]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
5d5c5d0d A |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. |
3 | * | |
8ad349bb | 4 | * @APPLE_LICENSE_OSREFERENCE_HEADER_START@ |
1c79356b | 5 | * |
8ad349bb A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the | |
10 | * License may not be used to create, or enable the creation or | |
11 | * redistribution of, unlawful or unlicensed copies of an Apple operating | |
12 | * system, or to circumvent, violate, or enable the circumvention or | |
13 | * violation of, any terms of an Apple operating system software license | |
14 | * agreement. | |
15 | * | |
16 | * Please obtain a copy of the License at | |
17 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
18 | * file. | |
19 | * | |
20 | * The Original Code and all software distributed under the License are | |
21 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
22 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
23 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
24 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
25 | * Please see the License for the specific language governing rights and | |
26 | * limitations under the License. | |
27 | * | |
28 | * @APPLE_LICENSE_OSREFERENCE_HEADER_END@ | |
1c79356b | 29 | */ |
91447636 A |
30 | /* |
31 | * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa | |
9bccf70c A |
32 | * Portions Copyright (c) 2000 Akamba Corp. |
33 | * All rights reserved | |
1c79356b | 34 | * |
9bccf70c A |
35 | * Redistribution and use in source and binary forms, with or without |
36 | * modification, are permitted provided that the following conditions | |
37 | * are met: | |
38 | * 1. Redistributions of source code must retain the above copyright | |
39 | * notice, this list of conditions and the following disclaimer. | |
40 | * 2. Redistributions in binary form must reproduce the above copyright | |
41 | * notice, this list of conditions and the following disclaimer in the | |
42 | * documentation and/or other materials provided with the distribution. | |
1c79356b | 43 | * |
9bccf70c A |
44 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
45 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
46 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
47 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
48 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
49 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
50 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
51 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
52 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
53 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
54 | * SUCH DAMAGE. | |
1c79356b | 55 | * |
91447636 | 56 | * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $ |
1c79356b A |
57 | */ |
58 | ||
91447636 | 59 | #define DUMMYNET_DEBUG |
9bccf70c | 60 | |
1c79356b A |
61 | /* |
62 | * This module implements IP dummynet, a bandwidth limiter/delay emulator | |
63 | * used in conjunction with the ipfw package. | |
9bccf70c A |
64 | * Description of the data structures used is in ip_dummynet.h |
65 | * Here you mainly find the following blocks of code: | |
66 | * + variable declarations; | |
67 | * + heap management functions; | |
68 | * + scheduler and dummynet functions; | |
69 | * + configuration and initialization. | |
70 | * | |
91447636 | 71 | * NOTA BENE: critical sections are protected by the "dummynet lock". |
1c79356b | 72 | * |
9bccf70c | 73 | * Most important Changes: |
1c79356b | 74 | * |
9bccf70c A |
75 | * 010124: Fixed WF2Q behaviour |
76 | * 010122: Fixed spl protection. | |
77 | * 000601: WF2Q support | |
78 | * 000106: large rewrite, use heaps to handle very many pipes. | |
1c79356b | 79 | * 980513: initial release |
9bccf70c A |
80 | * |
81 | * include files marked with XXX are probably not needed | |
1c79356b A |
82 | */ |
83 | ||
1c79356b A |
84 | #include <sys/param.h> |
85 | #include <sys/systm.h> | |
86 | #include <sys/malloc.h> | |
87 | #include <sys/mbuf.h> | |
88 | #include <sys/queue.h> /* XXX */ | |
89 | #include <sys/kernel.h> | |
90 | #include <sys/socket.h> | |
91 | #include <sys/socketvar.h> | |
92 | #include <sys/time.h> | |
93 | #include <sys/sysctl.h> | |
94 | #include <net/if.h> | |
95 | #include <net/route.h> | |
91447636 | 96 | #include <net/kpi_protocol.h> |
1c79356b A |
97 | #include <netinet/in.h> |
98 | #include <netinet/in_systm.h> | |
99 | #include <netinet/in_var.h> | |
100 | #include <netinet/ip.h> | |
101 | #include <netinet/ip_fw.h> | |
102 | #include <netinet/ip_dummynet.h> | |
103 | #include <netinet/ip_var.h> | |
104 | ||
105 | #if BRIDGE | |
106 | #include <netinet/if_ether.h> /* for struct arpcom */ | |
107 | #include <net/bridge.h> | |
108 | #endif | |
109 | ||
9bccf70c A |
110 | /* |
111 | * We keep a private variable for the simulation time, but we could | |
112 | * probably use an existing one ("softticks" in sys/kern/kern_timer.c) | |
113 | */ | |
114 | static dn_key curr_time = 0 ; /* current simulation time */ | |
115 | ||
5d5c5d0d A |
116 | /* this is for the timer that fires to call dummynet() - we only enable the timer when |
117 | there are packets to process, otherwise it's disabled */ | |
118 | static int timer_enabled = 0; | |
119 | ||
9bccf70c A |
120 | static int dn_hash_size = 64 ; /* default hash size */ |
121 | ||
122 | /* statistics on number of queue searches and search steps */ | |
123 | static int searches, search_steps ; | |
124 | static int pipe_expire = 1 ; /* expire queue if empty */ | |
125 | static int dn_max_ratio = 16 ; /* max queues/buckets ratio */ | |
126 | ||
127 | static int red_lookup_depth = 256; /* RED - default lookup table depth */ | |
128 | static int red_avg_pkt_size = 512; /* RED - default medium packet size */ | |
129 | static int red_max_pkt_size = 1500; /* RED - default max packet size */ | |
130 | ||
131 | /* | |
132 | * Three heaps contain queues and pipes that the scheduler handles: | |
133 | * | |
134 | * ready_heap contains all dn_flow_queue related to fixed-rate pipes. | |
135 | * | |
136 | * wfq_ready_heap contains the pipes associated with WF2Q flows | |
137 | * | |
138 | * extract_heap contains pipes associated with delay lines. | |
139 | * | |
140 | */ | |
141 | static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ; | |
142 | ||
143 | static int heap_init(struct dn_heap *h, int size) ; | |
144 | static int heap_insert (struct dn_heap *h, dn_key key1, void *p); | |
145 | static void heap_extract(struct dn_heap *h, void *obj); | |
146 | ||
147 | static void transmit_event(struct dn_pipe *pipe); | |
148 | static void ready_event(struct dn_flow_queue *q); | |
149 | ||
1c79356b | 150 | static struct dn_pipe *all_pipes = NULL ; /* list of all pipes */ |
9bccf70c | 151 | static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */ |
1c79356b | 152 | |
91447636 | 153 | #ifdef SYSCTL_NODE |
9bccf70c A |
154 | SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, |
155 | CTLFLAG_RW, 0, "Dummynet"); | |
156 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size, | |
157 | CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size"); | |
158 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time, | |
159 | CTLFLAG_RD, &curr_time, 0, "Current tick"); | |
160 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap, | |
161 | CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap"); | |
162 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap, | |
163 | CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap"); | |
164 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches, | |
165 | CTLFLAG_RD, &searches, 0, "Number of queue searches"); | |
166 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps, | |
167 | CTLFLAG_RD, &search_steps, 0, "Number of queue search steps"); | |
168 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire, | |
169 | CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty"); | |
170 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len, | |
171 | CTLFLAG_RW, &dn_max_ratio, 0, | |
172 | "Max ratio between dynamic queues and buckets"); | |
173 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth, | |
174 | CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table"); | |
175 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size, | |
176 | CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size"); | |
177 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size, | |
178 | CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size"); | |
1c79356b A |
179 | #endif |
180 | ||
91447636 A |
181 | #ifdef DUMMYNET_DEBUG |
182 | int dummynet_debug = 0; | |
183 | #ifdef SYSCTL_NODE | |
184 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug, | |
185 | 0, "control debugging printfs"); | |
186 | #endif | |
187 | #define DPRINTF(X) if (dummynet_debug) printf X | |
188 | #else | |
189 | #define DPRINTF(X) | |
190 | #endif | |
191 | ||
192 | /* dummynet lock */ | |
193 | lck_grp_t *dn_mutex_grp; | |
194 | lck_grp_attr_t *dn_mutex_grp_attr; | |
195 | lck_attr_t *dn_mutex_attr; | |
196 | lck_mtx_t *dn_mutex; | |
197 | ||
9bccf70c | 198 | static int config_pipe(struct dn_pipe *p); |
1c79356b A |
199 | static int ip_dn_ctl(struct sockopt *sopt); |
200 | ||
1c79356b | 201 | static void dummynet(void *); |
1c79356b | 202 | static void dummynet_flush(void); |
9bccf70c | 203 | void dummynet_drain(void); |
91447636 A |
204 | static ip_dn_io_t dummynet_io; |
205 | static void dn_rule_delete(void *); | |
1c79356b | 206 | |
91447636 | 207 | int if_tx_rdy(struct ifnet *ifp); |
1c79356b | 208 | |
91447636 | 209 | extern lck_mtx_t *rt_mtx; /* route global lock */ |
9bccf70c A |
210 | |
211 | /* | |
212 | * Heap management functions. | |
213 | * | |
214 | * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2. | |
215 | * Some macros help finding parent/children so we can optimize them. | |
216 | * | |
217 | * heap_init() is called to expand the heap when needed. | |
218 | * Increment size in blocks of 16 entries. | |
219 | * XXX failure to allocate a new element is a pretty bad failure | |
220 | * as we basically stall a whole queue forever!! | |
221 | * Returns 1 on error, 0 on success | |
222 | */ | |
223 | #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 ) | |
224 | #define HEAP_LEFT(x) ( 2*(x) + 1 ) | |
