]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
43866e37 | 6 | * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. |
1c79356b | 7 | * |
43866e37 A |
8 | * This file contains Original Code and/or Modifications of Original Code |
9 | * as defined in and that are subject to the Apple Public Source License | |
10 | * Version 2.0 (the 'License'). You may not use this file except in | |
11 | * compliance with the License. Please obtain a copy of the License at | |
12 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
13 | * file. | |
14 | * | |
15 | * The Original Code and all software distributed under the License are | |
16 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
17 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
18 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
43866e37 A |
19 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
20 | * Please see the License for the specific language governing rights and | |
21 | * limitations under the License. | |
1c79356b A |
22 | * |
23 | * @APPLE_LICENSE_HEADER_END@ | |
24 | */ | |
25 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
26 | /* | |
27 | * Copyright (c) 1982, 1986, 1989, 1993 | |
28 | * The Regents of the University of California. All rights reserved. | |
29 | * | |
30 | * Redistribution and use in source and binary forms, with or without | |
31 | * modification, are permitted provided that the following conditions | |
32 | * are met: | |
33 | * 1. Redistributions of source code must retain the above copyright | |
34 | * notice, this list of conditions and the following disclaimer. | |
35 | * 2. Redistributions in binary form must reproduce the above copyright | |
36 | * notice, this list of conditions and the following disclaimer in the | |
37 | * documentation and/or other materials provided with the distribution. | |
38 | * 3. All advertising materials mentioning features or use of this software | |
39 | * must display the following acknowledgement: | |
40 | * This product includes software developed by the University of | |
41 | * California, Berkeley and its contributors. | |
42 | * 4. Neither the name of the University nor the names of its contributors | |
43 | * may be used to endorse or promote products derived from this software | |
44 | * without specific prior written permission. | |
45 | * | |
46 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
47 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
48 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
49 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
50 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
51 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
52 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
53 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
54 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
55 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
56 | * SUCH DAMAGE. | |
57 | * | |
58 | * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 | |
59 | */ | |
60 | ||
61 | #include <sys/param.h> | |
62 | #include <sys/resourcevar.h> | |
63 | #include <sys/kernel.h> | |
64 | #include <sys/systm.h> | |
65 | #include <sys/proc.h> | |
66 | #include <sys/vnode.h> | |
67 | ||
68 | #include <sys/mount.h> | |
69 | ||
1c79356b A |
70 | #include <kern/clock.h> |
71 | ||
72 | #define HZ 100 /* XXX */ | |
73 | ||
9bccf70c A |
