]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
55e303ae | 2 | * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved. |
1c79356b A |
3 | * |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
43866e37 | 6 | * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. |
1c79356b | 7 | * |
43866e37 A |
8 | * This file contains Original Code and/or Modifications of Original Code |
9 | * as defined in and that are subject to the Apple Public Source License | |
10 | * Version 2.0 (the 'License'). You may not use this file except in | |
11 | * compliance with the License. Please obtain a copy of the License at | |
12 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
13 | * file. | |
14 | * | |
15 | * The Original Code and all software distributed under the License are | |
16 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
17 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
18 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
43866e37 A |
19 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
20 | * Please see the License for the specific language governing rights and | |
21 | * limitations under the License. | |
1c79356b A |
22 | * |
23 | * @APPLE_LICENSE_HEADER_END@ | |
24 | */ | |
25 | /* | |
26 | * @OSF_COPYRIGHT@ | |
27 | */ | |
28 | /* | |
29 | * Mach Operating System | |
30 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
31 | * All Rights Reserved. | |
32 | * | |
33 | * Permission to use, copy, modify and distribute this software and its | |
34 | * documentation is hereby granted, provided that both the copyright | |
35 | * notice and this permission notice appear in all copies of the | |
36 | * software, derivative works or modified versions, and any portions | |
37 | * thereof, and that both notices appear in supporting documentation. | |
38 | * | |
39 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
40 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
41 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
42 | * | |
43 | * Carnegie Mellon requests users of this software to return to | |
44 | * | |
45 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
46 | * School of Computer Science | |
47 | * Carnegie Mellon University | |
48 | * Pittsburgh PA 15213-3890 | |
49 | * | |
50 | * any improvements or extensions that they make and grant Carnegie Mellon | |
51 | * the rights to redistribute these changes. | |
52 | */ | |
53 | /* | |
54 | */ | |
55 | /* | |
56 | * File: vm/vm_page.c | |
57 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
58 | * | |
59 | * Resident memory management module. | |
60 | */ | |
61 | ||
9bccf70c | 62 | #include <mach/clock_types.h> |
1c79356b A |
63 | #include <mach/vm_prot.h> |
64 | #include <mach/vm_statistics.h> | |
65 | #include <kern/counters.h> | |
66 | #include <kern/sched_prim.h> | |
67 | #include <kern/task.h> | |
68 | #include <kern/thread.h> | |
69 | #include <kern/zalloc.h> | |
70 | #include <kern/xpr.h> | |
71 | #include <vm/pmap.h> | |
72 | #include <vm/vm_init.h> | |
73 | #include <vm/vm_map.h> | |
74 | #include <vm/vm_page.h> | |
75 | #include <vm/vm_pageout.h> | |
76 | #include <vm/vm_kern.h> /* kernel_memory_allocate() */ | |
77 | #include <kern/misc_protos.h> | |
78 | #include <zone_debug.h> | |
79 | #include <vm/cpm.h> | |
55e303ae A |
80 | #include <ppc/mappings.h> /* (BRINGUP) */ |
81 | #include <pexpert/pexpert.h> /* (BRINGUP) */ | |
82 | ||
1c79356b | 83 | |
0b4e3aa0 A |
84 | /* Variables used to indicate the relative age of pages in the |
85 | * inactive list | |
86 | */ | |
87 | ||
88 | int vm_page_ticket_roll = 0; | |
89 | int vm_page_ticket = 0; | |
1c79356b A |
90 | /* |
91 | * Associated with page of user-allocatable memory is a | |
92 | * page structure. | |
93 | */ | |
94 | ||
95 | /* | |
96 | * These variables record the values returned by vm_page_bootstrap, | |
97 | * for debugging purposes. The implementation of pmap_steal_memory | |
98 | * and pmap_startup here also uses them internally. | |
99 | */ | |
100 | ||
101 | vm_offset_t virtual_space_start; | |
102 | vm_offset_t virtual_space_end; | |
103 | int vm_page_pages; | |
104 | ||
105 | /* | |
106 | * The vm_page_lookup() routine, which provides for fast | |
107 | * (virtual memory object, offset) to page lookup, employs | |
108 | * the following hash table. The vm_page_{insert,remove} | |
109 | * routines install and remove associations in the table. | |
110 | * [This table is often called the virtual-to-physical, | |
111 | * or VP, table.] | |
112 | */ | |
113 | typedef struct { | |
114 | vm_page_t pages; | |
115 | #if MACH_PAGE_HASH_STATS | |
116 | int cur_count; /* current count */ | |
117 | int hi_count; /* high water mark */ | |
118 | #endif /* MACH_PAGE_HASH_STATS */ | |
119 | } vm_page_bucket_t; | |
120 | ||
121 | vm_page_bucket_t *vm_page_buckets; /* Array of buckets */ | |
122 | unsigned int vm_page_bucket_count = 0; /* How big is array? */ | |
123 | unsigned int vm_page_hash_mask; /* Mask for hash function */ | |
124 | unsigned int vm_page_hash_shift; /* Shift for hash function */ | |
55e303ae | 125 | uint32_t vm_page_bucket_hash; /* Basic bucket hash */ |
1c79356b A |
126 | decl_simple_lock_data(,vm_page_bucket_lock) |
127 | ||
128 | #if MACH_PAGE_HASH_STATS | |
129 | /* This routine is only for debug. It is intended to be called by | |
130 | * hand by a developer using a kernel debugger. This routine prints | |
131 | * out vm_page_hash table statistics to the kernel debug console. | |
132 | */ | |
133 | void | |
134 | hash_debug(void) | |
135 | { | |
136 | int i; | |
137 | int numbuckets = 0; | |
138 | int highsum = 0; | |
139 | int maxdepth = 0; | |
140 | ||
141 | for (i = 0; i < vm_page_bucket_count; i++) { | |
142 | if (vm_page_buckets[i].hi_count) { | |
143 | numbuckets++; | |
144 | highsum += vm_page_buckets[i].hi_count; | |
145 | if (vm_page_buckets[i].hi_count > maxdepth) | |
146 | maxdepth = vm_page_buckets[i].hi_count; | |
147 | } | |
148 | } | |
149 | printf("Total number of buckets: %d\n", vm_page_bucket_count); | |
150 | printf("Number used buckets: %d = %d%%\n", | |
151 | numbuckets, 100*numbuckets/vm_page_bucket_count); | |
152 | printf("Number unused buckets: %d = %d%%\n", | |
153 | vm_page_bucket_count - numbuckets, | |
154 | 100*(vm_page_bucket_count-numbuckets)/vm_page_bucket_count); | |
155 | printf("Sum of bucket max depth: %d\n", highsum); | |
156 | printf("Average bucket depth: %d.%2d\n", | |
157 | highsum/vm_page_bucket_count, | |
158 | highsum%vm_page_bucket_count); | |
159 | printf("Maximum bucket depth: %d\n", maxdepth); | |
160 | } | |
161 | #endif /* MACH_PAGE_HASH_STATS */ | |
162 | ||
163 | /* | |
164 | * The virtual page size is currently implemented as a runtime | |
165 | * variable, but is constant once initialized using vm_set_page_size. | |
166 | * This initialization must be done in the machine-dependent | |
167 | * bootstrap sequence, before calling other machine-independent | |
168 | * initializations. | |
169 | * | |
170 | * All references to the virtual page size outside this | |
171 | * module must use the PAGE_SIZE, PAGE_MASK and PAGE_SHIFT | |
172 | * constants. | |
173 | */ | |
174 | #ifndef PAGE_SIZE_FIXED | |
175 | vm_size_t page_size = 4096; | |
176 | vm_size_t page_mask = 4095; | |
177 | int page_shift = 12; | |
55e303ae A |
178 | #else |
179 | vm_size_t page_size = PAGE_SIZE; | |
180 | vm_size_t page_mask = PAGE_MASK; | |
181 | int page_shift = PAGE_SHIFT; | |
1c79356b A |
182 | #endif /* PAGE_SIZE_FIXED */ |
183 | ||
184 | /* | |
185 | * Resident page structures are initialized from | |
186 | * a template (see vm_page_alloc). | |
187 | * | |
188 | * When adding a new field to the virtual memory | |
189 | * object structure, be sure to add initialization | |
190 | * (see vm_page_bootstrap). | |
191 | */ | |
192 | struct vm_page vm_page_template; | |
193 | ||
194 | /* | |
195 | * Resident pages that represent real memory | |
196 | * are allocated from a free list. | |
197 | */ | |
198 | vm_page_t vm_page_queue_free; | |
199 | vm_page_t vm_page_queue_fictitious; | |
200 | decl_mutex_data(,vm_page_queue_free_lock) | |
201 | unsigned int vm_page_free_wanted; | |
202 | int vm_page_free_count; | |
203 | int vm_page_fictitious_count; | |
204 | ||
205 | unsigned int vm_page_free_count_minimum; /* debugging */ | |
206 | ||
207 | /* | |
208 | * Occasionally, the virtual memory system uses | |
209 | * resident page structures that do not refer to | |
210 | * real pages, for example to leave a page with | |
211 | * important state information in the VP table. | |
212 | * | |
213 | * These page structures are allocated the way | |
214 | * most other kernel structures are. | |
215 | */ | |
216 | zone_t vm_page_zone; | |
217 | decl_mutex_data(,vm_page_alloc_lock) | |
9bccf70c A |
218 | unsigned int io_throttle_zero_fill; |
219 | decl_mutex_data(,vm_page_zero_fill_lock) | |
1c79356b A |
220 | |
221 | /* | |
222 | * Fictitious pages don't have a physical address, | |
55e303ae | 223 | * but we must initialize phys_page to something. |
1c79356b A |
224 | * For debugging, this should be a strange value |
225 | * that the pmap module can recognize in assertions. | |
226 | */ | |
227 | vm_offset_t vm_page_fictitious_addr = (vm_offset_t) -1; | |
228 | ||
229 | /* | |
230 | * Resident page structures are also chained on | |
231 | * queues that are used by the page replacement | |
232 | * system (pageout daemon). These queues are | |
233 | * defined here, but are shared by the pageout | |
9bccf70c A |
234 | * module. The inactive queue is broken into |
235 | * inactive and zf for convenience as the | |
236 | * pageout daemon often assignes a higher | |
237 | * affinity to zf pages | |
1c79356b A |
238 | */ |
239 | queue_head_t vm_page_queue_active; | |
240 | queue_head_t vm_page_queue_inactive; | |
9bccf70c | 241 | queue_head_t vm_page_queue_zf; |
1c79356b A |
242 | decl_mutex_data(,vm_page_queue_lock) |
243 | int vm_page_active_count; | |
244 | int vm_page_inactive_count; | |
245 | int vm_page_wire_count; | |
246 | int vm_page_gobble_count = 0; | |
247 | int vm_page_wire_count_warning = 0; | |
248 | int vm_page_gobble_count_warning = 0; | |
249 | ||
