]> git.saurik.com Git - apple/xnu.git/blame - bsd/netinet/ip_dummynet.c
xnu-6153.81.5.tar.gz
[apple/xnu.git] / bsd / netinet / ip_dummynet.c
CommitLineData
1c79356b 1/*
5ba3f43e 2 * Copyright (c) 2000-2017 Apple Inc. All rights reserved.
5d5c5d0d 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
39037602 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
39037602 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
39037602 17 *
2d21ac55
A
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
39037602 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b 27 */
91447636
A
28/*
29 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
9bccf70c
A
30 * Portions Copyright (c) 2000 Akamba Corp.
31 * All rights reserved
1c79356b 32 *
9bccf70c
A
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
1c79356b 41 *
9bccf70c
A
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
1c79356b 53 *
91447636 54 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
1c79356b
A
55 */
56
91447636 57#define DUMMYNET_DEBUG
9bccf70c 58
1c79356b
A
59/*
60 * This module implements IP dummynet, a bandwidth limiter/delay emulator
61 * used in conjunction with the ipfw package.
9bccf70c
A
62 * Description of the data structures used is in ip_dummynet.h
63 * Here you mainly find the following blocks of code:
64 * + variable declarations;
65 * + heap management functions;
66 * + scheduler and dummynet functions;
67 * + configuration and initialization.
68 *
91447636 69 * NOTA BENE: critical sections are protected by the "dummynet lock".
1c79356b 70 *
9bccf70c 71 * Most important Changes:
1c79356b 72 *
9bccf70c
A
73 * 010124: Fixed WF2Q behaviour
74 * 010122: Fixed spl protection.
75 * 000601: WF2Q support
76 * 000106: large rewrite, use heaps to handle very many pipes.
1c79356b 77 * 980513: initial release
9bccf70c
A
78 *
79 * include files marked with XXX are probably not needed
1c79356b
A
80 */
81
1c79356b
A
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/malloc.h>
85#include <sys/mbuf.h>
86#include <sys/queue.h> /* XXX */
87#include <sys/kernel.h>
5ba3f43e 88#include <sys/random.h>
1c79356b
A
89#include <sys/socket.h>
90#include <sys/socketvar.h>
91#include <sys/time.h>
92#include <sys/sysctl.h>
93#include <net/if.h>
94#include <net/route.h>
91447636 95#include <net/kpi_protocol.h>
316670eb
A
96#if DUMMYNET
97#include <net/kpi_protocol.h>
98#endif /* DUMMYNET */
5ba3f43e
A
99#include <net/nwk_wq.h>
100#include <net/pfvar.h>
1c79356b
A
101#include <netinet/in.h>
102#include <netinet/in_systm.h>
103#include <netinet/in_var.h>
104#include <netinet/ip.h>
105#include <netinet/ip_fw.h>
106#include <netinet/ip_dummynet.h>
107#include <netinet/ip_var.h>
108
316670eb
A
109#include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
110#include <netinet6/ip6_var.h>
111
112static struct ip_fw default_rule;
113
9bccf70c
A
114/*
115 * We keep a private variable for the simulation time, but we could
116 * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
117 */
118static dn_key curr_time = 0 ; /* current simulation time */
119
0c530ab8
A
120/* this is for the timer that fires to call dummynet() - we only enable the timer when
121 there are packets to process, otherwise it's disabled */
39037602 122static int timer_enabled = 0;
0c530ab8 123
9bccf70c
A
124static int dn_hash_size = 64 ; /* default hash size */
125
126/* statistics on number of queue searches and search steps */
127static int searches, search_steps ;
128static int pipe_expire = 1 ; /* expire queue if empty */
129static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
130
131static int red_lookup_depth = 256; /* RED - default lookup table depth */
132static int red_avg_pkt_size = 512; /* RED - default medium packet size */
133static int red_max_pkt_size = 1500; /* RED - default max packet size */
134
6d2010ae
A
135static int serialize = 0;
136
9bccf70c
A
137/*
138 * Three heaps contain queues and pipes that the scheduler handles:
139 *
140 * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
141 *
142 * wfq_ready_heap contains the pipes associated with WF2Q flows
143 *
144 * extract_heap contains pipes associated with delay lines.
145 *
146 */
147static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
148
149static int heap_init(struct dn_heap *h, int size) ;
150static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
151static void heap_extract(struct dn_heap *h, void *obj);
152
9bccf70c 153
b0d623f7
A
154static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
155 struct mbuf **tail);
156static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
157 struct mbuf **tail);
158static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
159 struct mbuf **tail);
160
39037602 161/*
b0d623f7
A
162 * Packets are retrieved from queues in Dummynet in chains instead of
163 * packet-by-packet. The entire list of packets is first dequeued and
164 * sent out by the following function.
165 */
166static void dummynet_send(struct mbuf *m);
167
b0d623f7
A
168#define HASHSIZE 16
169#define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
170static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
171static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
172
91447636 173#ifdef SYSCTL_NODE
9bccf70c 174SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
6d2010ae 175 CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet");
9bccf70c 176SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
6d2010ae 177 CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size");
b0d623f7 178SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time,
6d2010ae 179 CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick");
9bccf70c 180SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
6d2010ae 181 CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap");
9bccf70c 182SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
6d2010ae 183 CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap");
9bccf70c 184SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
6d2010ae 185 CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches");
9bccf70c 186SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
6d2010ae 187 CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps");
9bccf70c 188SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
6d2010ae 189 CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty");
9bccf70c 190SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
39037602 191 CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0,
9bccf70c
A
192 "Max ratio between dynamic queues and buckets");
193SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
6d2010ae 194 CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table");
9bccf70c 195SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
6d2010ae 196 CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size");
9bccf70c 197SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
6d2010ae 198 CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size");
1c79356b
A
199#endif
200
91447636
A
201#ifdef DUMMYNET_DEBUG
202int dummynet_debug = 0;
203#ifdef SYSCTL_NODE
6d2010ae 204SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug,
91447636
A
205 0, "control debugging printfs");
206#endif
207#define DPRINTF(X) if (dummynet_debug) printf X
208#else
209#define DPRINTF(X)
210#endif
211
212/* dummynet lock */
b0d623f7
A
213static lck_grp_t *dn_mutex_grp;
214static lck_grp_attr_t *dn_mutex_grp_attr;
215static lck_attr_t *dn_mutex_attr;
316670eb
A
216decl_lck_mtx_data(static, dn_mutex_data);
217static lck_mtx_t *dn_mutex = &dn_mutex_data;
91447636 218
9bccf70c 219static int config_pipe(struct dn_pipe *p);
1c79356b
A
220static int ip_dn_ctl(struct sockopt *sopt);
221
1c79356b 222static void dummynet(void *);
1c79356b 223static void dummynet_flush(void);
9bccf70c 224void dummynet_drain(void);
91447636 225static ip_dn_io_t dummynet_io;
1c79356b 226
b0d623f7
A
227static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp);
228static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp);
229static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp);
230static char* dn_copy_set_64(struct dn_flow_set *set, char *bp);
231static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p );
232
233static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp);
234static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp);
235static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp);
236static char* dn_copy_set_32(struct dn_flow_set *set, char *bp);
237static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p );
238
5ba3f43e
A
239struct eventhandler_lists_ctxt dummynet_evhdlr_ctxt;
240
241uint32_t my_random(void)
242{
243 uint32_t val;
244 read_frandom(&val, sizeof(val));
245 val &= 0x7FFFFFFF;
246
247 return (val);
248}
b0d623f7 249
9bccf70c
A
250/*
251 * Heap management functions.
252 *
253 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
254 * Some macros help finding parent/children so we can optimize them.
255 *
256 * heap_init() is called to expand the heap when needed.
257 * Increment size in blocks of 16 entries.
258 * XXX failure to allocate a new element is a pretty bad failure
259 * as we basically stall a whole queue forever!!
260 * Returns 1 on error, 0 on success
261 */
262#define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
263#define HEAP_LEFT(x) ( 2*(x) + 1 )
264#define HEAP_IS_LEFT(x) ( (x) & 1 )
265#define HEAP_RIGHT(x) ( 2*(x) + 2 )
266#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
267#define HEAP_INCREMENT 15
268
b0d623f7
A
269
270int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
271{
272 struct dn_pipe_32 user_pipe_32;
273 int error=0;
39037602 274
b0d623f7
A
275 error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32));
276 if ( !error ){
277 p->pipe_nr = user_pipe_32.pipe_nr;
278 p->bandwidth = user_pipe_32.bandwidth;
279 p->delay = user_pipe_32.delay;
280 p->V = user_pipe_32.V;
281 p->sum = user_pipe_32.sum;
282 p->numbytes = user_pipe_32.numbytes;
283 p->sched_time = user_pipe_32.sched_time;
284 bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ);
285 p->ready = user_pipe_32.ready;
39037602 286
b0d623f7
A
287 p->fs.fs_nr = user_pipe_32.fs.fs_nr;
288 p->fs.flags_fs = user_pipe_32.fs.flags_fs;
289 p->fs.parent_nr = user_pipe_32.fs.parent_nr;
290 p->fs.weight = user_pipe_32.fs.weight;
291 p->fs.qsize = user_pipe_32.fs.qsize;
292 p->fs.plr = user_pipe_32.fs.plr;
293 p->fs.flow_mask = user_pipe_32.fs.flow_mask;
294 p->fs.rq_size = user_pipe_32.fs.rq_size;
295 p->fs.rq_elements = user_pipe_32.fs.rq_elements;
296 p->fs.last_expired = user_pipe_32.fs.last_expired;
297 p->fs.backlogged = user_pipe_32.fs.backlogged;
298 p->fs.w_q = user_pipe_32.fs.w_q;
299 p->fs.max_th = user_pipe_32.fs.max_th;
300 p->fs.min_th = user_pipe_32.fs.min_th;
301 p->fs.max_p = user_pipe_32.fs.max_p;
302 p->fs.c_1 = user_pipe_32.fs.c_1;
303 p->fs.c_2 = user_pipe_32.fs.c_2;
304 p->fs.c_3 = user_pipe_32.fs.c_3;
305 p->fs.c_4 = user_pipe_32.fs.c_4;
306 p->fs.lookup_depth = user_pipe_32.fs.lookup_depth;
307 p->fs.lookup_step = user_pipe_32.fs.lookup_step;
308 p->fs.lookup_weight = user_pipe_32.fs.lookup_weight;
309 p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size;
310 p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size;
311 }
312 return error;
313}
314
315
316int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
317{
318 struct dn_pipe_64 user_pipe_64;
319 int error=0;
39037602 320
b0d623f7
A
321 error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64));
322 if ( !error ){
323 p->pipe_nr = user_pipe_64.pipe_nr;
324 p->bandwidth = user_pipe_64.bandwidth;
325 p->delay = user_pipe_64.delay;
326 p->V = user_pipe_64.V;
327 p->sum = user_pipe_64.sum;
328 p->numbytes = user_pipe_64.numbytes;
329 p->sched_time = user_pipe_64.sched_time;
330 bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ);
331 p->ready = user_pipe_64.ready;
39037602 332
b0d623f7
A
333 p->fs.fs_nr = user_pipe_64.fs.fs_nr;
334 p->fs.flags_fs = user_pipe_64.fs.flags_fs;
335 p->fs.parent_nr = user_pipe_64.fs.parent_nr;
336 p->fs.weight = user_pipe_64.fs.weight;
337 p->fs.qsize = user_pipe_64.fs.qsize;
338 p->fs.plr = user_pipe_64.fs.plr;
339 p->fs.flow_mask = user_pipe_64.fs.flow_mask;
340 p->fs.rq_size = user_pipe_64.fs.rq_size;
341 p->fs.rq_elements = user_pipe_64.fs.rq_elements;
342 p->fs.last_expired = user_pipe_64.fs.last_expired;
343 p->fs.backlogged = user_pipe_64.fs.backlogged;
344 p->fs.w_q = user_pipe_64.fs.w_q;
345 p->fs.max_th = user_pipe_64.fs.max_th;
346 p->fs.min_th = user_pipe_64.fs.min_th;
347 p->fs.max_p = user_pipe_64.fs.max_p;
348 p->fs.c_1 = user_pipe_64.fs.c_1;
349 p->fs.c_2 = user_pipe_64.fs.c_2;
350 p->fs.c_3 = user_pipe_64.fs.c_3;
351 p->fs.c_4 = user_pipe_64.fs.c_4;
352 p->fs.lookup_depth = user_pipe_64.fs.lookup_depth;
353 p->fs.lookup_step = user_pipe_64.fs.lookup_step;
