]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
de355530 | 2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. |
1c79356b A |
3 | * |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
de355530 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
1c79356b | 11 | * |
de355530 A |
12 | * This Original Code and all software distributed under the License are |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
de355530 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
1c79356b A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: vm/vm_page.c | |
54 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
55 | * | |
56 | * Resident memory management module. | |
57 | */ | |
58 | ||
9bccf70c | 59 | #include <mach/clock_types.h> |
1c79356b A |
60 | #include <mach/vm_prot.h> |
61 | #include <mach/vm_statistics.h> | |
62 | #include <kern/counters.h> | |
63 | #include <kern/sched_prim.h> | |
64 | #include <kern/task.h> | |
65 | #include <kern/thread.h> | |
66 | #include <kern/zalloc.h> | |
67 | #include <kern/xpr.h> | |
68 | #include <vm/pmap.h> | |
69 | #include <vm/vm_init.h> | |
70 | #include <vm/vm_map.h> | |
71 | #include <vm/vm_page.h> | |
72 | #include <vm/vm_pageout.h> | |
73 | #include <vm/vm_kern.h> /* kernel_memory_allocate() */ | |
74 | #include <kern/misc_protos.h> | |
75 | #include <zone_debug.h> | |
76 | #include <vm/cpm.h> | |
77 | ||
0b4e3aa0 A |
78 | /* Variables used to indicate the relative age of pages in the |
79 | * inactive list | |
80 | */ | |
81 | ||
82 | int vm_page_ticket_roll = 0; | |
83 | int vm_page_ticket = 0; | |
1c79356b A |
84 | /* |
85 | * Associated with page of user-allocatable memory is a | |
86 | * page structure. | |
87 | */ | |
88 | ||
89 | /* | |
90 | * These variables record the values returned by vm_page_bootstrap, | |
91 | * for debugging purposes. The implementation of pmap_steal_memory | |
92 | * and pmap_startup here also uses them internally. | |
93 | */ | |
94 | ||
95 | vm_offset_t virtual_space_start; | |
96 | vm_offset_t virtual_space_end; | |
97 | int vm_page_pages; | |
98 | ||
99 | /* | |
100 | * The vm_page_lookup() routine, which provides for fast | |
101 | * (virtual memory object, offset) to page lookup, employs | |
102 | * the following hash table. The vm_page_{insert,remove} | |
103 | * routines install and remove associations in the table. | |
104 | * [This table is often called the virtual-to-physical, | |
105 | * or VP, table.] | |
106 | */ | |
107 | typedef struct { | |
108 | vm_page_t pages; | |
109 | #if MACH_PAGE_HASH_STATS | |
110 | int cur_count; /* current count */ | |
111 | int hi_count; /* high water mark */ | |
112 | #endif /* MACH_PAGE_HASH_STATS */ | |
113 | } vm_page_bucket_t; | |
114 | ||
115 | vm_page_bucket_t *vm_page_buckets; /* Array of buckets */ | |
116 | unsigned int vm_page_bucket_count = 0; /* How big is array? */ | |
117 | unsigned int vm_page_hash_mask; /* Mask for hash function */ | |
118 | unsigned int vm_page_hash_shift; /* Shift for hash function */ | |
119 | decl_simple_lock_data(,vm_page_bucket_lock) | |
120 | ||
121 | #if MACH_PAGE_HASH_STATS | |
122 | /* This routine is only for debug. It is intended to be called by | |
123 | * hand by a developer using a kernel debugger. This routine prints | |
124 | * out vm_page_hash table statistics to the kernel debug console. | |
125 | */ | |
126 | void | |
127 | hash_debug(void) | |
128 | { | |
129 | int i; | |
130 | int numbuckets = 0; | |
131 | int highsum = 0; | |
132 | int maxdepth = 0; | |
133 | ||
134 | for (i = 0; i < vm_page_bucket_count; i++) { | |
135 | if (vm_page_buckets[i].hi_count) { | |
136 | numbuckets++; | |
137 | highsum += vm_page_buckets[i].hi_count; | |
138 | if (vm_page_buckets[i].hi_count > maxdepth) | |
139 | maxdepth = vm_page_buckets[i].hi_count; | |
140 | } | |
141 | } | |
142 | printf("Total number of buckets: %d\n", vm_page_bucket_count); | |
143 | printf("Number used buckets: %d = %d%%\n", | |
144 | numbuckets, 100*numbuckets/vm_page_bucket_count); | |
145 | printf("Number unused buckets: %d = %d%%\n", | |
146 | vm_page_bucket_count - numbuckets, | |
147 | 100*(vm_page_bucket_count-numbuckets)/vm_page_bucket_count); | |
148 | printf("Sum of bucket max depth: %d\n", highsum); | |
149 | printf("Average bucket depth: %d.%2d\n", | |
150 | highsum/vm_page_bucket_count, | |
151 | highsum%vm_page_bucket_count); | |
152 | printf("Maximum bucket depth: %d\n", maxdepth); | |
153 | } | |
154 | #endif /* MACH_PAGE_HASH_STATS */ | |
155 | ||
156 | /* | |
157 | * The virtual page size is currently implemented as a runtime | |
158 | * variable, but is constant once initialized using vm_set_page_size. | |
159 | * This initialization must be done in the machine-dependent | |
160 | * bootstrap sequence, before calling other machine-independent | |
161 | * initializations. | |
162 | * | |
163 | * All references to the virtual page size outside this | |
164 | * module must use the PAGE_SIZE, PAGE_MASK and PAGE_SHIFT | |
165 | * constants. | |
166 | */ | |
167 | #ifndef PAGE_SIZE_FIXED | |
168 | vm_size_t page_size = 4096; | |
169 | vm_size_t page_mask = 4095; | |
170 | int page_shift = 12; | |
171 | #endif /* PAGE_SIZE_FIXED */ | |
172 | ||
173 | /* | |
174 | * Resident page structures are initialized from | |
175 | * a template (see vm_page_alloc). | |
176 | * | |
177 | * When adding a new field to the virtual memory | |
178 | * object structure, be sure to add initialization | |
179 | * (see vm_page_bootstrap). | |
180 | */ | |
181 | struct vm_page vm_page_template; | |
182 | ||
183 | /* | |
184 | * Resident pages that represent real memory | |
185 | * are allocated from a free list. | |
186 | */ | |
187 | vm_page_t vm_page_queue_free; | |
188 | vm_page_t vm_page_queue_fictitious; | |
189 | decl_mutex_data(,vm_page_queue_free_lock) | |
190 | unsigned int vm_page_free_wanted; | |
191 | int vm_page_free_count; | |
192 | int vm_page_fictitious_count; | |
193 | ||
194 | unsigned int vm_page_free_count_minimum; /* debugging */ | |
195 | ||
196 | /* | |
197 | * Occasionally, the virtual memory system uses | |
198 | * resident page structures that do not refer to | |
199 | * real pages, for example to leave a page with | |
200 | * important state information in the VP table. | |
201 | * | |
202 | * These page structures are allocated the way | |
203 | * most other kernel structures are. | |
204 | */ | |
205 | zone_t vm_page_zone; | |
206 | decl_mutex_data(,vm_page_alloc_lock) | |
9bccf70c A |
207 | unsigned int io_throttle_zero_fill; |
208 | decl_mutex_data(,vm_page_zero_fill_lock) | |
1c79356b A |
209 | |
210 | /* | |
211 | * Fictitious pages don't have a physical address, | |
de355530 | 212 | * but we must initialize phys_addr to something. |
1c79356b A |
213 | * For debugging, this should be a strange value |
214 | * that the pmap module can recognize in assertions. | |
215 | */ | |
216 | vm_offset_t vm_page_fictitious_addr = (vm_offset_t) -1; | |
217 | ||
218 | /* | |
219 | * Resident page structures are also chained on | |
220 | * queues that are used by the page replacement | |
221 | * system (pageout daemon). These queues are | |
222 | * defined here, but are shared by the pageout | |
9bccf70c A |
223 | * module. The inactive queue is broken into |
224 | * inactive and zf for convenience as the | |
225 | * pageout daemon often assignes a higher | |
226 | * affinity to zf pages | |
1c79356b A |
227 | */ |
228 | queue_head_t vm_page_queue_active; | |
229 | queue_head_t vm_page_queue_inactive; | |
9bccf70c | 230 | queue_head_t vm_page_queue_zf; |
1c79356b A |
231 | decl_mutex_data(,vm_page_queue_lock) |
232 | int vm_page_active_count; | |
233 | int vm_page_inactive_count; | |
234 | int vm_page_wire_count; | |
235 | int vm_page_gobble_count = 0; | |
236 | int vm_page_wire_count_warning = 0; | |
237 | int vm_page_gobble_count_warning = 0; | |
238 | ||
239 | /* the following fields are protected by the vm_page_queue_lock */ | |
240 | queue_head_t vm_page_queue_limbo; | |
241 | int vm_page_limbo_count = 0; /* total pages in limbo */ | |
242 | int vm_page_limbo_real_count = 0; /* real pages in limbo */ | |
243 | int vm_page_pin_count = 0; /* number of pinned pages */ | |
244 | ||
245 | decl_simple_lock_data(,vm_page_preppin_lock) | |
246 | ||
247 | /* | |
248 | * Several page replacement parameters are also | |
249 | * shared with this module, so that page allocation | |
250 | * (done here in vm_page_alloc) can trigger the | |
251 | * pageout daemon. | |
252 | */ | |
253 | int vm_page_free_target = 0; | |
254 | int vm_page_free_min = 0; | |
255 | int vm_page_inactive_target = 0; | |
256 | int vm_page_free_reserved = 0; | |
257 | int vm_page_laundry_count = 0; | |
258 | ||
259 | /* | |
260 | * The VM system has a couple of heuristics for deciding | |
261 | * that pages are "uninteresting" and should be placed | |
262 | * on the inactive queue as likely candidates for replacement. | |
263 | * These variables let the heuristics be controlled at run-time | |
264 | * to make experimentation easier. | |
265 | */ | |
266 | ||
267 | boolean_t vm_page_deactivate_hint = TRUE; | |
268 | ||
269 | /* | |
270 | * vm_set_page_size: | |
271 | * | |
