]>
Commit | Line | Data |
---|---|---|
55e303ae | 1 | /* |
91447636 | 2 | * Copyright (c) 2003-2004 Apple Computer, Inc. All rights reserved. |
55e303ae A |
3 | * |
4 | * @APPLE_LICENSE_HEADER_START@ | |
37839358 A |
5 | * |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
55e303ae A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
37839358 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
55e303ae A |
20 | * @APPLE_LICENSE_HEADER_END@ |
21 | */ | |
22 | #include <sys/param.h> | |
23 | #include <sys/fcntl.h> | |
24 | #include <sys/kernel.h> | |
25 | #include <sys/lock.h> | |
26 | #include <sys/namei.h> | |
91447636 A |
27 | #include <sys/proc_internal.h> |
28 | #include <sys/kauth.h> | |
55e303ae A |
29 | #include <sys/queue.h> |
30 | #include <sys/systm.h> | |
31 | #include <sys/time.h> | |
32 | #include <sys/ucred.h> | |
33 | #include <sys/uio.h> | |
34 | #include <sys/unistd.h> | |
91447636 A |
35 | #include <sys/file_internal.h> |
36 | #include <sys/vnode_internal.h> | |
55e303ae | 37 | #include <sys/user.h> |
55e303ae A |
38 | #include <sys/syscall.h> |
39 | #include <sys/malloc.h> | |
40 | #include <sys/un.h> | |
91447636 A |
41 | #include <sys/sysent.h> |
42 | #include <sys/sysproto.h> | |
43 | #include <sys/vfs_context.h> | |
e5568f75 | 44 | #include <sys/domain.h> |
91447636 A |
45 | #include <sys/protosw.h> |
46 | #include <sys/socketvar.h> | |
e5568f75 A |
47 | |
48 | #include <bsm/audit.h> | |
49 | #include <bsm/audit_kevents.h> | |
50 | #include <bsm/audit_klib.h> | |
51 | #include <bsm/audit_kernel.h> | |
52 | ||
91447636 | 53 | #include <mach/host_priv.h> |
e5568f75 | 54 | #include <mach/host_special_ports.h> |
91447636 | 55 | #include <mach/audit_triggers_server.h> |
55e303ae | 56 | |
91447636 A |
57 | #include <kern/host.h> |
58 | #include <kern/kalloc.h> | |
59 | #include <kern/zalloc.h> | |
55e303ae A |
60 | #include <kern/lock.h> |
61 | #include <kern/wait_queue.h> | |
91447636 A |
62 | #include <kern/sched_prim.h> |
63 | ||
64 | #include <net/route.h> | |
e5568f75 | 65 | |
91447636 A |
66 | #include <netinet/in.h> |
67 | #include <netinet/in_pcb.h> | |
55e303ae A |
68 | |
69 | #ifdef AUDIT | |
70 | ||
71 | /* | |
72 | * The AUDIT_EXCESSIVELY_VERBOSE define enables a number of | |
73 | * gratuitously noisy printf's to the console. Due to the | |
74 | * volume, it should be left off unless you want your system | |
75 | * to churn a lot whenever the audit record flow gets high. | |
76 | */ | |
77 | /* #define AUDIT_EXCESSIVELY_VERBOSE */ | |
78 | #ifdef AUDIT_EXCESSIVELY_VERBOSE | |
91447636 | 79 | #define AUDIT_PRINTF_ONLY |
55e303ae A |
80 | #define AUDIT_PRINTF(x) printf x |
81 | #else | |
91447636 | 82 | #define AUDIT_PRINTF_ONLY __unused |
55e303ae A |
83 | #define AUDIT_PRINTF(X) |
84 | #endif | |
85 | ||
86 | #if DIAGNOSTIC | |
87 | #if defined(assert) | |
88 | #undef assert() | |
89 | #endif | |
90 | #define assert(cond) \ | |
91 | ((void) ((cond) ? 0 : panic("%s:%d (%s)", __FILE__, __LINE__, # cond))) | |
92 | #else | |
93 | #include <kern/assert.h> | |
94 | #endif /* DIAGNOSTIC */ | |
95 | ||
96 | /* | |
97 | * Define the audit control flags. | |
98 | */ | |
99 | int audit_enabled; | |
100 | int audit_suspended; | |
101 | ||
102 | /* | |
103 | * Mutex to protect global variables shared between various threads and | |
104 | * processes. | |
105 | */ | |
106 | static mutex_t *audit_mtx; | |
107 | ||
108 | /* | |
109 | * Queue of audit records ready for delivery to disk. We insert new | |
e5568f75 A |
110 | * records at the tail, and remove records from the head. Also, |
111 | * a count of the number of records used for checking queue depth. | |
112 | * In addition, a counter of records that we have allocated but are | |
113 | * not yet in the queue, which is needed to estimate the total | |
114 | * size of the combined set of records outstanding in the system. | |
55e303ae | 115 | */ |
91447636 A |
116 | static TAILQ_HEAD(, kaudit_record) audit_q; |
117 | static size_t audit_q_len; | |
118 | static size_t audit_pre_q_len; | |
e5568f75 A |
119 | |
120 | static wait_queue_t audit_wait_queue; | |
121 | static zone_t audit_zone; | |
55e303ae A |
122 | |
123 | /* | |
124 | * Condition variable to signal to the worker that it has work to do: | |
125 | * either new records are in the queue, or a log replacement is taking | |
126 | * place. | |
127 | */ | |
e5568f75 A |
128 | static int audit_worker_event; |
129 | #define AUDIT_WORKER_EVENT ((event_t)&audit_worker_event) | |
55e303ae | 130 | |
91447636 A |
131 | /* |
132 | * The audit worker thread (which is lazy started when we first | |
133 | * rotate the audit log. | |
134 | */ | |
135 | static thread_t audit_worker_thread = THREAD_NULL; | |
136 | ||
55e303ae A |
137 | /* |
138 | * When an audit log is rotated, the actual rotation must be performed | |
139 | * by the audit worker thread, as it may have outstanding writes on the | |
140 | * current audit log. audit_replacement_vp holds the vnode replacing | |
141 | * the current vnode. We can't let more than one replacement occur | |
142 | * at a time, so if more than one thread requests a replacement, only | |
143 | * one can have the replacement "in progress" at any given moment. If | |
144 | * a thread tries to replace the audit vnode and discovers a replacement | |
145 | * is already in progress (i.e., audit_replacement_flag != 0), then it | |
146 | * will sleep on audit_replacement_cv waiting its turn to perform a | |
147 | * replacement. When a replacement is completed, this cv is signalled | |
148 | * by the worker thread so a waiting thread can start another replacement. | |
149 | * We also store a credential to perform audit log write operations with. | |
150 | */ | |
e5568f75 A |
151 | static int audit_replacement_event; |
152 | #define AUDIT_REPLACEMENT_EVENT ((event_t)&audit_replacement_event) | |
55e303ae | 153 | |
91447636 | 154 | static int audit_replacement_flag; |
55e303ae | 155 | static struct vnode *audit_replacement_vp; |
91447636 | 156 | static kauth_cred_t audit_replacement_cred; |
55e303ae | 157 | |
e5568f75 A |
158 | /* |
159 | * Wait queue for auditing threads that cannot commit the audit | |
160 | * record at the present time. Also, the queue control parameter | |
161 | * structure. | |
162 | */ | |
163 | static int audit_commit_event; | |
164 | #define AUDIT_COMMIT_EVENT ((event_t)&audit_commit_event) | |
165 | ||
166 | static struct au_qctrl audit_qctrl; | |
167 | ||
55e303ae A |
168 | /* |
169 | * Flags to use on audit files when opening and closing. | |
170 | */ | |
91447636 A |
171 | static const int audit_open_flags = FWRITE | O_APPEND; |
172 | static const int audit_close_flags = FWRITE | O_APPEND; | |
55e303ae | 173 | |
e5568f75 A |
174 | /* |
175 | * Global audit statistiscs. | |
176 | */ | |
177 | static struct audit_fstat audit_fstat; | |
178 | ||
179 | /* | |
180 | Preselection mask for non-attributable events. | |
181 | */ | |
182 | static struct au_mask audit_nae_mask; | |
183 | ||
184 | /* | |
185 | * Flags related to Kernel->user-space communication. | |
186 | */ | |
187 | static int audit_file_rotate_wait; | |
188 | ||
189 | /* | |
190 | * Flags controlling behavior in low storage situations. | |
191 | * Should we panic if a write fails? Should we fail stop | |
192 | * if we're out of disk space? Are we currently "failing | |
193 | * stop" due to out of disk space? | |
194 | */ | |
195 | static int audit_panic_on_write_fail; | |
196 | static int audit_fail_stop; | |
197 | static int audit_in_failure; | |
198 | ||
199 | /* | |
200 | * When in a fail-stop mode, threads will drop into this wait queue | |
201 | * rather than perform auditable events. They won't ever get woken | |
202 | * up. | |
203 | */ | |
204 | static int audit_failure_event; | |
205 | #define AUDIT_FAILURE_EVENT ((event_t)&audit_failure_event) | |
206 | ||
55e303ae A |
207 | /* |
208 | * XXX: Couldn't find the include file for this, so copied kern_exec.c's | |
209 | * behavior. | |
210 | */ | |
211 | extern task_t kernel_task; | |
212 | ||
213 | static void | |
214 | audit_free(struct kaudit_record *ar) | |
215 | { | |
216 | if (ar->k_ar.ar_arg_upath1 != NULL) { | |
91447636 | 217 | kfree(ar->k_ar.ar_arg_upath1, MAXPATHLEN); |
55e303ae A |
218 | } |
219 | if (ar->k_ar.ar_arg_upath2 != NULL) { | |
91447636 A |
220 | kfree(ar->k_ar.ar_arg_upath2, MAXPATHLEN); |
221 | ||
55e303ae A |
222 | } |
223 | if (ar->k_ar.ar_arg_kpath1 != NULL) { | |
91447636 A |
224 | kfree(ar->k_ar.ar_arg_kpath1, MAXPATHLEN); |
225 | ||
55e303ae A |
226 | } |
227 | if (ar->k_ar.ar_arg_kpath2 != NULL) { | |
91447636 A |
228 | kfree(ar->k_ar.ar_arg_kpath2, MAXPATHLEN); |
229 | ||
55e303ae A |
230 | } |
231 | if (ar->k_ar.ar_arg_text != NULL) { | |
91447636 A |
232 | kfree(ar->k_ar.ar_arg_text, MAXPATHLEN); |
233 | ||
55e303ae A |
234 | } |
235 | if (ar->k_udata != NULL) { | |
91447636 A |
236 | kfree(ar->k_udata, ar->k_ulen); |
237 | ||
55e303ae | 238 | } |
91447636 | 239 | zfree(audit_zone, ar); |
55e303ae A |
240 | } |
241 | ||
242 | static int | |
91447636 | 243 | audit_write(struct vnode *vp, struct kaudit_record *ar, kauth_cred_t cred, |
55e303ae A |
244 | struct proc *p) |
245 | { | |
91447636 | 246 | struct vfsstatfs *mnt_stat = &vp->v_mount->mnt_vfsstat; |
55e303ae A |
247 | int ret; |
248 | struct au_record *bsm; | |
91447636 A |
249 | /* KVV maybe we should take a context as a param to audit_write? */ |
250 | struct vfs_context context; | |
251 | off_t file_size; | |
e5568f75 A |
252 | |
253 | mach_port_t audit_port; | |
254 | ||
91447636 | 255 | /* |
e5568f75 A |
256 | * First, gather statistics on the audit log file and file system |
257 | * so that we know how we're doing on space. In both cases, | |
258 | * if we're unable to perform the operation, we drop the record | |
259 | * and return. However, this is arguably an assertion failure. | |
260 | */ | |
91447636 A |
261 | context.vc_proc = p; |
262 | context.vc_ucred = cred; | |
263 | ret = vfs_update_vfsstat(vp->v_mount, &context); | |
e5568f75 A |
264 | if (ret) |
265 | goto out; | |
266 | ||
267 | /* update the global stats struct */ | |
91447636 A |
268 | if ((ret = vnode_size(vp, &file_size, &context)) != 0) |
269 | goto out; | |
270 | audit_fstat.af_currsz = file_size; | |
271 | ||
e5568f75 A |
272 | /* |
273 | * Send a message to the audit daemon when disk space is getting | |
274 | * low. | |
275 | * XXX Need to decide what to do if the trigger to the audit daemon | |
276 | * fails. | |
277 | */ | |
278 | if(host_get_audit_control_port(host_priv_self(), &audit_port) | |