354 p->fs.lookup_weight = user_pipe_64.fs.lookup_weight;
355 p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size;
356 p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size;
357 }
358 return error;
359}
360
361static void
362cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp)
363{
364 fs_bp->fs_nr = set->fs_nr;
365 fs_bp->flags_fs = set->flags_fs ;
366 fs_bp->parent_nr = set->parent_nr ;
367 fs_bp->weight = set->weight ;
368 fs_bp->qsize = set->qsize ;
369 fs_bp->plr = set->plr ;
370 fs_bp->flow_mask = set->flow_mask ;
371 fs_bp->rq_size = set->rq_size ;
372 fs_bp->rq_elements = set->rq_elements ;
373 fs_bp->last_expired = set->last_expired ;
374 fs_bp->backlogged = set->backlogged ;
375 fs_bp->w_q = set->w_q ;
376 fs_bp->max_th = set->max_th ;
377 fs_bp->min_th = set->min_th ;
378 fs_bp->max_p = set->max_p ;
379 fs_bp->c_1 = set->c_1 ;
380 fs_bp->c_2 = set->c_2 ;
381 fs_bp->c_3 = set->c_3 ;
382 fs_bp->c_4 = set->c_4 ;
383 fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup) ;
384 fs_bp->lookup_depth = set->lookup_depth ;
385 fs_bp->lookup_step = set->lookup_step ;
386 fs_bp->lookup_weight = set->lookup_weight ;
387 fs_bp->avg_pkt_size = set->avg_pkt_size ;
388 fs_bp->max_pkt_size = set->max_pkt_size ;
389}
390
391static void
392cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp)
393{
394 fs_bp->fs_nr = set->fs_nr;
395 fs_bp->flags_fs = set->flags_fs ;
396 fs_bp->parent_nr = set->parent_nr ;
397 fs_bp->weight = set->weight ;
398 fs_bp->qsize = set->qsize ;
399 fs_bp->plr = set->plr ;
400 fs_bp->flow_mask = set->flow_mask ;
401 fs_bp->rq_size = set->rq_size ;
402 fs_bp->rq_elements = set->rq_elements ;
403 fs_bp->last_expired = set->last_expired ;
404 fs_bp->backlogged = set->backlogged ;
405 fs_bp->w_q = set->w_q ;
406 fs_bp->max_th = set->max_th ;
407 fs_bp->min_th = set->min_th ;
408 fs_bp->max_p = set->max_p ;
409 fs_bp->c_1 = set->c_1 ;
410 fs_bp->c_2 = set->c_2 ;
411 fs_bp->c_3 = set->c_3 ;
412 fs_bp->c_4 = set->c_4 ;
413 fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup) ;
414 fs_bp->lookup_depth = set->lookup_depth ;
415 fs_bp->lookup_step = set->lookup_step ;
416 fs_bp->lookup_weight = set->lookup_weight ;
417 fs_bp->avg_pkt_size = set->avg_pkt_size ;
418 fs_bp->max_pkt_size = set->max_pkt_size ;
419}
420
421static
422void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
423{
424 qp->id = q->id;
425 qp->len = q->len;
426 qp->len_bytes = q->len_bytes;
427 qp->numbytes = q->numbytes;
428 qp->tot_pkts = q->tot_pkts;
429 qp->tot_bytes = q->tot_bytes;
430 qp->drops = q->drops;
431 qp->hash_slot = q->hash_slot;
432 qp->avg = q->avg;
433 qp->count = q->count;
434 qp->random = q->random;
435 qp->q_time = q->q_time;
436 qp->heap_pos = q->heap_pos;
437 qp->sched_time = q->sched_time;
438 qp->S = q->S;
439 qp->F = q->F;
440}
441
442static
443void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
444{
445 qp->id = q->id;
446 qp->len = q->len;
447 qp->len_bytes = q->len_bytes;
448 qp->numbytes = q->numbytes;
449 qp->tot_pkts = q->tot_pkts;
450 qp->tot_bytes = q->tot_bytes;
451 qp->drops = q->drops;
452 qp->hash_slot = q->hash_slot;
453 qp->avg = q->avg;
454 qp->count = q->count;
455 qp->random = q->random;
456 qp->q_time = q->q_time;
457 qp->heap_pos = q->heap_pos;
458 qp->sched_time = q->sched_time;
459 qp->S = q->S;
460 qp->F = q->F;
461}
462
463static
464char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
465{
466 char *bp;
39037602 467
b0d623f7
A
468 pipe_bp->pipe_nr = p->pipe_nr;
469 pipe_bp->bandwidth = p->bandwidth;
6d2010ae 470 pipe_bp->delay = p->delay;
b0d623f7
A
471 bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32));
472 pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p);
473 bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32));
474 pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p);
475 bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32));
476 pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p);
477 pipe_bp->V = p->V;
478 pipe_bp->sum = p->sum;
479 pipe_bp->numbytes = p->numbytes;
480 pipe_bp->sched_time = p->sched_time;
481 bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
482 pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp);
483 pipe_bp->ready = p->ready;
39037602 484
b0d623f7 485 cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs));
39037602
A
486
487 pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
b0d623f7
A
488 /*
489 * XXX the following is a hack based on ->next being the
490 * first field in dn_pipe and dn_flow_set. The correct
491 * solution would be to move the dn_flow_set to the beginning
492 * of struct dn_pipe.
493 */
494 pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE );
495 /* clean pointers */
496 pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0 ;
497 pipe_bp->fs.next = (user32_addr_t)0 ;
498 pipe_bp->fs.pipe = (user32_addr_t)0 ;
499 pipe_bp->fs.rq = (user32_addr_t)0 ;
500 bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32);
501 return( dn_copy_set_32( &(p->fs), bp) );
502}
503
504static
505char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
506{
507 char *bp;
39037602 508
b0d623f7
A
509 pipe_bp->pipe_nr = p->pipe_nr;
510 pipe_bp->bandwidth = p->bandwidth;
6d2010ae 511 pipe_bp->delay = p->delay;
b0d623f7
A
512 bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64));
513 pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p);
514 bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64));
515 pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p);
516 bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64));
517 pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p);
518 pipe_bp->V = p->V;
519 pipe_bp->sum = p->sum;
520 pipe_bp->numbytes = p->numbytes;
521 pipe_bp->sched_time = p->sched_time;
522 bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
523 pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp);
524 pipe_bp->ready = p->ready;
39037602 525
b0d623f7 526 cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs));
39037602
A
527
528 pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
b0d623f7
A
529 /*
530 * XXX the following is a hack based on ->next being the
531 * first field in dn_pipe and dn_flow_set. The correct
532 * solution would be to move the dn_flow_set to the beginning
533 * of struct dn_pipe.
534 */
535 pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE );
536 /* clean pointers */
537 pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL ;
538 pipe_bp->fs.next = USER_ADDR_NULL ;
539 pipe_bp->fs.pipe = USER_ADDR_NULL ;
540 pipe_bp->fs.rq = USER_ADDR_NULL ;
541 bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64);
542 return( dn_copy_set_64( &(p->fs), bp) );
543}
544
9bccf70c
A
545static int
546heap_init(struct dn_heap *h, int new_size)
91447636 547{
9bccf70c
A
548 struct dn_heap_entry *p;
549
550 if (h->size >= new_size ) {
91447636 551 printf("dummynet: heap_init, Bogus call, have %d want %d\n",
9bccf70c
A
552 h->size, new_size);
553 return 0 ;
91447636 554 }
9bccf70c 555 new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
91447636 556 p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
9bccf70c 557 if (p == NULL) {
91447636 558 printf("dummynet: heap_init, resize %d failed\n", new_size );
9bccf70c
A
559 return 1 ; /* error */
560 }
561 if (h->size > 0) {
562 bcopy(h->p, p, h->size * sizeof(*p) );
91447636 563 FREE(h->p, M_DUMMYNET);
9bccf70c
A
564 }
565 h->p = p ;
566 h->size = new_size ;
567 return 0 ;
568}
569
570/*
571 * Insert element in heap. Normally, p != NULL, we insert p in
572 * a new position and bubble up. If p == NULL, then the element is
573 * already in place, and key is the position where to start the
574 * bubble-up.
575 * Returns 1 on failure (cannot allocate new heap entry)
576 *
577 * If offset > 0 the position (index, int) of the element in the heap is
578 * also stored in the element itself at the given offset in bytes.
579 */
580#define SET_OFFSET(heap, node) \
581 if (heap->offset > 0) \
582 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
583/*
584 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
585 */
586#define RESET_OFFSET(heap, node) \
587 if (heap->offset > 0) \
588 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
589static int
590heap_insert(struct dn_heap *h, dn_key key1, void *p)
91447636 591{
9bccf70c
A
592 int son = h->elements ;
593
594 if (p == NULL) /* data already there, set starting point */
595 son = key1 ;
596 else { /* insert new element at the end, possibly resize */
597 son = h->elements ;
598 if (son == h->size) /* need resize... */
599 if (heap_init(h, h->elements+1) )
600 return 1 ; /* failure... */
601 h->p[son].object = p ;
602 h->p[son].key = key1 ;
603 h->elements++ ;
604 }
605 while (son > 0) { /* bubble up */
606 int father = HEAP_FATHER(son) ;
607 struct dn_heap_entry tmp ;
608
609 if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
91447636 610 break ; /* found right position */
9bccf70c
A
611 /* son smaller than father, swap and repeat */
612 HEAP_SWAP(h->p[son], h->p[father], tmp) ;
613 SET_OFFSET(h, son);
614 son = father ;
615 }
616 SET_OFFSET(h, son);
617 return 0 ;
1c79356b
A
618}
619
620/*
9bccf70c 621 * remove top element from heap, or obj if obj != NULL
1c79356b
A
622 */
623static void
9bccf70c 624heap_extract(struct dn_heap *h, void *obj)
91447636 625{
2d21ac55 626 int child, father, maxelt = h->elements - 1 ;
9bccf70c 627
2d21ac55 628 if (maxelt < 0) {
39236c6e
A
629 printf("dummynet: warning, extract from empty heap 0x%llx\n",
630 (uint64_t)VM_KERNEL_ADDRPERM(h));
9bccf70c
A
631 return ;
632 }
633 father = 0 ; /* default: move up smallest child */
634 if (obj != NULL) { /* extract specific element, index is at offset */
635 if (h->offset <= 0)
91447636 636 panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
9bccf70c
A
637 father = *((int *)((char *)obj + h->offset)) ;
638 if (father < 0 || father >= h->elements) {
639 printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
640 father, h->elements);
91447636 641 panic("dummynet: heap_extract");
9bccf70c
A
642 }
643 }
644 RESET_OFFSET(h, father);
645 child = HEAP_LEFT(father) ; /* left child */
2d21ac55
A
646 while (child <= maxelt) { /* valid entry */
647 if (child != maxelt && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
9bccf70c
A
648 child = child+1 ; /* take right child, otherwise left */
649 h->p[father] = h->p[child] ;
650 SET_OFFSET(h, father);
651 father = child ;
652 child = HEAP_LEFT(child) ; /* left child for next loop */
91447636 653 }
9bccf70c 654 h->elements-- ;
2d21ac55 655 if (father != maxelt) {
1c79356b 656 /*
9bccf70c 657 * Fill hole with last entry and bubble up, reusing the insert code
1c79356b 658 */
2d21ac55 659 h->p[father] = h->p[maxelt] ;
9bccf70c
A
660 heap_insert(h, father, NULL); /* this one cannot fail */
661 }
91447636 662}
1c79356b 663
9bccf70c
A
664/*
665 * heapify() will reorganize data inside an array to maintain the
666 * heap property. It is needed when we delete a bunch of entries.
667 */
668static void
669heapify(struct dn_heap *h)
670{
671 int i ;
672
673 for (i = 0 ; i < h->elements ; i++ )
674 heap_insert(h, i , NULL) ;
675}
676
677/*
678 * cleanup the heap and free data structure
679 */
680static void
681heap_free(struct dn_heap *h)
682{
683 if (h->size >0 )
91447636 684 FREE(h->p, M_DUMMYNET);
2d21ac55 685 bzero(h, sizeof(*h));
9bccf70c
A
686}
687
688/*
689 * --- end of heap management functions ---
690 */
691
91447636
A
692/*
693 * Return the mbuf tag holding the dummynet state. As an optimization
694 * this is assumed to be the first tag on the list. If this turns out
695 * wrong we'll need to search the list.
696 */
697static struct dn_pkt_tag *
698dn_tag_get(struct mbuf *m)
699{
700 struct m_tag *mtag = m_tag_first(m);
316670eb
A
701
702 if (!(mtag != NULL &&
703 mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
704 mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET))
39236c6e
A
705 panic("packet on dummynet queue w/o dummynet tag: 0x%llx",
706 (uint64_t)VM_KERNEL_ADDRPERM(m));
316670eb 707
91447636
A
708 return (struct dn_pkt_tag *)(mtag+1);
709}
710
9bccf70c
A
711/*
712 * Scheduler functions:
713 *
714 * transmit_event() is called when the delay-line needs to enter
715 * the scheduler, either because of existing pkts getting ready,
716 * or new packets entering the queue. The event handled is the delivery
717 * time of the packet.
718 *
719 * ready_event() does something similar with fixed-rate queues, and the
720 * event handled is the finish time of the head pkt.
721 *
722 * wfq_ready_event() does something similar with WF2Q queues, and the
723 * event handled is the start time of the head pkt.
724 *
725 * In all cases, we make sure that the data structures are consistent
726 * before passing pkts out, because this might trigger recursive
727 * invocations of the procedures.
