]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
55e303ae | 2 | * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved. |
1c79356b A |
3 | * |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
43866e37 | 6 | * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. |
1c79356b | 7 | * |
43866e37 A |
8 | * This file contains Original Code and/or Modifications of Original Code |
9 | * as defined in and that are subject to the Apple Public Source License | |
10 | * Version 2.0 (the 'License'). You may not use this file except in | |
11 | * compliance with the License. Please obtain a copy of the License at | |
12 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
13 | * file. | |
14 | * | |
15 | * The Original Code and all software distributed under the License are | |
16 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
17 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
18 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
43866e37 A |
19 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
20 | * Please see the License for the specific language governing rights and | |
21 | * limitations under the License. | |
1c79356b A |
22 | * |
23 | * @APPLE_LICENSE_HEADER_END@ | |
24 | */ | |
25 | /* | |
26 | * @OSF_COPYRIGHT@ | |
27 | */ | |
28 | /* | |
29 | * Mach Operating System | |
30 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
31 | * All Rights Reserved. | |
32 | * | |
33 | * Permission to use, copy, modify and distribute this software and its | |
34 | * documentation is hereby granted, provided that both the copyright | |
35 | * notice and this permission notice appear in all copies of the | |
36 | * software, derivative works or modified versions, and any portions | |
37 | * thereof, and that both notices appear in supporting documentation. | |
38 | * | |
39 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
40 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
41 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
42 | * | |
43 | * Carnegie Mellon requests users of this software to return to | |
44 | * | |
45 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
46 | * School of Computer Science | |
47 | * Carnegie Mellon University | |
48 | * Pittsburgh PA 15213-3890 | |
49 | * | |
50 | * any improvements or extensions that they make and grant Carnegie Mellon | |
51 | * the rights to redistribute these changes. | |
52 | */ | |
53 | /* | |
54 | */ | |
55 | /* | |
56 | * File: vm_fault.c | |
57 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
58 | * | |
59 | * Page fault handling module. | |
60 | */ | |
61 | #ifdef MACH_BSD | |
62 | /* remove after component interface available */ | |
63 | extern int vnode_pager_workaround; | |
0b4e3aa0 | 64 | extern int device_pager_workaround; |
1c79356b A |
65 | #endif |
66 | ||
67 | #include <mach_cluster_stats.h> | |
68 | #include <mach_pagemap.h> | |
69 | #include <mach_kdb.h> | |
70 | ||
71 | #include <vm/vm_fault.h> | |
72 | #include <mach/kern_return.h> | |
73 | #include <mach/message.h> /* for error codes */ | |
74 | #include <kern/host_statistics.h> | |
75 | #include <kern/counters.h> | |
76 | #include <kern/task.h> | |
77 | #include <kern/thread.h> | |
78 | #include <kern/sched_prim.h> | |
79 | #include <kern/host.h> | |
80 | #include <kern/xpr.h> | |
0b4e3aa0 | 81 | #include <ppc/proc_reg.h> |
0b4e3aa0 | 82 | #include <vm/task_working_set.h> |
1c79356b A |
83 | #include <vm/vm_map.h> |
84 | #include <vm/vm_object.h> | |
85 | #include <vm/vm_page.h> | |
55e303ae | 86 | #include <vm/vm_kern.h> |
1c79356b A |
87 | #include <vm/pmap.h> |
88 | #include <vm/vm_pageout.h> | |
89 | #include <mach/vm_param.h> | |
90 | #include <mach/vm_behavior.h> | |
91 | #include <mach/memory_object.h> | |
92 | /* For memory_object_data_{request,unlock} */ | |
93 | #include <kern/mach_param.h> | |
94 | #include <kern/macro_help.h> | |
95 | #include <kern/zalloc.h> | |
96 | #include <kern/misc_protos.h> | |
97 | ||
98 | #include <sys/kdebug.h> | |
99 | ||
100 | #define VM_FAULT_CLASSIFY 0 | |
101 | #define VM_FAULT_STATIC_CONFIG 1 | |
102 | ||
103 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ | |
104 | ||
105 | int vm_object_absent_max = 50; | |
106 | ||
107 | int vm_fault_debug = 0; | |
1c79356b A |
108 | |
109 | #if !VM_FAULT_STATIC_CONFIG | |
110 | boolean_t vm_fault_dirty_handling = FALSE; | |
111 | boolean_t vm_fault_interruptible = FALSE; | |
112 | boolean_t software_reference_bits = TRUE; | |
113 | #endif | |
114 | ||
115 | #if MACH_KDB | |
116 | extern struct db_watchpoint *db_watchpoint_list; | |
117 | #endif /* MACH_KDB */ | |
118 | ||
119 | /* Forward declarations of internal routines. */ | |
120 | extern kern_return_t vm_fault_wire_fast( | |
121 | vm_map_t map, | |
122 | vm_offset_t va, | |
123 | vm_map_entry_t entry, | |
9bccf70c A |
124 | pmap_t pmap, |
125 | vm_offset_t pmap_addr); | |
1c79356b A |
126 | |
127 | extern void vm_fault_continue(void); | |
128 | ||
129 | extern void vm_fault_copy_cleanup( | |
130 | vm_page_t page, | |
131 | vm_page_t top_page); | |
132 | ||
133 | extern void vm_fault_copy_dst_cleanup( | |
134 | vm_page_t page); | |
135 | ||
136 | #if VM_FAULT_CLASSIFY | |
137 | extern void vm_fault_classify(vm_object_t object, | |
138 | vm_object_offset_t offset, | |
139 | vm_prot_t fault_type); | |
140 | ||
141 | extern void vm_fault_classify_init(void); | |
142 | #endif | |
143 | ||
144 | /* | |
145 | * Routine: vm_fault_init | |
146 | * Purpose: | |
147 | * Initialize our private data structures. | |
148 | */ | |
149 | void | |
150 | vm_fault_init(void) | |
151 | { | |
152 | } | |
153 | ||
154 | /* | |
155 | * Routine: vm_fault_cleanup | |
156 | * Purpose: | |
157 | * Clean up the result of vm_fault_page. | |
158 | * Results: | |
159 | * The paging reference for "object" is released. | |
160 | * "object" is unlocked. | |
161 | * If "top_page" is not null, "top_page" is | |
162 | * freed and the paging reference for the object | |
163 | * containing it is released. | |
164 | * | |
165 | * In/out conditions: | |
166 | * "object" must be locked. | |
167 | */ | |
168 | void | |
169 | vm_fault_cleanup( | |
170 | register vm_object_t object, | |
171 | register vm_page_t top_page) | |
172 | { | |
173 | vm_object_paging_end(object); | |
174 | vm_object_unlock(object); | |
175 | ||
176 | if (top_page != VM_PAGE_NULL) { | |
177 | object = top_page->object; | |
178 | vm_object_lock(object); | |
179 | VM_PAGE_FREE(top_page); | |
180 | vm_object_paging_end(object); | |
181 | vm_object_unlock(object); | |
182 | } | |
183 | } | |
184 | ||
185 | #if MACH_CLUSTER_STATS | |
186 | #define MAXCLUSTERPAGES 16 | |
187 | struct { | |
188 | unsigned long pages_in_cluster; | |
189 | unsigned long pages_at_higher_offsets; | |
190 | unsigned long pages_at_lower_offsets; | |
191 | } cluster_stats_in[MAXCLUSTERPAGES]; | |
192 | #define CLUSTER_STAT(clause) clause | |
193 | #define CLUSTER_STAT_HIGHER(x) \ | |
194 | ((cluster_stats_in[(x)].pages_at_higher_offsets)++) | |
195 | #define CLUSTER_STAT_LOWER(x) \ | |
196 | ((cluster_stats_in[(x)].pages_at_lower_offsets)++) | |
197 | #define CLUSTER_STAT_CLUSTER(x) \ | |
198 | ((cluster_stats_in[(x)].pages_in_cluster)++) | |
199 | #else /* MACH_CLUSTER_STATS */ | |
200 | #define CLUSTER_STAT(clause) | |
201 | #endif /* MACH_CLUSTER_STATS */ | |
202 | ||
203 | /* XXX - temporary */ | |
204 | boolean_t vm_allow_clustered_pagein = FALSE; | |
205 | int vm_pagein_cluster_used = 0; | |
206 | ||
55e303ae A |
207 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) |
208 | ||
209 | ||
210 | boolean_t vm_page_deactivate_behind = TRUE; | |
1c79356b A |
211 | /* |
212 | * Prepage default sizes given VM_BEHAVIOR_DEFAULT reference behavior | |
213 | */ | |
55e303ae A |
214 | int vm_default_ahead = 0; |
215 | int vm_default_behind = MAX_UPL_TRANSFER; | |
216 | ||
217 | /* | |
218 | * vm_page_deactivate_behind | |
219 | * | |
220 | * Determine if sequential access is in progress | |
221 | * in accordance with the behavior specified. If | |
222 | * so, compute a potential page to deactive and | |
223 | * deactivate it. | |
224 | * | |
225 | * The object must be locked. | |
226 | */ | |
227 | static | |
228 | boolean_t | |
229 | vm_fault_deactivate_behind( | |
230 | vm_object_t object, | |
231 | vm_offset_t offset, | |
232 | vm_behavior_t behavior) | |
233 | { | |
234 | vm_page_t m; | |
235 | ||
236 | #if TRACEFAULTPAGE | |
237 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */ | |
238 | #endif | |
239 | ||
240 | switch (behavior) { | |
241 | case VM_BEHAVIOR_RANDOM: | |
242 | object->sequential = PAGE_SIZE_64; | |
243 | m = VM_PAGE_NULL; | |
244 | break; | |
245 | case VM_BEHAVIOR_SEQUENTIAL: | |
246 | if (offset && | |
247 | object->last_alloc == offset - PAGE_SIZE_64) { | |
248 | object->sequential += PAGE_SIZE_64; | |
249 | m = vm_page_lookup(object, offset - PAGE_SIZE_64); | |
250 | } else { | |
251 | object->sequential = PAGE_SIZE_64; /* reset */ | |
252 | m = VM_PAGE_NULL; | |
253 | } | |
254 | break; | |
255 | case VM_BEHAVIOR_RSEQNTL: | |
256 | if (object->last_alloc && | |
257 | object->last_alloc == offset + PAGE_SIZE_64) { | |
258 | object->sequential += PAGE_SIZE_64; | |
259 | m = vm_page_lookup(object, offset + PAGE_SIZE_64); | |
260 | } else { | |
261 | object->sequential = PAGE_SIZE_64; /* reset */ | |
262 | m = VM_PAGE_NULL; | |
263 | } | |
264 | break; | |
265 | case VM_BEHAVIOR_DEFAULT: | |
266 | default: | |
267 | if (offset && | |
268 | object->last_alloc == offset - PAGE_SIZE_64) { | |
269 | vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; | |
270 | ||
271 | object->sequential += PAGE_SIZE_64; | |
272 | m = (offset >= behind && | |
273 | object->sequential >= behind) ? | |
274 | vm_page_lookup(object, offset - behind) : | |
275 | VM_PAGE_NULL; | |
276 | } else if (object->last_alloc && | |
277 | object->last_alloc == offset + PAGE_SIZE_64) { | |
278 | vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; | |
279 | ||
280 | object->sequential += PAGE_SIZE_64; | |
281 | m = (offset < -behind && | |
282 | object->sequential >= behind) ? | |
283 | vm_page_lookup(object, offset + behind) : | |
284 | VM_PAGE_NULL; | |
285 | } else { | |
286 | object->sequential = PAGE_SIZE_64; | |
287 | m = VM_PAGE_NULL; | |
288 | } | |
289 | break; | |
290 | } | |
291 | ||
292 | object->last_alloc = offset; | |
293 | ||
294 | if (m) { | |
295 | if (!m->busy) { | |
296 | vm_page_lock_queues(); | |
297 | vm_page_deactivate(m); | |
298 | vm_page_unlock_queues(); | |
299 | #if TRACEFAULTPAGE | |
300 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
301 | #endif | |
302 | } | |
303 | return TRUE; | |
304 | } | |
305 | return FALSE; | |
306 | } | |
1c79356b | 307 | |
1c79356b A |
308 | |
309 | /* | |
310 | * Routine: vm_fault_page | |
311 | * Purpose: | |
312 | * Find the resident page for the virtual memory | |
313 | * specified by the given virtual memory object | |
314 | * and offset. | |
315 | * Additional arguments: | |
316 | * The required permissions for the page is given | |
317 | * in "fault_type". Desired permissions are included | |
318 | * in "protection". The minimum and maximum valid offsets | |
319 | * within the object for the relevant map entry are | |
320 | * passed in "lo_offset" and "hi_offset" respectively and | |
321 | * the expected page reference pattern is passed in "behavior". | |
322 | * These three parameters are used to determine pagein cluster | |
323 | * limits. | |
324 | * | |
325 | * If the desired page is known to be resident (for | |
326 | * example, because it was previously wired down), asserting | |
327 | * the "unwiring" parameter will speed the search. | |
328 | * | |
329 | * If the operation can be interrupted (by thread_abort | |
330 | * or thread_terminate), then the "interruptible" | |
331 | * parameter should be asserted. | |
332 | * | |
333 | * Results: | |
334 | * The page containing the proper data is returned | |
335 | * in "result_page". | |
336 | * | |
337 | * In/out conditions: | |
338 | * The source object must be locked and referenced, | |
339 | * and must donate one paging reference. The reference | |
340 | * is not affected. The paging reference and lock are | |
341 | * consumed. | |
342 | * | |
343 | * If the call succeeds, the object in which "result_page" | |
344 | * resides is left locked and holding a paging reference. | |
345 | * If this is not the original object, a busy page in the | |
346 | * original object is returned in "top_page", to prevent other | |
347 | * callers from pursuing this same data, along with a paging | |
348 | * reference for the original object. The "top_page" should | |
349 | * be destroyed when this guarantee is no longer required. | |
350 | * The "result_page" is also left busy. It is not removed | |
351 | * from the pageout queues. | |
352 | */ | |
353 | ||
354 | vm_fault_return_t | |
355 | vm_fault_page( | |
356 | /* Arguments: */ | |
357 | vm_object_t first_object, /* Object to begin search */ | |
358 | vm_object_offset_t first_offset, /* Offset into object */ | |
359 | vm_prot_t fault_type, /* What access is requested */ | |
360 | boolean_t must_be_resident,/* Must page be resident? */ | |
361 | int interruptible, /* how may fault be interrupted? */ | |
362 | vm_object_offset_t lo_offset, /* Map entry start */ | |
363 | vm_object_offset_t hi_offset, /* Map entry end */ | |
364 | vm_behavior_t behavior, /* Page reference behavior */ | |
365 | /* Modifies in place: */ | |
366 | vm_prot_t *protection, /* Protection for mapping */ | |
367 | /* Returns: */ | |
368 | vm_page_t *result_page, /* Page found, if successful */ | |
369 | vm_page_t *top_page, /* Page in top object, if | |
370 | * not result_page. */ | |
371 | int *type_of_fault, /* if non-null, fill in with type of fault | |
372 | * COW, zero-fill, etc... returned in trace point */ | |
373 | /* More arguments: */ | |
374 | kern_return_t *error_code, /* code if page is in error */ | |
375 | boolean_t no_zero_fill, /* don't zero fill absent pages */ | |
0b4e3aa0 | 376 | boolean_t data_supply, /* treat as data_supply if |
1c79356b A |
377 | * it is a write fault and a full |
378 | * page is provided */ | |
0b4e3aa0 A |
379 | vm_map_t map, |
380 | vm_offset_t vaddr) | |
1c79356b A |
381 | { |
382 | register | |
383 | vm_page_t m; | |
384 | register | |
385 | vm_object_t object; | |
386 | register | |
387 | vm_object_offset_t offset; | |
388 | vm_page_t first_m; | |
389 | vm_object_t next_object; | |
390 | vm_object_t copy_object; | |
391 | boolean_t look_for_page; | |
392 | vm_prot_t access_required = fault_type; | |
393 | vm_prot_t wants_copy_flag; | |
394 | vm_size_t cluster_size, length; | |
395 | vm_object_offset_t cluster_offset; | |
396 | vm_object_offset_t cluster_start, cluster_end, paging_offset; | |
397 | vm_object_offset_t align_offset; | |
398 | CLUSTER_STAT(int pages_at_higher_offsets;) | |
399 | CLUSTER_STAT(int pages_at_lower_offsets;) | |
400 | kern_return_t wait_result; | |
1c79356b | 401 | boolean_t interruptible_state; |
0b4e3aa0 | 402 | boolean_t bumped_pagein = FALSE; |
1c79356b | 403 | |
1c79356b A |
404 | |
405 | #if MACH_PAGEMAP | |
406 | /* | |
407 | * MACH page map - an optional optimization where a bit map is maintained | |
408 | * by the VM subsystem for internal objects to indicate which pages of | |
409 | * the object currently reside on backing store. This existence map | |
410 | * duplicates information maintained by the vnode pager. It is | |
411 | * created at the time of the first pageout against the object, i.e. | |
412 | * at the same time pager for the object is created. The optimization | |
413 | * is designed to eliminate pager interaction overhead, if it is | |
414 | * 'known' that the page does not exist on backing store. | |
415 | * | |
416 | * LOOK_FOR() evaluates to TRUE if the page specified by object/offset is | |
417 | * either marked as paged out in the existence map for the object or no | |
418 | * existence map exists for the object. LOOK_FOR() is one of the | |
419 | * criteria in the decision to invoke the pager. It is also used as one | |
420 | * of the criteria to terminate the scan for adjacent pages in a clustered | |
421 | * pagein operation. Note that LOOK_FOR() always evaluates to TRUE for | |
422 | * permanent objects. Note also that if the pager for an internal object | |
423 | * has not been created, the pager is not invoked regardless of the value | |
424 | * of LOOK_FOR() and that clustered pagein scans are only done on an object | |
425 | * for which a pager has been created. | |
426 | * | |
427 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset | |
428 | * is marked as paged out in the existence map for the object. PAGED_OUT() | |
429 | * PAGED_OUT() is used to determine if a page has already been pushed | |
430 | * into a copy object in order to avoid a redundant page out operation. | |
431 | */ | |
432 | #define LOOK_FOR(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
433 | != VM_EXTERNAL_STATE_ABSENT) | |
434 | #define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
435 | == VM_EXTERNAL_STATE_EXISTS) | |
436 | #else /* MACH_PAGEMAP */ | |
437 | /* | |
438 | * If the MACH page map optimization is not enabled, | |
439 | * LOOK_FOR() always evaluates to TRUE. The pager will always be | |
440 | * invoked to resolve missing pages in an object, assuming the pager | |
441 | * has been created for the object. In a clustered page operation, the | |