279 | != KERN_SUCCESS) | |
280 | printf("Cannot get audit control port\n"); | |
281 | ||
282 | if (audit_port != MACH_PORT_NULL) { | |
91447636 | 283 | uint64_t temp; |
e5568f75 A |
284 | |
285 | /* | |
286 | * If we fall below percent free blocks, then trigger the | |
287 | * audit daemon to do something about it. | |
288 | */ | |
289 | if (audit_qctrl.aq_minfree != 0) { | |
290 | temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree); | |
291 | if (mnt_stat->f_bfree < temp) { | |
292 | ret = audit_triggers(audit_port, | |
293 | AUDIT_TRIGGER_LOW_SPACE); | |
294 | if (ret != KERN_SUCCESS) { | |
295 | printf( | |
296 | "Failed audit_triggers(AUDIT_TRIGGER_LOW_SPACE): %d\n", ret); | |
297 | /* | |
298 | * XXX: What to do here? Disable auditing? | |
299 | * panic? | |
300 | */ | |
301 | } | |
302 | } | |
303 | } | |
304 | /* Check if the current log file is full; if so, call for | |
305 | * a log rotate. This is not an exact comparison; we may | |
306 | * write some records over the limit. If that's not | |
307 | * acceptable, then add a fudge factor here. | |
308 | */ | |
309 | if ((audit_fstat.af_filesz != 0) && | |
310 | (audit_file_rotate_wait == 0) && | |
91447636 | 311 | (file_size >= audit_fstat.af_filesz)) { |
e5568f75 A |
312 | audit_file_rotate_wait = 1; |
313 | ret = audit_triggers(audit_port, | |
314 | AUDIT_TRIGGER_FILE_FULL); | |
315 | if (ret != KERN_SUCCESS) { | |
316 | printf( | |
317 | "Failed audit_triggers(AUDIT_TRIGGER_FILE_FULL): %d\n", ret); | |
318 | /* XXX what to do here? */ | |
319 | } | |
320 | } | |
321 | } | |
322 | ||
323 | /* | |
324 | * If the estimated amount of audit data in the audit event queue | |
325 | * (plus records allocated but not yet queued) has reached the | |
326 | * amount of free space on the disk, then we need to go into an | |
327 | * audit fail stop state, in which we do not permit the | |
328 | * allocation/committing of any new audit records. We continue to | |
329 | * process packets but don't allow any activities that might | |
330 | * generate new records. In the future, we might want to detect | |
331 | * when space is available again and allow operation to continue, | |
332 | * but this behavior is sufficient to meet fail stop requirements | |
333 | * in CAPP. | |
334 | */ | |
335 | if (audit_fail_stop && | |
336 | (unsigned long) | |
337 | ((audit_q_len + audit_pre_q_len + 1) * MAX_AUDIT_RECORD_SIZE) / | |
338 | mnt_stat->f_bsize >= (unsigned long)(mnt_stat->f_bfree)) { | |
339 | printf( | |
340 | "audit_worker: free space below size of audit queue, failing stop\n"); | |
341 | audit_in_failure = 1; | |
342 | } | |
55e303ae A |
343 | |
344 | /* | |
345 | * If there is a user audit record attached to the kernel record, | |
346 | * then write the user record. | |
347 | */ | |
348 | /* XXX Need to decide a few things here: IF the user audit | |
349 | * record is written, but the write of the kernel record fails, | |
350 | * what to do? Should the kernel record come before or after the | |
351 | * user record? For now, we write the user record first, and | |
352 | * we ignore errors. | |
353 | */ | |
e5568f75 | 354 | if (ar->k_ar_commit & AR_COMMIT_USER) { |
91447636 A |
355 | if (vnode_getwithref(vp) == 0) { |
356 | ret = vn_rdwr(UIO_WRITE, vp, (void *)ar->k_udata, ar->k_ulen, | |
357 | (off_t)0, UIO_SYSSPACE32, IO_APPEND|IO_UNIT, cred, NULL, p); | |
358 | vnode_put(vp); | |
359 | if (ret) | |
360 | goto out; | |
361 | } else { | |
e5568f75 | 362 | goto out; |
91447636 | 363 | } |
55e303ae A |
364 | } |
365 | ||
366 | /* | |
367 | * Convert the internal kernel record to BSM format and write it | |
368 | * out if everything's OK. | |
369 | */ | |
e5568f75 A |
370 | if (!(ar->k_ar_commit & AR_COMMIT_KERNEL)) { |
371 | ret = 0; | |
372 | goto out; | |
373 | } | |
374 | ||
55e303ae | 375 | ret = kaudit_to_bsm(ar, &bsm); |
e5568f75 A |
376 | if (ret == BSM_NOAUDIT) { |
377 | ret = 0; | |
378 | goto out; | |
379 | } | |
55e303ae | 380 | |
e5568f75 A |
381 | /* |
382 | * XXX: We drop the record on BSM conversion failure, but really | |
383 | * this is an assertion failure. | |
384 | */ | |
55e303ae A |
385 | if (ret == BSM_FAILURE) { |
386 | AUDIT_PRINTF(("BSM conversion failure\n")); | |
e5568f75 A |
387 | ret = EINVAL; |
388 | goto out; | |
55e303ae A |
389 | } |
390 | ||
391 | /* XXX This function can be called with the kernel funnel held, | |
392 | * which is not optimal. We should break the write functionality | |
393 | * away from the BSM record generation and have the BSM generation | |
394 | * done before this function is called. This function will then | |
395 | * take the BSM record as a parameter. | |
396 | */ | |
91447636 A |
397 | if ((ret = vnode_getwithref(vp)) == 0) { |
398 | ret = (vn_rdwr(UIO_WRITE, vp, (void *)bsm->data, bsm->len, | |
399 | (off_t)0, UIO_SYSSPACE32, IO_APPEND|IO_UNIT, cred, NULL, p)); | |
400 | vnode_put(vp); | |
401 | } | |
55e303ae A |
402 | kau_free(bsm); |
403 | ||
e5568f75 A |
404 | out: |
405 | /* | |
406 | * When we're done processing the current record, we have to | |
407 | * check to see if we're in a failure mode, and if so, whether | |
408 | * this was the last record left to be drained. If we're done | |
409 | * draining, then we fsync the vnode and panic. | |
410 | */ | |
411 | if (audit_in_failure && | |
412 | audit_q_len == 0 && audit_pre_q_len == 0) { | |
91447636 | 413 | (void)VNOP_FSYNC(vp, MNT_WAIT, &context); |
e5568f75 A |
414 | panic("Audit store overflow; record queue drained."); |
415 | } | |
416 | ||
55e303ae A |
417 | return (ret); |
418 | } | |
419 | ||
420 | static void | |
91447636 | 421 | audit_worker(void) |
55e303ae A |
422 | { |
423 | int do_replacement_signal, error, release_funnel; | |
424 | TAILQ_HEAD(, kaudit_record) ar_worklist; | |
91447636 | 425 | struct kaudit_record *ar; |
55e303ae | 426 | struct vnode *audit_vp, *old_vp; |
91447636 A |
427 | kauth_cred_t audit_cred; |
428 | kauth_cred_t old_cred; | |
55e303ae A |
429 | struct proc *audit_p; |
430 | ||
431 | AUDIT_PRINTF(("audit_worker starting\n")); | |
432 | ||
433 | TAILQ_INIT(&ar_worklist); | |
434 | audit_cred = NULL; | |
435 | audit_p = current_proc(); | |
436 | audit_vp = NULL; | |
437 | ||
438 | /* | |
439 | * XXX: Presumably we can assume Mach threads are started without | |
440 | * holding the BSD kernel funnel? | |
441 | */ | |
442 | thread_funnel_set(kernel_flock, FALSE); | |
443 | ||
444 | mutex_lock(audit_mtx); | |
445 | while (1) { | |
446 | /* | |
447 | * First priority: replace the audit log target if requested. | |
448 | * As we actually close the vnode in the worker thread, we | |
449 | * need to grab the funnel, which means releasing audit_mtx. | |
450 | * In case another replacement was scheduled while the mutex | |
451 | * we released, we loop. | |
452 | * | |
453 | * XXX It could well be we should drain existing records | |
454 | * first to ensure that the timestamps and ordering | |
455 | * are right. | |
456 | */ | |
457 | do_replacement_signal = 0; | |
458 | while (audit_replacement_flag != 0) { | |
459 | old_cred = audit_cred; | |
460 | old_vp = audit_vp; | |
461 | audit_cred = audit_replacement_cred; | |
462 | audit_vp = audit_replacement_vp; | |
463 | audit_replacement_cred = NULL; | |
464 | audit_replacement_vp = NULL; | |
465 | audit_replacement_flag = 0; | |
466 | ||
467 | audit_enabled = (audit_vp != NULL); | |
468 | ||
469 | if (old_vp != NULL || audit_vp != NULL) { | |
470 | mutex_unlock(audit_mtx); | |
471 | thread_funnel_set(kernel_flock, TRUE); | |
472 | release_funnel = 1; | |
473 | } else | |
474 | release_funnel = 0; | |
475 | /* | |
476 | * XXX: What to do about write failures here? | |
477 | */ | |
478 | if (old_vp != NULL) { | |
479 | AUDIT_PRINTF(("Closing old audit file\n")); | |
480 | vn_close(old_vp, audit_close_flags, old_cred, | |
481 | audit_p); | |
91447636 A |
482 | kauth_cred_rele(old_cred); |
483 | old_cred = NOCRED; | |
55e303ae A |
484 | old_vp = NULL; |
485 | AUDIT_PRINTF(("Audit file closed\n")); | |
486 | } | |
487 | if (audit_vp != NULL) { | |
488 | AUDIT_PRINTF(("Opening new audit file\n")); | |
489 | } | |
490 | if (release_funnel) { | |
491 | thread_funnel_set(kernel_flock, FALSE); | |
492 | mutex_lock(audit_mtx); | |
493 | } | |
494 | do_replacement_signal = 1; | |
495 | } | |
496 | /* | |
497 | * Signal that replacement have occurred to wake up and | |
498 | * start any other replacements started in parallel. We can | |
499 | * continue about our business in the mean time. We | |
500 | * broadcast so that both new replacements can be inserted, | |
501 | * but also so that the source(s) of replacement can return | |
502 | * successfully. | |
503 | */ | |
504 | if (do_replacement_signal) | |
e5568f75 A |
505 | wait_queue_wakeup_all(audit_wait_queue, |
506 | AUDIT_REPLACEMENT_EVENT, THREAD_AWAKENED); | |
55e303ae A |
507 | |
508 | /* | |
509 | * Next, check to see if we have any records to drain into | |
510 | * the vnode. If not, go back to waiting for an event. | |
511 | */ | |
512 | if (TAILQ_EMPTY(&audit_q)) { | |
513 | int ret; | |
514 | ||
515 | AUDIT_PRINTF(("audit_worker waiting\n")); | |
e5568f75 A |
516 | ret = wait_queue_assert_wait(audit_wait_queue, |
517 | AUDIT_WORKER_EVENT, | |
91447636 A |
518 | THREAD_UNINT, |
519 | 0); | |
55e303ae A |
520 | mutex_unlock(audit_mtx); |
521 | ||
522 | assert(ret == THREAD_WAITING); | |
523 | ret = thread_block(THREAD_CONTINUE_NULL); | |
524 | assert(ret == THREAD_AWAKENED); | |
525 | AUDIT_PRINTF(("audit_worker woken up\n")); | |
526 | AUDIT_PRINTF(("audit_worker: new vp = %p; value of flag %d\n", | |
527 | audit_replacement_vp, audit_replacement_flag)); | |
91447636 | 528 | |
55e303ae A |
529 | mutex_lock(audit_mtx); |
530 | continue; | |
531 | } | |
532 | ||
533 | /* | |
534 | * If we have records, but there's no active vnode to | |
535 | * write to, drain the record queue. Generally, we | |
536 | * prevent the unnecessary allocation of records | |
537 | * elsewhere, but we need to allow for races between | |
538 | * conditional allocation and queueing. Go back to | |
539 | * waiting when we're done. | |
540 | * | |
541 | * XXX: We go out of our way to avoid calling audit_free() | |
542 | * with the audit_mtx held, to avoid a lock order reversal | |
543 | * as free() may grab the funnel. This will be fixed at | |
544 | * some point. | |
545 | */ | |
546 | if (audit_vp == NULL) { | |
547 | while ((ar = TAILQ_FIRST(&audit_q))) { | |
548 | TAILQ_REMOVE(&audit_q, ar, k_q); | |
e5568f75 A |
549 | audit_q_len--; |
550 | if (audit_q_len <= audit_qctrl.aq_lowater) | |
