
1c79356b A |
3884 | do { /* while (amount_left > 0) */ |
3885 | /* | |
3886 | * There may be a deadlock if both source and destination | |
3887 | * pages are the same. To avoid this deadlock, the copy must | |
3888 | * start by getting the destination page in order to apply | |
3889 | * COW semantics if any. | |
3890 | */ | |
3891 | ||
3892 | RetryDestinationFault: ; | |
3893 | ||
3894 | dst_prot = VM_PROT_WRITE|VM_PROT_READ; | |
3895 | ||
3896 | vm_object_lock(dst_object); | |
3897 | vm_object_paging_begin(dst_object); | |
3898 | ||
2d21ac55 A |
3899 | fault_info_dst.cluster_size = amount_left; |
3900 | ||
1c79356b A |
3901 | XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0); |
3902 | switch (vm_fault_page(dst_object, | |
91447636 | 3903 | vm_object_trunc_page(dst_offset), |
1c79356b A |
3904 | VM_PROT_WRITE|VM_PROT_READ, |
3905 | FALSE, | |
2d21ac55 | 3906 | &dst_prot, &dst_page, &dst_top_page, |
1c79356b A |
3907 | (int *)0, |
3908 | &error, | |
3909 | dst_map->no_zero_fill, | |
2d21ac55 | 3910 | FALSE, &fault_info_dst)) { |
1c79356b A |
3911 | case VM_FAULT_SUCCESS: |
3912 | break; | |
3913 | case VM_FAULT_RETRY: | |
3914 | goto RetryDestinationFault; | |
3915 | case VM_FAULT_MEMORY_SHORTAGE: | |
3916 | if (vm_page_wait(interruptible)) | |
3917 | goto RetryDestinationFault; | |
3918 | /* fall thru */ | |
3919 | case VM_FAULT_INTERRUPTED: | |
3920 | RETURN(MACH_SEND_INTERRUPTED); | |
1c79356b A |
3921 | case VM_FAULT_MEMORY_ERROR: |
3922 | if (error) | |
3923 | return (error); | |
3924 | else | |
3925 | return(KERN_MEMORY_ERROR); | |
3926 | } | |
3927 | assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); | |
3928 | ||
3929 | old_copy_object = dst_page->object->copy; | |
3930 | ||
3931 | /* | |
3932 | * There exists the possiblity that the source and | |
3933 | * destination page are the same. But we can't | |
3934 | * easily determine that now. If they are the | |
3935 | * same, the call to vm_fault_page() for the | |
3936 | * destination page will deadlock. To prevent this we | |
3937 | * wire the page so we can drop busy without having | |
3938 | * the page daemon steal the page. We clean up the | |
3939 | * top page but keep the paging reference on the object | |
3940 | * holding the dest page so it doesn't go away. | |
3941 | */ | |
3942 | ||
2d21ac55 | 3943 | vm_page_lockspin_queues(); |
1c79356b A |
3944 | vm_page_wire(dst_page); |
3945 | vm_page_unlock_queues(); | |
3946 | PAGE_WAKEUP_DONE(dst_page); | |
3947 | vm_object_unlock(dst_page->object); | |
3948 | ||
3949 | if (dst_top_page != VM_PAGE_NULL) { | |
3950 | vm_object_lock(dst_object); | |
3951 | VM_PAGE_FREE(dst_top_page); | |
3952 | vm_object_paging_end(dst_object); | |
3953 | vm_object_unlock(dst_object); | |
3954 | } | |
3955 | ||
3956 | RetrySourceFault: ; | |
3957 | ||
3958 | if (src_object == VM_OBJECT_NULL) { | |
3959 | /* | |
3960 | * No source object. We will just | |
3961 | * zero-fill the page in dst_object. | |
3962 | */ | |
3963 | src_page = VM_PAGE_NULL; | |
e3027f41 | 3964 | result_page = VM_PAGE_NULL; |
1c79356b A |
3965 | } else { |
3966 | vm_object_lock(src_object); | |
3967 | src_page = vm_page_lookup(src_object, | |
91447636 | 3968 | vm_object_trunc_page(src_offset)); |