442 | * absence of a page on backing backing store cannot be used to terminate | |
443 | * a scan for adjacent pages since that information is available only in | |
444 | * the pager. Hence pages that may not be paged out are potentially | |
445 | * included in a clustered request. The vnode pager is coded to deal | |
446 | * with any combination of absent/present pages in a clustered | |
447 | * pagein request. PAGED_OUT() always evaluates to FALSE, i.e. the pager | |
448 | * will always be invoked to push a dirty page into a copy object assuming | |
449 | * a pager has been created. If the page has already been pushed, the | |
450 | * pager will ingore the new request. | |
451 | */ | |
452 | #define LOOK_FOR(o, f) TRUE | |
453 | #define PAGED_OUT(o, f) FALSE | |
454 | #endif /* MACH_PAGEMAP */ | |
455 | ||
456 | /* | |
457 | * Recovery actions | |
458 | */ | |
459 | #define PREPARE_RELEASE_PAGE(m) \ | |
460 | MACRO_BEGIN \ | |
461 | vm_page_lock_queues(); \ | |
462 | MACRO_END | |
463 | ||
464 | #define DO_RELEASE_PAGE(m) \ | |
465 | MACRO_BEGIN \ | |
466 | PAGE_WAKEUP_DONE(m); \ | |
467 | if (!m->active && !m->inactive) \ | |
468 | vm_page_activate(m); \ | |
469 | vm_page_unlock_queues(); \ | |
470 | MACRO_END | |
471 | ||
472 | #define RELEASE_PAGE(m) \ | |
473 | MACRO_BEGIN \ | |
474 | PREPARE_RELEASE_PAGE(m); \ | |
475 | DO_RELEASE_PAGE(m); \ | |
476 | MACRO_END | |
477 | ||
478 | #if TRACEFAULTPAGE | |
479 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ | |
480 | #endif | |
481 | ||
482 | ||
483 | ||
484 | #if !VM_FAULT_STATIC_CONFIG | |
485 | if (vm_fault_dirty_handling | |
486 | #if MACH_KDB | |
487 | /* | |
488 | * If there are watchpoints set, then | |
489 | * we don't want to give away write permission | |
490 | * on a read fault. Make the task write fault, | |
491 | * so that the watchpoint code notices the access. | |
492 | */ | |
493 | || db_watchpoint_list | |
494 | #endif /* MACH_KDB */ | |
495 | ) { | |
496 | /* | |
497 | * If we aren't asking for write permission, | |
498 | * then don't give it away. We're using write | |
499 | * faults to set the dirty bit. | |
500 | */ | |
501 | if (!(fault_type & VM_PROT_WRITE)) | |
502 | *protection &= ~VM_PROT_WRITE; | |
503 | } | |
504 | ||
505 | if (!vm_fault_interruptible) | |
506 | interruptible = THREAD_UNINT; | |
507 | #else /* STATIC_CONFIG */ | |
508 | #if MACH_KDB | |
509 | /* | |
510 | * If there are watchpoints set, then | |
511 | * we don't want to give away write permission | |
512 | * on a read fault. Make the task write fault, | |
513 | * so that the watchpoint code notices the access. | |
514 | */ | |
515 | if (db_watchpoint_list) { | |
516 | /* | |
517 | * If we aren't asking for write permission, | |
518 | * then don't give it away. We're using write | |
519 | * faults to set the dirty bit. | |
520 | */ | |
521 | if (!(fault_type & VM_PROT_WRITE)) | |
522 | *protection &= ~VM_PROT_WRITE; | |
523 | } | |
524 | ||
525 | #endif /* MACH_KDB */ | |
526 | #endif /* STATIC_CONFIG */ | |
527 | ||
9bccf70c | 528 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b A |
529 | |
530 | /* | |
531 | * INVARIANTS (through entire routine): | |
532 | * | |
533 | * 1) At all times, we must either have the object | |
534 | * lock or a busy page in some object to prevent | |
535 | * some other thread from trying to bring in | |
536 | * the same page. | |
537 | * | |
538 | * Note that we cannot hold any locks during the | |
539 | * pager access or when waiting for memory, so | |
540 | * we use a busy page then. | |
541 | * | |
542 | * Note also that we aren't as concerned about more than | |
543 | * one thread attempting to memory_object_data_unlock | |
544 | * the same page at once, so we don't hold the page | |
545 | * as busy then, but do record the highest unlock | |
546 | * value so far. [Unlock requests may also be delivered | |
547 | * out of order.] | |
548 | * | |
549 | * 2) To prevent another thread from racing us down the | |
550 | * shadow chain and entering a new page in the top | |
551 | * object before we do, we must keep a busy page in | |
552 | * the top object while following the shadow chain. | |
553 | * | |
554 | * 3) We must increment paging_in_progress on any object | |
555 | * for which we have a busy page | |
556 | * | |
557 | * 4) We leave busy pages on the pageout queues. | |
558 | * If the pageout daemon comes across a busy page, | |
559 | * it will remove the page from the pageout queues. | |
560 | */ | |
561 | ||
562 | /* | |
563 | * Search for the page at object/offset. | |
564 | */ | |
565 | ||
566 | object = first_object; | |
567 | offset = first_offset; | |
568 | first_m = VM_PAGE_NULL; | |
569 | access_required = fault_type; | |
570 | ||
571 | XPR(XPR_VM_FAULT, | |
572 | "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n", | |
573 | (integer_t)object, offset, fault_type, *protection, 0); | |
574 | ||
575 | /* | |
576 | * See whether this page is resident | |
577 | */ | |
578 | ||
579 | while (TRUE) { | |
580 | #if TRACEFAULTPAGE | |
581 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
582 | #endif | |
583 | if (!object->alive) { | |
584 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 585 | thread_interrupt_level(interruptible_state); |
1c79356b A |
586 | return(VM_FAULT_MEMORY_ERROR); |
587 | } | |
588 | m = vm_page_lookup(object, offset); | |
589 | #if TRACEFAULTPAGE | |
590 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
591 | #endif | |
592 | if (m != VM_PAGE_NULL) { | |
593 | /* | |
594 | * If the page was pre-paged as part of a | |
595 | * cluster, record the fact. | |
596 | */ | |
597 | if (m->clustered) { | |
598 | vm_pagein_cluster_used++; | |
599 | m->clustered = FALSE; | |
600 | } | |
601 | ||
602 | /* | |
603 | * If the page is being brought in, | |
604 | * wait for it and then retry. | |
605 | * | |
606 | * A possible optimization: if the page | |
607 | * is known to be resident, we can ignore | |
608 | * pages that are absent (regardless of | |
609 | * whether they're busy). | |
610 | */ | |
611 | ||
612 | if (m->busy) { | |
613 | #if TRACEFAULTPAGE | |
614 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
615 | #endif | |
9bccf70c | 616 | wait_result = PAGE_SLEEP(object, m, interruptible); |
1c79356b A |
617 | XPR(XPR_VM_FAULT, |
618 | "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n", | |
619 | (integer_t)object, offset, | |
620 | (integer_t)m, 0, 0); | |
621 | counter(c_vm_fault_page_block_busy_kernel++); | |
1c79356b | 622 | |
1c79356b A |
623 | if (wait_result != THREAD_AWAKENED) { |
624 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 625 | thread_interrupt_level(interruptible_state); |
1c79356b A |
626 | if (wait_result == THREAD_RESTART) |
627 | { | |
628 | return(VM_FAULT_RETRY); | |
629 | } | |
630 | else | |
631 | { | |
632 | return(VM_FAULT_INTERRUPTED); | |
633 | } | |
634 | } | |
635 | continue; | |
636 | } | |
637 | ||
638 | /* | |
639 | * If the page is in error, give up now. | |
640 | */ | |
641 | ||
642 | if (m->error) { | |
643 | #if TRACEFAULTPAGE | |
644 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ | |
645 | #endif | |
646 | if (error_code) | |
647 | *error_code = m->page_error; | |
648 | VM_PAGE_FREE(m); | |
649 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 650 | thread_interrupt_level(interruptible_state); |
1c79356b A |
651 | return(VM_FAULT_MEMORY_ERROR); |
652 | } | |
653 | ||
654 | /* | |
655 | * If the pager wants us to restart | |
656 | * at the top of the chain, | |
657 | * typically because it has moved the | |
658 | * page to another pager, then do so. | |
659 | */ | |
660 | ||
661 | if (m->restart) { | |
662 | #if TRACEFAULTPAGE | |
663 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
664 | #endif | |
665 | VM_PAGE_FREE(m); | |
666 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 667 | thread_interrupt_level(interruptible_state); |
1c79356b A |
668 | return(VM_FAULT_RETRY); |
669 | } | |
670 | ||
671 | /* | |
672 | * If the page isn't busy, but is absent, | |
673 | * then it was deemed "unavailable". | |
674 | */ | |
675 | ||
676 | if (m->absent) { | |
677 | /* | |
678 | * Remove the non-existent page (unless it's | |
679 | * in the top object) and move on down to the | |
680 | * next object (if there is one). | |
681 | */ | |
682 | #if TRACEFAULTPAGE | |
683 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ | |
684 | #endif | |
685 | ||
686 | next_object = object->shadow; | |
687 | if (next_object == VM_OBJECT_NULL) { | |
688 | vm_page_t real_m; | |
689 | ||
690 | assert(!must_be_resident); | |
691 | ||
692 | if (object->shadow_severed) { | |
693 | vm_fault_cleanup( | |
694 | object, first_m); | |
9bccf70c | 695 | thread_interrupt_level(interruptible_state); |
1c79356b A |
696 | return VM_FAULT_MEMORY_ERROR; |
697 | } | |
698 | ||
699 | /* | |
700 | * Absent page at bottom of shadow | |
701 | * chain; zero fill the page we left | |
702 | * busy in the first object, and flush | |
703 | * the absent page. But first we | |
704 | * need to allocate a real page. | |
705 | */ | |
706 | if (VM_PAGE_THROTTLED() || | |
55e303ae A |
707 | (real_m = vm_page_grab()) |
708 | == VM_PAGE_NULL) { | |
709 | vm_fault_cleanup( | |
710 | object, first_m); | |
711 | thread_interrupt_level( | |
712 | interruptible_state); | |
713 | return( | |
714 | VM_FAULT_MEMORY_SHORTAGE); | |
715 | } | |
716 | ||
717 | /* | |
718 | * are we protecting the system from | |
719 | * backing store exhaustion. If so | |
720 | * sleep unless we are privileged. | |
721 | */ | |
722 | ||
723 | if(vm_backing_store_low) { | |
724 | if(!(current_task()->priv_flags | |
725 | & VM_BACKING_STORE_PRIV)) { | |
726 | assert_wait((event_t) | |
727 | &vm_backing_store_low, | |
728 | THREAD_UNINT); | |
729 | vm_fault_cleanup(object, | |
730 | first_m); | |
731 | thread_block((void(*)(void)) 0); | |
732 | thread_interrupt_level( | |
733 | interruptible_state); | |
734 | return(VM_FAULT_RETRY); | |
735 | } | |
1c79356b A |
736 | } |
737 | ||
55e303ae | 738 | |
1c79356b A |
739 | XPR(XPR_VM_FAULT, |
740 | "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n", | |
741 | (integer_t)object, offset, | |
742 | (integer_t)m, | |
743 | (integer_t)first_object, 0); | |
744 | if (object != first_object) { | |
745 | VM_PAGE_FREE(m); | |
746 | vm_object_paging_end(object); | |
747 | vm_object_unlock(object); | |
748 | object = first_object; | |
749 | offset = first_offset; | |
750 | m = first_m; | |
751 | first_m = VM_PAGE_NULL; | |
752 | vm_object_lock(object); | |
753 | } | |
754 | ||
755 | VM_PAGE_FREE(m); | |
756 | assert(real_m->busy); | |
757 | vm_page_insert(real_m, object, offset); | |
758 | m = real_m; | |
759 | ||
760 | /* | |
761 | * Drop the lock while zero filling | |
762 | * page. Then break because this | |
763 | * is the page we wanted. Checking | |
764 | * the page lock is a waste of time; | |
765 | * this page was either absent or | |
766 | * newly allocated -- in both cases | |
767 | * it can't be page locked by a pager. | |
768 | */ | |
0b4e3aa0 A |
769 | m->no_isync = FALSE; |
770 | ||
1c79356b A |
771 | if (!no_zero_fill) { |
772 | vm_object_unlock(object); | |
773 | vm_page_zero_fill(m); | |
1c79356b A |
774 | vm_object_lock(object); |
775 | } | |
55e303ae A |
776 | if (type_of_fault) |
777 | *type_of_fault = DBG_ZERO_FILL_FAULT; | |
778 | VM_STAT(zero_fill_count++); | |
779 | ||
780 | if (bumped_pagein == TRUE) { | |
781 | VM_STAT(pageins--); | |
782 | current_task()->pageins--; | |
783 | } | |
784 | #if 0 | |
785 | pmap_clear_modify(m->phys_page); | |
786 | #endif | |
1c79356b A |
787 | vm_page_lock_queues(); |
788 | VM_PAGE_QUEUES_REMOVE(m); | |
0b4e3aa0 | 789 | m->page_ticket = vm_page_ticket; |
9bccf70c A |
790 | if(m->object->size > 0x80000) { |
791 | m->zero_fill = TRUE; | |
792 | /* depends on the queues lock */ | |
793 | vm_zf_count += 1; | |
794 | queue_enter(&vm_page_queue_zf, | |
795 | m, vm_page_t, pageq); | |
796 | } else { | |
797 | queue_enter( | |
798 | &vm_page_queue_inactive, | |
799 | m, vm_page_t, pageq); | |
800 | } | |
0b4e3aa0 A |
801 | vm_page_ticket_roll++; |
802 | if(vm_page_ticket_roll == | |
803 | VM_PAGE_TICKETS_IN_ROLL) { | |
804 | vm_page_ticket_roll = 0; | |
805 | if(vm_page_ticket == | |
806 | VM_PAGE_TICKET_ROLL_IDS) | |
807 | vm_page_ticket= 0; | |
808 | else | |
809 | vm_page_ticket++; | |
810 | } | |
1c79356b A |
811 | m->inactive = TRUE; |
812 | vm_page_inactive_count++; | |
813 | vm_page_unlock_queues(); | |
814 | break; | |
815 | } else { | |
816 | if (must_be_resident) { | |
817 | vm_object_paging_end(object); | |
818 | } else if (object != first_object) { | |
819 | vm_object_paging_end(object); | |
820 | VM_PAGE_FREE(m); | |
821 | } else { | |
822 | first_m = m; | |
823 | m->absent = FALSE; | |
824 | m->unusual = FALSE; | |
825 | vm_object_absent_release(object); | |
826 | m->busy = TRUE; | |
827 | ||
828 | vm_page_lock_queues(); | |
829 | VM_PAGE_QUEUES_REMOVE(m); | |
830 | vm_page_unlock_queues(); | |
831 | } | |
832 | XPR(XPR_VM_FAULT, | |
833 | "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n", | |
834 | (integer_t)object, offset, | |
835 | (integer_t)next_object, | |
836 | offset+object->shadow_offset,0); | |
837 | offset += object->shadow_offset; | |
838 | hi_offset += object->shadow_offset; | |
839 | lo_offset += object->shadow_offset; | |
840 | access_required = VM_PROT_READ; | |
841 | vm_object_lock(next_object); | |
842 | vm_object_unlock(object); | |
843 | object = next_object; | |
844 | vm_object_paging_begin(object); | |
845 | continue; | |
846 | } | |
847 | } | |
848 | ||
849 | if ((m->cleaning) | |
850 | && ((object != first_object) || | |
851 | (object->copy != VM_OBJECT_NULL)) | |
852 | && (fault_type & VM_PROT_WRITE)) { | |
853 | /* | |
854 | * This is a copy-on-write fault that will | |
855 | * cause us to revoke access to this page, but | |
856 | * this page is in the process of being cleaned | |
857 | * in a clustered pageout. We must wait until | |
858 | * the cleaning operation completes before | |
859 | * revoking access to the original page, | |
860 | * otherwise we might attempt to remove a | |
861 | * wired mapping. | |
862 | */ | |
863 | #if TRACEFAULTPAGE | |
864 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ | |
865 | #endif | |
866 | XPR(XPR_VM_FAULT, | |
867 | "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n", | |
868 | (integer_t)object, offset, | |
869 | (integer_t)m, 0, 0); | |
870 | /* take an extra ref so that object won't die */ | |
871 | assert(object->ref_count > 0); | |
872 | object->ref_count++; | |
873 | vm_object_res_reference(object); | |
874 | vm_fault_cleanup(object, first_m); | |
875 | counter(c_vm_fault_page_block_backoff_kernel++); | |
876 | vm_object_lock(object); | |
877 | assert(object->ref_count > 0); | |
878 | m = vm_page_lookup(object, offset); | |
879 | if (m != VM_PAGE_NULL && m->cleaning) { | |
880 | PAGE_ASSERT_WAIT(m, interruptible); | |
881 | vm_object_unlock(object); | |
9bccf70c | 882 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
883 | vm_object_deallocate(object); |
884 | goto backoff; | |
885 | } else { | |
886 | vm_object_unlock(object); | |
887 | vm_object_deallocate(object); | |
9bccf70c | 888 | thread_interrupt_level(interruptible_state); |
1c79356b A |
889 | return VM_FAULT_RETRY; |
890 | } | |
891 | } | |
892 | ||
893 | /* | |
894 | * If the desired access to this page has | |
895 | * been locked out, request that it be unlocked. | |
896 | */ | |
897 | ||
898 | if (access_required & m->page_lock) { | |
899 | if ((access_required & m->unlock_request) != access_required) { | |
900 | vm_prot_t new_unlock_request; | |
901 | kern_return_t rc; | |
902 | ||
903 | #if TRACEFAULTPAGE | |
904 | dbgTrace(0xBEEF000A, (unsigned int) m, (unsigned int) object->pager_ready); /* (TEST/DEBUG) */ | |
905 | #endif | |
906 | if (!object->pager_ready) { | |
907 | XPR(XPR_VM_FAULT, | |
908 | "vm_f_page: ready wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n", | |
909 | access_required, | |
910 | (integer_t)object, offset, | |
911 | (integer_t)m, 0); | |
912 | /* take an extra ref */ | |
913 | assert(object->ref_count > 0); | |
914 | object->ref_count++; | |
915 | vm_object_res_reference(object); | |
916 | vm_fault_cleanup(object, | |
917 | first_m); | |
918 | counter(c_vm_fault_page_block_backoff_kernel++); | |
919 | vm_object_lock(object); | |
920 | assert(object->ref_count > 0); | |
921 | if (!object->pager_ready) { | |
9bccf70c | 922 | wait_result = vm_object_assert_wait( |
1c79356b A |
923 | object, |
924 | VM_OBJECT_EVENT_PAGER_READY, | |
925 | interruptible); | |
926 | vm_object_unlock(object); | |
9bccf70c A |
927 | if (wait_result == THREAD_WAITING) |
928 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
929 | vm_object_deallocate(object); |
930 | goto backoff; | |
931 | } else { | |
932 | vm_object_unlock(object); | |
933 | vm_object_deallocate(object); | |
9bccf70c | 934 | thread_interrupt_level(interruptible_state); |
1c79356b A |
935 | return VM_FAULT_RETRY; |
936 | } | |
937 | } | |
938 | ||
939 | new_unlock_request = m->unlock_request = | |
940 | (access_required | m->unlock_request); | |
941 | vm_object_unlock(object); | |
942 | XPR(XPR_VM_FAULT, | |
943 | "vm_f_page: unlock obj 0x%X, offset 0x%X, page 0x%X, unl_req %d\n", | |
944 | (integer_t)object, offset, | |
945 | (integer_t)m, new_unlock_request, 0); | |
946 | if ((rc = memory_object_data_unlock( | |
947 | object->pager, | |
1c79356b A |