250 | /* the following fields are protected by the vm_page_queue_lock */ | |
251 | queue_head_t vm_page_queue_limbo; | |
252 | int vm_page_limbo_count = 0; /* total pages in limbo */ | |
253 | int vm_page_limbo_real_count = 0; /* real pages in limbo */ | |
254 | int vm_page_pin_count = 0; /* number of pinned pages */ | |
255 | ||
256 | decl_simple_lock_data(,vm_page_preppin_lock) | |
257 | ||
258 | /* | |
259 | * Several page replacement parameters are also | |
260 | * shared with this module, so that page allocation | |
261 | * (done here in vm_page_alloc) can trigger the | |
262 | * pageout daemon. | |
263 | */ | |
264 | int vm_page_free_target = 0; | |
265 | int vm_page_free_min = 0; | |
266 | int vm_page_inactive_target = 0; | |
267 | int vm_page_free_reserved = 0; | |
268 | int vm_page_laundry_count = 0; | |
55e303ae A |
269 | int vm_page_burst_count = 0; |
270 | int vm_page_throttled_count = 0; | |
1c79356b A |
271 | |
272 | /* | |
273 | * The VM system has a couple of heuristics for deciding | |
274 | * that pages are "uninteresting" and should be placed | |
275 | * on the inactive queue as likely candidates for replacement. | |
276 | * These variables let the heuristics be controlled at run-time | |
277 | * to make experimentation easier. | |
278 | */ | |
279 | ||
280 | boolean_t vm_page_deactivate_hint = TRUE; | |
281 | ||
282 | /* | |
283 | * vm_set_page_size: | |
284 | * | |
285 | * Sets the page size, perhaps based upon the memory | |
286 | * size. Must be called before any use of page-size | |
287 | * dependent functions. | |
288 | * | |
289 | * Sets page_shift and page_mask from page_size. | |
290 | */ | |
291 | void | |
292 | vm_set_page_size(void) | |
293 | { | |
294 | #ifndef PAGE_SIZE_FIXED | |
295 | page_mask = page_size - 1; | |
296 | ||
297 | if ((page_mask & page_size) != 0) | |
298 | panic("vm_set_page_size: page size not a power of two"); | |
299 | ||
300 | for (page_shift = 0; ; page_shift++) | |
301 | if ((1 << page_shift) == page_size) | |
302 | break; | |
303 | #endif /* PAGE_SIZE_FIXED */ | |
304 | } | |
305 | ||
306 | /* | |
307 | * vm_page_bootstrap: | |
308 | * | |
309 | * Initializes the resident memory module. | |
310 | * | |
311 | * Allocates memory for the page cells, and | |
312 | * for the object/offset-to-page hash table headers. | |
313 | * Each page cell is initialized and placed on the free list. | |
314 | * Returns the range of available kernel virtual memory. | |
315 | */ | |
316 | ||
317 | void | |
318 | vm_page_bootstrap( | |
319 | vm_offset_t *startp, | |
320 | vm_offset_t *endp) | |
321 | { | |
322 | register vm_page_t m; | |
323 | int i; | |
324 | unsigned int log1; | |
325 | unsigned int log2; | |
326 | unsigned int size; | |
327 | ||
328 | /* | |
329 | * Initialize the vm_page template. | |
330 | */ | |
331 | ||
332 | m = &vm_page_template; | |
333 | m->object = VM_OBJECT_NULL; /* reset later */ | |
334 | m->offset = 0; /* reset later */ | |
335 | m->wire_count = 0; | |
336 | ||
337 | m->inactive = FALSE; | |
338 | m->active = FALSE; | |
339 | m->laundry = FALSE; | |
340 | m->free = FALSE; | |
765c9de3 | 341 | m->no_isync = TRUE; |
1c79356b A |
342 | m->reference = FALSE; |
343 | m->pageout = FALSE; | |
0b4e3aa0 | 344 | m->dump_cleaning = FALSE; |
1c79356b A |
345 | m->list_req_pending = FALSE; |
346 | ||
347 | m->busy = TRUE; | |
348 | m->wanted = FALSE; | |
349 | m->tabled = FALSE; | |
350 | m->fictitious = FALSE; | |
351 | m->private = FALSE; | |
352 | m->absent = FALSE; | |
353 | m->error = FALSE; | |
354 | m->dirty = FALSE; | |
355 | m->cleaning = FALSE; | |
356 | m->precious = FALSE; | |
357 | m->clustered = FALSE; | |
358 | m->lock_supplied = FALSE; | |
359 | m->unusual = FALSE; | |
360 | m->restart = FALSE; | |
9bccf70c | 361 | m->zero_fill = FALSE; |
1c79356b | 362 | |
55e303ae | 363 | m->phys_page = 0; /* reset later */ |
1c79356b A |
364 | |
365 | m->page_lock = VM_PROT_NONE; | |
366 | m->unlock_request = VM_PROT_NONE; | |
367 | m->page_error = KERN_SUCCESS; | |
368 | ||
369 | /* | |
370 | * Initialize the page queues. | |
371 | */ | |
372 | ||
373 | mutex_init(&vm_page_queue_free_lock, ETAP_VM_PAGEQ_FREE); | |
374 | mutex_init(&vm_page_queue_lock, ETAP_VM_PAGEQ); | |
375 | simple_lock_init(&vm_page_preppin_lock, ETAP_VM_PREPPIN); | |
376 | ||
377 | vm_page_queue_free = VM_PAGE_NULL; | |
378 | vm_page_queue_fictitious = VM_PAGE_NULL; | |
379 | queue_init(&vm_page_queue_active); | |
380 | queue_init(&vm_page_queue_inactive); | |
9bccf70c | 381 | queue_init(&vm_page_queue_zf); |
1c79356b A |
382 | queue_init(&vm_page_queue_limbo); |
383 | ||
384 | vm_page_free_wanted = 0; | |
385 | ||
386 | /* | |
387 | * Steal memory for the map and zone subsystems. | |
388 | */ | |
389 | ||
390 | vm_map_steal_memory(); | |
391 | zone_steal_memory(); | |
392 | ||
393 | /* | |
394 | * Allocate (and initialize) the virtual-to-physical | |
395 | * table hash buckets. | |
396 | * | |
397 | * The number of buckets should be a power of two to | |
398 | * get a good hash function. The following computation | |
399 | * chooses the first power of two that is greater | |
400 | * than the number of physical pages in the system. | |
401 | */ | |
402 | ||
403 | simple_lock_init(&vm_page_bucket_lock, ETAP_VM_BUCKET); | |
404 | ||
405 | if (vm_page_bucket_count == 0) { | |
406 | unsigned int npages = pmap_free_pages(); | |
407 | ||
408 | vm_page_bucket_count = 1; | |
409 | while (vm_page_bucket_count < npages) | |
410 | vm_page_bucket_count <<= 1; | |
411 | } | |
412 | ||
413 | vm_page_hash_mask = vm_page_bucket_count - 1; | |
414 | ||
415 | /* | |
416 | * Calculate object shift value for hashing algorithm: | |
417 | * O = log2(sizeof(struct vm_object)) | |
418 | * B = log2(vm_page_bucket_count) | |
419 | * hash shifts the object left by | |
420 | * B/2 - O | |
421 | */ | |
422 | size = vm_page_bucket_count; | |
423 | for (log1 = 0; size > 1; log1++) | |
424 | size /= 2; | |
425 | size = sizeof(struct vm_object); | |
426 | for (log2 = 0; size > 1; log2++) | |
427 | size /= 2; | |
428 | vm_page_hash_shift = log1/2 - log2 + 1; | |
55e303ae A |
429 | |
430 | vm_page_bucket_hash = 1 << ((log1 + 1) >> 1); /* Get (ceiling of sqrt of table size) */ | |
431 | vm_page_bucket_hash |= 1 << ((log1 + 1) >> 2); /* Get (ceiling of quadroot of table size) */ | |
432 | vm_page_bucket_hash |= 1; /* Set bit and add 1 - always must be 1 to insure unique series */ | |
1c79356b A |
433 | |
434 | if (vm_page_hash_mask & vm_page_bucket_count) | |
435 | printf("vm_page_bootstrap: WARNING -- strange page hash\n"); | |
436 | ||
437 | vm_page_buckets = (vm_page_bucket_t *) | |
438 | pmap_steal_memory(vm_page_bucket_count * | |
439 | sizeof(vm_page_bucket_t)); | |
440 | ||
441 | for (i = 0; i < vm_page_bucket_count; i++) { | |
442 | register vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
443 | ||
444 | bucket->pages = VM_PAGE_NULL; | |
445 | #if MACH_PAGE_HASH_STATS | |
446 | bucket->cur_count = 0; | |
447 | bucket->hi_count = 0; | |
448 | #endif /* MACH_PAGE_HASH_STATS */ | |
449 | } | |
450 | ||
451 | /* | |
452 | * Machine-dependent code allocates the resident page table. | |
453 | * It uses vm_page_init to initialize the page frames. | |
454 | * The code also returns to us the virtual space available | |
455 | * to the kernel. We don't trust the pmap module | |
456 | * to get the alignment right. | |
457 | */ | |
458 | ||
459 | pmap_startup(&virtual_space_start, &virtual_space_end); | |
55e303ae A |
460 | virtual_space_start = round_page_32(virtual_space_start); |
461 | virtual_space_end = trunc_page_32(virtual_space_end); | |
1c79356b A |
462 | |
463 | *startp = virtual_space_start; | |
464 | *endp = virtual_space_end; | |
465 | ||
466 | /* | |
467 | * Compute the initial "wire" count. | |
468 | * Up until now, the pages which have been set aside are not under | |
469 | * the VM system's control, so although they aren't explicitly | |
470 | * wired, they nonetheless can't be moved. At this moment, | |
471 | * all VM managed pages are "free", courtesy of pmap_startup. | |
472 | */ | |
55e303ae | 473 | vm_page_wire_count = atop_64(max_mem) - vm_page_free_count; /* initial value */ |
1c79356b A |
474 | |
475 | printf("vm_page_bootstrap: %d free pages\n", vm_page_free_count); | |
476 | vm_page_free_count_minimum = vm_page_free_count; | |
477 | } | |
478 | ||
479 | #ifndef MACHINE_PAGES | |
480 | /* | |
481 | * We implement pmap_steal_memory and pmap_startup with the help | |
482 | * of two simpler functions, pmap_virtual_space and pmap_next_page. | |
483 | */ | |
484 | ||
485 | vm_offset_t | |
486 | pmap_steal_memory( | |
487 | vm_size_t size) | |
488 | { | |
55e303ae A |
489 | vm_offset_t addr, vaddr; |
490 | ppnum_t phys_page; | |
1c79356b A |
491 | |
492 | /* | |
493 | * We round the size to a round multiple. | |
494 | */ | |
495 | ||
496 | size = (size + sizeof (void *) - 1) &~ (sizeof (void *) - 1); | |
497 | ||
498 | /* | |
499 | * If this is the first call to pmap_steal_memory, | |
500 | * we have to initialize ourself. | |
501 | */ | |
502 | ||
503 | if (virtual_space_start == virtual_space_end) { | |
504 | pmap_virtual_space(&virtual_space_start, &virtual_space_end); | |
505 | ||
506 | /* | |
507 | * The initial values must be aligned properly, and | |
508 | * we don't trust the pmap module to do it right. | |
509 | */ | |
510 | ||
55e303ae A |
511 | virtual_space_start = round_page_32(virtual_space_start); |
512 | virtual_space_end = trunc_page_32(virtual_space_end); | |
1c79356b A |
513 | } |
514 | ||
515 | /* | |
516 | * Allocate virtual memory for this request. | |
517 | */ | |
518 | ||
519 | addr = virtual_space_start; | |
520 | virtual_space_start += size; | |
521 | ||
522 | kprintf("pmap_steal_memory: %08X - %08X; size=%08X\n", addr, virtual_space_start, size); /* (TEST/DEBUG) */ | |
523 | ||
524 | /* | |
525 | * Allocate and map physical pages to back new virtual pages. | |
526 | */ | |
527 | ||
55e303ae | 528 | for (vaddr = round_page_32(addr); |
1c79356b A |
529 | vaddr < addr + size; |
530 | vaddr += PAGE_SIZE) { | |
55e303ae | 531 | if (!pmap_next_page(&phys_page)) |
1c79356b A |
532 | panic("pmap_steal_memory"); |
533 | ||
534 | /* | |