272 | * Sets the page size, perhaps based upon the memory | |
273 | * size. Must be called before any use of page-size | |
274 | * dependent functions. | |
275 | * | |
276 | * Sets page_shift and page_mask from page_size. | |
277 | */ | |
278 | void | |
279 | vm_set_page_size(void) | |
280 | { | |
281 | #ifndef PAGE_SIZE_FIXED | |
282 | page_mask = page_size - 1; | |
283 | ||
284 | if ((page_mask & page_size) != 0) | |
285 | panic("vm_set_page_size: page size not a power of two"); | |
286 | ||
287 | for (page_shift = 0; ; page_shift++) | |
288 | if ((1 << page_shift) == page_size) | |
289 | break; | |
290 | #endif /* PAGE_SIZE_FIXED */ | |
291 | } | |
292 | ||
293 | /* | |
294 | * vm_page_bootstrap: | |
295 | * | |
296 | * Initializes the resident memory module. | |
297 | * | |
298 | * Allocates memory for the page cells, and | |
299 | * for the object/offset-to-page hash table headers. | |
300 | * Each page cell is initialized and placed on the free list. | |
301 | * Returns the range of available kernel virtual memory. | |
302 | */ | |
303 | ||
304 | void | |
305 | vm_page_bootstrap( | |
306 | vm_offset_t *startp, | |
307 | vm_offset_t *endp) | |
308 | { | |
309 | register vm_page_t m; | |
310 | int i; | |
311 | unsigned int log1; | |
312 | unsigned int log2; | |
313 | unsigned int size; | |
314 | ||
315 | /* | |
316 | * Initialize the vm_page template. | |
317 | */ | |
318 | ||
319 | m = &vm_page_template; | |
320 | m->object = VM_OBJECT_NULL; /* reset later */ | |
321 | m->offset = 0; /* reset later */ | |
322 | m->wire_count = 0; | |
323 | ||
324 | m->inactive = FALSE; | |
325 | m->active = FALSE; | |
326 | m->laundry = FALSE; | |
327 | m->free = FALSE; | |
765c9de3 | 328 | m->no_isync = TRUE; |
1c79356b A |
329 | m->reference = FALSE; |
330 | m->pageout = FALSE; | |
0b4e3aa0 | 331 | m->dump_cleaning = FALSE; |
1c79356b A |
332 | m->list_req_pending = FALSE; |
333 | ||
334 | m->busy = TRUE; | |
335 | m->wanted = FALSE; | |
336 | m->tabled = FALSE; | |
337 | m->fictitious = FALSE; | |
338 | m->private = FALSE; | |
339 | m->absent = FALSE; | |
340 | m->error = FALSE; | |
341 | m->dirty = FALSE; | |
342 | m->cleaning = FALSE; | |
343 | m->precious = FALSE; | |
344 | m->clustered = FALSE; | |
345 | m->lock_supplied = FALSE; | |
346 | m->unusual = FALSE; | |
347 | m->restart = FALSE; | |
9bccf70c | 348 | m->zero_fill = FALSE; |
1c79356b | 349 | |
de355530 | 350 | m->phys_addr = 0; /* reset later */ |
1c79356b A |
351 | |
352 | m->page_lock = VM_PROT_NONE; | |
353 | m->unlock_request = VM_PROT_NONE; | |
354 | m->page_error = KERN_SUCCESS; | |
355 | ||
356 | /* | |
357 | * Initialize the page queues. | |
358 | */ | |
359 | ||
360 | mutex_init(&vm_page_queue_free_lock, ETAP_VM_PAGEQ_FREE); | |
361 | mutex_init(&vm_page_queue_lock, ETAP_VM_PAGEQ); | |
362 | simple_lock_init(&vm_page_preppin_lock, ETAP_VM_PREPPIN); | |
363 | ||
364 | vm_page_queue_free = VM_PAGE_NULL; | |
365 | vm_page_queue_fictitious = VM_PAGE_NULL; | |
366 | queue_init(&vm_page_queue_active); | |
367 | queue_init(&vm_page_queue_inactive); | |
9bccf70c | 368 | queue_init(&vm_page_queue_zf); |
1c79356b A |
369 | queue_init(&vm_page_queue_limbo); |
370 | ||
371 | vm_page_free_wanted = 0; | |
372 | ||
373 | /* | |
374 | * Steal memory for the map and zone subsystems. | |
375 | */ | |
376 | ||
377 | vm_map_steal_memory(); | |
378 | zone_steal_memory(); | |
379 | ||
380 | /* | |
381 | * Allocate (and initialize) the virtual-to-physical | |
382 | * table hash buckets. | |
383 | * | |
384 | * The number of buckets should be a power of two to | |
385 | * get a good hash function. The following computation | |
386 | * chooses the first power of two that is greater | |
387 | * than the number of physical pages in the system. | |
388 | */ | |
389 | ||
390 | simple_lock_init(&vm_page_bucket_lock, ETAP_VM_BUCKET); | |
391 | ||
392 | if (vm_page_bucket_count == 0) { | |
393 | unsigned int npages = pmap_free_pages(); | |
394 | ||
395 | vm_page_bucket_count = 1; | |
396 | while (vm_page_bucket_count < npages) | |
397 | vm_page_bucket_count <<= 1; | |
398 | } | |
399 | ||
400 | vm_page_hash_mask = vm_page_bucket_count - 1; | |
401 | ||
402 | /* | |
403 | * Calculate object shift value for hashing algorithm: | |
404 | * O = log2(sizeof(struct vm_object)) | |
405 | * B = log2(vm_page_bucket_count) | |
406 | * hash shifts the object left by | |
407 | * B/2 - O | |
408 | */ | |
409 | size = vm_page_bucket_count; | |
410 | for (log1 = 0; size > 1; log1++) | |
411 | size /= 2; | |
412 | size = sizeof(struct vm_object); | |
413 | for (log2 = 0; size > 1; log2++) | |
414 | size /= 2; | |
415 | vm_page_hash_shift = log1/2 - log2 + 1; | |
416 | ||
417 | if (vm_page_hash_mask & vm_page_bucket_count) | |
418 | printf("vm_page_bootstrap: WARNING -- strange page hash\n"); | |
419 | ||
420 | vm_page_buckets = (vm_page_bucket_t *) | |
421 | pmap_steal_memory(vm_page_bucket_count * | |
422 | sizeof(vm_page_bucket_t)); | |
423 | ||
424 | for (i = 0; i < vm_page_bucket_count; i++) { | |
425 | register vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
426 | ||
427 | bucket->pages = VM_PAGE_NULL; | |
428 | #if MACH_PAGE_HASH_STATS | |
429 | bucket->cur_count = 0; | |
430 | bucket->hi_count = 0; | |
431 | #endif /* MACH_PAGE_HASH_STATS */ | |
432 | } | |
433 | ||
434 | /* | |
435 | * Machine-dependent code allocates the resident page table. | |
436 | * It uses vm_page_init to initialize the page frames. | |
437 | * The code also returns to us the virtual space available | |
438 | * to the kernel. We don't trust the pmap module | |
439 | * to get the alignment right. | |
440 | */ | |
441 | ||
442 | pmap_startup(&virtual_space_start, &virtual_space_end); | |
de355530 A |
443 | virtual_space_start = round_page(virtual_space_start); |
444 | virtual_space_end = trunc_page(virtual_space_end); | |
1c79356b A |
445 | |
446 | *startp = virtual_space_start; | |
447 | *endp = virtual_space_end; | |
448 | ||
449 | /* | |
450 | * Compute the initial "wire" count. | |
451 | * Up until now, the pages which have been set aside are not under | |
452 | * the VM system's control, so although they aren't explicitly | |
453 | * wired, they nonetheless can't be moved. At this moment, | |
454 | * all VM managed pages are "free", courtesy of pmap_startup. | |
455 | */ | |
de355530 | 456 | vm_page_wire_count = atop(mem_size) - vm_page_free_count; /* initial value */ |
1c79356b A |
457 | |
458 | printf("vm_page_bootstrap: %d free pages\n", vm_page_free_count); | |
459 | vm_page_free_count_minimum = vm_page_free_count; | |
460 | } | |
461 | ||
462 | #ifndef MACHINE_PAGES | |
463 | /* | |
464 | * We implement pmap_steal_memory and pmap_startup with the help | |
465 | * of two simpler functions, pmap_virtual_space and pmap_next_page. | |
466 | */ | |
467 | ||
468 | vm_offset_t | |
469 | pmap_steal_memory( | |
470 | vm_size_t size) | |
471 | { | |
de355530 | 472 | vm_offset_t addr, vaddr, paddr; |
1c79356b A |
473 | |
474 | /* | |
475 | * We round the size to a round multiple. | |
476 | */ | |
477 | ||
478 | size = (size + sizeof (void *) - 1) &~ (sizeof (void *) - 1); | |
479 | ||
480 | /* | |
481 | * If this is the first call to pmap_steal_memory, | |
482 | * we have to initialize ourself. | |
483 | */ | |
484 | ||
485 | if (virtual_space_start == virtual_space_end) { | |
486 | pmap_virtual_space(&virtual_space_start, &virtual_space_end); | |
487 | ||
488 | /* | |
489 | * The initial values must be aligned properly, and | |
490 | * we don't trust the pmap module to do it right. | |
491 | */ | |
492 | ||
de355530 A |
493 | virtual_space_start = round_page(virtual_space_start); |
494 | virtual_space_end = trunc_page(virtual_space_end); | |
1c79356b A |
495 | } |
496 | ||
497 | /* | |
498 | * Allocate virtual memory for this request. | |
499 | */ | |
500 | ||
501 | addr = virtual_space_start; | |
502 | virtual_space_start += size; | |
503 | ||
504 | kprintf("pmap_steal_memory: %08X - %08X; size=%08X\n", addr, virtual_space_start, size); /* (TEST/DEBUG) */ | |
505 | ||
506 | /* | |
507 | * Allocate and map physical pages to back new virtual pages. | |
508 | */ | |
509 | ||
de355530 | 510 | for (vaddr = round_page(addr); |
1c79356b A |
511 | vaddr < addr + size; |
512 | vaddr += PAGE_SIZE) { | |
de355530 | 513 | if (!pmap_next_page(&paddr)) |
1c79356b A |
514 | panic("pmap_steal_memory"); |
515 | ||
516 | /* | |
517 | * XXX Logically, these mappings should be wired, | |
518 | * but some pmap modules barf if they are. | |
519 | */ | |
520 | ||
de355530 | 521 | pmap_enter(kernel_pmap, vaddr, paddr, |
9bccf70c A |
522 | VM_PROT_READ|VM_PROT_WRITE, |
523 | VM_WIMG_USE_DEFAULT, FALSE); | |
1c79356b A |
524 | /* |
525 | * Account for newly stolen memory | |
526 | */ | |
527 | vm_page_wire_count++; | |
528 | ||
529 | } | |
530 | ||
531 | return addr; | |
532 | } | |
533 | ||
534 | void | |
535 | pmap_startup( | |
536 | vm_offset_t *startp, | |
537 | vm_offset_t *endp) | |
538 | { | |
de355530 A |
539 | unsigned int i, npages, pages_initialized; |
540 | vm_page_t pages; | |
541 | vm_offset_t paddr; | |
1c79356b A |
542 | |
543 | /* | |
544 | * We calculate how many page frames we will have | |