551 | wait_queue_wakeup_one( | |
552 | audit_wait_queue, | |
553 | AUDIT_COMMIT_EVENT, | |
554 | THREAD_AWAKENED); | |
555 | ||
55e303ae A |
556 | TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q); |
557 | } | |
558 | mutex_unlock(audit_mtx); | |
559 | while ((ar = TAILQ_FIRST(&ar_worklist))) { | |
560 | TAILQ_REMOVE(&ar_worklist, ar, k_q); | |
561 | audit_free(ar); | |
562 | } | |
563 | mutex_lock(audit_mtx); | |
564 | continue; | |
565 | } | |
566 | ||
567 | /* | |
568 | * We have both records to write, and an active vnode | |
569 | * to write to. Dequeue a record, and start the write. | |
570 | * Eventually, it might make sense to dequeue several | |
571 | * records and perform our own clustering, if the lower | |
572 | * layers aren't doing it automatically enough. | |
573 | * | |
574 | * XXX: We go out of our way to avoid calling audit_free() | |
575 | * with the audit_mtx held, to avoid a lock order reversal | |
576 | * as free() may grab the funnel. This will be fixed at | |
577 | * some point. | |
578 | */ | |
579 | while ((ar = TAILQ_FIRST(&audit_q))) { | |
580 | TAILQ_REMOVE(&audit_q, ar, k_q); | |
e5568f75 A |
581 | audit_q_len--; |
582 | if (audit_q_len <= audit_qctrl.aq_lowater) { | |
583 | wait_queue_wakeup_one(audit_wait_queue, | |
584 | AUDIT_COMMIT_EVENT, THREAD_AWAKENED); | |
585 | } | |
586 | ||
55e303ae A |
587 | TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q); |
588 | } | |
589 | mutex_unlock(audit_mtx); | |
590 | release_funnel = 0; | |
591 | while ((ar = TAILQ_FIRST(&ar_worklist))) { | |
592 | TAILQ_REMOVE(&ar_worklist, ar, k_q); | |
593 | if (audit_vp != NULL) { | |
594 | /* | |
595 | * XXX: What should happen if there's a write | |
596 | * error here? | |
597 | */ | |
598 | if (!release_funnel) { | |
599 | thread_funnel_set(kernel_flock, TRUE); | |
600 | release_funnel = 1; | |
601 | } | |
55e303ae A |
602 | error = audit_write(audit_vp, ar, audit_cred, |
603 | audit_p); | |
91447636 | 604 | if (error && audit_panic_on_write_fail) { |
e5568f75 A |
605 | panic("audit_worker: write error %d\n", |
606 | error); | |
91447636 | 607 | } else if (error) { |
55e303ae A |
608 | printf("audit_worker: write error %d\n", |
609 | error); | |
610 | } | |
91447636 | 611 | } |
55e303ae A |
612 | audit_free(ar); |
613 | } | |
614 | if (release_funnel) | |
615 | thread_funnel_set(kernel_flock, FALSE); | |
616 | mutex_lock(audit_mtx); | |
617 | } | |
618 | } | |
619 | ||
620 | void | |
621 | audit_init(void) | |
622 | { | |
623 | ||
624 | /* Verify that the syscall to audit event table is the same | |
625 | * size as the system call table. | |
626 | */ | |
627 | if (nsys_au_event != nsysent) { | |
628 | printf("Security auditing service initialization failed, "); | |
629 | printf("audit event table doesn't match syscall table.\n"); | |
630 | return; | |
631 | } | |
632 | ||
633 | printf("Security auditing service present\n"); | |
634 | TAILQ_INIT(&audit_q); | |
e5568f75 | 635 | audit_q_len = 0; |
55e303ae A |
636 | audit_enabled = 0; |
637 | audit_suspended = 0; | |
638 | audit_replacement_cred = NULL; | |
639 | audit_replacement_flag = 0; | |
e5568f75 | 640 | audit_file_rotate_wait = 0; |
55e303ae | 641 | audit_replacement_vp = NULL; |
e5568f75 A |
642 | audit_fstat.af_filesz = 0; /* '0' means unset, unbounded */ |
643 | audit_fstat.af_currsz = 0; | |
644 | audit_qctrl.aq_hiwater = AQ_HIWATER; | |
645 | audit_qctrl.aq_lowater = AQ_LOWATER; | |
646 | audit_qctrl.aq_bufsz = AQ_BUFSZ; | |
647 | audit_qctrl.aq_minfree = AU_FS_MINFREE; | |
648 | ||
91447636 | 649 | audit_mtx = mutex_alloc(0); |
55e303ae | 650 | audit_wait_queue = wait_queue_alloc(SYNC_POLICY_FIFO); |
e5568f75 A |
651 | audit_zone = zinit(sizeof(struct kaudit_record), |
652 | AQ_HIWATER*sizeof(struct kaudit_record), | |
653 | 8192, | |
654 | "audit_zone"); | |
55e303ae A |
655 | |
656 | /* Initialize the BSM audit subsystem. */ | |
657 | kau_init(); | |
55e303ae A |
658 | } |
659 | ||
660 | static void | |
91447636 | 661 | audit_rotate_vnode(kauth_cred_t cred, struct vnode *vp) |
55e303ae A |
662 | { |
663 | int ret; | |
664 | ||
665 | /* | |
666 | * If other parallel log replacements have been requested, we wait | |
667 | * until they've finished before continuing. | |
668 | */ | |
669 | mutex_lock(audit_mtx); | |
670 | while (audit_replacement_flag != 0) { | |
671 | ||
672 | AUDIT_PRINTF(("audit_rotate_vnode: sleeping to wait for " | |
673 | "flag\n")); | |
e5568f75 A |
674 | ret = wait_queue_assert_wait(audit_wait_queue, |
675 | AUDIT_REPLACEMENT_EVENT, | |
91447636 A |
676 | THREAD_UNINT, |
677 | 0); | |
55e303ae A |
678 | mutex_unlock(audit_mtx); |
679 | ||
680 | assert(ret == THREAD_WAITING); | |
681 | ret = thread_block(THREAD_CONTINUE_NULL); | |
682 | assert(ret == THREAD_AWAKENED); | |
683 | AUDIT_PRINTF(("audit_rotate_vnode: woken up (flag %d)\n", | |
684 | audit_replacement_flag)); | |
685 | ||
686 | mutex_lock(audit_mtx); | |
687 | } | |
688 | audit_replacement_cred = cred; | |
689 | audit_replacement_flag = 1; | |
690 | audit_replacement_vp = vp; | |
691 | ||
692 | /* | |
91447636 A |
693 | * Start or wake up the audit worker to perform the exchange. |
694 | * It will have to wait until we release the mutex. | |
55e303ae | 695 | */ |
91447636 A |
696 | if (audit_worker_thread == THREAD_NULL) |
697 | audit_worker_thread = kernel_thread(kernel_task, | |
698 | audit_worker); | |
699 | else | |
700 | wait_queue_wakeup_one(audit_wait_queue, | |
701 | AUDIT_WORKER_EVENT, | |
702 | THREAD_AWAKENED); | |
55e303ae A |
703 | |
704 | /* | |
705 | * Wait for the audit_worker to broadcast that a replacement has | |
706 | * taken place; we know that once this has happened, our vnode | |
707 | * has been replaced in, so we can return successfully. | |
708 | */ | |
709 | AUDIT_PRINTF(("audit_rotate_vnode: waiting for news of " | |
710 | "replacement\n")); | |
e5568f75 A |
711 | ret = wait_queue_assert_wait(audit_wait_queue, |
712 | AUDIT_REPLACEMENT_EVENT, | |
91447636 A |
713 | THREAD_UNINT, |
714 | 0); | |
55e303ae A |
715 | mutex_unlock(audit_mtx); |
716 | ||
717 | assert(ret == THREAD_WAITING); | |
718 | ret = thread_block(THREAD_CONTINUE_NULL); | |
719 | assert(ret == THREAD_AWAKENED); | |
720 | AUDIT_PRINTF(("audit_rotate_vnode: change acknowledged by " | |
721 | "audit_worker (flag " "now %d)\n", audit_replacement_flag)); | |
e5568f75 A |
722 | |
723 | audit_file_rotate_wait = 0; /* We can now request another rotation */ | |
55e303ae A |
724 | } |
725 | ||
726 | /* | |
727 | * Drain the audit queue and close the log at shutdown. | |
728 | */ | |
729 | void | |
730 | audit_shutdown(void) | |
731 | { | |
55e303ae A |
732 | audit_rotate_vnode(NULL, NULL); |
733 | } | |
734 | ||
735 | static __inline__ struct uthread * | |
736 | curuthread(void) | |
737 | { | |
91447636 | 738 | return (get_bsdthread_info(current_thread())); |
55e303ae A |
739 | } |
740 | ||
741 | static __inline__ struct kaudit_record * | |
742 | currecord(void) | |
743 | { | |
55e303ae A |
744 | return (curuthread()->uu_ar); |
745 | } | |
746 | ||
747 | /********************************** | |
748 | * Begin system calls. * | |
749 | **********************************/ | |
750 | /* | |
751 | * System call to allow a user space application to submit a BSM audit | |
752 | * record to the kernel for inclusion in the audit log. This function | |
753 | * does little verification on the audit record that is submitted. | |
754 | * | |
755 | * XXXAUDIT: Audit preselection for user records does not currently | |
756 | * work, since we pre-select only based on the AUE_audit event type, | |
757 | * not the event type submitted as part of the user audit data. | |
758 | */ | |
55e303ae A |
759 | /* ARGSUSED */ |
760 | int | |
91447636 | 761 | audit(struct proc *p, struct audit_args *uap, __unused register_t *retval) |
55e303ae | 762 | { |
55e303ae A |
763 | int error; |
764 | void * rec; | |
765 | struct kaudit_record *ar; | |
e5568f75 | 766 | struct uthread *uthr; |
55e303ae | 767 | |
91447636 | 768 | error = suser(kauth_cred_get(), &p->p_acflag); |
55e303ae A |
769 | if (error) |
770 | return (error); | |
771 | ||
91447636 | 772 | if ((uap->length <= 0) || (uap->length > (int)audit_qctrl.aq_bufsz)) |
e5568f75 A |
773 | return (EINVAL); |
774 | ||
775 | ar = currecord(); | |
776 | ||
777 | /* If there's no current audit record (audit() itself not audited) | |
778 | * commit the user audit record. | |
779 | */ | |
780 | if (ar == NULL) { | |
781 | uthr = curuthread(); | |
782 | if (uthr == NULL) /* can this happen? */ | |
91447636 | 783 | return (ENOTSUP); |
e5568f75 A |
784 | |
785 | /* This is not very efficient; we're required to allocate | |
786 | * a complete kernel audit record just so the user record | |
787 | * can tag along. | |
788 | */ | |
789 | uthr->uu_ar = audit_new(AUE_NULL, p, uthr); | |
790 | if (uthr->uu_ar == NULL) /* auditing not on, or memory error */ | |
791 | return (ENOTSUP); | |
792 | ar = uthr->uu_ar; | |
793 | } | |
794 | ||
55e303ae A |
795 | if (uap->length > MAX_AUDIT_RECORD_SIZE) |
796 | return (EINVAL); | |
797 | ||
e5568f75 | 798 | rec = (void *)kalloc((vm_size_t)uap->length); |
55e303ae A |
799 | |
800 | error = copyin(uap->record, rec, uap->length); | |
801 | if (error) | |
802 | goto free_out; | |
803 | ||
804 | /* Verify the record */ | |
805 | if (bsm_rec_verify(rec) == 0) { | |
806 | error = EINVAL; | |
807 | goto free_out; | |
808 | } | |
809 | ||
810 | /* Attach the user audit record to the kernel audit record. Because | |
811 | * this system call is an auditable event, we will write the user | |
812 | * record along with the record for this audit event. | |
813 | */ | |
814 | ar->k_udata = rec; | |
e5568f75 | 815 | ar->k_ar_commit |= AR_COMMIT_USER; |
55e303ae A |
816 | ar->k_ulen = uap->length; |
817 | return (0); | |
818 | ||
819 | free_out: | |
e5568f75 A |
820 | /* audit_syscall_exit() will free the audit record on the thread |
821 | * even if we allocated it above. | |
822 | */ | |
91447636 | 823 | kfree(rec, uap->length); |
55e303ae A |
824 | return (error); |
825 | } | |
826 | ||
827 | /* | |
828 | * System call to manipulate auditing. | |
829 | */ | |
55e303ae A |
830 | /* ARGSUSED */ |
831 | int | |
91447636 | 832 | auditon(struct proc *p, __unused struct auditon_args *uap, __unused register_t *retval) |
55e303ae | 833 | { |
e5568f75 A |
834 | int ret; |
835 | int len; | |
836 | union auditon_udata udata; | |
837 | struct proc *tp; | |
55e303ae | 838 | |
e5568f75 | 839 | AUDIT_ARG(cmd, uap->cmd); |
91447636 | 840 | ret = suser(kauth_cred_get(), &p->p_acflag); |
e5568f75 A |