225 | #define HEAP_IS_LEFT(x) ( (x) & 1 ) | |
226 | #define HEAP_RIGHT(x) ( 2*(x) + 2 ) | |
227 | #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; } | |
228 | #define HEAP_INCREMENT 15 | |
229 | ||
230 | static int | |
231 | heap_init(struct dn_heap *h, int new_size) | |
91447636 | 232 | { |
9bccf70c A |
233 | struct dn_heap_entry *p; |
234 | ||
235 | if (h->size >= new_size ) { | |
91447636 | 236 | printf("dummynet: heap_init, Bogus call, have %d want %d\n", |
9bccf70c A |
237 | h->size, new_size); |
238 | return 0 ; | |
91447636 | 239 | } |
9bccf70c | 240 | new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ; |
91447636 | 241 | p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT ); |
9bccf70c | 242 | if (p == NULL) { |
91447636 | 243 | printf("dummynet: heap_init, resize %d failed\n", new_size ); |
9bccf70c A |
244 | return 1 ; /* error */ |
245 | } | |
246 | if (h->size > 0) { | |
247 | bcopy(h->p, p, h->size * sizeof(*p) ); | |
91447636 | 248 | FREE(h->p, M_DUMMYNET); |
9bccf70c A |
249 | } |
250 | h->p = p ; | |
251 | h->size = new_size ; | |
252 | return 0 ; | |
253 | } | |
254 | ||
255 | /* | |
256 | * Insert element in heap. Normally, p != NULL, we insert p in | |
257 | * a new position and bubble up. If p == NULL, then the element is | |
258 | * already in place, and key is the position where to start the | |
259 | * bubble-up. | |
260 | * Returns 1 on failure (cannot allocate new heap entry) | |
261 | * | |
262 | * If offset > 0 the position (index, int) of the element in the heap is | |
263 | * also stored in the element itself at the given offset in bytes. | |
264 | */ | |
265 | #define SET_OFFSET(heap, node) \ | |
266 | if (heap->offset > 0) \ | |
267 | *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ; | |
268 | /* | |
269 | * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value. | |
270 | */ | |
271 | #define RESET_OFFSET(heap, node) \ | |
272 | if (heap->offset > 0) \ | |
273 | *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ; | |
274 | static int | |
275 | heap_insert(struct dn_heap *h, dn_key key1, void *p) | |
91447636 | 276 | { |
9bccf70c A |
277 | int son = h->elements ; |
278 | ||
279 | if (p == NULL) /* data already there, set starting point */ | |
280 | son = key1 ; | |
281 | else { /* insert new element at the end, possibly resize */ | |
282 | son = h->elements ; | |
283 | if (son == h->size) /* need resize... */ | |
284 | if (heap_init(h, h->elements+1) ) | |
285 | return 1 ; /* failure... */ | |
286 | h->p[son].object = p ; | |
287 | h->p[son].key = key1 ; | |
288 | h->elements++ ; | |
289 | } | |
290 | while (son > 0) { /* bubble up */ | |
291 | int father = HEAP_FATHER(son) ; | |
292 | struct dn_heap_entry tmp ; | |
293 | ||
294 | if (DN_KEY_LT( h->p[father].key, h->p[son].key ) ) | |
91447636 | 295 | break ; /* found right position */ |
9bccf70c A |
296 | /* son smaller than father, swap and repeat */ |
297 | HEAP_SWAP(h->p[son], h->p[father], tmp) ; | |
298 | SET_OFFSET(h, son); | |
299 | son = father ; | |
300 | } | |
301 | SET_OFFSET(h, son); | |
302 | return 0 ; | |
1c79356b A |
303 | } |
304 | ||
305 | /* | |
9bccf70c | 306 | * remove top element from heap, or obj if obj != NULL |
1c79356b A |
307 | */ |
308 | static void | |
9bccf70c | 309 | heap_extract(struct dn_heap *h, void *obj) |
91447636 | 310 | { |
9bccf70c A |
311 | int child, father, max = h->elements - 1 ; |
312 | ||
313 | if (max < 0) { | |
91447636 | 314 | printf("dummynet: warning, extract from empty heap 0x%p\n", h); |
9bccf70c A |
315 | return ; |
316 | } | |
317 | father = 0 ; /* default: move up smallest child */ | |
318 | if (obj != NULL) { /* extract specific element, index is at offset */ | |
319 | if (h->offset <= 0) | |
91447636 | 320 | panic("dummynet: heap_extract from middle not supported on this heap!!!\n"); |
9bccf70c A |
321 | father = *((int *)((char *)obj + h->offset)) ; |
322 | if (father < 0 || father >= h->elements) { | |
323 | printf("dummynet: heap_extract, father %d out of bound 0..%d\n", | |
324 | father, h->elements); | |
91447636 | 325 | panic("dummynet: heap_extract"); |
9bccf70c A |
326 | } |
327 | } | |
328 | RESET_OFFSET(h, father); | |
329 | child = HEAP_LEFT(father) ; /* left child */ | |
330 | while (child <= max) { /* valid entry */ | |
331 | if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) ) | |
332 | child = child+1 ; /* take right child, otherwise left */ | |
333 | h->p[father] = h->p[child] ; | |
334 | SET_OFFSET(h, father); | |
335 | father = child ; | |
336 | child = HEAP_LEFT(child) ; /* left child for next loop */ | |
91447636 | 337 | } |
9bccf70c A |
338 | h->elements-- ; |
339 | if (father != max) { | |
1c79356b | 340 | /* |
9bccf70c | 341 | * Fill hole with last entry and bubble up, reusing the insert code |
1c79356b | 342 | */ |
9bccf70c A |
343 | h->p[father] = h->p[max] ; |
344 | heap_insert(h, father, NULL); /* this one cannot fail */ | |
345 | } | |
91447636 | 346 | } |
1c79356b | 347 | |
9bccf70c A |
348 | #if 0 |
349 | /* | |
350 | * change object position and update references | |
351 | * XXX this one is never used! | |
352 | */ | |
353 | static void | |
354 | heap_move(struct dn_heap *h, dn_key new_key, void *object) | |
355 | { | |
356 | int temp; | |
357 | int i ; | |
358 | int max = h->elements-1 ; | |
359 | struct dn_heap_entry buf ; | |
1c79356b | 360 | |
9bccf70c A |
361 | if (h->offset <= 0) |
362 | panic("cannot move items on this heap"); | |
363 | ||
364 | i = *((int *)((char *)object + h->offset)); | |
365 | if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */ | |
366 | h->p[i].key = new_key ; | |
367 | for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ; | |
368 | i = temp ) { /* bubble up */ | |
369 | HEAP_SWAP(h->p[i], h->p[temp], buf) ; | |
370 | SET_OFFSET(h, i); | |
371 | } | |
372 | } else { /* must move down */ | |
373 | h->p[i].key = new_key ; | |
374 | while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */ | |
375 | if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key)) | |
376 | temp++ ; /* select child with min key */ | |
377 | if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */ | |
378 | HEAP_SWAP(h->p[i], h->p[temp], buf) ; | |
379 | SET_OFFSET(h, i); | |
380 | } else | |
381 | break ; | |
382 | i = temp ; | |
1c79356b | 383 | } |
1c79356b | 384 | } |
9bccf70c A |
385 | SET_OFFSET(h, i); |
386 | } | |
387 | #endif /* heap_move, unused */ | |
388 | ||
389 | /* | |
390 | * heapify() will reorganize data inside an array to maintain the | |
391 | * heap property. It is needed when we delete a bunch of entries. | |
392 | */ | |
393 | static void | |
394 | heapify(struct dn_heap *h) | |
395 | { | |
396 | int i ; | |
397 | ||
398 | for (i = 0 ; i < h->elements ; i++ ) | |
399 | heap_insert(h, i , NULL) ; | |
400 | } | |
401 | ||
402 | /* | |
403 | * cleanup the heap and free data structure | |
404 | */ | |
405 | static void | |
406 | heap_free(struct dn_heap *h) | |
407 | { | |
408 | if (h->size >0 ) | |
91447636 | 409 | FREE(h->p, M_DUMMYNET); |
9bccf70c A |
410 | bzero(h, sizeof(*h) ); |
411 | } | |
412 | ||
413 | /* | |
414 | * --- end of heap management functions --- | |
415 | */ | |
416 | ||
91447636 A |
417 | /* |
418 | * Return the mbuf tag holding the dummynet state. As an optimization | |
419 | * this is assumed to be the first tag on the list. If this turns out | |
420 | * wrong we'll need to search the list. | |
421 | */ | |
422 | static struct dn_pkt_tag * | |
423 | dn_tag_get(struct mbuf *m) | |
424 | { | |
425 | struct m_tag *mtag = m_tag_first(m); | |
426 | /* KASSERT(mtag != NULL && | |
427 | mtag->m_tag_id == KERNEL_MODULE_TAG_ID && | |
428 | mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET, | |
429 | ("packet on dummynet queue w/o dummynet tag!")); | |
430 | */ | |
431 | return (struct dn_pkt_tag *)(mtag+1); | |
432 | } | |
433 | ||
9bccf70c A |
434 | /* |
435 | * Scheduler functions: | |
436 | * | |
437 | * transmit_event() is called when the delay-line needs to enter | |
438 | * the scheduler, either because of existing pkts getting ready, | |
439 | * or new packets entering the queue. The event handled is the delivery | |
440 | * time of the packet. | |
441 | * | |
442 | * ready_event() does something similar with fixed-rate queues, and the | |
443 | * event handled is the finish time of the head pkt. | |
444 | * | |
445 | * wfq_ready_event() does something similar with WF2Q queues, and the | |
446 | * event handled is the start time of the head pkt. | |
447 | * | |
448 | * In all cases, we make sure that the data structures are consistent | |
449 | * before passing pkts out, because this might trigger recursive | |
450 | * invocations of the procedures. | |
451 | */ | |
452 | static void | |
453 | transmit_event(struct dn_pipe *pipe) | |
454 | { | |
91447636 A |
455 | struct mbuf *m ; |
456 | struct dn_pkt_tag *pkt ; | |
457 | struct ip *ip; | |
458 | ||
459 | lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED); | |
460 | ||
461 | while ( (m = pipe->head) ) { | |
462 | pkt = dn_tag_get(m); | |
463 | if ( !DN_KEY_LEQ(pkt->output_time, curr_time) ) | |
464 | break; | |
465 | /* | |
466 | * first unlink, then call procedures, since ip_input() can invoke | |
467 | * ip_output() and viceversa, thus causing nested calls | |
468 | */ | |
469 | pipe->head = m->m_nextpkt ; | |
470 | m->m_nextpkt = NULL; | |
471 | ||
472 | /* XXX: drop the lock for now to avoid LOR's */ | |
473 | lck_mtx_unlock(dn_mutex); | |
474 | switch (pkt->dn_dir) { | |
475 | case DN_TO_IP_OUT: { | |
476 | struct route tmp_rt = pkt->ro; | |
477 | (void)ip_output(m, NULL, NULL, pkt->flags, NULL); | |
478 | if (tmp_rt.ro_rt) { | |
479 | rtfree(tmp_rt.ro_rt); | |
480 | } | |
481 | break ; | |
482 | } | |
483 | case DN_TO_IP_IN : | |
91447636 A |
484 | proto_inject(PF_INET, m); |
485 | break ; | |
486 | ||
1c79356b | 487 | #if BRIDGE |
91447636 A |
488 | case DN_TO_BDG_FWD : |
489 | /* | |
490 | * The bridge requires/assumes the Ethernet header is | |
491 | * contiguous in the first mbuf header. Insure this is true. | |
492 | */ | |
493 | if (BDG_LOADED) { | |
494 | if (m->m_len < ETHER_HDR_LEN && | |
495 | (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) { | |
496 | printf("dummynet/bridge: pullup fail, dropping pkt\n"); | |
497 | break; | |
498 | } | |
499 | m = bdg_forward_ptr(m, pkt->ifp); | |
500 | } else { | |