545 | * and then allocate the page structures in one chunk. | |
546 | */ | |
547 | ||
de355530 A |
548 | npages = ((PAGE_SIZE * pmap_free_pages() + |
549 | (round_page(virtual_space_start) - virtual_space_start)) / | |
550 | (PAGE_SIZE + sizeof *pages)); | |
1c79356b A |
551 | |
552 | pages = (vm_page_t) pmap_steal_memory(npages * sizeof *pages); | |
553 | ||
554 | /* | |
555 | * Initialize the page frames. | |
556 | */ | |
557 | ||
558 | for (i = 0, pages_initialized = 0; i < npages; i++) { | |
de355530 | 559 | if (!pmap_next_page(&paddr)) |
1c79356b A |
560 | break; |
561 | ||
de355530 | 562 | vm_page_init(&pages[i], paddr); |
1c79356b A |
563 | vm_page_pages++; |
564 | pages_initialized++; | |
565 | } | |
566 | ||
567 | /* | |
568 | * Release pages in reverse order so that physical pages | |
569 | * initially get allocated in ascending addresses. This keeps | |
570 | * the devices (which must address physical memory) happy if | |
571 | * they require several consecutive pages. | |
572 | */ | |
573 | ||
574 | for (i = pages_initialized; i > 0; i--) { | |
575 | vm_page_release(&pages[i - 1]); | |
576 | } | |
577 | ||
578 | /* | |
579 | * We have to re-align virtual_space_start, | |
580 | * because pmap_steal_memory has been using it. | |
581 | */ | |
582 | ||
de355530 | 583 | virtual_space_start = round_page(virtual_space_start); |
1c79356b A |
584 | |
585 | *startp = virtual_space_start; | |
586 | *endp = virtual_space_end; | |
587 | } | |
588 | #endif /* MACHINE_PAGES */ | |
589 | ||
590 | /* | |
591 | * Routine: vm_page_module_init | |
592 | * Purpose: | |
593 | * Second initialization pass, to be done after | |
594 | * the basic VM system is ready. | |
595 | */ | |
596 | void | |
597 | vm_page_module_init(void) | |
598 | { | |
599 | vm_page_zone = zinit((vm_size_t) sizeof(struct vm_page), | |
600 | 0, PAGE_SIZE, "vm pages"); | |
601 | ||
602 | #if ZONE_DEBUG | |
603 | zone_debug_disable(vm_page_zone); | |
604 | #endif /* ZONE_DEBUG */ | |
605 | ||
606 | zone_change(vm_page_zone, Z_EXPAND, FALSE); | |
607 | zone_change(vm_page_zone, Z_EXHAUST, TRUE); | |
608 | zone_change(vm_page_zone, Z_FOREIGN, TRUE); | |
609 | ||
610 | /* | |
611 | * Adjust zone statistics to account for the real pages allocated | |
612 | * in vm_page_create(). [Q: is this really what we want?] | |
613 | */ | |
614 | vm_page_zone->count += vm_page_pages; | |
615 | vm_page_zone->cur_size += vm_page_pages * vm_page_zone->elem_size; | |
616 | ||
617 | mutex_init(&vm_page_alloc_lock, ETAP_VM_PAGE_ALLOC); | |
9bccf70c | 618 | mutex_init(&vm_page_zero_fill_lock, ETAP_VM_PAGE_ALLOC); |
1c79356b A |
619 | } |
620 | ||
621 | /* | |
622 | * Routine: vm_page_create | |
623 | * Purpose: | |
624 | * After the VM system is up, machine-dependent code | |
625 | * may stumble across more physical memory. For example, | |
626 | * memory that it was reserving for a frame buffer. | |
627 | * vm_page_create turns this memory into available pages. | |
628 | */ | |
629 | ||
630 | void | |
631 | vm_page_create( | |
de355530 A |
632 | vm_offset_t start, |
633 | vm_offset_t end) | |
1c79356b | 634 | { |
de355530 A |
635 | vm_offset_t paddr; |
636 | vm_page_t m; | |
1c79356b | 637 | |
de355530 A |
638 | for (paddr = round_page(start); |
639 | paddr < trunc_page(end); | |
640 | paddr += PAGE_SIZE) { | |
1c79356b A |
641 | while ((m = (vm_page_t) vm_page_grab_fictitious()) |
642 | == VM_PAGE_NULL) | |
643 | vm_page_more_fictitious(); | |
644 | ||
de355530 | 645 | vm_page_init(m, paddr); |
1c79356b A |
646 | vm_page_pages++; |
647 | vm_page_release(m); | |
648 | } | |
649 | } | |
650 | ||
651 | /* | |
652 | * vm_page_hash: | |
653 | * | |
654 | * Distributes the object/offset key pair among hash buckets. | |
655 | * | |
de355530 A |
656 | * NOTE: To get a good hash function, the bucket count should |
657 | * be a power of two. | |
1c79356b A |
658 | */ |
659 | #define vm_page_hash(object, offset) (\ | |
de355530 | 660 | ( ((natural_t)(vm_offset_t)object<<vm_page_hash_shift) + (natural_t)atop(offset))\ |
1c79356b A |
661 | & vm_page_hash_mask) |
662 | ||
663 | /* | |
664 | * vm_page_insert: [ internal use only ] | |
665 | * | |
666 | * Inserts the given mem entry into the object/object-page | |
667 | * table and object list. | |
668 | * | |
669 | * The object must be locked. | |
670 | */ | |
671 | ||
672 | void | |
673 | vm_page_insert( | |
674 | register vm_page_t mem, | |
675 | register vm_object_t object, | |
676 | register vm_object_offset_t offset) | |
677 | { | |
678 | register vm_page_bucket_t *bucket; | |
679 | ||
680 | XPR(XPR_VM_PAGE, | |
681 | "vm_page_insert, object 0x%X offset 0x%X page 0x%X\n", | |
682 | (integer_t)object, (integer_t)offset, (integer_t)mem, 0,0); | |
683 | ||
684 | VM_PAGE_CHECK(mem); | |
685 | ||
686 | if (mem->tabled) | |
687 | panic("vm_page_insert"); | |
688 | ||
689 | assert(!object->internal || offset < object->size); | |
690 | ||
691 | /* only insert "pageout" pages into "pageout" objects, | |
692 | * and normal pages into normal objects */ | |
693 | assert(object->pageout == mem->pageout); | |
694 | ||
695 | /* | |
696 | * Record the object/offset pair in this page | |
697 | */ | |
698 | ||
699 | mem->object = object; | |
700 | mem->offset = offset; | |
701 | ||
702 | /* | |
703 | * Insert it into the object_object/offset hash table | |
704 | */ | |
705 | ||
706 | bucket = &vm_page_buckets[vm_page_hash(object, offset)]; | |
707 | simple_lock(&vm_page_bucket_lock); | |
708 | mem->next = bucket->pages; | |
709 | bucket->pages = mem; | |
710 | #if MACH_PAGE_HASH_STATS | |
711 | if (++bucket->cur_count > bucket->hi_count) | |
712 | bucket->hi_count = bucket->cur_count; | |
713 | #endif /* MACH_PAGE_HASH_STATS */ | |
714 | simple_unlock(&vm_page_bucket_lock); | |
715 | ||
716 | /* | |
717 | * Now link into the object's list of backed pages. | |
718 | */ | |
719 | ||
720 | queue_enter(&object->memq, mem, vm_page_t, listq); | |
721 | mem->tabled = TRUE; | |
722 | ||
723 | /* | |
724 | * Show that the object has one more resident page. | |
725 | */ | |
726 | ||
727 | object->resident_page_count++; | |
728 | } | |
729 | ||
730 | /* | |
731 | * vm_page_replace: | |
732 | * | |
733 | * Exactly like vm_page_insert, except that we first | |
734 | * remove any existing page at the given offset in object. | |
735 | * | |
736 | * The object and page queues must be locked. | |
737 | */ | |
738 | ||
739 | void | |
740 | vm_page_replace( | |
741 | register vm_page_t mem, | |
742 | register vm_object_t object, | |
743 | register vm_object_offset_t offset) | |
744 | { | |
745 | register vm_page_bucket_t *bucket; | |
746 | ||
747 | VM_PAGE_CHECK(mem); | |
748 | ||
749 | if (mem->tabled) | |
750 | panic("vm_page_replace"); | |
751 | ||
752 | /* | |
753 | * Record the object/offset pair in this page | |
754 | */ | |
755 | ||
756 | mem->object = object; | |
757 | mem->offset = offset; | |
758 | ||
759 | /* | |
760 | * Insert it into the object_object/offset hash table, | |
761 | * replacing any page that might have been there. | |
762 | */ | |
763 | ||
764 | bucket = &vm_page_buckets[vm_page_hash(object, offset)]; | |
765 | simple_lock(&vm_page_bucket_lock); | |
766 | if (bucket->pages) { | |
767 | vm_page_t *mp = &bucket->pages; | |
768 | register vm_page_t m = *mp; | |
769 | do { | |
770 | if (m->object == object && m->offset == offset) { | |
771 | /* | |
772 | * Remove page from bucket and from object, | |
773 | * and return it to the free list. | |
774 | */ | |
775 | *mp = m->next; | |
776 | queue_remove(&object->memq, m, vm_page_t, | |
777 | listq); | |
778 | m->tabled = FALSE; | |
779 | object->resident_page_count--; | |
780 | ||
781 | /* | |
782 | * Return page to the free list. | |
783 | * Note the page is not tabled now, so this | |
784 | * won't self-deadlock on the bucket lock. | |
785 | */ | |
786 | ||
787 | vm_page_free(m); | |
788 | break; | |
789 | } | |
790 | mp = &m->next; | |
791 | } while (m = *mp); | |
792 | mem->next = bucket->pages; | |
793 | } else { | |
794 | mem->next = VM_PAGE_NULL; | |
795 | } | |
796 | bucket->pages = mem; | |
797 | simple_unlock(&vm_page_bucket_lock); | |
798 | ||
799 | /* | |
800 | * Now link into the object's list of backed pages. | |
801 | */ | |
802 | ||
803 | queue_enter(&object->memq, mem, vm_page_t, listq); | |
804 | mem->tabled = TRUE; | |
805 | ||
806 | /* | |
807 | * And show that the object has one more resident | |
808 | * page. | |
809 | */ | |
810 | ||
811 | object->resident_page_count++; | |
812 | } | |
813 | ||
814 | /* | |
815 | * vm_page_remove: [ internal use only ] | |
816 | * | |
817 | * Removes the given mem entry from the object/offset-page | |
818 | * table and the object page list. | |
819 | * | |
820 | * The object and page must be locked. | |
821 | */ | |
822 | ||
823 | void | |
824 | vm_page_remove( | |
825 | register vm_page_t mem) | |
826 | { | |
827 | register vm_page_bucket_t *bucket; | |
828 | register vm_page_t this; | |
829 | ||
830 | XPR(XPR_VM_PAGE, | |
831 | "vm_page_remove, object 0x%X offset 0x%X page 0x%X\n", | |
832 | (integer_t)mem->object, (integer_t)mem->offset, | |
833 | (integer_t)mem, 0,0); | |
834 | ||
835 | assert(mem->tabled); | |