841 | if (ret) |
842 | return (ret); | |
55e303ae | 843 | |
e5568f75 | 844 | len = uap->length; |
91447636 | 845 | if ((len <= 0) || (len > (int)sizeof(union auditon_udata))) |
e5568f75 | 846 | return (EINVAL); |
55e303ae | 847 | |
e5568f75 A |
848 | memset((void *)&udata, 0, sizeof(udata)); |
849 | ||
850 | switch (uap->cmd) { | |
851 | /* Some of the GET commands use the arguments too */ | |
852 | case A_SETPOLICY: | |
853 | case A_SETKMASK: | |
854 | case A_SETQCTRL: | |
855 | case A_SETSTAT: | |
856 | case A_SETUMASK: | |
857 | case A_SETSMASK: | |
858 | case A_SETCOND: | |
859 | case A_SETCLASS: | |
860 | case A_SETPMASK: | |
861 | case A_SETFSIZE: | |
862 | case A_SETKAUDIT: | |
863 | case A_GETCLASS: | |
864 | case A_GETPINFO: | |
865 | case A_GETPINFO_ADDR: | |
866 | ret = copyin(uap->data, (void *)&udata, uap->length); | |
867 | if (ret) | |
868 | return (ret); | |
869 | AUDIT_ARG(auditon, &udata); | |
870 | break; | |
91447636 | 871 | } |
e5568f75 A |
872 | |
873 | /* XXX Need to implement these commands by accessing the global | |
874 | * values associated with the commands. | |
875 | */ | |
876 | switch (uap->cmd) { | |
877 | case A_GETPOLICY: | |
878 | if (!audit_fail_stop) | |
879 | udata.au_policy |= AUDIT_CNT; | |
880 | if (audit_panic_on_write_fail) | |
881 | udata.au_policy |= AUDIT_AHLT; | |
882 | break; | |
883 | case A_SETPOLICY: | |
884 | if (udata.au_policy & ~(AUDIT_CNT|AUDIT_AHLT)) | |
885 | return (EINVAL); | |
91447636 | 886 | /* |
e5568f75 | 887 | * XXX - Need to wake up waiters if the policy relaxes? |
91447636 | 888 | */ |
e5568f75 A |
889 | audit_fail_stop = ((udata.au_policy & AUDIT_CNT) == 0); |
890 | audit_panic_on_write_fail = (udata.au_policy & AUDIT_AHLT); | |
891 | break; | |
892 | case A_GETKMASK: | |
893 | udata.au_mask = audit_nae_mask; | |
894 | break; | |
895 | case A_SETKMASK: | |
896 | audit_nae_mask = udata.au_mask; | |
897 | break; | |
898 | case A_GETQCTRL: | |
899 | udata.au_qctrl = audit_qctrl; | |
900 | break; | |
901 | case A_SETQCTRL: | |
902 | if ((udata.au_qctrl.aq_hiwater > AQ_MAXHIGH) || | |
903 | (udata.au_qctrl.aq_lowater >= udata.au_qctrl.aq_hiwater) || | |
904 | (udata.au_qctrl.aq_bufsz > AQ_MAXBUFSZ) || | |
905 | (udata.au_qctrl.aq_minfree < 0) || | |
906 | (udata.au_qctrl.aq_minfree > 100)) | |
907 | return (EINVAL); | |
908 | ||
909 | audit_qctrl = udata.au_qctrl; | |
910 | /* XXX The queue delay value isn't used with the kernel. */ | |
911 | audit_qctrl.aq_delay = -1; | |
912 | break; | |
913 | case A_GETCWD: | |
914 | return (ENOSYS); | |
915 | break; | |
916 | case A_GETCAR: | |
917 | return (ENOSYS); | |
918 | break; | |
919 | case A_GETSTAT: | |
920 | return (ENOSYS); | |
921 | break; | |
922 | case A_SETSTAT: | |
923 | return (ENOSYS); | |
924 | break; | |
925 | case A_SETUMASK: | |
926 | return (ENOSYS); | |
927 | break; | |
928 | case A_SETSMASK: | |
929 | return (ENOSYS); | |
930 | break; | |
931 | case A_GETCOND: | |
932 | if (audit_enabled && !audit_suspended) | |
933 | udata.au_cond = AUC_AUDITING; | |
934 | else | |
935 | udata.au_cond = AUC_NOAUDIT; | |
936 | break; | |
937 | case A_SETCOND: | |
938 | if (udata.au_cond == AUC_NOAUDIT) | |
939 | audit_suspended = 1; | |
940 | if (udata.au_cond == AUC_AUDITING) | |
941 | audit_suspended = 0; | |
942 | if (udata.au_cond == AUC_DISABLED) { | |
943 | audit_suspended = 1; | |
944 | audit_shutdown(); | |
945 | } | |
946 | break; | |
947 | case A_GETCLASS: | |
948 | udata.au_evclass.ec_class = | |
949 | au_event_class(udata.au_evclass.ec_number); | |
950 | break; | |
951 | case A_SETCLASS: | |
952 | au_evclassmap_insert(udata.au_evclass.ec_number, | |
953 | udata.au_evclass.ec_class); | |
954 | break; | |
955 | case A_GETPINFO: | |
956 | if (udata.au_aupinfo.ap_pid < 1) | |
957 | return (EINVAL); | |
958 | if ((tp = pfind(udata.au_aupinfo.ap_pid)) == NULL) | |
959 | return (EINVAL); | |
960 | ||
91447636 | 961 | udata.au_aupinfo.ap_auid = tp->p_ucred->cr_au.ai_auid; |
e5568f75 | 962 | udata.au_aupinfo.ap_mask.am_success = |
91447636 | 963 | tp->p_ucred->cr_au.ai_mask.am_success; |
e5568f75 | 964 | udata.au_aupinfo.ap_mask.am_failure = |
91447636 | 965 | tp->p_ucred->cr_au.ai_mask.am_failure; |
e5568f75 | 966 | udata.au_aupinfo.ap_termid.machine = |
91447636 | 967 | tp->p_ucred->cr_au.ai_termid.machine; |
e5568f75 | 968 | udata.au_aupinfo.ap_termid.port = |
91447636 A |
969 | tp->p_ucred->cr_au.ai_termid.port; |
970 | udata.au_aupinfo.ap_asid = tp->p_ucred->cr_au.ai_asid; | |
e5568f75 A |
971 | break; |
972 | case A_SETPMASK: | |
973 | if (udata.au_aupinfo.ap_pid < 1) | |
974 | return (EINVAL); | |
975 | if ((tp = pfind(udata.au_aupinfo.ap_pid)) == NULL) | |
976 | return (EINVAL); | |
977 | ||
91447636 A |
978 | /* |
979 | * we are modifying the audit info in a credential so we need a new | |
980 | * credential (or take another reference on an existing credential that | |
981 | * matches our new one). We must do this because the audit info in the | |
982 | * credential is used as part of our hash key. Get current credential | |
983 | * in the target process and take a reference while we muck with it. | |
984 | */ | |
985 | for (;;) { | |
986 | kauth_cred_t my_cred, my_new_cred; | |
987 | struct auditinfo temp_auditinfo; | |
988 | ||
989 | my_cred = kauth_cred_proc_ref(tp); | |
990 | /* | |
991 | * set the credential with new info. If there is no change we get back | |
992 | * the same credential we passed in. | |
993 | */ | |
994 | temp_auditinfo = my_cred->cr_au; | |
995 | temp_auditinfo.ai_mask.am_success = | |
996 | udata.au_aupinfo.ap_mask.am_success; | |
997 | temp_auditinfo.ai_mask.am_failure = | |
998 | udata.au_aupinfo.ap_mask.am_failure; | |
999 | my_new_cred = kauth_cred_setauditinfo(my_cred, &temp_auditinfo); | |
1000 | ||
1001 | if (my_cred != my_new_cred) { | |
1002 | proc_lock(tp); | |
1003 | /* need to protect for a race where another thread also changed | |
1004 | * the credential after we took our reference. If p_ucred has | |
1005 | * changed then we should restart this again with the new cred. | |
1006 | */ | |
1007 | if (tp->p_ucred != my_cred) { | |
1008 | proc_unlock(tp); | |
1009 | kauth_cred_rele(my_cred); | |
1010 | kauth_cred_rele(my_new_cred); | |
1011 | /* try again */ | |
1012 | continue; | |
1013 | } | |
1014 | tp->p_ucred = my_new_cred; | |
1015 | proc_unlock(tp); | |
1016 | } | |
1017 | /* drop our extra reference */ | |
1018 | kauth_cred_rele(my_cred); | |
1019 | break; | |
1020 | } | |
e5568f75 A |
1021 | break; |
1022 | case A_SETFSIZE: | |
1023 | if ((udata.au_fstat.af_filesz != 0) && | |
1024 | (udata.au_fstat.af_filesz < MIN_AUDIT_FILE_SIZE)) | |
1025 | return (EINVAL); | |
1026 | audit_fstat.af_filesz = udata.au_fstat.af_filesz; | |
1027 | break; | |
1028 | case A_GETFSIZE: | |
1029 | udata.au_fstat.af_filesz = audit_fstat.af_filesz; | |
1030 | udata.au_fstat.af_currsz = audit_fstat.af_currsz; | |
1031 | break; | |
1032 | case A_GETPINFO_ADDR: | |
1033 | return (ENOSYS); | |
1034 | break; | |
1035 | case A_GETKAUDIT: | |
1036 | return (ENOSYS); | |
1037 | break; | |
1038 | case A_SETKAUDIT: | |
91447636 | 1039 | return (ENOSYS); |
e5568f75 | 1040 | break; |
91447636 | 1041 | } |
e5568f75 A |
1042 | /* Copy data back to userspace for the GET comands */ |
1043 | switch (uap->cmd) { | |
1044 | case A_GETPOLICY: | |
1045 | case A_GETKMASK: | |
1046 | case A_GETQCTRL: | |
1047 | case A_GETCWD: | |
1048 | case A_GETCAR: | |
1049 | case A_GETSTAT: | |
1050 | case A_GETCOND: | |
1051 | case A_GETCLASS: | |
1052 | case A_GETPINFO: | |
1053 | case A_GETFSIZE: | |
1054 | case A_GETPINFO_ADDR: | |
1055 | case A_GETKAUDIT: | |
1056 | ret = copyout((void *)&udata, uap->data, uap->length); | |
1057 | if (ret) | |
1058 | return (ret); | |
1059 | break; | |
1060 | } | |
1061 | ||
1062 | return (0); | |
55e303ae A |
1063 | } |
1064 | ||
1065 | /* | |
1066 | * System calls to manage the user audit information. | |
1067 | * XXXAUDIT May need to lock the proc structure. | |
1068 | */ | |
55e303ae A |
1069 | /* ARGSUSED */ |
1070 | int | |
91447636 | 1071 | getauid(struct proc *p, struct getauid_args *uap, __unused register_t *retval) |
55e303ae | 1072 | { |
55e303ae A |
1073 | int error; |
1074 | ||
91447636 A |
1075 | error = copyout((void *)&kauth_cred_get()->cr_au.ai_auid, |
1076 | uap->auid, sizeof(au_id_t)); | |
55e303ae A |
1077 | if (error) |
1078 | return (error); | |
1079 | ||
1080 | return (0); | |
1081 | } | |
1082 | ||
55e303ae A |
1083 | /* ARGSUSED */ |
1084 | int | |
91447636 | 1085 | setauid(struct proc *p, struct setauid_args *uap, __unused register_t *retval) |
55e303ae | 1086 | { |
55e303ae | 1087 | int error; |
91447636 | 1088 | au_id_t temp_au_id; |
55e303ae | 1089 | |
91447636 | 1090 | error = suser(kauth_cred_get(), &p->p_acflag); |
55e303ae A |
1091 | if (error) |
1092 | return (error); | |
1093 | ||
91447636 A |
1094 | error = copyin(uap->auid, |
1095 | (void *)&temp_au_id, | |
1096 | sizeof(au_id_t)); | |
55e303ae A |
1097 | if (error) |
1098 | return (error); | |
1099 | ||
91447636 A |
1100 | /* |
1101 | * we are modifying the audit info in a credential so we need a new | |
1102 | * credential (or take another reference on an existing credential that | |
1103 | * matches our new one). We must do this because the audit info in the | |
1104 | * credential is used as part of our hash key. Get current credential | |
1105 | * in the target process and take a reference while we muck with it. | |
1106 | */ | |
1107 | for (;;) { | |
1108 | kauth_cred_t my_cred, my_new_cred; | |
1109 | struct auditinfo temp_auditinfo; | |
1110 | ||
1111 | my_cred = kauth_cred_proc_ref(p); | |
1112 | /* | |
1113 | * set the credential with new info. If there is no change we get back | |
1114 | * the same credential we passed in. | |
1115 | */ | |
1116 | temp_auditinfo = my_cred->cr_au; | |
1117 | temp_auditinfo.ai_auid = temp_au_id; | |
1118 | my_new_cred = kauth_cred_setauditinfo(my_cred, &temp_auditinfo); | |
1119 | ||
1120 | if (my_cred != my_new_cred) { | |
1121 | proc_lock(p); | |
1122 | /* need to protect for a race where another thread also changed | |
1123 | * the credential after we took our reference. If p_ucred has | |
1124 | * changed then we should restart this again with the new cred. | |
1125 | */ | |
1126 | if (p->p_ucred != my_cred) { | |
1127 | proc_unlock(p); | |
1128 | kauth_cred_rele(my_cred); | |
1129 | kauth_cred_rele(my_new_cred); | |
1130 | /* try again */ | |
1131 | continue; | |
1132 | } | |
1133 | p->p_ucred = my_new_cred; | |
1134 | proc_unlock(p); | |
1135 | } | |
1136 | /* drop our extra reference */ | |