501 | /* somebody unloaded the bridge module. Drop pkt */ | |
502 | /* XXX rate limit */ | |
503 | printf("dummynet: dropping bridged packet trapped in pipe\n"); | |
504 | } | |
505 | if (m) | |
506 | m_freem(m); | |
507 | break; | |
508 | #endif | |
509 | default: | |
510 | printf("dummynet: bad switch %d!\n", pkt->dn_dir); | |
511 | m_freem(m); | |
512 | break ; | |
513 | } | |
514 | lck_mtx_lock(dn_mutex); | |
1c79356b | 515 | } |
9bccf70c | 516 | /* if there are leftover packets, put into the heap for next event */ |
91447636 A |
517 | if ( (m = pipe->head) ) { |
518 | pkt = dn_tag_get(m); | |
519 | /* XXX should check errors on heap_insert, by draining the | |
520 | * whole pipe p and hoping in the future we are more successful | |
521 | */ | |
522 | heap_insert(&extract_heap, pkt->output_time, pipe); | |
523 | } | |
1c79356b | 524 | } |
9bccf70c | 525 | |
1c79356b | 526 | /* |
9bccf70c A |
527 | * the following macro computes how many ticks we have to wait |
528 | * before being able to transmit a packet. The credit is taken from | |
529 | * either a pipe (WF2Q) or a flow_queue (per-flow queueing) | |
1c79356b | 530 | */ |
5d5c5d0d A |
531 | |
532 | /* hz is 100, which gives a granularity of 10ms in the old timer. | |
533 | * The timer has been changed to fire every 1ms, so the use of | |
534 | * hz has been modified here. All instances of hz have been left | |
535 | * in place but adjusted by a factor of 10 so that hz is functionally | |
536 | * equal to 1000. | |
537 | */ | |
91447636 | 538 | #define SET_TICKS(_m, q, p) \ |
5d5c5d0d | 539 | ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \ |
9bccf70c A |
540 | p->bandwidth ; |
541 | ||
542 | /* | |
543 | * extract pkt from queue, compute output time (could be now) | |
544 | * and put into delay line (p_queue) | |
545 | */ | |
546 | static void | |
91447636 | 547 | move_pkt(struct mbuf *pkt, struct dn_flow_queue *q, |
9bccf70c | 548 | struct dn_pipe *p, int len) |
1c79356b | 549 | { |
91447636 A |
550 | struct dn_pkt_tag *dt = dn_tag_get(pkt); |
551 | ||
552 | q->head = pkt->m_nextpkt ; | |
9bccf70c A |
553 | q->len-- ; |
554 | q->len_bytes -= len ; | |
1c79356b | 555 | |
91447636 | 556 | dt->output_time = curr_time + p->delay ; |
1c79356b | 557 | |
9bccf70c A |
558 | if (p->head == NULL) |
559 | p->head = pkt; | |
560 | else | |
91447636 | 561 | p->tail->m_nextpkt = pkt; |
9bccf70c | 562 | p->tail = pkt; |
91447636 | 563 | p->tail->m_nextpkt = NULL; |
1c79356b A |
564 | } |
565 | ||
566 | /* | |
9bccf70c A |
567 | * ready_event() is invoked every time the queue must enter the |
568 | * scheduler, either because the first packet arrives, or because | |
569 | * a previously scheduled event fired. | |
570 | * On invokation, drain as many pkts as possible (could be 0) and then | |
571 | * if there are leftover packets reinsert the pkt in the scheduler. | |
1c79356b | 572 | */ |
9bccf70c A |
573 | static void |
574 | ready_event(struct dn_flow_queue *q) | |
1c79356b | 575 | { |
91447636 | 576 | struct mbuf *pkt; |
9bccf70c A |
577 | struct dn_pipe *p = q->fs->pipe ; |
578 | int p_was_empty ; | |
1c79356b | 579 | |
91447636 A |
580 | lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED); |
581 | ||
9bccf70c | 582 | if (p == NULL) { |
91447636 | 583 | printf("dummynet: ready_event- pipe is gone\n"); |
9bccf70c A |
584 | return ; |
585 | } | |
586 | p_was_empty = (p->head == NULL) ; | |
1c79356b | 587 | |
1c79356b | 588 | /* |
9bccf70c A |
589 | * schedule fixed-rate queues linked to this pipe: |
590 | * Account for the bw accumulated since last scheduling, then | |
591 | * drain as many pkts as allowed by q->numbytes and move to | |
592 | * the delay line (in p) computing output time. | |
593 | * bandwidth==0 (no limit) means we can drain the whole queue, | |
594 | * setting len_scaled = 0 does the job. | |
595 | */ | |
596 | q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth; | |
597 | while ( (pkt = q->head) != NULL ) { | |
91447636 | 598 | int len = pkt->m_pkthdr.len; |
5d5c5d0d | 599 | int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ; |
9bccf70c A |
600 | if (len_scaled > q->numbytes ) |
601 | break ; | |
602 | q->numbytes -= len_scaled ; | |
603 | move_pkt(pkt, q, p, len); | |
604 | } | |
605 | /* | |
606 | * If we have more packets queued, schedule next ready event | |
607 | * (can only occur when bandwidth != 0, otherwise we would have | |
608 | * flushed the whole queue in the previous loop). | |
609 | * To this purpose we record the current time and compute how many | |
610 | * ticks to go for the finish time of the packet. | |
611 | */ | |
612 | if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */ | |
613 | dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */ | |
614 | q->sched_time = curr_time ; | |
615 | heap_insert(&ready_heap, curr_time + t, (void *)q ); | |
616 | /* XXX should check errors on heap_insert, and drain the whole | |
617 | * queue on error hoping next time we are luckier. | |
618 | */ | |
91447636 | 619 | } else { /* RED needs to know when the queue becomes empty */ |
9bccf70c | 620 | q->q_time = curr_time; |
91447636 A |
621 | q->numbytes = 0; |
622 | } | |
9bccf70c A |
623 | /* |
624 | * If the delay line was empty call transmit_event(p) now. | |
625 | * Otherwise, the scheduler will take care of it. | |
1c79356b | 626 | */ |
9bccf70c A |
627 | if (p_was_empty) |
628 | transmit_event(p); | |
629 | } | |
1c79356b | 630 | |
9bccf70c A |
631 | /* |
632 | * Called when we can transmit packets on WF2Q queues. Take pkts out of | |
633 | * the queues at their start time, and enqueue into the delay line. | |
634 | * Packets are drained until p->numbytes < 0. As long as | |
635 | * len_scaled >= p->numbytes, the packet goes into the delay line | |
636 | * with a deadline p->delay. For the last packet, if p->numbytes<0, | |
637 | * there is an additional delay. | |
638 | */ | |
639 | static void | |
640 | ready_event_wfq(struct dn_pipe *p) | |
641 | { | |
642 | int p_was_empty = (p->head == NULL) ; | |
643 | struct dn_heap *sch = &(p->scheduler_heap); | |
644 | struct dn_heap *neh = &(p->not_eligible_heap) ; | |
645 | ||
91447636 A |
646 | lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED); |
647 | ||
9bccf70c A |
648 | if (p->if_name[0] == 0) /* tx clock is simulated */ |
649 | p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth; | |
650 | else { /* tx clock is for real, the ifq must be empty or this is a NOP */ | |
651 | if (p->ifp && p->ifp->if_snd.ifq_head != NULL) | |
652 | return ; | |
653 | else { | |
91447636 A |
654 | DPRINTF(("dummynet: pipe %d ready from %s --\n", |
655 | p->pipe_nr, p->if_name)); | |
9bccf70c | 656 | } |
1c79356b | 657 | } |
9bccf70c | 658 | |
1c79356b | 659 | /* |
9bccf70c A |
660 | * While we have backlogged traffic AND credit, we need to do |
661 | * something on the queue. | |
1c79356b | 662 | */ |
9bccf70c A |
663 | while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) { |
664 | if (sch->elements > 0) { /* have some eligible pkts to send out */ | |
665 | struct dn_flow_queue *q = sch->p[0].object ; | |
91447636 A |
666 | struct mbuf *pkt = q->head; |
667 | struct dn_flow_set *fs = q->fs; | |
668 | u_int64_t len = pkt->m_pkthdr.len; | |
5d5c5d0d | 669 | int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ; |
1c79356b | 670 | |
9bccf70c A |
671 | heap_extract(sch, NULL); /* remove queue from heap */ |
672 | p->numbytes -= len_scaled ; | |
673 | move_pkt(pkt, q, p, len); | |
674 | ||
675 | p->V += (len<<MY_M) / p->sum ; /* update V */ | |
676 | q->S = q->F ; /* update start time */ | |
677 | if (q->len == 0) { /* Flow not backlogged any more */ | |
678 | fs->backlogged-- ; | |
679 | heap_insert(&(p->idle_heap), q->F, q); | |
680 | } else { /* still backlogged */ | |
681 | /* | |
682 | * update F and position in backlogged queue, then | |
683 | * put flow in not_eligible_heap (we will fix this later). | |
684 | */ | |
91447636 | 685 | len = (q->head)->m_pkthdr.len; |
9bccf70c A |
686 | q->F += (len<<MY_M)/(u_int64_t) fs->weight ; |
687 | if (DN_KEY_LEQ(q->S, p->V)) | |
688 | heap_insert(neh, q->S, q); | |
689 | else | |
690 | heap_insert(sch, q->F, q); | |
691 | } | |
692 | } | |
693 | /* | |
694 | * now compute V = max(V, min(S_i)). Remember that all elements in sch | |
695 | * have by definition S_i <= V so if sch is not empty, V is surely | |
696 | * the max and we must not update it. Conversely, if sch is empty | |
697 | * we only need to look at neh. | |
698 | */ | |
699 | if (sch->elements == 0 && neh->elements > 0) | |
700 | p->V = MAX64 ( p->V, neh->p[0].key ); | |
701 | /* move from neh to sch any packets that have become eligible */ | |
702 | while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) { | |
703 | struct dn_flow_queue *q = neh->p[0].object ; | |
704 | heap_extract(neh, NULL); | |
705 | heap_insert(sch, q->F, q); | |
706 | } | |
707 | ||
708 | if (p->if_name[0] != '\0') {/* tx clock is from a real thing */ | |
709 | p->numbytes = -1 ; /* mark not ready for I/O */ | |
710 | break ; | |
711 | } | |
1c79356b | 712 | } |
9bccf70c A |
713 | if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0 |
714 | && p->idle_heap.elements > 0) { | |
715 | /* | |
716 | * no traffic and no events scheduled. We can get rid of idle-heap. | |
717 | */ | |
718 | int i ; | |
719 | ||
720 | for (i = 0 ; i < p->idle_heap.elements ; i++) { | |
721 | struct dn_flow_queue *q = p->idle_heap.p[i].object ; | |
1c79356b | 722 | |
9bccf70c A |
723 | q->F = 0 ; |
724 | q->S = q->F + 1 ; | |
725 | } | |
726 | p->sum = 0 ; | |
727 | p->V = 0 ; | |
728 | p->idle_heap.elements = 0 ; | |
729 | } | |
730 | /* | |
731 | * If we are getting clocks from dummynet (not a real interface) and | |
732 | * If we are under credit, schedule the next ready event. | |
733 | * Also fix the delivery time of the last packet. | |
1c79356b | 734 | */ |
9bccf70c A |
735 | if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */ |
736 | dn_key t=0 ; /* number of ticks i have to wait */ | |
1c79356b | 737 | |
9bccf70c A |
738 | if (p->bandwidth > 0) |
739 | t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ; | |
91447636 | 740 | dn_tag_get(p->tail)->output_time += t ; |
9bccf70c A |
741 | p->sched_time = curr_time ; |
742 | heap_insert(&wfq_ready_heap, curr_time + t, (void *)p); | |