728 */
729static void
b0d623f7 730transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
9bccf70c 731{
316670eb
A
732 struct mbuf *m ;
733 struct dn_pkt_tag *pkt = NULL;
734 u_int64_t schedule_time;
b0d623f7 735
5ba3f43e 736 LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
316670eb 737 ASSERT(serialize >= 0);
b0d623f7
A
738 if (serialize == 0) {
739 while ((m = pipe->head) != NULL) {
740 pkt = dn_tag_get(m);
316670eb 741 if (!DN_KEY_LEQ(pkt->dn_output_time, curr_time))
91447636 742 break;
b0d623f7
A
743
744 pipe->head = m->m_nextpkt;
745 if (*tail != NULL)
746 (*tail)->m_nextpkt = m;
747 else
748 *head = m;
749 *tail = m;
91447636 750 }
39037602 751
b0d623f7
A
752 if (*tail != NULL)
753 (*tail)->m_nextpkt = NULL;
316670eb 754 }
6d2010ae 755
316670eb
A
756 schedule_time = pkt == NULL || DN_KEY_LEQ(pkt->dn_output_time, curr_time) ?
757 curr_time + 1 : pkt->dn_output_time;
b0d623f7 758
316670eb
A
759 /* if there are leftover packets, put the pipe into the heap for next ready event */
760 if ((m = pipe->head) != NULL) {
91447636
A
761 pkt = dn_tag_get(m);
762 /* XXX should check errors on heap_insert, by draining the
763 * whole pipe p and hoping in the future we are more successful
764 */
6d2010ae 765 heap_insert(&extract_heap, schedule_time, pipe);
316670eb 766 }
1c79356b 767}
9bccf70c 768
1c79356b 769/*
9bccf70c
A
770 * the following macro computes how many ticks we have to wait
771 * before being able to transmit a packet. The credit is taken from
772 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
1c79356b 773 */
39037602
A
774
775/* hz is 100, which gives a granularity of 10ms in the old timer.
0c530ab8
A
776 * The timer has been changed to fire every 1ms, so the use of
777 * hz has been modified here. All instances of hz have been left
39037602 778 * in place but adjusted by a factor of 10 so that hz is functionally
0c530ab8
A
779 * equal to 1000.
780 */
91447636 781#define SET_TICKS(_m, q, p) \
0c530ab8 782 ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
9bccf70c
A
783 p->bandwidth ;
784
785/*
786 * extract pkt from queue, compute output time (could be now)
787 * and put into delay line (p_queue)
788 */
789static void
91447636 790move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
9bccf70c 791 struct dn_pipe *p, int len)
1c79356b 792{
91447636
A
793 struct dn_pkt_tag *dt = dn_tag_get(pkt);
794
795 q->head = pkt->m_nextpkt ;
9bccf70c
A
796 q->len-- ;
797 q->len_bytes -= len ;
1c79356b 798
316670eb 799 dt->dn_output_time = curr_time + p->delay ;
1c79356b 800
9bccf70c
A
801 if (p->head == NULL)
802 p->head = pkt;
803 else
91447636 804 p->tail->m_nextpkt = pkt;
9bccf70c 805 p->tail = pkt;
91447636 806 p->tail->m_nextpkt = NULL;
1c79356b
A
807}
808
809/*
9bccf70c
A
810 * ready_event() is invoked every time the queue must enter the
811 * scheduler, either because the first packet arrives, or because
812 * a previously scheduled event fired.
813 * On invokation, drain as many pkts as possible (could be 0) and then
814 * if there are leftover packets reinsert the pkt in the scheduler.
1c79356b 815 */
9bccf70c 816static void
b0d623f7 817ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
1c79356b 818{
91447636 819 struct mbuf *pkt;
9bccf70c
A
820 struct dn_pipe *p = q->fs->pipe ;
821 int p_was_empty ;
1c79356b 822
5ba3f43e 823 LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
39037602 824
9bccf70c 825 if (p == NULL) {
b0d623f7
A
826 printf("dummynet: ready_event pipe is gone\n");
827 return ;
9bccf70c
A
828 }
829 p_was_empty = (p->head == NULL) ;
1c79356b 830
1c79356b 831 /*
9bccf70c
A
832 * schedule fixed-rate queues linked to this pipe:
833 * Account for the bw accumulated since last scheduling, then
834 * drain as many pkts as allowed by q->numbytes and move to
835 * the delay line (in p) computing output time.
836 * bandwidth==0 (no limit) means we can drain the whole queue,
837 * setting len_scaled = 0 does the job.
838 */
839 q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
840 while ( (pkt = q->head) != NULL ) {
91447636 841 int len = pkt->m_pkthdr.len;
0c530ab8 842 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
9bccf70c
A
843 if (len_scaled > q->numbytes )
844 break ;
845 q->numbytes -= len_scaled ;
846 move_pkt(pkt, q, p, len);
847 }
848 /*
849 * If we have more packets queued, schedule next ready event
850 * (can only occur when bandwidth != 0, otherwise we would have
851 * flushed the whole queue in the previous loop).
852 * To this purpose we record the current time and compute how many
853 * ticks to go for the finish time of the packet.
854 */
855 if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
856 dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
857 q->sched_time = curr_time ;
858 heap_insert(&ready_heap, curr_time + t, (void *)q );
859 /* XXX should check errors on heap_insert, and drain the whole
860 * queue on error hoping next time we are luckier.
861 */
91447636 862 } else { /* RED needs to know when the queue becomes empty */
9bccf70c 863 q->q_time = curr_time;
91447636
A
864 q->numbytes = 0;
865 }
9bccf70c
A
866 /*
867 * If the delay line was empty call transmit_event(p) now.
868 * Otherwise, the scheduler will take care of it.
1c79356b 869 */
9bccf70c 870 if (p_was_empty)
b0d623f7 871 transmit_event(p, head, tail);
9bccf70c 872}
1c79356b 873
9bccf70c
A
874/*
875 * Called when we can transmit packets on WF2Q queues. Take pkts out of
876 * the queues at their start time, and enqueue into the delay line.
877 * Packets are drained until p->numbytes < 0. As long as
878 * len_scaled >= p->numbytes, the packet goes into the delay line
879 * with a deadline p->delay. For the last packet, if p->numbytes<0,
880 * there is an additional delay.
881 */
882static void
b0d623f7 883ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
9bccf70c
A
884{
885 int p_was_empty = (p->head == NULL) ;
886 struct dn_heap *sch = &(p->scheduler_heap);
887 struct dn_heap *neh = &(p->not_eligible_heap) ;
b0d623f7 888 int64_t p_numbytes = p->numbytes;
9bccf70c 889
5ba3f43e 890 LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
316670eb 891
9bccf70c 892 if (p->if_name[0] == 0) /* tx clock is simulated */
b0d623f7 893 p_numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
9bccf70c 894 else { /* tx clock is for real, the ifq must be empty or this is a NOP */
316670eb 895 if (p->ifp && !IFCQ_IS_EMPTY(&p->ifp->if_snd))
9bccf70c
A
896 return ;
897 else {
91447636
A
898 DPRINTF(("dummynet: pipe %d ready from %s --\n",
899 p->pipe_nr, p->if_name));
9bccf70c 900 }
1c79356b 901 }
9bccf70c 902
1c79356b 903 /*
9bccf70c
A
904 * While we have backlogged traffic AND credit, we need to do
905 * something on the queue.
1c79356b 906 */
b0d623f7 907 while ( p_numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
9bccf70c
A
908 if (sch->elements > 0) { /* have some eligible pkts to send out */
909 struct dn_flow_queue *q = sch->p[0].object ;
91447636
A
910 struct mbuf *pkt = q->head;
911 struct dn_flow_set *fs = q->fs;
912 u_int64_t len = pkt->m_pkthdr.len;
0c530ab8 913 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
1c79356b 914
9bccf70c 915 heap_extract(sch, NULL); /* remove queue from heap */
b0d623f7 916 p_numbytes -= len_scaled ;
9bccf70c
A
917 move_pkt(pkt, q, p, len);
918
919 p->V += (len<<MY_M) / p->sum ; /* update V */
920 q->S = q->F ; /* update start time */
921 if (q->len == 0) { /* Flow not backlogged any more */
922 fs->backlogged-- ;
923 heap_insert(&(p->idle_heap), q->F, q);
924 } else { /* still backlogged */
925 /*
926 * update F and position in backlogged queue, then
927 * put flow in not_eligible_heap (we will fix this later).
928 */
91447636 929 len = (q->head)->m_pkthdr.len;
9bccf70c
A
930 q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
931 if (DN_KEY_LEQ(q->S, p->V))
932 heap_insert(neh, q->S, q);
933 else
934 heap_insert(sch, q->F, q);
935 }
936 }
937 /*
938 * now compute V = max(V, min(S_i)). Remember that all elements in sch
939 * have by definition S_i <= V so if sch is not empty, V is surely
940 * the max and we must not update it. Conversely, if sch is empty
941 * we only need to look at neh.
942 */
943 if (sch->elements == 0 && neh->elements > 0)
944 p->V = MAX64 ( p->V, neh->p[0].key );
945 /* move from neh to sch any packets that have become eligible */
946 while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
947 struct dn_flow_queue *q = neh->p[0].object ;
948 heap_extract(neh, NULL);
949 heap_insert(sch, q->F, q);
950 }
951
952 if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
b0d623f7 953 p_numbytes = -1 ; /* mark not ready for I/O */
9bccf70c
A
954 break ;
955 }
1c79356b 956 }
b0d623f7 957 if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
9bccf70c
A
958 && p->idle_heap.elements > 0) {
959 /*
960 * no traffic and no events scheduled. We can get rid of idle-heap.
961 */
962 int i ;
963
964 for (i = 0 ; i < p->idle_heap.elements ; i++) {
965 struct dn_flow_queue *q = p->idle_heap.p[i].object ;
1c79356b 966
9bccf70c
A
967 q->F = 0 ;
968 q->S = q->F + 1 ;
969 }
970 p->sum = 0 ;
971 p->V = 0 ;
972 p->idle_heap.elements = 0 ;
973 }
974 /*
975 * If we are getting clocks from dummynet (not a real interface) and
976 * If we are under credit, schedule the next ready event.
977 * Also fix the delivery time of the last packet.
1c79356b 978 */
b0d623f7 979 if (p->if_name[0]==0 && p_numbytes < 0) { /* this implies bandwidth >0 */
9bccf70c 980 dn_key t=0 ; /* number of ticks i have to wait */
1c79356b 981
9bccf70c 982 if (p->bandwidth > 0)
b0d623f7 983 t = ( p->bandwidth -1 - p_numbytes) / p->bandwidth ;
316670eb 984 dn_tag_get(p->tail)->dn_output_time += t ;
9bccf70c
A
985 p->sched_time = curr_time ;
986 heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
987 /* XXX should check errors on heap_insert, and drain the whole
988 * queue on error hoping next time we are luckier.
989 */
1c79356b 990 }
39037602 991
b0d623f7
A
992 /* Fit (adjust if necessary) 64bit result into 32bit variable. */
993 if (p_numbytes > INT_MAX)
994 p->numbytes = INT_MAX;
995 else if (p_numbytes < INT_MIN)
996 p->numbytes = INT_MIN;
997 else
998 p->numbytes = p_numbytes;
999
9bccf70c
A
1000 /*
1001 * If the delay line was empty call transmit_event(p) now.
1002 * Otherwise, the scheduler will take care of it.
1003 */
1004 if (p_was_empty)
b0d623f7
A
1005 transmit_event(p, head, tail);
1006
1c79356b
A
1007}
1008
1009/*
0c530ab8 1010 * This is called every 1ms. It is used to
9bccf70c 1011 * increment the current tick counter and schedule expired events.
1c79356b
A
1012 */
1013static void
2d21ac55 1014dummynet(__unused void * unused)
1c79356b 1015{
9bccf70c
A
1016 void *p ; /* generic parameter to handler */
1017 struct dn_heap *h ;
9bccf70c 1018 struct dn_heap *heaps[3];
b0d623f7 1019 struct mbuf *head = NULL, *tail = NULL;
9bccf70c
A
1020 int i;
1021 struct dn_pipe *pe ;
0c530ab8
A
1022 struct timespec ts;
1023 struct timeval tv;
1c79356b 1024
9bccf70c
A
1025 heaps[0] = &ready_heap ; /* fixed-rate queues */
1026 heaps[1] = &wfq_ready_heap ; /* wfq queues */
1027 heaps[2] = &extract_heap ; /* delay line */
b0d623f7 1028
91447636 1029 lck_mtx_lock(dn_mutex);
39037602
A
1030
1031 /* make all time measurements in milliseconds (ms) -
1032 * here we convert secs and usecs to msecs (just divide the
0c530ab8
A
1033 * usecs and take the closest whole number).