74 | volatile struct timeval time; |
75 | /* simple lock used to access timezone, tz structure */ | |
76 | decl_simple_lock_data(, tz_slock); | |
1c79356b A |
77 | /* |
78 | * Time of day and interval timer support. | |
79 | * | |
80 | * These routines provide the kernel entry points to get and set | |
81 | * the time-of-day and per-process interval timers. Subroutines | |
82 | * here provide support for adding and subtracting timeval structures | |
83 | * and decrementing interval timers, optionally reloading the interval | |
84 | * timers when they expire. | |
85 | */ | |
86 | struct gettimeofday_args{ | |
87 | struct timeval *tp; | |
88 | struct timezone *tzp; | |
89 | }; | |
90 | /* ARGSUSED */ | |
91 | int | |
92 | gettimeofday(p, uap, retval) | |
93 | struct proc *p; | |
94 | register struct gettimeofday_args *uap; | |
95 | register_t *retval; | |
96 | { | |
97 | struct timeval atv; | |
98 | int error = 0; | |
9bccf70c A |
99 | extern simple_lock_data_t tz_slock; |
100 | struct timezone ltz; /* local copy */ | |
101 | ||
102 | /* NOTE THIS implementation is for non ppc architectures only */ | |
1c79356b A |
103 | |
104 | if (uap->tp) { | |
55e303ae | 105 | clock_get_calendar_microtime(&atv.tv_sec, &atv.tv_usec); |
1c79356b A |
106 | if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp, |
107 | sizeof (atv))) | |
108 | return(error); | |
109 | } | |
110 | ||
9bccf70c A |
111 | if (uap->tzp) { |
112 | usimple_lock(&tz_slock); | |
113 | ltz = tz; | |
114 | usimple_unlock(&tz_slock); | |
115 | error = copyout((caddr_t)<z, (caddr_t)uap->tzp, | |
1c79356b | 116 | sizeof (tz)); |
9bccf70c | 117 | } |
1c79356b A |
118 | |
119 | return(error); | |
120 | } | |
121 | ||
122 | struct settimeofday_args { | |
123 | struct timeval *tv; | |
124 | struct timezone *tzp; | |
125 | }; | |
126 | /* ARGSUSED */ | |
127 | int | |
128 | settimeofday(p, uap, retval) | |
129 | struct proc *p; | |
130 | struct settimeofday_args *uap; | |
131 | register_t *retval; | |
132 | { | |
133 | struct timeval atv; | |
134 | struct timezone atz; | |
135 | int error, s; | |
9bccf70c | 136 | extern simple_lock_data_t tz_slock; |
1c79356b A |
137 | |
138 | if (error = suser(p->p_ucred, &p->p_acflag)) | |
139 | return (error); | |
140 | /* Verify all parameters before changing time. */ | |
141 | if (uap->tv && (error = copyin((caddr_t)uap->tv, | |
142 | (caddr_t)&atv, sizeof(atv)))) | |
143 | return (error); | |
144 | if (uap->tzp && (error = copyin((caddr_t)uap->tzp, | |
145 | (caddr_t)&atz, sizeof(atz)))) | |
146 | return (error); | |
147 | if (uap->tv) | |
148 | setthetime(&atv); | |
9bccf70c A |
149 | if (uap->tzp) { |
150 | usimple_lock(&tz_slock); | |
1c79356b | 151 | tz = atz; |
9bccf70c A |
152 | usimple_unlock(&tz_slock); |
153 | } | |
1c79356b A |
154 | return (0); |
155 | } | |
156 | ||
157 | setthetime(tv) | |
158 | struct timeval *tv; | |
159 | { | |
9bccf70c | 160 | long delta = tv->tv_sec - time.tv_sec; |
1c79356b | 161 | |
55e303ae | 162 | clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec); |
1c79356b A |
163 | boottime.tv_sec += delta; |
164 | #if NFSCLIENT || NFSSERVER | |
165 | lease_updatetime(delta); | |
166 | #endif | |
1c79356b A |
167 | } |
168 | ||
1c79356b A |
169 | struct adjtime_args { |
170 | struct timeval *delta; | |
171 | struct timeval *olddelta; | |
172 | }; | |
173 | /* ARGSUSED */ | |
174 | int | |
175 | adjtime(p, uap, retval) | |