743 | /* XXX should check errors on heap_insert, and drain the whole | |
744 | * queue on error hoping next time we are luckier. | |
745 | */ | |
1c79356b | 746 | } |
9bccf70c A |
747 | /* |
748 | * If the delay line was empty call transmit_event(p) now. | |
749 | * Otherwise, the scheduler will take care of it. | |
750 | */ | |
751 | if (p_was_empty) | |
752 | transmit_event(p); | |
1c79356b A |
753 | } |
754 | ||
755 | /* | |
5d5c5d0d | 756 | * This is called every 1ms. It is used to |
9bccf70c | 757 | * increment the current tick counter and schedule expired events. |
1c79356b A |
758 | */ |
759 | static void | |
9bccf70c | 760 | dummynet(void * __unused unused) |
1c79356b | 761 | { |
9bccf70c A |
762 | void *p ; /* generic parameter to handler */ |
763 | struct dn_heap *h ; | |
9bccf70c A |
764 | struct dn_heap *heaps[3]; |
765 | int i; | |
766 | struct dn_pipe *pe ; | |
5d5c5d0d A |
767 | struct timespec ts; |
768 | struct timeval tv; | |
1c79356b | 769 | |
9bccf70c A |
770 | heaps[0] = &ready_heap ; /* fixed-rate queues */ |
771 | heaps[1] = &wfq_ready_heap ; /* wfq queues */ | |
772 | heaps[2] = &extract_heap ; /* delay line */ | |
91447636 A |
773 | |
774 | lck_mtx_lock(dn_mutex); | |
775 | ||
5d5c5d0d A |
776 | /* make all time measurements in milliseconds (ms) - |
777 | * here we convert secs and usecs to msecs (just divide the | |
778 | * usecs and take the closest whole number). | |
779 | */ | |
780 | microuptime(&tv); | |
781 | curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000); | |
782 | ||
9bccf70c A |
783 | for (i=0; i < 3 ; i++) { |
784 | h = heaps[i]; | |
785 | while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) { | |
5d5c5d0d | 786 | if (h->p[0].key > curr_time) |
91447636 | 787 | printf("dummynet: warning, heap %d is %d ticks late\n", |
5d5c5d0d A |
788 | i, (int)(curr_time - h->p[0].key)); |
789 | p = h->p[0].object ; /* store a copy before heap_extract */ | |
790 | heap_extract(h, NULL); /* need to extract before processing */ | |
791 | if (i == 0) | |
9bccf70c | 792 | ready_event(p) ; |
5d5c5d0d | 793 | else if (i == 1) { |
9bccf70c A |
794 | struct dn_pipe *pipe = p; |
795 | if (pipe->if_name[0] != '\0') | |
5d5c5d0d | 796 | printf("dummynet: bad ready_event_wfq for pipe %s\n", |
9bccf70c A |
797 | pipe->if_name); |
798 | else | |
5d5c5d0d A |
799 | ready_event_wfq(p) ; |
800 | } else | |
9bccf70c A |
801 | transmit_event(p); |
802 | } | |
1c79356b | 803 | } |
9bccf70c A |
804 | /* sweep pipes trying to expire idle flow_queues */ |
805 | for (pe = all_pipes; pe ; pe = pe->next ) | |
806 | if (pe->idle_heap.elements > 0 && | |
807 | DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) { | |
808 | struct dn_flow_queue *q = pe->idle_heap.p[0].object ; | |
1c79356b | 809 | |
9bccf70c A |
810 | heap_extract(&(pe->idle_heap), NULL); |
811 | q->S = q->F + 1 ; /* mark timestamp as invalid */ | |
812 | pe->sum -= q->fs->weight ; | |
813 | } | |
91447636 | 814 | |
5d5c5d0d A |
815 | /* check the heaps to see if there's still stuff in there, and |
816 | * only set the timer if there are packets to process | |
817 | */ | |
818 | timer_enabled = 0; | |
819 | for (i=0; i < 3 ; i++) { | |
820 | h = heaps[i]; | |
821 | if (h->elements > 0) { // set the timer | |
822 | ts.tv_sec = 0; | |
823 | ts.tv_nsec = 1 * 1000000; // 1ms | |
824 | timer_enabled = 1; | |
825 | bsd_timeout(dummynet, NULL, &ts); | |
826 | break; | |
827 | } | |
828 | } | |
91447636 | 829 | |
5d5c5d0d | 830 | lck_mtx_unlock(dn_mutex); |
9bccf70c A |
831 | } |
832 | ||
1c79356b | 833 | /* |
9bccf70c | 834 | * called by an interface when tx_rdy occurs. |
1c79356b | 835 | */ |
9bccf70c A |
836 | int |
837 | if_tx_rdy(struct ifnet *ifp) | |
1c79356b | 838 | { |
9bccf70c | 839 | struct dn_pipe *p; |
1c79356b | 840 | |
91447636 | 841 | lck_mtx_lock(dn_mutex); |
9bccf70c A |
842 | for (p = all_pipes; p ; p = p->next ) |
843 | if (p->ifp == ifp) | |
844 | break ; | |
845 | if (p == NULL) { | |
846 | char buf[32]; | |
847 | sprintf(buf, "%s%d",ifp->if_name, ifp->if_unit); | |
848 | for (p = all_pipes; p ; p = p->next ) | |
849 | if (!strcmp(p->if_name, buf) ) { | |
850 | p->ifp = ifp ; | |
91447636 | 851 | DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf)); |
9bccf70c A |
852 | break ; |
853 | } | |
854 | } | |
855 | if (p != NULL) { | |
91447636 A |
856 | DPRINTF(("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp->if_name, |
857 | ifp->if_unit, ifp->if_snd.ifq_len)); | |
9bccf70c A |
858 | p->numbytes = 0 ; /* mark ready for I/O */ |
859 | ready_event_wfq(p); | |
1c79356b | 860 | } |
91447636 A |
861 | lck_mtx_lock(dn_mutex); |
862 | ||
9bccf70c | 863 | return 0; |
1c79356b A |
864 | } |
865 | ||
1c79356b | 866 | /* |
9bccf70c A |
867 | * Unconditionally expire empty queues in case of shortage. |
868 | * Returns the number of queues freed. | |
1c79356b | 869 | */ |
9bccf70c A |
870 | static int |
871 | expire_queues(struct dn_flow_set *fs) | |
1c79356b | 872 | { |
9bccf70c A |
873 | struct dn_flow_queue *q, *prev ; |
874 | int i, initial_elements = fs->rq_elements ; | |
91447636 | 875 | struct timeval timenow; |
1c79356b | 876 | |
91447636 A |
877 | getmicrotime(&timenow); |
878 | ||
879 | if (fs->last_expired == timenow.tv_sec) | |
9bccf70c | 880 | return 0 ; |
91447636 | 881 | fs->last_expired = timenow.tv_sec ; |
9bccf70c A |
882 | for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */ |
883 | for (prev=NULL, q = fs->rq[i] ; q != NULL ; ) | |
884 | if (q->head != NULL || q->S != q->F+1) { | |
885 | prev = q ; | |
886 | q = q->next ; | |
887 | } else { /* entry is idle, expire it */ | |
888 | struct dn_flow_queue *old_q = q ; | |
889 | ||
890 | if (prev != NULL) | |
891 | prev->next = q = q->next ; | |
892 | else | |
893 | fs->rq[i] = q = q->next ; | |
894 | fs->rq_elements-- ; | |
91447636 | 895 | FREE(old_q, M_DUMMYNET); |
1c79356b | 896 | } |
9bccf70c | 897 | return initial_elements - fs->rq_elements ; |
1c79356b A |
898 | } |
899 | ||
900 | /* | |
9bccf70c A |
901 | * If room, create a new queue and put at head of slot i; |
902 | * otherwise, create or use the default queue. | |
1c79356b | 903 | */ |
9bccf70c A |
904 | static struct dn_flow_queue * |
905 | create_queue(struct dn_flow_set *fs, int i) | |
1c79356b | 906 | { |
9bccf70c | 907 | struct dn_flow_queue *q ; |
1c79356b | 908 | |
9bccf70c A |
909 | if (fs->rq_elements > fs->rq_size * dn_max_ratio && |
910 | expire_queues(fs) == 0) { | |
911 | /* | |
912 | * No way to get room, use or create overflow queue. | |
913 | */ | |
914 | i = fs->rq_size ; | |
915 | if ( fs->rq[i] != NULL ) | |
916 | return fs->rq[i] ; | |
917 | } | |
91447636 | 918 | q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO); |
9bccf70c | 919 | if (q == NULL) { |
91447636 | 920 | printf("dummynet: sorry, cannot allocate queue for new flow\n"); |
9bccf70c A |
921 | return NULL ; |
922 | } | |
9bccf70c A |
923 | q->fs = fs ; |
924 | q->hash_slot = i ; | |
925 | q->next = fs->rq[i] ; | |
926 | q->S = q->F + 1; /* hack - mark timestamp as invalid */ | |
927 | fs->rq[i] = q ; | |
928 | fs->rq_elements++ ; | |
929 | return q ; | |
930 | } | |
1c79356b | 931 | |
9bccf70c A |
932 | /* |
933 | * Given a flow_set and a pkt in last_pkt, find a matching queue | |
934 | * after appropriate masking. The queue is moved to front | |
935 | * so that further searches take less time. | |
936 | */ | |
937 | static struct dn_flow_queue * | |
91447636 | 938 | find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id) |
9bccf70c A |
939 | { |
940 | int i = 0 ; /* we need i and q for new allocations */ | |
941 | struct dn_flow_queue *q, *prev; | |
1c79356b | 942 | |
9bccf70c A |
943 | if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) ) |
944 | q = fs->rq[0] ; | |
945 | else { | |
946 | /* first, do the masking */ | |
91447636 A |
947 | id->dst_ip &= fs->flow_mask.dst_ip ; |
948 | id->src_ip &= fs->flow_mask.src_ip ; | |
949 | id->dst_port &= fs->flow_mask.dst_port ; | |
950 | id->src_port &= fs->flow_mask.src_port ; | |
951 | id->proto &= fs->flow_mask.proto ; | |
952 | id->flags = 0 ; /* we don't care about this one */ | |
9bccf70c | 953 | /* then, hash function */ |
91447636 A |
954 | i = ( (id->dst_ip) & 0xffff ) ^ |
955 | ( (id->dst_ip >> 15) & 0xffff ) ^ | |
956 | ( (id->src_ip << 1) & 0xffff ) ^ | |
957 | ( (id->src_ip >> 16 ) & 0xffff ) ^ | |
958 | (id->dst_port << 1) ^ (id->src_port) ^ | |
959 | (id->proto ); | |
9bccf70c A |
960 | i = i % fs->rq_size ; |
961 | /* finally, scan the current list for a match */ | |
962 | searches++ ; | |
963 | for (prev=NULL, q = fs->rq[i] ; q ; ) { | |
964 | search_steps++; | |
91447636 A |
965 | if (id->dst_ip == q->id.dst_ip && |
966 | id->src_ip == q->id.src_ip && | |
967 | id->dst_port == q->id.dst_port && | |
968 | id->src_port == q->id.src_port && | |
969 | id->proto == q->id.proto && | |
970 | id->flags == q->id.flags) | |
9bccf70c A |
971 | break ; /* found */ |
972 | else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) { | |
973 | /* entry is idle and not in any heap, expire it */ | |
974 | struct dn_flow_queue *old_q = q ; | |
1c79356b | 975 | |
9bccf70c A |
976 | if (prev != NULL) |
977 | prev->next = q = q->next ; | |
978 | else | |
979 | fs->rq[i] = q = q->next ; | |
980 | fs->rq_elements-- ; | |
91447636 | 981 | FREE(old_q, M_DUMMYNET); |
9bccf70c A |
982 | continue ; |
983 | } | |
984 | prev = q ; | |
985 | q = q->next ; | |
1c79356b | 986 | } |
9bccf70c A |
987 | if (q && prev != NULL) { /* found and not in front */ |
988 | prev->next = q->next ; | |
989 | q->next = fs->rq[i] ; | |
990 | fs->rq[i] = q ; | |
1c79356b | 991 | } |
9bccf70c A |
992 | } |
993 | if (q == NULL) { /* no match, need to allocate a new entry */ | |
994 | q = create_queue(fs, i); | |
995 | if (q != NULL) | |
91447636 | 996 | q->id = *id ; |
9bccf70c A |
997 | } |
998 | return q ; | |
999 | } | |
1000 | ||
1001 | static int | |
1002 | red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len) | |
1003 | { | |
1004 | /* | |
1005 | * RED algorithm | |
91447636 | 1006 | * |
9bccf70c A |
1007 | * RED calculates the average queue size (avg) using a low-pass filter |
1008 | * with an exponential weighted (w_q) moving average: | |
1009 | * avg <- (1-w_q) * avg + w_q * q_size | |
1010 | * where q_size is the queue length (measured in bytes or * packets). | |
91447636 | 1011 | * |