1034 */
1035 microuptime(&tv);
1036 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
b0d623f7 1037
9bccf70c
A
1038 for (i=0; i < 3 ; i++) {
1039 h = heaps[i];
1040 while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
0c530ab8 1041 if (h->p[0].key > curr_time)
b0d623f7
A
1042 printf("dummynet: warning, heap %d is %d ticks late\n",
1043 i, (int)(curr_time - h->p[0].key));
0c530ab8
A
1044 p = h->p[0].object ; /* store a copy before heap_extract */
1045 heap_extract(h, NULL); /* need to extract before processing */
1046 if (i == 0)
b0d623f7 1047 ready_event(p, &head, &tail) ;
0c530ab8 1048 else if (i == 1) {
b0d623f7
A
1049 struct dn_pipe *pipe = p;
1050 if (pipe->if_name[0] != '\0')
1051 printf("dummynet: bad ready_event_wfq for pipe %s\n",
1052 pipe->if_name);
1053 else
1054 ready_event_wfq(p, &head, &tail) ;
1055 } else {
1056 transmit_event(p, &head, &tail);
1057 }
9bccf70c 1058 }
1c79356b 1059 }
9bccf70c 1060 /* sweep pipes trying to expire idle flow_queues */
b0d623f7
A
1061 for (i = 0; i < HASHSIZE; i++)
1062 SLIST_FOREACH(pe, &pipehash[i], next)
9bccf70c
A
1063 if (pe->idle_heap.elements > 0 &&
1064 DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
1065 struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
1c79356b 1066
9bccf70c
A
1067 heap_extract(&(pe->idle_heap), NULL);
1068 q->S = q->F + 1 ; /* mark timestamp as invalid */
1069 pe->sum -= q->fs->weight ;
1070 }
316670eb 1071
39037602
A
1072 /* check the heaps to see if there's still stuff in there, and
1073 * only set the timer if there are packets to process
0c530ab8
A
1074 */
1075 timer_enabled = 0;
1076 for (i=0; i < 3 ; i++) {
1077 h = heaps[i];
1078 if (h->elements > 0) { // set the timer
1079 ts.tv_sec = 0;
1080 ts.tv_nsec = 1 * 1000000; // 1ms
1081 timer_enabled = 1;
1082 bsd_timeout(dummynet, NULL, &ts);
1083 break;
1084 }
1085 }
39037602 1086
b0d623f7 1087 if (head != NULL)
6d2010ae 1088 serialize++;
39037602 1089
6d2010ae 1090 lck_mtx_unlock(dn_mutex);
b0d623f7
A
1091
1092 /* Send out the de-queued list of ready-to-send packets */
1093 if (head != NULL) {
1094 dummynet_send(head);
1095 lck_mtx_lock(dn_mutex);
6d2010ae 1096 serialize--;
b0d623f7
A
1097 lck_mtx_unlock(dn_mutex);
1098 }
1099}
1100
1101
1102static void
1103dummynet_send(struct mbuf *m)
1104{
1105 struct dn_pkt_tag *pkt;
1106 struct mbuf *n;
1107
1108 for (; m != NULL; m = n) {
1109 n = m->m_nextpkt;
1110 m->m_nextpkt = NULL;
1111 pkt = dn_tag_get(m);
39236c6e
A
1112
1113 DPRINTF(("dummynet_send m: 0x%llx dn_dir: %d dn_flags: 0x%x\n",
1114 (uint64_t)VM_KERNEL_ADDRPERM(m), pkt->dn_dir,
1115 pkt->dn_flags));
1116
b0d623f7
A
1117 switch (pkt->dn_dir) {
1118 case DN_TO_IP_OUT: {
39236c6e
A
1119 struct route tmp_rt;
1120
1121 /* route is already in the packet's dn_ro */
1122 bzero(&tmp_rt, sizeof (tmp_rt));
1123
316670eb
A
1124 /* Force IP_RAWOUTPUT as the IP header is fully formed */
1125 pkt->dn_flags |= IP_RAWOUTPUT | IP_FORWARDING;
1126 (void)ip_output(m, NULL, &tmp_rt, pkt->dn_flags, NULL, NULL);
39236c6e 1127 ROUTE_RELEASE(&tmp_rt);
b0d623f7
A
1128 break ;
1129 }
1130 case DN_TO_IP_IN :
1131 proto_inject(PF_INET, m);
1132 break ;
316670eb
A
1133#ifdef INET6
1134 case DN_TO_IP6_OUT: {
39236c6e
A
1135 /* routes already in the packet's dn_{ro6,pmtu} */
1136 ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
316670eb
A
1137 break;
1138 }
1139 case DN_TO_IP6_IN:
1140 proto_inject(PF_INET6, m);
1141 break;
39037602 1142#endif /* INET6 */
b0d623f7
A
1143 default:
1144 printf("dummynet: bad switch %d!\n", pkt->dn_dir);
1145 m_freem(m);
1146 break ;
1147 }
1148 }
9bccf70c 1149}
b0d623f7 1150
1c79356b 1151/*
9bccf70c
A
1152 * Unconditionally expire empty queues in case of shortage.
1153 * Returns the number of queues freed.
1c79356b 1154 */
9bccf70c
A
1155static int
1156expire_queues(struct dn_flow_set *fs)
1c79356b 1157{
9bccf70c
A
1158 struct dn_flow_queue *q, *prev ;
1159 int i, initial_elements = fs->rq_elements ;
91447636 1160 struct timeval timenow;
1c79356b 1161
6d2010ae 1162 /* reviewed for getmicrotime usage */
91447636
A
1163 getmicrotime(&timenow);
1164
1165 if (fs->last_expired == timenow.tv_sec)
9bccf70c 1166 return 0 ;
91447636 1167 fs->last_expired = timenow.tv_sec ;
9bccf70c
A
1168 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
1169 for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
1170 if (q->head != NULL || q->S != q->F+1) {
1171 prev = q ;
1172 q = q->next ;
1173 } else { /* entry is idle, expire it */
1174 struct dn_flow_queue *old_q = q ;
1175
1176 if (prev != NULL)
1177 prev->next = q = q->next ;
1178 else
1179 fs->rq[i] = q = q->next ;
1180 fs->rq_elements-- ;
91447636 1181 FREE(old_q, M_DUMMYNET);
1c79356b 1182 }
9bccf70c 1183 return initial_elements - fs->rq_elements ;
1c79356b
A
1184}
1185
1186/*
9bccf70c
A
1187 * If room, create a new queue and put at head of slot i;
1188 * otherwise, create or use the default queue.
1c79356b 1189 */
9bccf70c
A
1190static struct dn_flow_queue *
1191create_queue(struct dn_flow_set *fs, int i)
1c79356b 1192{
9bccf70c 1193 struct dn_flow_queue *q ;
1c79356b 1194
9bccf70c
A
1195 if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
1196 expire_queues(fs) == 0) {
1197 /*
1198 * No way to get room, use or create overflow queue.
1199 */
1200 i = fs->rq_size ;
1201 if ( fs->rq[i] != NULL )
1202 return fs->rq[i] ;
1203 }
91447636 1204 q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
9bccf70c 1205 if (q == NULL) {
91447636 1206 printf("dummynet: sorry, cannot allocate queue for new flow\n");
9bccf70c
A
1207 return NULL ;
1208 }
9bccf70c
A
1209 q->fs = fs ;
1210 q->hash_slot = i ;
1211 q->next = fs->rq[i] ;
1212 q->S = q->F + 1; /* hack - mark timestamp as invalid */
1213 fs->rq[i] = q ;
1214 fs->rq_elements++ ;
1215 return q ;
1216}
1c79356b 1217
9bccf70c
A
1218/*
1219 * Given a flow_set and a pkt in last_pkt, find a matching queue
1220 * after appropriate masking. The queue is moved to front
1221 * so that further searches take less time.
1222 */
1223static struct dn_flow_queue *
316670eb 1224find_queue(struct dn_flow_set *fs, struct ip_flow_id *id)
9bccf70c
A
1225{
1226 int i = 0 ; /* we need i and q for new allocations */
1227 struct dn_flow_queue *q, *prev;
316670eb 1228 int is_v6 = IS_IP6_FLOW_ID(id);
1c79356b 1229
9bccf70c
A
1230 if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
1231 q = fs->rq[0] ;
1232 else {
316670eb 1233 /* first, do the masking, then hash */
91447636
A
1234 id->dst_port &= fs->flow_mask.dst_port ;
1235 id->src_port &= fs->flow_mask.src_port ;
1236 id->proto &= fs->flow_mask.proto ;
1237 id->flags = 0 ; /* we don't care about this one */
316670eb
A
1238 if (is_v6) {
1239 APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6);
1240 APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6);
1241 id->flow_id6 &= fs->flow_mask.flow_id6;
1242
1243 i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff)^
1244 ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff)^
1245 ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff)^
1246 ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff)^
1247
1248 ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff)^
1249 ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff)^
1250 ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff)^
1251 ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff)^
1252
1253 ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff)^
1254 ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff)^
1255 ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff)^
1256 ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff)^
1257
3e170ce0
A
1258 ((id->src_ip6.__u6_addr.__u6_addr32[0] >> 16) & 0xffff)^
1259 ((id->src_ip6.__u6_addr.__u6_addr32[1] >> 16) & 0xffff)^
1260 ((id->src_ip6.__u6_addr.__u6_addr32[2] >> 16) & 0xffff)^
1261 ((id->src_ip6.__u6_addr.__u6_addr32[3] >> 16) & 0xffff)^
316670eb
A
1262
1263 (id->dst_port << 1) ^ (id->src_port) ^
1264 (id->proto ) ^
1265 (id->flow_id6);
1266 } else {
1267 id->dst_ip &= fs->flow_mask.dst_ip ;
1268 id->src_ip &= fs->flow_mask.src_ip ;
1269
1270 i = ( (id->dst_ip) & 0xffff ) ^
1271 ( (id->dst_ip >> 15) & 0xffff ) ^
1272 ( (id->src_ip << 1) & 0xffff ) ^
1273 ( (id->src_ip >> 16 ) & 0xffff ) ^
1274 (id->dst_port << 1) ^ (id->src_port) ^
1275 (id->proto );
1276 }
9bccf70c
A
1277 i = i % fs->rq_size ;
1278 /* finally, scan the current list for a match */
1279 searches++ ;
1280 for (prev=NULL, q = fs->rq[i] ; q ; ) {
1281 search_steps++;
316670eb
A
1282 if (is_v6 &&
1283 IN6_ARE_ADDR_EQUAL(&id->dst_ip6,&q->id.dst_ip6) &&
1284 IN6_ARE_ADDR_EQUAL(&id->src_ip6,&q->id.src_ip6) &&
1285 id->dst_port == q->id.dst_port &&
1286 id->src_port == q->id.src_port &&
1287 id->proto == q->id.proto &&
1288 id->flags == q->id.flags &&
1289 id->flow_id6 == q->id.flow_id6)
1290 break ; /* found */
1291
1292 if (!is_v6 && id->dst_ip == q->id.dst_ip &&
1293 id->src_ip == q->id.src_ip &&
1294 id->dst_port == q->id.dst_port &&
1295 id->src_port == q->id.src_port &&
1296 id->proto == q->id.proto &&
1297 id->flags == q->id.flags)
1298 break ; /* found */
1299
1300 /* No match. Check if we can expire the entry */
1301 if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
9bccf70c
A
1302 /* entry is idle and not in any heap, expire it */
1303 struct dn_flow_queue *old_q = q ;
1c79356b 1304
9bccf70c
A
1305 if (prev != NULL)
1306 prev->next = q = q->next ;
1307 else
1308 fs->rq[i] = q = q->next ;
1309 fs->rq_elements-- ;
91447636 1310 FREE(old_q, M_DUMMYNET);
9bccf70c
A
1311 continue ;
1312 }
1313 prev = q ;
1314 q = q->next ;
1c79356b 1315 }
9bccf70c
A
1316 if (q && prev != NULL) { /* found and not in front */
1317 prev->next = q->next ;
1318 q->next = fs->rq[i] ;
1319 fs->rq[i] = q ;
1c79356b 1320 }
9bccf70c
A
1321 }
1322 if (q == NULL) { /* no match, need to allocate a new entry */
1323 q = create_queue(fs, i);
1324 if (q != NULL)
91447636 1325 q->id = *id ;
9bccf70c
A
1326 }
1327 return q ;
1328}
1329
1330static int
1331red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
1332{
1333 /*
1334 * RED algorithm
91447636 1335 *
9bccf70c
A
1336 * RED calculates the average queue size (avg) using a low-pass filter
1337 * with an exponential weighted (w_q) moving average:
1338 * avg <- (1-w_q) * avg + w_q * q_size
1339 * where q_size is the queue length (measured in bytes or * packets).
91447636 1340 *
9bccf70c
A
1341 * If q_size == 0, we compute the idle time for the link, and set
1342 * avg = (1 - w_q)^(idle/s)
1343 * where s is the time needed for transmitting a medium-sized packet.
91447636 1344 *
9bccf70c
A
1345 * Now, if avg < min_th the packet is enqueued.
1346 * If avg > max_th the packet is dropped. Otherwise, the packet is
1347 * dropped with probability P function of avg.
91447636 1348 *
9bccf70c
A
1349 */
1350
1351 int64_t p_b = 0;
1352 /* queue in bytes or packets ? */
1353 u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
1354
91447636 1355 DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
9bccf70c
A
1356
1357 /* average queue size estimation */
1358 if (q_size != 0) {
1359 /*
1360 * queue is not empty, avg <- avg + (q_size - avg) * w_q
1361 */
1362 int diff = SCALE(q_size) - q->avg;
1363 int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
1364
1365 q->avg += (int) v;
1366 } else {
1367 /*
1368 * queue is empty, find for how long the queue has been
1369 * empty and use a lookup table for computing
1370 * (1 - * w_q)^(idle_time/s) where s is the time to send a
1371 * (small) packet.