836 | assert(!mem->cleaning); | |
837 | VM_PAGE_CHECK(mem); | |
838 | ||
839 | /* | |
840 | * Remove from the object_object/offset hash table | |
841 | */ | |
842 | ||
843 | bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)]; | |
844 | simple_lock(&vm_page_bucket_lock); | |
845 | if ((this = bucket->pages) == mem) { | |
846 | /* optimize for common case */ | |
847 | ||
848 | bucket->pages = mem->next; | |
849 | } else { | |
850 | register vm_page_t *prev; | |
851 | ||
852 | for (prev = &this->next; | |
853 | (this = *prev) != mem; | |
854 | prev = &this->next) | |
855 | continue; | |
856 | *prev = this->next; | |
857 | } | |
858 | #if MACH_PAGE_HASH_STATS | |
859 | bucket->cur_count--; | |
860 | #endif /* MACH_PAGE_HASH_STATS */ | |
861 | simple_unlock(&vm_page_bucket_lock); | |
862 | ||
863 | /* | |
864 | * Now remove from the object's list of backed pages. | |
865 | */ | |
866 | ||
867 | queue_remove(&mem->object->memq, mem, vm_page_t, listq); | |
868 | ||
869 | /* | |
870 | * And show that the object has one fewer resident | |
871 | * page. | |
872 | */ | |
873 | ||
874 | mem->object->resident_page_count--; | |
875 | ||
876 | mem->tabled = FALSE; | |
877 | mem->object = VM_OBJECT_NULL; | |
878 | mem->offset = 0; | |
879 | } | |
880 | ||
881 | /* | |
882 | * vm_page_lookup: | |
883 | * | |
884 | * Returns the page associated with the object/offset | |
885 | * pair specified; if none is found, VM_PAGE_NULL is returned. | |
886 | * | |
887 | * The object must be locked. No side effects. | |
888 | */ | |
889 | ||
890 | vm_page_t | |
891 | vm_page_lookup( | |
892 | register vm_object_t object, | |
893 | register vm_object_offset_t offset) | |
894 | { | |
895 | register vm_page_t mem; | |
896 | register vm_page_bucket_t *bucket; | |
897 | ||
898 | /* | |
899 | * Search the hash table for this object/offset pair | |
900 | */ | |
901 | ||
902 | bucket = &vm_page_buckets[vm_page_hash(object, offset)]; | |
903 | ||
904 | simple_lock(&vm_page_bucket_lock); | |
905 | for (mem = bucket->pages; mem != VM_PAGE_NULL; mem = mem->next) { | |
906 | VM_PAGE_CHECK(mem); | |
907 | if ((mem->object == object) && (mem->offset == offset)) | |
908 | break; | |
909 | } | |
910 | simple_unlock(&vm_page_bucket_lock); | |
911 | return(mem); | |
912 | } | |
913 | ||
914 | /* | |
915 | * vm_page_rename: | |
916 | * | |
917 | * Move the given memory entry from its | |
918 | * current object to the specified target object/offset. | |
919 | * | |
920 | * The object must be locked. | |
921 | */ | |
922 | void | |
923 | vm_page_rename( | |
924 | register vm_page_t mem, | |
925 | register vm_object_t new_object, | |
926 | vm_object_offset_t new_offset) | |
927 | { | |
928 | assert(mem->object != new_object); | |
929 | /* | |
930 | * Changes to mem->object require the page lock because | |
931 | * the pageout daemon uses that lock to get the object. | |
932 | */ | |
933 | ||
934 | XPR(XPR_VM_PAGE, | |
935 | "vm_page_rename, new object 0x%X, offset 0x%X page 0x%X\n", | |
936 | (integer_t)new_object, (integer_t)new_offset, | |
937 | (integer_t)mem, 0,0); | |
938 | ||
939 | vm_page_lock_queues(); | |
940 | vm_page_remove(mem); | |
941 | vm_page_insert(mem, new_object, new_offset); | |
942 | vm_page_unlock_queues(); | |
943 | } | |
944 | ||
945 | /* | |
946 | * vm_page_init: | |
947 | * | |
948 | * Initialize the fields in a new page. | |
949 | * This takes a structure with random values and initializes it | |
950 | * so that it can be given to vm_page_release or vm_page_insert. | |
951 | */ | |
952 | void | |
953 | vm_page_init( | |
954 | vm_page_t mem, | |
de355530 | 955 | vm_offset_t phys_addr) |
1c79356b A |
956 | { |
957 | *mem = vm_page_template; | |
de355530 | 958 | mem->phys_addr = phys_addr; |
1c79356b A |
959 | } |
960 | ||
961 | /* | |
962 | * vm_page_grab_fictitious: | |
963 | * | |
964 | * Remove a fictitious page from the free list. | |
965 | * Returns VM_PAGE_NULL if there are no free pages. | |
966 | */ | |
967 | int c_vm_page_grab_fictitious = 0; | |
968 | int c_vm_page_release_fictitious = 0; | |
969 | int c_vm_page_more_fictitious = 0; | |
970 | ||
971 | vm_page_t | |
972 | vm_page_grab_fictitious(void) | |
973 | { | |
974 | register vm_page_t m; | |
975 | ||
976 | m = (vm_page_t)zget(vm_page_zone); | |
977 | if (m) { | |
1c79356b A |
978 | vm_page_init(m, vm_page_fictitious_addr); |
979 | m->fictitious = TRUE; | |
1c79356b A |
980 | } |
981 | ||
982 | c_vm_page_grab_fictitious++; | |
983 | return m; | |
984 | } | |
985 | ||
986 | /* | |
987 | * vm_page_release_fictitious: | |
988 | * | |
989 | * Release a fictitious page to the free list. | |
990 | */ | |
991 | ||
992 | void | |
993 | vm_page_release_fictitious( | |
994 | register vm_page_t m) | |
995 | { | |
996 | assert(!m->free); | |
997 | assert(m->busy); | |
998 | assert(m->fictitious); | |
de355530 | 999 | assert(m->phys_addr == vm_page_fictitious_addr); |
1c79356b A |
1000 | |
1001 | c_vm_page_release_fictitious++; | |
1002 | ||
1003 | if (m->free) | |
1004 | panic("vm_page_release_fictitious"); | |
1005 | m->free = TRUE; | |
1006 | zfree(vm_page_zone, (vm_offset_t)m); | |
1007 | } | |
1008 | ||
1009 | /* | |
1010 | * vm_page_more_fictitious: | |
1011 | * | |
1012 | * Add more fictitious pages to the free list. | |
1013 | * Allowed to block. This routine is way intimate | |
1014 | * with the zones code, for several reasons: | |
1015 | * 1. we need to carve some page structures out of physical | |
1016 | * memory before zones work, so they _cannot_ come from | |
1017 | * the zone_map. | |
1018 | * 2. the zone needs to be collectable in order to prevent | |
1019 | * growth without bound. These structures are used by | |
1020 | * the device pager (by the hundreds and thousands), as | |
1021 | * private pages for pageout, and as blocking pages for | |
1022 | * pagein. Temporary bursts in demand should not result in | |
1023 | * permanent allocation of a resource. | |
1024 | * 3. To smooth allocation humps, we allocate single pages | |
1025 | * with kernel_memory_allocate(), and cram them into the | |
1026 | * zone. This also allows us to initialize the vm_page_t's | |
1027 | * on the way into the zone, so that zget() always returns | |
1028 | * an initialized structure. The zone free element pointer | |
1029 | * and the free page pointer are both the first item in the | |
1030 | * vm_page_t. | |
1031 | * 4. By having the pages in the zone pre-initialized, we need | |
1032 | * not keep 2 levels of lists. The garbage collector simply | |
1033 | * scans our list, and reduces physical memory usage as it | |
1034 | * sees fit. | |
1035 | */ | |
1036 | ||
1037 | void vm_page_more_fictitious(void) | |
1038 | { | |
1039 | extern vm_map_t zone_map; | |
1040 | register vm_page_t m; | |
1041 | vm_offset_t addr; | |
1042 | kern_return_t retval; | |
1043 | int i; | |
1044 | ||
1045 | c_vm_page_more_fictitious++; | |
1046 | ||
1c79356b A |
1047 | /* |
1048 | * Allocate a single page from the zone_map. Do not wait if no physical | |
1049 | * pages are immediately available, and do not zero the space. We need | |
1050 | * our own blocking lock here to prevent having multiple, | |
1051 | * simultaneous requests from piling up on the zone_map lock. Exactly | |
1052 | * one (of our) threads should be potentially waiting on the map lock. | |
1053 | * If winner is not vm-privileged, then the page allocation will fail, | |
1054 | * and it will temporarily block here in the vm_page_wait(). | |
1055 | */ | |
1056 | mutex_lock(&vm_page_alloc_lock); | |
1057 | /* | |
1058 | * If another thread allocated space, just bail out now. | |
1059 | */ | |
1060 | if (zone_free_count(vm_page_zone) > 5) { | |
1061 | /* | |
1062 | * The number "5" is a small number that is larger than the | |
1063 | * number of fictitious pages that any single caller will | |
1064 | * attempt to allocate. Otherwise, a thread will attempt to | |
1065 | * acquire a fictitious page (vm_page_grab_fictitious), fail, | |
1066 | * release all of the resources and locks already acquired, | |
1067 | * and then call this routine. This routine finds the pages | |
1068 | * that the caller released, so fails to allocate new space. | |
1069 | * The process repeats infinitely. The largest known number | |
1070 | * of fictitious pages required in this manner is 2. 5 is | |
1071 | * simply a somewhat larger number. | |
1072 | */ | |
1073 | mutex_unlock(&vm_page_alloc_lock); | |
1074 | return; | |
1075 | } | |
1076 | ||
1077 | if ((retval = kernel_memory_allocate(zone_map, | |
1078 | &addr, PAGE_SIZE, VM_PROT_ALL, | |
1079 | KMA_KOBJECT|KMA_NOPAGEWAIT)) != KERN_SUCCESS) { | |
1080 | /* | |
1081 | * No page was available. Tell the pageout daemon, drop the | |
1082 | * lock to give another thread a chance at it, and | |
1083 | * wait for the pageout daemon to make progress. | |
1084 | */ | |
1085 | mutex_unlock(&vm_page_alloc_lock); | |
1086 | vm_page_wait(THREAD_UNINT); | |
1087 | return; | |
1088 | } | |
1089 | /* | |
1090 | * Initialize as many vm_page_t's as will fit on this page. This | |
1091 | * depends on the zone code disturbing ONLY the first item of | |
1092 | * each zone element. | |
