]>
Commit | Line | Data |
---|---|---|
b0d623f7 A |
1 | /* |
2 | * Copyright (c) 2008 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* crc32.c -- compute the CRC-32 of a data stream | |
29 | * Copyright (C) 1995-2005 Mark Adler | |
30 | * For conditions of distribution and use, see copyright notice in zlib.h | |
31 | * | |
32 | * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster | |
33 | * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing | |
34 | * tables for updating the shift register in one step with three exclusive-ors | |
35 | * instead of four steps with four exclusive-ors. This results in about a | |
36 | * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. | |
37 | */ | |
38 | ||
39 | /* @(#) $Id$ */ | |
40 | ||
41 | /* | |
42 | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore | |
43 | protection on the static variables used to control the first-use generation | |
44 | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should | |
45 | first call get_crc_table() to initialize the tables before allowing more than | |
46 | one thread to use crc32(). | |
47 | */ | |
48 | ||
49 | #ifdef MAKECRCH | |
50 | # include <stdio.h> | |
51 | # ifndef DYNAMIC_CRC_TABLE | |
52 | # define DYNAMIC_CRC_TABLE | |
53 | # endif /* !DYNAMIC_CRC_TABLE */ | |
54 | #endif /* MAKECRCH */ | |
55 | ||
56 | #include "zutil.h" /* for STDC and FAR definitions */ | |
57 | ||
58 | #define local static | |
59 | ||
60 | /* Find a four-byte integer type for crc32_little() and crc32_big(). */ | |
61 | #ifndef NOBYFOUR | |
62 | # ifdef STDC /* need ANSI C limits.h to determine sizes */ | |
63 | # include <machine/limits.h> | |
64 | # define BYFOUR | |
65 | # if (UINT_MAX == 0xffffffffUL) | |
66 | typedef unsigned int u4; | |
67 | # else | |
68 | # if (ULONG_MAX == 0xffffffffUL) | |
69 | typedef unsigned long u4; | |
70 | # else | |
71 | # if (USHRT_MAX == 0xffffffffUL) | |
72 | typedef unsigned short u4; | |
73 | # else | |
74 | # undef BYFOUR /* can't find a four-byte integer type! */ | |
75 | # endif | |
76 | # endif | |
77 | # endif | |
78 | # endif /* STDC */ | |
79 | #endif /* !NOBYFOUR */ | |
80 | ||
81 | /* Definitions for doing the crc four data bytes at a time. */ | |
82 | #ifdef BYFOUR | |
83 | # define REV(w) (((w)>>24)+(((w)>>8)&0xff00)+ \ | |
84 | (((w)&0xff00)<<8)+(((w)&0xff)<<24)) | |
85 | local unsigned long crc32_little OF((unsigned long, | |
86 | const unsigned char FAR *, unsigned)); | |
87 | local unsigned long crc32_big OF((unsigned long, | |
88 | const unsigned char FAR *, unsigned)); | |
89 | # define TBLS 8 | |
90 | #else | |
91 | # define TBLS 1 | |
92 | #endif /* BYFOUR */ | |
93 | ||
94 | /* Local functions for crc concatenation */ | |
95 | local unsigned long gf2_matrix_times OF((unsigned long *mat, | |
96 | unsigned long vec)); | |
97 | local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); | |
98 | ||
99 | #ifdef DYNAMIC_CRC_TABLE | |
100 | ||
101 | local volatile int crc_table_empty = 1; | |
102 | local unsigned long FAR crc_table[TBLS][256]; | |
103 | local void make_crc_table OF((void)); | |
104 | #ifdef MAKECRCH | |
105 | local void write_table OF((FILE *, const unsigned long FAR *)); | |
106 | #endif /* MAKECRCH */ | |
107 | /* | |
108 | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: | |
109 | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. | |
110 | ||
111 | Polynomials over GF(2) are represented in binary, one bit per coefficient, | |
112 | with the lowest powers in the most significant bit. Then adding polynomials | |
113 | is just exclusive-or, and multiplying a polynomial by x is a right shift by | |
114 | one. If we call the above polynomial p, and represent a byte as the | |
115 | polynomial q, also with the lowest power in the most significant bit (so the | |
116 | byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, | |