948 | offset + object->paging_offset, |
949 | PAGE_SIZE, | |
950 | new_unlock_request)) | |
951 | != KERN_SUCCESS) { | |
952 | if (vm_fault_debug) | |
953 | printf("vm_fault: memory_object_data_unlock failed\n"); | |
954 | vm_object_lock(object); | |
955 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 956 | thread_interrupt_level(interruptible_state); |
1c79356b A |
957 | return((rc == MACH_SEND_INTERRUPTED) ? |
958 | VM_FAULT_INTERRUPTED : | |
959 | VM_FAULT_MEMORY_ERROR); | |
960 | } | |
961 | vm_object_lock(object); | |
962 | continue; | |
963 | } | |
964 | ||
965 | XPR(XPR_VM_FAULT, | |
966 | "vm_f_page: access wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n", | |
967 | access_required, (integer_t)object, | |
968 | offset, (integer_t)m, 0); | |
969 | /* take an extra ref so object won't die */ | |
970 | assert(object->ref_count > 0); | |
971 | object->ref_count++; | |
972 | vm_object_res_reference(object); | |
973 | vm_fault_cleanup(object, first_m); | |
974 | counter(c_vm_fault_page_block_backoff_kernel++); | |
975 | vm_object_lock(object); | |
976 | assert(object->ref_count > 0); | |
977 | m = vm_page_lookup(object, offset); | |
978 | if (m != VM_PAGE_NULL && | |
979 | (access_required & m->page_lock) && | |
980 | !((access_required & m->unlock_request) != access_required)) { | |
981 | PAGE_ASSERT_WAIT(m, interruptible); | |
982 | vm_object_unlock(object); | |
9bccf70c | 983 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
984 | vm_object_deallocate(object); |
985 | goto backoff; | |
986 | } else { | |
987 | vm_object_unlock(object); | |
988 | vm_object_deallocate(object); | |
9bccf70c | 989 | thread_interrupt_level(interruptible_state); |
1c79356b A |
990 | return VM_FAULT_RETRY; |
991 | } | |
992 | } | |
993 | /* | |
994 | * We mark the page busy and leave it on | |
995 | * the pageout queues. If the pageout | |
996 | * deamon comes across it, then it will | |
997 | * remove the page. | |
998 | */ | |
999 | ||
1000 | #if TRACEFAULTPAGE | |
1001 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1002 | #endif | |
1003 | ||
1004 | #if !VM_FAULT_STATIC_CONFIG | |
1005 | if (!software_reference_bits) { | |
1006 | vm_page_lock_queues(); | |
1007 | if (m->inactive) | |
1008 | vm_stat.reactivations++; | |
1009 | ||
1010 | VM_PAGE_QUEUES_REMOVE(m); | |
1011 | vm_page_unlock_queues(); | |
1012 | } | |
1013 | #endif | |
1014 | XPR(XPR_VM_FAULT, | |
1015 | "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n", | |
1016 | (integer_t)object, offset, (integer_t)m, 0, 0); | |
1017 | assert(!m->busy); | |
1018 | m->busy = TRUE; | |
1019 | assert(!m->absent); | |
1020 | break; | |
1021 | } | |
1022 | ||
1023 | look_for_page = | |
1024 | (object->pager_created) && | |
1025 | LOOK_FOR(object, offset) && | |
1026 | (!data_supply); | |
1027 | ||
1028 | #if TRACEFAULTPAGE | |
1029 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ | |
1030 | #endif | |
1031 | if ((look_for_page || (object == first_object)) | |
0b4e3aa0 A |
1032 | && !must_be_resident |
1033 | && !(object->phys_contiguous)) { | |
1c79356b A |
1034 | /* |
1035 | * Allocate a new page for this object/offset | |
1036 | * pair. | |
1037 | */ | |
1038 | ||
1039 | m = vm_page_grab_fictitious(); | |
1040 | #if TRACEFAULTPAGE | |
1041 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
1042 | #endif | |
1043 | if (m == VM_PAGE_NULL) { | |
1044 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1045 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1046 | return(VM_FAULT_FICTITIOUS_SHORTAGE); |
1047 | } | |
1048 | vm_page_insert(m, object, offset); | |
1049 | } | |
1050 | ||
0b4e3aa0 | 1051 | if ((look_for_page && !must_be_resident)) { |
1c79356b A |
1052 | kern_return_t rc; |
1053 | ||
1054 | /* | |
1055 | * If the memory manager is not ready, we | |
1056 | * cannot make requests. | |
1057 | */ | |
1058 | if (!object->pager_ready) { | |
1059 | #if TRACEFAULTPAGE | |
1060 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1061 | #endif | |
0b4e3aa0 A |
1062 | if(m != VM_PAGE_NULL) |
1063 | VM_PAGE_FREE(m); | |
1c79356b A |
1064 | XPR(XPR_VM_FAULT, |
1065 | "vm_f_page: ready wait obj 0x%X, offset 0x%X\n", | |
1066 | (integer_t)object, offset, 0, 0, 0); | |
1067 | /* take an extra ref so object won't die */ | |
1068 | assert(object->ref_count > 0); | |
1069 | object->ref_count++; | |
1070 | vm_object_res_reference(object); | |
1071 | vm_fault_cleanup(object, first_m); | |
1072 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1073 | vm_object_lock(object); | |
1074 | assert(object->ref_count > 0); | |
1075 | if (!object->pager_ready) { | |
9bccf70c | 1076 | wait_result = vm_object_assert_wait(object, |
1c79356b A |
1077 | VM_OBJECT_EVENT_PAGER_READY, |
1078 | interruptible); | |
1079 | vm_object_unlock(object); | |
9bccf70c A |
1080 | if (wait_result == THREAD_WAITING) |
1081 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
1082 | vm_object_deallocate(object); |
1083 | goto backoff; | |
1084 | } else { | |
1085 | vm_object_unlock(object); | |
1086 | vm_object_deallocate(object); | |
9bccf70c | 1087 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1088 | return VM_FAULT_RETRY; |
1089 | } | |
1090 | } | |
1091 | ||
0b4e3aa0 A |
1092 | if(object->phys_contiguous) { |
1093 | if(m != VM_PAGE_NULL) { | |
1094 | VM_PAGE_FREE(m); | |
1095 | m = VM_PAGE_NULL; | |
1096 | } | |
1097 | goto no_clustering; | |
1098 | } | |
1c79356b A |
1099 | if (object->internal) { |
1100 | /* | |
1101 | * Requests to the default pager | |
1102 | * must reserve a real page in advance, | |
1103 | * because the pager's data-provided | |
1104 | * won't block for pages. IMPORTANT: | |
1105 | * this acts as a throttling mechanism | |
1106 | * for data_requests to the default | |
1107 | * pager. | |
1108 | */ | |
1109 | ||
1110 | #if TRACEFAULTPAGE | |
1111 | dbgTrace(0xBEEF000F, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1112 | #endif | |
1113 | if (m->fictitious && !vm_page_convert(m)) { | |
1114 | VM_PAGE_FREE(m); | |
1115 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1116 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1117 | return(VM_FAULT_MEMORY_SHORTAGE); |
1118 | } | |
1119 | } else if (object->absent_count > | |
1120 | vm_object_absent_max) { | |
1121 | /* | |
1122 | * If there are too many outstanding page | |
1123 | * requests pending on this object, we | |
1124 | * wait for them to be resolved now. | |
1125 | */ | |
1126 | ||
1127 | #if TRACEFAULTPAGE | |
1128 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1129 | #endif | |
0b4e3aa0 A |
1130 | if(m != VM_PAGE_NULL) |
1131 | VM_PAGE_FREE(m); | |
1c79356b A |
1132 | /* take an extra ref so object won't die */ |
1133 | assert(object->ref_count > 0); | |
1134 | object->ref_count++; | |
1135 | vm_object_res_reference(object); | |
1136 | vm_fault_cleanup(object, first_m); | |
1137 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1138 | vm_object_lock(object); | |
1139 | assert(object->ref_count > 0); | |
1140 | if (object->absent_count > vm_object_absent_max) { | |
1141 | vm_object_absent_assert_wait(object, | |
1142 | interruptible); | |
1143 | vm_object_unlock(object); | |
9bccf70c | 1144 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
1145 | vm_object_deallocate(object); |
1146 | goto backoff; | |
1147 | } else { | |
1148 | vm_object_unlock(object); | |
1149 | vm_object_deallocate(object); | |
9bccf70c | 1150 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1151 | return VM_FAULT_RETRY; |
1152 | } | |
1153 | } | |
1154 | ||
1155 | /* | |
1156 | * Indicate that the page is waiting for data | |
1157 | * from the memory manager. | |
1158 | */ | |
1159 | ||
0b4e3aa0 A |
1160 | if(m != VM_PAGE_NULL) { |
1161 | ||
1162 | m->list_req_pending = TRUE; | |
1163 | m->absent = TRUE; | |
1164 | m->unusual = TRUE; | |
1165 | object->absent_count++; | |
1166 | ||
1167 | } | |
1c79356b | 1168 | |
9bccf70c | 1169 | no_clustering: |
1c79356b A |
1170 | cluster_start = offset; |
1171 | length = PAGE_SIZE; | |
1c79356b | 1172 | |
0b4e3aa0 A |
1173 | /* |
1174 | * lengthen the cluster by the pages in the working set | |
1175 | */ | |
1176 | if((map != NULL) && | |
1177 | (current_task()->dynamic_working_set != 0)) { | |
1178 | cluster_end = cluster_start + length; | |
1179 | /* tws values for start and end are just a | |
1180 | * suggestions. Therefore, as long as | |
1181 | * build_cluster does not use pointers or | |
1182 | * take action based on values that | |
1183 | * could be affected by re-entrance we | |
1184 | * do not need to take the map lock. | |
1185 | */ | |
9bccf70c | 1186 | cluster_end = offset + PAGE_SIZE_64; |
0b4e3aa0 A |
1187 | tws_build_cluster((tws_hash_t) |
1188 | current_task()->dynamic_working_set, | |
1189 | object, &cluster_start, | |
9bccf70c | 1190 | &cluster_end, 0x40000); |
0b4e3aa0 A |
1191 | length = cluster_end - cluster_start; |
1192 | } | |
1c79356b A |
1193 | #if TRACEFAULTPAGE |
1194 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1195 | #endif | |
1196 | /* | |
1197 | * We have a busy page, so we can | |
1198 | * release the object lock. | |
1199 | */ | |
1200 | vm_object_unlock(object); | |
1201 | ||
1202 | /* | |
1203 | * Call the memory manager to retrieve the data. | |
1204 | */ | |
1205 | ||
1206 | if (type_of_fault) | |
9bccf70c | 1207 | *type_of_fault = (length << 8) | DBG_PAGEIN_FAULT; |
1c79356b A |
1208 | VM_STAT(pageins++); |
1209 | current_task()->pageins++; | |
0b4e3aa0 | 1210 | bumped_pagein = TRUE; |
1c79356b A |
1211 | |
1212 | /* | |
1213 | * If this object uses a copy_call strategy, | |
1214 | * and we are interested in a copy of this object | |
1215 | * (having gotten here only by following a | |
1216 | * shadow chain), then tell the memory manager | |
1217 | * via a flag added to the desired_access | |
1218 | * parameter, so that it can detect a race | |
1219 | * between our walking down the shadow chain | |
1220 | * and its pushing pages up into a copy of | |
1221 | * the object that it manages. | |
1222 | */ | |
1223 | ||
1224 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && | |
1225 | object != first_object) { | |
1226 | wants_copy_flag = VM_PROT_WANTS_COPY; | |
1227 | } else { | |
1228 | wants_copy_flag = VM_PROT_NONE; | |
1229 | } | |
1230 | ||
1231 | XPR(XPR_VM_FAULT, | |
1232 | "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n", | |
1233 | (integer_t)object, offset, (integer_t)m, | |
1234 | access_required | wants_copy_flag, 0); | |
1235 | ||
1c79356b | 1236 | rc = memory_object_data_request(object->pager, |
1c79356b A |
1237 | cluster_start + object->paging_offset, |
1238 | length, | |
1239 | access_required | wants_copy_flag); | |
1240 | ||
1c79356b A |
1241 | |
1242 | #if TRACEFAULTPAGE | |
1243 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ | |
1244 | #endif | |
1245 | if (rc != KERN_SUCCESS) { | |
1246 | if (rc != MACH_SEND_INTERRUPTED | |
1247 | && vm_fault_debug) | |
0b4e3aa0 | 1248 | printf("%s(0x%x, 0x%x, 0x%x, 0x%x) failed, rc=%d\n", |
1c79356b A |
1249 | "memory_object_data_request", |
1250 | object->pager, | |
1c79356b | 1251 | cluster_start + object->paging_offset, |
0b4e3aa0 | 1252 | length, access_required, rc); |
1c79356b A |
1253 | /* |
1254 | * Don't want to leave a busy page around, | |
1255 | * but the data request may have blocked, | |
1256 | * so check if it's still there and busy. | |
1257 | */ | |
0b4e3aa0 A |
1258 | if(!object->phys_contiguous) { |
1259 | vm_object_lock(object); | |
1260 | for (; length; length -= PAGE_SIZE, | |
1261 | cluster_start += PAGE_SIZE_64) { | |
1262 | vm_page_t p; | |
1263 | if ((p = vm_page_lookup(object, | |
1c79356b | 1264 | cluster_start)) |
0b4e3aa0 A |
1265 | && p->absent && p->busy |
1266 | && p != first_m) { | |
1267 | VM_PAGE_FREE(p); | |
1268 | } | |
1269 | } | |
1c79356b A |
1270 | } |
1271 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1272 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1273 | return((rc == MACH_SEND_INTERRUPTED) ? |
1274 | VM_FAULT_INTERRUPTED : | |
1275 | VM_FAULT_MEMORY_ERROR); | |
0b4e3aa0 A |
1276 | } else { |
1277 | #ifdef notdefcdy | |
1278 | tws_hash_line_t line; | |
1279 | task_t task; | |
1280 | ||
1281 | task = current_task(); | |
1282 | ||
1283 | if((map != NULL) && | |
9bccf70c A |
1284 | (task->dynamic_working_set != 0)) |
1285 | && !(object->private)) { | |
1286 | vm_object_t base_object; | |
1287 | vm_object_offset_t base_offset; | |
1288 | base_object = object; | |
1289 | base_offset = offset; | |
1290 | while(base_object->shadow) { | |
1291 | base_offset += | |
1292 | base_object->shadow_offset; | |
1293 | base_object = | |
1294 | base_object->shadow; | |
1295 | } | |
0b4e3aa0 A |
1296 | if(tws_lookup |
1297 | ((tws_hash_t) | |
1298 | task->dynamic_working_set, | |
9bccf70c | 1299 | base_offset, base_object, |
0b4e3aa0 A |
1300 | &line) == KERN_SUCCESS) { |
1301 | tws_line_signal((tws_hash_t) | |
1302 | task->dynamic_working_set, | |
1303 | map, line, vaddr); | |
1304 | } | |
1305 | } | |
1306 | #endif | |
1c79356b A |
1307 | } |
1308 | ||
1309 | /* | |
1310 | * Retry with same object/offset, since new data may | |
1311 | * be in a different page (i.e., m is meaningless at | |
1312 | * this point). | |
1313 | */ | |
1314 | vm_object_lock(object); | |
1315 | if ((interruptible != THREAD_UNINT) && | |
1316 | (current_thread()->state & TH_ABORT)) { | |
1317 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1318 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1319 | return(VM_FAULT_INTERRUPTED); |
1320 | } | |
0b4e3aa0 A |
1321 | if(m == VM_PAGE_NULL) |
1322 | break; | |
1c79356b A |
1323 | continue; |
1324 | } | |
1325 | ||
1326 | /* | |
1327 | * The only case in which we get here is if | |
1328 | * object has no pager (or unwiring). If the pager doesn't | |
1329 | * have the page this is handled in the m->absent case above | |
1330 | * (and if you change things here you should look above). | |
1331 | */ | |
1332 | #if TRACEFAULTPAGE | |
1333 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1334 | #endif | |
1335 | if (object == first_object) | |
1336 | first_m = m; | |
1337 | else | |
1338 | assert(m == VM_PAGE_NULL); | |
1339 | ||
1340 | XPR(XPR_VM_FAULT, | |
1341 | "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n", | |
1342 | (integer_t)object, offset, (integer_t)m, | |
1343 | (integer_t)object->shadow, 0); | |
1344 | /* | |
1345 | * Move on to the next object. Lock the next | |
1346 | * object before unlocking the current one. | |
1347 | */ | |
1348 | next_object = object->shadow; | |
1349 | if (next_object == VM_OBJECT_NULL) { | |
1350 | assert(!must_be_resident); | |
1351 | /* | |
1352 | * If there's no object left, fill the page | |
1353 | * in the top object with zeros. But first we | |
1354 | * need to allocate a real page. | |
1355 | */ | |
1356 | ||
1357 | if (object != first_object) { | |
1358 | vm_object_paging_end(object); | |
1359 | vm_object_unlock(object); | |
1360 | ||
1361 | object = first_object; | |
1362 | offset = first_offset; | |
1363 | vm_object_lock(object); | |
1364 | } | |
1365 | ||
1366 | m = first_m; | |
1367 | assert(m->object == object); | |
1368 | first_m = VM_PAGE_NULL; | |
1369 | ||
55e303ae A |
1370 | if(m == VM_PAGE_NULL) { |
1371 | m = vm_page_grab(); | |
1372 | if (m == VM_PAGE_NULL) { | |
1373 | vm_fault_cleanup( | |
1374 | object, VM_PAGE_NULL); | |
1375 | thread_interrupt_level( | |
1376 | interruptible_state); | |
1377 | return(VM_FAULT_MEMORY_SHORTAGE); | |
1378 | } | |
1379 | vm_page_insert( | |
1380 | m, object, offset); | |
1381 | } | |
1382 | ||
1c79356b A |
1383 | if (object->shadow_severed) { |
1384 | VM_PAGE_FREE(m); | |
1385 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
9bccf70c | 1386 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1387 | return VM_FAULT_MEMORY_ERROR; |
1388 | } | |
1389 | ||
55e303ae A |
1390 | /* |
1391 | * are we protecting the system from | |
1392 | * backing store exhaustion. If so | |
1393 | * sleep unless we are privileged. | |
1394 | */ | |
1395 | ||
1396 | if(vm_backing_store_low) { | |
1397 | if(!(current_task()->priv_flags | |
1398 | & VM_BACKING_STORE_PRIV)) { | |
1399 | assert_wait((event_t) | |
1400 | &vm_backing_store_low, | |
1401 | THREAD_UNINT); | |
1402 | VM_PAGE_FREE(m); | |
1403 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
1404 | thread_block((void (*)(void)) 0); | |
1405 | thread_interrupt_level( | |
1406 | interruptible_state); | |
1407 | return(VM_FAULT_RETRY); | |
1408 | } | |
1409 | } | |
1410 | ||
1c79356b A |
1411 | if (VM_PAGE_THROTTLED() || |
1412 | (m->fictitious && !vm_page_convert(m))) { | |
1413 | VM_PAGE_FREE(m); | |
1414 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
9bccf70c | 1415 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1416 | return(VM_FAULT_MEMORY_SHORTAGE); |
1417 | } | |
0b4e3aa0 | 1418 | m->no_isync = FALSE; |
1c79356b A |
1419 | |
1420 | if (!no_zero_fill) { | |
1421 | vm_object_unlock(object); | |
1422 | vm_page_zero_fill(m); | |
1c79356b A |
1423 | vm_object_lock(object); |
1424 | } | |
55e303ae A |
1425 | if (type_of_fault) |
1426 | *type_of_fault = DBG_ZERO_FILL_FAULT; | |
1427 | VM_STAT(zero_fill_count++); | |
1428 | ||
1429 | if (bumped_pagein == TRUE) { | |
1430 | VM_STAT(pageins--); | |
1431 | current_task()->pageins--; | |
1432 | } | |
1433 | ||
1c79356b A |
1434 | vm_page_lock_queues(); |
1435 | VM_PAGE_QUEUES_REMOVE(m); | |
9bccf70c A |
1436 | if(m->object->size > 0x80000) { |
