]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
e5568f75 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
1c79356b | 11 | * |
e5568f75 A |
12 | * This Original Code and all software distributed under the License are |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
e5568f75 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
1c79356b A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
23 | /* | |
24 | * Copyright (c) 1982, 1986, 1989, 1993 | |
25 | * The Regents of the University of California. All rights reserved. | |
26 | * | |
27 | * Redistribution and use in source and binary forms, with or without | |
28 | * modification, are permitted provided that the following conditions | |
29 | * are met: | |
30 | * 1. Redistributions of source code must retain the above copyright | |
31 | * notice, this list of conditions and the following disclaimer. | |
32 | * 2. Redistributions in binary form must reproduce the above copyright | |
33 | * notice, this list of conditions and the following disclaimer in the | |
34 | * documentation and/or other materials provided with the distribution. | |
35 | * 3. All advertising materials mentioning features or use of this software | |
36 | * must display the following acknowledgement: | |
37 | * This product includes software developed by the University of | |
38 | * California, Berkeley and its contributors. | |
39 | * 4. Neither the name of the University nor the names of its contributors | |
40 | * may be used to endorse or promote products derived from this software | |
41 | * without specific prior written permission. | |
42 | * | |
43 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
44 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
45 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
46 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
47 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
48 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
49 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
50 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
51 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
52 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
53 | * SUCH DAMAGE. | |
54 | * | |
55 | * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 | |
56 | */ | |
57 | ||
58 | #include <sys/param.h> | |
59 | #include <sys/resourcevar.h> | |
60 | #include <sys/kernel.h> | |
61 | #include <sys/systm.h> | |
91447636 A |
62 | #include <sys/proc_internal.h> |
63 | #include <sys/kauth.h> | |
1c79356b A |
64 | #include <sys/vnode.h> |
65 | ||
91447636 A |
66 | #include <sys/mount_internal.h> |
67 | #include <sys/sysproto.h> | |
68 | #include <sys/signalvar.h> | |
1c79356b | 69 | |
1c79356b | 70 | #include <kern/clock.h> |
91447636 | 71 | #include <kern/thread_call.h> |
1c79356b A |
72 | |
73 | #define HZ 100 /* XXX */ | |
74 | ||
9bccf70c | 75 | /* simple lock used to access timezone, tz structure */ |
91447636 A |
76 | lck_spin_t * tz_slock; |
77 | lck_grp_t * tz_slock_grp; | |
78 | lck_attr_t * tz_slock_attr; | |
79 | lck_grp_attr_t *tz_slock_grp_attr; | |
80 | ||
81 | static void setthetime( | |
82 | struct timeval *tv); | |
83 | ||
84 | void time_zone_slock_init(void); | |
85 | ||
86 | int gettimeofday(struct proc *p, | |
87 | #ifdef __ppc__ | |
88 | struct ppc_gettimeofday_args *uap, | |
89 | #else | |
90 | struct gettimeofday_args *uap, | |
91 | #endif | |
92 | register_t *retval); | |
93 | ||
1c79356b A |
94 | /* |
95 | * Time of day and interval timer support. | |
96 | * | |
97 | * These routines provide the kernel entry points to get and set | |
98 | * the time-of-day and per-process interval timers. Subroutines | |
99 | * here provide support for adding and subtracting timeval structures | |