535 | * XXX Logically, these mappings should be wired, | |
536 | * but some pmap modules barf if they are. | |
537 | */ | |
538 | ||
55e303ae | 539 | pmap_enter(kernel_pmap, vaddr, phys_page, |
9bccf70c A |
540 | VM_PROT_READ|VM_PROT_WRITE, |
541 | VM_WIMG_USE_DEFAULT, FALSE); | |
1c79356b A |
542 | /* |
543 | * Account for newly stolen memory | |
544 | */ | |
545 | vm_page_wire_count++; | |
546 | ||
547 | } | |
548 | ||
549 | return addr; | |
550 | } | |
551 | ||
552 | void | |
553 | pmap_startup( | |
554 | vm_offset_t *startp, | |
555 | vm_offset_t *endp) | |
556 | { | |
55e303ae A |
557 | unsigned int i, npages, pages_initialized, fill, fillval; |
558 | vm_page_t pages; | |
559 | ppnum_t phys_page; | |
560 | addr64_t tmpaddr; | |
1c79356b A |
561 | |
562 | /* | |
563 | * We calculate how many page frames we will have | |
564 | * and then allocate the page structures in one chunk. | |
565 | */ | |
566 | ||
55e303ae A |
567 | tmpaddr = (addr64_t)pmap_free_pages() * (addr64_t)PAGE_SIZE; /* Get the amount of memory left */ |
568 | tmpaddr = tmpaddr + (addr64_t)(round_page_32(virtual_space_start) - virtual_space_start); /* Account for any slop */ | |
569 | npages = (unsigned int)(tmpaddr / (addr64_t)(PAGE_SIZE + sizeof(*pages))); /* Figure size of all vm_page_ts, including enough to hold the vm_page_ts */ | |
1c79356b A |
570 | |
571 | pages = (vm_page_t) pmap_steal_memory(npages * sizeof *pages); | |
572 | ||
573 | /* | |
574 | * Initialize the page frames. | |
575 | */ | |
576 | ||
577 | for (i = 0, pages_initialized = 0; i < npages; i++) { | |
55e303ae | 578 | if (!pmap_next_page(&phys_page)) |
1c79356b A |
579 | break; |
580 | ||
55e303ae | 581 | vm_page_init(&pages[i], phys_page); |
1c79356b A |
582 | vm_page_pages++; |
583 | pages_initialized++; | |
584 | } | |
585 | ||
586 | /* | |
587 | * Release pages in reverse order so that physical pages | |
588 | * initially get allocated in ascending addresses. This keeps | |
589 | * the devices (which must address physical memory) happy if | |
590 | * they require several consecutive pages. | |
591 | */ | |
592 | ||
55e303ae A |
593 | /* |
594 | * Check if we want to initialize pages to a known value | |
595 | */ | |
596 | ||
597 | fill = 0; /* Assume no fill */ | |
598 | if (PE_parse_boot_arg("fill", &fillval)) fill = 1; /* Set fill */ | |
599 | ||
1c79356b | 600 | for (i = pages_initialized; i > 0; i--) { |
55e303ae A |
601 | extern void fillPage(ppnum_t phys_page, unsigned int fillval); |
602 | if(fill) fillPage(pages[i - 1].phys_page, fillval); /* Fill the page with a know value if requested at boot */ | |
1c79356b A |
603 | vm_page_release(&pages[i - 1]); |
604 | } | |
605 | ||
55e303ae A |
606 | #if 0 |
607 | { | |
608 | vm_page_t xx, xxo, xxl; | |
609 | int j, k, l; | |
610 | ||
611 | j = 0; /* (BRINGUP) */ | |
612 | xxl = 0; | |
613 | ||
614 | for(xx = vm_page_queue_free; xx; xxl = xx, xx = xx->pageq.next) { /* (BRINGUP) */ | |
615 | j++; /* (BRINGUP) */ | |
616 | if(j > vm_page_free_count) { /* (BRINGUP) */ | |
617 | panic("pmap_startup: too many pages, xx = %08X, xxl = %08X\n", xx, xxl); | |
618 | } | |
619 | ||
620 | l = vm_page_free_count - j; /* (BRINGUP) */ | |
621 | k = 0; /* (BRINGUP) */ | |
622 | ||
623 | if(((j - 1) & 0xFFFF) == 0) kprintf("checking number %d of %d\n", j, vm_page_free_count); | |
624 | ||
625 | for(xxo = xx->pageq.next; xxo; xxo = xxo->pageq.next) { /* (BRINGUP) */ | |
626 | k++; | |
627 | if(k > l) panic("pmap_startup: too many in secondary check %d %d\n", k, l); | |
628 | if((xx->phys_page & 0xFFFFFFFF) == (xxo->phys_page & 0xFFFFFFFF)) { /* (BRINGUP) */ | |
629 | panic("pmap_startup: duplicate physaddr, xx = %08X, xxo = %08X\n", xx, xxo); | |
630 | } | |
631 | } | |
632 | } | |
633 | ||
634 | if(j != vm_page_free_count) { /* (BRINGUP) */ | |
635 | panic("pmap_startup: vm_page_free_count does not match, calc = %d, vm_page_free_count = %08X\n", j, vm_page_free_count); | |
636 | } | |
637 | } | |
638 | #endif | |
639 | ||
640 | ||
1c79356b A |
641 | /* |
642 | * We have to re-align virtual_space_start, | |
643 | * because pmap_steal_memory has been using it. | |
644 | */ | |
645 | ||
55e303ae | 646 | virtual_space_start = round_page_32(virtual_space_start); |
1c79356b A |
647 | |
648 | *startp = virtual_space_start; | |
649 | *endp = virtual_space_end; | |
650 | } | |
651 | #endif /* MACHINE_PAGES */ | |
652 | ||
653 | /* | |
654 | * Routine: vm_page_module_init | |
655 | * Purpose: | |
656 | * Second initialization pass, to be done after | |
657 | * the basic VM system is ready. | |
658 | */ | |
659 | void | |
660 | vm_page_module_init(void) | |
661 | { | |
662 | vm_page_zone = zinit((vm_size_t) sizeof(struct vm_page), | |
663 | 0, PAGE_SIZE, "vm pages"); | |
664 | ||
665 | #if ZONE_DEBUG | |
666 | zone_debug_disable(vm_page_zone); | |
667 | #endif /* ZONE_DEBUG */ | |
668 | ||
669 | zone_change(vm_page_zone, Z_EXPAND, FALSE); | |
670 | zone_change(vm_page_zone, Z_EXHAUST, TRUE); | |
671 | zone_change(vm_page_zone, Z_FOREIGN, TRUE); | |
672 | ||
673 | /* | |
674 | * Adjust zone statistics to account for the real pages allocated | |
675 | * in vm_page_create(). [Q: is this really what we want?] | |
676 | */ | |
677 | vm_page_zone->count += vm_page_pages; | |
678 | vm_page_zone->cur_size += vm_page_pages * vm_page_zone->elem_size; | |
679 | ||
680 | mutex_init(&vm_page_alloc_lock, ETAP_VM_PAGE_ALLOC); | |
9bccf70c | 681 | mutex_init(&vm_page_zero_fill_lock, ETAP_VM_PAGE_ALLOC); |
1c79356b A |
682 | } |
683 | ||
684 | /* | |
685 | * Routine: vm_page_create | |
686 | * Purpose: | |
687 | * After the VM system is up, machine-dependent code | |
688 | * may stumble across more physical memory. For example, | |
689 | * memory that it was reserving for a frame buffer. | |
690 | * vm_page_create turns this memory into available pages. | |
691 | */ | |
692 | ||
693 | void | |
694 | vm_page_create( | |
55e303ae A |
695 | ppnum_t start, |
696 | ppnum_t end) | |
1c79356b | 697 | { |
55e303ae A |
698 | ppnum_t phys_page; |
699 | vm_page_t m; | |
1c79356b | 700 | |
55e303ae A |
701 | for (phys_page = start; |
702 | phys_page < end; | |
703 | phys_page++) { | |
1c79356b A |
704 | while ((m = (vm_page_t) vm_page_grab_fictitious()) |
705 | == VM_PAGE_NULL) | |
706 | vm_page_more_fictitious(); | |
707 | ||
55e303ae | 708 | vm_page_init(m, phys_page); |
1c79356b A |
709 | vm_page_pages++; |
710 | vm_page_release(m); | |
711 | } | |
712 | } | |
713 | ||
714 | /* | |
715 | * vm_page_hash: | |
716 | * | |
717 | * Distributes the object/offset key pair among hash buckets. | |
718 | * | |
55e303ae | 719 | * NOTE: The bucket count must be a power of 2 |
1c79356b A |
720 | */ |
721 | #define vm_page_hash(object, offset) (\ | |
55e303ae | 722 | ( (natural_t)((uint32_t)object * vm_page_bucket_hash) + ((uint32_t)atop_64(offset) ^ vm_page_bucket_hash))\ |
1c79356b A |
723 | & vm_page_hash_mask) |
724 | ||
725 | /* | |
726 | * vm_page_insert: [ internal use only ] | |
727 | * | |
728 | * Inserts the given mem entry into the object/object-page | |
729 | * table and object list. | |
730 | * | |
731 | * The object must be locked. | |
732 | */ | |
733 | ||
734 | void | |
735 | vm_page_insert( | |
736 | register vm_page_t mem, | |
737 | register vm_object_t object, | |
738 | register vm_object_offset_t offset) | |
739 | { | |
740 | register vm_page_bucket_t *bucket; | |
741 | ||
742 | XPR(XPR_VM_PAGE, | |
743 | "vm_page_insert, object 0x%X offset 0x%X page 0x%X\n", | |
744 | (integer_t)object, (integer_t)offset, (integer_t)mem, 0,0); | |
745 | ||
746 | VM_PAGE_CHECK(mem); | |
747 | ||
748 | if (mem->tabled) | |
749 | panic("vm_page_insert"); | |
750 | ||
751 | assert(!object->internal || offset < object->size); | |
752 | ||
753 | /* only insert "pageout" pages into "pageout" objects, | |
754 | * and normal pages into normal objects */ | |
755 | assert(object->pageout == mem->pageout); | |
756 | ||
757 | /* | |
758 | * Record the object/offset pair in this page | |
759 | */ | |
760 | ||
761 | mem->object = object; | |
762 | mem->offset = offset; | |
763 | ||
764 | /* | |
765 | * Insert it into the object_object/offset hash table | |
766 | */ | |
767 | ||
768 | bucket = &vm_page_buckets[vm_page_hash(object, offset)]; | |
769 | simple_lock(&vm_page_bucket_lock); | |
770 | mem->next = bucket->pages; | |
771 | bucket->pages = mem; | |
772 | #if MACH_PAGE_HASH_STATS | |
773 | if (++bucket->cur_count > bucket->hi_count) | |
774 | bucket->hi_count = bucket->cur_count; | |
775 | #endif /* MACH_PAGE_HASH_STATS */ | |
776 | simple_unlock(&vm_page_bucket_lock); | |
777 | ||
778 | /* | |
779 | * Now link into the object's list of backed pages. | |
780 | */ | |
781 | ||
782 | queue_enter(&object->memq, mem, vm_page_t, listq); | |
783 | mem->tabled = TRUE; | |
784 | ||
785 | /* | |
786 | * Show that the object has one more resident page. | |
787 | */ | |
788 | ||
789 | object->resident_page_count++; | |
790 | } | |
791 | ||
792 | /* | |
793 | * vm_page_replace: | |
794 | * | |
795 | * Exactly like vm_page_insert, except that we first | |
796 | * remove any existing page at the given offset in object. | |
797 | * | |
798 | * The object and page queues must be locked. | |
799 | */ | |
800 | ||
801 | void | |
802 | vm_page_replace( | |
803 | register vm_page_t mem, | |
804 | register vm_object_t object, | |
805 | register vm_object_offset_t offset) | |
806 | { | |
807 | register vm_page_bucket_t *bucket; | |
808 | ||
809 | VM_PAGE_CHECK(mem); | |
810 | ||
811 | if (mem->tabled) | |
812 | panic("vm_page_replace"); | |
813 | ||
814 | /* | |
815 | * Record the object/offset pair in this page | |
816 | */ | |
817 | ||
818 | mem->object = object; | |
819 | mem->offset = offset; | |
820 | ||
821 | /* | |
822 | * Insert it into the object_object/offset hash table, | |
823 | * replacing any page that might have been there. | |
824 | */ | |
825 | ||
826 | bucket = &vm_page_buckets[vm_page_hash(object, offset)]; | |
827 | simple_lock(&vm_page_bucket_lock); | |
828 | if (bucket->pages) { | |
829 | vm_page_t *mp = &bucket->pages; | |
830 | register vm_page_t m = *mp; | |
831 | do { | |
832 | if (m->object == object && m->offset == offset) { | |