1437 | m->zero_fill = TRUE; | |
1438 | /* depends on the queues lock */ | |
1439 | vm_zf_count += 1; | |
1440 | queue_enter(&vm_page_queue_zf, | |
1441 | m, vm_page_t, pageq); | |
1442 | } else { | |
1443 | queue_enter( | |
1444 | &vm_page_queue_inactive, | |
1445 | m, vm_page_t, pageq); | |
1446 | } | |
0b4e3aa0 A |
1447 | m->page_ticket = vm_page_ticket; |
1448 | vm_page_ticket_roll++; | |
1449 | if(vm_page_ticket_roll == VM_PAGE_TICKETS_IN_ROLL) { | |
1450 | vm_page_ticket_roll = 0; | |
1451 | if(vm_page_ticket == | |
1452 | VM_PAGE_TICKET_ROLL_IDS) | |
1453 | vm_page_ticket= 0; | |
1454 | else | |
1455 | vm_page_ticket++; | |
1456 | } | |
1c79356b A |
1457 | m->inactive = TRUE; |
1458 | vm_page_inactive_count++; | |
1459 | vm_page_unlock_queues(); | |
55e303ae A |
1460 | #if 0 |
1461 | pmap_clear_modify(m->phys_page); | |
1462 | #endif | |
1c79356b A |
1463 | break; |
1464 | } | |
1465 | else { | |
1466 | if ((object != first_object) || must_be_resident) | |
1467 | vm_object_paging_end(object); | |
1468 | offset += object->shadow_offset; | |
1469 | hi_offset += object->shadow_offset; | |
1470 | lo_offset += object->shadow_offset; | |
1471 | access_required = VM_PROT_READ; | |
1472 | vm_object_lock(next_object); | |
1473 | vm_object_unlock(object); | |
1474 | object = next_object; | |
1475 | vm_object_paging_begin(object); | |
1476 | } | |
1477 | } | |
1478 | ||
1479 | /* | |
1480 | * PAGE HAS BEEN FOUND. | |
1481 | * | |
1482 | * This page (m) is: | |
1483 | * busy, so that we can play with it; | |
1484 | * not absent, so that nobody else will fill it; | |
1485 | * possibly eligible for pageout; | |
1486 | * | |
1487 | * The top-level page (first_m) is: | |
1488 | * VM_PAGE_NULL if the page was found in the | |
1489 | * top-level object; | |
1490 | * busy, not absent, and ineligible for pageout. | |
1491 | * | |
1492 | * The current object (object) is locked. A paging | |
1493 | * reference is held for the current and top-level | |
1494 | * objects. | |
1495 | */ | |
1496 | ||
1497 | #if TRACEFAULTPAGE | |
1498 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1499 | #endif | |
1500 | #if EXTRA_ASSERTIONS | |
0b4e3aa0 A |
1501 | if(m != VM_PAGE_NULL) { |
1502 | assert(m->busy && !m->absent); | |
1503 | assert((first_m == VM_PAGE_NULL) || | |
1504 | (first_m->busy && !first_m->absent && | |
1505 | !first_m->active && !first_m->inactive)); | |
1506 | } | |
1c79356b A |
1507 | #endif /* EXTRA_ASSERTIONS */ |
1508 | ||
1509 | XPR(XPR_VM_FAULT, | |
1510 | "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n", | |
1511 | (integer_t)object, offset, (integer_t)m, | |
1512 | (integer_t)first_object, (integer_t)first_m); | |
1513 | /* | |
1514 | * If the page is being written, but isn't | |
1515 | * already owned by the top-level object, | |
1516 | * we have to copy it into a new page owned | |
1517 | * by the top-level object. | |
1518 | */ | |
1519 | ||
0b4e3aa0 | 1520 | if ((object != first_object) && (m != VM_PAGE_NULL)) { |
1c79356b A |
1521 | /* |
1522 | * We only really need to copy if we | |
1523 | * want to write it. | |
1524 | */ | |
1525 | ||
1526 | #if TRACEFAULTPAGE | |
1527 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1528 | #endif | |
1529 | if (fault_type & VM_PROT_WRITE) { | |
1530 | vm_page_t copy_m; | |
1531 | ||
1532 | assert(!must_be_resident); | |
1533 | ||
55e303ae A |
1534 | /* |
1535 | * are we protecting the system from | |
1536 | * backing store exhaustion. If so | |
1537 | * sleep unless we are privileged. | |
1538 | */ | |
1539 | ||
1540 | if(vm_backing_store_low) { | |
1541 | if(!(current_task()->priv_flags | |
1542 | & VM_BACKING_STORE_PRIV)) { | |
1543 | assert_wait((event_t) | |
1544 | &vm_backing_store_low, | |
1545 | THREAD_UNINT); | |
1546 | RELEASE_PAGE(m); | |
1547 | vm_fault_cleanup(object, first_m); | |
1548 | thread_block((void (*)(void)) 0); | |
1549 | thread_interrupt_level( | |
1550 | interruptible_state); | |
1551 | return(VM_FAULT_RETRY); | |
1552 | } | |
1553 | } | |
1554 | ||
1c79356b A |
1555 | /* |
1556 | * If we try to collapse first_object at this | |
1557 | * point, we may deadlock when we try to get | |
1558 | * the lock on an intermediate object (since we | |
1559 | * have the bottom object locked). We can't | |
1560 | * unlock the bottom object, because the page | |
1561 | * we found may move (by collapse) if we do. | |
1562 | * | |
1563 | * Instead, we first copy the page. Then, when | |
1564 | * we have no more use for the bottom object, | |
1565 | * we unlock it and try to collapse. | |
1566 | * | |
1567 | * Note that we copy the page even if we didn't | |
1568 | * need to... that's the breaks. | |
1569 | */ | |
1570 | ||
1571 | /* | |
1572 | * Allocate a page for the copy | |
1573 | */ | |
1574 | copy_m = vm_page_grab(); | |
1575 | if (copy_m == VM_PAGE_NULL) { | |
1576 | RELEASE_PAGE(m); | |
1577 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1578 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1579 | return(VM_FAULT_MEMORY_SHORTAGE); |
1580 | } | |
1581 | ||
1582 | ||
1583 | XPR(XPR_VM_FAULT, | |
1584 | "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n", | |
1585 | (integer_t)object, offset, | |
1586 | (integer_t)m, (integer_t)copy_m, 0); | |
1587 | vm_page_copy(m, copy_m); | |
1588 | ||
1589 | /* | |
1590 | * If another map is truly sharing this | |
1591 | * page with us, we have to flush all | |
1592 | * uses of the original page, since we | |
1593 | * can't distinguish those which want the | |
1594 | * original from those which need the | |
1595 | * new copy. | |
1596 | * | |
1597 | * XXXO If we know that only one map has | |
1598 | * access to this page, then we could | |
1599 | * avoid the pmap_page_protect() call. | |
1600 | */ | |
1601 | ||
1602 | vm_page_lock_queues(); | |
1603 | assert(!m->cleaning); | |
55e303ae | 1604 | pmap_page_protect(m->phys_page, VM_PROT_NONE); |
1c79356b A |
1605 | vm_page_deactivate(m); |
1606 | copy_m->dirty = TRUE; | |
1607 | /* | |
1608 | * Setting reference here prevents this fault from | |
1609 | * being counted as a (per-thread) reactivate as well | |
1610 | * as a copy-on-write. | |
1611 | */ | |
1612 | first_m->reference = TRUE; | |
1613 | vm_page_unlock_queues(); | |
1614 | ||
1615 | /* | |
1616 | * We no longer need the old page or object. | |
1617 | */ | |
1618 | ||
1619 | PAGE_WAKEUP_DONE(m); | |
1620 | vm_object_paging_end(object); | |
1621 | vm_object_unlock(object); | |
1622 | ||
1623 | if (type_of_fault) | |
1624 | *type_of_fault = DBG_COW_FAULT; | |
1625 | VM_STAT(cow_faults++); | |
1626 | current_task()->cow_faults++; | |
1627 | object = first_object; | |
1628 | offset = first_offset; | |
1629 | ||
1630 | vm_object_lock(object); | |
1631 | VM_PAGE_FREE(first_m); | |
1632 | first_m = VM_PAGE_NULL; | |
1633 | assert(copy_m->busy); | |
1634 | vm_page_insert(copy_m, object, offset); | |
1635 | m = copy_m; | |
1636 | ||
1637 | /* | |
1638 | * Now that we've gotten the copy out of the | |
1639 | * way, let's try to collapse the top object. | |
1640 | * But we have to play ugly games with | |
1641 | * paging_in_progress to do that... | |
1642 | */ | |
1643 | ||
1644 | vm_object_paging_end(object); | |
55e303ae | 1645 | vm_object_collapse(object, offset); |
1c79356b A |
1646 | vm_object_paging_begin(object); |
1647 | ||
1648 | } | |
1649 | else { | |
1650 | *protection &= (~VM_PROT_WRITE); | |
1651 | } | |
1652 | } | |
1653 | ||
1654 | /* | |
1655 | * Now check whether the page needs to be pushed into the | |
1656 | * copy object. The use of asymmetric copy on write for | |
1657 | * shared temporary objects means that we may do two copies to | |
1658 | * satisfy the fault; one above to get the page from a | |
1659 | * shadowed object, and one here to push it into the copy. | |
1660 | */ | |
1661 | ||
9bccf70c | 1662 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL && |
0b4e3aa0 | 1663 | (m!= VM_PAGE_NULL)) { |
1c79356b A |
1664 | vm_object_offset_t copy_offset; |
1665 | vm_page_t copy_m; | |
1666 | ||
1667 | #if TRACEFAULTPAGE | |
1668 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1669 | #endif | |
1670 | /* | |
1671 | * If the page is being written, but hasn't been | |
1672 | * copied to the copy-object, we have to copy it there. | |
1673 | */ | |
1674 | ||
1675 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
1676 | *protection &= ~VM_PROT_WRITE; | |
1677 | break; | |
1678 | } | |
1679 | ||
1680 | /* | |
1681 | * If the page was guaranteed to be resident, | |
1682 | * we must have already performed the copy. | |
1683 | */ | |
1684 | ||
1685 | if (must_be_resident) | |
1686 | break; | |
1687 | ||
1688 | /* | |
1689 | * Try to get the lock on the copy_object. | |
1690 | */ | |
1691 | if (!vm_object_lock_try(copy_object)) { | |
1692 | vm_object_unlock(object); | |
1693 | ||
1694 | mutex_pause(); /* wait a bit */ | |
1695 | ||
1696 | vm_object_lock(object); | |
1697 | continue; | |
1698 | } | |
1699 | ||
1700 | /* | |
1701 | * Make another reference to the copy-object, | |
1702 | * to keep it from disappearing during the | |
1703 | * copy. | |
1704 | */ | |
1705 | assert(copy_object->ref_count > 0); | |
1706 | copy_object->ref_count++; | |
1707 | VM_OBJ_RES_INCR(copy_object); | |
1708 | ||
1709 | /* | |
1710 | * Does the page exist in the copy? | |
1711 | */ | |
1712 | copy_offset = first_offset - copy_object->shadow_offset; | |
1713 | if (copy_object->size <= copy_offset) | |
1714 | /* | |
1715 | * Copy object doesn't cover this page -- do nothing. | |
1716 | */ | |
1717 | ; | |
1718 | else if ((copy_m = | |
1719 | vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { | |
1720 | /* Page currently exists in the copy object */ | |
1721 | if (copy_m->busy) { | |
1722 | /* | |
1723 | * If the page is being brought | |
1724 | * in, wait for it and then retry. | |
1725 | */ | |
1726 | RELEASE_PAGE(m); | |
1727 | /* take an extra ref so object won't die */ | |
1728 | assert(copy_object->ref_count > 0); | |
1729 | copy_object->ref_count++; | |
1730 | vm_object_res_reference(copy_object); | |
1731 | vm_object_unlock(copy_object); | |
1732 | vm_fault_cleanup(object, first_m); | |
1733 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1734 | vm_object_lock(copy_object); | |
1735 | assert(copy_object->ref_count > 0); | |
1736 | VM_OBJ_RES_DECR(copy_object); | |
1737 | copy_object->ref_count--; | |
1738 | assert(copy_object->ref_count > 0); | |
1739 | copy_m = vm_page_lookup(copy_object, copy_offset); | |
1740 | if (copy_m != VM_PAGE_NULL && copy_m->busy) { | |
1741 | PAGE_ASSERT_WAIT(copy_m, interruptible); | |
1742 | vm_object_unlock(copy_object); | |
9bccf70c | 1743 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
1744 | vm_object_deallocate(copy_object); |
1745 | goto backoff; | |
1746 | } else { | |
1747 | vm_object_unlock(copy_object); | |
1748 | vm_object_deallocate(copy_object); | |
9bccf70c | 1749 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1750 | return VM_FAULT_RETRY; |
1751 | } | |
1752 | } | |
1753 | } | |
1754 | else if (!PAGED_OUT(copy_object, copy_offset)) { | |
1755 | /* | |
1756 | * If PAGED_OUT is TRUE, then the page used to exist | |
1757 | * in the copy-object, and has already been paged out. | |
1758 | * We don't need to repeat this. If PAGED_OUT is | |
1759 | * FALSE, then either we don't know (!pager_created, | |
1760 | * for example) or it hasn't been paged out. | |
1761 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) | |
1762 | * We must copy the page to the copy object. | |
1763 | */ | |
1764 | ||
55e303ae A |
1765 | /* |
1766 | * are we protecting the system from | |
1767 | * backing store exhaustion. If so | |
1768 | * sleep unless we are privileged. | |
1769 | */ | |
1770 | ||
1771 | if(vm_backing_store_low) { | |
1772 | if(!(current_task()->priv_flags | |
1773 | & VM_BACKING_STORE_PRIV)) { | |
1774 | assert_wait((event_t) | |
1775 | &vm_backing_store_low, | |
1776 | THREAD_UNINT); | |
1777 | RELEASE_PAGE(m); | |
1778 | VM_OBJ_RES_DECR(copy_object); | |
1779 | copy_object->ref_count--; | |
1780 | assert(copy_object->ref_count > 0); | |
1781 | vm_object_unlock(copy_object); | |
1782 | vm_fault_cleanup(object, first_m); | |
1783 | thread_block((void (*)(void)) 0); | |
1784 | thread_interrupt_level( | |
1785 | interruptible_state); | |
1786 | return(VM_FAULT_RETRY); | |
1787 | } | |
1788 | } | |
1789 | ||
1c79356b A |
1790 | /* |
1791 | * Allocate a page for the copy | |
1792 | */ | |
1793 | copy_m = vm_page_alloc(copy_object, copy_offset); | |
1794 | if (copy_m == VM_PAGE_NULL) { | |
1795 | RELEASE_PAGE(m); | |
1796 | VM_OBJ_RES_DECR(copy_object); | |
1797 | copy_object->ref_count--; | |
1798 | assert(copy_object->ref_count > 0); | |
1799 | vm_object_unlock(copy_object); | |
1800 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1801 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1802 | return(VM_FAULT_MEMORY_SHORTAGE); |
1803 | } | |
1804 | ||
1805 | /* | |
1806 | * Must copy page into copy-object. | |
1807 | */ | |
1808 | ||
1809 | vm_page_copy(m, copy_m); | |
1810 | ||
1811 | /* | |
1812 | * If the old page was in use by any users | |
1813 | * of the copy-object, it must be removed | |
1814 | * from all pmaps. (We can't know which | |
1815 | * pmaps use it.) | |
1816 | */ | |
1817 | ||
1818 | vm_page_lock_queues(); | |
1819 | assert(!m->cleaning); | |
55e303ae | 1820 | pmap_page_protect(m->phys_page, VM_PROT_NONE); |
1c79356b A |
1821 | copy_m->dirty = TRUE; |
1822 | vm_page_unlock_queues(); | |
1823 | ||
1824 | /* | |
1825 | * If there's a pager, then immediately | |
1826 | * page out this page, using the "initialize" | |
1827 | * option. Else, we use the copy. | |
1828 | */ | |
1829 | ||
1830 | if | |
1831 | #if MACH_PAGEMAP | |
1832 | ((!copy_object->pager_created) || | |
1833 | vm_external_state_get( | |
1834 | copy_object->existence_map, copy_offset) | |
1835 | == VM_EXTERNAL_STATE_ABSENT) | |
1836 | #else | |
1837 | (!copy_object->pager_created) | |
1838 | #endif | |
1839 | { | |
1840 | vm_page_lock_queues(); | |
1841 | vm_page_activate(copy_m); | |
1842 | vm_page_unlock_queues(); | |
1843 | PAGE_WAKEUP_DONE(copy_m); | |
1844 | } | |
1845 | else { | |
1846 | assert(copy_m->busy == TRUE); | |
1847 | ||
1848 | /* | |
1849 | * The page is already ready for pageout: | |
1850 | * not on pageout queues and busy. | |
1851 | * Unlock everything except the | |
1852 | * copy_object itself. | |
1853 | */ | |
1854 | ||
1855 | vm_object_unlock(object); | |
1856 | ||
1857 | /* | |
1858 | * Write the page to the copy-object, | |
1859 | * flushing it from the kernel. | |
1860 | */ | |
1861 | ||
1862 | vm_pageout_initialize_page(copy_m); | |
1863 | ||
1864 | /* | |
1865 | * Since the pageout may have | |
1866 | * temporarily dropped the | |
1867 | * copy_object's lock, we | |
1868 | * check whether we'll have | |
1869 | * to deallocate the hard way. | |
1870 | */ | |
1871 | ||
1872 | if ((copy_object->shadow != object) || | |
1873 | (copy_object->ref_count == 1)) { | |
1874 | vm_object_unlock(copy_object); | |
1875 | vm_object_deallocate(copy_object); | |
1876 | vm_object_lock(object); | |
1877 | continue; | |
1878 | } | |
1879 | ||
1880 | /* | |
1881 | * Pick back up the old object's | |
1882 | * lock. [It is safe to do so, | |
1883 | * since it must be deeper in the | |
1884 | * object tree.] | |
1885 | */ | |
1886 | ||
1887 | vm_object_lock(object); | |
1888 | } | |
1889 | ||
1890 | /* | |
1891 | * Because we're pushing a page upward | |
1892 | * in the object tree, we must restart | |
1893 | * any faults that are waiting here. | |
1894 | * [Note that this is an expansion of | |
1895 | * PAGE_WAKEUP that uses the THREAD_RESTART | |
1896 | * wait result]. Can't turn off the page's | |
1897 | * busy bit because we're not done with it. | |
1898 | */ | |
1899 | ||
1900 | if (m->wanted) { | |
1901 | m->wanted = FALSE; | |
1902 | thread_wakeup_with_result((event_t) m, | |
1903 | THREAD_RESTART); | |
1904 | } | |
1905 | } | |
1906 | ||
1907 | /* | |
1908 | * The reference count on copy_object must be | |
1909 | * at least 2: one for our extra reference, | |
1910 | * and at least one from the outside world | |
1911 | * (we checked that when we last locked | |
1912 | * copy_object). | |
1913 | */ | |
1914 | copy_object->ref_count--; | |
1915 | assert(copy_object->ref_count > 0); | |
1916 | VM_OBJ_RES_DECR(copy_object); | |
1917 | vm_object_unlock(copy_object); | |
1918 | ||
1919 | break; | |
1920 | } | |
1921 | ||
1922 | *result_page = m; | |
1923 | *top_page = first_m; | |
1924 | ||
1925 | XPR(XPR_VM_FAULT, | |
1926 | "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n", | |
1927 | (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0); | |
1928 | /* | |
1929 | * If the page can be written, assume that it will be. | |
1930 | * [Earlier, we restrict the permission to allow write | |
1931 | * access only if the fault so required, so we don't | |
1932 | * mark read-only data as dirty.] | |
1933 | */ | |
1934 | ||
55e303ae A |
1935 | |
1936 | if(m != VM_PAGE_NULL) { | |
1c79356b | 1937 | #if !VM_FAULT_STATIC_CONFIG |
55e303ae A |
1938 | if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE)) |
1939 | m->dirty = TRUE; | |
1c79356b | 1940 | #endif |
55e303ae A |
1941 | if (vm_page_deactivate_behind) |
1942 | vm_fault_deactivate_behind(object, offset, behavior); | |
1943 | } else { | |
1944 | vm_object_unlock(object); | |
1c79356b | 1945 | } |
55e303ae A |
1946 | thread_interrupt_level(interruptible_state); |