100 | * and decrementing interval timers, optionally reloading the interval | |
101 | * timers when they expire. | |
91447636 A |
102 | * |
103 | * XXX Y2038 bug because of clock_get_calendar_microtime() first argument | |
1c79356b | 104 | */ |
1c79356b A |
105 | /* ARGSUSED */ |
106 | int | |
91447636 A |
107 | gettimeofday(__unused struct proc *p, |
108 | #ifdef __ppc__ | |
109 | register struct ppc_gettimeofday_args *uap, | |
110 | #else | |
111 | register struct gettimeofday_args *uap, | |
112 | #endif | |
113 | __unused register_t *retval) | |
1c79356b A |
114 | { |
115 | struct timeval atv; | |
116 | int error = 0; | |
9bccf70c A |
117 | struct timezone ltz; /* local copy */ |
118 | ||
119 | /* NOTE THIS implementation is for non ppc architectures only */ | |
1c79356b A |
120 | |
121 | if (uap->tp) { | |
91447636 A |
122 | clock_get_calendar_microtime((uint32_t *)&atv.tv_sec, &atv.tv_usec); |
123 | if (IS_64BIT_PROCESS(p)) { | |
124 | struct user_timeval user_atv; | |
125 | user_atv.tv_sec = atv.tv_sec; | |
126 | user_atv.tv_usec = atv.tv_usec; | |
127 | /* | |
128 | * This cast is not necessary for PPC, but is | |
129 | * mostly harmless. | |
130 | */ | |
131 | error = copyout(&user_atv, CAST_USER_ADDR_T(uap->tp), sizeof(struct user_timeval)); | |
132 | } else { | |
133 | error = copyout(&atv, CAST_USER_ADDR_T(uap->tp), sizeof(struct timeval)); | |
134 | } | |
135 | if (error) | |
1c79356b A |
136 | return(error); |
137 | } | |
138 | ||
9bccf70c | 139 | if (uap->tzp) { |
91447636 | 140 | lck_spin_lock(tz_slock); |
9bccf70c | 141 | ltz = tz; |
91447636 A |
142 | lck_spin_unlock(tz_slock); |
143 | error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp), | |
1c79356b | 144 | sizeof (tz)); |
9bccf70c | 145 | } |
1c79356b A |
146 | |
147 | return(error); | |
148 | } | |
149 | ||
91447636 A |
150 | /* |
151 | * XXX Y2038 bug because of setthetime() argument | |
152 | */ | |
1c79356b A |
153 | /* ARGSUSED */ |
154 | int | |
91447636 | 155 | settimeofday(struct proc *p, struct settimeofday_args *uap, __unused register_t *retval) |
1c79356b A |
156 | { |
157 | struct timeval atv; | |
158 | struct timezone atz; | |
91447636 | 159 | int error; |
1c79356b | 160 | |
91447636 | 161 | if ((error = suser(kauth_cred_get(), &p->p_acflag))) |
1c79356b | 162 | return (error); |
91447636 A |
163 | /* Verify all parameters before changing time */ |
164 | if (uap->tv) { | |
165 | if (IS_64BIT_PROCESS(p)) { | |
166 | struct user_timeval user_atv; | |
167 | error = copyin(uap->tv, &user_atv, sizeof(struct user_timeval)); | |
168 | atv.tv_sec = user_atv.tv_sec; | |
169 | atv.tv_usec = user_atv.tv_usec; | |
170 | } else { | |
171 | error = copyin(uap->tv, &atv, sizeof(struct timeval)); | |
172 | } | |
173 | if (error) | |
174 | return (error); | |
175 | } | |
176 | if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz)))) | |
1c79356b | 177 | return (error); |
91447636 A |
178 | if (uap->tv) { |
179 | timevalfix(&atv); | |
180 | if (atv.tv_sec < 0 || (atv.tv_sec == 0 && atv.tv_usec < 0)) | |
181 | return (EPERM); | |
1c79356b | 182 | setthetime(&atv); |
91447636 | 183 | } |
9bccf70c | 184 | if (uap->tzp) { |
91447636 | 185 | lck_spin_lock(tz_slock); |
1c79356b | 186 | tz = atz; |
91447636 | 187 | lck_spin_unlock(tz_slock); |
9bccf70c | 188 | } |
1c79356b A |
189 | return (0); |
190 | } | |
191 | ||
91447636 A |
192 | static void |
193 | setthetime( | |
194 | struct timeval *tv) | |
1c79356b | 195 | { |
55e303ae | 196 | clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec); |
1c79356b A |
197 | } |
198 | ||
91447636 A |
199 | /* |
200 | * XXX Y2038 bug because of clock_adjtime() first argument | |
201 | */ | |
1c79356b A |
202 | /* ARGSUSED */ |
203 | int | |