1137 | kauth_cred_rele(my_cred); | |
1138 | break; | |
1139 | } | |
1140 | ||
e5568f75 A |
1141 | /* propagate the change from the process to Mach task */ |
1142 | set_security_token(p); | |
1143 | ||
91447636 | 1144 | audit_arg_auid(kauth_cred_get()->cr_au.ai_auid); |
55e303ae A |
1145 | return (0); |
1146 | } | |
1147 | ||
1148 | /* | |
1149 | * System calls to get and set process audit information. | |
a3d08fcd A |
1150 | * If the caller is privileged, they get the whole set of |
1151 | * audit information. Otherwise, the real audit mask is | |
1152 | * filtered out - but the rest of the information is | |
1153 | * returned. | |
55e303ae | 1154 | */ |
55e303ae A |
1155 | /* ARGSUSED */ |
1156 | int | |
91447636 | 1157 | getaudit(struct proc *p, struct getaudit_args *uap, __unused register_t *retval) |
55e303ae | 1158 | { |
91447636 | 1159 | struct auditinfo ai; |
55e303ae A |
1160 | int error; |
1161 | ||
91447636 A |
1162 | ai = kauth_cred_get()->cr_au; |
1163 | ||
a3d08fcd | 1164 | /* only superuser gets to see the real mask */ |
91447636 | 1165 | error = suser(kauth_cred_get(), &p->p_acflag); |
a3d08fcd A |
1166 | if (error) { |
1167 | ai.ai_mask.am_success = ~0; | |
1168 | ai.ai_mask.am_failure = ~0; | |
1169 | } | |
1170 | ||
91447636 | 1171 | error = copyout(&ai, uap->auditinfo, sizeof(ai)); |
55e303ae A |
1172 | if (error) |
1173 | return (error); | |
1174 | ||
1175 | return (0); | |
1176 | } | |
1177 | ||
55e303ae A |
1178 | /* ARGSUSED */ |
1179 | int | |
91447636 | 1180 | setaudit(struct proc *p, struct setaudit_args *uap, __unused register_t *retval) |
55e303ae | 1181 | { |
55e303ae | 1182 | int error; |
91447636 | 1183 | struct auditinfo temp_auditinfo; |
55e303ae | 1184 | |
91447636 | 1185 | error = suser(kauth_cred_get(), &p->p_acflag); |
55e303ae A |
1186 | if (error) |
1187 | return (error); | |
91447636 A |
1188 | |
1189 | error = copyin(uap->auditinfo, | |
1190 | (void *)&temp_auditinfo, | |
1191 | sizeof(temp_auditinfo)); | |
55e303ae A |
1192 | if (error) |
1193 | return (error); | |
1194 | ||
91447636 A |
1195 | /* |
1196 | * we are modifying the audit info in a credential so we need a new | |
1197 | * credential (or take another reference on an existing credential that | |
1198 | * matches our new one). We must do this because the audit info in the | |
1199 | * credential is used as part of our hash key. Get current credential | |
1200 | * in the target process and take a reference while we muck with it. | |
1201 | */ | |
1202 | for (;;) { | |
1203 | kauth_cred_t my_cred, my_new_cred; | |
1204 | ||
1205 | my_cred = kauth_cred_proc_ref(p); | |
1206 | /* | |
1207 | * set the credential with new info. If there is no change we get back | |
1208 | * the same credential we passed in. | |
1209 | */ | |
1210 | my_new_cred = kauth_cred_setauditinfo(my_cred, &temp_auditinfo); | |
1211 | ||
1212 | if (my_cred != my_new_cred) { | |
1213 | proc_lock(p); | |
1214 | /* need to protect for a race where another thread also changed | |
1215 | * the credential after we took our reference. If p_ucred has | |
1216 | * changed then we should restart this again with the new cred. | |
1217 | */ | |
1218 | if (p->p_ucred != my_cred) { | |
1219 | proc_unlock(p); | |
1220 | kauth_cred_rele(my_cred); | |
1221 | kauth_cred_rele(my_new_cred); | |
1222 | /* try again */ | |
1223 | continue; | |
1224 | } | |
1225 | p->p_ucred = my_new_cred; | |
1226 | proc_unlock(p); | |
1227 | } | |
1228 | /* drop our extra reference */ | |
1229 | kauth_cred_rele(my_cred); | |
1230 | break; | |
1231 | } | |
1232 | ||
e5568f75 A |
1233 | /* propagate the change from the process to Mach task */ |
1234 | set_security_token(p); | |
1235 | ||
91447636 | 1236 | audit_arg_auditinfo(&p->p_ucred->cr_au); |
e5568f75 | 1237 | |
55e303ae A |
1238 | return (0); |
1239 | } | |
1240 | ||
55e303ae A |
1241 | /* ARGSUSED */ |
1242 | int | |
91447636 | 1243 | getaudit_addr(struct proc *p, __unused struct getaudit_addr_args *uap, __unused register_t *retval) |
55e303ae | 1244 | { |
55e303ae A |
1245 | return (ENOSYS); |
1246 | } | |
1247 | ||
55e303ae A |
1248 | /* ARGSUSED */ |
1249 | int | |
91447636 | 1250 | setaudit_addr(struct proc *p, __unused struct setaudit_addr_args *uap, __unused register_t *retval) |
55e303ae | 1251 | { |
55e303ae A |
1252 | int error; |
1253 | ||
91447636 | 1254 | error = suser(kauth_cred_get(), &p->p_acflag); |
55e303ae A |
1255 | if (error) |
1256 | return (error); | |
1257 | return (ENOSYS); | |
1258 | } | |
1259 | ||
1260 | /* | |
1261 | * Syscall to manage audit files. | |
1262 | * | |
55e303ae | 1263 | */ |
55e303ae A |
1264 | /* ARGSUSED */ |
1265 | int | |
91447636 | 1266 | auditctl(struct proc *p, struct auditctl_args *uap, __unused register_t *retval) |
55e303ae | 1267 | { |
55e303ae | 1268 | struct nameidata nd; |
91447636 | 1269 | kauth_cred_t cred; |
55e303ae | 1270 | struct vnode *vp; |
91447636 A |
1271 | int error, flags; |
1272 | struct vfs_context context; | |
1273 | ||
1274 | context.vc_proc = p; | |
1275 | context.vc_ucred = kauth_cred_get(); | |
55e303ae | 1276 | |
91447636 | 1277 | error = suser(kauth_cred_get(), &p->p_acflag); |
55e303ae A |
1278 | if (error) |
1279 | return (error); | |
1280 | ||
1281 | vp = NULL; | |
1282 | cred = NULL; | |
1283 | ||
1284 | /* | |
1285 | * If a path is specified, open the replacement vnode, perform | |
1286 | * validity checks, and grab another reference to the current | |
1287 | * credential. | |
1288 | */ | |
91447636 | 1289 | if (uap->path != 0) { |
e5568f75 | 1290 | NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNPATH1, |
91447636 A |
1291 | (IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32), |
1292 | uap->path, &context); | |
55e303ae A |
1293 | flags = audit_open_flags; |
1294 | error = vn_open(&nd, flags, 0); | |
1295 | if (error) | |
1296 | goto out; | |
55e303ae A |
1297 | vp = nd.ni_vp; |
1298 | if (vp->v_type != VREG) { | |
91447636 A |
1299 | vn_close(vp, audit_close_flags, kauth_cred_get(), p); |
1300 | vnode_put(vp); | |
55e303ae A |
1301 | error = EINVAL; |
1302 | goto out; | |
1303 | } | |
91447636 | 1304 | cred = kauth_cred_get_with_ref(); |
e5568f75 | 1305 | audit_suspended = 0; |
55e303ae | 1306 | } |
91447636 A |
1307 | /* |
1308 | * a vp and cred of NULL is valid at this point | |
1309 | * and indicates we're to turn off auditing... | |
1310 | */ | |
55e303ae | 1311 | audit_rotate_vnode(cred, vp); |
91447636 A |
1312 | if (vp) |
1313 | vnode_put(vp); | |
55e303ae A |
1314 | out: |
1315 | return (error); | |
1316 | } | |
1317 | ||
1318 | /********************************** | |
1319 | * End of system calls. * | |
1320 | **********************************/ | |
1321 | ||
1322 | /* | |
1323 | * MPSAFE | |
1324 | */ | |
1325 | struct kaudit_record * | |
91447636 | 1326 | audit_new(int event, struct proc *p, __unused struct uthread *uthread) |
55e303ae A |
1327 | { |
1328 | struct kaudit_record *ar; | |
1329 | int no_record; | |
1330 | ||
1331 | /* | |
1332 | * Eventually, there may be certain classes of events that | |
1333 | * we will audit regardless of the audit state at the time | |
1334 | * the record is created. These events will generally | |
1335 | * correspond to changes in the audit state. The dummy | |
1336 | * code below is from our first prototype, but may also | |
1337 | * be used in the final version (with modified event numbers). | |
1338 | */ | |
1339 | #if 0 | |
1340 | if (event != AUDIT_EVENT_FILESTOP && event != AUDIT_EVENT_FILESTART) { | |
1341 | #endif | |
1342 | mutex_lock(audit_mtx); | |
1343 | no_record = (audit_suspended || !audit_enabled); | |
1344 | mutex_unlock(audit_mtx); | |
1345 | if (no_record) | |
1346 | return (NULL); | |
1347 | #if 0 | |
1348 | } | |
1349 | #endif | |
1350 | ||
55e303ae A |
1351 | /* |
1352 | * Initialize the audit record header. | |
55e303ae | 1353 | * XXX: We may want to fail-stop if allocation fails. |
e5568f75 A |
1354 | * XXX: The number of outstanding uncommitted audit records is |
1355 | * limited by the number of concurrent threads servicing system | |
1356 | * calls in the kernel. | |
55e303ae | 1357 | */ |
e5568f75 A |
1358 | |
1359 | ar = (struct kaudit_record *)zalloc(audit_zone); | |
55e303ae A |
1360 | if (ar == NULL) |
1361 | return NULL; | |
1362 | ||
e5568f75 A |
1363 | mutex_lock(audit_mtx); |
1364 | audit_pre_q_len++; | |
1365 | mutex_unlock(audit_mtx); | |
1366 | ||
55e303ae A |
1367 | bzero(ar, sizeof(*ar)); |
1368 | ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; | |
1369 | ar->k_ar.ar_event = event; | |
1370 | nanotime(&ar->k_ar.ar_starttime); | |
1371 | ||
1372 | /* Export the subject credential. */ | |
1373 | cru2x(p->p_ucred, &ar->k_ar.ar_subj_cred); | |
91447636 A |
1374 | ar->k_ar.ar_subj_ruid = p->p_ucred->cr_ruid; |
1375 | ar->k_ar.ar_subj_rgid = p->p_ucred->cr_rgid; | |
55e303ae | 1376 | ar->k_ar.ar_subj_egid = p->p_ucred->cr_groups[0]; |
91447636 A |
1377 | ar->k_ar.ar_subj_auid = p->p_ucred->cr_au.ai_auid; |
1378 | ar->k_ar.ar_subj_asid = p->p_ucred->cr_au.ai_asid; | |
55e303ae | 1379 | ar->k_ar.ar_subj_pid = p->p_pid; |
91447636 A |
1380 | ar->k_ar.ar_subj_amask = p->p_ucred->cr_au.ai_mask; |
1381 | ar->k_ar.ar_subj_term = p->p_ucred->cr_au.ai_termid; | |
55e303ae | 1382 | bcopy(p->p_comm, ar->k_ar.ar_subj_comm, MAXCOMLEN); |
55e303ae A |
1383 | |
1384 | return (ar); | |
1385 | } | |
1386 | ||
1387 | /* | |
1388 | * MPSAFE | |
1389 | * XXXAUDIT: So far, this is unused, and should probably be GC'd. | |
1390 | */ | |
1391 | void | |
1392 | audit_abort(struct kaudit_record *ar) | |
1393 | { | |
e5568f75 A |
1394 | mutex_lock(audit_mtx); |
1395 | audit_pre_q_len--; | |
1396 | mutex_unlock(audit_mtx); | |
55e303ae A |
1397 | audit_free(ar); |
1398 | } | |
1399 | ||
1400 | /* | |
1401 | * MPSAFE | |
1402 | */ | |
1403 | void | |
1404 | audit_commit(struct kaudit_record *ar, int error, int retval) | |
1405 | { | |
e5568f75 A |
1406 | int ret; |
1407 | int sorf; | |
1408 | struct au_mask *aumask; | |
55e303ae A |
1409 | |
1410 | if (ar == NULL) | |
1411 | return; | |
1412 | ||
e5568f75 A |
1413 | /* |
1414 | * Decide whether to commit the audit record by checking the | |
1415 | * error value from the system call and using the appropriate | |
1416 | * audit mask. | |
1417 | */ | |
1418 | if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) | |
1419 | aumask = &audit_nae_mask; | |
1420 | else | |
1421 | aumask = &ar->k_ar.ar_subj_amask; | |
1422 | ||
1423 | if (error) | |
1424 | sorf = AU_PRS_FAILURE; | |
1425 | else | |
1426 | sorf = AU_PRS_SUCCESS; | |
1427 | ||
1428 | switch(ar->k_ar.ar_event) { | |