1947 | ||
1c79356b A |
1948 | #if TRACEFAULTPAGE |
1949 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ | |
1950 | #endif | |
1c79356b A |
1951 | return(VM_FAULT_SUCCESS); |
1952 | ||
1953 | #if 0 | |
1954 | block_and_backoff: | |
1955 | vm_fault_cleanup(object, first_m); | |
1956 | ||
1957 | counter(c_vm_fault_page_block_backoff_kernel++); | |
9bccf70c | 1958 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
1959 | #endif |
1960 | ||
1961 | backoff: | |
9bccf70c | 1962 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1963 | if (wait_result == THREAD_INTERRUPTED) |
1964 | return VM_FAULT_INTERRUPTED; | |
1965 | return VM_FAULT_RETRY; | |
1966 | ||
1967 | #undef RELEASE_PAGE | |
1968 | } | |
1969 | ||
55e303ae A |
1970 | /* |
1971 | * Routine: vm_fault_tws_insert | |
1972 | * Purpose: | |
1973 | * Add fault information to the task working set. | |
1974 | * Implementation: | |
1975 | * We always insert the base object/offset pair | |
1976 | * rather the actual object/offset. | |
1977 | * Assumptions: | |
1978 | * Map and pmap_map locked. | |
1979 | * Object locked and referenced. | |
1980 | * Returns: | |
1981 | * TRUE if startup file should be written. | |
1982 | * With object locked and still referenced. | |
1983 | * But we may drop the object lock temporarily. | |
1984 | */ | |
1985 | static boolean_t | |
1986 | vm_fault_tws_insert( | |
1987 | vm_map_t map, | |
1988 | vm_map_t pmap_map, | |
1989 | vm_offset_t vaddr, | |
1990 | vm_object_t object, | |
1991 | vm_object_offset_t offset) | |
1992 | { | |
1993 | tws_hash_line_t line; | |
1994 | task_t task; | |
1995 | kern_return_t kr; | |
1996 | boolean_t result = FALSE; | |
1997 | extern vm_map_t kalloc_map; | |
1998 | ||
1999 | /* Avoid possible map lock deadlock issues */ | |
2000 | if (map == kernel_map || map == kalloc_map || | |
2001 | pmap_map == kernel_map || pmap_map == kalloc_map) | |
2002 | return result; | |
2003 | ||
2004 | task = current_task(); | |
2005 | if (task->dynamic_working_set != 0) { | |
2006 | vm_object_t base_object; | |
2007 | vm_object_t base_shadow; | |
2008 | vm_object_offset_t base_offset; | |
2009 | base_object = object; | |
2010 | base_offset = offset; | |
2011 | while(base_shadow = base_object->shadow) { | |
2012 | vm_object_lock(base_shadow); | |
2013 | vm_object_unlock(base_object); | |
2014 | base_offset += | |
2015 | base_object->shadow_offset; | |
2016 | base_object = base_shadow; | |
2017 | } | |
2018 | kr = tws_lookup((tws_hash_t) | |
2019 | task->dynamic_working_set, | |
2020 | base_offset, base_object, | |
2021 | &line); | |
2022 | if (kr == KERN_OPERATION_TIMED_OUT){ | |
2023 | result = TRUE; | |
2024 | if (base_object != object) { | |
2025 | vm_object_unlock(base_object); | |
2026 | vm_object_lock(object); | |
2027 | } | |
2028 | } else if (kr != KERN_SUCCESS) { | |
2029 | if(base_object != object) | |
2030 | vm_object_reference_locked(base_object); | |
2031 | kr = tws_insert((tws_hash_t) | |
2032 | task->dynamic_working_set, | |
2033 | base_offset, base_object, | |
2034 | vaddr, pmap_map); | |
2035 | if(base_object != object) { | |
2036 | vm_object_unlock(base_object); | |
2037 | vm_object_deallocate(base_object); | |
2038 | } | |
2039 | if(kr == KERN_NO_SPACE) { | |
2040 | if (base_object == object) | |
2041 | vm_object_unlock(object); | |
2042 | tws_expand_working_set( | |
2043 | task->dynamic_working_set, | |
2044 | TWS_HASH_LINE_COUNT, | |
2045 | FALSE); | |
2046 | if (base_object == object) | |
2047 | vm_object_lock(object); | |
2048 | } else if(kr == KERN_OPERATION_TIMED_OUT) { | |
2049 | result = TRUE; | |
2050 | } | |
2051 | if(base_object != object) | |
2052 | vm_object_lock(object); | |
2053 | } else if (base_object != object) { | |
2054 | vm_object_unlock(base_object); | |
2055 | vm_object_lock(object); | |
2056 | } | |
2057 | } | |
2058 | return result; | |
2059 | } | |
2060 | ||
1c79356b A |
2061 | /* |
2062 | * Routine: vm_fault | |
2063 | * Purpose: | |
2064 | * Handle page faults, including pseudo-faults | |
2065 | * used to change the wiring status of pages. | |
2066 | * Returns: | |
2067 | * Explicit continuations have been removed. | |
2068 | * Implementation: | |
2069 | * vm_fault and vm_fault_page save mucho state | |
2070 | * in the moral equivalent of a closure. The state | |
2071 | * structure is allocated when first entering vm_fault | |
2072 | * and deallocated when leaving vm_fault. | |
2073 | */ | |
2074 | ||
2075 | kern_return_t | |
2076 | vm_fault( | |
2077 | vm_map_t map, | |
2078 | vm_offset_t vaddr, | |
2079 | vm_prot_t fault_type, | |
2080 | boolean_t change_wiring, | |
9bccf70c A |
2081 | int interruptible, |
2082 | pmap_t caller_pmap, | |
2083 | vm_offset_t caller_pmap_addr) | |
1c79356b A |
2084 | { |
2085 | vm_map_version_t version; /* Map version for verificiation */ | |
2086 | boolean_t wired; /* Should mapping be wired down? */ | |
2087 | vm_object_t object; /* Top-level object */ | |
2088 | vm_object_offset_t offset; /* Top-level offset */ | |
2089 | vm_prot_t prot; /* Protection for mapping */ | |
2090 | vm_behavior_t behavior; /* Expected paging behavior */ | |
2091 | vm_object_offset_t lo_offset, hi_offset; | |
2092 | vm_object_t old_copy_object; /* Saved copy object */ | |
2093 | vm_page_t result_page; /* Result of vm_fault_page */ | |
2094 | vm_page_t top_page; /* Placeholder page */ | |
2095 | kern_return_t kr; | |
2096 | ||
2097 | register | |
2098 | vm_page_t m; /* Fast access to result_page */ | |
2099 | kern_return_t error_code; /* page error reasons */ | |
2100 | register | |
2101 | vm_object_t cur_object; | |
2102 | register | |
2103 | vm_object_offset_t cur_offset; | |
2104 | vm_page_t cur_m; | |
2105 | vm_object_t new_object; | |
2106 | int type_of_fault; | |
2107 | vm_map_t pmap_map = map; | |
2108 | vm_map_t original_map = map; | |
2109 | pmap_t pmap = NULL; | |
2110 | boolean_t funnel_set = FALSE; | |
2111 | funnel_t *curflock; | |
2112 | thread_t cur_thread; | |
2113 | boolean_t interruptible_state; | |
9bccf70c A |
2114 | unsigned int cache_attr; |
2115 | int write_startup_file = 0; | |
2116 | vm_prot_t full_fault_type; | |
1c79356b | 2117 | |
55e303ae A |
2118 | if (get_preemption_level() != 0) |
2119 | return (KERN_FAILURE); | |
de355530 | 2120 | |
1c79356b A |
2121 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_START, |
2122 | vaddr, | |
2123 | 0, | |
2124 | 0, | |
2125 | 0, | |
2126 | 0); | |
2127 | ||
9bccf70c A |
2128 | /* at present we do not fully check for execute permission */ |
2129 | /* we generally treat it is read except in certain device */ | |
2130 | /* memory settings */ | |
2131 | full_fault_type = fault_type; | |
2132 | if(fault_type & VM_PROT_EXECUTE) { | |
2133 | fault_type &= ~VM_PROT_EXECUTE; | |
2134 | fault_type |= VM_PROT_READ; | |
2135 | } | |
1c79356b | 2136 | |
9bccf70c | 2137 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b A |
2138 | |
2139 | /* | |
2140 | * assume we will hit a page in the cache | |
2141 | * otherwise, explicitly override with | |
2142 | * the real fault type once we determine it | |
2143 | */ | |
2144 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
2145 | ||
2146 | VM_STAT(faults++); | |
2147 | current_task()->faults++; | |
2148 | ||
2149 | /* | |
2150 | * drop funnel if it is already held. Then restore while returning | |
2151 | */ | |
55e303ae A |
2152 | cur_thread = current_thread(); |
2153 | ||
1c79356b A |
2154 | if ((cur_thread->funnel_state & TH_FN_OWNED) == TH_FN_OWNED) { |
2155 | funnel_set = TRUE; | |
2156 | curflock = cur_thread->funnel_lock; | |
2157 | thread_funnel_set( curflock , FALSE); | |
2158 | } | |
2159 | ||
2160 | RetryFault: ; | |
2161 | ||
2162 | /* | |
2163 | * Find the backing store object and offset into | |
2164 | * it to begin the search. | |
2165 | */ | |
2166 | map = original_map; | |
2167 | vm_map_lock_read(map); | |
2168 | kr = vm_map_lookup_locked(&map, vaddr, fault_type, &version, | |
2169 | &object, &offset, | |
2170 | &prot, &wired, | |
2171 | &behavior, &lo_offset, &hi_offset, &pmap_map); | |
2172 | ||
2173 | pmap = pmap_map->pmap; | |
2174 | ||
2175 | if (kr != KERN_SUCCESS) { | |
2176 | vm_map_unlock_read(map); | |
2177 | goto done; | |
2178 | } | |
2179 | ||
2180 | /* | |
2181 | * If the page is wired, we must fault for the current protection | |
2182 | * value, to avoid further faults. | |
2183 | */ | |
2184 | ||
2185 | if (wired) | |
2186 | fault_type = prot | VM_PROT_WRITE; | |
2187 | ||
2188 | #if VM_FAULT_CLASSIFY | |
2189 | /* | |
2190 | * Temporary data gathering code | |
2191 | */ | |
2192 | vm_fault_classify(object, offset, fault_type); | |
2193 | #endif | |
2194 | /* | |
2195 | * Fast fault code. The basic idea is to do as much as | |
2196 | * possible while holding the map lock and object locks. | |
2197 | * Busy pages are not used until the object lock has to | |
2198 | * be dropped to do something (copy, zero fill, pmap enter). | |
2199 | * Similarly, paging references aren't acquired until that | |
2200 | * point, and object references aren't used. | |
2201 | * | |
2202 | * If we can figure out what to do | |
2203 | * (zero fill, copy on write, pmap enter) while holding | |
2204 | * the locks, then it gets done. Otherwise, we give up, | |
2205 | * and use the original fault path (which doesn't hold | |
2206 | * the map lock, and relies on busy pages). | |
2207 | * The give up cases include: | |
2208 | * - Have to talk to pager. | |
2209 | * - Page is busy, absent or in error. | |
2210 | * - Pager has locked out desired access. | |
2211 | * - Fault needs to be restarted. | |
2212 | * - Have to push page into copy object. | |
2213 | * | |
2214 | * The code is an infinite loop that moves one level down | |
2215 | * the shadow chain each time. cur_object and cur_offset | |
2216 | * refer to the current object being examined. object and offset | |
2217 | * are the original object from the map. The loop is at the | |
2218 | * top level if and only if object and cur_object are the same. | |
2219 | * | |
2220 | * Invariants: Map lock is held throughout. Lock is held on | |
2221 | * original object and cur_object (if different) when | |
2222 | * continuing or exiting loop. | |
2223 | * | |
2224 | */ | |
2225 | ||
2226 | ||
2227 | /* | |
2228 | * If this page is to be inserted in a copy delay object | |
2229 | * for writing, and if the object has a copy, then the | |
2230 | * copy delay strategy is implemented in the slow fault page. | |
2231 | */ | |
2232 | if (object->copy_strategy != MEMORY_OBJECT_COPY_DELAY || | |
2233 | object->copy == VM_OBJECT_NULL || | |
2234 | (fault_type & VM_PROT_WRITE) == 0) { | |
2235 | cur_object = object; | |
2236 | cur_offset = offset; | |
2237 | ||
2238 | while (TRUE) { | |
2239 | m = vm_page_lookup(cur_object, cur_offset); | |
2240 | if (m != VM_PAGE_NULL) { | |
55e303ae | 2241 | if (m->busy) { |
143cc14e A |
2242 | wait_result_t result; |
2243 | ||
2244 | if (object != cur_object) | |
2245 | vm_object_unlock(object); | |
2246 | ||
2247 | vm_map_unlock_read(map); | |
2248 | if (pmap_map != map) | |
2249 | vm_map_unlock(pmap_map); | |
2250 | ||
2251 | #if !VM_FAULT_STATIC_CONFIG | |
2252 | if (!vm_fault_interruptible) | |
2253 | interruptible = THREAD_UNINT; | |
2254 | #endif | |
2255 | result = PAGE_ASSERT_WAIT(m, interruptible); | |
1c79356b | 2256 | |
143cc14e A |
2257 | vm_object_unlock(cur_object); |
2258 | ||
2259 | if (result == THREAD_WAITING) { | |
2260 | result = thread_block(THREAD_CONTINUE_NULL); | |
2261 | ||
2262 | counter(c_vm_fault_page_block_busy_kernel++); | |
2263 | } | |
2264 | if (result == THREAD_AWAKENED || result == THREAD_RESTART) | |
2265 | goto RetryFault; | |
2266 | ||
2267 | kr = KERN_ABORTED; | |
2268 | goto done; | |
2269 | } | |
0b4e3aa0 A |
2270 | if (m->unusual && (m->error || m->restart || m->private |
2271 | || m->absent || (fault_type & m->page_lock))) { | |
1c79356b | 2272 | |
143cc14e | 2273 | /* |
1c79356b A |
2274 | * Unusual case. Give up. |
2275 | */ | |
2276 | break; | |
2277 | } | |
2278 | ||
2279 | /* | |
2280 | * Two cases of map in faults: | |
2281 | * - At top level w/o copy object. | |
2282 | * - Read fault anywhere. | |
2283 | * --> must disallow write. | |
2284 | */ | |
2285 | ||
2286 | if (object == cur_object && | |
2287 | object->copy == VM_OBJECT_NULL) | |
2288 | goto FastMapInFault; | |
2289 | ||
2290 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
55e303ae | 2291 | boolean_t sequential; |
1c79356b A |
2292 | |
2293 | prot &= ~VM_PROT_WRITE; | |
2294 | ||
2295 | /* | |
2296 | * Set up to map the page ... | |
2297 | * mark the page busy, drop | |
2298 | * locks and take a paging reference | |
2299 | * on the object with the page. | |
2300 | */ | |
2301 | ||
2302 | if (object != cur_object) { | |
2303 | vm_object_unlock(object); | |
2304 | object = cur_object; | |
2305 | } | |
2306 | FastMapInFault: | |
2307 | m->busy = TRUE; | |
2308 | ||
2309 | vm_object_paging_begin(object); | |
1c79356b A |
2310 | |
2311 | FastPmapEnter: | |
2312 | /* | |
2313 | * Check a couple of global reasons to | |
2314 | * be conservative about write access. | |
2315 | * Then do the pmap_enter. | |
2316 | */ | |
2317 | #if !VM_FAULT_STATIC_CONFIG | |
2318 | if (vm_fault_dirty_handling | |
2319 | #if MACH_KDB | |
2320 | || db_watchpoint_list | |
2321 | #endif | |
2322 | && (fault_type & VM_PROT_WRITE) == 0) | |
2323 | prot &= ~VM_PROT_WRITE; | |
2324 | #else /* STATIC_CONFIG */ | |
2325 | #if MACH_KDB | |
2326 | if (db_watchpoint_list | |
2327 | && (fault_type & VM_PROT_WRITE) == 0) | |
2328 | prot &= ~VM_PROT_WRITE; | |
2329 | #endif /* MACH_KDB */ | |
2330 | #endif /* STATIC_CONFIG */ | |
55e303ae A |
2331 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; |
2332 | ||
2333 | sequential = FALSE; | |
de355530 | 2334 | if (m->no_isync == TRUE) { |
143cc14e | 2335 | m->no_isync = FALSE; |
55e303ae A |
2336 | pmap_sync_caches_phys(m->phys_page); |
2337 | if (type_of_fault == DBG_CACHE_HIT_FAULT) { | |
2338 | /* | |
2339 | * found it in the cache, but this | |
2340 | * is the first fault-in of the page (no_isync == TRUE) | |
2341 | * so it must have come in as part of | |
2342 | * a cluster... account 1 pagein against it | |
2343 | */ | |
2344 | VM_STAT(pageins++); | |
2345 | current_task()->pageins++; | |
2346 | type_of_fault = DBG_PAGEIN_FAULT; | |
2347 | sequential = TRUE; | |
2348 | } | |
2349 | } else if (cache_attr != VM_WIMG_DEFAULT) { | |
2350 | pmap_sync_caches_phys(m->phys_page); | |
143cc14e | 2351 | } |
0b4e3aa0 | 2352 | |
9bccf70c A |
2353 | if(caller_pmap) { |
2354 | PMAP_ENTER(caller_pmap, | |
2355 | caller_pmap_addr, m, | |
2356 | prot, cache_attr, wired); | |
2357 | } else { | |
2358 | PMAP_ENTER(pmap, vaddr, m, | |
2359 | prot, cache_attr, wired); | |
2360 | } | |
0b4e3aa0 | 2361 | |
1c79356b | 2362 | /* |
55e303ae | 2363 | * Hold queues lock to manipulate |
1c79356b A |
2364 | * the page queues. Change wiring |
2365 | * case is obvious. In soft ref bits | |
2366 | * case activate page only if it fell | |
2367 | * off paging queues, otherwise just | |
2368 | * activate it if it's inactive. | |
2369 | * | |
2370 | * NOTE: original vm_fault code will | |
2371 | * move active page to back of active | |
2372 | * queue. This code doesn't. | |
2373 | */ | |
1c79356b | 2374 | vm_page_lock_queues(); |
765c9de3 A |
2375 | if (m->clustered) { |
2376 | vm_pagein_cluster_used++; | |
2377 | m->clustered = FALSE; | |
2378 | } | |
1c79356b A |
2379 | m->reference = TRUE; |
2380 | ||
2381 | if (change_wiring) { | |
2382 | if (wired) | |
2383 | vm_page_wire(m); | |
2384 | else | |
2385 | vm_page_unwire(m); | |
2386 | } | |
2387 | #if VM_FAULT_STATIC_CONFIG | |
2388 | else { | |
2389 | if (!m->active && !m->inactive) | |
2390 | vm_page_activate(m); | |
2391 | } | |
2392 | #else | |
2393 | else if (software_reference_bits) { | |
2394 | if (!m->active && !m->inactive) | |
2395 | vm_page_activate(m); | |
2396 | } | |
2397 | else if (!m->active) { | |
2398 | vm_page_activate(m); | |
2399 | } | |
2400 | #endif | |
2401 | vm_page_unlock_queues(); | |
2402 | ||
2403 | /* | |
2404 | * That's it, clean up and return. | |
2405 | */ | |
2406 | PAGE_WAKEUP_DONE(m); | |
143cc14e | 2407 | |
55e303ae A |
2408 | sequential = (sequential && vm_page_deactivate_behind) ? |
2409 | vm_fault_deactivate_behind(object, cur_offset, behavior) : | |
2410 | FALSE; | |
2411 | ||
2412 | /* | |
2413 | * Add non-sequential pages to the working set. | |
2414 | * The sequential pages will be brought in through | |
2415 | * normal clustering behavior. | |
2416 | */ | |
2417 | if (!sequential && !object->private) { | |
2418 | write_startup_file = | |
2419 | vm_fault_tws_insert(map, pmap_map, vaddr, | |
2420 | object, cur_offset); | |
143cc14e | 2421 | } |
55e303ae A |
2422 | |
2423 | vm_object_paging_end(object); | |
1c79356b | 2424 | vm_object_unlock(object); |
143cc14e | 2425 | |
1c79356b A |
2426 | vm_map_unlock_read(map); |
2427 | if(pmap_map != map) | |
2428 | vm_map_unlock(pmap_map); | |
2429 | ||
9bccf70c A |
2430 | if(write_startup_file) |
2431 | tws_send_startup_info(current_task()); | |
2432 | ||
143cc14e | 2433 | if (funnel_set) |
1c79356b | 2434 | thread_funnel_set( curflock, TRUE); |
143cc14e | 2435 | |
9bccf70c | 2436 | thread_interrupt_level(interruptible_state); |
1c79356b | 2437 | |
143cc14e | 2438 | |
1c79356b A |
2439 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END, |
2440 | vaddr, | |
9bccf70c | 2441 | type_of_fault & 0xff, |
1c79356b | 2442 | KERN_SUCCESS, |