9bccf70c A |
1012 | * If q_size == 0, we compute the idle time for the link, and set |
1013 | * avg = (1 - w_q)^(idle/s) | |
1014 | * where s is the time needed for transmitting a medium-sized packet. | |
91447636 | 1015 | * |
9bccf70c A |
1016 | * Now, if avg < min_th the packet is enqueued. |
1017 | * If avg > max_th the packet is dropped. Otherwise, the packet is | |
1018 | * dropped with probability P function of avg. | |
91447636 | 1019 | * |
9bccf70c A |
1020 | */ |
1021 | ||
1022 | int64_t p_b = 0; | |
1023 | /* queue in bytes or packets ? */ | |
1024 | u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len; | |
1025 | ||
91447636 | 1026 | DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size)); |
9bccf70c A |
1027 | |
1028 | /* average queue size estimation */ | |
1029 | if (q_size != 0) { | |
1030 | /* | |
1031 | * queue is not empty, avg <- avg + (q_size - avg) * w_q | |
1032 | */ | |
1033 | int diff = SCALE(q_size) - q->avg; | |
1034 | int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q); | |
1035 | ||
1036 | q->avg += (int) v; | |
1037 | } else { | |
1038 | /* | |
1039 | * queue is empty, find for how long the queue has been | |
1040 | * empty and use a lookup table for computing | |
1041 | * (1 - * w_q)^(idle_time/s) where s is the time to send a | |
1042 | * (small) packet. | |
1043 | * XXX check wraps... | |
1044 | */ | |
1045 | if (q->avg) { | |
1046 | u_int t = (curr_time - q->q_time) / fs->lookup_step; | |
1047 | ||
1048 | q->avg = (t < fs->lookup_depth) ? | |
1049 | SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0; | |
1050 | } | |
1051 | } | |
91447636 | 1052 | DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg))); |
9bccf70c A |
1053 | |
1054 | /* should i drop ? */ | |
1055 | ||
1056 | if (q->avg < fs->min_th) { | |
1057 | q->count = -1; | |
1058 | return 0; /* accept packet ; */ | |
1059 | } | |
1060 | if (q->avg >= fs->max_th) { /* average queue >= max threshold */ | |
1061 | if (fs->flags_fs & DN_IS_GENTLE_RED) { | |
1c79356b | 1062 | /* |
9bccf70c A |
1063 | * According to Gentle-RED, if avg is greater than max_th the |
1064 | * packet is dropped with a probability | |
1065 | * p_b = c_3 * avg - c_4 | |
1066 | * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p | |
1c79356b | 1067 | */ |
9bccf70c A |
1068 | p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4; |
1069 | } else { | |
1070 | q->count = -1; | |
91447636 | 1071 | DPRINTF(("dummynet: - drop")); |
9bccf70c A |
1072 | return 1 ; |
1073 | } | |
1074 | } else if (q->avg > fs->min_th) { | |
1075 | /* | |
1076 | * we compute p_b using the linear dropping function p_b = c_1 * | |
1077 | * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 = | |
1078 | * max_p * min_th / (max_th - min_th) | |
1079 | */ | |
1080 | p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2; | |
1081 | } | |
1082 | if (fs->flags_fs & DN_QSIZE_IS_BYTES) | |
1083 | p_b = (p_b * len) / fs->max_pkt_size; | |
1084 | if (++q->count == 0) | |
1085 | q->random = random() & 0xffff; | |
1086 | else { | |
1087 | /* | |
1088 | * q->count counts packets arrived since last drop, so a greater | |
1089 | * value of q->count means a greater packet drop probability. | |
1090 | */ | |
1091 | if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) { | |
1092 | q->count = 0; | |
91447636 | 1093 | DPRINTF(("dummynet: - red drop")); |
9bccf70c A |
1094 | /* after a drop we calculate a new random value */ |
1095 | q->random = random() & 0xffff; | |
1096 | return 1; /* drop */ | |
1097 | } | |
1098 | } | |
1099 | /* end of RED algorithm */ | |
1100 | return 0 ; /* accept */ | |
1101 | } | |
1102 | ||
1103 | static __inline | |
1104 | struct dn_flow_set * | |
91447636 | 1105 | locate_flowset(int pipe_nr, struct ip_fw *rule) |
9bccf70c | 1106 | { |
91447636 A |
1107 | struct dn_flow_set *fs; |
1108 | ipfw_insn *cmd = rule->cmd + rule->act_ofs; | |
9bccf70c | 1109 | |
91447636 A |
1110 | if (cmd->opcode == O_LOG) |
1111 | cmd += F_LEN(cmd); | |
1112 | ||
1113 | bcopy(& ((ipfw_insn_pipe *)cmd)->pipe_ptr, &fs, sizeof(fs)); | |
1114 | ||
1115 | if (fs != NULL) | |
1116 | return fs; | |
1117 | ||
1118 | if (cmd->opcode == O_QUEUE) { | |
1119 | for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next) | |
1120 | ; | |
1121 | } | |
9bccf70c | 1122 | else { |
91447636 A |
1123 | struct dn_pipe *p1; |
1124 | for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next) | |
1125 | ; | |
1126 | if (p1 != NULL) | |
1127 | fs = &(p1->fs) ; | |
9bccf70c | 1128 | } |
91447636 A |
1129 | /* record for the future */ |
1130 | bcopy(&fs, & ((ipfw_insn_pipe *)cmd)->pipe_ptr, sizeof(fs)); | |
1131 | ||
9bccf70c A |
1132 | return fs ; |
1133 | } | |
1134 | ||
1135 | /* | |
1136 | * dummynet hook for packets. Below 'pipe' is a pipe or a queue | |
1137 | * depending on whether WF2Q or fixed bw is used. | |
91447636 A |
1138 | * |
1139 | * pipe_nr pipe or queue the packet is destined for. | |
1140 | * dir where shall we send the packet after dummynet. | |
1141 | * m the mbuf with the packet | |
1142 | * ifp the 'ifp' parameter from the caller. | |
1143 | * NULL in ip_input, destination interface in ip_output, | |
1144 | * real_dst in bdg_forward | |
1145 | * ro route parameter (only used in ip_output, NULL otherwise) | |
1146 | * dst destination address, only used by ip_output | |
1147 | * rule matching rule, in case of multiple passes | |
1148 | * flags flags from the caller, only used in ip_output | |
1149 | * | |
9bccf70c | 1150 | */ |
91447636 A |
1151 | static int |
1152 | dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa) | |
9bccf70c | 1153 | { |
91447636 A |
1154 | struct dn_pkt_tag *pkt; |
1155 | struct m_tag *mtag; | |
9bccf70c A |
1156 | struct dn_flow_set *fs; |
1157 | struct dn_pipe *pipe ; | |
1158 | u_int64_t len = m->m_pkthdr.len ; | |
1159 | struct dn_flow_queue *q = NULL ; | |
91447636 | 1160 | int is_pipe; |
5d5c5d0d A |
1161 | struct timespec ts; |
1162 | struct timeval tv; | |
91447636 A |
1163 | |
1164 | #if IPFW2 | |
1165 | ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs; | |
1166 | ||
1167 | if (cmd->opcode == O_LOG) | |
1168 | cmd += F_LEN(cmd); | |
1169 | is_pipe = (cmd->opcode == O_PIPE); | |
1170 | #else | |
1171 | is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE; | |
1172 | #endif | |
9bccf70c A |
1173 | |
1174 | pipe_nr &= 0xffff ; | |
1175 | ||
91447636 | 1176 | lck_mtx_lock(dn_mutex); |
5d5c5d0d A |
1177 | |
1178 | /* make all time measurements in milliseconds (ms) - | |
1179 | * here we convert secs and usecs to msecs (just divide the | |
1180 | * usecs and take the closest whole number). | |
1181 | */ | |
1182 | microuptime(&tv); | |
1183 | curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000); | |
91447636 A |
1184 | |
1185 | /* | |
1186 | * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule. | |
1187 | */ | |
1188 | fs = locate_flowset(pipe_nr, fwa->rule); | |
1189 | if (fs == NULL) | |
1190 | goto dropit ; /* this queue/pipe does not exist! */ | |
9bccf70c A |
1191 | pipe = fs->pipe ; |
1192 | if (pipe == NULL) { /* must be a queue, try find a matching pipe */ | |
1193 | for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr; | |
1194 | pipe = pipe->next) | |
1195 | ; | |
1196 | if (pipe != NULL) | |
1197 | fs->pipe = pipe ; | |
1198 | else { | |
91447636 | 1199 | printf("dummynet: no pipe %d for queue %d, drop pkt\n", |
9bccf70c A |
1200 | fs->parent_nr, fs->fs_nr); |
1201 | goto dropit ; | |
1202 | } | |
1203 | } | |
91447636 | 1204 | q = find_queue(fs, &(fwa->f_id)); |
9bccf70c A |
1205 | if ( q == NULL ) |
1206 | goto dropit ; /* cannot allocate queue */ | |
1207 | /* | |
1208 | * update statistics, then check reasons to drop pkt | |
1209 | */ | |
1210 | q->tot_bytes += len ; | |
1211 | q->tot_pkts++ ; | |
1212 | if ( fs->plr && random() < fs->plr ) | |
1213 | goto dropit ; /* random pkt drop */ | |
1214 | if ( fs->flags_fs & DN_QSIZE_IS_BYTES) { | |
1215 | if (q->len_bytes > fs->qsize) | |
1216 | goto dropit ; /* queue size overflow */ | |
1217 | } else { | |
1218 | if (q->len >= fs->qsize) | |
1219 | goto dropit ; /* queue count overflow */ | |
1220 | } | |
1221 | if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) ) | |
1222 | goto dropit ; | |
1223 | ||
91447636 A |
1224 | /* XXX expensive to zero, see if we can remove it*/ |
1225 | mtag = m_tag_alloc(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, | |
13fec989 | 1226 | sizeof(struct dn_pkt_tag), M_NOWAIT); |
91447636 A |
1227 | if ( mtag == NULL ) |
1228 | goto dropit ; /* cannot allocate packet header */ | |
1229 | m_tag_prepend(m, mtag); /* attach to mbuf chain */ | |
1230 | ||
1231 | pkt = (struct dn_pkt_tag *)(mtag+1); | |
13fec989 | 1232 | bzero(pkt, sizeof(struct dn_pkt_tag)); |
9bccf70c | 1233 | /* ok, i can handle the pkt now... */ |
9bccf70c | 1234 | /* build and enqueue packet + parameters */ |
91447636 | 1235 | pkt->rule = fwa->rule ; |
9bccf70c A |
1236 | pkt->dn_dir = dir ; |
1237 | ||
91447636 | 1238 | pkt->ifp = fwa->oif; |
9bccf70c A |
1239 | if (dir == DN_TO_IP_OUT) { |
1240 | /* | |
1241 | * We need to copy *ro because for ICMP pkts (and maybe others) | |
1242 | * the caller passed a pointer into the stack; dst might also be | |
1243 | * a pointer into *ro so it needs to be updated. | |
1244 | */ | |
91447636 A |
1245 | lck_mtx_lock(rt_mtx); |
1246 | pkt->ro = *(fwa->ro); | |
1247 | if (fwa->ro->ro_rt) | |
1248 | fwa->ro->ro_rt->rt_refcnt++ ; | |
1249 | if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */ | |
1250 | fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ; | |
1251 | lck_mtx_unlock(rt_mtx); | |
1252 | ||
1253 | pkt->dn_dst = fwa->dst; | |
1254 | pkt->flags = fwa->flags; | |
1255 | } | |
9bccf70c | 1256 | if (q->head == NULL) |
91447636 | 1257 | q->head = m; |
9bccf70c | 1258 | else |
91447636 A |
1259 | q->tail->m_nextpkt = m; |
1260 | q->tail = m; | |
9bccf70c A |
1261 | q->len++; |
1262 | q->len_bytes += len ; | |
1263 | ||
91447636 | 1264 | if ( q->head != m ) /* flow was not idle, we are done */ |
9bccf70c A |
1265 | goto done; |
1266 | /* | |
1267 | * If we reach this point the flow was previously idle, so we need | |
1268 | * to schedule it. This involves different actions for fixed-rate or | |
1269 | * WF2Q queues. | |
1270 | */ | |
91447636 | 1271 | if (is_pipe) { |
9bccf70c A |
1272 | /* |