1429 | ||
1430 | case AUE_OPEN_RWTC: | |
1431 | /* The open syscall always writes a OPEN_RWTC event; limit the | |
1432 | * to the proper type of event based on the flags and the error | |
1433 | * value. | |
1434 | */ | |
1435 | ar->k_ar.ar_event = flags_and_error_to_openevent(ar->k_ar.ar_arg_fflags, error); | |
1436 | break; | |
1437 | ||
1438 | case AUE_SYSCTL: | |
1439 | ar->k_ar.ar_event = ctlname_to_sysctlevent(ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); | |
1440 | break; | |
1441 | ||
1442 | case AUE_AUDITON: | |
1443 | /* Convert the auditon() command to an event */ | |
1444 | ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); | |
1445 | break; | |
1446 | } | |
1447 | ||
1448 | if (au_preselect(ar->k_ar.ar_event, aumask, sorf) != 0) | |
1449 | ar->k_ar_commit |= AR_COMMIT_KERNEL; | |
1450 | ||
91447636 | 1451 | if ((ar->k_ar_commit & (AR_COMMIT_USER | AR_COMMIT_KERNEL)) == 0) { |
e5568f75 A |
1452 | mutex_lock(audit_mtx); |
1453 | audit_pre_q_len--; | |
1454 | mutex_unlock(audit_mtx); | |
1455 | audit_free(ar); | |
1456 | return; | |
1457 | } | |
1458 | ||
55e303ae A |
1459 | ar->k_ar.ar_errno = error; |
1460 | ar->k_ar.ar_retval = retval; | |
1461 | ||
1462 | /* | |
1463 | * We might want to do some system-wide post-filtering | |
1464 | * here at some point. | |
1465 | */ | |
1466 | ||
1467 | /* | |
1468 | * Timestamp system call end. | |
1469 | */ | |
1470 | nanotime(&ar->k_ar.ar_endtime); | |
1471 | ||
55e303ae A |
1472 | mutex_lock(audit_mtx); |
1473 | /* | |
1474 | * Note: it could be that some records initiated while audit was | |
1475 | * enabled should still be committed? | |
1476 | */ | |
1477 | if (audit_suspended || !audit_enabled) { | |
e5568f75 | 1478 | audit_pre_q_len--; |
55e303ae A |
1479 | mutex_unlock(audit_mtx); |
1480 | audit_free(ar); | |
1481 | return; | |
1482 | } | |
91447636 | 1483 | |
e5568f75 A |
1484 | /* |
1485 | * Constrain the number of committed audit records based on | |
1486 | * the configurable parameter. | |
1487 | */ | |
1488 | while (audit_q_len >= audit_qctrl.aq_hiwater) { | |
1489 | ||
1490 | ret = wait_queue_assert_wait(audit_wait_queue, | |
1491 | AUDIT_COMMIT_EVENT, | |
91447636 A |
1492 | THREAD_UNINT, |
1493 | 0); | |
e5568f75 A |
1494 | mutex_unlock(audit_mtx); |
1495 | ||
1496 | assert(ret == THREAD_WAITING); | |
1497 | ||
1498 | ret = thread_block(THREAD_CONTINUE_NULL); | |
1499 | assert(ret == THREAD_AWAKENED); | |
1500 | mutex_lock(audit_mtx); | |
1501 | } | |
1502 | ||
55e303ae | 1503 | TAILQ_INSERT_TAIL(&audit_q, ar, k_q); |
e5568f75 A |
1504 | audit_q_len++; |
1505 | audit_pre_q_len--; | |
1506 | wait_queue_wakeup_one(audit_wait_queue, AUDIT_WORKER_EVENT, THREAD_AWAKENED); | |
55e303ae A |
1507 | mutex_unlock(audit_mtx); |
1508 | } | |
1509 | ||
1510 | /* | |
1511 | * Calls to set up and tear down audit structures associated with | |
1512 | * each system call. | |
1513 | */ | |
1514 | void | |
1515 | audit_syscall_enter(unsigned short code, struct proc *proc, | |
1516 | struct uthread *uthread) | |
1517 | { | |
1518 | int audit_event; | |
e5568f75 | 1519 | struct au_mask *aumask; |
55e303ae A |
1520 | |
1521 | audit_event = sys_au_event[code]; | |
e5568f75 A |
1522 | if (audit_event == AUE_NULL) |
1523 | return; | |
1524 | ||
1525 | assert(uthread->uu_ar == NULL); | |
55e303ae | 1526 | |
e5568f75 A |
1527 | /* Check which audit mask to use; either the kernel non-attributable |
1528 | * event mask or the process audit mask. | |
1529 | */ | |
91447636 | 1530 | if (proc->p_ucred->cr_au.ai_auid == AU_DEFAUDITID) |
e5568f75 A |
1531 | aumask = &audit_nae_mask; |
1532 | else | |
91447636 A |
1533 | aumask = &proc->p_ucred->cr_au.ai_mask; |
1534 | ||
55e303ae | 1535 | /* |
e5568f75 A |
1536 | * Allocate an audit record, if preselection allows it, and store |
1537 | * in the BSD thread for later use. | |
55e303ae | 1538 | */ |
e5568f75 | 1539 | if (au_preselect(audit_event, aumask, |
91447636 | 1540 | AU_PRS_FAILURE | AU_PRS_SUCCESS)) { |
e5568f75 A |
1541 | /* |
1542 | * If we're out of space and need to suspend unprivileged | |
1543 | * processes, do that here rather than trying to allocate | |
1544 | * another audit record. | |
1545 | */ | |
1546 | if (audit_in_failure && | |
91447636 | 1547 | suser(kauth_cred_get(), &proc->p_acflag) != 0) { |
e5568f75 A |
1548 | int ret; |
1549 | ||
91447636 | 1550 | assert(audit_worker_thread != THREAD_NULL); |
e5568f75 | 1551 | ret = wait_queue_assert_wait(audit_wait_queue, |
91447636 | 1552 | AUDIT_FAILURE_EVENT, THREAD_UNINT, 0); |
e5568f75 A |
1553 | assert(ret == THREAD_WAITING); |
1554 | (void)thread_block(THREAD_CONTINUE_NULL); | |
1555 | panic("audit_failing_stop: thread continued"); | |
55e303ae | 1556 | } |
91447636 A |
1557 | uthread->uu_ar = audit_new(audit_event, proc, uthread); |
1558 | } else { | |
1559 | uthread->uu_ar = NULL; | |
1560 | } | |
1561 | } | |
55e303ae A |
1562 | |
1563 | void | |
91447636 | 1564 | audit_syscall_exit(int error, AUDIT_PRINTF_ONLY struct proc *proc, struct uthread *uthread) |
55e303ae A |
1565 | { |
1566 | int retval; | |
1567 | ||
1568 | /* | |
1569 | * Commit the audit record as desired; once we pass the record | |
1570 | * into audit_commit(), the memory is owned by the audit | |
1571 | * subsystem. | |
1572 | * The return value from the system call is stored on the user | |
1573 | * thread. If there was an error, the return value is set to -1, | |
1574 | * imitating the behavior of the cerror routine. | |
1575 | */ | |
1576 | if (error) | |
1577 | retval = -1; | |
1578 | else | |
1579 | retval = uthread->uu_rval[0]; | |
1580 | ||
1581 | audit_commit(uthread->uu_ar, error, retval); | |
91447636 | 1582 | if (uthread->uu_ar != NULL) { |
55e303ae | 1583 | AUDIT_PRINTF(("audit record committed by pid %d\n", proc->p_pid)); |
91447636 | 1584 | } |
55e303ae A |
1585 | uthread->uu_ar = NULL; |
1586 | ||
1587 | } | |
1588 | ||
e5568f75 A |
1589 | /* |
1590 | * Calls to set up and tear down audit structures used during Mach | |
1591 | * system calls. | |
1592 | */ | |
1593 | void | |
1594 | audit_mach_syscall_enter(unsigned short audit_event) | |
1595 | { | |
1596 | struct uthread *uthread; | |
1597 | struct proc *proc; | |
1598 | struct au_mask *aumask; | |
1599 | ||
1600 | if (audit_event == AUE_NULL) | |
1601 | return; | |
1602 | ||
1603 | uthread = curuthread(); | |
1604 | if (uthread == NULL) | |
1605 | return; | |
1606 | ||
1607 | proc = current_proc(); | |
1608 | if (proc == NULL) | |
1609 | return; | |
1610 | ||
1611 | assert(uthread->uu_ar == NULL); | |
1612 | ||
1613 | /* Check which audit mask to use; either the kernel non-attributable | |
1614 | * event mask or the process audit mask. | |
1615 | */ | |
91447636 | 1616 | if (proc->p_ucred->cr_au.ai_auid == AU_DEFAUDITID) |
e5568f75 A |
1617 | aumask = &audit_nae_mask; |
1618 | else | |
91447636 | 1619 | aumask = &proc->p_ucred->cr_au.ai_mask; |
e5568f75 A |
1620 | |
1621 | /* | |
1622 | * Allocate an audit record, if desired, and store in the BSD | |
1623 | * thread for later use. | |
1624 | */ | |
1625 | if (au_preselect(audit_event, aumask, | |
1626 | AU_PRS_FAILURE | AU_PRS_SUCCESS)) { | |
1627 | uthread->uu_ar = audit_new(audit_event, proc, uthread); | |
1628 | } else { | |
1629 | uthread->uu_ar = NULL; | |
1630 | } | |
1631 | } | |
1632 | ||
1633 | void | |
1634 | audit_mach_syscall_exit(int retval, struct uthread *uthread) | |
1635 | { | |
1636 | /* The error code from Mach system calls is the same as the | |
1637 | * return value | |
1638 | */ | |
1639 | /* XXX Is the above statement always true? */ | |
1640 | audit_commit(uthread->uu_ar, retval, retval); | |
1641 | uthread->uu_ar = NULL; | |
1642 | ||
1643 | } | |
1644 | ||
55e303ae A |
1645 | /* |
1646 | * Calls to manipulate elements of the audit record structure from system | |
1647 | * call code. Macro wrappers will prevent this functions from being | |
1648 | * entered if auditing is disabled, avoiding the function call cost. We | |
1649 | * check the thread audit record pointer anyway, as the audit condition | |
1650 | * could change, and pre-selection may not have allocated an audit | |
1651 | * record for this event. | |
1652 | */ | |
1653 | void | |
91447636 | 1654 | audit_arg_addr(user_addr_t addr) |
55e303ae A |
1655 | { |
1656 | struct kaudit_record *ar; | |
1657 | ||
1658 | ar = currecord(); | |
1659 | if (ar == NULL) | |
1660 | return; | |
1661 | ||
91447636 | 1662 | ar->k_ar.ar_arg_addr = CAST_DOWN(void *, addr); /* XXX */ |
e5568f75 | 1663 | ar->k_ar.ar_valid_arg |= ARG_ADDR; |
55e303ae A |
1664 | } |
1665 | ||
1666 | void | |
91447636 | 1667 | audit_arg_len(user_size_t len) |
55e303ae A |
1668 | { |
1669 | struct kaudit_record *ar; | |
1670 | ||
1671 | ar = currecord(); | |
1672 | if (ar == NULL) | |
1673 | return; | |
1674 | ||
91447636 | 1675 | ar->k_ar.ar_arg_len = CAST_DOWN(int, len); /* XXX */ |
e5568f75 | 1676 | ar->k_ar.ar_valid_arg |= ARG_LEN; |
55e303ae A |
1677 | } |
1678 | ||
1679 | void | |
1680 | audit_arg_fd(int fd) | |
1681 | { | |
1682 | struct kaudit_record *ar; | |
1683 | ||
1684 | ar = currecord(); | |
1685 | if (ar == NULL) | |
1686 | return; | |
1687 | ||
1688 | ar->k_ar.ar_arg_fd = fd; | |
1689 | ar->k_ar.ar_valid_arg |= ARG_FD; | |
1690 | } | |
1691 | ||
1692 | void | |
1693 | audit_arg_fflags(int fflags) | |
1694 | { | |
1695 | struct kaudit_record *ar; | |
1696 | ||
1697 | ar = currecord(); | |
1698 | if (ar == NULL) | |
1699 | return; | |
1700 | ||
1701 | ar->k_ar.ar_arg_fflags = fflags; | |
1702 | ar->k_ar.ar_valid_arg |= ARG_FFLAGS; | |
1703 | } | |
1704 | ||
1705 | void | |
1706 | audit_arg_gid(gid_t gid, gid_t egid, gid_t rgid, gid_t sgid) | |
1707 | { | |
1708 | struct kaudit_record *ar; | |
1709 | ||
1710 | ar = currecord(); | |
1711 | if (ar == NULL) | |
1712 | return; | |
1713 | ||
1714 | ar->k_ar.ar_arg_gid = gid; | |
1715 | ar->k_ar.ar_arg_egid = egid; | |
1716 | ar->k_ar.ar_arg_rgid = rgid; | |
1717 | ar->k_ar.ar_arg_sgid = sgid; | |
1718 | ar->k_ar.ar_valid_arg |= (ARG_GID | ARG_EGID | ARG_RGID | ARG_SGID); | |
1719 | } | |
1720 | ||
1721 | void | |
1722 | audit_arg_uid(uid_t uid, uid_t euid, uid_t ruid, uid_t suid) | |
1723 | { | |
1724 | struct kaudit_record *ar; | |
1725 | ||
1726 | ar = currecord(); | |
1727 | if (ar == NULL) | |
1728 | return; | |
1729 | ||
1730 | ar->k_ar.ar_arg_uid = uid; | |
1731 | ar->k_ar.ar_arg_euid = euid; | |
1732 | ar->k_ar.ar_arg_ruid = ruid; | |
1733 | ar->k_ar.ar_arg_suid = suid; | |
1734 | ar->k_ar.ar_valid_arg |= (ARG_UID | ARG_EUID | ARG_RUID | ARG_SUID); | |
1735 | } | |
1736 | ||