833 | /* | |
834 | * Remove page from bucket and from object, | |
835 | * and return it to the free list. | |
836 | */ | |
837 | *mp = m->next; | |
838 | queue_remove(&object->memq, m, vm_page_t, | |
839 | listq); | |
840 | m->tabled = FALSE; | |
841 | object->resident_page_count--; | |
842 | ||
843 | /* | |
844 | * Return page to the free list. | |
845 | * Note the page is not tabled now, so this | |
846 | * won't self-deadlock on the bucket lock. | |
847 | */ | |
848 | ||
849 | vm_page_free(m); | |
850 | break; | |
851 | } | |
852 | mp = &m->next; | |
853 | } while (m = *mp); | |
854 | mem->next = bucket->pages; | |
855 | } else { | |
856 | mem->next = VM_PAGE_NULL; | |
857 | } | |
858 | bucket->pages = mem; | |
859 | simple_unlock(&vm_page_bucket_lock); | |
860 | ||
861 | /* | |
862 | * Now link into the object's list of backed pages. | |
863 | */ | |
864 | ||
865 | queue_enter(&object->memq, mem, vm_page_t, listq); | |
866 | mem->tabled = TRUE; | |
867 | ||
868 | /* | |
869 | * And show that the object has one more resident | |
870 | * page. | |
871 | */ | |
872 | ||
873 | object->resident_page_count++; | |
874 | } | |
875 | ||
876 | /* | |
877 | * vm_page_remove: [ internal use only ] | |
878 | * | |
879 | * Removes the given mem entry from the object/offset-page | |
880 | * table and the object page list. | |
881 | * | |
882 | * The object and page must be locked. | |
883 | */ | |
884 | ||
885 | void | |
886 | vm_page_remove( | |
887 | register vm_page_t mem) | |
888 | { | |
889 | register vm_page_bucket_t *bucket; | |
890 | register vm_page_t this; | |
891 | ||
892 | XPR(XPR_VM_PAGE, | |
893 | "vm_page_remove, object 0x%X offset 0x%X page 0x%X\n", | |
894 | (integer_t)mem->object, (integer_t)mem->offset, | |
895 | (integer_t)mem, 0,0); | |
896 | ||
897 | assert(mem->tabled); | |
898 | assert(!mem->cleaning); | |
899 | VM_PAGE_CHECK(mem); | |
900 | ||
901 | /* | |
902 | * Remove from the object_object/offset hash table | |
903 | */ | |
904 | ||
905 | bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)]; | |
906 | simple_lock(&vm_page_bucket_lock); | |
907 | if ((this = bucket->pages) == mem) { | |
908 | /* optimize for common case */ | |
909 | ||
910 | bucket->pages = mem->next; | |
911 | } else { | |
912 | register vm_page_t *prev; | |
913 | ||
914 | for (prev = &this->next; | |
915 | (this = *prev) != mem; | |
916 | prev = &this->next) | |
917 | continue; | |
918 | *prev = this->next; | |
919 | } | |
920 | #if MACH_PAGE_HASH_STATS | |
921 | bucket->cur_count--; | |
922 | #endif /* MACH_PAGE_HASH_STATS */ | |
923 | simple_unlock(&vm_page_bucket_lock); | |
924 | ||
925 | /* | |
926 | * Now remove from the object's list of backed pages. | |
927 | */ | |
928 | ||
929 | queue_remove(&mem->object->memq, mem, vm_page_t, listq); | |
930 | ||
931 | /* | |
932 | * And show that the object has one fewer resident | |
933 | * page. | |
934 | */ | |
935 | ||
936 | mem->object->resident_page_count--; | |
937 | ||
938 | mem->tabled = FALSE; | |
939 | mem->object = VM_OBJECT_NULL; | |
940 | mem->offset = 0; | |
941 | } | |
942 | ||
943 | /* | |
944 | * vm_page_lookup: | |
945 | * | |
946 | * Returns the page associated with the object/offset | |
947 | * pair specified; if none is found, VM_PAGE_NULL is returned. | |
948 | * | |
949 | * The object must be locked. No side effects. | |
950 | */ | |
951 | ||
952 | vm_page_t | |
953 | vm_page_lookup( | |
954 | register vm_object_t object, | |
955 | register vm_object_offset_t offset) | |
956 | { | |
957 | register vm_page_t mem; | |
958 | register vm_page_bucket_t *bucket; | |
959 | ||
960 | /* | |
961 | * Search the hash table for this object/offset pair | |
962 | */ | |
963 | ||
964 | bucket = &vm_page_buckets[vm_page_hash(object, offset)]; | |
965 | ||
966 | simple_lock(&vm_page_bucket_lock); | |
967 | for (mem = bucket->pages; mem != VM_PAGE_NULL; mem = mem->next) { | |
968 | VM_PAGE_CHECK(mem); | |
969 | if ((mem->object == object) && (mem->offset == offset)) | |
970 | break; | |
971 | } | |
972 | simple_unlock(&vm_page_bucket_lock); | |
55e303ae | 973 | |
1c79356b A |
974 | return(mem); |
975 | } | |
976 | ||
977 | /* | |
978 | * vm_page_rename: | |
979 | * | |
980 | * Move the given memory entry from its | |
981 | * current object to the specified target object/offset. | |
982 | * | |
983 | * The object must be locked. | |
984 | */ | |
985 | void | |
986 | vm_page_rename( | |
987 | register vm_page_t mem, | |
988 | register vm_object_t new_object, | |
989 | vm_object_offset_t new_offset) | |
990 | { | |
991 | assert(mem->object != new_object); | |
992 | /* | |
993 | * Changes to mem->object require the page lock because | |
994 | * the pageout daemon uses that lock to get the object. | |
995 | */ | |
996 | ||
997 | XPR(XPR_VM_PAGE, | |
998 | "vm_page_rename, new object 0x%X, offset 0x%X page 0x%X\n", | |
999 | (integer_t)new_object, (integer_t)new_offset, | |
1000 | (integer_t)mem, 0,0); | |
1001 | ||
1002 | vm_page_lock_queues(); | |
1003 | vm_page_remove(mem); | |
1004 | vm_page_insert(mem, new_object, new_offset); | |
1005 | vm_page_unlock_queues(); | |
1006 | } | |
1007 | ||
1008 | /* | |
1009 | * vm_page_init: | |
1010 | * | |
1011 | * Initialize the fields in a new page. | |
1012 | * This takes a structure with random values and initializes it | |
1013 | * so that it can be given to vm_page_release or vm_page_insert. | |
1014 | */ | |
1015 | void | |
1016 | vm_page_init( | |
1017 | vm_page_t mem, | |
55e303ae | 1018 | ppnum_t phys_page) |
1c79356b A |
1019 | { |
1020 | *mem = vm_page_template; | |
55e303ae | 1021 | mem->phys_page = phys_page; |
1c79356b A |
1022 | } |
1023 | ||
1024 | /* | |
1025 | * vm_page_grab_fictitious: | |
1026 | * | |
1027 | * Remove a fictitious page from the free list. | |
1028 | * Returns VM_PAGE_NULL if there are no free pages. | |
1029 | */ | |
1030 | int c_vm_page_grab_fictitious = 0; | |
1031 | int c_vm_page_release_fictitious = 0; | |
1032 | int c_vm_page_more_fictitious = 0; | |
1033 | ||
1034 | vm_page_t | |
1035 | vm_page_grab_fictitious(void) | |
1036 | { | |
1037 | register vm_page_t m; | |
1038 | ||
1039 | m = (vm_page_t)zget(vm_page_zone); | |
1040 | if (m) { | |
1c79356b A |
1041 | vm_page_init(m, vm_page_fictitious_addr); |
1042 | m->fictitious = TRUE; | |
1c79356b A |
1043 | } |
1044 | ||
1045 | c_vm_page_grab_fictitious++; | |
1046 | return m; | |
1047 | } | |
1048 | ||
1049 | /* | |
1050 | * vm_page_release_fictitious: | |
1051 | * | |
1052 | * Release a fictitious page to the free list. | |
1053 | */ | |
1054 | ||
1055 | void | |
1056 | vm_page_release_fictitious( | |
1057 | register vm_page_t m) | |
1058 | { | |
1059 | assert(!m->free); | |
1060 | assert(m->busy); | |
1061 | assert(m->fictitious); | |
55e303ae | 1062 | assert(m->phys_page == vm_page_fictitious_addr); |
1c79356b A |
1063 | |
1064 | c_vm_page_release_fictitious++; | |
1065 | ||
1066 | if (m->free) | |
1067 | panic("vm_page_release_fictitious"); | |
1068 | m->free = TRUE; | |
1069 | zfree(vm_page_zone, (vm_offset_t)m); | |
1070 | } | |
1071 | ||
1072 | /* | |
1073 | * vm_page_more_fictitious: | |
1074 | * | |
1075 | * Add more fictitious pages to the free list. | |
1076 | * Allowed to block. This routine is way intimate | |
1077 | * with the zones code, for several reasons: | |
1078 | * 1. we need to carve some page structures out of physical | |
1079 | * memory before zones work, so they _cannot_ come from | |
1080 | * the zone_map. | |
1081 | * 2. the zone needs to be collectable in order to prevent | |
1082 | * growth without bound. These structures are used by | |
1083 | * the device pager (by the hundreds and thousands), as | |
1084 | * private pages for pageout, and as blocking pages for | |
1085 | * pagein. Temporary bursts in demand should not result in | |
1086 | * permanent allocation of a resource. | |
1087 | * 3. To smooth allocation humps, we allocate single pages | |
1088 | * with kernel_memory_allocate(), and cram them into the | |
1089 | * zone. This also allows us to initialize the vm_page_t's | |
1090 | * on the way into the zone, so that zget() always returns | |
1091 | * an initialized structure. The zone free element pointer | |
1092 | * and the free page pointer are both the first item in the | |
1093 | * vm_page_t. | |
1094 | * 4. By having the pages in the zone pre-initialized, we need | |
1095 | * not keep 2 levels of lists. The garbage collector simply | |
1096 | * scans our list, and reduces physical memory usage as it | |
1097 | * sees fit. | |
1098 | */ | |
1099 | ||
1100 | void vm_page_more_fictitious(void) | |
1101 | { | |
1102 | extern vm_map_t zone_map; | |
1103 | register vm_page_t m; | |
1104 | vm_offset_t addr; | |
1105 | kern_return_t retval; | |
1106 | int i; | |
1107 | ||
1108 | c_vm_page_more_fictitious++; | |
1109 | ||
1c79356b A |
1110 | /* |
1111 | * Allocate a single page from the zone_map. Do not wait if no physical | |
1112 | * pages are immediately available, and do not zero the space. We need | |
1113 | * our own blocking lock here to prevent having multiple, | |
1114 | * simultaneous requests from piling up on the zone_map lock. Exactly | |
1115 | * one (of our) threads should be potentially waiting on the map lock. | |
1116 | * If winner is not vm-privileged, then the page allocation will fail, | |
1117 | * and it will temporarily block here in the vm_page_wait(). | |
1118 | */ | |
1119 | mutex_lock(&vm_page_alloc_lock); | |
1120 | /* | |
1121 | * If another thread allocated space, just bail out now. | |
1122 | */ | |
1123 | if (zone_free_count(vm_page_zone) > 5) { | |
1124 | /* | |
1125 | * The number "5" is a small number that is larger than the | |
1126 | * number of fictitious pages that any single caller will | |
1127 | * attempt to allocate. Otherwise, a thread will attempt to | |
1128 | * acquire a fictitious page (vm_page_grab_fictitious), fail, | |
1129 | * release all of the resources and locks already acquired, | |
1130 | * and then call this routine. This routine finds the pages | |
1131 | * that the caller released, so fails to allocate new space. | |
1132 | * The process repeats infinitely. The largest known number | |