1273 | * Fixed-rate queue: just insert into the ready_heap. | |
1274 | */ | |
1275 | dn_key t = 0 ; | |
91447636 A |
1276 | if (pipe->bandwidth) |
1277 | t = SET_TICKS(m, q, pipe); | |
9bccf70c A |
1278 | q->sched_time = curr_time ; |
1279 | if (t == 0) /* must process it now */ | |
1280 | ready_event( q ); | |
1281 | else | |
1282 | heap_insert(&ready_heap, curr_time + t , q ); | |
1283 | } else { | |
1284 | /* | |
1285 | * WF2Q. First, compute start time S: if the flow was idle (S=F+1) | |
1286 | * set S to the virtual time V for the controlling pipe, and update | |
1287 | * the sum of weights for the pipe; otherwise, remove flow from | |
1288 | * idle_heap and set S to max(F,V). | |
1289 | * Second, compute finish time F = S + len/weight. | |
1290 | * Third, if pipe was idle, update V=max(S, V). | |
1291 | * Fourth, count one more backlogged flow. | |
1292 | */ | |
1293 | if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */ | |
1294 | q->S = pipe->V ; | |
1295 | pipe->sum += fs->weight ; /* add weight of new queue */ | |
1296 | } else { | |
1297 | heap_extract(&(pipe->idle_heap), q); | |
1298 | q->S = MAX64(q->F, pipe->V ) ; | |
1299 | } | |
1300 | q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight; | |
1301 | ||
1302 | if (pipe->not_eligible_heap.elements == 0 && | |
1303 | pipe->scheduler_heap.elements == 0) | |
1304 | pipe->V = MAX64 ( q->S, pipe->V ); | |
1305 | fs->backlogged++ ; | |
1306 | /* | |
1307 | * Look at eligibility. A flow is not eligibile if S>V (when | |
1308 | * this happens, it means that there is some other flow already | |
1309 | * scheduled for the same pipe, so the scheduler_heap cannot be | |
1310 | * empty). If the flow is not eligible we just store it in the | |
1311 | * not_eligible_heap. Otherwise, we store in the scheduler_heap | |
1312 | * and possibly invoke ready_event_wfq() right now if there is | |
1313 | * leftover credit. | |
1314 | * Note that for all flows in scheduler_heap (SCH), S_i <= V, | |
1315 | * and for all flows in not_eligible_heap (NEH), S_i > V . | |
1316 | * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH, | |
1317 | * we only need to look into NEH. | |
1318 | */ | |
1319 | if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */ | |
1320 | if (pipe->scheduler_heap.elements == 0) | |
91447636 | 1321 | printf("dummynet: ++ ouch! not eligible but empty scheduler!\n"); |
9bccf70c A |
1322 | heap_insert(&(pipe->not_eligible_heap), q->S, q); |
1323 | } else { | |
1324 | heap_insert(&(pipe->scheduler_heap), q->F, q); | |
1325 | if (pipe->numbytes >= 0) { /* pipe is idle */ | |
1326 | if (pipe->scheduler_heap.elements != 1) | |
91447636 A |
1327 | printf("dummynet: OUCH! pipe should have been idle!\n"); |
1328 | DPRINTF(("dummynet: waking up pipe %d at %d\n", | |
1329 | pipe->pipe_nr, (int)(q->F >> MY_M))); | |
9bccf70c A |
1330 | pipe->sched_time = curr_time ; |
1331 | ready_event_wfq(pipe); | |
1c79356b | 1332 | } |
9bccf70c A |
1333 | } |
1334 | } | |
1335 | done: | |
5d5c5d0d A |
1336 | /* start the timer and set global if not already set */ |
1337 | if (!timer_enabled) { | |
1338 | ts.tv_sec = 0; | |
1339 | ts.tv_nsec = 1 * 1000000; // 1ms | |
1340 | timer_enabled = 1; | |
1341 | bsd_timeout(dummynet, NULL, &ts); | |
1342 | } | |
1343 | ||
91447636 | 1344 | lck_mtx_unlock(dn_mutex); |
9bccf70c A |
1345 | return 0; |
1346 | ||
1347 | dropit: | |
9bccf70c A |
1348 | if (q) |
1349 | q->drops++ ; | |
91447636 | 1350 | lck_mtx_unlock(dn_mutex); |
9bccf70c | 1351 | m_freem(m); |
91447636 | 1352 | return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS); |
9bccf70c A |
1353 | } |
1354 | ||
1355 | /* | |
91447636 | 1356 | * Below, the rtfree is only needed when (pkt->dn_dir == DN_TO_IP_OUT) |
9bccf70c A |
1357 | * Doing this would probably save us the initial bzero of dn_pkt |
1358 | */ | |
91447636 A |
1359 | #define DN_FREE_PKT(_m) do { \ |
1360 | struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \ | |
1361 | if (tag) { \ | |
1362 | struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \ | |
1363 | if (n->ro.ro_rt) \ | |
1364 | rtfree(n->ro.ro_rt); \ | |
1365 | } \ | |
1366 | m_tag_delete(_m, tag); \ | |
1367 | m_freem(_m); \ | |
1368 | } while (0) | |
9bccf70c A |
1369 | |
1370 | /* | |
1371 | * Dispose all packets and flow_queues on a flow_set. | |
1372 | * If all=1, also remove red lookup table and other storage, | |
1373 | * including the descriptor itself. | |
1374 | * For the one in dn_pipe MUST also cleanup ready_heap... | |
1375 | */ | |
1376 | static void | |
1377 | purge_flow_set(struct dn_flow_set *fs, int all) | |
1378 | { | |
9bccf70c A |
1379 | struct dn_flow_queue *q, *qn ; |
1380 | int i ; | |
1381 | ||
91447636 A |
1382 | lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED); |
1383 | ||
9bccf70c A |
1384 | for (i = 0 ; i <= fs->rq_size ; i++ ) { |
1385 | for (q = fs->rq[i] ; q ; q = qn ) { | |
91447636 A |
1386 | struct mbuf *m, *mnext; |
1387 | ||
1388 | mnext = q->head; | |
1389 | while ((m = mnext) != NULL) { | |
1390 | mnext = m->m_nextpkt; | |
1391 | DN_FREE_PKT(m); | |
1392 | } | |
9bccf70c | 1393 | qn = q->next ; |
91447636 | 1394 | FREE(q, M_DUMMYNET); |
9bccf70c A |
1395 | } |
1396 | fs->rq[i] = NULL ; | |
1397 | } | |
1398 | fs->rq_elements = 0 ; | |
1399 | if (all) { | |
1400 | /* RED - free lookup table */ | |
1401 | if (fs->w_q_lookup) | |
91447636 | 1402 | FREE(fs->w_q_lookup, M_DUMMYNET); |
9bccf70c | 1403 | if (fs->rq) |
91447636 | 1404 | FREE(fs->rq, M_DUMMYNET); |
9bccf70c A |
1405 | /* if this fs is not part of a pipe, free it */ |
1406 | if (fs->pipe && fs != &(fs->pipe->fs) ) | |
91447636 | 1407 | FREE(fs, M_DUMMYNET); |
9bccf70c A |
1408 | } |
1409 | } | |
1410 | ||
1411 | /* | |
1412 | * Dispose all packets queued on a pipe (not a flow_set). | |
1413 | * Also free all resources associated to a pipe, which is about | |
1414 | * to be deleted. | |
1415 | */ | |
1416 | static void | |
1417 | purge_pipe(struct dn_pipe *pipe) | |
1418 | { | |
91447636 | 1419 | struct mbuf *m, *mnext; |
9bccf70c A |
1420 | |
1421 | purge_flow_set( &(pipe->fs), 1 ); | |
1422 | ||
91447636 A |
1423 | mnext = pipe->head; |
1424 | while ((m = mnext) != NULL) { | |
1425 | mnext = m->m_nextpkt; | |
1426 | DN_FREE_PKT(m); | |
1427 | } | |
9bccf70c A |
1428 | |
1429 | heap_free( &(pipe->scheduler_heap) ); | |
1430 | heap_free( &(pipe->not_eligible_heap) ); | |
1431 | heap_free( &(pipe->idle_heap) ); | |
1432 | } | |
1433 | ||
1434 | /* | |
1435 | * Delete all pipes and heaps returning memory. Must also | |
1436 | * remove references from all ipfw rules to all pipes. | |
1437 | */ | |
1438 | static void | |
1439 | dummynet_flush() | |
1440 | { | |
1441 | struct dn_pipe *curr_p, *p ; | |
9bccf70c | 1442 | struct dn_flow_set *fs, *curr_fs; |
9bccf70c | 1443 | |
91447636 | 1444 | lck_mtx_lock(dn_mutex); |
9bccf70c A |
1445 | |
1446 | /* remove all references to pipes ...*/ | |
91447636 | 1447 | flush_pipe_ptrs(NULL); |
9bccf70c A |
1448 | /* prevent future matches... */ |
1449 | p = all_pipes ; | |
91447636 | 1450 | all_pipes = NULL ; |
9bccf70c A |
1451 | fs = all_flow_sets ; |
1452 | all_flow_sets = NULL ; | |
1453 | /* and free heaps so we don't have unwanted events */ | |
1454 | heap_free(&ready_heap); | |
1455 | heap_free(&wfq_ready_heap); | |
1456 | heap_free(&extract_heap); | |
91447636 | 1457 | |
9bccf70c A |
1458 | /* |
1459 | * Now purge all queued pkts and delete all pipes | |
1460 | */ | |
1461 | /* scan and purge all flow_sets. */ | |
1462 | for ( ; fs ; ) { | |
1463 | curr_fs = fs ; | |
1464 | fs = fs->next ; | |
1465 | purge_flow_set(curr_fs, 1); | |
1466 | } | |
1467 | for ( ; p ; ) { | |
1468 | purge_pipe(p); | |
1469 | curr_p = p ; | |
1470 | p = p->next ; | |
91447636 | 1471 | FREE(curr_p, M_DUMMYNET); |
9bccf70c | 1472 | } |
91447636 | 1473 | lck_mtx_unlock(dn_mutex); |
9bccf70c A |
1474 | } |
1475 | ||
1476 | ||
91447636 | 1477 | extern struct ip_fw *ip_fw_default_rule ; |
9bccf70c A |
1478 | static void |
1479 | dn_rule_delete_fs(struct dn_flow_set *fs, void *r) | |
1480 | { | |
1481 | int i ; | |
1482 | struct dn_flow_queue *q ; | |
91447636 | 1483 | struct mbuf *m ; |
9bccf70c A |
1484 | |
1485 | for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */ | |
1486 | for (q = fs->rq[i] ; q ; q = q->next ) | |
91447636 A |
1487 | for (m = q->head ; m ; m = m->m_nextpkt ) { |
1488 | struct dn_pkt_tag *pkt = dn_tag_get(m) ; | |
1489 | if (pkt->rule == r) | |
1490 | pkt->rule = ip_fw_default_rule ; | |
1491 | } | |
9bccf70c A |
1492 | } |
1493 | /* | |
1494 | * when a firewall rule is deleted, scan all queues and remove the flow-id | |
1495 | * from packets matching this rule. | |
1496 | */ | |
1497 | void | |
1498 | dn_rule_delete(void *r) | |
1499 | { | |
1500 | struct dn_pipe *p ; | |
9bccf70c | 1501 | struct dn_flow_set *fs ; |
91447636 A |
1502 | struct dn_pkt_tag *pkt ; |
1503 | struct mbuf *m ; | |
1504 | ||
1505 | lck_mtx_lock(dn_mutex); | |
9bccf70c A |
1506 | |
1507 | /* | |
1508 | * If the rule references a queue (dn_flow_set), then scan | |
1509 | * the flow set, otherwise scan pipes. Should do either, but doing | |
1510 | * both does not harm. | |
1511 | */ | |
1512 | for ( fs = all_flow_sets ; fs ; fs = fs->next ) | |
1513 | dn_rule_delete_fs(fs, r); | |
1514 | for ( p = all_pipes ; p ; p = p->next ) { | |
1515 | fs = &(p->fs) ; | |
1516 | dn_rule_delete_fs(fs, r); | |
91447636 A |
1517 | for (m = p->head ; m ; m = m->m_nextpkt ) { |
1518 | pkt = dn_tag_get(m) ; | |
1519 | if (pkt->rule == r) | |
1520 | pkt->rule = ip_fw_default_rule ; | |
1521 | } | |
9bccf70c | 1522 | } |
91447636 | 1523 | lck_mtx_unlock(dn_mutex); |
9bccf70c A |
1524 | } |
1525 | ||
1526 | /* | |
1527 | * setup RED parameters | |
1528 | */ | |
1529 | static int | |
91447636 | 1530 | config_red(struct dn_flow_set *p, struct dn_flow_set * x) |
9bccf70c A |
1531 | { |
1532 | int i; | |
1533 | ||
1534 | x->w_q = p->w_q; | |
1535 | x->min_th = SCALE(p->min_th); | |
1536 | x->max_th = SCALE(p->max_th); | |
1537 | x->max_p = p->max_p; | |
1538 | ||
1539 | x->c_1 = p->max_p / (p->max_th - p->min_th); | |
1540 | x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th)); | |
1541 | if (x->flags_fs & DN_IS_GENTLE_RED) { | |
1542 | x->c_3 = (SCALE(1) - p->max_p) / p->max_th; | |
1543 | x->c_4 = (SCALE(1) - 2 * p->max_p); | |
1544 | } | |
1545 | ||