176 | struct proc *p; | |
177 | register struct adjtime_args *uap; | |
178 | register_t *retval; | |
179 | { | |
9bccf70c | 180 | struct timeval atv; |
9bccf70c | 181 | int error; |
1c79356b A |
182 | |
183 | if (error = suser(p->p_ucred, &p->p_acflag)) | |
184 | return (error); | |
9bccf70c A |
185 | if (error = copyin((caddr_t)uap->delta, |
186 | (caddr_t)&atv, sizeof (struct timeval))) | |
187 | return (error); | |
1c79356b | 188 | |
9bccf70c A |
189 | /* |
190 | * Compute the total correction and the rate at which to apply it. | |
191 | */ | |
55e303ae | 192 | clock_adjtime(&atv.tv_sec, &atv.tv_usec); |
1c79356b | 193 | |
1c79356b | 194 | if (uap->olddelta) { |
9bccf70c A |
195 | (void) copyout((caddr_t)&atv, |
196 | (caddr_t)uap->olddelta, sizeof (struct timeval)); | |
1c79356b | 197 | } |
1c79356b | 198 | |
9bccf70c | 199 | return (0); |
1c79356b A |
200 | } |
201 | ||
1c79356b A |
202 | /* |
203 | * Initialze the time of day register. | |
204 | * Trust the RTC except for the case where it is set before | |
205 | * the UNIX epoch. In that case use the the UNIX epoch. | |
206 | * The argument passed in is ignored. | |
207 | */ | |
208 | void | |
209 | inittodr(base) | |
210 | time_t base; | |
211 | { | |
55e303ae A |
212 | struct timeval tv; |
213 | ||
1c79356b | 214 | /* |
0b4e3aa0 A |
215 | * Assertion: |
216 | * The calendar has already been | |
217 | * set up from the battery clock. | |
218 | * | |
1c79356b A |
219 | * The value returned by microtime() |
220 | * is gotten from the calendar. | |
221 | */ | |
55e303ae | 222 | microtime(&tv); |
1c79356b | 223 | |
55e303ae A |
224 | time = tv; |
225 | boottime.tv_sec = tv.tv_sec; | |
1c79356b A |
226 | boottime.tv_usec = 0; |
227 | ||
228 | /* | |
229 | * If the RTC does not have acceptable value, i.e. time before | |
230 | * the UNIX epoch, set it to the UNIX epoch | |
231 | */ | |
55e303ae | 232 | if (tv.tv_sec < 0) { |
1c79356b A |
233 | printf ("WARNING: preposterous time in Real Time Clock"); |
234 | time.tv_sec = 0; /* the UNIX epoch */ | |
235 | time.tv_usec = 0; | |
236 | setthetime(&time); | |
237 | boottime = time; | |
238 | printf(" -- CHECK AND RESET THE DATE!\n"); | |
239 | } | |
240 | ||
241 | return; | |
242 | } | |
243 | ||
9bccf70c A |
244 | void timevaladd( |
245 | struct timeval *t1, | |
246 | struct timeval *t2); | |
247 | void timevalsub( | |
248 | struct timeval *t1, | |
249 | struct timeval *t2); | |
250 | void timevalfix( | |
251 | struct timeval *t1); | |
252 | ||
253 | uint64_t | |
254 | tvtoabstime( | |
255 | struct timeval *tvp); | |
256 | ||
1c79356b A |
257 | /* |
258 | * Get value of an interval timer. The process virtual and | |
9bccf70c | 259 | * profiling virtual time timers are kept internally in the |
1c79356b A |
260 | * way they are specified externally: in time until they expire. |
261 | * | |
9bccf70c A |
262 | * The real time interval timer expiration time (p_rtime) |
263 | * is kept as an absolute time rather than as a delta, so that | |
264 | * it is easy to keep periodic real-time signals from drifting. | |
1c79356b A |
265 | * |
266 | * Virtual time timers are processed in the hardclock() routine of | |
9bccf70c A |
267 | * kern_clock.c. The real time timer is processed by a callout |
268 | * routine. Since a callout may be delayed in real time due to | |
269 | * other processing in the system, it is possible for the real | |