1372 * XXX check wraps...
1373 */
1374 if (q->avg) {
1375 u_int t = (curr_time - q->q_time) / fs->lookup_step;
1376
1377 q->avg = (t < fs->lookup_depth) ?
1378 SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
1379 }
1380 }
91447636 1381 DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
9bccf70c
A
1382
1383 /* should i drop ? */
1384
1385 if (q->avg < fs->min_th) {
1386 q->count = -1;
1387 return 0; /* accept packet ; */
1388 }
1389 if (q->avg >= fs->max_th) { /* average queue >= max threshold */
1390 if (fs->flags_fs & DN_IS_GENTLE_RED) {
1c79356b 1391 /*
9bccf70c
A
1392 * According to Gentle-RED, if avg is greater than max_th the
1393 * packet is dropped with a probability
1394 * p_b = c_3 * avg - c_4
1395 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
1c79356b 1396 */
9bccf70c
A
1397 p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
1398 } else {
1399 q->count = -1;
91447636 1400 DPRINTF(("dummynet: - drop"));
9bccf70c
A
1401 return 1 ;
1402 }
1403 } else if (q->avg > fs->min_th) {
1404 /*
1405 * we compute p_b using the linear dropping function p_b = c_1 *
1406 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1407 * max_p * min_th / (max_th - min_th)
1408 */
1409 p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
1410 }
1411 if (fs->flags_fs & DN_QSIZE_IS_BYTES)
1412 p_b = (p_b * len) / fs->max_pkt_size;
1413 if (++q->count == 0)
5ba3f43e 1414 q->random = (my_random() & 0xffff);
9bccf70c
A
1415 else {
1416 /*
1417 * q->count counts packets arrived since last drop, so a greater
1418 * value of q->count means a greater packet drop probability.
1419 */
1420 if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
1421 q->count = 0;
91447636 1422 DPRINTF(("dummynet: - red drop"));
9bccf70c 1423 /* after a drop we calculate a new random value */
5ba3f43e 1424 q->random = (my_random() & 0xffff);
9bccf70c
A
1425 return 1; /* drop */
1426 }
1427 }
1428 /* end of RED algorithm */
1429 return 0 ; /* accept */
1430}
1431
1432static __inline
1433struct dn_flow_set *
b0d623f7 1434locate_flowset(int fs_nr)
9bccf70c 1435{
91447636 1436 struct dn_flow_set *fs;
b0d623f7
A
1437 SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
1438 if (fs->fs_nr == fs_nr)
1439 return fs ;
39037602 1440
b0d623f7
A
1441 return (NULL);
1442}
9bccf70c 1443
b0d623f7
A
1444static __inline struct dn_pipe *
1445locate_pipe(int pipe_nr)
1446{
1447 struct dn_pipe *pipe;
91447636 1448
b0d623f7
A
1449 SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
1450 if (pipe->pipe_nr == pipe_nr)
1451 return (pipe);
91447636 1452
b0d623f7
A
1453 return (NULL);
1454}
91447636 1455
91447636 1456
9bccf70c
A
1457
1458/*
1459 * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1460 * depending on whether WF2Q or fixed bw is used.
91447636
A
1461 *
1462 * pipe_nr pipe or queue the packet is destined for.
1463 * dir where shall we send the packet after dummynet.
1464 * m the mbuf with the packet
1465 * ifp the 'ifp' parameter from the caller.
1466 * NULL in ip_input, destination interface in ip_output,
1467 * real_dst in bdg_forward
1468 * ro route parameter (only used in ip_output, NULL otherwise)
1469 * dst destination address, only used by ip_output
1470 * rule matching rule, in case of multiple passes
1471 * flags flags from the caller, only used in ip_output
1472 *
9bccf70c 1473 */
91447636 1474static int
316670eb 1475dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa, int client)
9bccf70c 1476{
316670eb 1477 struct mbuf *head = NULL, *tail = NULL;
91447636
A
1478 struct dn_pkt_tag *pkt;
1479 struct m_tag *mtag;
b0d623f7 1480 struct dn_flow_set *fs = NULL;
9bccf70c
A
1481 struct dn_pipe *pipe ;
1482 u_int64_t len = m->m_pkthdr.len ;
1483 struct dn_flow_queue *q = NULL ;
39236c6e 1484 int is_pipe = 0;
0c530ab8
A
1485 struct timespec ts;
1486 struct timeval tv;
39236c6e
A
1487
1488 DPRINTF(("dummynet_io m: 0x%llx pipe: %d dir: %d client: %d\n",
1489 (uint64_t)VM_KERNEL_ADDRPERM(m), pipe_nr, dir, client));
316670eb
A
1490
1491#if IPFIREWALL
91447636 1492#if IPFW2
316670eb
A
1493 if (client == DN_CLIENT_IPFW) {
1494 ipfw_insn *cmd = fwa->fwa_ipfw_rule->cmd + fwa->fwa_ipfw_rule->act_ofs;
91447636 1495
316670eb
A
1496 if (cmd->opcode == O_LOG)
1497 cmd += F_LEN(cmd);
1498 is_pipe = (cmd->opcode == O_PIPE);
1499 }
91447636 1500#else
316670eb
A
1501 if (client == DN_CLIENT_IPFW)
1502 is_pipe = (fwa->fwa_ipfw_rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
91447636 1503#endif
316670eb
A
1504#endif /* IPFIREWALL */
1505
1506#if DUMMYNET
1507 if (client == DN_CLIENT_PF)
1508 is_pipe = fwa->fwa_flags == DN_IS_PIPE ? 1 : 0;
1509#endif /* DUMMYNET */
9bccf70c
A
1510
1511 pipe_nr &= 0xffff ;
1512
91447636 1513 lck_mtx_lock(dn_mutex);
0c530ab8 1514
39037602
A
1515 /* make all time measurements in milliseconds (ms) -
1516 * here we convert secs and usecs to msecs (just divide the
0c530ab8
A
1517 * usecs and take the closest whole number).
1518 */
316670eb 1519 microuptime(&tv);
0c530ab8 1520 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
39037602 1521
91447636
A
1522 /*
1523 * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
1524 */
b0d623f7
A
1525 if (is_pipe) {
1526 pipe = locate_pipe(pipe_nr);
1527 if (pipe != NULL)
1528 fs = &(pipe->fs);
1529 } else
1530 fs = locate_flowset(pipe_nr);
39037602
A
1531
1532
b0d623f7 1533 if (fs == NULL){
91447636 1534 goto dropit ; /* this queue/pipe does not exist! */
b0d623f7 1535 }
9bccf70c
A
1536 pipe = fs->pipe ;
1537 if (pipe == NULL) { /* must be a queue, try find a matching pipe */
b0d623f7
A
1538 pipe = locate_pipe(fs->parent_nr);
1539
9bccf70c
A
1540 if (pipe != NULL)
1541 fs->pipe = pipe ;
1542 else {
91447636 1543 printf("dummynet: no pipe %d for queue %d, drop pkt\n",
9bccf70c
A
1544 fs->parent_nr, fs->fs_nr);
1545 goto dropit ;
1546 }
1547 }
316670eb 1548 q = find_queue(fs, &(fwa->fwa_id));
9bccf70c
A
1549 if ( q == NULL )
1550 goto dropit ; /* cannot allocate queue */
1551 /*
1552 * update statistics, then check reasons to drop pkt
1553 */
1554 q->tot_bytes += len ;
1555 q->tot_pkts++ ;
5ba3f43e 1556 if ( fs->plr && (my_random() < fs->plr))
9bccf70c
A
1557 goto dropit ; /* random pkt drop */
1558 if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
1559 if (q->len_bytes > fs->qsize)
1560 goto dropit ; /* queue size overflow */
1561 } else {
1562 if (q->len >= fs->qsize)
1563 goto dropit ; /* queue count overflow */
1564 }
1565 if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
1566 goto dropit ;
1567
91447636 1568 /* XXX expensive to zero, see if we can remove it*/
6d2010ae
A
1569 mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
1570 sizeof(struct dn_pkt_tag), M_NOWAIT, m);
91447636
A
1571 if ( mtag == NULL )
1572 goto dropit ; /* cannot allocate packet header */
1573 m_tag_prepend(m, mtag); /* attach to mbuf chain */
1574
1575 pkt = (struct dn_pkt_tag *)(mtag+1);
13fec989 1576 bzero(pkt, sizeof(struct dn_pkt_tag));
9bccf70c 1577 /* ok, i can handle the pkt now... */
9bccf70c 1578 /* build and enqueue packet + parameters */
316670eb
A
1579 /*
1580 * PF is checked before ipfw so remember ipfw rule only when
1581 * the caller is ipfw. When the caller is PF, fwa_ipfw_rule
1582 * is a fake rule just used for convenience
1583 */
1584 if (client == DN_CLIENT_IPFW)
1585 pkt->dn_ipfw_rule = fwa->fwa_ipfw_rule;
1586 pkt->dn_pf_rule = fwa->fwa_pf_rule;
9bccf70c 1587 pkt->dn_dir = dir ;
316670eb 1588 pkt->dn_client = client;
9bccf70c 1589
316670eb 1590 pkt->dn_ifp = fwa->fwa_oif;
9bccf70c 1591 if (dir == DN_TO_IP_OUT) {
316670eb
A
1592 /*
1593 * We need to copy *ro because for ICMP pkts (and maybe others)
1594 * the caller passed a pointer into the stack; dst might also be
1595 * a pointer into *ro so it needs to be updated.
1596 */
1597 if (fwa->fwa_ro) {
39236c6e 1598 route_copyout(&pkt->dn_ro, fwa->fwa_ro, sizeof (pkt->dn_ro));
316670eb
A
1599 }
1600 if (fwa->fwa_dst) {
1601 if (fwa->fwa_dst == (struct sockaddr_in *)&fwa->fwa_ro->ro_dst) /* dst points into ro */
1602 fwa->fwa_dst = (struct sockaddr_in *)&(pkt->dn_ro.ro_dst) ;
39037602 1603
316670eb
A
1604 bcopy (fwa->fwa_dst, &pkt->dn_dst, sizeof(pkt->dn_dst));
1605 }
1606 } else if (dir == DN_TO_IP6_OUT) {
1607 if (fwa->fwa_ro6) {
39236c6e
A
1608 route_copyout((struct route *)&pkt->dn_ro6,
1609 (struct route *)fwa->fwa_ro6, sizeof (pkt->dn_ro6));
316670eb
A
1610 }
1611 if (fwa->fwa_ro6_pmtu) {
39236c6e
A
1612 route_copyout((struct route *)&pkt->dn_ro6_pmtu,
1613 (struct route *)fwa->fwa_ro6_pmtu, sizeof (pkt->dn_ro6_pmtu));
316670eb
A
1614 }
1615 if (fwa->fwa_dst6) {
1616 if (fwa->fwa_dst6 == (struct sockaddr_in6 *)&fwa->fwa_ro6->ro_dst) /* dst points into ro */
1617 fwa->fwa_dst6 = (struct sockaddr_in6 *)&(pkt->dn_ro6.ro_dst) ;
39037602 1618
316670eb
A
1619 bcopy (fwa->fwa_dst6, &pkt->dn_dst6, sizeof(pkt->dn_dst6));
1620 }
1621 pkt->dn_origifp = fwa->fwa_origifp;
1622 pkt->dn_mtu = fwa->fwa_mtu;
316670eb
A
1623 pkt->dn_unfragpartlen = fwa->fwa_unfragpartlen;
1624 if (fwa->fwa_exthdrs) {
1625 bcopy (fwa->fwa_exthdrs, &pkt->dn_exthdrs, sizeof(pkt->dn_exthdrs));
39037602 1626 /*
316670eb
A
1627 * Need to zero out the source structure so the mbufs
1628 * won't be freed by ip6_output()
39037602 1629 */
316670eb
A
1630 bzero(fwa->fwa_exthdrs, sizeof(struct ip6_exthdrs));
1631 }
1632 }
1633 if (dir == DN_TO_IP_OUT || dir == DN_TO_IP6_OUT) {
1634 pkt->dn_flags = fwa->fwa_oflags;
1635 if (fwa->fwa_ipoa != NULL)
1636 pkt->dn_ipoa = *(fwa->fwa_ipoa);
1637 }
9bccf70c 1638 if (q->head == NULL)
91447636 1639 q->head = m;
9bccf70c 1640 else
91447636
A
1641 q->tail->m_nextpkt = m;
1642 q->tail = m;
9bccf70c
A
1643 q->len++;
1644 q->len_bytes += len ;
1645
91447636 1646 if ( q->head != m ) /* flow was not idle, we are done */
9bccf70c
A
1647 goto done;
1648 /*
1649 * If we reach this point the flow was previously idle, so we need
1650 * to schedule it. This involves different actions for fixed-rate or
1651 * WF2Q queues.
1652 */
91447636 1653 if (is_pipe) {
9bccf70c
A
1654 /*
1655 * Fixed-rate queue: just insert into the ready_heap.