117 | where a mod b means the remainder after dividing a by b. | |
118 | ||
119 | This calculation is done using the shift-register method of multiplying and | |
120 | taking the remainder. The register is initialized to zero, and for each | |
121 | incoming bit, x^32 is added mod p to the register if the bit is a one (where | |
122 | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by | |
123 | x (which is shifting right by one and adding x^32 mod p if the bit shifted | |
124 | out is a one). We start with the highest power (least significant bit) of | |
125 | q and repeat for all eight bits of q. | |
126 | ||
127 | The first table is simply the CRC of all possible eight bit values. This is | |
128 | all the information needed to generate CRCs on data a byte at a time for all | |
129 | combinations of CRC register values and incoming bytes. The remaining tables | |
130 | allow for word-at-a-time CRC calculation for both big-endian and little- | |
131 | endian machines, where a word is four bytes. | |
132 | */ | |
133 | local void make_crc_table() | |
134 | { | |
135 | unsigned long c; | |
136 | int n, k; | |
137 | unsigned long poly; /* polynomial exclusive-or pattern */ | |
138 | /* terms of polynomial defining this crc (except x^32): */ | |
139 | static volatile int first = 1; /* flag to limit concurrent making */ | |
140 | static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; | |
141 | ||
142 | /* See if another task is already doing this (not thread-safe, but better | |
143 | than nothing -- significantly reduces duration of vulnerability in | |
144 | case the advice about DYNAMIC_CRC_TABLE is ignored) */ | |
145 | if (first) { | |
146 | first = 0; | |
147 | ||
148 | /* make exclusive-or pattern from polynomial (0xedb88320UL) */ | |
149 | poly = 0UL; | |
150 | for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++) | |
151 | poly |= 1UL << (31 - p[n]); | |
152 | ||
153 | /* generate a crc for every 8-bit value */ | |
154 | for (n = 0; n < 256; n++) { | |
155 | c = (unsigned long)n; | |
156 | for (k = 0; k < 8; k++) | |
157 | c = c & 1 ? poly ^ (c >> 1) : c >> 1; | |
158 | crc_table[0][n] = c; | |
159 | } | |
160 | ||
161 | #ifdef BYFOUR | |
162 | /* generate crc for each value followed by one, two, and three zeros, | |
163 | and then the byte reversal of those as well as the first table */ | |
164 | for (n = 0; n < 256; n++) { | |
165 | c = crc_table[0][n]; | |
166 | crc_table[4][n] = REV(c); | |
167 | for (k = 1; k < 4; k++) { | |
168 | c = crc_table[0][c & 0xff] ^ (c >> 8); | |
169 | crc_table[k][n] = c; | |
170 | crc_table[k + 4][n] = REV(c); | |
171 | } | |
172 | } | |
173 | #endif /* BYFOUR */ | |
174 | ||
175 | crc_table_empty = 0; | |
176 | } | |
177 | else { /* not first */ | |
178 | /* wait for the other guy to finish (not efficient, but rare) */ | |
179 | while (crc_table_empty) | |
180 | ; | |
181 | } | |
182 | ||
183 | #ifdef MAKECRCH | |
184 | /* write out CRC tables to crc32.h */ | |
185 | { | |
186 | FILE *out; | |
187 | ||
188 | out = fopen("crc32.h", "w"); | |
189 | if (out == NULL) return; | |
190 | fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); | |
191 | fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); | |
192 | fprintf(out, "local const unsigned long FAR "); | |
193 | fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); | |
194 | write_table(out, crc_table[0]); | |
195 | # ifdef BYFOUR | |
196 | fprintf(out, "#ifdef BYFOUR\n"); | |
197 | for (k = 1; k < 8; k++) { | |
198 | fprintf(out, " },\n {\n"); | |
199 | write_table(out, crc_table[k]); | |
200 | } | |
201 | fprintf(out, "#endif\n"); | |
202 | # endif /* BYFOUR */ | |
203 | fprintf(out, " }\n};\n"); | |
204 | fclose(out); | |
205 | } | |
206 | #endif /* MAKECRCH */ | |
207 | } | |
208 | ||
209 | #ifdef MAKECRCH | |
210 | local void write_table(out, table) | |