270 | * time callout routine (realitexpire, given below), to be delayed | |
271 | * in real time past when it is supposed to occur. It does not | |
272 | * suffice, therefore, to reload the real time .it_value from the | |
273 | * real time .it_interval. Rather, we compute the next time in | |
274 | * absolute time when the timer should go off. | |
1c79356b A |
275 | */ |
276 | ||
277 | struct getitimer_args { | |
278 | u_int which; | |
279 | struct itimerval *itv; | |
280 | }; | |
281 | /* ARGSUSED */ | |
282 | int | |
283 | getitimer(p, uap, retval) | |
284 | struct proc *p; | |
285 | register struct getitimer_args *uap; | |
286 | register_t *retval; | |
287 | { | |
288 | struct itimerval aitv; | |
1c79356b A |
289 | |
290 | if (uap->which > ITIMER_PROF) | |
291 | return(EINVAL); | |
1c79356b A |
292 | if (uap->which == ITIMER_REAL) { |
293 | /* | |
9bccf70c A |
294 | * If time for real time timer has passed return 0, |
295 | * else return difference between current time and | |
296 | * time for the timer to go off. | |
1c79356b A |
297 | */ |
298 | aitv = p->p_realtimer; | |
9bccf70c A |
299 | if (timerisset(&p->p_rtime)) { |
300 | struct timeval now; | |
301 | ||
302 | microuptime(&now); | |
303 | if (timercmp(&p->p_rtime, &now, <)) | |
1c79356b | 304 | timerclear(&aitv.it_value); |
9bccf70c A |
305 | else { |
306 | aitv.it_value = p->p_rtime; | |
307 | timevalsub(&aitv.it_value, &now); | |
308 | } | |
309 | } | |
310 | else | |
311 | timerclear(&aitv.it_value); | |
312 | } | |
313 | else | |
314 | aitv = p->p_stats->p_timer[uap->which]; | |
315 | ||
316 | return (copyout((caddr_t)&aitv, | |
317 | (caddr_t)uap->itv, sizeof (struct itimerval))); | |
1c79356b A |
318 | } |
319 | ||
320 | struct setitimer_args { | |
321 | u_int which; | |
322 | struct itimerval *itv; | |
323 | struct itimerval *oitv; | |
324 | }; | |
325 | /* ARGSUSED */ | |
326 | int | |
327 | setitimer(p, uap, retval) | |
328 | struct proc *p; | |
329 | register struct setitimer_args *uap; | |
330 | register_t *retval; | |
331 | { | |
332 | struct itimerval aitv; | |
333 | register struct itimerval *itvp; | |
9bccf70c | 334 | int error; |
1c79356b A |
335 | |
336 | if (uap->which > ITIMER_PROF) | |
9bccf70c A |
337 | return (EINVAL); |
338 | if ((itvp = uap->itv) && | |
339 | (error = copyin((caddr_t)itvp, | |
340 | (caddr_t)&aitv, sizeof (struct itimerval)))) | |
1c79356b | 341 | return (error); |
9bccf70c | 342 | if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval))) |
1c79356b A |
343 | return (error); |
344 | if (itvp == 0) | |
345 | return (0); | |
346 | if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) | |
347 | return (EINVAL); | |
1c79356b | 348 | if (uap->which == ITIMER_REAL) { |
9bccf70c | 349 | thread_call_func_cancel(realitexpire, (void *)p->p_pid, FALSE); |
1c79356b | 350 | if (timerisset(&aitv.it_value)) { |
9bccf70c A |
351 | microuptime(&p->p_rtime); |
352 | timevaladd(&p->p_rtime, &aitv.it_value); | |
353 | thread_call_func_delayed( | |
354 | realitexpire, (void *)p->p_pid, | |
355 | tvtoabstime(&p->p_rtime)); | |
1c79356b | 356 | } |
9bccf70c A |
357 | else |
358 | timerclear(&p->p_rtime); | |
359 | ||
1c79356b | 360 | p->p_realtimer = aitv; |
9bccf70c A |
361 | } |
362 | else | |
1c79356b | 363 | p->p_stats->p_timer[uap->which] = aitv; |
9bccf70c A |
364 | |
365 | return (0); | |
1c79356b A |
366 | } |
367 | ||
368 | /* | |