91447636 | 204 | adjtime(struct proc *p, register struct adjtime_args *uap, __unused register_t *retval) |
1c79356b | 205 | { |
9bccf70c | 206 | struct timeval atv; |
9bccf70c | 207 | int error; |
1c79356b | 208 | |
91447636 | 209 | if ((error = suser(kauth_cred_get(), &p->p_acflag))) |
1c79356b | 210 | return (error); |
91447636 A |
211 | if (IS_64BIT_PROCESS(p)) { |
212 | struct user_timeval user_atv; | |
213 | error = copyin(uap->delta, &user_atv, sizeof(struct user_timeval)); | |
214 | atv.tv_sec = user_atv.tv_sec; | |
215 | atv.tv_usec = user_atv.tv_usec; | |
216 | } else { | |
217 | error = copyin(uap->delta, &atv, sizeof(struct timeval)); | |
218 | } | |
219 | if (error) | |
9bccf70c | 220 | return (error); |
1c79356b | 221 | |
91447636 A |
222 | /* |
223 | * Compute the total correction and the rate at which to apply it. | |
224 | */ | |
225 | clock_adjtime((int32_t *)&atv.tv_sec, &atv.tv_usec); | |
1c79356b | 226 | |
1c79356b | 227 | if (uap->olddelta) { |
91447636 A |
228 | if (IS_64BIT_PROCESS(p)) { |
229 | struct user_timeval user_atv; | |
230 | user_atv.tv_sec = atv.tv_sec; | |
231 | user_atv.tv_usec = atv.tv_usec; | |
232 | error = copyout(&user_atv, uap->olddelta, sizeof(struct user_timeval)); | |
233 | } else { | |
234 | error = copyout(&atv, uap->olddelta, sizeof(struct timeval)); | |
235 | } | |
1c79356b | 236 | } |
1c79356b | 237 | |
9bccf70c | 238 | return (0); |
1c79356b A |
239 | } |
240 | ||
1c79356b | 241 | /* |
91447636 A |
242 | * Verify the calendar value. If negative, |
243 | * reset to zero (the epoch). | |
1c79356b A |
244 | */ |
245 | void | |
91447636 A |
246 | inittodr( |
247 | __unused time_t base) | |
1c79356b | 248 | { |
55e303ae A |
249 | struct timeval tv; |
250 | ||
1c79356b | 251 | /* |
0b4e3aa0 A |
252 | * Assertion: |
253 | * The calendar has already been | |
91447636 | 254 | * set up from the platform clock. |
0b4e3aa0 | 255 | * |
1c79356b A |
256 | * The value returned by microtime() |
257 | * is gotten from the calendar. | |
258 | */ | |
55e303ae | 259 | microtime(&tv); |
1c79356b | 260 | |
91447636 | 261 | if (tv.tv_sec < 0 || tv.tv_usec < 0) { |
1c79356b | 262 | printf ("WARNING: preposterous time in Real Time Clock"); |
91447636 A |
263 | tv.tv_sec = 0; /* the UNIX epoch */ |
264 | tv.tv_usec = 0; | |
265 | setthetime(&tv); | |
1c79356b A |
266 | printf(" -- CHECK AND RESET THE DATE!\n"); |
267 | } | |
1c79356b A |
268 | } |
269 | ||
91447636 A |
270 | time_t |
271 | boottime_sec(void) | |
272 | { | |
273 | uint32_t sec, nanosec; | |
274 | clock_get_boottime_nanotime(&sec, &nanosec); | |
275 | return (sec); | |
276 | } | |
9bccf70c | 277 | |
91447636 | 278 | uint64_t tvtoabstime(struct timeval *tvp); |
9bccf70c | 279 | |
1c79356b A |
280 | /* |
281 | * Get value of an interval timer. The process virtual and | |
9bccf70c | 282 | * profiling virtual time timers are kept internally in the |
1c79356b A |
283 | * way they are specified externally: in time until they expire. |
284 | * | |
9bccf70c A |
285 | * The real time interval timer expiration time (p_rtime) |
286 | * is kept as an absolute time rather than as a delta, so that | |
287 | * it is easy to keep periodic real-time signals from drifting. | |
1c79356b A |
288 | * |
289 | * Virtual time timers are processed in the hardclock() routine of | |
9bccf70c A |
290 | * kern_clock.c. The real time timer is processed by a callout |
291 | * routine. Since a callout may be delayed in real time due to | |
292 | * other processing in the system, it is possible for the real | |
293 | * time callout routine (realitexpire, given below), to be delayed | |
294 | * in real time past when it is supposed to occur. It does not | |
295 | * suffice, therefore, to reload the real time .it_value from the | |