1133 | * of fictitious pages required in this manner is 2. 5 is | |
1134 | * simply a somewhat larger number. | |
1135 | */ | |
1136 | mutex_unlock(&vm_page_alloc_lock); | |
1137 | return; | |
1138 | } | |
1139 | ||
1140 | if ((retval = kernel_memory_allocate(zone_map, | |
1141 | &addr, PAGE_SIZE, VM_PROT_ALL, | |
1142 | KMA_KOBJECT|KMA_NOPAGEWAIT)) != KERN_SUCCESS) { | |
1143 | /* | |
1144 | * No page was available. Tell the pageout daemon, drop the | |
1145 | * lock to give another thread a chance at it, and | |
1146 | * wait for the pageout daemon to make progress. | |
1147 | */ | |
1148 | mutex_unlock(&vm_page_alloc_lock); | |
1149 | vm_page_wait(THREAD_UNINT); | |
1150 | return; | |
1151 | } | |
1152 | /* | |
1153 | * Initialize as many vm_page_t's as will fit on this page. This | |
1154 | * depends on the zone code disturbing ONLY the first item of | |
1155 | * each zone element. | |
1156 | */ | |
1157 | m = (vm_page_t)addr; | |
1158 | for (i = PAGE_SIZE/sizeof(struct vm_page); i > 0; i--) { | |
1159 | vm_page_init(m, vm_page_fictitious_addr); | |
1160 | m->fictitious = TRUE; | |
1161 | m++; | |
1162 | } | |
1163 | zcram(vm_page_zone, addr, PAGE_SIZE); | |
1164 | mutex_unlock(&vm_page_alloc_lock); | |
1165 | } | |
1166 | ||
1167 | /* | |
1168 | * vm_page_convert: | |
1169 | * | |
1170 | * Attempt to convert a fictitious page into a real page. | |
1171 | */ | |
1172 | ||
1173 | boolean_t | |
1174 | vm_page_convert( | |
1175 | register vm_page_t m) | |
1176 | { | |
1177 | register vm_page_t real_m; | |
1178 | ||
1179 | assert(m->busy); | |
1180 | assert(m->fictitious); | |
1181 | assert(!m->dirty); | |
1182 | ||
1183 | real_m = vm_page_grab(); | |
1184 | if (real_m == VM_PAGE_NULL) | |
1185 | return FALSE; | |
1186 | ||
55e303ae | 1187 | m->phys_page = real_m->phys_page; |
1c79356b | 1188 | m->fictitious = FALSE; |
765c9de3 | 1189 | m->no_isync = TRUE; |
1c79356b A |
1190 | |
1191 | vm_page_lock_queues(); | |
1192 | if (m->active) | |
1193 | vm_page_active_count++; | |
1194 | else if (m->inactive) | |
1195 | vm_page_inactive_count++; | |
1196 | vm_page_unlock_queues(); | |
1197 | ||
55e303ae | 1198 | real_m->phys_page = vm_page_fictitious_addr; |
1c79356b A |
1199 | real_m->fictitious = TRUE; |
1200 | ||
1201 | vm_page_release_fictitious(real_m); | |
1202 | return TRUE; | |
1203 | } | |
1204 | ||
1205 | /* | |
1206 | * vm_pool_low(): | |
1207 | * | |
1208 | * Return true if it is not likely that a non-vm_privileged thread | |
1209 | * can get memory without blocking. Advisory only, since the | |
1210 | * situation may change under us. | |
1211 | */ | |
1212 | int | |
1213 | vm_pool_low(void) | |
1214 | { | |
1215 | /* No locking, at worst we will fib. */ | |
1216 | return( vm_page_free_count < vm_page_free_reserved ); | |
1217 | } | |
1218 | ||
1219 | /* | |
1220 | * vm_page_grab: | |
1221 | * | |
1222 | * Remove a page from the free list. | |
1223 | * Returns VM_PAGE_NULL if the free list is too small. | |
1224 | */ | |
1225 | ||
1226 | unsigned long vm_page_grab_count = 0; /* measure demand */ | |
1227 | ||
1228 | vm_page_t | |
1229 | vm_page_grab(void) | |
1230 | { | |
1231 | register vm_page_t mem; | |
1232 | ||
1233 | mutex_lock(&vm_page_queue_free_lock); | |
1234 | vm_page_grab_count++; | |
1235 | ||
1236 | /* | |
1237 | * Optionally produce warnings if the wire or gobble | |
1238 | * counts exceed some threshold. | |
1239 | */ | |
1240 | if (vm_page_wire_count_warning > 0 | |
1241 | && vm_page_wire_count >= vm_page_wire_count_warning) { | |
1242 | printf("mk: vm_page_grab(): high wired page count of %d\n", | |
1243 | vm_page_wire_count); | |
1244 | assert(vm_page_wire_count < vm_page_wire_count_warning); | |
1245 | } | |
1246 | if (vm_page_gobble_count_warning > 0 | |
1247 | && vm_page_gobble_count >= vm_page_gobble_count_warning) { | |
1248 | printf("mk: vm_page_grab(): high gobbled page count of %d\n", | |
1249 | vm_page_gobble_count); | |
1250 | assert(vm_page_gobble_count < vm_page_gobble_count_warning); | |
1251 | } | |
1252 | ||
1253 | /* | |
1254 | * Only let privileged threads (involved in pageout) | |
1255 | * dip into the reserved pool. | |
1256 | */ | |
1257 | ||
1258 | if ((vm_page_free_count < vm_page_free_reserved) && | |
1259 | !current_thread()->vm_privilege) { | |
1260 | mutex_unlock(&vm_page_queue_free_lock); | |
1261 | mem = VM_PAGE_NULL; | |
1262 | goto wakeup_pageout; | |
1263 | } | |
1264 | ||
1265 | while (vm_page_queue_free == VM_PAGE_NULL) { | |
1266 | printf("vm_page_grab: no free pages, trouble expected...\n"); | |
1267 | mutex_unlock(&vm_page_queue_free_lock); | |
1268 | VM_PAGE_WAIT(); | |
1269 | mutex_lock(&vm_page_queue_free_lock); | |
1270 | } | |
1271 | ||
1272 | if (--vm_page_free_count < vm_page_free_count_minimum) | |
1273 | vm_page_free_count_minimum = vm_page_free_count; | |
1274 | mem = vm_page_queue_free; | |
1275 | vm_page_queue_free = (vm_page_t) mem->pageq.next; | |
1276 | mem->free = FALSE; | |
0b4e3aa0 | 1277 | mem->no_isync = TRUE; |
1c79356b A |
1278 | mutex_unlock(&vm_page_queue_free_lock); |
1279 | ||
1280 | /* | |
1281 | * Decide if we should poke the pageout daemon. | |
1282 | * We do this if the free count is less than the low | |
1283 | * water mark, or if the free count is less than the high | |
1284 | * water mark (but above the low water mark) and the inactive | |
1285 | * count is less than its target. | |
1286 | * | |
1287 | * We don't have the counts locked ... if they change a little, | |
1288 | * it doesn't really matter. | |
1289 | */ | |
1290 | ||
1291 | wakeup_pageout: | |
1292 | if ((vm_page_free_count < vm_page_free_min) || | |
1293 | ((vm_page_free_count < vm_page_free_target) && | |
1294 | (vm_page_inactive_count < vm_page_inactive_target))) | |
1295 | thread_wakeup((event_t) &vm_page_free_wanted); | |
1296 | ||
55e303ae | 1297 | // dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */ |
1c79356b A |
1298 | |
1299 | return mem; | |
1300 | } | |
1301 | ||
1302 | /* | |
1303 | * vm_page_release: | |
1304 | * | |
1305 | * Return a page to the free list. | |
1306 | */ | |
1307 | ||
1308 | void | |
1309 | vm_page_release( | |
1310 | register vm_page_t mem) | |
1311 | { | |
55e303ae A |
1312 | |
1313 | #if 0 | |
1314 | unsigned int pindex; | |
1315 | phys_entry *physent; | |
1316 | ||
1317 | physent = mapping_phys_lookup(mem->phys_page, &pindex); /* (BRINGUP) */ | |
1318 | if(physent->ppLink & ppN) { /* (BRINGUP) */ | |
1319 | panic("vm_page_release: already released - %08X %08X\n", mem, mem->phys_page); | |
1320 | } | |
1321 | physent->ppLink = physent->ppLink | ppN; /* (BRINGUP) */ | |
1322 | #endif | |
1323 | ||
1c79356b A |
1324 | assert(!mem->private && !mem->fictitious); |
1325 | ||
55e303ae | 1326 | // dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */ |
1c79356b A |
1327 | |
1328 | mutex_lock(&vm_page_queue_free_lock); | |
1329 | if (mem->free) | |
1330 | panic("vm_page_release"); | |
1331 | mem->free = TRUE; | |
1332 | mem->pageq.next = (queue_entry_t) vm_page_queue_free; | |
1333 | vm_page_queue_free = mem; | |
1334 | vm_page_free_count++; | |
1335 | ||
1336 | /* | |
1337 | * Check if we should wake up someone waiting for page. | |
1338 | * But don't bother waking them unless they can allocate. | |
1339 | * | |
1340 | * We wakeup only one thread, to prevent starvation. | |
1341 | * Because the scheduling system handles wait queues FIFO, | |
1342 | * if we wakeup all waiting threads, one greedy thread | |
1343 | * can starve multiple niceguy threads. When the threads | |
1344 | * all wakeup, the greedy threads runs first, grabs the page, | |
1345 | * and waits for another page. It will be the first to run | |
1346 | * when the next page is freed. | |
1347 | * | |
1348 | * However, there is a slight danger here. | |
1349 | * The thread we wake might not use the free page. | |
1350 | * Then the other threads could wait indefinitely | |
1351 | * while the page goes unused. To forestall this, | |
1352 | * the pageout daemon will keep making free pages | |
1353 | * as long as vm_page_free_wanted is non-zero. | |
1354 | */ | |
1355 | ||
1356 | if ((vm_page_free_wanted > 0) && | |
1357 | (vm_page_free_count >= vm_page_free_reserved)) { | |
1358 | vm_page_free_wanted--; | |
1359 | thread_wakeup_one((event_t) &vm_page_free_count); | |
1360 | } | |
1361 | ||
1362 | mutex_unlock(&vm_page_queue_free_lock); | |
1363 | } | |
1364 | ||
9bccf70c A |
1365 | #define VM_PAGEOUT_DEADLOCK_TIMEOUT 3 |
1366 | ||
1c79356b A |
1367 | /* |
1368 | * vm_page_wait: | |
1369 | * | |
1370 | * Wait for a page to become available. | |
1371 | * If there are plenty of free pages, then we don't sleep. | |
1372 | * | |
1373 | * Returns: | |
1374 | * TRUE: There may be another page, try again | |
1375 | * FALSE: We were interrupted out of our wait, don't try again | |
1376 | */ | |
1377 | ||
1378 | boolean_t | |
1379 | vm_page_wait( | |
1380 | int interruptible ) | |
1381 | { | |
1382 | /* | |
1383 | * We can't use vm_page_free_reserved to make this | |
1384 | * determination. Consider: some thread might | |
1385 | * need to allocate two pages. The first allocation | |
1386 | * succeeds, the second fails. After the first page is freed, | |
1387 | * a call to vm_page_wait must really block. | |
1388 | */ | |
9bccf70c A |
1389 | uint64_t abstime; |
1390 | kern_return_t wait_result; | |
1391 | kern_return_t kr; | |
1392 | int need_wakeup = 0; | |
1c79356b A |
1393 | |
1394 | mutex_lock(&vm_page_queue_free_lock); | |
1395 | if (vm_page_free_count < vm_page_free_target) { | |
1396 | if (vm_page_free_wanted++ == 0) | |
0b4e3aa0 | 1397 | need_wakeup = 1; |
9bccf70c A |
1398 | wait_result = assert_wait((event_t)&vm_page_free_count, |
1399 | interruptible); | |
1c79356b A |
1400 | mutex_unlock(&vm_page_queue_free_lock); |
1401 | counter(c_vm_page_wait_block++); | |
0b4e3aa0 A |
1402 | |
1403 | if (need_wakeup) | |
1404 | thread_wakeup((event_t)&vm_page_free_wanted); | |
9bccf70c A |
1405 | |
1406 | if (wait_result == THREAD_WAITING) { | |
1407 | clock_interval_to_absolutetime_interval( | |
1408 | VM_PAGEOUT_DEADLOCK_TIMEOUT, | |
1409 | NSEC_PER_SEC, &abstime); | |
1410 | clock_absolutetime_interval_to_deadline( | |