1656 */
1657 dn_key t = 0 ;
91447636
A
1658 if (pipe->bandwidth)
1659 t = SET_TICKS(m, q, pipe);
9bccf70c 1660 q->sched_time = curr_time ;
316670eb 1661 if (t == 0) /* must process it now */
b0d623f7 1662 ready_event( q , &head, &tail );
9bccf70c
A
1663 else
1664 heap_insert(&ready_heap, curr_time + t , q );
1665 } else {
1666 /*
1667 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1668 * set S to the virtual time V for the controlling pipe, and update
1669 * the sum of weights for the pipe; otherwise, remove flow from
1670 * idle_heap and set S to max(F,V).
1671 * Second, compute finish time F = S + len/weight.
1672 * Third, if pipe was idle, update V=max(S, V).
1673 * Fourth, count one more backlogged flow.
1674 */
1675 if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
1676 q->S = pipe->V ;
1677 pipe->sum += fs->weight ; /* add weight of new queue */
1678 } else {
1679 heap_extract(&(pipe->idle_heap), q);
1680 q->S = MAX64(q->F, pipe->V ) ;
1681 }
1682 q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
1683
1684 if (pipe->not_eligible_heap.elements == 0 &&
1685 pipe->scheduler_heap.elements == 0)
1686 pipe->V = MAX64 ( q->S, pipe->V );
1687 fs->backlogged++ ;
1688 /*
1689 * Look at eligibility. A flow is not eligibile if S>V (when
1690 * this happens, it means that there is some other flow already
1691 * scheduled for the same pipe, so the scheduler_heap cannot be
1692 * empty). If the flow is not eligible we just store it in the
1693 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1694 * and possibly invoke ready_event_wfq() right now if there is
1695 * leftover credit.
1696 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1697 * and for all flows in not_eligible_heap (NEH), S_i > V .
1698 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1699 * we only need to look into NEH.
1700 */
1701 if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
1702 if (pipe->scheduler_heap.elements == 0)
91447636 1703 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
9bccf70c
A
1704 heap_insert(&(pipe->not_eligible_heap), q->S, q);
1705 } else {
1706 heap_insert(&(pipe->scheduler_heap), q->F, q);
1707 if (pipe->numbytes >= 0) { /* pipe is idle */
1708 if (pipe->scheduler_heap.elements != 1)
91447636
A
1709 printf("dummynet: OUCH! pipe should have been idle!\n");
1710 DPRINTF(("dummynet: waking up pipe %d at %d\n",
1711 pipe->pipe_nr, (int)(q->F >> MY_M)));
9bccf70c 1712 pipe->sched_time = curr_time ;
b0d623f7 1713 ready_event_wfq(pipe, &head, &tail);
1c79356b 1714 }
9bccf70c
A
1715 }
1716 }
1717done:
0c530ab8
A
1718 /* start the timer and set global if not already set */
1719 if (!timer_enabled) {
1720 ts.tv_sec = 0;
1721 ts.tv_nsec = 1 * 1000000; // 1ms
1722 timer_enabled = 1;
1723 bsd_timeout(dummynet, NULL, &ts);
6d2010ae 1724 }
0c530ab8 1725
91447636 1726 lck_mtx_unlock(dn_mutex);
39037602 1727
316670eb 1728 if (head != NULL) {
b0d623f7 1729 dummynet_send(head);
316670eb 1730 }
b0d623f7 1731
9bccf70c
A
1732 return 0;
1733
1734dropit:
9bccf70c
A
1735 if (q)
1736 q->drops++ ;
91447636 1737 lck_mtx_unlock(dn_mutex);
9bccf70c 1738 m_freem(m);
91447636 1739 return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
9bccf70c
A
1740}
1741
1742/*
39236c6e 1743 * Below, the ROUTE_RELEASE is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
9bccf70c
A
1744 * Doing this would probably save us the initial bzero of dn_pkt
1745 */
b0d623f7 1746#define DN_FREE_PKT(_m) do { \
91447636 1747 struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
b0d623f7 1748 if (tag) { \
91447636 1749 struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
39236c6e 1750 ROUTE_RELEASE(&n->dn_ro); \
b0d623f7
A
1751 } \
1752 m_tag_delete(_m, tag); \
1753 m_freem(_m); \
91447636 1754} while (0)
9bccf70c
A
1755
1756/*
1757 * Dispose all packets and flow_queues on a flow_set.
1758 * If all=1, also remove red lookup table and other storage,
1759 * including the descriptor itself.
1760 * For the one in dn_pipe MUST also cleanup ready_heap...
1761 */
1762static void
1763purge_flow_set(struct dn_flow_set *fs, int all)
1764{
9bccf70c
A
1765 struct dn_flow_queue *q, *qn ;
1766 int i ;
1767
5ba3f43e 1768 LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
91447636 1769
9bccf70c
A
1770 for (i = 0 ; i <= fs->rq_size ; i++ ) {
1771 for (q = fs->rq[i] ; q ; q = qn ) {
91447636
A
1772 struct mbuf *m, *mnext;
1773
1774 mnext = q->head;
1775 while ((m = mnext) != NULL) {
1776 mnext = m->m_nextpkt;
1777 DN_FREE_PKT(m);
1778 }
9bccf70c 1779 qn = q->next ;
91447636 1780 FREE(q, M_DUMMYNET);
9bccf70c
A
1781 }
1782 fs->rq[i] = NULL ;
1783 }
1784 fs->rq_elements = 0 ;
1785 if (all) {
1786 /* RED - free lookup table */
1787 if (fs->w_q_lookup)
91447636 1788 FREE(fs->w_q_lookup, M_DUMMYNET);
9bccf70c 1789 if (fs->rq)
91447636 1790 FREE(fs->rq, M_DUMMYNET);
9bccf70c
A
1791 /* if this fs is not part of a pipe, free it */
1792 if (fs->pipe && fs != &(fs->pipe->fs) )
91447636 1793 FREE(fs, M_DUMMYNET);
9bccf70c
A
1794 }
1795}
1796
1797/*
1798 * Dispose all packets queued on a pipe (not a flow_set).
1799 * Also free all resources associated to a pipe, which is about
1800 * to be deleted.
1801 */
1802static void
1803purge_pipe(struct dn_pipe *pipe)
1804{
91447636 1805 struct mbuf *m, *mnext;
9bccf70c
A
1806
1807 purge_flow_set( &(pipe->fs), 1 );
1808
91447636
A
1809 mnext = pipe->head;
1810 while ((m = mnext) != NULL) {
1811 mnext = m->m_nextpkt;
1812 DN_FREE_PKT(m);
1813 }
9bccf70c
A
1814
1815 heap_free( &(pipe->scheduler_heap) );
1816 heap_free( &(pipe->not_eligible_heap) );
1817 heap_free( &(pipe->idle_heap) );
1818}
1819
1820/*
1821 * Delete all pipes and heaps returning memory. Must also
1822 * remove references from all ipfw rules to all pipes.
1823 */
1824static void
2d21ac55 1825dummynet_flush(void)
9bccf70c 1826{
b0d623f7
A
1827 struct dn_pipe *pipe, *pipe1;
1828 struct dn_flow_set *fs, *fs1;
1829 int i;
9bccf70c 1830
91447636 1831 lck_mtx_lock(dn_mutex);
9bccf70c 1832
316670eb
A
1833#if IPFW2
1834 /* remove all references to pipes ...*/
1835 flush_pipe_ptrs(NULL);
1836#endif /* IPFW2 */
1837
b0d623f7
A
1838 /* Free heaps so we don't have unwanted events. */
1839 heap_free(&ready_heap);
1840 heap_free(&wfq_ready_heap);
1841 heap_free(&extract_heap);
91447636 1842
b0d623f7
A
1843 /*
1844 * Now purge all queued pkts and delete all pipes.
1845 *
1846 * XXXGL: can we merge the for(;;) cycles into one or not?
1847 */
1848 for (i = 0; i < HASHSIZE; i++)
1849 SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
1850 SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
1851 purge_flow_set(fs, 1);
1852 }
1853 for (i = 0; i < HASHSIZE; i++)
1854 SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
1855 SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
1856 purge_pipe(pipe);
1857 FREE(pipe, M_DUMMYNET);
1858 }
91447636 1859 lck_mtx_unlock(dn_mutex);
9bccf70c
A
1860}
1861
1862
9bccf70c 1863static void
316670eb 1864dn_ipfw_rule_delete_fs(struct dn_flow_set *fs, void *r)
9bccf70c
A
1865{
1866 int i ;
1867 struct dn_flow_queue *q ;
91447636 1868 struct mbuf *m ;
9bccf70c
A
1869
1870 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
1871 for (q = fs->rq[i] ; q ; q = q->next )
91447636
A
1872 for (m = q->head ; m ; m = m->m_nextpkt ) {
1873 struct dn_pkt_tag *pkt = dn_tag_get(m) ;
316670eb
A
1874 if (pkt->dn_ipfw_rule == r)
1875 pkt->dn_ipfw_rule = &default_rule ;
91447636 1876 }
9bccf70c
A
1877}
1878/*
1879 * when a firewall rule is deleted, scan all queues and remove the flow-id
1880 * from packets matching this rule.
1881 */
1882void
316670eb 1883dn_ipfw_rule_delete(void *r)
9bccf70c
A
1884{
1885 struct dn_pipe *p ;
9bccf70c 1886 struct dn_flow_set *fs ;
91447636
A
1887 struct dn_pkt_tag *pkt ;
1888 struct mbuf *m ;
b0d623f7 1889 int i;
91447636
A
1890
1891 lck_mtx_lock(dn_mutex);
9bccf70c
A
1892
1893 /*
1894 * If the rule references a queue (dn_flow_set), then scan
1895 * the flow set, otherwise scan pipes. Should do either, but doing
1896 * both does not harm.
1897 */
b0d623f7
A
1898 for (i = 0; i < HASHSIZE; i++)
1899 SLIST_FOREACH(fs, &flowsethash[i], next)
316670eb 1900 dn_ipfw_rule_delete_fs(fs, r);
b0d623f7
A
1901
1902 for (i = 0; i < HASHSIZE; i++)
1903 SLIST_FOREACH(p, &pipehash[i], next) {
1904 fs = &(p->fs);
316670eb 1905 dn_ipfw_rule_delete_fs(fs, r);
b0d623f7
A
1906 for (m = p->head ; m ; m = m->m_nextpkt ) {
1907 pkt = dn_tag_get(m);
316670eb
A
1908 if (pkt->dn_ipfw_rule == r)
1909 pkt->dn_ipfw_rule = &default_rule;
b0d623f7 1910 }
91447636 1911 }
b0d623f7 1912 lck_mtx_unlock(dn_mutex);
9bccf70c
A
1913}
1914
1915/*
1916 * setup RED parameters
1917 */
1918static int
91447636 1919config_red(struct dn_flow_set *p, struct dn_flow_set * x)
9bccf70c
A
1920{
1921 int i;
1922
1923 x->w_q = p->w_q;
1924 x->min_th = SCALE(p->min_th);
1925 x->max_th = SCALE(p->max_th);
1926 x->max_p = p->max_p;
1927
1928 x->c_1 = p->max_p / (p->max_th - p->min_th);
1929 x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
1930 if (x->flags_fs & DN_IS_GENTLE_RED) {
1931 x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
1932 x->c_4 = (SCALE(1) - 2 * p->max_p);
1933 }
1934
1935 /* if the lookup table already exist, free and create it again */
91447636
A
1936 if (x->w_q_lookup) {
1937 FREE(x->w_q_lookup, M_DUMMYNET);
1938 x->w_q_lookup = NULL ;
1939 }
9bccf70c 1940 if (red_lookup_depth == 0) {
91447636
A
1941 printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1942 FREE(x, M_DUMMYNET);
9bccf70c
A
1943 return EINVAL;
1944 }
1945 x->lookup_depth = red_lookup_depth;
1946 x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
91447636 1947 M_DUMMYNET, M_DONTWAIT);
9bccf70c 1948 if (x->w_q_lookup == NULL) {
91447636
A
1949 printf("dummynet: sorry, cannot allocate red lookup table\n");
1950 FREE(x, M_DUMMYNET);
9bccf70c
A
1951 return ENOSPC;
1952 }
1953
1954 /* fill the lookup table with (1 - w_q)^x */
1955 x->lookup_step = p->lookup_step ;
1956 x->lookup_weight = p->lookup_weight ;
1957 x->w_q_lookup[0] = SCALE(1) - x->w_q;
1958 for (i = 1; i < x->lookup_depth; i++)
1959 x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
1960 if (red_avg_pkt_size < 1)
1961 red_avg_pkt_size = 512 ;
1962 x->avg_pkt_size = red_avg_pkt_size ;
1963 if (red_max_pkt_size < 1)
1964 red_max_pkt_size = 1500 ;
1965 x->max_pkt_size = red_max_pkt_size ;
1966 return 0 ;
1967}
1968
1969static int
1970alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
1971{
1972 if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
1973 int l = pfs->rq_size;
1974
1975 if (l == 0)
1976 l = dn_hash_size;
1977 if (l < 4)
1978 l = 4;
91447636
A
1979 else if (l > DN_MAX_HASH_SIZE)
1980 l = DN_MAX_HASH_SIZE;
9bccf70c
A
1981 x->rq_size = l;
1982 } else /* one is enough for null mask */
1983 x->rq_size = 1;
1984 x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
91447636 1985 M_DUMMYNET, M_DONTWAIT | M_ZERO);
9bccf70c 1986 if (x->rq == NULL) {
91447636 1987 printf("dummynet: sorry, cannot allocate queue\n");
9bccf70c
A
1988 return ENOSPC;
1989 }
9bccf70c
A
1990 x->rq_elements = 0;
1991 return 0 ;
1992}
1993
1994static void
1995set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
1996{
1997 x->flags_fs = src->flags_fs;
1998 x->qsize = src->qsize;
1999 x->plr = src->plr;
2000 x->flow_mask = src->flow_mask;
2001 if (x->flags_fs & DN_QSIZE_IS_BYTES) {
2002 if (x->qsize > 1024*1024)
2003 x->qsize = 1024*1024 ;
2004 } else {
2005 if (x->qsize == 0)
316670eb 2006 x->qsize = 50 ;
9bccf70c 2007 if (x->qsize > 100)
316670eb 2008 x->qsize = 50 ;
9bccf70c
A
2009 }
2010 /* configuring RED */
2011 if ( x->flags_fs & DN_IS_RED )
2012 config_red(src, x) ; /* XXX should check errors */
2013}
2014
2015/*
2016 * setup pipe or queue parameters.