1093 | */ | |
1094 | m = (vm_page_t)addr; | |
1095 | for (i = PAGE_SIZE/sizeof(struct vm_page); i > 0; i--) { | |
1096 | vm_page_init(m, vm_page_fictitious_addr); | |
1097 | m->fictitious = TRUE; | |
1098 | m++; | |
1099 | } | |
1100 | zcram(vm_page_zone, addr, PAGE_SIZE); | |
1101 | mutex_unlock(&vm_page_alloc_lock); | |
1102 | } | |
1103 | ||
1104 | /* | |
1105 | * vm_page_convert: | |
1106 | * | |
1107 | * Attempt to convert a fictitious page into a real page. | |
1108 | */ | |
1109 | ||
1110 | boolean_t | |
1111 | vm_page_convert( | |
1112 | register vm_page_t m) | |
1113 | { | |
1114 | register vm_page_t real_m; | |
1115 | ||
1116 | assert(m->busy); | |
1117 | assert(m->fictitious); | |
1118 | assert(!m->dirty); | |
1119 | ||
1120 | real_m = vm_page_grab(); | |
1121 | if (real_m == VM_PAGE_NULL) | |
1122 | return FALSE; | |
1123 | ||
de355530 | 1124 | m->phys_addr = real_m->phys_addr; |
1c79356b | 1125 | m->fictitious = FALSE; |
765c9de3 | 1126 | m->no_isync = TRUE; |
1c79356b A |
1127 | |
1128 | vm_page_lock_queues(); | |
1129 | if (m->active) | |
1130 | vm_page_active_count++; | |
1131 | else if (m->inactive) | |
1132 | vm_page_inactive_count++; | |
1133 | vm_page_unlock_queues(); | |
1134 | ||
de355530 | 1135 | real_m->phys_addr = vm_page_fictitious_addr; |
1c79356b A |
1136 | real_m->fictitious = TRUE; |
1137 | ||
1138 | vm_page_release_fictitious(real_m); | |
1139 | return TRUE; | |
1140 | } | |
1141 | ||
1142 | /* | |
1143 | * vm_pool_low(): | |
1144 | * | |
1145 | * Return true if it is not likely that a non-vm_privileged thread | |
1146 | * can get memory without blocking. Advisory only, since the | |
1147 | * situation may change under us. | |
1148 | */ | |
1149 | int | |
1150 | vm_pool_low(void) | |
1151 | { | |
1152 | /* No locking, at worst we will fib. */ | |
1153 | return( vm_page_free_count < vm_page_free_reserved ); | |
1154 | } | |
1155 | ||
1156 | /* | |
1157 | * vm_page_grab: | |
1158 | * | |
1159 | * Remove a page from the free list. | |
1160 | * Returns VM_PAGE_NULL if the free list is too small. | |
1161 | */ | |
1162 | ||
1163 | unsigned long vm_page_grab_count = 0; /* measure demand */ | |
1164 | ||
1165 | vm_page_t | |
1166 | vm_page_grab(void) | |
1167 | { | |
1168 | register vm_page_t mem; | |
1169 | ||
1170 | mutex_lock(&vm_page_queue_free_lock); | |
1171 | vm_page_grab_count++; | |
1172 | ||
1173 | /* | |
1174 | * Optionally produce warnings if the wire or gobble | |
1175 | * counts exceed some threshold. | |
1176 | */ | |
1177 | if (vm_page_wire_count_warning > 0 | |
1178 | && vm_page_wire_count >= vm_page_wire_count_warning) { | |
1179 | printf("mk: vm_page_grab(): high wired page count of %d\n", | |
1180 | vm_page_wire_count); | |
1181 | assert(vm_page_wire_count < vm_page_wire_count_warning); | |
1182 | } | |
1183 | if (vm_page_gobble_count_warning > 0 | |
1184 | && vm_page_gobble_count >= vm_page_gobble_count_warning) { | |
1185 | printf("mk: vm_page_grab(): high gobbled page count of %d\n", | |
1186 | vm_page_gobble_count); | |
1187 | assert(vm_page_gobble_count < vm_page_gobble_count_warning); | |
1188 | } | |
1189 | ||
1190 | /* | |
1191 | * Only let privileged threads (involved in pageout) | |
1192 | * dip into the reserved pool. | |
1193 | */ | |
1194 | ||
1195 | if ((vm_page_free_count < vm_page_free_reserved) && | |
1196 | !current_thread()->vm_privilege) { | |
1197 | mutex_unlock(&vm_page_queue_free_lock); | |
1198 | mem = VM_PAGE_NULL; | |
1199 | goto wakeup_pageout; | |
1200 | } | |
1201 | ||
1202 | while (vm_page_queue_free == VM_PAGE_NULL) { | |
1203 | printf("vm_page_grab: no free pages, trouble expected...\n"); | |
1204 | mutex_unlock(&vm_page_queue_free_lock); | |
1205 | VM_PAGE_WAIT(); | |
1206 | mutex_lock(&vm_page_queue_free_lock); | |
1207 | } | |
1208 | ||
1209 | if (--vm_page_free_count < vm_page_free_count_minimum) | |
1210 | vm_page_free_count_minimum = vm_page_free_count; | |
1211 | mem = vm_page_queue_free; | |
1212 | vm_page_queue_free = (vm_page_t) mem->pageq.next; | |
1213 | mem->free = FALSE; | |
0b4e3aa0 | 1214 | mem->no_isync = TRUE; |
1c79356b A |
1215 | mutex_unlock(&vm_page_queue_free_lock); |
1216 | ||
1217 | /* | |
1218 | * Decide if we should poke the pageout daemon. | |
1219 | * We do this if the free count is less than the low | |
1220 | * water mark, or if the free count is less than the high | |
1221 | * water mark (but above the low water mark) and the inactive | |
1222 | * count is less than its target. | |
1223 | * | |
1224 | * We don't have the counts locked ... if they change a little, | |
1225 | * it doesn't really matter. | |
1226 | */ | |
1227 | ||
1228 | wakeup_pageout: | |
1229 | if ((vm_page_free_count < vm_page_free_min) || | |
1230 | ((vm_page_free_count < vm_page_free_target) && | |
1231 | (vm_page_inactive_count < vm_page_inactive_target))) | |
1232 | thread_wakeup((event_t) &vm_page_free_wanted); | |
1233 | ||
de355530 | 1234 | // dbgLog(mem->phys_addr, vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */ |
1c79356b A |
1235 | |
1236 | return mem; | |
1237 | } | |
1238 | ||
1239 | /* | |
1240 | * vm_page_release: | |
1241 | * | |
1242 | * Return a page to the free list. | |
1243 | */ | |
1244 | ||
1245 | void | |
1246 | vm_page_release( | |
1247 | register vm_page_t mem) | |
1248 | { | |
1249 | assert(!mem->private && !mem->fictitious); | |
1250 | ||
de355530 | 1251 | // dbgLog(mem->phys_addr, vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */ |
1c79356b A |
1252 | |
1253 | mutex_lock(&vm_page_queue_free_lock); | |
1254 | if (mem->free) | |
1255 | panic("vm_page_release"); | |
1256 | mem->free = TRUE; | |
1257 | mem->pageq.next = (queue_entry_t) vm_page_queue_free; | |
1258 | vm_page_queue_free = mem; | |
1259 | vm_page_free_count++; | |
1260 | ||
1261 | /* | |
1262 | * Check if we should wake up someone waiting for page. | |
1263 | * But don't bother waking them unless they can allocate. | |
1264 | * | |
1265 | * We wakeup only one thread, to prevent starvation. | |
1266 | * Because the scheduling system handles wait queues FIFO, | |
1267 | * if we wakeup all waiting threads, one greedy thread | |
1268 | * can starve multiple niceguy threads. When the threads | |
1269 | * all wakeup, the greedy threads runs first, grabs the page, | |
1270 | * and waits for another page. It will be the first to run | |
1271 | * when the next page is freed. | |
1272 | * | |
1273 | * However, there is a slight danger here. | |
1274 | * The thread we wake might not use the free page. | |
1275 | * Then the other threads could wait indefinitely | |
1276 | * while the page goes unused. To forestall this, | |
1277 | * the pageout daemon will keep making free pages | |
1278 | * as long as vm_page_free_wanted is non-zero. | |
1279 | */ | |
1280 | ||
1281 | if ((vm_page_free_wanted > 0) && | |
1282 | (vm_page_free_count >= vm_page_free_reserved)) { | |
1283 | vm_page_free_wanted--; | |
1284 | thread_wakeup_one((event_t) &vm_page_free_count); | |
1285 | } | |
1286 | ||
1287 | mutex_unlock(&vm_page_queue_free_lock); | |
1288 | } | |
1289 | ||
9bccf70c A |
1290 | #define VM_PAGEOUT_DEADLOCK_TIMEOUT 3 |
1291 | ||
1c79356b A |
1292 | /* |
1293 | * vm_page_wait: | |
1294 | * | |
1295 | * Wait for a page to become available. | |
1296 | * If there are plenty of free pages, then we don't sleep. | |
1297 | * | |
1298 | * Returns: | |
1299 | * TRUE: There may be another page, try again | |
1300 | * FALSE: We were interrupted out of our wait, don't try again | |
1301 | */ | |
1302 | ||
1303 | boolean_t | |
1304 | vm_page_wait( | |
1305 | int interruptible ) | |
1306 | { | |
1307 | /* | |
1308 | * We can't use vm_page_free_reserved to make this | |
1309 | * determination. Consider: some thread might | |
1310 | * need to allocate two pages. The first allocation | |
1311 | * succeeds, the second fails. After the first page is freed, | |
1312 | * a call to vm_page_wait must really block. | |
1313 | */ | |
9bccf70c A |
1314 | uint64_t abstime; |
1315 | kern_return_t wait_result; | |
1316 | kern_return_t kr; | |
1317 | int need_wakeup = 0; | |
1c79356b A |
1318 | |
1319 | mutex_lock(&vm_page_queue_free_lock); | |
1320 | if (vm_page_free_count < vm_page_free_target) { | |
1321 | if (vm_page_free_wanted++ == 0) | |
0b4e3aa0 | 1322 | need_wakeup = 1; |
9bccf70c A |
1323 | wait_result = assert_wait((event_t)&vm_page_free_count, |
1324 | interruptible); | |
1c79356b A |
1325 | mutex_unlock(&vm_page_queue_free_lock); |
1326 | counter(c_vm_page_wait_block++); | |
0b4e3aa0 A |
1327 | |
1328 | if (need_wakeup) | |
1329 | thread_wakeup((event_t)&vm_page_free_wanted); | |
9bccf70c A |
1330 | |
1331 | if (wait_result == THREAD_WAITING) { | |
1332 | clock_interval_to_absolutetime_interval( | |
1333 | VM_PAGEOUT_DEADLOCK_TIMEOUT, | |
1334 | NSEC_PER_SEC, &abstime); | |
1335 | clock_absolutetime_interval_to_deadline( | |
1336 | abstime, &abstime); | |
1337 | thread_set_timer_deadline(abstime); | |
1338 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1339 | ||
1340 | if(wait_result == THREAD_TIMED_OUT) { | |
1341 | kr = vm_pageout_emergency_availability_request(); | |
1342 | return TRUE; | |
1343 | } else { | |
1344 | thread_cancel_timer(); | |