1411 | abstime, &abstime); | |
1412 | thread_set_timer_deadline(abstime); | |
1413 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1414 | ||
1415 | if(wait_result == THREAD_TIMED_OUT) { | |
1416 | kr = vm_pageout_emergency_availability_request(); | |
1417 | return TRUE; | |
1418 | } else { | |
1419 | thread_cancel_timer(); | |
1420 | } | |
1421 | } | |
0b4e3aa0 | 1422 | |
1c79356b A |
1423 | return(wait_result == THREAD_AWAKENED); |
1424 | } else { | |
1425 | mutex_unlock(&vm_page_queue_free_lock); | |
1426 | return TRUE; | |
1427 | } | |
1428 | } | |
1429 | ||
1430 | /* | |
1431 | * vm_page_alloc: | |
1432 | * | |
1433 | * Allocate and return a memory cell associated | |
1434 | * with this VM object/offset pair. | |
1435 | * | |
1436 | * Object must be locked. | |
1437 | */ | |
1438 | ||
1439 | vm_page_t | |
1440 | vm_page_alloc( | |
1441 | vm_object_t object, | |
1442 | vm_object_offset_t offset) | |
1443 | { | |
1444 | register vm_page_t mem; | |
1445 | ||
1446 | mem = vm_page_grab(); | |
1447 | if (mem == VM_PAGE_NULL) | |
1448 | return VM_PAGE_NULL; | |
1449 | ||
1450 | vm_page_insert(mem, object, offset); | |
1451 | ||
1452 | return(mem); | |
1453 | } | |
1454 | ||
1c79356b A |
1455 | counter(unsigned int c_laundry_pages_freed = 0;) |
1456 | ||
1457 | int vm_pagein_cluster_unused = 0; | |
1458 | boolean_t vm_page_free_verify = FALSE; | |
1459 | /* | |
1460 | * vm_page_free: | |
1461 | * | |
1462 | * Returns the given page to the free list, | |
1463 | * disassociating it with any VM object. | |
1464 | * | |
1465 | * Object and page queues must be locked prior to entry. | |
1466 | */ | |
1467 | void | |
1468 | vm_page_free( | |
1469 | register vm_page_t mem) | |
1470 | { | |
1471 | vm_object_t object = mem->object; | |
1472 | ||
1473 | assert(!mem->free); | |
1474 | assert(!mem->cleaning); | |
1475 | assert(!mem->pageout); | |
55e303ae | 1476 | assert(!vm_page_free_verify || pmap_verify_free(mem->phys_page)); |
1c79356b A |
1477 | |
1478 | if (mem->tabled) | |
1479 | vm_page_remove(mem); /* clears tabled, object, offset */ | |
1480 | VM_PAGE_QUEUES_REMOVE(mem); /* clears active or inactive */ | |
1481 | ||
1482 | if (mem->clustered) { | |
1483 | mem->clustered = FALSE; | |
1484 | vm_pagein_cluster_unused++; | |
1485 | } | |
1486 | ||
1487 | if (mem->wire_count) { | |
1488 | if (!mem->private && !mem->fictitious) | |
1489 | vm_page_wire_count--; | |
1490 | mem->wire_count = 0; | |
1491 | assert(!mem->gobbled); | |
1492 | } else if (mem->gobbled) { | |
1493 | if (!mem->private && !mem->fictitious) | |
1494 | vm_page_wire_count--; | |
1495 | vm_page_gobble_count--; | |
1496 | } | |
1497 | mem->gobbled = FALSE; | |
1498 | ||
1499 | if (mem->laundry) { | |
1500 | extern int vm_page_laundry_min; | |
55e303ae A |
1501 | if (!object->internal) |
1502 | vm_page_burst_count--; | |
1c79356b A |
1503 | vm_page_laundry_count--; |
1504 | mem->laundry = FALSE; /* laundry is now clear */ | |
1505 | counter(++c_laundry_pages_freed); | |
1506 | if (vm_page_laundry_count < vm_page_laundry_min) { | |
1507 | vm_page_laundry_min = 0; | |
1508 | thread_wakeup((event_t) &vm_page_laundry_count); | |
1509 | } | |
1510 | } | |
1511 | ||
1512 | mem->discard_request = FALSE; | |
1513 | ||
1514 | PAGE_WAKEUP(mem); /* clears wanted */ | |
1515 | ||
1516 | if (mem->absent) | |
1517 | vm_object_absent_release(object); | |
1518 | ||
0b4e3aa0 | 1519 | /* Some of these may be unnecessary */ |
1c79356b A |
1520 | mem->page_lock = 0; |
1521 | mem->unlock_request = 0; | |
1522 | mem->busy = TRUE; | |
1523 | mem->absent = FALSE; | |
1524 | mem->error = FALSE; | |
1525 | mem->dirty = FALSE; | |
1526 | mem->precious = FALSE; | |
1527 | mem->reference = FALSE; | |
1528 | ||
1529 | mem->page_error = KERN_SUCCESS; | |
1530 | ||
1531 | if (mem->private) { | |
1532 | mem->private = FALSE; | |
1533 | mem->fictitious = TRUE; | |
55e303ae | 1534 | mem->phys_page = vm_page_fictitious_addr; |
1c79356b A |
1535 | } |
1536 | if (mem->fictitious) { | |
1537 | vm_page_release_fictitious(mem); | |
1538 | } else { | |
9bccf70c A |
1539 | /* depends on the queues lock */ |
1540 | if(mem->zero_fill) { | |
1541 | vm_zf_count-=1; | |
1542 | mem->zero_fill = FALSE; | |
1543 | } | |
55e303ae | 1544 | vm_page_init(mem, mem->phys_page); |
1c79356b A |
1545 | vm_page_release(mem); |
1546 | } | |
1547 | } | |
1548 | ||
55e303ae A |
1549 | |
1550 | void | |
1551 | vm_page_free_list( | |
1552 | register vm_page_t mem) | |
1553 | { | |
1554 | register vm_page_t nxt; | |
1555 | register vm_page_t first = NULL; | |
1556 | register vm_page_t last; | |
1557 | register int pg_count = 0; | |
1558 | ||
1559 | ||
1560 | while (mem) { | |
1561 | nxt = (vm_page_t)(mem->pageq.next); | |
1562 | ||
1563 | if (mem->clustered) | |
1564 | vm_pagein_cluster_unused++; | |
1565 | ||
1566 | if (mem->laundry) { | |
1567 | extern int vm_page_laundry_min; | |
1568 | ||
1569 | if (!mem->object->internal) | |
1570 | vm_page_burst_count--; | |
1571 | vm_page_laundry_count--; | |
1572 | counter(++c_laundry_pages_freed); | |
1573 | ||
1574 | if (vm_page_laundry_count < vm_page_laundry_min) { | |
1575 | vm_page_laundry_min = 0; | |
1576 | thread_wakeup((event_t) &vm_page_laundry_count); | |
1577 | } | |
1578 | } | |
1579 | mem->busy = TRUE; | |
1580 | ||
1581 | PAGE_WAKEUP(mem); /* clears wanted */ | |
1582 | ||
1583 | if (mem->private) | |
1584 | mem->fictitious = TRUE; | |
1585 | ||
1586 | if (!mem->fictitious) { | |
1587 | /* depends on the queues lock */ | |
1588 | if (mem->zero_fill) | |
1589 | vm_zf_count -= 1; | |
1590 | vm_page_init(mem, mem->phys_page); | |
1591 | ||
1592 | mem->free = TRUE; | |
1593 | ||
1594 | if (first == NULL) | |
1595 | last = mem; | |
1596 | mem->pageq.next = (queue_t) first; | |
1597 | first = mem; | |
1598 | ||
1599 | pg_count++; | |
1600 | } else { | |
1601 | mem->phys_page = vm_page_fictitious_addr; | |
1602 | vm_page_release_fictitious(mem); | |
1603 | } | |
1604 | mem = nxt; | |
1605 | } | |
1606 | if (first) { | |
1607 | ||
1608 | mutex_lock(&vm_page_queue_free_lock); | |
1609 | ||
1610 | last->pageq.next = (queue_entry_t) vm_page_queue_free; | |
1611 | vm_page_queue_free = first; | |
1612 | ||
1613 | vm_page_free_count += pg_count; | |
1614 | ||
1615 | if ((vm_page_free_wanted > 0) && | |
1616 | (vm_page_free_count >= vm_page_free_reserved)) { | |
1617 | int available_pages; | |
1618 | ||
1619 | available_pages = vm_page_free_count - vm_page_free_reserved; | |
1620 | ||
1621 | if (available_pages >= vm_page_free_wanted) { | |
1622 | vm_page_free_wanted = 0; | |
1623 | thread_wakeup((event_t) &vm_page_free_count); | |
1624 | } else { | |
1625 | while (available_pages--) { | |
1626 | vm_page_free_wanted--; | |
1627 | thread_wakeup_one((event_t) &vm_page_free_count); | |
1628 | } | |
1629 | } | |
1630 | } | |
1631 | mutex_unlock(&vm_page_queue_free_lock); | |
1632 | } | |
1633 | } | |
1634 | ||
1635 | ||
1c79356b A |
1636 | /* |
1637 | * vm_page_wire: | |
1638 | * | |
1639 | * Mark this page as wired down by yet | |
1640 | * another map, removing it from paging queues | |
1641 | * as necessary. | |
1642 | * | |
1643 | * The page's object and the page queues must be locked. | |
1644 | */ | |
1645 | void | |
1646 | vm_page_wire( | |
1647 | register vm_page_t mem) | |
1648 | { | |
1649 | ||
1650 | // dbgLog(current_act(), mem->offset, mem->object, 1); /* (TEST/DEBUG) */ | |
1651 | ||
1652 | VM_PAGE_CHECK(mem); | |
1653 | ||
1654 | if (mem->wire_count == 0) { | |
1655 | VM_PAGE_QUEUES_REMOVE(mem); | |
1656 | if (!mem->private && !mem->fictitious && !mem->gobbled) | |
1657 | vm_page_wire_count++; | |
1658 | if (mem->gobbled) | |
1659 | vm_page_gobble_count--; | |
1660 | mem->gobbled = FALSE; | |
9bccf70c A |
1661 | if(mem->zero_fill) { |
1662 | /* depends on the queues lock */ | |
1663 | vm_zf_count-=1; | |
1664 | mem->zero_fill = FALSE; | |
1665 | } | |
1c79356b A |
1666 | } |
1667 | assert(!mem->gobbled); | |
1668 | mem->wire_count++; | |
1669 | } | |
1670 | ||
1671 | /* | |
1672 | * vm_page_gobble: | |
1673 | * | |
1674 | * Mark this page as consumed by the vm/ipc/xmm subsystems. | |
1675 | * | |
1676 | * Called only for freshly vm_page_grab()ed pages - w/ nothing locked. | |
1677 | */ | |
1678 | void | |
1679 | vm_page_gobble( | |
1680 | register vm_page_t mem) | |
1681 | { | |
1682 | vm_page_lock_queues(); | |
1683 | VM_PAGE_CHECK(mem); | |
1684 | ||
1685 | assert(!mem->gobbled); | |
1686 | assert(mem->wire_count == 0); | |
1687 | ||
1688 | if (!mem->gobbled && mem->wire_count == 0) { | |
1689 | if (!mem->private && !mem->fictitious) | |
1690 | vm_page_wire_count++; | |
1691 | } | |
1692 | vm_page_gobble_count++; | |
1693 | mem->gobbled = TRUE; | |
1694 | vm_page_unlock_queues(); | |
1695 | } | |
1696 | ||
1697 | /* | |
1698 | * vm_page_unwire: | |
1699 | * | |
1700 | * Release one wiring of this page, potentially | |
1701 | * enabling it to be paged again. | |
1702 | * | |
1703 | * The page's object and the page queues must be locked. | |
1704 | */ | |
1705 | void | |
1706 | vm_page_unwire( | |
1707 | register vm_page_t mem) | |
1708 | { | |
1709 | ||
1710 | // dbgLog(current_act(), mem->offset, mem->object, 0); /* (TEST/DEBUG) */ | |
1711 | ||
1712 | VM_PAGE_CHECK(mem); | |
1713 | assert(mem->wire_count > 0); | |
1714 | ||
1715 | if (--mem->wire_count == 0) { | |
1716 | assert(!mem->private && !mem->fictitious); | |
1717 | vm_page_wire_count--; | |
1718 | queue_enter(&vm_page_queue_active, mem, vm_page_t, pageq); | |
1719 | vm_page_active_count++; | |
1720 | mem->active = TRUE; | |
1721 | mem->reference = TRUE; | |
1722 | } | |
1723 | } | |
1724 | ||
1725 | /* | |
1726 | * vm_page_deactivate: | |
1727 | * | |
1728 | * Returns the given page to the inactive list, | |
1729 | * indicating that no physical maps have access | |
1730 | * to this page. [Used by the physical mapping system.] | |
1731 | * | |
1732 | * The page queues must be locked. | |
1733 | */ | |
1734 | void | |
1735 | vm_page_deactivate( | |
1736 | register vm_page_t m) | |
1737 | { | |
1738 | VM_PAGE_CHECK(m); | |
1739 | ||
55e303ae | 1740 | // dbgLog(m->phys_page, vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */ |
1c79356b A |
1741 | |