2017 */
91447636 2018static int
9bccf70c
A
2019config_pipe(struct dn_pipe *p)
2020{
91447636 2021 int i, r;
9bccf70c 2022 struct dn_flow_set *pfs = &(p->fs);
91447636 2023 struct dn_flow_queue *q;
9bccf70c 2024
91447636
A
2025 /*
2026 * The config program passes parameters as follows:
9bccf70c
A
2027 * bw = bits/second (0 means no limits),
2028 * delay = ms, must be translated into ticks.
2029 * qsize = slots/bytes
91447636 2030 */
0c530ab8 2031 p->delay = ( p->delay * (hz*10) ) / 1000 ;
9bccf70c
A
2032 /* We need either a pipe number or a flow_set number */
2033 if (p->pipe_nr == 0 && pfs->fs_nr == 0)
2034 return EINVAL ;
2035 if (p->pipe_nr != 0 && pfs->fs_nr != 0)
2036 return EINVAL ;
2037 if (p->pipe_nr != 0) { /* this is a pipe */
b0d623f7 2038 struct dn_pipe *x, *b;
5ba3f43e 2039 struct dummynet_event dn_event;
91447636 2040 lck_mtx_lock(dn_mutex);
9bccf70c 2041
b0d623f7
A
2042 /* locate pipe */
2043 b = locate_pipe(p->pipe_nr);
39037602 2044
9bccf70c 2045 if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
91447636 2046 x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ;
9bccf70c 2047 if (x == NULL) {
91447636
A
2048 lck_mtx_unlock(dn_mutex);
2049 printf("dummynet: no memory for new pipe\n");
9bccf70c 2050 return ENOSPC;
1c79356b 2051 }
9bccf70c
A
2052 x->pipe_nr = p->pipe_nr;
2053 x->fs.pipe = x ;
2054 /* idle_heap is the only one from which we extract from the middle.
2055 */
2056 x->idle_heap.size = x->idle_heap.elements = 0 ;
b0d623f7 2057 x->idle_heap.offset=offsetof(struct dn_flow_queue, heap_pos);
91447636 2058 } else {
9bccf70c 2059 x = b;
91447636
A
2060 /* Flush accumulated credit for all queues */
2061 for (i = 0; i <= x->fs.rq_size; i++)
2062 for (q = x->fs.rq[i]; q; q = q->next)
2063 q->numbytes = 0;
2064 }
9bccf70c 2065
91447636 2066 x->bandwidth = p->bandwidth ;
9bccf70c
A
2067 x->numbytes = 0; /* just in case... */
2068 bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
2069 x->ifp = NULL ; /* reset interface ptr */
91447636 2070 x->delay = p->delay ;
9bccf70c 2071 set_fs_parms(&(x->fs), pfs);
1c79356b 2072
1c79356b 2073
9bccf70c 2074 if ( x->fs.rq == NULL ) { /* a new pipe */
91447636
A
2075 r = alloc_hash(&(x->fs), pfs) ;
2076 if (r) {
2077 lck_mtx_unlock(dn_mutex);
2078 FREE(x, M_DUMMYNET);
2079 return r ;
9bccf70c 2080 }
b0d623f7
A
2081 SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
2082 x, next);
9bccf70c 2083 }
91447636 2084 lck_mtx_unlock(dn_mutex);
5ba3f43e
A
2085
2086 bzero(&dn_event, sizeof(dn_event));
2087 dn_event.dn_event_code = DUMMYNET_PIPE_CONFIG;
2088 dn_event.dn_event_pipe_config.bandwidth = p->bandwidth;
2089 dn_event.dn_event_pipe_config.delay = p->delay;
2090 dn_event.dn_event_pipe_config.plr = pfs->plr;
2091
2092 dummynet_event_enqueue_nwk_wq_entry(&dn_event);
9bccf70c 2093 } else { /* config queue */
b0d623f7 2094 struct dn_flow_set *x, *b ;
9bccf70c 2095
91447636 2096 lck_mtx_lock(dn_mutex);
9bccf70c 2097 /* locate flow_set */
b0d623f7 2098 b = locate_flowset(pfs->fs_nr);
1c79356b 2099
9bccf70c 2100 if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
91447636
A
2101 if (pfs->parent_nr == 0) { /* need link to a pipe */
2102 lck_mtx_unlock(dn_mutex);
2103 return EINVAL ;
2104 }
2105 x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
9bccf70c 2106 if (x == NULL) {
91447636
A
2107 lck_mtx_unlock(dn_mutex);
2108 printf("dummynet: no memory for new flow_set\n");
2109 return ENOSPC;
1c79356b 2110 }
9bccf70c
A
2111 x->fs_nr = pfs->fs_nr;
2112 x->parent_nr = pfs->parent_nr;
2113 x->weight = pfs->weight ;
2114 if (x->weight == 0)
2115 x->weight = 1 ;
2116 else if (x->weight > 100)
2117 x->weight = 100 ;
2118 } else {
2119 /* Change parent pipe not allowed; must delete and recreate */
91447636
A
2120 if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
2121 lck_mtx_unlock(dn_mutex);
2122 return EINVAL ;
2123 }
9bccf70c 2124 x = b;
1c79356b 2125 }
9bccf70c
A
2126 set_fs_parms(x, pfs);
2127
2128 if ( x->rq == NULL ) { /* a new flow_set */
91447636
A
2129 r = alloc_hash(x, pfs) ;
2130 if (r) {
2131 lck_mtx_unlock(dn_mutex);
2132 FREE(x, M_DUMMYNET);
2133 return r ;
9bccf70c 2134 }
b0d623f7
A
2135 SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
2136 x, next);
9bccf70c 2137 }
91447636 2138 lck_mtx_unlock(dn_mutex);
9bccf70c
A
2139 }
2140 return 0 ;
2141}
2142
2143/*
2144 * Helper function to remove from a heap queues which are linked to
2145 * a flow_set about to be deleted.
2146 */
2147static void
2148fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
2149{
2150 int i = 0, found = 0 ;
2151 for (; i < h->elements ;)
2152 if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
2153 h->elements-- ;
2154 h->p[i] = h->p[h->elements] ;
2155 found++ ;
2156 } else
2157 i++ ;
2158 if (found)
2159 heapify(h);
1c79356b
A
2160}
2161
9bccf70c
A
2162/*
2163 * helper function to remove a pipe from a heap (can be there at most once)
2164 */
2165static void
2166pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
2167{
2168 if (h->elements > 0) {
2169 int i = 0 ;
2170 for (i=0; i < h->elements ; i++ ) {
2171 if (h->p[i].object == p) { /* found it */
2172 h->elements-- ;
2173 h->p[i] = h->p[h->elements] ;
2174 heapify(h);
2175 break ;
2176 }
2177 }
2178 }
2179}
2180
2181/*
2182 * drain all queues. Called in case of severe mbuf shortage.
2183 */
1c79356b 2184void
2d21ac55 2185dummynet_drain(void)
1c79356b 2186{
9bccf70c
A
2187 struct dn_flow_set *fs;
2188 struct dn_pipe *p;
91447636 2189 struct mbuf *m, *mnext;
b0d623f7 2190 int i;
91447636 2191
5ba3f43e 2192 LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
9bccf70c
A
2193
2194 heap_free(&ready_heap);
2195 heap_free(&wfq_ready_heap);
2196 heap_free(&extract_heap);
2197 /* remove all references to this pipe from flow_sets */
b0d623f7
A
2198 for (i = 0; i < HASHSIZE; i++)
2199 SLIST_FOREACH(fs, &flowsethash[i], next)
2200 purge_flow_set(fs, 0);
9bccf70c 2201
b0d623f7
A
2202 for (i = 0; i < HASHSIZE; i++)
2203 SLIST_FOREACH(p, &pipehash[i], next) {
39037602 2204 purge_flow_set(&(p->fs), 0);
91447636
A
2205
2206 mnext = p->head;
2207 while ((m = mnext) != NULL) {
2208 mnext = m->m_nextpkt;
2209 DN_FREE_PKT(m);
2210 }
9bccf70c
A
2211 p->head = p->tail = NULL ;
2212 }
1c79356b
A
2213}
2214
9bccf70c
A
2215/*
2216 * Fully delete a pipe or a queue, cleaning up associated info.