1345 | } | |
1346 | } | |
0b4e3aa0 | 1347 | |
1c79356b A |
1348 | return(wait_result == THREAD_AWAKENED); |
1349 | } else { | |
1350 | mutex_unlock(&vm_page_queue_free_lock); | |
1351 | return TRUE; | |
1352 | } | |
1353 | } | |
1354 | ||
1355 | /* | |
1356 | * vm_page_alloc: | |
1357 | * | |
1358 | * Allocate and return a memory cell associated | |
1359 | * with this VM object/offset pair. | |
1360 | * | |
1361 | * Object must be locked. | |
1362 | */ | |
1363 | ||
1364 | vm_page_t | |
1365 | vm_page_alloc( | |
1366 | vm_object_t object, | |
1367 | vm_object_offset_t offset) | |
1368 | { | |
1369 | register vm_page_t mem; | |
1370 | ||
1371 | mem = vm_page_grab(); | |
1372 | if (mem == VM_PAGE_NULL) | |
1373 | return VM_PAGE_NULL; | |
1374 | ||
1375 | vm_page_insert(mem, object, offset); | |
1376 | ||
1377 | return(mem); | |
1378 | } | |
1379 | ||
1c79356b A |
1380 | counter(unsigned int c_laundry_pages_freed = 0;) |
1381 | ||
1382 | int vm_pagein_cluster_unused = 0; | |
1383 | boolean_t vm_page_free_verify = FALSE; | |
1384 | /* | |
1385 | * vm_page_free: | |
1386 | * | |
1387 | * Returns the given page to the free list, | |
1388 | * disassociating it with any VM object. | |
1389 | * | |
1390 | * Object and page queues must be locked prior to entry. | |
1391 | */ | |
1392 | void | |
1393 | vm_page_free( | |
1394 | register vm_page_t mem) | |
1395 | { | |
1396 | vm_object_t object = mem->object; | |
1397 | ||
1398 | assert(!mem->free); | |
1399 | assert(!mem->cleaning); | |
1400 | assert(!mem->pageout); | |
de355530 | 1401 | assert(!vm_page_free_verify || pmap_verify_free(mem->phys_addr)); |
1c79356b A |
1402 | |
1403 | if (mem->tabled) | |
1404 | vm_page_remove(mem); /* clears tabled, object, offset */ | |
1405 | VM_PAGE_QUEUES_REMOVE(mem); /* clears active or inactive */ | |
1406 | ||
1407 | if (mem->clustered) { | |
1408 | mem->clustered = FALSE; | |
1409 | vm_pagein_cluster_unused++; | |
1410 | } | |
1411 | ||
1412 | if (mem->wire_count) { | |
1413 | if (!mem->private && !mem->fictitious) | |
1414 | vm_page_wire_count--; | |
1415 | mem->wire_count = 0; | |
1416 | assert(!mem->gobbled); | |
1417 | } else if (mem->gobbled) { | |
1418 | if (!mem->private && !mem->fictitious) | |
1419 | vm_page_wire_count--; | |
1420 | vm_page_gobble_count--; | |
1421 | } | |
1422 | mem->gobbled = FALSE; | |
1423 | ||
1424 | if (mem->laundry) { | |
1425 | extern int vm_page_laundry_min; | |
1426 | vm_page_laundry_count--; | |
1427 | mem->laundry = FALSE; /* laundry is now clear */ | |
1428 | counter(++c_laundry_pages_freed); | |
1429 | if (vm_page_laundry_count < vm_page_laundry_min) { | |
1430 | vm_page_laundry_min = 0; | |
1431 | thread_wakeup((event_t) &vm_page_laundry_count); | |
1432 | } | |
1433 | } | |
1434 | ||
1435 | mem->discard_request = FALSE; | |
1436 | ||
1437 | PAGE_WAKEUP(mem); /* clears wanted */ | |
1438 | ||
1439 | if (mem->absent) | |
1440 | vm_object_absent_release(object); | |
1441 | ||
0b4e3aa0 | 1442 | /* Some of these may be unnecessary */ |
1c79356b A |
1443 | mem->page_lock = 0; |
1444 | mem->unlock_request = 0; | |
1445 | mem->busy = TRUE; | |
1446 | mem->absent = FALSE; | |
1447 | mem->error = FALSE; | |
1448 | mem->dirty = FALSE; | |
1449 | mem->precious = FALSE; | |
1450 | mem->reference = FALSE; | |
1451 | ||
1452 | mem->page_error = KERN_SUCCESS; | |
1453 | ||
1454 | if (mem->private) { | |
1455 | mem->private = FALSE; | |
1456 | mem->fictitious = TRUE; | |
de355530 | 1457 | mem->phys_addr = vm_page_fictitious_addr; |
1c79356b A |
1458 | } |
1459 | if (mem->fictitious) { | |
1460 | vm_page_release_fictitious(mem); | |
1461 | } else { | |
9bccf70c A |
1462 | /* depends on the queues lock */ |
1463 | if(mem->zero_fill) { | |
1464 | vm_zf_count-=1; | |
1465 | mem->zero_fill = FALSE; | |
1466 | } | |
de355530 | 1467 | vm_page_init(mem, mem->phys_addr); |
1c79356b A |
1468 | vm_page_release(mem); |
1469 | } | |
1470 | } | |
1471 | ||
1472 | /* | |
1473 | * vm_page_wire: | |
1474 | * | |
1475 | * Mark this page as wired down by yet | |
1476 | * another map, removing it from paging queues | |
1477 | * as necessary. | |
1478 | * | |
1479 | * The page's object and the page queues must be locked. | |
1480 | */ | |
1481 | void | |
1482 | vm_page_wire( | |
1483 | register vm_page_t mem) | |
1484 | { | |
1485 | ||
1486 | // dbgLog(current_act(), mem->offset, mem->object, 1); /* (TEST/DEBUG) */ | |
1487 | ||
1488 | VM_PAGE_CHECK(mem); | |
1489 | ||
1490 | if (mem->wire_count == 0) { | |
1491 | VM_PAGE_QUEUES_REMOVE(mem); | |
1492 | if (!mem->private && !mem->fictitious && !mem->gobbled) | |
1493 | vm_page_wire_count++; | |
1494 | if (mem->gobbled) | |
1495 | vm_page_gobble_count--; | |
1496 | mem->gobbled = FALSE; | |
9bccf70c A |
1497 | if(mem->zero_fill) { |
1498 | /* depends on the queues lock */ | |
1499 | vm_zf_count-=1; | |
1500 | mem->zero_fill = FALSE; | |
1501 | } | |
1c79356b A |
1502 | } |
1503 | assert(!mem->gobbled); | |
1504 | mem->wire_count++; | |
1505 | } | |
1506 | ||
1507 | /* | |
1508 | * vm_page_gobble: | |
1509 | * | |
1510 | * Mark this page as consumed by the vm/ipc/xmm subsystems. | |
1511 | * | |
1512 | * Called only for freshly vm_page_grab()ed pages - w/ nothing locked. | |
1513 | */ | |
1514 | void | |
1515 | vm_page_gobble( | |
1516 | register vm_page_t mem) | |
1517 | { | |
1518 | vm_page_lock_queues(); | |
1519 | VM_PAGE_CHECK(mem); | |
1520 | ||
1521 | assert(!mem->gobbled); | |
1522 | assert(mem->wire_count == 0); | |
1523 | ||
1524 | if (!mem->gobbled && mem->wire_count == 0) { | |
1525 | if (!mem->private && !mem->fictitious) | |
1526 | vm_page_wire_count++; | |
1527 | } | |
1528 | vm_page_gobble_count++; | |
1529 | mem->gobbled = TRUE; | |
1530 | vm_page_unlock_queues(); | |
1531 | } | |
1532 | ||
1533 | /* | |
1534 | * vm_page_unwire: | |
1535 | * | |
1536 | * Release one wiring of this page, potentially | |
1537 | * enabling it to be paged again. | |
1538 | * | |
1539 | * The page's object and the page queues must be locked. | |
1540 | */ | |
1541 | void | |
1542 | vm_page_unwire( | |
1543 | register vm_page_t mem) | |
1544 | { | |
1545 | ||
1546 | // dbgLog(current_act(), mem->offset, mem->object, 0); /* (TEST/DEBUG) */ | |
1547 | ||
1548 | VM_PAGE_CHECK(mem); | |
1549 | assert(mem->wire_count > 0); | |
1550 | ||
1551 | if (--mem->wire_count == 0) { | |
1552 | assert(!mem->private && !mem->fictitious); | |
1553 | vm_page_wire_count--; | |
1554 | queue_enter(&vm_page_queue_active, mem, vm_page_t, pageq); | |
1555 | vm_page_active_count++; | |
1556 | mem->active = TRUE; | |
1557 | mem->reference = TRUE; | |
1558 | } | |
1559 | } | |
1560 | ||
1561 | /* | |
1562 | * vm_page_deactivate: | |
1563 | * | |
1564 | * Returns the given page to the inactive list, | |
1565 | * indicating that no physical maps have access | |
1566 | * to this page. [Used by the physical mapping system.] | |
1567 | * | |
1568 | * The page queues must be locked. | |
1569 | */ | |
1570 | void | |
1571 | vm_page_deactivate( | |
1572 | register vm_page_t m) | |
1573 | { | |
1574 | VM_PAGE_CHECK(m); | |
1575 | ||
de355530 | 1576 | // dbgLog(m->phys_addr, vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */ |
1c79356b A |
1577 | |
1578 | /* | |
1579 | * This page is no longer very interesting. If it was | |
1580 | * interesting (active or inactive/referenced), then we | |
1581 | * clear the reference bit and (re)enter it in the | |
1582 | * inactive queue. Note wired pages should not have | |
1583 | * their reference bit cleared. | |
1584 | */ | |
1585 | if (m->gobbled) { /* can this happen? */ | |
1586 | assert(m->wire_count == 0); | |
1587 | if (!m->private && !m->fictitious) | |
1588 | vm_page_wire_count--; | |
1589 | vm_page_gobble_count--; | |
1590 | m->gobbled = FALSE; | |
1591 | } | |
1592 | if (m->private || (m->wire_count != 0)) | |
1593 | return; | |
1594 | if (m->active || (m->inactive && m->reference)) { | |
1595 | if (!m->fictitious && !m->absent) | |
de355530 | 1596 | pmap_clear_reference(m->phys_addr); |
1c79356b A |
1597 | m->reference = FALSE; |
1598 | VM_PAGE_QUEUES_REMOVE(m); | |
1599 | } | |
1600 | if (m->wire_count == 0 && !m->inactive) { | |
0b4e3aa0 A |
1601 | m->page_ticket = vm_page_ticket; |
1602 | vm_page_ticket_roll++; | |
1603 | ||
1604 | if(vm_page_ticket_roll == VM_PAGE_TICKETS_IN_ROLL) { | |
1605 | vm_page_ticket_roll = 0; | |
1606 | if(vm_page_ticket == VM_PAGE_TICKET_ROLL_IDS) | |
1607 | vm_page_ticket= 0; | |
1608 | else | |
1609 | vm_page_ticket++; | |
1610 | } | |
1611 | ||
9bccf70c A |
1612 | if(m->zero_fill) { |
1613 | queue_enter(&vm_page_queue_zf, m, vm_page_t, pageq); | |
1614 | } else { | |
1615 | queue_enter(&vm_page_queue_inactive, | |
1616 | m, vm_page_t, pageq); | |
1617 | } | |
1618 | ||
1c79356b A |
1619 | m->inactive = TRUE; |
1620 | if (!m->fictitious) | |
1621 | vm_page_inactive_count++; | |
1622 | } | |
1623 | } | |
1624 | ||
1625 | /* | |
1626 | * vm_page_activate: | |
1627 | * | |
1628 | * Put the specified page on the active list (if appropriate). | |
1629 | * | |
1630 | * The page queues must be locked. | |
1631 | */ | |
1632 | ||
1633 | void | |
1634 | vm_page_activate( | |
1635 | register vm_page_t m) | |