9bccf70c | 2443 | type_of_fault >> 8, |
1c79356b | 2444 | 0); |
143cc14e | 2445 | |
1c79356b A |
2446 | return KERN_SUCCESS; |
2447 | } | |
2448 | ||
2449 | /* | |
2450 | * Copy on write fault. If objects match, then | |
2451 | * object->copy must not be NULL (else control | |
2452 | * would be in previous code block), and we | |
2453 | * have a potential push into the copy object | |
2454 | * with which we won't cope here. | |
2455 | */ | |
2456 | ||
2457 | if (cur_object == object) | |
2458 | break; | |
1c79356b A |
2459 | /* |
2460 | * This is now a shadow based copy on write | |
2461 | * fault -- it requires a copy up the shadow | |
2462 | * chain. | |
2463 | * | |
2464 | * Allocate a page in the original top level | |
2465 | * object. Give up if allocate fails. Also | |
2466 | * need to remember current page, as it's the | |
2467 | * source of the copy. | |
2468 | */ | |
2469 | cur_m = m; | |
2470 | m = vm_page_grab(); | |
2471 | if (m == VM_PAGE_NULL) { | |
2472 | break; | |
2473 | } | |
1c79356b A |
2474 | /* |
2475 | * Now do the copy. Mark the source busy | |
2476 | * and take out paging references on both | |
2477 | * objects. | |
2478 | * | |
2479 | * NOTE: This code holds the map lock across | |
2480 | * the page copy. | |
2481 | */ | |
2482 | ||
2483 | cur_m->busy = TRUE; | |
2484 | vm_page_copy(cur_m, m); | |
2485 | vm_page_insert(m, object, offset); | |
2486 | ||
2487 | vm_object_paging_begin(cur_object); | |
2488 | vm_object_paging_begin(object); | |
2489 | ||
2490 | type_of_fault = DBG_COW_FAULT; | |
2491 | VM_STAT(cow_faults++); | |
2492 | current_task()->cow_faults++; | |
2493 | ||
2494 | /* | |
2495 | * Now cope with the source page and object | |
2496 | * If the top object has a ref count of 1 | |
2497 | * then no other map can access it, and hence | |
2498 | * it's not necessary to do the pmap_page_protect. | |
2499 | */ | |
2500 | ||
2501 | ||
2502 | vm_page_lock_queues(); | |
2503 | vm_page_deactivate(cur_m); | |
2504 | m->dirty = TRUE; | |
55e303ae | 2505 | pmap_page_protect(cur_m->phys_page, |
1c79356b A |
2506 | VM_PROT_NONE); |
2507 | vm_page_unlock_queues(); | |
2508 | ||
2509 | PAGE_WAKEUP_DONE(cur_m); | |
2510 | vm_object_paging_end(cur_object); | |
2511 | vm_object_unlock(cur_object); | |
2512 | ||
2513 | /* | |
2514 | * Slight hack to call vm_object collapse | |
2515 | * and then reuse common map in code. | |
2516 | * note that the object lock was taken above. | |
2517 | */ | |
2518 | ||
2519 | vm_object_paging_end(object); | |
55e303ae | 2520 | vm_object_collapse(object, offset); |
1c79356b | 2521 | vm_object_paging_begin(object); |
1c79356b A |
2522 | |
2523 | goto FastPmapEnter; | |
2524 | } | |
2525 | else { | |
2526 | ||
2527 | /* | |
2528 | * No page at cur_object, cur_offset | |
2529 | */ | |
2530 | ||
2531 | if (cur_object->pager_created) { | |
2532 | ||
2533 | /* | |
2534 | * Have to talk to the pager. Give up. | |
2535 | */ | |
1c79356b A |
2536 | break; |
2537 | } | |
2538 | ||
2539 | ||
2540 | if (cur_object->shadow == VM_OBJECT_NULL) { | |
2541 | ||
2542 | if (cur_object->shadow_severed) { | |
2543 | vm_object_paging_end(object); | |
2544 | vm_object_unlock(object); | |
2545 | vm_map_unlock_read(map); | |
2546 | if(pmap_map != map) | |
2547 | vm_map_unlock(pmap_map); | |
2548 | ||
9bccf70c A |
2549 | if(write_startup_file) |
2550 | tws_send_startup_info( | |
2551 | current_task()); | |
2552 | ||
1c79356b A |
2553 | if (funnel_set) { |
2554 | thread_funnel_set( curflock, TRUE); | |
2555 | funnel_set = FALSE; | |
2556 | } | |
9bccf70c | 2557 | thread_interrupt_level(interruptible_state); |
1c79356b A |
2558 | |
2559 | return VM_FAULT_MEMORY_ERROR; | |
2560 | } | |
2561 | ||
2562 | /* | |
2563 | * Zero fill fault. Page gets | |
2564 | * filled in top object. Insert | |
2565 | * page, then drop any lower lock. | |
2566 | * Give up if no page. | |
2567 | */ | |
55e303ae A |
2568 | if (VM_PAGE_THROTTLED()) { |
2569 | break; | |
2570 | } | |
2571 | ||
2572 | /* | |
2573 | * are we protecting the system from | |
2574 | * backing store exhaustion. If so | |
2575 | * sleep unless we are privileged. | |
2576 | */ | |
2577 | if(vm_backing_store_low) { | |
2578 | if(!(current_task()->priv_flags | |
2579 | & VM_BACKING_STORE_PRIV)) | |
1c79356b A |
2580 | break; |
2581 | } | |
2582 | m = vm_page_alloc(object, offset); | |
2583 | if (m == VM_PAGE_NULL) { | |
2584 | break; | |
2585 | } | |
0b4e3aa0 A |
2586 | /* |
2587 | * This is a zero-fill or initial fill | |
2588 | * page fault. As such, we consider it | |
2589 | * undefined with respect to instruction | |
2590 | * execution. i.e. it is the responsibility | |
2591 | * of higher layers to call for an instruction | |
2592 | * sync after changing the contents and before | |
2593 | * sending a program into this area. We | |
2594 | * choose this approach for performance | |
2595 | */ | |
2596 | ||
2597 | m->no_isync = FALSE; | |
1c79356b A |
2598 | |
2599 | if (cur_object != object) | |
2600 | vm_object_unlock(cur_object); | |
2601 | ||
2602 | vm_object_paging_begin(object); | |
2603 | vm_object_unlock(object); | |
2604 | ||
2605 | /* | |
2606 | * Now zero fill page and map it. | |
2607 | * the page is probably going to | |
2608 | * be written soon, so don't bother | |
2609 | * to clear the modified bit | |
2610 | * | |
2611 | * NOTE: This code holds the map | |
2612 | * lock across the zero fill. | |
2613 | */ | |
2614 | ||
2615 | if (!map->no_zero_fill) { | |
2616 | vm_page_zero_fill(m); | |
2617 | type_of_fault = DBG_ZERO_FILL_FAULT; | |
2618 | VM_STAT(zero_fill_count++); | |
2619 | } | |
2620 | vm_page_lock_queues(); | |
2621 | VM_PAGE_QUEUES_REMOVE(m); | |
0b4e3aa0 A |
2622 | |
2623 | m->page_ticket = vm_page_ticket; | |
9bccf70c A |
2624 | if(m->object->size > 0x80000) { |
2625 | m->zero_fill = TRUE; | |
2626 | /* depends on the queues lock */ | |
2627 | vm_zf_count += 1; | |
2628 | queue_enter(&vm_page_queue_zf, | |
2629 | m, vm_page_t, pageq); | |
2630 | } else { | |
2631 | queue_enter( | |
2632 | &vm_page_queue_inactive, | |
2633 | m, vm_page_t, pageq); | |
2634 | } | |
0b4e3aa0 A |
2635 | vm_page_ticket_roll++; |
2636 | if(vm_page_ticket_roll == | |
2637 | VM_PAGE_TICKETS_IN_ROLL) { | |
2638 | vm_page_ticket_roll = 0; | |
2639 | if(vm_page_ticket == | |
2640 | VM_PAGE_TICKET_ROLL_IDS) | |
2641 | vm_page_ticket= 0; | |
2642 | else | |
2643 | vm_page_ticket++; | |
2644 | } | |
2645 | ||
1c79356b A |
2646 | m->inactive = TRUE; |
2647 | vm_page_inactive_count++; | |
2648 | vm_page_unlock_queues(); | |
143cc14e A |
2649 | vm_object_lock(object); |
2650 | ||
1c79356b A |
2651 | goto FastPmapEnter; |
2652 | } | |
2653 | ||
2654 | /* | |
2655 | * On to the next level | |
2656 | */ | |
2657 | ||
2658 | cur_offset += cur_object->shadow_offset; | |
2659 | new_object = cur_object->shadow; | |
2660 | vm_object_lock(new_object); | |
2661 | if (cur_object != object) | |
2662 | vm_object_unlock(cur_object); | |
2663 | cur_object = new_object; | |
2664 | ||
2665 | continue; | |
2666 | } | |
2667 | } | |
2668 | ||
2669 | /* | |
2670 | * Cleanup from fast fault failure. Drop any object | |
2671 | * lock other than original and drop map lock. | |
2672 | */ | |
2673 | ||
2674 | if (object != cur_object) | |
2675 | vm_object_unlock(cur_object); | |
2676 | } | |
2677 | vm_map_unlock_read(map); | |
143cc14e | 2678 | |
1c79356b A |
2679 | if(pmap_map != map) |
2680 | vm_map_unlock(pmap_map); | |
2681 | ||
2682 | /* | |
2683 | * Make a reference to this object to | |
2684 | * prevent its disposal while we are messing with | |
2685 | * it. Once we have the reference, the map is free | |
2686 | * to be diddled. Since objects reference their | |
2687 | * shadows (and copies), they will stay around as well. | |
2688 | */ | |
2689 | ||
2690 | assert(object->ref_count > 0); | |
2691 | object->ref_count++; | |
2692 | vm_object_res_reference(object); | |
2693 | vm_object_paging_begin(object); | |
2694 | ||
2695 | XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0); | |
55e303ae A |
2696 | |
2697 | if (!object->private) { | |
2698 | write_startup_file = | |
2699 | vm_fault_tws_insert(map, pmap_map, vaddr, object, offset); | |
9bccf70c | 2700 | } |
55e303ae | 2701 | |
1c79356b A |
2702 | kr = vm_fault_page(object, offset, fault_type, |
2703 | (change_wiring && !wired), | |
2704 | interruptible, | |
2705 | lo_offset, hi_offset, behavior, | |
2706 | &prot, &result_page, &top_page, | |
2707 | &type_of_fault, | |
0b4e3aa0 | 2708 | &error_code, map->no_zero_fill, FALSE, map, vaddr); |
1c79356b A |
2709 | |
2710 | /* | |
2711 | * If we didn't succeed, lose the object reference immediately. | |
2712 | */ | |
2713 | ||
2714 | if (kr != VM_FAULT_SUCCESS) | |
2715 | vm_object_deallocate(object); | |
2716 | ||
2717 | /* | |
2718 | * See why we failed, and take corrective action. | |
2719 | */ | |
2720 | ||
2721 | switch (kr) { | |
2722 | case VM_FAULT_SUCCESS: | |
2723 | break; | |
2724 | case VM_FAULT_MEMORY_SHORTAGE: | |
2725 | if (vm_page_wait((change_wiring) ? | |
2726 | THREAD_UNINT : | |
2727 | THREAD_ABORTSAFE)) | |
2728 | goto RetryFault; | |
2729 | /* fall thru */ | |
2730 | case VM_FAULT_INTERRUPTED: | |
2731 | kr = KERN_ABORTED; | |
2732 | goto done; | |
2733 | case VM_FAULT_RETRY: | |
2734 | goto RetryFault; | |
2735 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
2736 | vm_page_more_fictitious(); | |
2737 | goto RetryFault; | |
2738 | case VM_FAULT_MEMORY_ERROR: | |
2739 | if (error_code) | |
2740 | kr = error_code; | |
2741 | else | |
2742 | kr = KERN_MEMORY_ERROR; | |
2743 | goto done; | |
2744 | } | |
2745 | ||
2746 | m = result_page; | |
2747 | ||
0b4e3aa0 A |
2748 | if(m != VM_PAGE_NULL) { |
2749 | assert((change_wiring && !wired) ? | |
2750 | (top_page == VM_PAGE_NULL) : | |
2751 | ((top_page == VM_PAGE_NULL) == (m->object == object))); | |
2752 | } | |
1c79356b A |
2753 | |
2754 | /* | |
2755 | * How to clean up the result of vm_fault_page. This | |
2756 | * happens whether the mapping is entered or not. | |
2757 | */ | |
2758 | ||
2759 | #define UNLOCK_AND_DEALLOCATE \ | |
2760 | MACRO_BEGIN \ | |
2761 | vm_fault_cleanup(m->object, top_page); \ | |
2762 | vm_object_deallocate(object); \ | |
2763 | MACRO_END | |
2764 | ||
2765 | /* | |
2766 | * What to do with the resulting page from vm_fault_page | |
2767 | * if it doesn't get entered into the physical map: | |
2768 | */ | |
2769 | ||
2770 | #define RELEASE_PAGE(m) \ | |
2771 | MACRO_BEGIN \ | |
2772 | PAGE_WAKEUP_DONE(m); \ | |
2773 | vm_page_lock_queues(); \ | |
2774 | if (!m->active && !m->inactive) \ | |
2775 | vm_page_activate(m); \ | |
2776 | vm_page_unlock_queues(); \ | |
2777 | MACRO_END | |
2778 | ||
2779 | /* | |
2780 | * We must verify that the maps have not changed | |
2781 | * since our last lookup. | |
2782 | */ | |
2783 | ||
0b4e3aa0 A |
2784 | if(m != VM_PAGE_NULL) { |
2785 | old_copy_object = m->object->copy; | |
0b4e3aa0 A |
2786 | vm_object_unlock(m->object); |
2787 | } else { | |
2788 | old_copy_object = VM_OBJECT_NULL; | |
2789 | } | |
1c79356b A |
2790 | if ((map != original_map) || !vm_map_verify(map, &version)) { |
2791 | vm_object_t retry_object; | |
2792 | vm_object_offset_t retry_offset; | |
2793 | vm_prot_t retry_prot; | |
2794 | ||
2795 | /* | |
2796 | * To avoid trying to write_lock the map while another | |
2797 | * thread has it read_locked (in vm_map_pageable), we | |
2798 | * do not try for write permission. If the page is | |
2799 | * still writable, we will get write permission. If it | |
2800 | * is not, or has been marked needs_copy, we enter the | |
2801 | * mapping without write permission, and will merely | |
2802 | * take another fault. | |
2803 | */ | |
2804 | map = original_map; | |
2805 | vm_map_lock_read(map); | |
2806 | kr = vm_map_lookup_locked(&map, vaddr, | |
2807 | fault_type & ~VM_PROT_WRITE, &version, | |
2808 | &retry_object, &retry_offset, &retry_prot, | |
2809 | &wired, &behavior, &lo_offset, &hi_offset, | |
2810 | &pmap_map); | |
2811 | pmap = pmap_map->pmap; | |
2812 | ||
2813 | if (kr != KERN_SUCCESS) { | |
2814 | vm_map_unlock_read(map); | |
0b4e3aa0 A |
2815 | if(m != VM_PAGE_NULL) { |
2816 | vm_object_lock(m->object); | |
2817 | RELEASE_PAGE(m); | |
2818 | UNLOCK_AND_DEALLOCATE; | |
2819 | } else { | |
2820 | vm_object_deallocate(object); | |
2821 | } | |
1c79356b A |
2822 | goto done; |
2823 | } | |
2824 | ||
2825 | vm_object_unlock(retry_object); | |
0b4e3aa0 A |
2826 | if(m != VM_PAGE_NULL) { |
2827 | vm_object_lock(m->object); | |
2828 | } else { | |
2829 | vm_object_lock(object); | |
2830 | } | |
1c79356b A |
2831 | |
2832 | if ((retry_object != object) || | |
2833 | (retry_offset != offset)) { | |
2834 | vm_map_unlock_read(map); | |
2835 | if(pmap_map != map) | |
2836 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
2837 | if(m != VM_PAGE_NULL) { |
2838 | RELEASE_PAGE(m); | |
2839 | UNLOCK_AND_DEALLOCATE; | |
2840 | } else { | |
2841 | vm_object_deallocate(object); | |
2842 | } | |
1c79356b A |
2843 | goto RetryFault; |
2844 | } | |
2845 | ||
2846 | /* | |
2847 | * Check whether the protection has changed or the object | |
2848 | * has been copied while we left the map unlocked. | |
2849 | */ | |
2850 | prot &= retry_prot; | |
0b4e3aa0 A |
2851 | if(m != VM_PAGE_NULL) { |
2852 | vm_object_unlock(m->object); | |
2853 | } else { | |
2854 | vm_object_unlock(object); | |
2855 | } | |
2856 | } | |
2857 | if(m != VM_PAGE_NULL) { | |
2858 | vm_object_lock(m->object); | |
2859 | } else { | |
2860 | vm_object_lock(object); | |
1c79356b | 2861 | } |
1c79356b A |
2862 | |
2863 | /* | |
2864 | * If the copy object changed while the top-level object | |
2865 | * was unlocked, then we must take away write permission. | |
2866 | */ | |
2867 | ||
0b4e3aa0 A |
2868 | if(m != VM_PAGE_NULL) { |
2869 | if (m->object->copy != old_copy_object) | |
2870 | prot &= ~VM_PROT_WRITE; | |
2871 | } | |
1c79356b A |
2872 | |
2873 | /* | |
2874 | * If we want to wire down this page, but no longer have | |
2875 | * adequate permissions, we must start all over. | |
2876 | */ | |
2877 | ||
2878 | if (wired && (fault_type != (prot|VM_PROT_WRITE))) { | |
2879 | vm_map_verify_done(map, &version); | |
2880 | if(pmap_map != map) | |
2881 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
2882 | if(m != VM_PAGE_NULL) { |
2883 | RELEASE_PAGE(m); | |
2884 | UNLOCK_AND_DEALLOCATE; | |
2885 | } else { | |
2886 | vm_object_deallocate(object); | |
2887 | } | |
1c79356b A |
2888 | goto RetryFault; |
2889 | } | |
2890 | ||
1c79356b A |
2891 | /* |
2892 | * Put this page into the physical map. | |
2893 | * We had to do the unlock above because pmap_enter | |
2894 | * may cause other faults. The page may be on | |
2895 | * the pageout queues. If the pageout daemon comes | |
2896 | * across the page, it will remove it from the queues. | |
2897 | */ | |
765c9de3 A |
2898 | if (m != VM_PAGE_NULL) { |
2899 | if (m->no_isync == TRUE) { | |
55e303ae A |
2900 | pmap_sync_caches_phys(m->phys_page); |
2901 | ||
2902 | if (type_of_fault == DBG_CACHE_HIT_FAULT) { | |
2903 | /* | |
2904 | * found it in the cache, but this | |
2905 | * is the first fault-in of the page (no_isync == TRUE) | |
2906 | * so it must have come in as part of | |
2907 | * a cluster... account 1 pagein against it | |
2908 | */ | |
2909 | VM_STAT(pageins++); | |
2910 | current_task()->pageins++; | |
2911 | ||
2912 | type_of_fault = DBG_PAGEIN_FAULT; | |
2913 | } | |
765c9de3 A |
2914 | m->no_isync = FALSE; |
2915 | } | |
9bccf70c | 2916 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; |
0b4e3aa0 | 2917 | |
9bccf70c A |
2918 | if(caller_pmap) { |
2919 | PMAP_ENTER(caller_pmap, | |
2920 | caller_pmap_addr, m, | |
2921 | prot, cache_attr, wired); | |
2922 | } else { | |
2923 | PMAP_ENTER(pmap, vaddr, m, | |
2924 | prot, cache_attr, wired); | |
2925 | } | |
55e303ae A |
2926 | |
2927 | /* | |
2928 | * Add working set information for private objects here. | |
2929 | */ | |
2930 | if (m->object->private) { | |
2931 | write_startup_file = | |
2932 | vm_fault_tws_insert(map, pmap_map, vaddr, | |
2933 | m->object, m->offset); | |
0b4e3aa0 A |
2934 | } |
2935 | } else { | |
2936 | ||
9bccf70c A |
2937 | #ifndef i386 |
2938 | int memattr; | |
9bccf70c A |
2939 | vm_map_entry_t entry; |
2940 | vm_offset_t laddr; | |
2941 | vm_offset_t ldelta, hdelta; | |
143cc14e | 2942 | |
0b4e3aa0 A |
2943 | /* |
2944 | * do a pmap block mapping from the physical address | |
2945 | * in the object | |
2946 | */ | |
9bccf70c | 2947 | |
55e303ae A |
2948 | /* While we do not worry about execution protection in */ |
2949 | /* general, certian pages may have instruction execution */ | |
2950 | /* disallowed. We will check here, and if not allowed */ | |
2951 | /* to execute, we return with a protection failure. */ | |
9bccf70c | 2952 | |
55e303ae A |
2953 | if((full_fault_type & VM_PROT_EXECUTE) && |
2954 | (pmap_canExecute((ppnum_t) | |
2955 | (object->shadow_offset >> 12)) < 1)) { | |
9bccf70c | 2956 | |
9bccf70c A |
2957 | vm_map_verify_done(map, &version); |
2958 | if(pmap_map != map) | |
2959 | vm_map_unlock(pmap_map); | |
2960 | vm_fault_cleanup(object, top_page); | |
2961 | vm_object_deallocate(object); | |
2962 | kr = KERN_PROTECTION_FAILURE; | |
2963 | goto done; | |
0b4e3aa0 | 2964 | } |
1c79356b | 2965 | |
9bccf70c A |
2966 | if(pmap_map != map) { |
2967 | vm_map_unlock(pmap_map); | |
2968 | } | |
2969 | if (original_map != map) { | |
2970 | vm_map_unlock_read(map); | |
2971 | vm_map_lock_read(original_map); | |