211 | FILE *out; | |
212 | const unsigned long FAR *table; | |
213 | { | |
214 | int n; | |
215 | ||
216 | for (n = 0; n < 256; n++) | |
217 | fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n], | |
218 | n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); | |
219 | } | |
220 | #endif /* MAKECRCH */ | |
221 | ||
222 | #else /* !DYNAMIC_CRC_TABLE */ | |
223 | /* ======================================================================== | |
224 | * Tables of CRC-32s of all single-byte values, made by make_crc_table(). | |
225 | */ | |
226 | #include "crc32.h" | |
227 | #endif /* DYNAMIC_CRC_TABLE */ | |
228 | ||
229 | /* ========================================================================= | |
230 | * This function can be used by asm versions of crc32() | |
231 | */ | |
232 | const unsigned long FAR * ZEXPORT get_crc_table() | |
233 | { | |
234 | #ifdef DYNAMIC_CRC_TABLE | |
235 | if (crc_table_empty) | |
236 | make_crc_table(); | |
237 | #endif /* DYNAMIC_CRC_TABLE */ | |
238 | return (const unsigned long FAR *)crc_table; | |
239 | } | |
240 | ||
241 | /* ========================================================================= */ | |
242 | #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) | |
243 | #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 | |
244 | ||
245 | /* ========================================================================= */ | |
246 | unsigned long ZEXPORT z_crc32(crc, buf, len) | |
247 | unsigned long crc; | |
248 | const unsigned char FAR *buf; | |
249 | unsigned len; | |
250 | { | |
251 | if (buf == Z_NULL) return 0UL; | |
252 | ||
253 | #ifdef DYNAMIC_CRC_TABLE | |
254 | if (crc_table_empty) | |
255 | make_crc_table(); | |
256 | #endif /* DYNAMIC_CRC_TABLE */ | |
257 | ||
258 | #ifdef BYFOUR | |
259 | if (sizeof(void *) == sizeof(ptrdiff_t)) { | |
260 | u4 endian; | |
261 | ||
262 | endian = 1; | |
263 | if (*((unsigned char *)(&endian))) | |
264 | return crc32_little(crc, buf, len); | |
265 | else | |
266 | return crc32_big(crc, buf, len); | |
267 | } | |
268 | #endif /* BYFOUR */ | |
269 | crc = crc ^ 0xffffffffUL; | |
270 | while (len >= 8) { | |
271 | DO8; | |
272 | len -= 8; | |
273 | } | |
274 | if (len) do { | |
275 | DO1; | |
276 | } while (--len); | |
277 | return crc ^ 0xffffffffUL; | |
278 | } | |
279 | ||
280 | #ifdef BYFOUR | |
281 | ||
282 | /* ========================================================================= */ | |
283 | #define DOLIT4 c ^= *buf4++; \ | |
284 | c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ | |
285 | crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] | |
286 | #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 | |
287 | ||
288 | /* ========================================================================= */ | |
289 | local unsigned long crc32_little(crc, buf, len) | |
290 | unsigned long crc; | |
291 | const unsigned char FAR *buf; | |
292 | unsigned len; | |
293 | { | |
294 | register u4 c; | |
295 | register const u4 FAR *buf4; | |
296 | ||
297 | c = (u4)crc; | |
298 | c = ~c; | |
299 | while (len && ((ptrdiff_t)buf & 3)) { | |
300 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
301 | len--; | |
302 | } | |
303 | ||
304 | buf4 = (const u4 FAR *)(const void FAR *)buf; | |
305 | while (len >= 32) { | |
306 | DOLIT32; | |
307 | len -= 32; | |
308 | } | |
309 | while (len >= 4) { | |
310 | DOLIT4; | |
311 | len -= 4; | |
312 | } | |
313 | buf = (const unsigned char FAR *)buf4; | |
314 | ||
315 | if (len) do { | |
316 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
317 | } while (--len); | |
318 | c = ~c; | |
319 | return (unsigned long)c; | |
320 | } | |
321 | ||
322 | /* ========================================================================= */ | |
323 | #define DOBIG4 c ^= *++buf4; \ | |
324 | c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ | |
325 | crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] | |
326 | #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 | |
327 | ||
328 | /* ========================================================================= */ | |
329 | local unsigned long crc32_big(crc, buf, len) | |
330 | unsigned long crc; | |
331 | const unsigned char FAR *buf; | |
332 | unsigned len; | |
333 | { | |
334 | register u4 c; | |
335 | register const u4 FAR *buf4; | |
336 | ||
337 | c = REV((u4)crc); | |
338 | c = ~c; | |
339 | while (len && ((ptrdiff_t)buf & 3)) { | |
340 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
341 | len--; | |
342 | } | |
343 | ||
344 | buf4 = (const u4 FAR *)(const void FAR *)buf; | |
345 | buf4--; | |
346 | while (len >= 32) { | |
347 | DOBIG32; | |
348 | len -= 32; | |
349 | } | |
350 | while (len >= 4) { | |
351 | DOBIG4; | |
352 | len -= 4; | |
353 | } | |
354 | buf4++; | |
355 | buf = (const unsigned char FAR *)buf4; | |
356 | ||
357 | if (len) do { | |
358 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
359 | } while (--len); | |
360 | c = ~c; | |
361 | return (unsigned long)(REV(c)); | |
362 | } | |
363 | ||
364 | #endif /* BYFOUR */ | |
365 | ||
366 | #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ | |
367 | ||
368 | /* ========================================================================= */ | |
369 | local unsigned long gf2_matrix_times(mat, vec) | |
370 | unsigned long *mat; | |
371 | unsigned long vec; | |
372 | { | |
373 | unsigned long sum; | |
374 | ||
375 | sum = 0; | |
376 | while (vec) { | |
377 | if (vec & 1) | |
378 | sum ^= *mat; | |
379 | vec >>= 1; | |
380 | mat++; | |
381 | } | |
382 | return sum; | |
383 | } | |
384 | ||
385 | /* ========================================================================= */ | |
386 | local void gf2_matrix_square(square, mat) | |
387 | unsigned long *square; | |
388 | unsigned long *mat; | |
389 | { | |
390 | int n; | |
391 | ||
392 | for (n = 0; n < GF2_DIM; n++) | |
393 | square[n] = gf2_matrix_times(mat, mat[n]); | |
394 | } | |
395 | ||
396 | /* ========================================================================= */ | |
397 | uLong ZEXPORT z_crc32_combine(crc1, crc2, len2) | |
398 | uLong crc1; | |
399 | uLong crc2; | |
400 | z_off_t len2; | |
401 | { | |
402 | int n; | |
403 | unsigned long row; | |
404 | unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ | |
405 | unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ | |
406 | ||
407 | /* degenerate case */ | |
408 | if (len2 == 0) | |
409 | return crc1; | |
410 | ||
411 | /* put operator for one zero bit in odd */ | |
412 | odd[0] = 0xedb88320L; /* CRC-32 polynomial */ | |
413 | row = 1; | |
414 | for (n = 1; n < GF2_DIM; n++) { | |
415 | odd[n] = row; | |
416 | row <<= 1; | |
417 | } | |
418 | ||
419 | /* put operator for two zero bits in even */ | |
420 | gf2_matrix_square(even, odd); | |
421 | ||
422 | /* put operator for four zero bits in odd */ | |
423 | gf2_matrix_square(odd, even); | |
424 | ||
425 | /* apply len2 zeros to crc1 (first square will put the operator for one | |
426 | zero byte, eight zero bits, in even) */ | |
427 | do { | |
428 | /* apply zeros operator for this bit of len2 */ | |
429 | gf2_matrix_square(even, odd); | |
430 | if (len2 & 1) | |
431 | crc1 = gf2_matrix_times(even, crc1); | |
432 | len2 >>= 1; | |
433 | ||
434 | /* if no more bits set, then done */ | |
435 | if (len2 == 0) | |
436 | break; | |
437 | ||
438 | /* another iteration of the loop with odd and even swapped */ | |
439 | gf2_matrix_square(odd, even); | |
440 | if (len2 & 1) | |
441 | crc1 = gf2_matrix_times(odd, crc1); | |
442 | len2 >>= 1; | |
443 | ||
444 | /* if no more bits set, then done */ | |
445 | } while (len2 != 0); | |
446 | ||
447 | /* return combined crc */ | |
448 | crc1 ^= crc2; | |
449 | return crc1; | |
450 | } |