e3027f41 | 3969 | if (src_page == dst_page) { |
1c79356b | 3970 | src_prot = dst_prot; |
e3027f41 A |
3971 | result_page = VM_PAGE_NULL; |
3972 | } else { | |
1c79356b A |
3973 | src_prot = VM_PROT_READ; |
3974 | vm_object_paging_begin(src_object); | |
3975 | ||
2d21ac55 A |
3976 | fault_info_src.cluster_size = amount_left; |
3977 | ||
1c79356b A |
3978 | XPR(XPR_VM_FAULT, |
3979 | "vm_fault_copy(2) -> vm_fault_page\n", | |
3980 | 0,0,0,0,0); | |
2d21ac55 A |
3981 | switch (vm_fault_page( |
3982 | src_object, | |
3983 | vm_object_trunc_page(src_offset), | |
3984 | VM_PROT_READ, FALSE, | |
3985 | &src_prot, | |
3986 | &result_page, &src_top_page, | |
3987 | (int *)0, &error, FALSE, | |
3988 | FALSE, &fault_info_src)) { | |
1c79356b A |
3989 | |
3990 | case VM_FAULT_SUCCESS: | |
3991 | break; | |
3992 | case VM_FAULT_RETRY: | |
3993 | goto RetrySourceFault; | |
3994 | case VM_FAULT_MEMORY_SHORTAGE: | |
3995 | if (vm_page_wait(interruptible)) | |
3996 | goto RetrySourceFault; | |
3997 | /* fall thru */ | |
3998 | case VM_FAULT_INTERRUPTED: | |
3999 | vm_fault_copy_dst_cleanup(dst_page); | |
4000 | RETURN(MACH_SEND_INTERRUPTED); | |
1c79356b A |
4001 | case VM_FAULT_MEMORY_ERROR: |
4002 | vm_fault_copy_dst_cleanup(dst_page); | |
4003 | if (error) | |
4004 | return (error); | |
4005 | else | |
4006 | return(KERN_MEMORY_ERROR); | |
4007 | } | |
4008 | ||
1c79356b A |
4009 | |
4010 | assert((src_top_page == VM_PAGE_NULL) == | |
e3027f41 | 4011 | (result_page->object == src_object)); |
1c79356b A |
4012 | } |
4013 | assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE); | |
e3027f41 | 4014 | vm_object_unlock(result_page->object); |
1c79356b A |
4015 | } |
4016 | ||
4017 | if (!vm_map_verify(dst_map, dst_version)) { | |
e3027f41 A |
4018 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
4019 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
4020 | vm_fault_copy_dst_cleanup(dst_page); |
4021 | break; | |
4022 | } | |
4023 | ||
4024 | vm_object_lock(dst_page->object); | |
4025 | ||
4026 | if (dst_page->object->copy != old_copy_object) { | |
4027 | vm_object_unlock(dst_page->object); | |
4028 | vm_map_verify_done(dst_map, dst_version); | |
e3027f41 A |
4029 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
4030 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
4031 | vm_fault_copy_dst_cleanup(dst_page); |
4032 | break; | |
4033 | } | |
4034 | vm_object_unlock(dst_page->object); | |
4035 | ||
4036 | /* | |
4037 | * Copy the page, and note that it is dirty | |
4038 | * immediately. | |
4039 | */ | |
4040 | ||
4041 | if (!page_aligned(src_offset) || | |
4042 | !page_aligned(dst_offset) || | |
4043 | !page_aligned(amount_left)) { | |
4044 | ||
4045 | vm_object_offset_t src_po, | |
4046 | dst_po; | |
4047 | ||
91447636 A |
4048 | src_po = src_offset - vm_object_trunc_page(src_offset); |
4049 | dst_po = dst_offset - vm_object_trunc_page(dst_offset); | |
1c79356b A |
4050 | |
4051 | if (dst_po > src_po) { | |
4052 | part_size = PAGE_SIZE - dst_po; | |
4053 | } else { | |
4054 | part_size = PAGE_SIZE - src_po; | |
4055 | } | |
4056 | if (part_size > (amount_left)){ | |
4057 | part_size = amount_left; | |
4058 | } | |
4059 | ||
e3027f41 | 4060 | if (result_page == VM_PAGE_NULL) { |
1c79356b A |