1546 | /* if the lookup table already exist, free and create it again */ | |
91447636 A |
1547 | if (x->w_q_lookup) { |
1548 | FREE(x->w_q_lookup, M_DUMMYNET); | |
1549 | x->w_q_lookup = NULL ; | |
1550 | } | |
9bccf70c | 1551 | if (red_lookup_depth == 0) { |
91447636 A |
1552 | printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n"); |
1553 | FREE(x, M_DUMMYNET); | |
9bccf70c A |
1554 | return EINVAL; |
1555 | } | |
1556 | x->lookup_depth = red_lookup_depth; | |
1557 | x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int), | |
91447636 | 1558 | M_DUMMYNET, M_DONTWAIT); |
9bccf70c | 1559 | if (x->w_q_lookup == NULL) { |
91447636 A |
1560 | printf("dummynet: sorry, cannot allocate red lookup table\n"); |
1561 | FREE(x, M_DUMMYNET); | |
9bccf70c A |
1562 | return ENOSPC; |
1563 | } | |
1564 | ||
1565 | /* fill the lookup table with (1 - w_q)^x */ | |
1566 | x->lookup_step = p->lookup_step ; | |
1567 | x->lookup_weight = p->lookup_weight ; | |
1568 | x->w_q_lookup[0] = SCALE(1) - x->w_q; | |
1569 | for (i = 1; i < x->lookup_depth; i++) | |
1570 | x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight); | |
1571 | if (red_avg_pkt_size < 1) | |
1572 | red_avg_pkt_size = 512 ; | |
1573 | x->avg_pkt_size = red_avg_pkt_size ; | |
1574 | if (red_max_pkt_size < 1) | |
1575 | red_max_pkt_size = 1500 ; | |
1576 | x->max_pkt_size = red_max_pkt_size ; | |
1577 | return 0 ; | |
1578 | } | |
1579 | ||
1580 | static int | |
1581 | alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs) | |
1582 | { | |
1583 | if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */ | |
1584 | int l = pfs->rq_size; | |
1585 | ||
1586 | if (l == 0) | |
1587 | l = dn_hash_size; | |
1588 | if (l < 4) | |
1589 | l = 4; | |
91447636 A |
1590 | else if (l > DN_MAX_HASH_SIZE) |
1591 | l = DN_MAX_HASH_SIZE; | |
9bccf70c A |
1592 | x->rq_size = l; |
1593 | } else /* one is enough for null mask */ | |
1594 | x->rq_size = 1; | |
1595 | x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *), | |
91447636 | 1596 | M_DUMMYNET, M_DONTWAIT | M_ZERO); |
9bccf70c | 1597 | if (x->rq == NULL) { |
91447636 | 1598 | printf("dummynet: sorry, cannot allocate queue\n"); |
9bccf70c A |
1599 | return ENOSPC; |
1600 | } | |
9bccf70c A |
1601 | x->rq_elements = 0; |
1602 | return 0 ; | |
1603 | } | |
1604 | ||
1605 | static void | |
1606 | set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src) | |
1607 | { | |
1608 | x->flags_fs = src->flags_fs; | |
1609 | x->qsize = src->qsize; | |
1610 | x->plr = src->plr; | |
1611 | x->flow_mask = src->flow_mask; | |
1612 | if (x->flags_fs & DN_QSIZE_IS_BYTES) { | |
1613 | if (x->qsize > 1024*1024) | |
1614 | x->qsize = 1024*1024 ; | |
1615 | } else { | |
1616 | if (x->qsize == 0) | |
1617 | x->qsize = 50 ; | |
1618 | if (x->qsize > 100) | |
1619 | x->qsize = 50 ; | |
1620 | } | |
1621 | /* configuring RED */ | |
1622 | if ( x->flags_fs & DN_IS_RED ) | |
1623 | config_red(src, x) ; /* XXX should check errors */ | |
1624 | } | |
1625 | ||
1626 | /* | |
1627 | * setup pipe or queue parameters. | |
1628 | */ | |
1629 | ||
91447636 | 1630 | static int |
9bccf70c A |
1631 | config_pipe(struct dn_pipe *p) |
1632 | { | |
91447636 | 1633 | int i, r; |
9bccf70c | 1634 | struct dn_flow_set *pfs = &(p->fs); |
91447636 | 1635 | struct dn_flow_queue *q; |
9bccf70c | 1636 | |
91447636 A |
1637 | /* |
1638 | * The config program passes parameters as follows: | |
9bccf70c A |
1639 | * bw = bits/second (0 means no limits), |
1640 | * delay = ms, must be translated into ticks. | |
1641 | * qsize = slots/bytes | |
91447636 | 1642 | */ |
5d5c5d0d | 1643 | p->delay = ( p->delay * (hz*10) ) / 1000 ; |
9bccf70c A |
1644 | /* We need either a pipe number or a flow_set number */ |
1645 | if (p->pipe_nr == 0 && pfs->fs_nr == 0) | |
1646 | return EINVAL ; | |
1647 | if (p->pipe_nr != 0 && pfs->fs_nr != 0) | |
1648 | return EINVAL ; | |
1649 | if (p->pipe_nr != 0) { /* this is a pipe */ | |
1650 | struct dn_pipe *x, *a, *b; | |
91447636 A |
1651 | |
1652 | lck_mtx_lock(dn_mutex); | |
1653 | /* locate pipe */ | |
9bccf70c | 1654 | for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ; |
1c79356b | 1655 | a = b , b = b->next) ; |
9bccf70c A |
1656 | |
1657 | if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */ | |
91447636 | 1658 | x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ; |
9bccf70c | 1659 | if (x == NULL) { |
91447636 A |
1660 | lck_mtx_unlock(dn_mutex); |
1661 | printf("dummynet: no memory for new pipe\n"); | |
9bccf70c | 1662 | return ENOSPC; |
1c79356b | 1663 | } |
9bccf70c A |
1664 | x->pipe_nr = p->pipe_nr; |
1665 | x->fs.pipe = x ; | |
1666 | /* idle_heap is the only one from which we extract from the middle. | |
1667 | */ | |
1668 | x->idle_heap.size = x->idle_heap.elements = 0 ; | |
1669 | x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos); | |
91447636 | 1670 | } else { |
9bccf70c | 1671 | x = b; |
91447636 A |
1672 | /* Flush accumulated credit for all queues */ |
1673 | for (i = 0; i <= x->fs.rq_size; i++) | |
1674 | for (q = x->fs.rq[i]; q; q = q->next) | |
1675 | q->numbytes = 0; | |
1676 | } | |
9bccf70c | 1677 | |
91447636 | 1678 | x->bandwidth = p->bandwidth ; |
9bccf70c A |
1679 | x->numbytes = 0; /* just in case... */ |
1680 | bcopy(p->if_name, x->if_name, sizeof(p->if_name) ); | |
1681 | x->ifp = NULL ; /* reset interface ptr */ | |
91447636 | 1682 | x->delay = p->delay ; |
9bccf70c | 1683 | set_fs_parms(&(x->fs), pfs); |
1c79356b | 1684 | |
1c79356b | 1685 | |
9bccf70c | 1686 | if ( x->fs.rq == NULL ) { /* a new pipe */ |
91447636 A |
1687 | r = alloc_hash(&(x->fs), pfs) ; |
1688 | if (r) { | |
1689 | lck_mtx_unlock(dn_mutex); | |
1690 | FREE(x, M_DUMMYNET); | |
1691 | return r ; | |
9bccf70c | 1692 | } |
9bccf70c A |
1693 | x->next = b ; |
1694 | if (a == NULL) | |
1695 | all_pipes = x ; | |
1696 | else | |
1697 | a->next = x ; | |
9bccf70c | 1698 | } |
91447636 | 1699 | lck_mtx_unlock(dn_mutex); |
9bccf70c A |
1700 | } else { /* config queue */ |
1701 | struct dn_flow_set *x, *a, *b ; | |
1702 | ||
91447636 | 1703 | lck_mtx_lock(dn_mutex); |
9bccf70c A |
1704 | /* locate flow_set */ |
1705 | for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ; | |
1c79356b | 1706 | a = b , b = b->next) ; |
1c79356b | 1707 | |
9bccf70c | 1708 | if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */ |
91447636 A |
1709 | if (pfs->parent_nr == 0) { /* need link to a pipe */ |
1710 | lck_mtx_unlock(dn_mutex); | |
1711 | return EINVAL ; | |
1712 | } | |
1713 | x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO); | |
9bccf70c | 1714 | if (x == NULL) { |
91447636 A |
1715 | lck_mtx_unlock(dn_mutex); |
1716 | printf("dummynet: no memory for new flow_set\n"); | |
1717 | return ENOSPC; | |
1c79356b | 1718 | } |
9bccf70c A |
1719 | x->fs_nr = pfs->fs_nr; |
1720 | x->parent_nr = pfs->parent_nr; | |
1721 | x->weight = pfs->weight ; | |
1722 | if (x->weight == 0) | |
1723 | x->weight = 1 ; | |
1724 | else if (x->weight > 100) | |
1725 | x->weight = 100 ; | |
1726 | } else { | |
1727 | /* Change parent pipe not allowed; must delete and recreate */ | |
91447636 A |
1728 | if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) { |
1729 | lck_mtx_unlock(dn_mutex); | |
1730 | return EINVAL ; | |
1731 | } | |
9bccf70c | 1732 | x = b; |
1c79356b | 1733 | } |
9bccf70c A |
1734 | set_fs_parms(x, pfs); |
1735 | ||
1736 | if ( x->rq == NULL ) { /* a new flow_set */ | |
91447636 A |
1737 | r = alloc_hash(x, pfs) ; |
1738 | if (r) { | |
1739 | lck_mtx_unlock(dn_mutex); | |
1740 | FREE(x, M_DUMMYNET); | |
1741 | return r ; | |
9bccf70c | 1742 | } |
9bccf70c A |
1743 | x->next = b; |
1744 | if (a == NULL) | |
1745 | all_flow_sets = x; | |
1746 | else | |
1747 | a->next = x; | |
9bccf70c | 1748 | } |
91447636 | 1749 | lck_mtx_unlock(dn_mutex); |
9bccf70c A |
1750 | } |
1751 | return 0 ; | |
1752 | } | |
1753 | ||
1754 | /* | |
1755 | * Helper function to remove from a heap queues which are linked to | |
1756 | * a flow_set about to be deleted. | |
1757 | */ | |
1758 | static void | |
1759 | fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs) | |
1760 | { | |
1761 | int i = 0, found = 0 ; | |
1762 | for (; i < h->elements ;) | |
1763 | if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) { | |
1764 | h->elements-- ; | |
1765 | h->p[i] = h->p[h->elements] ; | |
1766 | found++ ; | |
1767 | } else | |
1768 | i++ ; | |
1769 | if (found) | |
1770 | heapify(h); | |
1c79356b A |
1771 | } |
1772 | ||
9bccf70c A |
1773 | /* |
1774 | * helper function to remove a pipe from a heap (can be there at most once) | |
1775 | */ | |
1776 | static void | |
1777 | pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p) | |
1778 | { | |
1779 | if (h->elements > 0) { | |
1780 | int i = 0 ; | |
1781 | for (i=0; i < h->elements ; i++ ) { | |
1782 | if (h->p[i].object == p) { /* found it */ | |
1783 | h->elements-- ; | |
1784 | h->p[i] = h->p[h->elements] ; | |
1785 | heapify(h); | |
1786 | break ; | |
1787 | } | |
1788 | } | |
1789 | } | |
1790 | } | |
1791 | ||
1792 | /* | |
1793 | * drain all queues. Called in case of severe mbuf shortage. | |
1794 | */ | |
1c79356b | 1795 | void |
9bccf70c | 1796 | dummynet_drain() |
1c79356b | 1797 | { |
9bccf70c A |
1798 | struct dn_flow_set *fs; |
1799 | struct dn_pipe *p; | |
91447636 A |
1800 | struct mbuf *m, *mnext; |
1801 | ||
1802 | lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED); | |
9bccf70c A |
1803 | |
1804 | heap_free(&ready_heap); | |
1805 | heap_free(&wfq_ready_heap); | |
1806 | heap_free(&extract_heap); | |
1807 | /* remove all references to this pipe from flow_sets */ | |
1808 | for (fs = all_flow_sets; fs; fs= fs->next ) | |
1809 | purge_flow_set(fs, 0); | |
1810 | ||
1811 | for (p = all_pipes; p; p= p->next ) { | |
1812 | purge_flow_set(&(p->fs), 0); | |
91447636 A |
1813 | |
1814 | mnext = p->head; | |
1815 | while ((m = mnext) != NULL) { | |
1816 | mnext = m->m_nextpkt; | |
1817 | DN_FREE_PKT(m); | |
1818 | } | |
9bccf70c A |
1819 | p->head = p->tail = NULL ; |
1820 | } | |
1c79356b A |
1821 | } |
1822 | ||
9bccf70c A |
1823 | /* |
1824 | * Fully delete a pipe or a queue, cleaning up associated info. | |
1825 | */ | |
91447636 | 1826 | static int |
9bccf70c A |
1827 | delete_pipe(struct dn_pipe *p) |
1828 | { | |
9bccf70c A |
1829 | if (p->pipe_nr == 0 && p->fs.fs_nr == 0) |