1737 | void | |
91447636 | 1738 | audit_arg_groupset(const gid_t *gidset, u_int gidset_size) |
55e303ae | 1739 | { |
91447636 | 1740 | uint i; |
55e303ae A |
1741 | struct kaudit_record *ar; |
1742 | ||
1743 | ar = currecord(); | |
1744 | if (ar == NULL) | |
1745 | return; | |
1746 | ||
1747 | for (i = 0; i < gidset_size; i++) | |
1748 | ar->k_ar.ar_arg_groups.gidset[i] = gidset[i]; | |
1749 | ar->k_ar.ar_arg_groups.gidset_size = gidset_size; | |
1750 | ar->k_ar.ar_valid_arg |= ARG_GROUPSET; | |
1751 | } | |
1752 | ||
1753 | void | |
91447636 | 1754 | audit_arg_login(const char *login) |
55e303ae A |
1755 | { |
1756 | struct kaudit_record *ar; | |
1757 | ||
1758 | ar = currecord(); | |
1759 | if (ar == NULL) | |
1760 | return; | |
1761 | ||
1762 | #if 0 | |
1763 | /* | |
1764 | * XXX: Add strlcpy() to Darwin for improved safety. | |
1765 | */ | |
1766 | strlcpy(ar->k_ar.ar_arg_login, login, MAXLOGNAME); | |
1767 | #else | |
1768 | strcpy(ar->k_ar.ar_arg_login, login); | |
1769 | #endif | |
1770 | ||
1771 | ar->k_ar.ar_valid_arg |= ARG_LOGIN; | |
1772 | } | |
1773 | ||
e5568f75 | 1774 | void |
91447636 | 1775 | audit_arg_ctlname(const int *name, int namelen) |
e5568f75 A |
1776 | { |
1777 | struct kaudit_record *ar; | |
1778 | ||
1779 | ar = currecord(); | |
1780 | if (ar == NULL) | |
1781 | return; | |
1782 | ||
1783 | bcopy(name, &ar->k_ar.ar_arg_ctlname, namelen * sizeof(int)); | |
1784 | ar->k_ar.ar_arg_len = namelen; | |
1785 | ar->k_ar.ar_valid_arg |= (ARG_CTLNAME | ARG_LEN); | |
1786 | } | |
1787 | ||
55e303ae A |
1788 | void |
1789 | audit_arg_mask(int mask) | |
1790 | { | |
1791 | struct kaudit_record *ar; | |
1792 | ||
1793 | ar = currecord(); | |
1794 | if (ar == NULL) | |
1795 | return; | |
1796 | ||
1797 | ar->k_ar.ar_arg_mask = mask; | |
1798 | ar->k_ar.ar_valid_arg |= ARG_MASK; | |
1799 | } | |
1800 | ||
1801 | void | |
1802 | audit_arg_mode(mode_t mode) | |
1803 | { | |
1804 | struct kaudit_record *ar; | |
1805 | ||
1806 | ar = currecord(); | |
1807 | if (ar == NULL) | |
1808 | return; | |
1809 | ||
1810 | ar->k_ar.ar_arg_mode = mode; | |
1811 | ar->k_ar.ar_valid_arg |= ARG_MODE; | |
1812 | } | |
1813 | ||
1814 | void | |
1815 | audit_arg_dev(int dev) | |
1816 | { | |
1817 | struct kaudit_record *ar; | |
1818 | ||
1819 | ar = currecord(); | |
1820 | if (ar == NULL) | |
1821 | return; | |
1822 | ||
1823 | ar->k_ar.ar_arg_dev = dev; | |
1824 | ar->k_ar.ar_valid_arg |= ARG_DEV; | |
1825 | } | |
1826 | ||
e5568f75 A |
1827 | void |
1828 | audit_arg_value(long value) | |
1829 | { | |
1830 | struct kaudit_record *ar; | |
1831 | ||
1832 | ar = currecord(); | |
1833 | if (ar == NULL) | |
1834 | return; | |
1835 | ||
1836 | ar->k_ar.ar_arg_value = value; | |
1837 | ar->k_ar.ar_valid_arg |= ARG_VALUE; | |
1838 | } | |
1839 | ||
55e303ae A |
1840 | void |
1841 | audit_arg_owner(uid_t uid, gid_t gid) | |
1842 | { | |
1843 | struct kaudit_record *ar; | |
1844 | ||
1845 | ar = currecord(); | |
1846 | if (ar == NULL) | |
1847 | return; | |
1848 | ||
1849 | ar->k_ar.ar_arg_uid = uid; | |
1850 | ar->k_ar.ar_arg_gid = gid; | |
1851 | ar->k_ar.ar_valid_arg |= (ARG_UID | ARG_GID); | |
1852 | } | |
1853 | ||
1854 | void | |
1855 | audit_arg_pid(pid_t pid) | |
1856 | { | |
1857 | struct kaudit_record *ar; | |
1858 | ||
1859 | ar = currecord(); | |
1860 | if (ar == NULL) | |
1861 | return; | |
1862 | ||
1863 | ar->k_ar.ar_arg_pid = pid; | |
1864 | ar->k_ar.ar_valid_arg |= ARG_PID; | |
e5568f75 A |
1865 | } |
1866 | ||
1867 | void | |
1868 | audit_arg_process(struct proc *p) | |
1869 | { | |
1870 | struct kaudit_record *ar; | |
1871 | ||
1872 | ar = currecord(); | |
1873 | if ((ar == NULL) || (p == NULL)) | |
1874 | return; | |
1875 | ||
91447636 | 1876 | ar->k_ar.ar_arg_auid = p->p_ucred->cr_au.ai_auid; |
e5568f75 A |
1877 | ar->k_ar.ar_arg_euid = p->p_ucred->cr_uid; |
1878 | ar->k_ar.ar_arg_egid = p->p_ucred->cr_groups[0]; | |
91447636 A |
1879 | ar->k_ar.ar_arg_ruid = p->p_ucred->cr_ruid; |
1880 | ar->k_ar.ar_arg_rgid = p->p_ucred->cr_rgid; | |
1881 | ar->k_ar.ar_arg_asid = p->p_ucred->cr_au.ai_asid; | |
1882 | ar->k_ar.ar_arg_termid = p->p_ucred->cr_au.ai_termid; | |
e5568f75 A |
1883 | |
1884 | ar->k_ar.ar_valid_arg |= ARG_AUID | ARG_EUID | ARG_EGID | ARG_RUID | | |
1885 | ARG_RGID | ARG_ASID | ARG_TERMID | ARG_PROCESS; | |
55e303ae A |
1886 | } |
1887 | ||
1888 | void | |
1889 | audit_arg_signum(u_int signum) | |
1890 | { | |
1891 | struct kaudit_record *ar; | |
1892 | ||
1893 | ar = currecord(); | |
1894 | if (ar == NULL) | |
1895 | return; | |
1896 | ||
1897 | ar->k_ar.ar_arg_signum = signum; | |
1898 | ar->k_ar.ar_valid_arg |= ARG_SIGNUM; | |
1899 | } | |
1900 | ||
1901 | void | |
1902 | audit_arg_socket(int sodomain, int sotype, int soprotocol) | |
1903 | { | |
1904 | ||
1905 | struct kaudit_record *ar; | |
1906 | ||
1907 | ar = currecord(); | |
1908 | if (ar == NULL) | |
1909 | return; | |
1910 | ||
e5568f75 A |
1911 | ar->k_ar.ar_arg_sockinfo.so_domain = sodomain; |
1912 | ar->k_ar.ar_arg_sockinfo.so_type = sotype; | |
1913 | ar->k_ar.ar_arg_sockinfo.so_protocol = soprotocol; | |
55e303ae A |
1914 | ar->k_ar.ar_valid_arg |= ARG_SOCKINFO; |
1915 | } | |
1916 | ||
1917 | void | |
1918 | audit_arg_sockaddr(struct proc *p, struct sockaddr *so) | |
1919 | { | |
1920 | struct kaudit_record *ar; | |
1921 | ||
1922 | ar = currecord(); | |
1923 | if (ar == NULL || p == NULL || so == NULL) | |
1924 | return; | |
1925 | ||
1926 | bcopy(so, &ar->k_ar.ar_arg_sockaddr, sizeof(ar->k_ar.ar_arg_sockaddr)); | |
1927 | switch (so->sa_family) { | |
1928 | case AF_INET: | |
1929 | ar->k_ar.ar_valid_arg |= ARG_SADDRINET; | |
1930 | break; | |
1931 | case AF_INET6: | |
1932 | ar->k_ar.ar_valid_arg |= ARG_SADDRINET6; | |
1933 | break; | |
1934 | case AF_UNIX: | |
1935 | audit_arg_upath(p, ((struct sockaddr_un *)so)->sun_path, | |
1936 | ARG_UPATH1); | |
1937 | ar->k_ar.ar_valid_arg |= ARG_SADDRUNIX; | |
1938 | break; | |
1939 | } | |
1940 | } | |
1941 | ||
1942 | void | |
1943 | audit_arg_auid(uid_t auid) | |
1944 | { | |
1945 | struct kaudit_record *ar; | |
1946 | ||
1947 | ar = currecord(); | |
1948 | if (ar == NULL) | |
1949 | return; | |
1950 | ||
1951 | ar->k_ar.ar_arg_auid = auid; | |
1952 | ar->k_ar.ar_valid_arg |= ARG_AUID; | |
1953 | } | |
1954 | ||
e5568f75 | 1955 | void |
91447636 | 1956 | audit_arg_auditinfo(const struct auditinfo *au_info) |
e5568f75 A |
1957 | { |
1958 | struct kaudit_record *ar; | |
1959 | ||
1960 | ar = currecord(); | |
1961 | if (ar == NULL) | |
1962 | return; | |
1963 | ||
1964 | ar->k_ar.ar_arg_auid = au_info->ai_auid; | |
1965 | ar->k_ar.ar_arg_asid = au_info->ai_asid; | |
1966 | ar->k_ar.ar_arg_amask.am_success = au_info->ai_mask.am_success; | |
1967 | ar->k_ar.ar_arg_amask.am_failure = au_info->ai_mask.am_failure; | |
1968 | ar->k_ar.ar_arg_termid.port = au_info->ai_termid.port; | |
1969 | ar->k_ar.ar_arg_termid.machine = au_info->ai_termid.machine; | |
1970 | ar->k_ar.ar_valid_arg |= ARG_AUID | ARG_ASID | ARG_AMASK | ARG_TERMID; | |
1971 | } | |
1972 | ||
55e303ae | 1973 | void |
91447636 | 1974 | audit_arg_text(const char *text) |
55e303ae A |
1975 | { |
1976 | struct kaudit_record *ar; | |
1977 | ||
1978 | ar = currecord(); | |
1979 | if (ar == NULL) | |
1980 | return; | |
1981 | ||
1982 | /* Invalidate the text string */ | |
1983 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_TEXT); | |
1984 | if (text == NULL) | |
1985 | return; | |
1986 | ||
1987 | if (ar->k_ar.ar_arg_text == NULL) { | |
e5568f75 | 1988 | ar->k_ar.ar_arg_text = (char *)kalloc(MAXPATHLEN); |
55e303ae A |
1989 | if (ar->k_ar.ar_arg_text == NULL) |
1990 | return; | |
1991 | } | |
1992 | ||
e5568f75 | 1993 | strncpy(ar->k_ar.ar_arg_text, text, MAXPATHLEN); |
55e303ae A |
1994 | ar->k_ar.ar_valid_arg |= ARG_TEXT; |
1995 | } | |
1996 | ||
1997 | void | |
1998 | audit_arg_cmd(int cmd) | |
1999 | { | |
2000 | struct kaudit_record *ar; | |
2001 | ||
2002 | ar = currecord(); | |
2003 | if (ar == NULL) | |
2004 | return; | |
2005 | ||
2006 | ar->k_ar.ar_arg_cmd = cmd; | |
2007 | ar->k_ar.ar_valid_arg |= ARG_CMD; | |
2008 | } | |
2009 | ||
2010 | void | |
2011 | audit_arg_svipc_cmd(int cmd) | |
2012 | { | |
2013 | struct kaudit_record *ar; | |
2014 | ||
2015 | ar = currecord(); | |
2016 | if (ar == NULL) | |
2017 | return; | |
2018 | ||
2019 | ar->k_ar.ar_arg_svipc_cmd = cmd; | |
2020 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_CMD; | |
2021 | } | |
2022 | ||
2023 | void | |
91447636 | 2024 | audit_arg_svipc_perm(const struct ipc_perm *perm) |
55e303ae A |
2025 | { |
2026 | struct kaudit_record *ar; | |
2027 | ||
2028 | ar = currecord(); | |
2029 | if (ar == NULL) | |
2030 | return; | |
2031 | ||
2032 | bcopy(perm, &ar->k_ar.ar_arg_svipc_perm, | |
2033 | sizeof(ar->k_ar.ar_arg_svipc_perm)); | |
2034 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_PERM; | |
2035 | } | |
2036 | ||
2037 | void | |
2038 | audit_arg_svipc_id(int id) | |
2039 | { | |
2040 | struct kaudit_record *ar; | |
2041 | ||
2042 | ar = currecord(); | |
2043 | if (ar == NULL) | |
2044 | return; | |
2045 | ||
2046 | ar->k_ar.ar_arg_svipc_id = id; | |
2047 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_ID; | |
2048 | } | |
2049 | ||
2050 | void | |
2051 | audit_arg_svipc_addr(void * addr) | |
2052 | { | |
2053 | struct kaudit_record *ar; | |
2054 | ||
2055 | ar = currecord(); | |
2056 | if (ar == NULL) | |
2057 | return; | |
2058 | ||
2059 | ar->k_ar.ar_arg_svipc_addr = addr; | |
2060 | ar->k_ar.ar_valid_arg |= ARG_SVIPC_ADDR; | |
2061 | } | |
2062 | ||
e5568f75 A |
2063 | void |
2064 | audit_arg_posix_ipc_perm(uid_t uid, gid_t gid, mode_t mode) | |
2065 | { | |
2066 | struct kaudit_record *ar; | |
2067 | ||
2068 | ar = currecord(); | |
2069 | if (ar == NULL) | |
2070 | return; | |
2071 | ||
2072 | ar->k_ar.ar_arg_pipc_perm.pipc_uid = uid; | |
2073 | ar->k_ar.ar_arg_pipc_perm.pipc_gid = gid; | |
2074 | ar->k_ar.ar_arg_pipc_perm.pipc_mode = mode; | |
2075 | ar->k_ar.ar_valid_arg |= ARG_POSIX_IPC_PERM; | |
2076 | } | |
2077 | ||
2078 | void | |
91447636 | 2079 | audit_arg_auditon(const union auditon_udata *udata) |
e5568f75 A |
2080 | { |
2081 | struct kaudit_record *ar; | |
2082 | ||
2083 | ar = currecord(); | |
2084 | if (ar == NULL) | |
2085 | return; | |
2086 | ||
91447636 | 2087 | bcopy((const void *)udata, &ar->k_ar.ar_arg_auditon, |
e5568f75 A |
2088 | sizeof(ar->k_ar.ar_arg_auditon)); |
2089 | ar->k_ar.ar_valid_arg |= ARG_AUDITON; | |
2090 | } | |
2091 | ||
91447636 | 2092 | /* |
e5568f75 A |
2093 | * Audit information about a file, either the file's vnode info, or its |