369 | * Real interval timer expired: | |
370 | * send process whose timer expired an alarm signal. | |
371 | * If time is not set up to reload, then just return. | |
372 | * Else compute next time timer should go off which is > current time. | |
373 | * This is where delay in processing this timeout causes multiple | |
374 | * SIGALRM calls to be compressed into one. | |
375 | */ | |
376 | void | |
9bccf70c A |
377 | realitexpire( |
378 | void *pid) | |
1c79356b A |
379 | { |
380 | register struct proc *p; | |
9bccf70c A |
381 | struct timeval now; |
382 | boolean_t funnel_state = thread_funnel_set(kernel_flock, TRUE); | |
1c79356b | 383 | |
9bccf70c A |
384 | p = pfind((pid_t)pid); |
385 | if (p == NULL) { | |
386 | (void) thread_funnel_set(kernel_flock, FALSE); | |
1c79356b A |
387 | return; |
388 | } | |
9bccf70c A |
389 | |
390 | if (!timerisset(&p->p_realtimer.it_interval)) { | |
391 | timerclear(&p->p_rtime); | |
392 | psignal(p, SIGALRM); | |
393 | ||
394 | (void) thread_funnel_set(kernel_flock, FALSE); | |
1c79356b | 395 | return; |
1c79356b | 396 | } |
9bccf70c A |
397 | |
398 | microuptime(&now); | |
399 | timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); | |
400 | if (timercmp(&p->p_rtime, &now, <=)) { | |
401 | if ((p->p_rtime.tv_sec + 2) >= now.tv_sec) { | |
402 | for (;;) { | |
403 | timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); | |
404 | if (timercmp(&p->p_rtime, &now, >)) | |
405 | break; | |
406 | } | |
407 | } | |
408 | else { | |
409 | p->p_rtime = p->p_realtimer.it_interval; | |
410 | timevaladd(&p->p_rtime, &now); | |
1c79356b | 411 | } |
1c79356b | 412 | } |
9bccf70c | 413 | |
9bccf70c A |
414 | psignal(p, SIGALRM); |
415 | ||
55e303ae A |
416 | thread_call_func_delayed(realitexpire, pid, tvtoabstime(&p->p_rtime)); |
417 | ||
1c79356b A |
418 | (void) thread_funnel_set(kernel_flock, FALSE); |
419 | } | |
420 | ||
421 | /* | |
422 | * Check that a proposed value to load into the .it_value or | |
423 | * .it_interval part of an interval timer is acceptable, and | |
424 | * fix it to have at least minimal value (i.e. if it is less | |
425 | * than the resolution of the clock, round it up.) | |
426 | */ | |
427 | int | |
428 | itimerfix(tv) | |
429 | struct timeval *tv; | |
430 | { | |
431 | ||
432 | if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || | |
433 | tv->tv_usec < 0 || tv->tv_usec >= 1000000) | |
434 | return (EINVAL); | |
435 | if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) | |
436 | tv->tv_usec = tick; | |
437 | return (0); | |
438 | } | |
439 | ||
440 | /* | |
441 | * Decrement an interval timer by a specified number | |
442 | * of microseconds, which must be less than a second, | |
443 | * i.e. < 1000000. If the timer expires, then reload | |
444 | * it. In this case, carry over (usec - old value) to | |
445 | * reducint the value reloaded into the timer so that | |
446 | * the timer does not drift. This routine assumes | |
447 | * that it is called in a context where the timers | |
448 | * on which it is operating cannot change in value. | |
449 | */ | |
450 | int | |
451 | itimerdecr(itp, usec) | |
452 | register struct itimerval *itp; | |
453 | int usec; | |
454 | { | |
455 | ||
456 | if (itp->it_value.tv_usec < usec) { | |
457 | if (itp->it_value.tv_sec == 0) { | |
458 | /* expired, and already in next interval */ | |
459 | usec -= itp->it_value.tv_usec; | |