1636 | { | |
1637 | VM_PAGE_CHECK(m); | |
1638 | ||
1639 | if (m->gobbled) { | |
1640 | assert(m->wire_count == 0); | |
1641 | if (!m->private && !m->fictitious) | |
1642 | vm_page_wire_count--; | |
1643 | vm_page_gobble_count--; | |
1644 | m->gobbled = FALSE; | |
1645 | } | |
1646 | if (m->private) | |
1647 | return; | |
1648 | ||
1649 | if (m->inactive) { | |
9bccf70c A |
1650 | if (m->zero_fill) { |
1651 | queue_remove(&vm_page_queue_zf, m, vm_page_t, pageq); | |
1652 | } else { | |
1653 | queue_remove(&vm_page_queue_inactive, | |
1654 | m, vm_page_t, pageq); | |
1655 | } | |
1c79356b A |
1656 | if (!m->fictitious) |
1657 | vm_page_inactive_count--; | |
1658 | m->inactive = FALSE; | |
1659 | } | |
1660 | if (m->wire_count == 0) { | |
1661 | if (m->active) | |
1662 | panic("vm_page_activate: already active"); | |
1663 | ||
1664 | queue_enter(&vm_page_queue_active, m, vm_page_t, pageq); | |
1665 | m->active = TRUE; | |
1666 | m->reference = TRUE; | |
1667 | if (!m->fictitious) | |
1668 | vm_page_active_count++; | |
1669 | } | |
1670 | } | |
1671 | ||
1672 | /* | |
1673 | * vm_page_part_zero_fill: | |
1674 | * | |
1675 | * Zero-fill a part of the page. | |
1676 | */ | |
1677 | void | |
1678 | vm_page_part_zero_fill( | |
1679 | vm_page_t m, | |
1680 | vm_offset_t m_pa, | |
1681 | vm_size_t len) | |
1682 | { | |
1683 | vm_page_t tmp; | |
1684 | ||
1685 | VM_PAGE_CHECK(m); | |
1686 | #ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED | |
de355530 | 1687 | pmap_zero_part_page(m->phys_addr, m_pa, len); |
1c79356b A |
1688 | #else |
1689 | while (1) { | |
1690 | tmp = vm_page_grab(); | |
1691 | if (tmp == VM_PAGE_NULL) { | |
1692 | vm_page_wait(THREAD_UNINT); | |
1693 | continue; | |
1694 | } | |
1695 | break; | |
1696 | } | |
1697 | vm_page_zero_fill(tmp); | |
1698 | if(m_pa != 0) { | |
1699 | vm_page_part_copy(m, 0, tmp, 0, m_pa); | |
1700 | } | |
1701 | if((m_pa + len) < PAGE_SIZE) { | |
1702 | vm_page_part_copy(m, m_pa + len, tmp, | |
1703 | m_pa + len, PAGE_SIZE - (m_pa + len)); | |
1704 | } | |
1705 | vm_page_copy(tmp,m); | |
1706 | vm_page_lock_queues(); | |
1707 | vm_page_free(tmp); | |
1708 | vm_page_unlock_queues(); | |
1709 | #endif | |
1710 | ||
1711 | } | |
1712 | ||
1713 | /* | |
1714 | * vm_page_zero_fill: | |
1715 | * | |
1716 | * Zero-fill the specified page. | |
1717 | */ | |
1718 | void | |
1719 | vm_page_zero_fill( | |
1720 | vm_page_t m) | |
1721 | { | |
1722 | XPR(XPR_VM_PAGE, | |
1723 | "vm_page_zero_fill, object 0x%X offset 0x%X page 0x%X\n", | |
1724 | (integer_t)m->object, (integer_t)m->offset, (integer_t)m, 0,0); | |
1725 | ||
1726 | VM_PAGE_CHECK(m); | |
1727 | ||
de355530 | 1728 | pmap_zero_page(m->phys_addr); |
1c79356b A |
1729 | } |
1730 | ||
1731 | /* | |
1732 | * vm_page_part_copy: | |
1733 | * | |
1734 | * copy part of one page to another | |
1735 | */ | |
1736 | ||
1737 | void | |
1738 | vm_page_part_copy( | |
1739 | vm_page_t src_m, | |
1740 | vm_offset_t src_pa, | |
1741 | vm_page_t dst_m, | |
1742 | vm_offset_t dst_pa, | |
1743 | vm_size_t len) | |
1744 | { | |
1745 | VM_PAGE_CHECK(src_m); | |
1746 | VM_PAGE_CHECK(dst_m); | |
1747 | ||
de355530 A |
1748 | pmap_copy_part_page(src_m->phys_addr, src_pa, |
1749 | dst_m->phys_addr, dst_pa, len); | |
1c79356b A |
1750 | } |
1751 | ||
1752 | /* | |
1753 | * vm_page_copy: | |
1754 | * | |
1755 | * Copy one page to another | |
1756 | */ | |
1757 | ||
1758 | void | |
1759 | vm_page_copy( | |
1760 | vm_page_t src_m, | |
1761 | vm_page_t dest_m) | |
1762 | { | |
1763 | XPR(XPR_VM_PAGE, | |
1764 | "vm_page_copy, object 0x%X offset 0x%X to object 0x%X offset 0x%X\n", | |
1765 | (integer_t)src_m->object, src_m->offset, | |
1766 | (integer_t)dest_m->object, dest_m->offset, | |
1767 | 0); | |
1768 | ||
1769 | VM_PAGE_CHECK(src_m); | |
1770 | VM_PAGE_CHECK(dest_m); | |
1771 | ||
de355530 | 1772 | pmap_copy_page(src_m->phys_addr, dest_m->phys_addr); |
1c79356b A |
1773 | } |
1774 | ||
1c79356b A |
1775 | /* |
1776 | * Currently, this is a primitive allocator that grabs | |
1777 | * free pages from the system, sorts them by physical | |
1778 | * address, then searches for a region large enough to | |
1779 | * satisfy the user's request. | |
1780 | * | |
1781 | * Additional levels of effort: | |
1782 | * + steal clean active/inactive pages | |
1783 | * + force pageouts of dirty pages | |
1784 | * + maintain a map of available physical | |
1785 | * memory | |
1786 | */ | |
1787 | ||
1788 | #define SET_NEXT_PAGE(m,n) ((m)->pageq.next = (struct queue_entry *) (n)) | |
1789 | ||
1790 | #if MACH_ASSERT | |
1791 | int vm_page_verify_contiguous( | |
1792 | vm_page_t pages, | |
1793 | unsigned int npages); | |
1794 | #endif /* MACH_ASSERT */ | |
1795 | ||
1796 | cpm_counter(unsigned int vpfls_pages_handled = 0;) | |
1797 | cpm_counter(unsigned int vpfls_head_insertions = 0;) | |
1798 | cpm_counter(unsigned int vpfls_tail_insertions = 0;) | |
1799 | cpm_counter(unsigned int vpfls_general_insertions = 0;) | |
1800 | cpm_counter(unsigned int vpfc_failed = 0;) | |
1801 | cpm_counter(unsigned int vpfc_satisfied = 0;) | |
1802 | ||
1803 | /* | |
1804 | * Sort free list by ascending physical address, | |
1805 | * using a not-particularly-bright sort algorithm. | |
1806 | * Caller holds vm_page_queue_free_lock. | |
1807 | */ | |
1808 | static void | |
1809 | vm_page_free_list_sort(void) | |
1810 | { | |
1811 | vm_page_t sort_list; | |
1812 | vm_page_t sort_list_end; | |
1813 | vm_page_t m, m1, *prev, next_m; | |
1814 | vm_offset_t addr; | |
1815 | #if MACH_ASSERT | |
1816 | unsigned int npages; | |
1817 | int old_free_count; | |
1818 | #endif /* MACH_ASSERT */ | |
1819 | ||
1820 | #if MACH_ASSERT | |
1821 | /* | |
1822 | * Verify pages in the free list.. | |
1823 | */ | |
1824 | npages = 0; | |
1825 | for (m = vm_page_queue_free; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) | |
1826 | ++npages; | |
1827 | if (npages != vm_page_free_count) | |
1828 | panic("vm_sort_free_list: prelim: npages %d free_count %d", | |
1829 | npages, vm_page_free_count); | |
1830 | old_free_count = vm_page_free_count; | |
1831 | #endif /* MACH_ASSERT */ | |
1832 | ||
1833 | sort_list = sort_list_end = vm_page_queue_free; | |
1834 | m = NEXT_PAGE(vm_page_queue_free); | |
1835 | SET_NEXT_PAGE(vm_page_queue_free, VM_PAGE_NULL); | |
1836 | cpm_counter(vpfls_pages_handled = 0); | |
1837 | while (m != VM_PAGE_NULL) { | |
1838 | cpm_counter(++vpfls_pages_handled); | |
1839 | next_m = NEXT_PAGE(m); | |
de355530 | 1840 | if (m->phys_addr < sort_list->phys_addr) { |
1c79356b A |
1841 | cpm_counter(++vpfls_head_insertions); |
1842 | SET_NEXT_PAGE(m, sort_list); | |
1843 | sort_list = m; | |
de355530 | 1844 | } else if (m->phys_addr > sort_list_end->phys_addr) { |
1c79356b A |
1845 | cpm_counter(++vpfls_tail_insertions); |
1846 | SET_NEXT_PAGE(sort_list_end, m); | |
1847 | SET_NEXT_PAGE(m, VM_PAGE_NULL); | |
1848 | sort_list_end = m; | |
1849 | } else { | |
1850 | cpm_counter(++vpfls_general_insertions); | |
1851 | /* general sorted list insertion */ | |
1852 | prev = &sort_list; | |
1853 | for (m1=sort_list; m1!=VM_PAGE_NULL; m1=NEXT_PAGE(m1)) { | |
de355530 | 1854 | if (m1->phys_addr > m->phys_addr) { |
1c79356b A |
1855 | if (*prev != m1) |
1856 | panic("vm_sort_free_list: ugh"); | |
1857 | SET_NEXT_PAGE(m, *prev); | |
1858 | *prev = m; | |
1859 | break; | |
1860 | } | |
1861 | prev = (vm_page_t *) &m1->pageq.next; | |
1862 | } | |
1863 | } | |
1864 | m = next_m; | |
1865 | } | |
1866 | ||
1867 | #if MACH_ASSERT | |
1868 | /* | |
1869 | * Verify that pages are sorted into ascending order. | |
1870 | */ | |
1871 | for (m = sort_list, npages = 0; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
1872 | if (m != sort_list && | |
de355530 | 1873 | m->phys_addr <= addr) { |
1c79356b A |
1874 | printf("m 0x%x addr 0x%x\n", m, addr); |
1875 | panic("vm_sort_free_list"); | |
1876 | } | |
de355530 | 1877 | addr = m->phys_addr; |
1c79356b A |
1878 | ++npages; |
1879 | } | |
1880 | if (old_free_count != vm_page_free_count) | |
1881 | panic("vm_sort_free_list: old_free %d free_count %d", | |
1882 | old_free_count, vm_page_free_count); | |
1883 | if (npages != vm_page_free_count) | |
1884 | panic("vm_sort_free_list: npages %d free_count %d", | |
1885 | npages, vm_page_free_count); | |
1886 | #endif /* MACH_ASSERT */ | |
1887 | ||
1888 | vm_page_queue_free = sort_list; | |
1889 | } | |
1890 | ||
1891 | ||
1892 | #if MACH_ASSERT | |
1893 | /* | |
1894 | * Check that the list of pages is ordered by | |
1895 | * ascending physical address and has no holes. | |
1896 | */ | |
1897 | int | |
1898 | vm_page_verify_contiguous( | |
1899 | vm_page_t pages, | |
1900 | unsigned int npages) | |
1901 | { | |
1902 | register vm_page_t m; | |
1903 | unsigned int page_count; | |
1904 | vm_offset_t prev_addr; | |
1905 | ||
de355530 | 1906 | prev_addr = pages->phys_addr; |
1c79356b A |
1907 | page_count = 1; |
1908 | for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
de355530 | 1909 | if (m->phys_addr != prev_addr + page_size) { |
1c79356b | 1910 | printf("m 0x%x prev_addr 0x%x, current addr 0x%x\n", |
de355530 | 1911 | m, prev_addr, m->phys_addr); |
1c79356b A |