296 | * real time .it_interval. Rather, we compute the next time in | |
297 | * absolute time when the timer should go off. | |
1c79356b A |
298 | */ |
299 | ||
1c79356b A |
300 | /* ARGSUSED */ |
301 | int | |
91447636 | 302 | getitimer(struct proc *p, register struct getitimer_args *uap, __unused register_t *retval) |
1c79356b A |
303 | { |
304 | struct itimerval aitv; | |
1c79356b A |
305 | |
306 | if (uap->which > ITIMER_PROF) | |
307 | return(EINVAL); | |
1c79356b A |
308 | if (uap->which == ITIMER_REAL) { |
309 | /* | |
9bccf70c A |
310 | * If time for real time timer has passed return 0, |
311 | * else return difference between current time and | |
312 | * time for the timer to go off. | |
1c79356b A |
313 | */ |
314 | aitv = p->p_realtimer; | |
9bccf70c A |
315 | if (timerisset(&p->p_rtime)) { |
316 | struct timeval now; | |
317 | ||
318 | microuptime(&now); | |
319 | if (timercmp(&p->p_rtime, &now, <)) | |
1c79356b | 320 | timerclear(&aitv.it_value); |
9bccf70c A |
321 | else { |
322 | aitv.it_value = p->p_rtime; | |
323 | timevalsub(&aitv.it_value, &now); | |
324 | } | |
325 | } | |
326 | else | |
327 | timerclear(&aitv.it_value); | |
328 | } | |
329 | else | |
330 | aitv = p->p_stats->p_timer[uap->which]; | |
331 | ||
91447636 A |
332 | if (IS_64BIT_PROCESS(p)) { |
333 | struct user_itimerval user_itv; | |
334 | user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec; | |
335 | user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec; | |
336 | user_itv.it_value.tv_sec = aitv.it_value.tv_sec; | |
337 | user_itv.it_value.tv_usec = aitv.it_value.tv_usec; | |
338 | return (copyout((caddr_t)&user_itv, uap->itv, sizeof (struct user_itimerval))); | |
339 | } else { | |
340 | return (copyout((caddr_t)&aitv, uap->itv, sizeof (struct itimerval))); | |
341 | } | |
1c79356b A |
342 | } |
343 | ||
1c79356b A |
344 | /* ARGSUSED */ |
345 | int | |
346 | setitimer(p, uap, retval) | |
347 | struct proc *p; | |
348 | register struct setitimer_args *uap; | |
349 | register_t *retval; | |
350 | { | |
351 | struct itimerval aitv; | |
91447636 | 352 | user_addr_t itvp; |
9bccf70c | 353 | int error; |
1c79356b A |
354 | |
355 | if (uap->which > ITIMER_PROF) | |
9bccf70c | 356 | return (EINVAL); |
91447636 A |
357 | if ((itvp = uap->itv)) { |
358 | if (IS_64BIT_PROCESS(p)) { | |
359 | struct user_itimerval user_itv; | |
360 | if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (struct user_itimerval)))) | |
361 | return (error); | |
362 | aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec; | |
363 | aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec; | |
364 | aitv.it_value.tv_sec = user_itv.it_value.tv_sec; | |
365 | aitv.it_value.tv_usec = user_itv.it_value.tv_usec; | |
366 | } else { | |
367 | if ((error = copyin(itvp, (caddr_t)&aitv, sizeof (struct itimerval)))) | |
368 | return (error); | |
369 | } | |
370 | } | |
371 | if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval))) | |
1c79356b A |
372 | return (error); |
373 | if (itvp == 0) | |
374 | return (0); | |
375 | if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) | |
376 | return (EINVAL); | |
1c79356b | 377 | if (uap->which == ITIMER_REAL) { |
91447636 | 378 | thread_call_func_cancel((thread_call_func_t)realitexpire, (void *)p->p_pid, FALSE); |
1c79356b | 379 | if (timerisset(&aitv.it_value)) { |
9bccf70c A |
380 | microuptime(&p->p_rtime); |
381 | timevaladd(&p->p_rtime, &aitv.it_value); | |
382 | thread_call_func_delayed( | |
91447636 | 383 | (thread_call_func_t)realitexpire, (void *)p->p_pid, |
9bccf70c | 384 | tvtoabstime(&p->p_rtime)); |
1c79356b | 385 | } |
9bccf70c A |
386 | else |
387 | timerclear(&p->p_rtime); | |
388 | ||
1c79356b | 389 | p->p_realtimer = aitv; |
9bccf70c A |
390 | } |
391 | else | |