460 | goto expire; | |
461 | } | |
462 | itp->it_value.tv_usec += 1000000; | |
463 | itp->it_value.tv_sec--; | |
464 | } | |
465 | itp->it_value.tv_usec -= usec; | |
466 | usec = 0; | |
467 | if (timerisset(&itp->it_value)) | |
468 | return (1); | |
469 | /* expired, exactly at end of interval */ | |
470 | expire: | |
471 | if (timerisset(&itp->it_interval)) { | |
472 | itp->it_value = itp->it_interval; | |
473 | itp->it_value.tv_usec -= usec; | |
474 | if (itp->it_value.tv_usec < 0) { | |
475 | itp->it_value.tv_usec += 1000000; | |
476 | itp->it_value.tv_sec--; | |
477 | } | |
478 | } else | |
479 | itp->it_value.tv_usec = 0; /* sec is already 0 */ | |
480 | return (0); | |
481 | } | |
482 | ||
483 | /* | |
484 | * Add and subtract routines for timevals. | |
485 | * N.B.: subtract routine doesn't deal with | |
486 | * results which are before the beginning, | |
487 | * it just gets very confused in this case. | |
488 | * Caveat emptor. | |
489 | */ | |
490 | void | |
9bccf70c A |
491 | timevaladd( |
492 | struct timeval *t1, | |
493 | struct timeval *t2) | |
1c79356b A |
494 | { |
495 | ||
496 | t1->tv_sec += t2->tv_sec; | |
497 | t1->tv_usec += t2->tv_usec; | |
498 | timevalfix(t1); | |
499 | } | |
500 | void | |
9bccf70c A |
501 | timevalsub( |
502 | struct timeval *t1, | |
503 | struct timeval *t2) | |
1c79356b A |
504 | { |
505 | ||
506 | t1->tv_sec -= t2->tv_sec; | |
507 | t1->tv_usec -= t2->tv_usec; | |
508 | timevalfix(t1); | |
509 | } | |
510 | void | |
9bccf70c A |
511 | timevalfix( |
512 | struct timeval *t1) | |
1c79356b A |
513 | { |
514 | ||
515 | if (t1->tv_usec < 0) { | |
516 | t1->tv_sec--; | |
517 | t1->tv_usec += 1000000; | |
518 | } | |
519 | if (t1->tv_usec >= 1000000) { | |
520 | t1->tv_sec++; | |
521 | t1->tv_usec -= 1000000; | |
522 | } | |
523 | } | |
524 | ||
525 | /* | |
526 | * Return the best possible estimate of the time in the timeval | |
527 | * to which tvp points. | |
528 | */ | |
529 | void | |
9bccf70c A |
530 | microtime( |
531 | struct timeval *tvp) | |
1c79356b | 532 | { |
55e303ae | 533 | clock_get_calendar_microtime(&tvp->tv_sec, &tvp->tv_usec); |
1c79356b | 534 | } |
9bccf70c A |
535 | |
536 | void | |
537 | microuptime( | |
538 | struct timeval *tvp) | |
539 | { | |
55e303ae | 540 | clock_get_system_microtime(&tvp->tv_sec, &tvp->tv_usec); |
9bccf70c A |
541 | } |
542 | ||
543 | /* | |
544 | * Ditto for timespec. | |
545 | */ | |
546 | void | |
547 | nanotime( | |
548 | struct timespec *tsp) | |
549 | { | |
55e303ae | 550 | clock_get_calendar_nanotime((uint32_t *)&tsp->tv_sec, &tsp->tv_nsec); |
9bccf70c A |
551 | } |
552 | ||
553 | void | |
554 | nanouptime( | |
555 | struct timespec *tsp) | |
556 | { | |
55e303ae | 557 | clock_get_system_nanotime((uint32_t *)&tsp->tv_sec, &tsp->tv_nsec); |
9bccf70c A |
558 | } |
559 | ||
560 | uint64_t | |
561 | tvtoabstime( | |
562 | struct timeval *tvp) | |
563 | { | |
564 | uint64_t result, usresult; | |
565 | ||
566 | clock_interval_to_absolutetime_interval( | |
567 | tvp->tv_sec, NSEC_PER_SEC, &result); | |
568 | clock_interval_to_absolutetime_interval( | |
569 | tvp->tv_usec, NSEC_PER_USEC, &usresult); | |
570 | ||
571 | return (result + usresult); | |
572 | } | |
573 | void | |
574 | time_zone_slock_init(void) | |
575 | { | |
576 | extern simple_lock_data_t tz_slock; | |
577 | ||
578 | simple_lock_init(&tz_slock); | |
579 | ||
580 | ||
581 | } |