1830 | return EINVAL ; | |
1831 | if (p->pipe_nr != 0 && p->fs.fs_nr != 0) | |
1832 | return EINVAL ; | |
1833 | if (p->pipe_nr != 0) { /* this is an old-style pipe */ | |
1834 | struct dn_pipe *a, *b; | |
1835 | struct dn_flow_set *fs; | |
1c79356b | 1836 | |
91447636 | 1837 | lck_mtx_lock(dn_mutex); |
9bccf70c A |
1838 | /* locate pipe */ |
1839 | for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ; | |
1840 | a = b , b = b->next) ; | |
91447636 A |
1841 | if (b == NULL || (b->pipe_nr != p->pipe_nr) ) { |
1842 | lck_mtx_unlock(dn_mutex); | |
9bccf70c | 1843 | return EINVAL ; /* not found */ |
91447636 | 1844 | } |
1c79356b | 1845 | |
9bccf70c A |
1846 | /* unlink from list of pipes */ |
1847 | if (a == NULL) | |
1848 | all_pipes = b->next ; | |
1849 | else | |
1850 | a->next = b->next ; | |
1851 | /* remove references to this pipe from the ip_fw rules. */ | |
91447636 | 1852 | flush_pipe_ptrs(&(b->fs)); |
9bccf70c A |
1853 | |
1854 | /* remove all references to this pipe from flow_sets */ | |
1855 | for (fs = all_flow_sets; fs; fs= fs->next ) | |
1856 | if (fs->pipe == b) { | |
91447636 | 1857 | printf("dummynet: ++ ref to pipe %d from fs %d\n", |
9bccf70c A |
1858 | p->pipe_nr, fs->fs_nr); |
1859 | fs->pipe = NULL ; | |
1860 | purge_flow_set(fs, 0); | |
1861 | } | |
1862 | fs_remove_from_heap(&ready_heap, &(b->fs)); | |
1863 | purge_pipe(b); /* remove all data associated to this pipe */ | |
1864 | /* remove reference to here from extract_heap and wfq_ready_heap */ | |
1865 | pipe_remove_from_heap(&extract_heap, b); | |
1866 | pipe_remove_from_heap(&wfq_ready_heap, b); | |
91447636 A |
1867 | lck_mtx_unlock(dn_mutex); |
1868 | ||
1869 | FREE(b, M_DUMMYNET); | |
9bccf70c A |
1870 | } else { /* this is a WF2Q queue (dn_flow_set) */ |
1871 | struct dn_flow_set *a, *b; | |
1872 | ||
91447636 | 1873 | lck_mtx_lock(dn_mutex); |
9bccf70c A |
1874 | /* locate set */ |
1875 | for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ; | |
1876 | a = b , b = b->next) ; | |
91447636 A |
1877 | if (b == NULL || (b->fs_nr != p->fs.fs_nr) ) { |
1878 | lck_mtx_unlock(dn_mutex); | |
9bccf70c | 1879 | return EINVAL ; /* not found */ |
91447636 | 1880 | } |
9bccf70c | 1881 | |
9bccf70c A |
1882 | if (a == NULL) |
1883 | all_flow_sets = b->next ; | |
1884 | else | |
1885 | a->next = b->next ; | |
1886 | /* remove references to this flow_set from the ip_fw rules. */ | |
91447636 | 1887 | flush_pipe_ptrs(b); |
9bccf70c A |
1888 | |
1889 | if (b->pipe != NULL) { | |
1890 | /* Update total weight on parent pipe and cleanup parent heaps */ | |
1891 | b->pipe->sum -= b->weight * b->backlogged ; | |
1892 | fs_remove_from_heap(&(b->pipe->not_eligible_heap), b); | |
1893 | fs_remove_from_heap(&(b->pipe->scheduler_heap), b); | |
1894 | #if 1 /* XXX should i remove from idle_heap as well ? */ | |
1895 | fs_remove_from_heap(&(b->pipe->idle_heap), b); | |
1896 | #endif | |
1897 | } | |
1898 | purge_flow_set(b, 1); | |
91447636 | 1899 | lck_mtx_unlock(dn_mutex); |
9bccf70c A |
1900 | } |
1901 | return 0 ; | |
1902 | } | |
1903 | ||
1904 | /* | |
1905 | * helper function used to copy data from kernel in DUMMYNET_GET | |
1906 | */ | |
1907 | static char * | |
1908 | dn_copy_set(struct dn_flow_set *set, char *bp) | |
1909 | { | |
1910 | int i, copied = 0 ; | |
1911 | struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp; | |
1912 | ||
91447636 A |
1913 | lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED); |
1914 | ||
9bccf70c A |
1915 | for (i = 0 ; i <= set->rq_size ; i++) |
1916 | for (q = set->rq[i] ; q ; q = q->next, qp++ ) { | |
1917 | if (q->hash_slot != i) | |
91447636 | 1918 | printf("dummynet: ++ at %d: wrong slot (have %d, " |
9bccf70c A |
1919 | "should be %d)\n", copied, q->hash_slot, i); |
1920 | if (q->fs != set) | |
91447636 | 1921 | printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n", |
9bccf70c A |
1922 | i, q->fs, set); |
1923 | copied++ ; | |
1924 | bcopy(q, qp, sizeof( *q ) ); | |
1925 | /* cleanup pointers */ | |
1926 | qp->next = NULL ; | |
1927 | qp->head = qp->tail = NULL ; | |
1928 | qp->fs = NULL ; | |
1929 | } | |
1930 | if (copied != set->rq_elements) | |
91447636 | 1931 | printf("dummynet: ++ wrong count, have %d should be %d\n", |
9bccf70c A |
1932 | copied, set->rq_elements); |
1933 | return (char *)qp ; | |
1934 | } | |
1c79356b | 1935 | |
91447636 A |
1936 | static size_t |
1937 | dn_calc_size(void) | |
1c79356b | 1938 | { |
9bccf70c A |
1939 | struct dn_flow_set *set ; |
1940 | struct dn_pipe *p ; | |
91447636 A |
1941 | size_t size ; |
1942 | ||
1943 | lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED); | |
9bccf70c | 1944 | |
9bccf70c A |
1945 | /* |
1946 | * compute size of data structures: list of pipes and flow_sets. | |
1947 | */ | |
1948 | for (p = all_pipes, size = 0 ; p ; p = p->next ) | |
1949 | size += sizeof( *p ) + | |
1950 | p->fs.rq_elements * sizeof(struct dn_flow_queue); | |
1951 | for (set = all_flow_sets ; set ; set = set->next ) | |
1952 | size += sizeof ( *set ) + | |
1953 | set->rq_elements * sizeof(struct dn_flow_queue); | |
91447636 A |
1954 | return size ; |
1955 | } | |
1956 | ||
1957 | static int | |
1958 | dummynet_get(struct sockopt *sopt) | |
1959 | { | |
1960 | char *buf, *bp ; /* bp is the "copy-pointer" */ | |
1961 | size_t size ; | |
1962 | struct dn_flow_set *set ; | |
1963 | struct dn_pipe *p ; | |
1964 | int error=0, i ; | |
1965 | ||
1966 | /* XXX lock held too long */ | |
1967 | lck_mtx_lock(dn_mutex); | |
1968 | /* | |
1969 | * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we | |
1970 | * cannot use this flag while holding a mutex. | |
1971 | */ | |
1972 | for (i = 0; i < 10; i++) { | |
1973 | size = dn_calc_size(); | |
1974 | lck_mtx_unlock(dn_mutex); | |
1975 | buf = _MALLOC(size, M_TEMP, M_WAITOK); | |
1976 | lck_mtx_lock(dn_mutex); | |
1977 | if (size == dn_calc_size()) | |
1978 | break; | |
1979 | FREE(buf, M_TEMP); | |
1980 | buf = NULL; | |
1981 | } | |
1982 | if (buf == NULL) { | |
1983 | lck_mtx_unlock(dn_mutex); | |
1984 | return ENOBUFS ; | |
9bccf70c A |
1985 | } |
1986 | for (p = all_pipes, bp = buf ; p ; p = p->next ) { | |
1987 | struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ; | |
1988 | ||
1989 | /* | |
1990 | * copy pipe descriptor into *bp, convert delay back to ms, | |
1991 | * then copy the flow_set descriptor(s) one at a time. | |
1992 | * After each flow_set, copy the queue descriptor it owns. | |
1993 | */ | |
1994 | bcopy(p, bp, sizeof( *p ) ); | |
5d5c5d0d | 1995 | pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ; |
9bccf70c A |
1996 | /* |
1997 | * XXX the following is a hack based on ->next being the | |
1998 | * first field in dn_pipe and dn_flow_set. The correct | |
1999 | * solution would be to move the dn_flow_set to the beginning | |
2000 | * of struct dn_pipe. | |
2001 | */ | |
2002 | pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ; | |
2003 | /* clean pointers */ | |
2004 | pipe_bp->head = pipe_bp->tail = NULL ; | |
2005 | pipe_bp->fs.next = NULL ; | |
2006 | pipe_bp->fs.pipe = NULL ; | |
2007 | pipe_bp->fs.rq = NULL ; | |
2008 | ||
2009 | bp += sizeof( *p ) ; | |
2010 | bp = dn_copy_set( &(p->fs), bp ); | |
2011 | } | |
2012 | for (set = all_flow_sets ; set ; set = set->next ) { | |
2013 | struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ; | |
2014 | bcopy(set, bp, sizeof( *set ) ); | |
2015 | /* XXX same hack as above */ | |
2016 | fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ; | |
2017 | fs_bp->pipe = NULL ; | |
2018 | fs_bp->rq = NULL ; | |
2019 | bp += sizeof( *set ) ; | |
2020 | bp = dn_copy_set( set, bp ); | |
2021 | } | |
91447636 A |
2022 | lck_mtx_unlock(dn_mutex); |
2023 | ||
9bccf70c A |
2024 | error = sooptcopyout(sopt, buf, size); |
2025 | FREE(buf, M_TEMP); | |
2026 | return error ; | |
1c79356b A |
2027 | } |
2028 | ||
9bccf70c A |
2029 | /* |
2030 | * Handler for the various dummynet socket options (get, flush, config, del) | |
2031 | */ | |
1c79356b | 2032 | static int |
9bccf70c | 2033 | ip_dn_ctl(struct sockopt *sopt) |
1c79356b | 2034 | { |
9bccf70c A |
2035 | int error = 0 ; |
2036 | struct dn_pipe *p, tmp_pipe; | |
2037 | ||
2038 | /* Disallow sets in really-really secure mode. */ | |
2039 | if (sopt->sopt_dir == SOPT_SET && securelevel >= 3) | |
2040 | return (EPERM); | |
2041 | ||
2042 | switch (sopt->sopt_name) { | |
2043 | default : | |
91447636 | 2044 | printf("dummynet: -- unknown option %d", sopt->sopt_name); |
9bccf70c A |
2045 | return EINVAL ; |
2046 | ||
2047 | case IP_DUMMYNET_GET : | |
2048 | error = dummynet_get(sopt); | |
2049 | break ; | |
2050 | ||
2051 | case IP_DUMMYNET_FLUSH : | |
2052 | dummynet_flush() ; | |
2053 | break ; | |
91447636 | 2054 | |
9bccf70c A |
2055 | case IP_DUMMYNET_CONFIGURE : |
2056 | p = &tmp_pipe ; | |
2057 | error = sooptcopyin(sopt, p, sizeof *p, sizeof *p); | |
2058 | if (error) | |
2059 | break ; | |
2060 | error = config_pipe(p); | |
2061 | break ; | |
2062 | ||
2063 | case IP_DUMMYNET_DEL : /* remove a pipe or queue */ | |
2064 | p = &tmp_pipe ; | |
2065 | error = sooptcopyin(sopt, p, sizeof *p, sizeof *p); | |
2066 | if (error) | |
2067 | break ; | |
2068 | ||
2069 | error = delete_pipe(p); | |
2070 | break ; | |
2071 | } | |
2072 | return error ; | |
1c79356b A |
2073 | } |
2074 | ||
91447636 | 2075 | void |
9bccf70c | 2076 | ip_dn_init(void) |
1c79356b | 2077 | { |
91447636 A |
2078 | /* setup locks */ |
2079 | dn_mutex_grp_attr = lck_grp_attr_alloc_init(); | |
2080 | dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr); | |
2081 | dn_mutex_attr = lck_attr_alloc_init(); | |
91447636 A |
2082 | |
2083 | if ((dn_mutex = lck_mtx_alloc_init(dn_mutex_grp, dn_mutex_attr)) == NULL) { | |
2084 | printf("ip_dn_init: can't alloc dn_mutex\n"); | |
2085 | return; | |
2086 | } | |
2087 | ||
9bccf70c A |
2088 | all_pipes = NULL ; |
2089 | all_flow_sets = NULL ; | |
2090 | ready_heap.size = ready_heap.elements = 0 ; | |
2091 | ready_heap.offset = 0 ; | |
2092 | ||
2093 | wfq_ready_heap.size = wfq_ready_heap.elements = 0 ; | |
2094 | wfq_ready_heap.offset = 0 ; | |
2095 | ||
2096 | extract_heap.size = extract_heap.elements = 0 ; | |
2097 | extract_heap.offset = 0 ; | |
2098 | ip_dn_ctl_ptr = ip_dn_ctl; | |
91447636 A |
2099 | ip_dn_io_ptr = dummynet_io; |
2100 | ip_dn_ruledel_ptr = dn_rule_delete; | |
1c79356b | 2101 | } |