1c79356b | 392 | p->p_stats->p_timer[uap->which] = aitv; |
9bccf70c A |
393 | |
394 | return (0); | |
1c79356b A |
395 | } |
396 | ||
397 | /* | |
398 | * Real interval timer expired: | |
399 | * send process whose timer expired an alarm signal. | |
400 | * If time is not set up to reload, then just return. | |
401 | * Else compute next time timer should go off which is > current time. | |
402 | * This is where delay in processing this timeout causes multiple | |
403 | * SIGALRM calls to be compressed into one. | |
404 | */ | |
405 | void | |
9bccf70c A |
406 | realitexpire( |
407 | void *pid) | |
1c79356b A |
408 | { |
409 | register struct proc *p; | |
9bccf70c | 410 | struct timeval now; |
91447636 | 411 | boolean_t funnel_state; |
1c79356b | 412 | |
91447636 | 413 | funnel_state = thread_funnel_set(kernel_flock, TRUE); |
9bccf70c A |
414 | p = pfind((pid_t)pid); |
415 | if (p == NULL) { | |
416 | (void) thread_funnel_set(kernel_flock, FALSE); | |
1c79356b A |
417 | return; |
418 | } | |
9bccf70c A |
419 | |
420 | if (!timerisset(&p->p_realtimer.it_interval)) { | |
421 | timerclear(&p->p_rtime); | |
422 | psignal(p, SIGALRM); | |
423 | ||
424 | (void) thread_funnel_set(kernel_flock, FALSE); | |
1c79356b | 425 | return; |
1c79356b | 426 | } |
9bccf70c A |
427 | |
428 | microuptime(&now); | |
429 | timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); | |
430 | if (timercmp(&p->p_rtime, &now, <=)) { | |
431 | if ((p->p_rtime.tv_sec + 2) >= now.tv_sec) { | |
432 | for (;;) { | |
433 | timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); | |
434 | if (timercmp(&p->p_rtime, &now, >)) | |
435 | break; | |
436 | } | |
437 | } | |
438 | else { | |
439 | p->p_rtime = p->p_realtimer.it_interval; | |
440 | timevaladd(&p->p_rtime, &now); | |
1c79356b | 441 | } |
1c79356b | 442 | } |
9bccf70c | 443 | |
9bccf70c A |
444 | psignal(p, SIGALRM); |
445 | ||
91447636 | 446 | thread_call_func_delayed((thread_call_func_t)realitexpire, pid, tvtoabstime(&p->p_rtime)); |
55e303ae | 447 | |
1c79356b A |
448 | (void) thread_funnel_set(kernel_flock, FALSE); |
449 | } | |
450 | ||
451 | /* | |
452 | * Check that a proposed value to load into the .it_value or | |
453 | * .it_interval part of an interval timer is acceptable, and | |
454 | * fix it to have at least minimal value (i.e. if it is less | |
455 | * than the resolution of the clock, round it up.) | |
456 | */ | |
457 | int | |
458 | itimerfix(tv) | |
459 | struct timeval *tv; | |
460 | { | |
461 | ||
462 | if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || | |
463 | tv->tv_usec < 0 || tv->tv_usec >= 1000000) | |
464 | return (EINVAL); | |
465 | if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) | |
466 | tv->tv_usec = tick; | |
467 | return (0); | |
468 | } | |
469 | ||
470 | /* | |
471 | * Decrement an interval timer by a specified number | |
472 | * of microseconds, which must be less than a second, | |
473 | * i.e. < 1000000. If the timer expires, then reload | |
474 | * it. In this case, carry over (usec - old value) to | |
475 | * reducint the value reloaded into the timer so that | |
476 | * the timer does not drift. This routine assumes | |
477 | * that it is called in a context where the timers | |
478 | * on which it is operating cannot change in value. | |
479 | */ | |
480 | int | |
481 | itimerdecr(itp, usec) | |
482 | register struct itimerval *itp; | |
483 | int usec; | |
484 | { | |
485 | ||
486 | if (itp->it_value.tv_usec < usec) { | |
487 | if (itp->it_value.tv_sec == 0) { | |
488 | /* expired, and already in next interval */ | |
489 | usec -= itp->it_value.tv_usec; | |
490 | goto expire; | |
491 | } | |
492 | itp->it_value.tv_usec += 1000000; | |
493 | itp->it_value.tv_sec--; | |
494 | } | |
495 | itp->it_value.tv_usec -= usec; | |