1742 | /* | |
1743 | * This page is no longer very interesting. If it was | |
1744 | * interesting (active or inactive/referenced), then we | |
1745 | * clear the reference bit and (re)enter it in the | |
1746 | * inactive queue. Note wired pages should not have | |
1747 | * their reference bit cleared. | |
1748 | */ | |
1749 | if (m->gobbled) { /* can this happen? */ | |
1750 | assert(m->wire_count == 0); | |
1751 | if (!m->private && !m->fictitious) | |
1752 | vm_page_wire_count--; | |
1753 | vm_page_gobble_count--; | |
1754 | m->gobbled = FALSE; | |
1755 | } | |
1756 | if (m->private || (m->wire_count != 0)) | |
1757 | return; | |
1758 | if (m->active || (m->inactive && m->reference)) { | |
1759 | if (!m->fictitious && !m->absent) | |
55e303ae | 1760 | pmap_clear_reference(m->phys_page); |
1c79356b A |
1761 | m->reference = FALSE; |
1762 | VM_PAGE_QUEUES_REMOVE(m); | |
1763 | } | |
1764 | if (m->wire_count == 0 && !m->inactive) { | |
0b4e3aa0 A |
1765 | m->page_ticket = vm_page_ticket; |
1766 | vm_page_ticket_roll++; | |
1767 | ||
1768 | if(vm_page_ticket_roll == VM_PAGE_TICKETS_IN_ROLL) { | |
1769 | vm_page_ticket_roll = 0; | |
1770 | if(vm_page_ticket == VM_PAGE_TICKET_ROLL_IDS) | |
1771 | vm_page_ticket= 0; | |
1772 | else | |
1773 | vm_page_ticket++; | |
1774 | } | |
1775 | ||
9bccf70c A |
1776 | if(m->zero_fill) { |
1777 | queue_enter(&vm_page_queue_zf, m, vm_page_t, pageq); | |
1778 | } else { | |
1779 | queue_enter(&vm_page_queue_inactive, | |
1780 | m, vm_page_t, pageq); | |
1781 | } | |
1782 | ||
1c79356b A |
1783 | m->inactive = TRUE; |
1784 | if (!m->fictitious) | |
1785 | vm_page_inactive_count++; | |
1786 | } | |
1787 | } | |
1788 | ||
1789 | /* | |
1790 | * vm_page_activate: | |
1791 | * | |
1792 | * Put the specified page on the active list (if appropriate). | |
1793 | * | |
1794 | * The page queues must be locked. | |
1795 | */ | |
1796 | ||
1797 | void | |
1798 | vm_page_activate( | |
1799 | register vm_page_t m) | |
1800 | { | |
1801 | VM_PAGE_CHECK(m); | |
1802 | ||
1803 | if (m->gobbled) { | |
1804 | assert(m->wire_count == 0); | |
1805 | if (!m->private && !m->fictitious) | |
1806 | vm_page_wire_count--; | |
1807 | vm_page_gobble_count--; | |
1808 | m->gobbled = FALSE; | |
1809 | } | |
1810 | if (m->private) | |
1811 | return; | |
1812 | ||
1813 | if (m->inactive) { | |
9bccf70c A |
1814 | if (m->zero_fill) { |
1815 | queue_remove(&vm_page_queue_zf, m, vm_page_t, pageq); | |
1816 | } else { | |
1817 | queue_remove(&vm_page_queue_inactive, | |
1818 | m, vm_page_t, pageq); | |
1819 | } | |
1c79356b A |
1820 | if (!m->fictitious) |
1821 | vm_page_inactive_count--; | |
1822 | m->inactive = FALSE; | |
1823 | } | |
1824 | if (m->wire_count == 0) { | |
1825 | if (m->active) | |
1826 | panic("vm_page_activate: already active"); | |
1827 | ||
1828 | queue_enter(&vm_page_queue_active, m, vm_page_t, pageq); | |
1829 | m->active = TRUE; | |
1830 | m->reference = TRUE; | |
1831 | if (!m->fictitious) | |
1832 | vm_page_active_count++; | |
1833 | } | |
1834 | } | |
1835 | ||
1836 | /* | |
1837 | * vm_page_part_zero_fill: | |
1838 | * | |
1839 | * Zero-fill a part of the page. | |
1840 | */ | |
1841 | void | |
1842 | vm_page_part_zero_fill( | |
1843 | vm_page_t m, | |
1844 | vm_offset_t m_pa, | |
1845 | vm_size_t len) | |
1846 | { | |
1847 | vm_page_t tmp; | |
1848 | ||
1849 | VM_PAGE_CHECK(m); | |
1850 | #ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED | |
55e303ae | 1851 | pmap_zero_part_page(m->phys_page, m_pa, len); |
1c79356b A |
1852 | #else |
1853 | while (1) { | |
1854 | tmp = vm_page_grab(); | |
1855 | if (tmp == VM_PAGE_NULL) { | |
1856 | vm_page_wait(THREAD_UNINT); | |
1857 | continue; | |
1858 | } | |
1859 | break; | |
1860 | } | |
1861 | vm_page_zero_fill(tmp); | |
1862 | if(m_pa != 0) { | |
1863 | vm_page_part_copy(m, 0, tmp, 0, m_pa); | |
1864 | } | |
1865 | if((m_pa + len) < PAGE_SIZE) { | |
1866 | vm_page_part_copy(m, m_pa + len, tmp, | |
1867 | m_pa + len, PAGE_SIZE - (m_pa + len)); | |
1868 | } | |
1869 | vm_page_copy(tmp,m); | |
1870 | vm_page_lock_queues(); | |
1871 | vm_page_free(tmp); | |
1872 | vm_page_unlock_queues(); | |
1873 | #endif | |
1874 | ||
1875 | } | |
1876 | ||
1877 | /* | |
1878 | * vm_page_zero_fill: | |
1879 | * | |
1880 | * Zero-fill the specified page. | |
1881 | */ | |
1882 | void | |
1883 | vm_page_zero_fill( | |
1884 | vm_page_t m) | |
1885 | { | |
1886 | XPR(XPR_VM_PAGE, | |
1887 | "vm_page_zero_fill, object 0x%X offset 0x%X page 0x%X\n", | |
1888 | (integer_t)m->object, (integer_t)m->offset, (integer_t)m, 0,0); | |
1889 | ||
1890 | VM_PAGE_CHECK(m); | |
1891 | ||
55e303ae A |
1892 | // dbgTrace(0xAEAEAEAE, m->phys_page, 0); /* (BRINGUP) */ |
1893 | pmap_zero_page(m->phys_page); | |
1c79356b A |
1894 | } |
1895 | ||
1896 | /* | |
1897 | * vm_page_part_copy: | |
1898 | * | |
1899 | * copy part of one page to another | |
1900 | */ | |
1901 | ||
1902 | void | |
1903 | vm_page_part_copy( | |
1904 | vm_page_t src_m, | |
1905 | vm_offset_t src_pa, | |
1906 | vm_page_t dst_m, | |
1907 | vm_offset_t dst_pa, | |
1908 | vm_size_t len) | |
1909 | { | |
1910 | VM_PAGE_CHECK(src_m); | |
1911 | VM_PAGE_CHECK(dst_m); | |
1912 | ||
55e303ae A |
1913 | pmap_copy_part_page(src_m->phys_page, src_pa, |
1914 | dst_m->phys_page, dst_pa, len); | |
1c79356b A |
1915 | } |
1916 | ||
1917 | /* | |
1918 | * vm_page_copy: | |
1919 | * | |
1920 | * Copy one page to another | |
1921 | */ | |
1922 | ||
1923 | void | |
1924 | vm_page_copy( | |
1925 | vm_page_t src_m, | |
1926 | vm_page_t dest_m) | |
1927 | { | |
1928 | XPR(XPR_VM_PAGE, | |
1929 | "vm_page_copy, object 0x%X offset 0x%X to object 0x%X offset 0x%X\n", | |
1930 | (integer_t)src_m->object, src_m->offset, | |
1931 | (integer_t)dest_m->object, dest_m->offset, | |
1932 | 0); | |
1933 | ||
1934 | VM_PAGE_CHECK(src_m); | |
1935 | VM_PAGE_CHECK(dest_m); | |
1936 | ||
55e303ae | 1937 | pmap_copy_page(src_m->phys_page, dest_m->phys_page); |
1c79356b A |
1938 | } |
1939 | ||
1c79356b A |
1940 | /* |
1941 | * Currently, this is a primitive allocator that grabs | |
1942 | * free pages from the system, sorts them by physical | |
1943 | * address, then searches for a region large enough to | |
1944 | * satisfy the user's request. | |
1945 | * | |
1946 | * Additional levels of effort: | |
1947 | * + steal clean active/inactive pages | |
1948 | * + force pageouts of dirty pages | |
1949 | * + maintain a map of available physical | |
1950 | * memory | |
1951 | */ | |
1952 | ||
1953 | #define SET_NEXT_PAGE(m,n) ((m)->pageq.next = (struct queue_entry *) (n)) | |
1954 | ||
1955 | #if MACH_ASSERT | |
1956 | int vm_page_verify_contiguous( | |
1957 | vm_page_t pages, | |
1958 | unsigned int npages); | |
1959 | #endif /* MACH_ASSERT */ | |
1960 | ||
1961 | cpm_counter(unsigned int vpfls_pages_handled = 0;) | |
1962 | cpm_counter(unsigned int vpfls_head_insertions = 0;) | |
1963 | cpm_counter(unsigned int vpfls_tail_insertions = 0;) | |
1964 | cpm_counter(unsigned int vpfls_general_insertions = 0;) | |
1965 | cpm_counter(unsigned int vpfc_failed = 0;) | |
1966 | cpm_counter(unsigned int vpfc_satisfied = 0;) | |
1967 | ||
1968 | /* | |
1969 | * Sort free list by ascending physical address, | |
1970 | * using a not-particularly-bright sort algorithm. | |
1971 | * Caller holds vm_page_queue_free_lock. | |
1972 | */ | |
1973 | static void | |
1974 | vm_page_free_list_sort(void) | |
1975 | { | |
1976 | vm_page_t sort_list; | |
1977 | vm_page_t sort_list_end; | |
1978 | vm_page_t m, m1, *prev, next_m; | |
1979 | vm_offset_t addr; | |
1980 | #if MACH_ASSERT | |
1981 | unsigned int npages; | |
1982 | int old_free_count; | |
1983 | #endif /* MACH_ASSERT */ | |
1984 | ||
1985 | #if MACH_ASSERT | |
1986 | /* | |
1987 | * Verify pages in the free list.. | |
1988 | */ | |
1989 | npages = 0; | |
1990 | for (m = vm_page_queue_free; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) | |
1991 | ++npages; | |
1992 | if (npages != vm_page_free_count) | |
1993 | panic("vm_sort_free_list: prelim: npages %d free_count %d", | |
1994 | npages, vm_page_free_count); | |
1995 | old_free_count = vm_page_free_count; | |
1996 | #endif /* MACH_ASSERT */ | |
1997 | ||
1998 | sort_list = sort_list_end = vm_page_queue_free; | |
1999 | m = NEXT_PAGE(vm_page_queue_free); | |
2000 | SET_NEXT_PAGE(vm_page_queue_free, VM_PAGE_NULL); | |
2001 | cpm_counter(vpfls_pages_handled = 0); | |
2002 | while (m != VM_PAGE_NULL) { | |
2003 | cpm_counter(++vpfls_pages_handled); | |
2004 | next_m = NEXT_PAGE(m); | |
55e303ae | 2005 | if (m->phys_page < sort_list->phys_page) { |
1c79356b A |
2006 | cpm_counter(++vpfls_head_insertions); |
2007 | SET_NEXT_PAGE(m, sort_list); | |
2008 | sort_list = m; | |
55e303ae | 2009 | } else if (m->phys_page > sort_list_end->phys_page) { |
1c79356b A |
2010 | cpm_counter(++vpfls_tail_insertions); |
2011 | SET_NEXT_PAGE(sort_list_end, m); | |
2012 | SET_NEXT_PAGE(m, VM_PAGE_NULL); | |
2013 | sort_list_end = m; | |
2014 | } else { | |
2015 | cpm_counter(++vpfls_general_insertions); | |
2016 | /* general sorted list insertion */ | |
2017 | prev = &sort_list; | |
2018 | for (m1=sort_list; m1!=VM_PAGE_NULL; m1=NEXT_PAGE(m1)) { | |
55e303ae | 2019 | if (m1->phys_page > m->phys_page) { |
1c79356b A |
2020 | if (*prev != m1) |
2021 | panic("vm_sort_free_list: ugh"); | |
2022 | SET_NEXT_PAGE(m, *prev); | |
2023 | *prev = m; | |
2024 | break; | |
2025 | } | |
2026 | prev = (vm_page_t *) &m1->pageq.next; | |
2027 | } | |
2028 | } | |
2029 | m = next_m; | |
2030 | } | |
2031 | ||
2032 | #if MACH_ASSERT | |
2033 | /* | |
2034 | * Verify that pages are sorted into ascending order. | |
2035 | */ | |
2036 | for (m = sort_list, npages = 0; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
2037 | if (m != sort_list && | |
55e303ae | 2038 | m->phys_page <= addr) { |
1c79356b A |
2039 | printf("m 0x%x addr 0x%x\n", m, addr); |
2040 | panic("vm_sort_free_list"); | |
2041 | } | |
55e303ae | 2042 | addr = m->phys_page; |
1c79356b A |
2043 | ++npages; |
2044 | } | |
2045 | if (old_free_count != vm_page_free_count) | |
2046 | panic("vm_sort_free_list: old_free %d free_count %d", | |
2047 | old_free_count, vm_page_free_count); | |