2217 */
91447636 2218static int
9bccf70c
A
2219delete_pipe(struct dn_pipe *p)
2220{
9bccf70c
A
2221 if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
2222 return EINVAL ;
2223 if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
2224 return EINVAL ;
2225 if (p->pipe_nr != 0) { /* this is an old-style pipe */
b0d623f7 2226 struct dn_pipe *b;
9bccf70c 2227 struct dn_flow_set *fs;
b0d623f7 2228 int i;
1c79356b 2229
91447636 2230 lck_mtx_lock(dn_mutex);
9bccf70c 2231 /* locate pipe */
b0d623f7
A
2232 b = locate_pipe(p->pipe_nr);
2233 if(b == NULL){
91447636 2234 lck_mtx_unlock(dn_mutex);
9bccf70c 2235 return EINVAL ; /* not found */
91447636 2236 }
1c79356b 2237
b0d623f7
A
2238 /* Unlink from list of pipes. */
2239 SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
2240
316670eb 2241#if IPFW2
9bccf70c 2242 /* remove references to this pipe from the ip_fw rules. */
91447636 2243 flush_pipe_ptrs(&(b->fs));
316670eb 2244#endif /* IPFW2 */
9bccf70c 2245
b0d623f7
A
2246 /* Remove all references to this pipe from flow_sets. */
2247 for (i = 0; i < HASHSIZE; i++)
2248 SLIST_FOREACH(fs, &flowsethash[i], next)
2249 if (fs->pipe == b) {
2250 printf("dummynet: ++ ref to pipe %d from fs %d\n",
2251 p->pipe_nr, fs->fs_nr);
2252 fs->pipe = NULL ;
2253 purge_flow_set(fs, 0);
2254 }
9bccf70c 2255 fs_remove_from_heap(&ready_heap, &(b->fs));
b0d623f7 2256
9bccf70c
A
2257 purge_pipe(b); /* remove all data associated to this pipe */
2258 /* remove reference to here from extract_heap and wfq_ready_heap */
2259 pipe_remove_from_heap(&extract_heap, b);
2260 pipe_remove_from_heap(&wfq_ready_heap, b);
91447636 2261 lck_mtx_unlock(dn_mutex);
39037602 2262
91447636 2263 FREE(b, M_DUMMYNET);
9bccf70c 2264 } else { /* this is a WF2Q queue (dn_flow_set) */
b0d623f7 2265 struct dn_flow_set *b;
9bccf70c 2266
91447636 2267 lck_mtx_lock(dn_mutex);
9bccf70c 2268 /* locate set */
b0d623f7
A
2269 b = locate_flowset(p->fs.fs_nr);
2270 if (b == NULL) {
91447636 2271 lck_mtx_unlock(dn_mutex);
9bccf70c 2272 return EINVAL ; /* not found */
91447636 2273 }
9bccf70c 2274
316670eb 2275#if IPFW2
9bccf70c 2276 /* remove references to this flow_set from the ip_fw rules. */
91447636 2277 flush_pipe_ptrs(b);
316670eb 2278#endif /* IPFW2 */
9bccf70c 2279
b0d623f7
A
2280 /* Unlink from list of flowsets. */
2281 SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
2282
9bccf70c
A
2283 if (b->pipe != NULL) {
2284 /* Update total weight on parent pipe and cleanup parent heaps */
2285 b->pipe->sum -= b->weight * b->backlogged ;
2286 fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
2287 fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
2288#if 1 /* XXX should i remove from idle_heap as well ? */
2289 fs_remove_from_heap(&(b->pipe->idle_heap), b);
2290#endif
2291 }
2292 purge_flow_set(b, 1);
91447636 2293 lck_mtx_unlock(dn_mutex);
9bccf70c
A
2294 }
2295 return 0 ;
2296}
2297
2298/*
2299 * helper function used to copy data from kernel in DUMMYNET_GET
2300 */
39037602 2301static
b0d623f7 2302char* dn_copy_set_32(struct dn_flow_set *set, char *bp)
9bccf70c
A
2303{
2304 int i, copied = 0 ;
b0d623f7
A
2305 struct dn_flow_queue *q;
2306 struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp;
39037602 2307
5ba3f43e 2308 LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
39037602 2309
b0d623f7
A
2310 for (i = 0 ; i <= set->rq_size ; i++)
2311 for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2312 if (q->hash_slot != i)
2313 printf("dummynet: ++ at %d: wrong slot (have %d, "
2314 "should be %d)\n", copied, q->hash_slot, i);
2315 if (q->fs != set)
39236c6e
A
2316 printf("dummynet: ++ at %d: wrong fs ptr "
2317 "(have 0x%llx, should be 0x%llx)\n", i,
2318 (uint64_t)VM_KERNEL_ADDRPERM(q->fs),
2319 (uint64_t)VM_KERNEL_ADDRPERM(set));
b0d623f7
A
2320 copied++ ;
2321 cp_queue_to_32_user( q, qp );
2322 /* cleanup pointers */
2323 qp->next = (user32_addr_t)0 ;
2324 qp->head = qp->tail = (user32_addr_t)0 ;
2325 qp->fs = (user32_addr_t)0 ;
2326 }
2327 if (copied != set->rq_elements)
2328 printf("dummynet: ++ wrong count, have %d should be %d\n",
2329 copied, set->rq_elements);
2330 return (char *)qp ;
2331}
91447636 2332
39037602 2333static
b0d623f7
A
2334char* dn_copy_set_64(struct dn_flow_set *set, char *bp)
2335{
2336 int i, copied = 0 ;
2337 struct dn_flow_queue *q;
2338 struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp;
39037602 2339
5ba3f43e 2340 LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
39037602 2341
9bccf70c 2342 for (i = 0 ; i <= set->rq_size ; i++)
b0d623f7
A
2343 for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2344 if (q->hash_slot != i)
2345 printf("dummynet: ++ at %d: wrong slot (have %d, "
2346 "should be %d)\n", copied, q->hash_slot, i);
2347 if (q->fs != set)
39236c6e
A
2348 printf("dummynet: ++ at %d: wrong fs ptr "
2349 "(have 0x%llx, should be 0x%llx)\n", i,
2350 (uint64_t)VM_KERNEL_ADDRPERM(q->fs),
2351 (uint64_t)VM_KERNEL_ADDRPERM(set));
b0d623f7
A
2352 copied++ ;
2353 //bcopy(q, qp, sizeof(*q));
2354 cp_queue_to_64_user( q, qp );
2355 /* cleanup pointers */
2356 qp->next = USER_ADDR_NULL ;
2357 qp->head = qp->tail = USER_ADDR_NULL ;
2358 qp->fs = USER_ADDR_NULL ;
2359 }
9bccf70c 2360 if (copied != set->rq_elements)
b0d623f7
A
2361 printf("dummynet: ++ wrong count, have %d should be %d\n",
2362 copied, set->rq_elements);
9bccf70c
A
2363 return (char *)qp ;
2364}
1c79356b 2365
91447636 2366static size_t
b0d623f7 2367dn_calc_size(int is64user)
1c79356b 2368{
9bccf70c
A
2369 struct dn_flow_set *set ;
2370 struct dn_pipe *p ;
b0d623f7
A
2371 size_t size = 0 ;
2372 size_t pipesize;
2373 size_t queuesize;
2374 size_t setsize;
2375 int i;
91447636 2376
5ba3f43e 2377 LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
b0d623f7
A
2378 if ( is64user ){
2379 pipesize = sizeof(struct dn_pipe_64);
2380 queuesize = sizeof(struct dn_flow_queue_64);
2381 setsize = sizeof(struct dn_flow_set_64);
2382 }
2383 else {
2384 pipesize = sizeof(struct dn_pipe_32);
2385 queuesize = sizeof( struct dn_flow_queue_32 );
2386 setsize = sizeof(struct dn_flow_set_32);
2387 }
9bccf70c
A
2388 /*
2389 * compute size of data structures: list of pipes and flow_sets.
2390 */
b0d623f7
A
2391 for (i = 0; i < HASHSIZE; i++) {
2392 SLIST_FOREACH(p, &pipehash[i], next)
2393 size += sizeof(*p) +
2394 p->fs.rq_elements * sizeof(struct dn_flow_queue);
2395 SLIST_FOREACH(set, &flowsethash[i], next)
2396 size += sizeof (*set) +
2397 set->rq_elements * sizeof(struct dn_flow_queue);
2398 }
2399 return size;
91447636
A
2400}
2401
2402static int
2403dummynet_get(struct sockopt *sopt)
2404{
5ba3f43e
A
2405 char *buf = NULL, *bp = NULL; /* bp is the "copy-pointer" */
2406 size_t size = 0;
2407 struct dn_flow_set *set;
2408 struct dn_pipe *p;
2409 int error = 0, i;
2410 int is64user = 0;
2411
2412 /* XXX lock held too long */
2413 lck_mtx_lock(dn_mutex);
2414 /*
2415 * XXX: Ugly, but we need to allocate memory with M_WAITOK flag
2416 * and we cannot use this flag while holding a mutex.
2417 */
b0d623f7
A
2418 if (proc_is64bit(sopt->sopt_p))
2419 is64user = 1;
5ba3f43e 2420 for (i = 0; i < 10; i++) {
b0d623f7 2421 size = dn_calc_size(is64user);
91447636 2422 lck_mtx_unlock(dn_mutex);
d9a64523 2423 buf = _MALLOC(size, M_TEMP, M_WAITOK | M_ZERO);
b0d623f7 2424 if (buf == NULL)
5ba3f43e 2425 return(ENOBUFS);
91447636 2426 lck_mtx_lock(dn_mutex);
b0d623f7 2427 if (size == dn_calc_size(is64user))
91447636
A
2428 break;
2429 FREE(buf, M_TEMP);
2430 buf = NULL;
5ba3f43e
A
2431 }
2432 if (buf == NULL) {
91447636 2433 lck_mtx_unlock(dn_mutex);
5ba3f43e
A
2434 return(ENOBUFS);
2435 }
9bccf70c 2436
5ba3f43e
A
2437 bp = buf;
2438 for (i = 0; i < HASHSIZE; i++) {
2439 SLIST_FOREACH(p, &pipehash[i], next) {
2440 /*
2441 * copy pipe descriptor into *bp, convert delay
2442 * back to ms, then copy the flow_set descriptor(s)
2443 * one at a time. After each flow_set, copy the
2444 * queue descriptor it owns.
2445 */
2446 if ( is64user ) {
2447 bp = cp_pipe_to_64_user(p,
2448 (struct dn_pipe_64 *)bp);
2449 } else {
2450 bp = cp_pipe_to_32_user(p,
2451 (struct dn_pipe_32 *)bp);
2452 }
b0d623f7 2453 }
5ba3f43e
A
2454 }
2455 for (i = 0; i < HASHSIZE; i++) {
2456 SLIST_FOREACH(set, &flowsethash[i], next) {
2457 struct dn_flow_set_64 *fs_bp =
2458 (struct dn_flow_set_64 *)bp ;
2459 cp_flow_set_to_64_user(set, fs_bp);
2460 /* XXX same hack as above */
2461 fs_bp->next = CAST_DOWN(user64_addr_t,
2462 DN_IS_QUEUE);
2463 fs_bp->pipe = USER_ADDR_NULL;
2464 fs_bp->rq = USER_ADDR_NULL ;
2465 bp += sizeof(struct dn_flow_set_64);
2466 bp = dn_copy_set_64( set, bp );
b0d623f7 2467 }
5ba3f43e
A
2468 }
2469 lck_mtx_unlock(dn_mutex);
2470 error = sooptcopyout(sopt, buf, size);
2471 FREE(buf, M_TEMP);
2472 return(error);
1c79356b
A
2473}
2474
9bccf70c
A
2475/*
2476 * Handler for the various dummynet socket options (get, flush, config, del)
2477 */
1c79356b 2478static int
9bccf70c 2479ip_dn_ctl(struct sockopt *sopt)
1c79356b 2480{
9bccf70c
A
2481 int error = 0 ;
2482 struct dn_pipe *p, tmp_pipe;
2483
2484 /* Disallow sets in really-really secure mode. */
2485 if (sopt->sopt_dir == SOPT_SET && securelevel >= 3)
2486 return (EPERM);
2487
2488 switch (sopt->sopt_name) {
2489 default :
91447636 2490 printf("dummynet: -- unknown option %d", sopt->sopt_name);
9bccf70c
A
2491 return EINVAL ;
2492
2493 case IP_DUMMYNET_GET :
2494 error = dummynet_get(sopt);
2495 break ;
2496
2497 case IP_DUMMYNET_FLUSH :
2498 dummynet_flush() ;
2499 break ;
91447636 2500
9bccf70c
A
2501 case IP_DUMMYNET_CONFIGURE :
2502 p = &tmp_pipe ;
b0d623f7
A
2503 if (proc_is64bit(sopt->sopt_p))
2504 error = cp_pipe_from_user_64( sopt, p );
2505 else
2506 error = cp_pipe_from_user_32( sopt, p );
2507
9bccf70c
A
2508 if (error)
2509 break ;
2510 error = config_pipe(p);
2511 break ;
2512
2513 case IP_DUMMYNET_DEL : /* remove a pipe or queue */
2514 p = &tmp_pipe ;
b0d623f7
A
2515 if (proc_is64bit(sopt->sopt_p))
2516 error = cp_pipe_from_user_64( sopt, p );
2517 else
2518 error = cp_pipe_from_user_32( sopt, p );
9bccf70c
A
2519 if (error)
2520 break ;
2521
2522 error = delete_pipe(p);
2523 break ;
2524 }
2525 return error ;
1c79356b
A
2526}
2527
5ba3f43e
A
2528void
2529dummynet_init(void)
2530{
2531 eventhandler_lists_ctxt_init(&dummynet_evhdlr_ctxt);
2532}
2533
91447636 2534void
9bccf70c 2535ip_dn_init(void)
1c79356b 2536{
91447636
A
2537 /* setup locks */
2538 dn_mutex_grp_attr = lck_grp_attr_alloc_init();
2539 dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr);
2540 dn_mutex_attr = lck_attr_alloc_init();
316670eb 2541 lck_mtx_init(dn_mutex, dn_mutex_grp, dn_mutex_attr);
91447636 2542
b0d623f7 2543 ready_heap.size = ready_heap.elements = 0 ;
316670eb
A
2544 ready_heap.offset = 0 ;
2545
2546 wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
2547 wfq_ready_heap.offset = 0 ;
9bccf70c 2548
316670eb
A
2549 extract_heap.size = extract_heap.elements = 0 ;
2550 extract_heap.offset = 0 ;
2551 ip_dn_ctl_ptr = ip_dn_ctl;
2552 ip_dn_io_ptr = dummynet_io;
9bccf70c 2553
316670eb 2554 bzero(&default_rule, sizeof default_rule);
39037602 2555#if IPFIREWALL
316670eb
A
2556 default_rule.act_ofs = 0;
2557 default_rule.rulenum = IPFW_DEFAULT_RULE;
2558 default_rule.cmd_len = 1;
2559 default_rule.set = RESVD_SET;
2560
2561 default_rule.cmd[0].len = 1;
39037602 2562 default_rule.cmd[0].opcode =
316670eb 2563#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
5ba3f43e 2564 (1) ? O_ACCEPT :
316670eb 2565#endif
5ba3f43e 2566 O_DENY;
39037602 2567#endif
1c79356b 2568}
5ba3f43e
A
2569
2570struct dn_event_nwk_wq_entry
2571{
2572 struct nwk_wq_entry nwk_wqe;
2573 struct dummynet_event dn_ev_arg;
2574};
2575
2576static void
2577dummynet_event_callback(void *arg)
2578{
2579 struct dummynet_event *p_dn_ev = (struct dummynet_event *)arg;
2580
2581 EVENTHANDLER_INVOKE(&dummynet_evhdlr_ctxt, dummynet_event, p_dn_ev);
2582 return;
2583}
2584
2585void
2586dummynet_event_enqueue_nwk_wq_entry(struct dummynet_event *p_dn_event)
2587{
2588 struct dn_event_nwk_wq_entry *p_dn_ev = NULL;
2589
2590 MALLOC(p_dn_ev, struct dn_event_nwk_wq_entry *,
2591 sizeof(struct dn_event_nwk_wq_entry),
2592 M_NWKWQ, M_WAITOK | M_ZERO);
2593
2594 p_dn_ev->nwk_wqe.func = dummynet_event_callback;
2595 p_dn_ev->nwk_wqe.is_arg_managed = TRUE;
2596 p_dn_ev->nwk_wqe.arg = &p_dn_ev->dn_ev_arg;
2597
2598 bcopy(p_dn_event, &(p_dn_ev->dn_ev_arg),
2599 sizeof(struct dummynet_event));
2600 nwk_wq_enqueue((struct nwk_wq_entry*)p_dn_ev);
2601}