4061 | vm_page_part_zero_fill(dst_page, |
4062 | dst_po, part_size); | |
4063 | } else { | |
e3027f41 | 4064 | vm_page_part_copy(result_page, src_po, |
1c79356b A |
4065 | dst_page, dst_po, part_size); |
4066 | if(!dst_page->dirty){ | |
4067 | vm_object_lock(dst_object); | |
4068 | dst_page->dirty = TRUE; | |
4069 | vm_object_unlock(dst_page->object); | |
4070 | } | |
4071 | ||
4072 | } | |
4073 | } else { | |
4074 | part_size = PAGE_SIZE; | |
4075 | ||
e3027f41 | 4076 | if (result_page == VM_PAGE_NULL) |
1c79356b A |
4077 | vm_page_zero_fill(dst_page); |
4078 | else{ | |
e3027f41 | 4079 | vm_page_copy(result_page, dst_page); |
1c79356b A |
4080 | if(!dst_page->dirty){ |
4081 | vm_object_lock(dst_object); | |
4082 | dst_page->dirty = TRUE; | |
4083 | vm_object_unlock(dst_page->object); | |
4084 | } | |
4085 | } | |
4086 | ||
4087 | } | |
4088 | ||
4089 | /* | |
4090 | * Unlock everything, and return | |
4091 | */ | |
4092 | ||
4093 | vm_map_verify_done(dst_map, dst_version); | |
4094 | ||
e3027f41 A |
4095 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
4096 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
4097 | vm_fault_copy_dst_cleanup(dst_page); |
4098 | ||
4099 | amount_left -= part_size; | |
4100 | src_offset += part_size; | |
4101 | dst_offset += part_size; | |
4102 | } while (amount_left > 0); | |
4103 | ||
4104 | RETURN(KERN_SUCCESS); | |
4105 | #undef RETURN | |
4106 | ||
4107 | /*NOTREACHED*/ | |
4108 | } | |
4109 | ||
1c79356b A |
4110 | #if VM_FAULT_CLASSIFY |
4111 | /* | |
4112 | * Temporary statistics gathering support. | |
4113 | */ | |
4114 | ||
4115 | /* | |
4116 | * Statistics arrays: | |
4117 | */ | |
4118 | #define VM_FAULT_TYPES_MAX 5 | |
4119 | #define VM_FAULT_LEVEL_MAX 8 | |
4120 | ||
4121 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; | |
4122 | ||
4123 | #define VM_FAULT_TYPE_ZERO_FILL 0 | |
4124 | #define VM_FAULT_TYPE_MAP_IN 1 | |
4125 | #define VM_FAULT_TYPE_PAGER 2 | |
4126 | #define VM_FAULT_TYPE_COPY 3 | |
4127 | #define VM_FAULT_TYPE_OTHER 4 | |
4128 | ||
4129 | ||
4130 | void | |
4131 | vm_fault_classify(vm_object_t object, | |
4132 | vm_object_offset_t offset, | |
4133 | vm_prot_t fault_type) | |
4134 | { | |
4135 | int type, level = 0; | |
4136 | vm_page_t m; | |
4137 | ||
4138 | while (TRUE) { | |
4139 | m = vm_page_lookup(object, offset); | |
4140 | if (m != VM_PAGE_NULL) { | |
2d21ac55 | 4141 | if (m->busy || m->error || m->restart || m->absent) { |
1c79356b A |
4142 | type = VM_FAULT_TYPE_OTHER; |
4143 | break; | |
4144 | } | |
4145 | if (((fault_type & VM_PROT_WRITE) == 0) || | |
4146 | ((level == 0) && object->copy == VM_OBJECT_NULL)) { | |
4147 | type = VM_FAULT_TYPE_MAP_IN; | |
4148 | break; | |
4149 | } | |
4150 | type = VM_FAULT_TYPE_COPY; | |
4151 | break; | |
4152 | } | |
4153 | else { | |
4154 | if (object->pager_created) { | |
4155 | type = VM_FAULT_TYPE_PAGER; | |
4156 | break; | |
4157 | } | |
4158 | if (object->shadow == VM_OBJECT_NULL) { | |
4159 | type = VM_FAULT_TYPE_ZERO_FILL; | |
4160 | break; | |
4161 | } | |
4162 | ||
4163 | offset += object->shadow_offset; | |
4164 | object = object->shadow; | |
4165 | level++; | |
4166 | continue; | |
4167 | } | |
4168 | } | |
4169 | ||
4170 | if (level > VM_FAULT_LEVEL_MAX) | |