2048 | if (npages != vm_page_free_count) | |
2049 | panic("vm_sort_free_list: npages %d free_count %d", | |
2050 | npages, vm_page_free_count); | |
2051 | #endif /* MACH_ASSERT */ | |
2052 | ||
2053 | vm_page_queue_free = sort_list; | |
2054 | } | |
2055 | ||
2056 | ||
2057 | #if MACH_ASSERT | |
2058 | /* | |
2059 | * Check that the list of pages is ordered by | |
2060 | * ascending physical address and has no holes. | |
2061 | */ | |
2062 | int | |
2063 | vm_page_verify_contiguous( | |
2064 | vm_page_t pages, | |
2065 | unsigned int npages) | |
2066 | { | |
2067 | register vm_page_t m; | |
2068 | unsigned int page_count; | |
2069 | vm_offset_t prev_addr; | |
2070 | ||
55e303ae | 2071 | prev_addr = pages->phys_page; |
1c79356b A |
2072 | page_count = 1; |
2073 | for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
55e303ae | 2074 | if (m->phys_page != prev_addr + 1) { |
1c79356b | 2075 | printf("m 0x%x prev_addr 0x%x, current addr 0x%x\n", |
55e303ae | 2076 | m, prev_addr, m->phys_page); |
1c79356b A |
2077 | printf("pages 0x%x page_count %d\n", pages, page_count); |
2078 | panic("vm_page_verify_contiguous: not contiguous!"); | |
2079 | } | |
55e303ae | 2080 | prev_addr = m->phys_page; |
1c79356b A |
2081 | ++page_count; |
2082 | } | |
2083 | if (page_count != npages) { | |
2084 | printf("pages 0x%x actual count 0x%x but requested 0x%x\n", | |
2085 | pages, page_count, npages); | |
2086 | panic("vm_page_verify_contiguous: count error"); | |
2087 | } | |
2088 | return 1; | |
2089 | } | |
2090 | #endif /* MACH_ASSERT */ | |
2091 | ||
2092 | ||
2093 | /* | |
2094 | * Find a region large enough to contain at least npages | |
2095 | * of contiguous physical memory. | |
2096 | * | |
2097 | * Requirements: | |
2098 | * - Called while holding vm_page_queue_free_lock. | |
2099 | * - Doesn't respect vm_page_free_reserved; caller | |
2100 | * must not ask for more pages than are legal to grab. | |
2101 | * | |
2102 | * Returns a pointer to a list of gobbled pages or VM_PAGE_NULL. | |
2103 | * | |
2104 | */ | |
2105 | static vm_page_t | |
2106 | vm_page_find_contiguous( | |
2107 | int npages) | |
2108 | { | |
2109 | vm_page_t m, *contig_prev, *prev_ptr; | |
55e303ae | 2110 | ppnum_t prev_page; |
1c79356b A |
2111 | unsigned int contig_npages; |
2112 | vm_page_t list; | |
2113 | ||
2114 | if (npages < 1) | |
2115 | return VM_PAGE_NULL; | |
2116 | ||
55e303ae | 2117 | prev_page = vm_page_queue_free->phys_page - 2; |
1c79356b A |
2118 | prev_ptr = &vm_page_queue_free; |
2119 | for (m = vm_page_queue_free; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
2120 | ||
55e303ae | 2121 | if (m->phys_page != prev_page + 1) { |
1c79356b A |
2122 | /* |
2123 | * Whoops! Pages aren't contiguous. Start over. | |
2124 | */ | |
2125 | contig_npages = 0; | |
2126 | contig_prev = prev_ptr; | |
2127 | } | |
2128 | ||
2129 | if (++contig_npages == npages) { | |
2130 | /* | |
2131 | * Chop these pages out of the free list. | |
2132 | * Mark them all as gobbled. | |
2133 | */ | |
2134 | list = *contig_prev; | |
2135 | *contig_prev = NEXT_PAGE(m); | |
2136 | SET_NEXT_PAGE(m, VM_PAGE_NULL); | |
2137 | for (m = list; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
2138 | assert(m->free); | |
2139 | assert(!m->wanted); | |
2140 | m->free = FALSE; | |
765c9de3 | 2141 | m->no_isync = TRUE; |
1c79356b A |
2142 | m->gobbled = TRUE; |
2143 | } | |
2144 | vm_page_free_count -= npages; | |
2145 | if (vm_page_free_count < vm_page_free_count_minimum) | |
2146 | vm_page_free_count_minimum = vm_page_free_count; | |
2147 | vm_page_wire_count += npages; | |
2148 | vm_page_gobble_count += npages; | |
2149 | cpm_counter(++vpfc_satisfied); | |
2150 | assert(vm_page_verify_contiguous(list, contig_npages)); | |
2151 | return list; | |
2152 | } | |
2153 | ||
2154 | assert(contig_npages < npages); | |
2155 | prev_ptr = (vm_page_t *) &m->pageq.next; | |
55e303ae | 2156 | prev_page = m->phys_page; |
1c79356b A |
2157 | } |
2158 | cpm_counter(++vpfc_failed); | |
2159 | return VM_PAGE_NULL; | |
2160 | } | |
2161 | ||
2162 | /* | |
2163 | * Allocate a list of contiguous, wired pages. | |
2164 | */ | |
2165 | kern_return_t | |
2166 | cpm_allocate( | |
2167 | vm_size_t size, | |
2168 | vm_page_t *list, | |
2169 | boolean_t wire) | |
2170 | { | |
2171 | register vm_page_t m; | |
2172 | vm_page_t *first_contig; | |
2173 | vm_page_t free_list, pages; | |
2174 | unsigned int npages, n1pages; | |
2175 | int vm_pages_available; | |
2176 | ||
2177 | if (size % page_size != 0) | |
2178 | return KERN_INVALID_ARGUMENT; | |
2179 | ||
2180 | vm_page_lock_queues(); | |
2181 | mutex_lock(&vm_page_queue_free_lock); | |
2182 | ||
2183 | /* | |
2184 | * Should also take active and inactive pages | |
2185 | * into account... One day... | |
2186 | */ | |
2187 | vm_pages_available = vm_page_free_count - vm_page_free_reserved; | |
2188 | ||
2189 | if (size > vm_pages_available * page_size) { | |
2190 | mutex_unlock(&vm_page_queue_free_lock); | |
2191 | return KERN_RESOURCE_SHORTAGE; | |
2192 | } | |
2193 | ||
2194 | vm_page_free_list_sort(); | |
2195 | ||
2196 | npages = size / page_size; | |
2197 | ||
2198 | /* | |
2199 | * Obtain a pointer to a subset of the free | |
2200 | * list large enough to satisfy the request; | |
2201 | * the region will be physically contiguous. | |
2202 | */ | |
2203 | pages = vm_page_find_contiguous(npages); | |
2204 | if (pages == VM_PAGE_NULL) { | |
2205 | mutex_unlock(&vm_page_queue_free_lock); | |
2206 | vm_page_unlock_queues(); | |
2207 | return KERN_NO_SPACE; | |
2208 | } | |
2209 | ||
2210 | mutex_unlock(&vm_page_queue_free_lock); | |
2211 | ||
2212 | /* | |
2213 | * Walk the returned list, wiring the pages. | |
2214 | */ | |
2215 | if (wire == TRUE) | |
2216 | for (m = pages; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
2217 | /* | |
2218 | * Essentially inlined vm_page_wire. | |
2219 | */ | |
2220 | assert(!m->active); | |
2221 | assert(!m->inactive); | |
2222 | assert(!m->private); | |
2223 | assert(!m->fictitious); | |
2224 | assert(m->wire_count == 0); | |
2225 | assert(m->gobbled); | |
2226 | m->gobbled = FALSE; | |
2227 | m->wire_count++; | |
2228 | --vm_page_gobble_count; | |
2229 | } | |
2230 | vm_page_unlock_queues(); | |
2231 | ||
2232 | /* | |
2233 | * The CPM pages should now be available and | |
2234 | * ordered by ascending physical address. | |
2235 | */ | |
2236 | assert(vm_page_verify_contiguous(pages, npages)); | |
2237 | ||
2238 | *list = pages; | |
2239 | return KERN_SUCCESS; | |
2240 | } | |
2241 | ||
2242 | ||
2243 | #include <mach_vm_debug.h> | |
2244 | #if MACH_VM_DEBUG | |
2245 | ||
2246 | #include <mach_debug/hash_info.h> | |
2247 | #include <vm/vm_debug.h> | |
2248 | ||
2249 | /* | |
2250 | * Routine: vm_page_info | |
2251 | * Purpose: | |
2252 | * Return information about the global VP table. | |
2253 | * Fills the buffer with as much information as possible | |
2254 | * and returns the desired size of the buffer. | |
2255 | * Conditions: | |
2256 | * Nothing locked. The caller should provide | |
2257 | * possibly-pageable memory. | |
2258 | */ | |
2259 | ||
2260 | unsigned int | |
2261 | vm_page_info( | |
2262 | hash_info_bucket_t *info, | |
2263 | unsigned int count) | |
2264 | { | |
2265 | int i; | |
2266 | ||
2267 | if (vm_page_bucket_count < count) | |
2268 | count = vm_page_bucket_count; | |
2269 | ||
2270 | for (i = 0; i < count; i++) { | |
2271 | vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
2272 | unsigned int bucket_count = 0; | |
2273 | vm_page_t m; | |
2274 | ||
2275 | simple_lock(&vm_page_bucket_lock); | |
2276 | for (m = bucket->pages; m != VM_PAGE_NULL; m = m->next) | |
2277 | bucket_count++; | |
2278 | simple_unlock(&vm_page_bucket_lock); | |
2279 | ||
2280 | /* don't touch pageable memory while holding locks */ | |
2281 | info[i].hib_count = bucket_count; | |
2282 | } | |
2283 | ||
2284 | return vm_page_bucket_count; | |
2285 | } | |
2286 | #endif /* MACH_VM_DEBUG */ | |
2287 | ||
2288 | #include <mach_kdb.h> | |
2289 | #if MACH_KDB | |
2290 | ||
2291 | #include <ddb/db_output.h> | |
2292 | #include <vm/vm_print.h> | |
2293 | #define printf kdbprintf | |
2294 | ||
2295 | /* | |
2296 | * Routine: vm_page_print [exported] | |
2297 | */ | |
2298 | void | |
2299 | vm_page_print( | |
2300 | vm_page_t p) | |
2301 | { | |
2302 | extern db_indent; | |
2303 | ||
2304 | iprintf("page 0x%x\n", p); | |
2305 | ||
2306 | db_indent += 2; | |
2307 | ||
2308 | iprintf("object=0x%x", p->object); | |
2309 | printf(", offset=0x%x", p->offset); | |
2310 | printf(", wire_count=%d", p->wire_count); | |
1c79356b A |
2311 | |
2312 | iprintf("%sinactive, %sactive, %sgobbled, %slaundry, %sfree, %sref, %sdiscard\n", | |
2313 | (p->inactive ? "" : "!"), | |
2314 | (p->active ? "" : "!"), | |
2315 | (p->gobbled ? "" : "!"), | |
2316 | (p->laundry ? "" : "!"), | |
2317 | (p->free ? "" : "!"), | |
2318 | (p->reference ? "" : "!"), | |
2319 | (p->discard_request ? "" : "!")); | |
2320 | iprintf("%sbusy, %swanted, %stabled, %sfictitious, %sprivate, %sprecious\n", | |
2321 | (p->busy ? "" : "!"), | |
2322 | (p->wanted ? "" : "!"), | |
2323 | (p->tabled ? "" : "!"), | |
2324 | (p->fictitious ? "" : "!"), | |
2325 | (p->private ? "" : "!"), | |
2326 | (p->precious ? "" : "!")); | |
2327 | iprintf("%sabsent, %serror, %sdirty, %scleaning, %spageout, %sclustered\n", | |
2328 | (p->absent ? "" : "!"), | |
2329 | (p->error ? "" : "!"), | |
2330 | (p->dirty ? "" : "!"), | |
2331 | (p->cleaning ? "" : "!"), | |
2332 | (p->pageout ? "" : "!"), | |
2333 | (p->clustered ? "" : "!")); | |
0b4e3aa0 | 2334 | iprintf("%slock_supplied, %soverwriting, %srestart, %sunusual\n", |
1c79356b A |
2335 | (p->lock_supplied ? "" : "!"), |
2336 | (p->overwriting ? "" : "!"), | |
2337 | (p->restart ? "" : "!"), | |
0b4e3aa0 | 2338 | (p->unusual ? "" : "!")); |
1c79356b | 2339 | |
55e303ae | 2340 | iprintf("phys_page=0x%x", p->phys_page); |
1c79356b A |
2341 | printf(", page_error=0x%x", p->page_error); |
2342 | printf(", page_lock=0x%x", p->page_lock); | |
2343 | printf(", unlock_request=%d\n", p->unlock_request); | |
2344 | ||
2345 | db_indent -= 2; | |
2346 | } | |
2347 | #endif /* MACH_KDB */ |