496 | usec = 0; | |
497 | if (timerisset(&itp->it_value)) | |
498 | return (1); | |
499 | /* expired, exactly at end of interval */ | |
500 | expire: | |
501 | if (timerisset(&itp->it_interval)) { | |
502 | itp->it_value = itp->it_interval; | |
503 | itp->it_value.tv_usec -= usec; | |
504 | if (itp->it_value.tv_usec < 0) { | |
505 | itp->it_value.tv_usec += 1000000; | |
506 | itp->it_value.tv_sec--; | |
507 | } | |
508 | } else | |
509 | itp->it_value.tv_usec = 0; /* sec is already 0 */ | |
510 | return (0); | |
511 | } | |
512 | ||
513 | /* | |
514 | * Add and subtract routines for timevals. | |
515 | * N.B.: subtract routine doesn't deal with | |
516 | * results which are before the beginning, | |
517 | * it just gets very confused in this case. | |
518 | * Caveat emptor. | |
519 | */ | |
520 | void | |
9bccf70c A |
521 | timevaladd( |
522 | struct timeval *t1, | |
523 | struct timeval *t2) | |
1c79356b A |
524 | { |
525 | ||
526 | t1->tv_sec += t2->tv_sec; | |
527 | t1->tv_usec += t2->tv_usec; | |
528 | timevalfix(t1); | |
529 | } | |
530 | void | |
9bccf70c A |
531 | timevalsub( |
532 | struct timeval *t1, | |
533 | struct timeval *t2) | |
1c79356b A |
534 | { |
535 | ||
536 | t1->tv_sec -= t2->tv_sec; | |
537 | t1->tv_usec -= t2->tv_usec; | |
538 | timevalfix(t1); | |
539 | } | |
540 | void | |
9bccf70c A |
541 | timevalfix( |
542 | struct timeval *t1) | |
1c79356b A |
543 | { |
544 | ||
545 | if (t1->tv_usec < 0) { | |
546 | t1->tv_sec--; | |
547 | t1->tv_usec += 1000000; | |
548 | } | |
549 | if (t1->tv_usec >= 1000000) { | |
550 | t1->tv_sec++; | |
551 | t1->tv_usec -= 1000000; | |
552 | } | |
553 | } | |
554 | ||
555 | /* | |
556 | * Return the best possible estimate of the time in the timeval | |
557 | * to which tvp points. | |
558 | */ | |
559 | void | |
9bccf70c A |
560 | microtime( |
561 | struct timeval *tvp) | |
1c79356b | 562 | { |
91447636 | 563 | clock_get_calendar_microtime((uint32_t *)&tvp->tv_sec, &tvp->tv_usec); |
1c79356b | 564 | } |
9bccf70c A |
565 | |
566 | void | |
567 | microuptime( | |
568 | struct timeval *tvp) | |
569 | { | |
91447636 | 570 | clock_get_system_microtime((uint32_t *)&tvp->tv_sec, &tvp->tv_usec); |
9bccf70c A |
571 | } |
572 | ||
573 | /* | |
574 | * Ditto for timespec. | |
575 | */ | |
576 | void | |
577 | nanotime( | |
578 | struct timespec *tsp) | |
579 | { | |
91447636 | 580 | clock_get_calendar_nanotime((uint32_t *)&tsp->tv_sec, (uint32_t *)&tsp->tv_nsec); |
9bccf70c A |
581 | } |
582 | ||
583 | void | |
584 | nanouptime( | |
585 | struct timespec *tsp) | |
586 | { | |
91447636 | 587 | clock_get_system_nanotime((uint32_t *)&tsp->tv_sec, (uint32_t *)&tsp->tv_nsec); |
9bccf70c A |
588 | } |
589 | ||
590 | uint64_t | |
591 | tvtoabstime( | |
592 | struct timeval *tvp) | |
593 | { | |
594 | uint64_t result, usresult; | |
595 | ||
596 | clock_interval_to_absolutetime_interval( | |
597 | tvp->tv_sec, NSEC_PER_SEC, &result); | |
598 | clock_interval_to_absolutetime_interval( | |
599 | tvp->tv_usec, NSEC_PER_USEC, &usresult); | |
600 | ||
601 | return (result + usresult); | |
602 | } | |
603 | void | |
604 | time_zone_slock_init(void) | |
605 | { | |
91447636 A |
606 | /* allocate lock group attribute and group */ |
607 | tz_slock_grp_attr = lck_grp_attr_alloc_init(); | |
608 | lck_grp_attr_setstat(tz_slock_grp_attr); | |
9bccf70c | 609 | |
91447636 | 610 | tz_slock_grp = lck_grp_alloc_init("tzlock", tz_slock_grp_attr); |
9bccf70c | 611 | |
91447636 A |
612 | /* Allocate lock attribute */ |
613 | tz_slock_attr = lck_attr_alloc_init(); | |
614 | //lck_attr_setdebug(tz_slock_attr); | |
9bccf70c | 615 | |
91447636 A |
616 | /* Allocate the spin lock */ |
617 | tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr); | |
9bccf70c | 618 | } |
91447636 | 619 |