2972 | map = original_map; | |
2973 | } | |
2974 | pmap_map = map; | |
2975 | ||
2976 | laddr = vaddr; | |
2977 | hdelta = 0xFFFFF000; | |
2978 | ldelta = 0xFFFFF000; | |
2979 | ||
2980 | ||
2981 | while(vm_map_lookup_entry(map, laddr, &entry)) { | |
2982 | if(ldelta > (laddr - entry->vme_start)) | |
2983 | ldelta = laddr - entry->vme_start; | |
2984 | if(hdelta > (entry->vme_end - laddr)) | |
2985 | hdelta = entry->vme_end - laddr; | |
2986 | if(entry->is_sub_map) { | |
2987 | ||
2988 | laddr = (laddr - entry->vme_start) | |
2989 | + entry->offset; | |
2990 | vm_map_lock_read(entry->object.sub_map); | |
2991 | if(map != pmap_map) | |
2992 | vm_map_unlock_read(map); | |
2993 | if(entry->use_pmap) { | |
2994 | vm_map_unlock_read(pmap_map); | |
2995 | pmap_map = entry->object.sub_map; | |
2996 | } | |
2997 | map = entry->object.sub_map; | |
2998 | ||
2999 | } else { | |
3000 | break; | |
3001 | } | |
3002 | } | |
3003 | ||
3004 | if(vm_map_lookup_entry(map, laddr, &entry) && | |
3005 | (entry->object.vm_object != NULL) && | |
3006 | (entry->object.vm_object == object)) { | |
3007 | ||
3008 | ||
3009 | if(caller_pmap) { | |
55e303ae | 3010 | /* Set up a block mapped area */ |
9bccf70c | 3011 | pmap_map_block(caller_pmap, |
55e303ae A |
3012 | (addr64_t)(caller_pmap_addr - ldelta), |
3013 | (((vm_offset_t) | |
9bccf70c A |
3014 | (entry->object.vm_object->shadow_offset)) |
3015 | + entry->offset + | |
55e303ae A |
3016 | (laddr - entry->vme_start) |
3017 | - ldelta)>>12, | |
9bccf70c | 3018 | ldelta + hdelta, prot, |
55e303ae A |
3019 | (VM_WIMG_MASK & (int)object->wimg_bits), 0); |
3020 | } else { | |
3021 | /* Set up a block mapped area */ | |
3022 | pmap_map_block(pmap_map->pmap, | |
3023 | (addr64_t)(vaddr - ldelta), | |
3024 | (((vm_offset_t) | |
9bccf70c | 3025 | (entry->object.vm_object->shadow_offset)) |
55e303ae A |
3026 | + entry->offset + |
3027 | (laddr - entry->vme_start) - ldelta)>>12, | |
3028 | ldelta + hdelta, prot, | |
3029 | (VM_WIMG_MASK & (int)object->wimg_bits), 0); | |
9bccf70c A |
3030 | } |
3031 | } | |
3032 | #else | |
3033 | #ifdef notyet | |
3034 | if(caller_pmap) { | |
3035 | pmap_enter(caller_pmap, caller_pmap_addr, | |
55e303ae | 3036 | object->shadow_offset>>12, prot, 0, TRUE); |
9bccf70c A |
3037 | } else { |
3038 | pmap_enter(pmap, vaddr, | |
55e303ae | 3039 | object->shadow_offset>>12, prot, 0, TRUE); |
9bccf70c | 3040 | } |
0b4e3aa0 | 3041 | /* Map it in */ |
9bccf70c | 3042 | #endif |
0b4e3aa0 A |
3043 | #endif |
3044 | ||
3045 | } | |
1c79356b A |
3046 | |
3047 | /* | |
3048 | * If the page is not wired down and isn't already | |
3049 | * on a pageout queue, then put it where the | |
3050 | * pageout daemon can find it. | |
3051 | */ | |
0b4e3aa0 | 3052 | if(m != VM_PAGE_NULL) { |
0b4e3aa0 A |
3053 | vm_page_lock_queues(); |
3054 | ||
3055 | if (change_wiring) { | |
3056 | if (wired) | |
3057 | vm_page_wire(m); | |
3058 | else | |
3059 | vm_page_unwire(m); | |
3060 | } | |
1c79356b | 3061 | #if VM_FAULT_STATIC_CONFIG |
0b4e3aa0 A |
3062 | else { |
3063 | if (!m->active && !m->inactive) | |
3064 | vm_page_activate(m); | |
3065 | m->reference = TRUE; | |
3066 | } | |
1c79356b | 3067 | #else |
0b4e3aa0 A |
3068 | else if (software_reference_bits) { |
3069 | if (!m->active && !m->inactive) | |
3070 | vm_page_activate(m); | |
3071 | m->reference = TRUE; | |
3072 | } else { | |
1c79356b | 3073 | vm_page_activate(m); |
0b4e3aa0 | 3074 | } |
1c79356b | 3075 | #endif |
0b4e3aa0 A |
3076 | vm_page_unlock_queues(); |
3077 | } | |
1c79356b A |
3078 | |
3079 | /* | |
3080 | * Unlock everything, and return | |
3081 | */ | |
3082 | ||
3083 | vm_map_verify_done(map, &version); | |
3084 | if(pmap_map != map) | |
3085 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
3086 | if(m != VM_PAGE_NULL) { |
3087 | PAGE_WAKEUP_DONE(m); | |
3088 | UNLOCK_AND_DEALLOCATE; | |
3089 | } else { | |
3090 | vm_fault_cleanup(object, top_page); | |
3091 | vm_object_deallocate(object); | |
3092 | } | |
1c79356b | 3093 | kr = KERN_SUCCESS; |
1c79356b A |
3094 | |
3095 | #undef UNLOCK_AND_DEALLOCATE | |
3096 | #undef RELEASE_PAGE | |
3097 | ||
3098 | done: | |
9bccf70c A |
3099 | if(write_startup_file) |
3100 | tws_send_startup_info(current_task()); | |
1c79356b A |
3101 | if (funnel_set) { |
3102 | thread_funnel_set( curflock, TRUE); | |
3103 | funnel_set = FALSE; | |
3104 | } | |
9bccf70c | 3105 | thread_interrupt_level(interruptible_state); |
1c79356b A |
3106 | |
3107 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END, | |
3108 | vaddr, | |
9bccf70c | 3109 | type_of_fault & 0xff, |
1c79356b | 3110 | kr, |
9bccf70c | 3111 | type_of_fault >> 8, |
1c79356b | 3112 | 0); |
143cc14e | 3113 | |
1c79356b A |
3114 | return(kr); |
3115 | } | |
3116 | ||
3117 | /* | |
3118 | * vm_fault_wire: | |
3119 | * | |
3120 | * Wire down a range of virtual addresses in a map. | |
3121 | */ | |
3122 | kern_return_t | |
3123 | vm_fault_wire( | |
3124 | vm_map_t map, | |
3125 | vm_map_entry_t entry, | |
9bccf70c A |
3126 | pmap_t pmap, |
3127 | vm_offset_t pmap_addr) | |
1c79356b A |
3128 | { |
3129 | ||
3130 | register vm_offset_t va; | |
3131 | register vm_offset_t end_addr = entry->vme_end; | |
3132 | register kern_return_t rc; | |
3133 | ||
3134 | assert(entry->in_transition); | |
3135 | ||
9bccf70c A |
3136 | if ((entry->object.vm_object != NULL) && |
3137 | !entry->is_sub_map && | |
3138 | entry->object.vm_object->phys_contiguous) { | |
3139 | return KERN_SUCCESS; | |
3140 | } | |
3141 | ||
1c79356b A |
3142 | /* |
3143 | * Inform the physical mapping system that the | |
3144 | * range of addresses may not fault, so that | |
3145 | * page tables and such can be locked down as well. | |
3146 | */ | |
3147 | ||
9bccf70c A |
3148 | pmap_pageable(pmap, pmap_addr, |
3149 | pmap_addr + (end_addr - entry->vme_start), FALSE); | |
1c79356b A |
3150 | |
3151 | /* | |
3152 | * We simulate a fault to get the page and enter it | |
3153 | * in the physical map. | |
3154 | */ | |
3155 | ||
3156 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
3157 | if ((rc = vm_fault_wire_fast( | |
9bccf70c A |
3158 | map, va, entry, pmap, |
3159 | pmap_addr + (va - entry->vme_start) | |
3160 | )) != KERN_SUCCESS) { | |
1c79356b | 3161 | rc = vm_fault(map, va, VM_PROT_NONE, TRUE, |
9bccf70c A |
3162 | (pmap == kernel_pmap) ? |
3163 | THREAD_UNINT : THREAD_ABORTSAFE, | |
3164 | pmap, pmap_addr + (va - entry->vme_start)); | |
1c79356b A |
3165 | } |
3166 | ||
3167 | if (rc != KERN_SUCCESS) { | |
3168 | struct vm_map_entry tmp_entry = *entry; | |
3169 | ||
3170 | /* unwire wired pages */ | |
3171 | tmp_entry.vme_end = va; | |
9bccf70c A |
3172 | vm_fault_unwire(map, |
3173 | &tmp_entry, FALSE, pmap, pmap_addr); | |
1c79356b A |
3174 | |
3175 | return rc; | |
3176 | } | |
3177 | } | |
3178 | return KERN_SUCCESS; | |
3179 | } | |
3180 | ||
3181 | /* | |
3182 | * vm_fault_unwire: | |
3183 | * | |
3184 | * Unwire a range of virtual addresses in a map. | |
3185 | */ | |
3186 | void | |
3187 | vm_fault_unwire( | |
3188 | vm_map_t map, | |
3189 | vm_map_entry_t entry, | |
3190 | boolean_t deallocate, | |
9bccf70c A |
3191 | pmap_t pmap, |
3192 | vm_offset_t pmap_addr) | |
1c79356b A |
3193 | { |
3194 | register vm_offset_t va; | |
3195 | register vm_offset_t end_addr = entry->vme_end; | |
3196 | vm_object_t object; | |
3197 | ||
3198 | object = (entry->is_sub_map) | |
3199 | ? VM_OBJECT_NULL : entry->object.vm_object; | |
3200 | ||
3201 | /* | |
3202 | * Since the pages are wired down, we must be able to | |
3203 | * get their mappings from the physical map system. | |
3204 | */ | |
3205 | ||
3206 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
9bccf70c A |
3207 | pmap_change_wiring(pmap, |
3208 | pmap_addr + (va - entry->vme_start), FALSE); | |
1c79356b A |
3209 | |
3210 | if (object == VM_OBJECT_NULL) { | |
9bccf70c A |
3211 | (void) vm_fault(map, va, VM_PROT_NONE, |
3212 | TRUE, THREAD_UNINT, pmap, pmap_addr); | |
3213 | } else if (object->phys_contiguous) { | |
3214 | continue; | |
1c79356b A |
3215 | } else { |
3216 | vm_prot_t prot; | |
3217 | vm_page_t result_page; | |
3218 | vm_page_t top_page; | |
3219 | vm_object_t result_object; | |
3220 | vm_fault_return_t result; | |
3221 | ||
3222 | do { | |
3223 | prot = VM_PROT_NONE; | |
3224 | ||
3225 | vm_object_lock(object); | |
3226 | vm_object_paging_begin(object); | |
3227 | XPR(XPR_VM_FAULT, | |
3228 | "vm_fault_unwire -> vm_fault_page\n", | |
3229 | 0,0,0,0,0); | |
3230 | result = vm_fault_page(object, | |
3231 | entry->offset + | |
3232 | (va - entry->vme_start), | |
3233 | VM_PROT_NONE, TRUE, | |
3234 | THREAD_UNINT, | |
3235 | entry->offset, | |
3236 | entry->offset + | |
3237 | (entry->vme_end | |
3238 | - entry->vme_start), | |
3239 | entry->behavior, | |
3240 | &prot, | |
3241 | &result_page, | |
3242 | &top_page, | |
3243 | (int *)0, | |
3244 | 0, map->no_zero_fill, | |
0b4e3aa0 | 3245 | FALSE, NULL, 0); |
1c79356b A |
3246 | } while (result == VM_FAULT_RETRY); |
3247 | ||
3248 | if (result != VM_FAULT_SUCCESS) | |
3249 | panic("vm_fault_unwire: failure"); | |
3250 | ||
3251 | result_object = result_page->object; | |
3252 | if (deallocate) { | |
3253 | assert(!result_page->fictitious); | |
55e303ae | 3254 | pmap_page_protect(result_page->phys_page, |
1c79356b A |
3255 | VM_PROT_NONE); |
3256 | VM_PAGE_FREE(result_page); | |
3257 | } else { | |
3258 | vm_page_lock_queues(); | |
3259 | vm_page_unwire(result_page); | |
3260 | vm_page_unlock_queues(); | |
3261 | PAGE_WAKEUP_DONE(result_page); | |
3262 | } | |
3263 | ||
3264 | vm_fault_cleanup(result_object, top_page); | |
3265 | } | |
3266 | } | |
3267 | ||
3268 | /* | |
3269 | * Inform the physical mapping system that the range | |
3270 | * of addresses may fault, so that page tables and | |
3271 | * such may be unwired themselves. | |
3272 | */ | |
3273 | ||
9bccf70c A |
3274 | pmap_pageable(pmap, pmap_addr, |
3275 | pmap_addr + (end_addr - entry->vme_start), TRUE); | |
1c79356b A |
3276 | |
3277 | } | |
3278 | ||
3279 | /* | |
3280 | * vm_fault_wire_fast: | |
3281 | * | |
3282 | * Handle common case of a wire down page fault at the given address. | |
3283 | * If successful, the page is inserted into the associated physical map. | |
3284 | * The map entry is passed in to avoid the overhead of a map lookup. | |
3285 | * | |
3286 | * NOTE: the given address should be truncated to the | |
3287 | * proper page address. | |
3288 | * | |
3289 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, | |
3290 | * a standard error specifying why the fault is fatal is returned. | |
3291 | * | |
3292 | * The map in question must be referenced, and remains so. | |
3293 | * Caller has a read lock on the map. | |
3294 | * | |
3295 | * This is a stripped version of vm_fault() for wiring pages. Anything | |
3296 | * other than the common case will return KERN_FAILURE, and the caller | |
3297 | * is expected to call vm_fault(). | |
3298 | */ | |
3299 | kern_return_t | |
3300 | vm_fault_wire_fast( | |
3301 | vm_map_t map, | |
3302 | vm_offset_t va, | |
3303 | vm_map_entry_t entry, | |
9bccf70c A |
3304 | pmap_t pmap, |
3305 | vm_offset_t pmap_addr) | |
1c79356b A |
3306 | { |
3307 | vm_object_t object; | |
3308 | vm_object_offset_t offset; | |
3309 | register vm_page_t m; | |
3310 | vm_prot_t prot; | |
3311 | thread_act_t thr_act; | |
9bccf70c | 3312 | unsigned int cache_attr; |
1c79356b A |
3313 | |
3314 | VM_STAT(faults++); | |
3315 | ||
3316 | if((thr_act=current_act()) && (thr_act->task != TASK_NULL)) | |
3317 | thr_act->task->faults++; | |
3318 | ||
3319 | /* | |
3320 | * Recovery actions | |
3321 | */ | |
3322 | ||
3323 | #undef RELEASE_PAGE | |
3324 | #define RELEASE_PAGE(m) { \ | |
3325 | PAGE_WAKEUP_DONE(m); \ | |
3326 | vm_page_lock_queues(); \ | |
3327 | vm_page_unwire(m); \ | |
3328 | vm_page_unlock_queues(); \ | |
3329 | } | |
3330 | ||
3331 | ||
3332 | #undef UNLOCK_THINGS | |
3333 | #define UNLOCK_THINGS { \ | |
3334 | object->paging_in_progress--; \ | |
3335 | vm_object_unlock(object); \ | |
3336 | } | |
3337 | ||
3338 | #undef UNLOCK_AND_DEALLOCATE | |
3339 | #define UNLOCK_AND_DEALLOCATE { \ | |
3340 | UNLOCK_THINGS; \ | |
3341 | vm_object_deallocate(object); \ | |
3342 | } | |
3343 | /* | |
3344 | * Give up and have caller do things the hard way. | |
3345 | */ | |
3346 | ||
3347 | #define GIVE_UP { \ | |
3348 | UNLOCK_AND_DEALLOCATE; \ | |
3349 | return(KERN_FAILURE); \ | |
3350 | } | |
3351 | ||
3352 | ||
3353 | /* | |
3354 | * If this entry is not directly to a vm_object, bail out. | |
3355 | */ | |
3356 | if (entry->is_sub_map) | |
3357 | return(KERN_FAILURE); | |
3358 | ||
3359 | /* | |
3360 | * Find the backing store object and offset into it. | |
3361 | */ | |
3362 | ||
3363 | object = entry->object.vm_object; | |
3364 | offset = (va - entry->vme_start) + entry->offset; | |
3365 | prot = entry->protection; | |
3366 | ||
3367 | /* | |
3368 | * Make a reference to this object to prevent its | |
3369 | * disposal while we are messing with it. | |
3370 | */ | |
3371 | ||
3372 | vm_object_lock(object); | |
3373 | assert(object->ref_count > 0); | |
3374 | object->ref_count++; | |
3375 | vm_object_res_reference(object); | |
3376 | object->paging_in_progress++; | |
3377 | ||
3378 | /* | |
3379 | * INVARIANTS (through entire routine): | |
3380 | * | |
3381 | * 1) At all times, we must either have the object | |
3382 | * lock or a busy page in some object to prevent | |
3383 | * some other thread from trying to bring in | |
3384 | * the same page. | |
3385 | * | |
3386 | * 2) Once we have a busy page, we must remove it from | |
3387 | * the pageout queues, so that the pageout daemon | |
3388 | * will not grab it away. | |
3389 | * | |
3390 | */ | |
3391 | ||
3392 | /* | |
3393 | * Look for page in top-level object. If it's not there or | |
3394 | * there's something going on, give up. | |
3395 | */ | |
3396 | m = vm_page_lookup(object, offset); | |
3397 | if ((m == VM_PAGE_NULL) || (m->busy) || | |
3398 | (m->unusual && ( m->error || m->restart || m->absent || | |
3399 | prot & m->page_lock))) { | |
3400 | ||
3401 | GIVE_UP; | |
3402 | } | |
3403 | ||
3404 | /* | |
3405 | * Wire the page down now. All bail outs beyond this | |
3406 | * point must unwire the page. | |
3407 | */ | |
3408 | ||
3409 | vm_page_lock_queues(); | |
3410 | vm_page_wire(m); | |
3411 | vm_page_unlock_queues(); | |
3412 | ||
3413 | /* | |
3414 | * Mark page busy for other threads. | |
3415 | */ | |
3416 | assert(!m->busy); | |
3417 | m->busy = TRUE; | |
3418 | assert(!m->absent); | |
3419 | ||
3420 | /* | |
3421 | * Give up if the page is being written and there's a copy object | |
3422 | */ | |
3423 | if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { | |
3424 | RELEASE_PAGE(m); | |
3425 | GIVE_UP; | |
3426 | } | |
3427 | ||
3428 | /* | |
3429 | * Put this page into the physical map. | |
3430 | * We have to unlock the object because pmap_enter | |
3431 | * may cause other faults. | |
3432 | */ | |
765c9de3 | 3433 | if (m->no_isync == TRUE) { |
55e303ae | 3434 | pmap_sync_caches_phys(m->phys_page); |
0b4e3aa0 | 3435 | |
765c9de3 | 3436 | m->no_isync = FALSE; |
0b4e3aa0 | 3437 | } |
9bccf70c A |
3438 | |
3439 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; | |
765c9de3 | 3440 | |
9bccf70c | 3441 | PMAP_ENTER(pmap, pmap_addr, m, prot, cache_attr, TRUE); |
1c79356b | 3442 | |
1c79356b A |
3443 | /* |
3444 | * Unlock everything, and return | |
3445 | */ | |
3446 | ||
3447 | PAGE_WAKEUP_DONE(m); | |
3448 | UNLOCK_AND_DEALLOCATE; | |
3449 | ||
3450 | return(KERN_SUCCESS); | |
3451 | ||
3452 | } | |
3453 | ||
3454 | /* | |
3455 | * Routine: vm_fault_copy_cleanup | |
3456 | * Purpose: | |
3457 | * Release a page used by vm_fault_copy. | |
3458 | */ | |
3459 | ||
3460 | void | |
3461 | vm_fault_copy_cleanup( | |
3462 | vm_page_t page, | |
3463 | vm_page_t top_page) | |
3464 | { | |
3465 | vm_object_t object = page->object; | |
3466 | ||
3467 | vm_object_lock(object); | |
3468 | PAGE_WAKEUP_DONE(page); | |
3469 | vm_page_lock_queues(); | |
3470 | if (!page->active && !page->inactive) | |
3471 | vm_page_activate(page); | |
3472 | vm_page_unlock_queues(); | |
3473 | vm_fault_cleanup(object, top_page); | |
3474 | } | |
3475 | ||
3476 | void | |
3477 | vm_fault_copy_dst_cleanup( | |
3478 | vm_page_t page) | |
3479 | { | |
3480 | vm_object_t object; | |
3481 | ||
3482 | if (page != VM_PAGE_NULL) { | |
3483 | object = page->object; | |
3484 | vm_object_lock(object); | |
3485 | vm_page_lock_queues(); | |
3486 | vm_page_unwire(page); | |
3487 | vm_page_unlock_queues(); | |
3488 | vm_object_paging_end(object); | |
3489 | vm_object_unlock(object); | |
3490 | } | |
3491 | } | |
3492 | ||
3493 | /* | |
3494 | * Routine: vm_fault_copy | |
3495 | * | |
3496 | * Purpose: | |
3497 | * Copy pages from one virtual memory object to another -- | |
3498 | * neither the source nor destination pages need be resident. | |
3499 | * | |
3500 | * Before actually copying a page, the version associated with | |
3501 | * the destination address map wil be verified. | |
3502 | * | |
3503 | * In/out conditions: | |
3504 | * The caller must hold a reference, but not a lock, to | |
3505 | * each of the source and destination objects and to the | |
3506 | * destination map. | |
3507 | * | |
3508 | * Results: | |
3509 | * Returns KERN_SUCCESS if no errors were encountered in | |
3510 | * reading or writing the data. Returns KERN_INTERRUPTED if | |