1912 | printf("pages 0x%x page_count %d\n", pages, page_count); |
1913 | panic("vm_page_verify_contiguous: not contiguous!"); | |
1914 | } | |
de355530 | 1915 | prev_addr = m->phys_addr; |
1c79356b A |
1916 | ++page_count; |
1917 | } | |
1918 | if (page_count != npages) { | |
1919 | printf("pages 0x%x actual count 0x%x but requested 0x%x\n", | |
1920 | pages, page_count, npages); | |
1921 | panic("vm_page_verify_contiguous: count error"); | |
1922 | } | |
1923 | return 1; | |
1924 | } | |
1925 | #endif /* MACH_ASSERT */ | |
1926 | ||
1927 | ||
1928 | /* | |
1929 | * Find a region large enough to contain at least npages | |
1930 | * of contiguous physical memory. | |
1931 | * | |
1932 | * Requirements: | |
1933 | * - Called while holding vm_page_queue_free_lock. | |
1934 | * - Doesn't respect vm_page_free_reserved; caller | |
1935 | * must not ask for more pages than are legal to grab. | |
1936 | * | |
1937 | * Returns a pointer to a list of gobbled pages or VM_PAGE_NULL. | |
1938 | * | |
1939 | */ | |
1940 | static vm_page_t | |
1941 | vm_page_find_contiguous( | |
1942 | int npages) | |
1943 | { | |
1944 | vm_page_t m, *contig_prev, *prev_ptr; | |
de355530 | 1945 | vm_offset_t prev_addr; |
1c79356b A |
1946 | unsigned int contig_npages; |
1947 | vm_page_t list; | |
1948 | ||
1949 | if (npages < 1) | |
1950 | return VM_PAGE_NULL; | |
1951 | ||
de355530 | 1952 | prev_addr = vm_page_queue_free->phys_addr - (page_size + 1); |
1c79356b A |
1953 | prev_ptr = &vm_page_queue_free; |
1954 | for (m = vm_page_queue_free; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
1955 | ||
de355530 | 1956 | if (m->phys_addr != prev_addr + page_size) { |
1c79356b A |
1957 | /* |
1958 | * Whoops! Pages aren't contiguous. Start over. | |
1959 | */ | |
1960 | contig_npages = 0; | |
1961 | contig_prev = prev_ptr; | |
1962 | } | |
1963 | ||
1964 | if (++contig_npages == npages) { | |
1965 | /* | |
1966 | * Chop these pages out of the free list. | |
1967 | * Mark them all as gobbled. | |
1968 | */ | |
1969 | list = *contig_prev; | |
1970 | *contig_prev = NEXT_PAGE(m); | |
1971 | SET_NEXT_PAGE(m, VM_PAGE_NULL); | |
1972 | for (m = list; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
1973 | assert(m->free); | |
1974 | assert(!m->wanted); | |
1975 | m->free = FALSE; | |
765c9de3 | 1976 | m->no_isync = TRUE; |
1c79356b A |
1977 | m->gobbled = TRUE; |
1978 | } | |
1979 | vm_page_free_count -= npages; | |
1980 | if (vm_page_free_count < vm_page_free_count_minimum) | |
1981 | vm_page_free_count_minimum = vm_page_free_count; | |
1982 | vm_page_wire_count += npages; | |
1983 | vm_page_gobble_count += npages; | |
1984 | cpm_counter(++vpfc_satisfied); | |
1985 | assert(vm_page_verify_contiguous(list, contig_npages)); | |
1986 | return list; | |
1987 | } | |
1988 | ||
1989 | assert(contig_npages < npages); | |
1990 | prev_ptr = (vm_page_t *) &m->pageq.next; | |
de355530 | 1991 | prev_addr = m->phys_addr; |
1c79356b A |
1992 | } |
1993 | cpm_counter(++vpfc_failed); | |
1994 | return VM_PAGE_NULL; | |
1995 | } | |
1996 | ||
1997 | /* | |
1998 | * Allocate a list of contiguous, wired pages. | |
1999 | */ | |
2000 | kern_return_t | |
2001 | cpm_allocate( | |
2002 | vm_size_t size, | |
2003 | vm_page_t *list, | |
2004 | boolean_t wire) | |
2005 | { | |
2006 | register vm_page_t m; | |
2007 | vm_page_t *first_contig; | |
2008 | vm_page_t free_list, pages; | |
2009 | unsigned int npages, n1pages; | |
2010 | int vm_pages_available; | |
2011 | ||
2012 | if (size % page_size != 0) | |
2013 | return KERN_INVALID_ARGUMENT; | |
2014 | ||
2015 | vm_page_lock_queues(); | |
2016 | mutex_lock(&vm_page_queue_free_lock); | |
2017 | ||
2018 | /* | |
2019 | * Should also take active and inactive pages | |
2020 | * into account... One day... | |
2021 | */ | |
2022 | vm_pages_available = vm_page_free_count - vm_page_free_reserved; | |
2023 | ||
2024 | if (size > vm_pages_available * page_size) { | |
2025 | mutex_unlock(&vm_page_queue_free_lock); | |
2026 | return KERN_RESOURCE_SHORTAGE; | |
2027 | } | |
2028 | ||
2029 | vm_page_free_list_sort(); | |
2030 | ||
2031 | npages = size / page_size; | |
2032 | ||
2033 | /* | |
2034 | * Obtain a pointer to a subset of the free | |
2035 | * list large enough to satisfy the request; | |
2036 | * the region will be physically contiguous. | |
2037 | */ | |
2038 | pages = vm_page_find_contiguous(npages); | |
2039 | if (pages == VM_PAGE_NULL) { | |
2040 | mutex_unlock(&vm_page_queue_free_lock); | |
2041 | vm_page_unlock_queues(); | |
2042 | return KERN_NO_SPACE; | |
2043 | } | |
2044 | ||
2045 | mutex_unlock(&vm_page_queue_free_lock); | |
2046 | ||
2047 | /* | |
2048 | * Walk the returned list, wiring the pages. | |
2049 | */ | |
2050 | if (wire == TRUE) | |
2051 | for (m = pages; m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
2052 | /* | |
2053 | * Essentially inlined vm_page_wire. | |
2054 | */ | |
2055 | assert(!m->active); | |
2056 | assert(!m->inactive); | |
2057 | assert(!m->private); | |
2058 | assert(!m->fictitious); | |
2059 | assert(m->wire_count == 0); | |
2060 | assert(m->gobbled); | |
2061 | m->gobbled = FALSE; | |
2062 | m->wire_count++; | |
2063 | --vm_page_gobble_count; | |
2064 | } | |
2065 | vm_page_unlock_queues(); | |
2066 | ||
2067 | /* | |
2068 | * The CPM pages should now be available and | |
2069 | * ordered by ascending physical address. | |
2070 | */ | |
2071 | assert(vm_page_verify_contiguous(pages, npages)); | |
2072 | ||
2073 | *list = pages; | |
2074 | return KERN_SUCCESS; | |
2075 | } | |
2076 | ||
2077 | ||
2078 | #include <mach_vm_debug.h> | |
2079 | #if MACH_VM_DEBUG | |
2080 | ||
2081 | #include <mach_debug/hash_info.h> | |
2082 | #include <vm/vm_debug.h> | |
2083 | ||
2084 | /* | |
2085 | * Routine: vm_page_info | |
2086 | * Purpose: | |
2087 | * Return information about the global VP table. | |
2088 | * Fills the buffer with as much information as possible | |
2089 | * and returns the desired size of the buffer. | |
2090 | * Conditions: | |
2091 | * Nothing locked. The caller should provide | |
2092 | * possibly-pageable memory. | |
2093 | */ | |
2094 | ||
2095 | unsigned int | |
2096 | vm_page_info( | |
2097 | hash_info_bucket_t *info, | |
2098 | unsigned int count) | |
2099 | { | |
2100 | int i; | |
2101 | ||
2102 | if (vm_page_bucket_count < count) | |
2103 | count = vm_page_bucket_count; | |
2104 | ||
2105 | for (i = 0; i < count; i++) { | |
2106 | vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
2107 | unsigned int bucket_count = 0; | |
2108 | vm_page_t m; | |
2109 | ||
2110 | simple_lock(&vm_page_bucket_lock); | |
2111 | for (m = bucket->pages; m != VM_PAGE_NULL; m = m->next) | |
2112 | bucket_count++; | |
2113 | simple_unlock(&vm_page_bucket_lock); | |
2114 | ||
2115 | /* don't touch pageable memory while holding locks */ | |
2116 | info[i].hib_count = bucket_count; | |
2117 | } | |
2118 | ||
2119 | return vm_page_bucket_count; | |
2120 | } | |
2121 | #endif /* MACH_VM_DEBUG */ | |
2122 | ||
2123 | #include <mach_kdb.h> | |
2124 | #if MACH_KDB | |
2125 | ||
2126 | #include <ddb/db_output.h> | |
2127 | #include <vm/vm_print.h> | |
2128 | #define printf kdbprintf | |
2129 | ||
2130 | /* | |
2131 | * Routine: vm_page_print [exported] | |
2132 | */ | |
2133 | void | |
2134 | vm_page_print( | |
2135 | vm_page_t p) | |
2136 | { | |
2137 | extern db_indent; | |
2138 | ||
2139 | iprintf("page 0x%x\n", p); | |
2140 | ||
2141 | db_indent += 2; | |
2142 | ||
2143 | iprintf("object=0x%x", p->object); | |
2144 | printf(", offset=0x%x", p->offset); | |
2145 | printf(", wire_count=%d", p->wire_count); | |
1c79356b A |
2146 | |
2147 | iprintf("%sinactive, %sactive, %sgobbled, %slaundry, %sfree, %sref, %sdiscard\n", | |
2148 | (p->inactive ? "" : "!"), | |
2149 | (p->active ? "" : "!"), | |
2150 | (p->gobbled ? "" : "!"), | |
2151 | (p->laundry ? "" : "!"), | |
2152 | (p->free ? "" : "!"), | |
2153 | (p->reference ? "" : "!"), | |
2154 | (p->discard_request ? "" : "!")); | |
2155 | iprintf("%sbusy, %swanted, %stabled, %sfictitious, %sprivate, %sprecious\n", | |
2156 | (p->busy ? "" : "!"), | |
2157 | (p->wanted ? "" : "!"), | |
2158 | (p->tabled ? "" : "!"), | |
2159 | (p->fictitious ? "" : "!"), | |
2160 | (p->private ? "" : "!"), | |
2161 | (p->precious ? "" : "!")); | |
2162 | iprintf("%sabsent, %serror, %sdirty, %scleaning, %spageout, %sclustered\n", | |
2163 | (p->absent ? "" : "!"), | |
2164 | (p->error ? "" : "!"), | |
2165 | (p->dirty ? "" : "!"), | |
2166 | (p->cleaning ? "" : "!"), | |
2167 | (p->pageout ? "" : "!"), | |
2168 | (p->clustered ? "" : "!")); | |
0b4e3aa0 | 2169 | iprintf("%slock_supplied, %soverwriting, %srestart, %sunusual\n", |
1c79356b A |
2170 | (p->lock_supplied ? "" : "!"), |
2171 | (p->overwriting ? "" : "!"), | |
2172 | (p->restart ? "" : "!"), | |
0b4e3aa0 | 2173 | (p->unusual ? "" : "!")); |
1c79356b | 2174 | |
de355530 | 2175 | iprintf("phys_addr=0x%x", p->phys_addr); |
1c79356b A |
2176 | printf(", page_error=0x%x", p->page_error); |
2177 | printf(", page_lock=0x%x", p->page_lock); | |
2178 | printf(", unlock_request=%d\n", p->unlock_request); | |
2179 | ||
2180 | db_indent -= 2; | |
2181 | } | |
2182 | #endif /* MACH_KDB */ |