2094 | * socket address info. | |
2095 | */ | |
2096 | void | |
91447636 | 2097 | audit_arg_file(__unused struct proc *p, const struct fileproc *fp) |
e5568f75 A |
2098 | { |
2099 | struct kaudit_record *ar; | |
2100 | struct socket *so; | |
2101 | struct inpcb *pcb; | |
2102 | ||
91447636 A |
2103 | if (fp->f_fglob->fg_type == DTYPE_VNODE) { |
2104 | audit_arg_vnpath_withref((struct vnode *)fp->f_fglob->fg_data, ARG_VNODE1); | |
e5568f75 A |
2105 | return; |
2106 | } | |
2107 | ||
91447636 | 2108 | if (fp->f_fglob->fg_type == DTYPE_SOCKET) { |
e5568f75 A |
2109 | ar = currecord(); |
2110 | if (ar == NULL) | |
2111 | return; | |
91447636 | 2112 | so = (struct socket *)fp->f_fglob->fg_data; |
e5568f75 A |
2113 | if (INP_CHECK_SOCKAF(so, PF_INET)) { |
2114 | if (so->so_pcb == NULL) | |
2115 | return; | |
2116 | ar->k_ar.ar_arg_sockinfo.so_type = | |
2117 | so->so_type; | |
2118 | ar->k_ar.ar_arg_sockinfo.so_domain = | |
2119 | INP_SOCKAF(so); | |
2120 | ar->k_ar.ar_arg_sockinfo.so_protocol = | |
2121 | so->so_proto->pr_protocol; | |
2122 | pcb = (struct inpcb *)so->so_pcb; | |
2123 | ar->k_ar.ar_arg_sockinfo.so_raddr = | |
2124 | pcb->inp_faddr.s_addr; | |
2125 | ar->k_ar.ar_arg_sockinfo.so_laddr = | |
2126 | pcb->inp_laddr.s_addr; | |
2127 | ar->k_ar.ar_arg_sockinfo.so_rport = | |
2128 | pcb->inp_fport; | |
2129 | ar->k_ar.ar_arg_sockinfo.so_lport = | |
2130 | pcb->inp_lport; | |
2131 | ar->k_ar.ar_valid_arg |= ARG_SOCKINFO; | |
2132 | } | |
2133 | } | |
2134 | ||
2135 | } | |
2136 | ||
55e303ae A |
2137 | |
2138 | /* | |
2139 | * Store a path as given by the user process for auditing into the audit | |
2140 | * record stored on the user thread. This function will allocate the memory to | |
2141 | * store the path info if not already available. This memory will be | |
2142 | * freed when the audit record is freed. | |
2143 | */ | |
2144 | void | |
2145 | audit_arg_upath(struct proc *p, char *upath, u_int64_t flags) | |
2146 | { | |
2147 | struct kaudit_record *ar; | |
2148 | char **pathp; | |
2149 | ||
2150 | if (p == NULL || upath == NULL) | |
2151 | return; /* nothing to do! */ | |
2152 | ||
91447636 | 2153 | if ((flags & (ARG_UPATH1 | ARG_UPATH2)) == 0) |
55e303ae A |
2154 | return; |
2155 | ||
2156 | ar = currecord(); | |
2157 | if (ar == NULL) /* This will be the case for unaudited system calls */ | |
2158 | return; | |
2159 | ||
2160 | if (flags & ARG_UPATH1) { | |
2161 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_UPATH1); | |
2162 | pathp = &ar->k_ar.ar_arg_upath1; | |
2163 | } | |
2164 | else { | |
2165 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_UPATH2); | |
2166 | pathp = &ar->k_ar.ar_arg_upath2; | |
2167 | } | |
2168 | ||
2169 | if (*pathp == NULL) { | |
e5568f75 | 2170 | *pathp = (char *)kalloc(MAXPATHLEN); |
55e303ae A |
2171 | if (*pathp == NULL) |
2172 | return; | |
2173 | } | |
2174 | ||
e5568f75 A |
2175 | if (canon_path(p, upath, *pathp) == 0) { |
2176 | if (flags & ARG_UPATH1) | |
2177 | ar->k_ar.ar_valid_arg |= ARG_UPATH1; | |
2178 | else | |
2179 | ar->k_ar.ar_valid_arg |= ARG_UPATH2; | |
91447636 A |
2180 | } else { |
2181 | kfree(*pathp, MAXPATHLEN); | |
2182 | *pathp = NULL; | |
e5568f75 | 2183 | } |
55e303ae A |
2184 | } |
2185 | ||
2186 | /* | |
2187 | * Function to save the path and vnode attr information into the audit | |
2188 | * record. | |
2189 | * | |
2190 | * It is assumed that the caller will hold any vnode locks necessary to | |
91447636 | 2191 | * perform a VNOP_GETATTR() on the passed vnode. |
55e303ae A |
2192 | * |
2193 | * XXX: The attr code is very similar to vfs_vnops.c:vn_stat(), but | |
2194 | * always provides access to the generation number as we need that | |
2195 | * to construct the BSM file ID. | |
2196 | * XXX: We should accept the process argument from the caller, since | |
2197 | * it's very likely they already have a reference. | |
2198 | * XXX: Error handling in this function is poor. | |
2199 | */ | |
2200 | void | |
2201 | audit_arg_vnpath(struct vnode *vp, u_int64_t flags) | |
2202 | { | |
2203 | struct kaudit_record *ar; | |
91447636 | 2204 | struct vnode_attr va; |
55e303ae A |
2205 | int error; |
2206 | int len; | |
2207 | char **pathp; | |
2208 | struct vnode_au_info *vnp; | |
2209 | struct proc *p; | |
91447636 | 2210 | struct vfs_context context; |
55e303ae A |
2211 | |
2212 | if (vp == NULL) | |
2213 | return; | |
2214 | ||
2215 | ar = currecord(); | |
2216 | if (ar == NULL) /* This will be the case for unaudited system calls */ | |
2217 | return; | |
2218 | ||
91447636 | 2219 | if ((flags & (ARG_VNODE1 | ARG_VNODE2)) == 0) |
55e303ae A |
2220 | return; |
2221 | ||
2222 | p = current_proc(); | |
2223 | ||
2224 | if (flags & ARG_VNODE1) { | |
2225 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_KPATH1); | |
2226 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_VNODE1); | |
2227 | pathp = &ar->k_ar.ar_arg_kpath1; | |
2228 | vnp = &ar->k_ar.ar_arg_vnode1; | |
2229 | } | |
2230 | else { | |
2231 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_KPATH2); | |
2232 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_VNODE2); | |
2233 | pathp = &ar->k_ar.ar_arg_kpath2; | |
2234 | vnp = &ar->k_ar.ar_arg_vnode2; | |
2235 | } | |
2236 | ||
2237 | if (*pathp == NULL) { | |
e5568f75 | 2238 | *pathp = (char *)kalloc(MAXPATHLEN); |
55e303ae A |
2239 | if (*pathp == NULL) |
2240 | return; | |
2241 | } | |
2242 | ||
e5568f75 A |
2243 | /* |
2244 | * If vn_getpath() succeeds, place it in a string buffer | |
2245 | * attached to the audit record, and set a flag indicating | |
2246 | * it is present. | |
2247 | */ | |
55e303ae | 2248 | len = MAXPATHLEN; |
e5568f75 | 2249 | if (vn_getpath(vp, *pathp, &len) == 0) { |
91447636 A |
2250 | if (flags & ARG_VNODE1) |
2251 | ar->k_ar.ar_valid_arg |= ARG_KPATH1; | |
2252 | else | |
2253 | ar->k_ar.ar_valid_arg |= ARG_KPATH2; | |
e5568f75 | 2254 | } else { |
91447636 | 2255 | kfree(*pathp, MAXPATHLEN); |
e5568f75 A |
2256 | *pathp = NULL; |
2257 | } | |
55e303ae | 2258 | |
91447636 A |
2259 | context.vc_proc = p; |
2260 | context.vc_ucred = kauth_cred_get(); | |
2261 | ||
2262 | VATTR_INIT(&va); | |
2263 | VATTR_WANTED(&va, va_mode); | |
2264 | VATTR_WANTED(&va, va_uid); | |
2265 | VATTR_WANTED(&va, va_gid); | |
2266 | VATTR_WANTED(&va, va_rdev); | |
2267 | VATTR_WANTED(&va, va_fsid); | |
2268 | VATTR_WANTED(&va, va_fileid); | |
2269 | VATTR_WANTED(&va, va_gen); | |
2270 | error = vnode_getattr(vp, &va, &context); | |
55e303ae A |
2271 | if (error) { |
2272 | /* XXX: How to handle this case? */ | |
2273 | return; | |
2274 | } | |
2275 | ||
91447636 A |
2276 | /* XXX do we want to fall back here when these aren't supported? */ |
2277 | vnp->vn_mode = va.va_mode; | |
2278 | vnp->vn_uid = va.va_uid; | |
2279 | vnp->vn_gid = va.va_gid; | |
2280 | vnp->vn_dev = va.va_rdev; | |
2281 | vnp->vn_fsid = va.va_fsid; | |
2282 | vnp->vn_fileid = (u_long)va.va_fileid; | |
2283 | vnp->vn_gen = va.va_gen; | |
55e303ae A |
2284 | if (flags & ARG_VNODE1) |
2285 | ar->k_ar.ar_valid_arg |= ARG_VNODE1; | |
2286 | else | |
2287 | ar->k_ar.ar_valid_arg |= ARG_VNODE2; | |
2288 | ||
2289 | } | |
2290 | ||
e5568f75 | 2291 | void |
91447636 A |
2292 | audit_arg_vnpath_withref(struct vnode *vp, u_int64_t flags) |
2293 | { | |
2294 | if (vp == NULL || vnode_getwithref(vp)) | |
2295 | return; | |
2296 | audit_arg_vnpath(vp, flags); | |
2297 | (void)vnode_put(vp); | |
2298 | } | |
2299 | ||
2300 | void | |
2301 | audit_arg_mach_port1(mach_port_name_t port) | |
e5568f75 A |
2302 | { |
2303 | struct kaudit_record *ar; | |
2304 | ||
2305 | ar = currecord(); | |
2306 | if (ar == NULL) | |
2307 | return; | |
2308 | ||
2309 | ar->k_ar.ar_arg_mach_port1 = port; | |
2310 | ar->k_ar.ar_valid_arg |= ARG_MACHPORT1; | |
2311 | } | |
2312 | ||
2313 | void | |
91447636 | 2314 | audit_arg_mach_port2(mach_port_name_t port) |
e5568f75 A |
2315 | { |
2316 | struct kaudit_record *ar; | |
2317 | ||
2318 | ar = currecord(); | |
2319 | if (ar == NULL) | |
2320 | return; | |
2321 | ||
2322 | ar->k_ar.ar_arg_mach_port2 = port; | |
2323 | ar->k_ar.ar_valid_arg |= ARG_MACHPORT2; | |
2324 | } | |
2325 | ||
2326 | /* | |
2327 | * The close() system call uses it's own audit call to capture the | |
2328 | * path/vnode information because those pieces are not easily obtained | |
2329 | * within the system call itself. | |
2330 | */ | |
2331 | void | |
2332 | audit_sysclose(struct proc *p, int fd) | |
2333 | { | |
91447636 A |
2334 | struct fileproc *fp; |
2335 | struct vnode *vp; | |
e5568f75 A |
2336 | |
2337 | audit_arg_fd(fd); | |
2338 | ||
91447636 | 2339 | if (fp_getfvp(p, fd, &fp, &vp) != 0) |
e5568f75 A |
2340 | return; |
2341 | ||
91447636 A |
2342 | audit_arg_vnpath_withref((struct vnode *)fp->f_fglob->fg_data, ARG_VNODE1); |
2343 | file_drop(fd); | |
e5568f75 A |
2344 | } |
2345 | ||
55e303ae A |
2346 | #else /* !AUDIT */ |
2347 | ||
2348 | void | |
2349 | audit_init(void) | |
2350 | { | |
2351 | ||
2352 | } | |
2353 | ||
2354 | void | |
2355 | audit_shutdown(void) | |
2356 | { | |
2357 | ||
2358 | } | |
2359 | ||
2360 | int | |
2361 | audit(struct proc *p, struct audit_args *uap, register_t *retval) | |
2362 | { | |
2363 | return (ENOSYS); | |
2364 | } | |
2365 | ||
2366 | int | |
2367 | auditon(struct proc *p, struct auditon_args *uap, register_t *retval) | |
2368 | { | |
2369 | return (ENOSYS); | |
2370 | } | |
2371 | ||
55e303ae A |
2372 | int |
2373 | getauid(struct proc *p, struct getauid_args *uap, register_t *retval) | |
2374 | { | |
2375 | return (ENOSYS); | |
2376 | } | |
2377 | ||
2378 | int | |
2379 | setauid(struct proc *p, struct setauid_args *uap, register_t *retval) | |
2380 | { | |
2381 | return (ENOSYS); | |
2382 | } | |
2383 | ||
2384 | int | |
2385 | getaudit(struct proc *p, struct getaudit_args *uap, register_t *retval) | |
2386 | { | |
2387 | return (ENOSYS); | |
2388 | } | |
2389 | ||
2390 | int | |
2391 | setaudit(struct proc *p, struct setaudit_args *uap, register_t *retval) | |
2392 | { | |
2393 | return (ENOSYS); | |
2394 | } | |
2395 | ||
2396 | int | |
2397 | getaudit_addr(struct proc *p, struct getaudit_addr_args *uap, register_t *retval) | |
2398 | { | |
2399 | return (ENOSYS); | |
2400 | } | |
2401 | ||
2402 | int | |
2403 | setaudit_addr(struct proc *p, struct setaudit_addr_args *uap, register_t *retval) | |
2404 | { | |
2405 | return (ENOSYS); | |
2406 | } | |
2407 | ||
2408 | int | |
2409 | auditctl(struct proc *p, struct auditctl_args *uap, register_t *retval) | |
2410 | { | |
2411 | return (ENOSYS); | |
2412 | } | |
2413 | ||
55e303ae | 2414 | #endif /* AUDIT */ |