4171 | level = VM_FAULT_LEVEL_MAX; | |
4172 | ||
4173 | vm_fault_stats[type][level] += 1; | |
4174 | ||
4175 | return; | |
4176 | } | |
4177 | ||
4178 | /* cleanup routine to call from debugger */ | |
4179 | ||
4180 | void | |
4181 | vm_fault_classify_init(void) | |
4182 | { | |
4183 | int type, level; | |
4184 | ||
4185 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { | |
4186 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { | |
4187 | vm_fault_stats[type][level] = 0; | |
4188 | } | |
4189 | } | |
4190 | ||
4191 | return; | |
4192 | } | |
4193 | #endif /* VM_FAULT_CLASSIFY */ | |
2d21ac55 A |
4194 | |
4195 | ||
4196 | extern int cs_validation; | |
4197 | ||
593a1d5f A |
4198 | void |
4199 | vm_page_validate_cs_mapped( | |
4200 | vm_page_t page, | |
4201 | const void *kaddr) | |
4202 | { | |
4203 | vm_object_t object; | |
4204 | vm_object_offset_t offset; | |
4205 | kern_return_t kr; | |
4206 | memory_object_t pager; | |
4207 | void *blobs; | |
4208 | boolean_t validated, tainted; | |
4209 | ||
4210 | assert(page->busy); | |
4211 | vm_object_lock_assert_exclusive(page->object); | |
4212 | ||
4213 | if (!cs_validation) { | |
4214 | return; | |
4215 | } | |
4216 | ||
4217 | if (page->wpmapped && !page->cs_tainted) { | |
4218 | /* | |
4219 | * This page was mapped for "write" access sometime in the | |
4220 | * past and could still be modifiable in the future. | |
4221 | * Consider it tainted. | |
4222 | * [ If the page was already found to be "tainted", no | |
4223 | * need to re-validate. ] | |
4224 | */ | |
4225 | page->cs_validated = TRUE; | |
4226 | page->cs_tainted = TRUE; | |
4227 | if (cs_debug) { | |
4228 | printf("CODESIGNING: vm_page_validate_cs: " | |
4229 | "page %p obj %p off 0x%llx " | |
4230 | "was modified\n", | |
4231 | page, page->object, page->offset); | |
4232 | } | |
4233 | vm_cs_validated_dirtied++; | |
4234 | } | |
4235 | ||
4236 | if (page->cs_validated) { | |
4237 | return; | |
4238 | } | |
4239 | ||
4240 | vm_cs_validates++; | |
4241 | ||
4242 | object = page->object; | |
4243 | assert(object->code_signed); | |
4244 | offset = page->offset; | |
4245 | ||
4246 | if (!object->alive || object->terminating || object->pager == NULL) { | |
4247 | /* | |
4248 | * The object is terminating and we don't have its pager | |
4249 | * so we can't validate the data... | |
4250 | */ | |
4251 | return; | |
4252 | } | |
4253 | /* | |
4254 | * Since we get here to validate a page that was brought in by | |
4255 | * the pager, we know that this pager is all setup and ready | |
4256 | * by now. | |
4257 | */ | |
4258 | assert(!object->internal); | |
4259 | assert(object->pager != NULL); | |
4260 | assert(object->pager_ready); | |
4261 | ||
4262 | pager = object->pager; | |
4263 | ||
4264 | kr = vnode_pager_get_object_cs_blobs(pager, &blobs); | |
4265 | if (kr != KERN_SUCCESS) { | |
4266 | blobs = NULL; | |
4267 | } | |
4268 | ||
4269 | /* verify the SHA1 hash for this page */ | |
4270 | validated = cs_validate_page(blobs, | |
4271 | offset + object->paging_offset, | |
4272 | (const void *)kaddr, | |
4273 | &tainted); | |
4274 | ||
4275 | page->cs_validated = validated; | |
4276 | if (validated) { | |
4277 | page->cs_tainted = tainted; | |
4278 | } | |