3511 | * the operation was interrupted (only possible if the | |
3512 | * "interruptible" argument is asserted). Other return values | |
3513 | * indicate a permanent error in copying the data. | |
3514 | * | |
3515 | * The actual amount of data copied will be returned in the | |
3516 | * "copy_size" argument. In the event that the destination map | |
3517 | * verification failed, this amount may be less than the amount | |
3518 | * requested. | |
3519 | */ | |
3520 | kern_return_t | |
3521 | vm_fault_copy( | |
3522 | vm_object_t src_object, | |
3523 | vm_object_offset_t src_offset, | |
3524 | vm_size_t *src_size, /* INOUT */ | |
3525 | vm_object_t dst_object, | |
3526 | vm_object_offset_t dst_offset, | |
3527 | vm_map_t dst_map, | |
3528 | vm_map_version_t *dst_version, | |
3529 | int interruptible) | |
3530 | { | |
3531 | vm_page_t result_page; | |
3532 | ||
3533 | vm_page_t src_page; | |
3534 | vm_page_t src_top_page; | |
3535 | vm_prot_t src_prot; | |
3536 | ||
3537 | vm_page_t dst_page; | |
3538 | vm_page_t dst_top_page; | |
3539 | vm_prot_t dst_prot; | |
3540 | ||
3541 | vm_size_t amount_left; | |
3542 | vm_object_t old_copy_object; | |
3543 | kern_return_t error = 0; | |
3544 | ||
3545 | vm_size_t part_size; | |
3546 | ||
3547 | /* | |
3548 | * In order not to confuse the clustered pageins, align | |
3549 | * the different offsets on a page boundary. | |
3550 | */ | |
3551 | vm_object_offset_t src_lo_offset = trunc_page_64(src_offset); | |
3552 | vm_object_offset_t dst_lo_offset = trunc_page_64(dst_offset); | |
3553 | vm_object_offset_t src_hi_offset = round_page_64(src_offset + *src_size); | |
3554 | vm_object_offset_t dst_hi_offset = round_page_64(dst_offset + *src_size); | |
3555 | ||
3556 | #define RETURN(x) \ | |
3557 | MACRO_BEGIN \ | |
3558 | *src_size -= amount_left; \ | |
3559 | MACRO_RETURN(x); \ | |
3560 | MACRO_END | |
3561 | ||
3562 | amount_left = *src_size; | |
3563 | do { /* while (amount_left > 0) */ | |
3564 | /* | |
3565 | * There may be a deadlock if both source and destination | |
3566 | * pages are the same. To avoid this deadlock, the copy must | |
3567 | * start by getting the destination page in order to apply | |
3568 | * COW semantics if any. | |
3569 | */ | |
3570 | ||
3571 | RetryDestinationFault: ; | |
3572 | ||
3573 | dst_prot = VM_PROT_WRITE|VM_PROT_READ; | |
3574 | ||
3575 | vm_object_lock(dst_object); | |
3576 | vm_object_paging_begin(dst_object); | |
3577 | ||
3578 | XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0); | |
3579 | switch (vm_fault_page(dst_object, | |
3580 | trunc_page_64(dst_offset), | |
3581 | VM_PROT_WRITE|VM_PROT_READ, | |
3582 | FALSE, | |
3583 | interruptible, | |
3584 | dst_lo_offset, | |
3585 | dst_hi_offset, | |
3586 | VM_BEHAVIOR_SEQUENTIAL, | |
3587 | &dst_prot, | |
3588 | &dst_page, | |
3589 | &dst_top_page, | |
3590 | (int *)0, | |
3591 | &error, | |
3592 | dst_map->no_zero_fill, | |
0b4e3aa0 | 3593 | FALSE, NULL, 0)) { |
1c79356b A |
3594 | case VM_FAULT_SUCCESS: |
3595 | break; | |
3596 | case VM_FAULT_RETRY: | |
3597 | goto RetryDestinationFault; | |
3598 | case VM_FAULT_MEMORY_SHORTAGE: | |
3599 | if (vm_page_wait(interruptible)) | |
3600 | goto RetryDestinationFault; | |
3601 | /* fall thru */ | |
3602 | case VM_FAULT_INTERRUPTED: | |
3603 | RETURN(MACH_SEND_INTERRUPTED); | |
3604 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
3605 | vm_page_more_fictitious(); | |
3606 | goto RetryDestinationFault; | |
3607 | case VM_FAULT_MEMORY_ERROR: | |
3608 | if (error) | |
3609 | return (error); | |
3610 | else | |
3611 | return(KERN_MEMORY_ERROR); | |
3612 | } | |
3613 | assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); | |
3614 | ||
3615 | old_copy_object = dst_page->object->copy; | |
3616 | ||
3617 | /* | |
3618 | * There exists the possiblity that the source and | |
3619 | * destination page are the same. But we can't | |
3620 | * easily determine that now. If they are the | |
3621 | * same, the call to vm_fault_page() for the | |
3622 | * destination page will deadlock. To prevent this we | |
3623 | * wire the page so we can drop busy without having | |
3624 | * the page daemon steal the page. We clean up the | |
3625 | * top page but keep the paging reference on the object | |
3626 | * holding the dest page so it doesn't go away. | |
3627 | */ | |
3628 | ||
3629 | vm_page_lock_queues(); | |
3630 | vm_page_wire(dst_page); | |
3631 | vm_page_unlock_queues(); | |
3632 | PAGE_WAKEUP_DONE(dst_page); | |
3633 | vm_object_unlock(dst_page->object); | |
3634 | ||
3635 | if (dst_top_page != VM_PAGE_NULL) { | |
3636 | vm_object_lock(dst_object); | |
3637 | VM_PAGE_FREE(dst_top_page); | |
3638 | vm_object_paging_end(dst_object); | |
3639 | vm_object_unlock(dst_object); | |
3640 | } | |
3641 | ||
3642 | RetrySourceFault: ; | |
3643 | ||
3644 | if (src_object == VM_OBJECT_NULL) { | |
3645 | /* | |
3646 | * No source object. We will just | |
3647 | * zero-fill the page in dst_object. | |
3648 | */ | |
3649 | src_page = VM_PAGE_NULL; | |
e3027f41 | 3650 | result_page = VM_PAGE_NULL; |
1c79356b A |
3651 | } else { |
3652 | vm_object_lock(src_object); | |
3653 | src_page = vm_page_lookup(src_object, | |
3654 | trunc_page_64(src_offset)); | |
e3027f41 | 3655 | if (src_page == dst_page) { |
1c79356b | 3656 | src_prot = dst_prot; |
e3027f41 A |
3657 | result_page = VM_PAGE_NULL; |
3658 | } else { | |
1c79356b A |
3659 | src_prot = VM_PROT_READ; |
3660 | vm_object_paging_begin(src_object); | |
3661 | ||
3662 | XPR(XPR_VM_FAULT, | |
3663 | "vm_fault_copy(2) -> vm_fault_page\n", | |
3664 | 0,0,0,0,0); | |
3665 | switch (vm_fault_page(src_object, | |
3666 | trunc_page_64(src_offset), | |
3667 | VM_PROT_READ, | |
3668 | FALSE, | |
3669 | interruptible, | |
3670 | src_lo_offset, | |
3671 | src_hi_offset, | |
3672 | VM_BEHAVIOR_SEQUENTIAL, | |
3673 | &src_prot, | |
3674 | &result_page, | |
3675 | &src_top_page, | |
3676 | (int *)0, | |
3677 | &error, | |
3678 | FALSE, | |
0b4e3aa0 | 3679 | FALSE, NULL, 0)) { |
1c79356b A |
3680 | |
3681 | case VM_FAULT_SUCCESS: | |
3682 | break; | |
3683 | case VM_FAULT_RETRY: | |
3684 | goto RetrySourceFault; | |
3685 | case VM_FAULT_MEMORY_SHORTAGE: | |
3686 | if (vm_page_wait(interruptible)) | |
3687 | goto RetrySourceFault; | |
3688 | /* fall thru */ | |
3689 | case VM_FAULT_INTERRUPTED: | |
3690 | vm_fault_copy_dst_cleanup(dst_page); | |
3691 | RETURN(MACH_SEND_INTERRUPTED); | |
3692 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
3693 | vm_page_more_fictitious(); | |
3694 | goto RetrySourceFault; | |
3695 | case VM_FAULT_MEMORY_ERROR: | |
3696 | vm_fault_copy_dst_cleanup(dst_page); | |
3697 | if (error) | |
3698 | return (error); | |
3699 | else | |
3700 | return(KERN_MEMORY_ERROR); | |
3701 | } | |
3702 | ||
1c79356b A |
3703 | |
3704 | assert((src_top_page == VM_PAGE_NULL) == | |
e3027f41 | 3705 | (result_page->object == src_object)); |
1c79356b A |
3706 | } |
3707 | assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE); | |
e3027f41 | 3708 | vm_object_unlock(result_page->object); |
1c79356b A |
3709 | } |
3710 | ||
3711 | if (!vm_map_verify(dst_map, dst_version)) { | |
e3027f41 A |
3712 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3713 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3714 | vm_fault_copy_dst_cleanup(dst_page); |
3715 | break; | |
3716 | } | |
3717 | ||
3718 | vm_object_lock(dst_page->object); | |
3719 | ||
3720 | if (dst_page->object->copy != old_copy_object) { | |
3721 | vm_object_unlock(dst_page->object); | |
3722 | vm_map_verify_done(dst_map, dst_version); | |
e3027f41 A |
3723 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3724 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3725 | vm_fault_copy_dst_cleanup(dst_page); |
3726 | break; | |
3727 | } | |
3728 | vm_object_unlock(dst_page->object); | |
3729 | ||
3730 | /* | |
3731 | * Copy the page, and note that it is dirty | |
3732 | * immediately. | |
3733 | */ | |
3734 | ||
3735 | if (!page_aligned(src_offset) || | |
3736 | !page_aligned(dst_offset) || | |
3737 | !page_aligned(amount_left)) { | |
3738 | ||
3739 | vm_object_offset_t src_po, | |
3740 | dst_po; | |
3741 | ||
3742 | src_po = src_offset - trunc_page_64(src_offset); | |
3743 | dst_po = dst_offset - trunc_page_64(dst_offset); | |
3744 | ||
3745 | if (dst_po > src_po) { | |
3746 | part_size = PAGE_SIZE - dst_po; | |
3747 | } else { | |
3748 | part_size = PAGE_SIZE - src_po; | |
3749 | } | |
3750 | if (part_size > (amount_left)){ | |
3751 | part_size = amount_left; | |
3752 | } | |
3753 | ||
e3027f41 | 3754 | if (result_page == VM_PAGE_NULL) { |
1c79356b A |
3755 | vm_page_part_zero_fill(dst_page, |
3756 | dst_po, part_size); | |
3757 | } else { | |
e3027f41 | 3758 | vm_page_part_copy(result_page, src_po, |
1c79356b A |
3759 | dst_page, dst_po, part_size); |
3760 | if(!dst_page->dirty){ | |
3761 | vm_object_lock(dst_object); | |
3762 | dst_page->dirty = TRUE; | |
3763 | vm_object_unlock(dst_page->object); | |
3764 | } | |
3765 | ||
3766 | } | |
3767 | } else { | |
3768 | part_size = PAGE_SIZE; | |
3769 | ||
e3027f41 | 3770 | if (result_page == VM_PAGE_NULL) |
1c79356b A |
3771 | vm_page_zero_fill(dst_page); |
3772 | else{ | |
e3027f41 | 3773 | vm_page_copy(result_page, dst_page); |
1c79356b A |
3774 | if(!dst_page->dirty){ |
3775 | vm_object_lock(dst_object); | |
3776 | dst_page->dirty = TRUE; | |
3777 | vm_object_unlock(dst_page->object); | |
3778 | } | |
3779 | } | |
3780 | ||
3781 | } | |
3782 | ||
3783 | /* | |
3784 | * Unlock everything, and return | |
3785 | */ | |
3786 | ||
3787 | vm_map_verify_done(dst_map, dst_version); | |
3788 | ||
e3027f41 A |
3789 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3790 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3791 | vm_fault_copy_dst_cleanup(dst_page); |
3792 | ||
3793 | amount_left -= part_size; | |
3794 | src_offset += part_size; | |
3795 | dst_offset += part_size; | |
3796 | } while (amount_left > 0); | |
3797 | ||
3798 | RETURN(KERN_SUCCESS); | |
3799 | #undef RETURN | |
3800 | ||
3801 | /*NOTREACHED*/ | |
3802 | } | |
3803 | ||
3804 | #ifdef notdef | |
3805 | ||
3806 | /* | |
3807 | * Routine: vm_fault_page_overwrite | |
3808 | * | |
3809 | * Description: | |
3810 | * A form of vm_fault_page that assumes that the | |
3811 | * resulting page will be overwritten in its entirety, | |
3812 | * making it unnecessary to obtain the correct *contents* | |
3813 | * of the page. | |
3814 | * | |
3815 | * Implementation: | |
3816 | * XXX Untested. Also unused. Eventually, this technology | |
3817 | * could be used in vm_fault_copy() to advantage. | |
3818 | */ | |
3819 | vm_fault_return_t | |
3820 | vm_fault_page_overwrite( | |
3821 | register | |
3822 | vm_object_t dst_object, | |
3823 | vm_object_offset_t dst_offset, | |
3824 | vm_page_t *result_page) /* OUT */ | |
3825 | { | |
3826 | register | |
3827 | vm_page_t dst_page; | |
3828 | kern_return_t wait_result; | |
3829 | ||
3830 | #define interruptible THREAD_UNINT /* XXX */ | |
3831 | ||
3832 | while (TRUE) { | |
3833 | /* | |
3834 | * Look for a page at this offset | |
3835 | */ | |
3836 | ||
3837 | while ((dst_page = vm_page_lookup(dst_object, dst_offset)) | |
3838 | == VM_PAGE_NULL) { | |
3839 | /* | |
3840 | * No page, no problem... just allocate one. | |
3841 | */ | |
3842 | ||
3843 | dst_page = vm_page_alloc(dst_object, dst_offset); | |
3844 | if (dst_page == VM_PAGE_NULL) { | |
3845 | vm_object_unlock(dst_object); | |
3846 | VM_PAGE_WAIT(); | |
3847 | vm_object_lock(dst_object); | |
3848 | continue; | |
3849 | } | |
3850 | ||
3851 | /* | |
3852 | * Pretend that the memory manager | |
3853 | * write-protected the page. | |
3854 | * | |
3855 | * Note that we will be asking for write | |
3856 | * permission without asking for the data | |
3857 | * first. | |
3858 | */ | |
3859 | ||
3860 | dst_page->overwriting = TRUE; | |
3861 | dst_page->page_lock = VM_PROT_WRITE; | |
3862 | dst_page->absent = TRUE; | |
3863 | dst_page->unusual = TRUE; | |
3864 | dst_object->absent_count++; | |
3865 | ||
3866 | break; | |
3867 | ||
3868 | /* | |
3869 | * When we bail out, we might have to throw | |
3870 | * away the page created here. | |
3871 | */ | |
3872 | ||
3873 | #define DISCARD_PAGE \ | |
3874 | MACRO_BEGIN \ | |
3875 | vm_object_lock(dst_object); \ | |
3876 | dst_page = vm_page_lookup(dst_object, dst_offset); \ | |
3877 | if ((dst_page != VM_PAGE_NULL) && dst_page->overwriting) \ | |
3878 | VM_PAGE_FREE(dst_page); \ | |
3879 | vm_object_unlock(dst_object); \ | |
3880 | MACRO_END | |
3881 | } | |
3882 | ||
3883 | /* | |
3884 | * If the page is write-protected... | |
3885 | */ | |
3886 | ||
3887 | if (dst_page->page_lock & VM_PROT_WRITE) { | |
3888 | /* | |
3889 | * ... and an unlock request hasn't been sent | |
3890 | */ | |
3891 | ||
3892 | if ( ! (dst_page->unlock_request & VM_PROT_WRITE)) { | |
3893 | vm_prot_t u; | |
3894 | kern_return_t rc; | |
3895 | ||
3896 | /* | |
3897 | * ... then send one now. | |
3898 | */ | |
3899 | ||
3900 | if (!dst_object->pager_ready) { | |
9bccf70c A |
3901 | wait_result = vm_object_assert_wait(dst_object, |
3902 | VM_OBJECT_EVENT_PAGER_READY, | |
3903 | interruptible); | |
1c79356b | 3904 | vm_object_unlock(dst_object); |
9bccf70c A |
3905 | if (wait_result == THREAD_WAITING) |
3906 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
3907 | if (wait_result != THREAD_AWAKENED) { |
3908 | DISCARD_PAGE; | |
3909 | return(VM_FAULT_INTERRUPTED); | |
3910 | } | |
3911 | continue; | |
3912 | } | |
3913 | ||
3914 | u = dst_page->unlock_request |= VM_PROT_WRITE; | |
3915 | vm_object_unlock(dst_object); | |
3916 | ||
3917 | if ((rc = memory_object_data_unlock( | |
3918 | dst_object->pager, | |
1c79356b A |
3919 | dst_offset + dst_object->paging_offset, |
3920 | PAGE_SIZE, | |
3921 | u)) != KERN_SUCCESS) { | |
3922 | if (vm_fault_debug) | |
3923 | printf("vm_object_overwrite: memory_object_data_unlock failed\n"); | |
3924 | DISCARD_PAGE; | |
3925 | return((rc == MACH_SEND_INTERRUPTED) ? | |
3926 | VM_FAULT_INTERRUPTED : | |
3927 | VM_FAULT_MEMORY_ERROR); | |
3928 | } | |
3929 | vm_object_lock(dst_object); | |
3930 | continue; | |
3931 | } | |
3932 | ||
3933 | /* ... fall through to wait below */ | |
3934 | } else { | |
3935 | /* | |
3936 | * If the page isn't being used for other | |
3937 | * purposes, then we're done. | |
3938 | */ | |
3939 | if ( ! (dst_page->busy || dst_page->absent || | |
3940 | dst_page->error || dst_page->restart) ) | |
3941 | break; | |
3942 | } | |
3943 | ||
9bccf70c | 3944 | wait_result = PAGE_ASSERT_WAIT(dst_page, interruptible); |
1c79356b | 3945 | vm_object_unlock(dst_object); |
9bccf70c A |
3946 | if (wait_result == THREAD_WAITING) |
3947 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
3948 | if (wait_result != THREAD_AWAKENED) { |
3949 | DISCARD_PAGE; | |
3950 | return(VM_FAULT_INTERRUPTED); | |
3951 | } | |
3952 | } | |
3953 | ||
3954 | *result_page = dst_page; | |
3955 | return(VM_FAULT_SUCCESS); | |
3956 | ||
3957 | #undef interruptible | |
3958 | #undef DISCARD_PAGE | |
3959 | } | |
3960 | ||
3961 | #endif /* notdef */ | |
3962 | ||
3963 | #if VM_FAULT_CLASSIFY | |
3964 | /* | |
3965 | * Temporary statistics gathering support. | |
3966 | */ | |
3967 | ||
3968 | /* | |
3969 | * Statistics arrays: | |
3970 | */ | |
3971 | #define VM_FAULT_TYPES_MAX 5 | |
3972 | #define VM_FAULT_LEVEL_MAX 8 | |
3973 | ||
3974 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; | |
3975 | ||
3976 | #define VM_FAULT_TYPE_ZERO_FILL 0 | |
3977 | #define VM_FAULT_TYPE_MAP_IN 1 | |
3978 | #define VM_FAULT_TYPE_PAGER 2 | |
3979 | #define VM_FAULT_TYPE_COPY 3 | |
3980 | #define VM_FAULT_TYPE_OTHER 4 | |
3981 | ||
3982 | ||
3983 | void | |
3984 | vm_fault_classify(vm_object_t object, | |
3985 | vm_object_offset_t offset, | |
3986 | vm_prot_t fault_type) | |
3987 | { | |
3988 | int type, level = 0; | |
3989 | vm_page_t m; | |
3990 | ||
3991 | while (TRUE) { | |
3992 | m = vm_page_lookup(object, offset); | |
3993 | if (m != VM_PAGE_NULL) { | |
3994 | if (m->busy || m->error || m->restart || m->absent || | |
3995 | fault_type & m->page_lock) { | |
3996 | type = VM_FAULT_TYPE_OTHER; | |
3997 | break; | |
3998 | } | |
3999 | if (((fault_type & VM_PROT_WRITE) == 0) || | |
4000 | ((level == 0) && object->copy == VM_OBJECT_NULL)) { | |
4001 | type = VM_FAULT_TYPE_MAP_IN; | |
4002 | break; | |
4003 | } | |
4004 | type = VM_FAULT_TYPE_COPY; | |
4005 | break; | |
4006 | } | |
4007 | else { | |
4008 | if (object->pager_created) { | |
4009 | type = VM_FAULT_TYPE_PAGER; | |
4010 | break; | |
4011 | } | |
4012 | if (object->shadow == VM_OBJECT_NULL) { | |
4013 | type = VM_FAULT_TYPE_ZERO_FILL; | |
4014 | break; | |
4015 | } | |
4016 | ||
4017 | offset += object->shadow_offset; | |
4018 | object = object->shadow; | |
4019 | level++; | |
4020 | continue; | |
4021 | } | |
4022 | } | |
4023 | ||
4024 | if (level > VM_FAULT_LEVEL_MAX) | |
4025 | level = VM_FAULT_LEVEL_MAX; | |
4026 | ||
4027 | vm_fault_stats[type][level] += 1; | |
4028 | ||
4029 | return; | |
4030 | } | |
4031 | ||
4032 | /* cleanup routine to call from debugger */ | |
4033 | ||
4034 | void | |
4035 | vm_fault_classify_init(void) | |
4036 | { | |
4037 | int type, level; | |
4038 | ||
4039 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { | |
4040 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { | |
4041 | vm_fault_stats[type][level] = 0; | |
4042 | } | |
4043 | } | |
4044 | ||
4045 | return; | |
4046 | } | |
4047 | #endif /* VM_FAULT_CLASSIFY */ |