4279 | } | |
4280 | ||
2d21ac55 A |
4281 | void |
4282 | vm_page_validate_cs( | |
4283 | vm_page_t page) | |
4284 | { | |
4285 | vm_object_t object; | |
4286 | vm_object_offset_t offset; | |
4287 | vm_map_offset_t koffset; | |
4288 | vm_map_size_t ksize; | |
4289 | vm_offset_t kaddr; | |
4290 | kern_return_t kr; | |
2d21ac55 A |
4291 | boolean_t busy_page; |
4292 | ||
4a3eedf9 | 4293 | vm_object_lock_assert_held(page->object); |
2d21ac55 A |
4294 | |
4295 | if (!cs_validation) { | |
4296 | return; | |
4297 | } | |
4298 | ||
593a1d5f | 4299 | if (page->wpmapped && !page->cs_tainted) { |
4a3eedf9 A |
4300 | vm_object_lock_assert_exclusive(page->object); |
4301 | ||
4302 | /* | |
593a1d5f A |
4303 | * This page was mapped for "write" access sometime in the |
4304 | * past and could still be modifiable in the future. | |
4305 | * Consider it tainted. | |
4306 | * [ If the page was already found to be "tainted", no | |
4307 | * need to re-validate. ] | |
4a3eedf9 | 4308 | */ |
593a1d5f A |
4309 | page->cs_validated = TRUE; |
4310 | page->cs_tainted = TRUE; | |
4311 | if (cs_debug) { | |
4312 | printf("CODESIGNING: vm_page_validate_cs: " | |
4313 | "page %p obj %p off 0x%llx " | |
4314 | "was modified\n", | |
4315 | page, page->object, page->offset); | |
4a3eedf9 | 4316 | } |
593a1d5f | 4317 | vm_cs_validated_dirtied++; |
4a3eedf9 A |
4318 | } |
4319 | ||
4320 | if (page->cs_validated) { | |
4321 | return; | |
4322 | } | |
4323 | ||
4324 | vm_object_lock_assert_exclusive(page->object); | |
4325 | ||
2d21ac55 A |
4326 | object = page->object; |
4327 | assert(object->code_signed); | |
4328 | offset = page->offset; | |
4329 | ||
4330 | busy_page = page->busy; | |
4331 | if (!busy_page) { | |
4332 | /* keep page busy while we map (and unlock) the VM object */ | |
4333 | page->busy = TRUE; | |
4334 | } | |
4335 | ||
4336 | /* | |
4337 | * Take a paging reference on the VM object | |
4338 | * to protect it from collapse or bypass, | |
4339 | * and keep it from disappearing too. | |
4340 | */ | |
4341 | vm_object_paging_begin(object); | |
4342 | ||
4343 | /* map the page in the kernel address space */ | |
4344 | koffset = 0; | |
4345 | ksize = PAGE_SIZE_64; | |
4346 | kr = vm_paging_map_object(&koffset, | |
4347 | page, | |
4348 | object, | |
4349 | offset, | |
4350 | &ksize, | |
593a1d5f | 4351 | VM_PROT_READ, |
2d21ac55 A |
4352 | FALSE); /* can't unlock object ! */ |
4353 | if (kr != KERN_SUCCESS) { | |
4354 | panic("vm_page_validate_cs: could not map page: 0x%x\n", kr); | |
4355 | } | |
4356 | kaddr = CAST_DOWN(vm_offset_t, koffset); | |
4357 | ||
593a1d5f A |
4358 | /* validate the mapped page */ |
4359 | vm_page_validate_cs_mapped(page, (const void *) kaddr); | |
2d21ac55 A |
4360 | |
4361 | assert(page->busy); | |
4362 | assert(object == page->object); | |
4363 | vm_object_lock_assert_exclusive(object); | |
4364 | ||
2d21ac55 A |
4365 | if (!busy_page) { |
4366 | PAGE_WAKEUP_DONE(page); | |
4367 | } | |
4368 | if (koffset != 0) { | |
4369 | /* unmap the map from the kernel address space */ | |
4370 | vm_paging_unmap_object(object, koffset, koffset + ksize); | |
4371 | koffset = 0; | |
4372 | ksize = 0; | |
4373 | kaddr = 0; | |
4374 | } | |
4375 | vm_object_paging_end(object); | |
4376 | } |