]> git.saurik.com Git - apple/xnu.git/blame - bsd/crypto/aes/aesopt.h
xnu-792.tar.gz
[apple/xnu.git] / bsd / crypto / aes / aesopt.h
CommitLineData
91447636
A
1/*\r
2 ---------------------------------------------------------------------------\r
3 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.\r
4\r
5 LICENSE TERMS\r
6\r
7 The free distribution and use of this software in both source and binary\r
8 form is allowed (with or without changes) provided that:\r
9\r
10 1. distributions of this source code include the above copyright\r
11 notice, this list of conditions and the following disclaimer;\r
12\r
13 2. distributions in binary form include the above copyright\r
14 notice, this list of conditions and the following disclaimer\r
15 in the documentation and/or other associated materials;\r
16\r
17 3. the copyright holder's name is not used to endorse products\r
18 built using this software without specific written permission.\r
19\r
20 ALTERNATIVELY, provided that this notice is retained in full, this product\r
21 may be distributed under the terms of the GNU General Public License (GPL),\r
22 in which case the provisions of the GPL apply INSTEAD OF those given above.\r
23\r
24 DISCLAIMER\r
25\r
26 This software is provided 'as is' with no explicit or implied warranties\r
27 in respect of its properties, including, but not limited to, correctness\r
28 and/or fitness for purpose.\r
29 ---------------------------------------------------------------------------\r
30 Issue 28/01/2004\r
31\r
32 My thanks go to Dag Arne Osvik for devising the schemes used here for key\r
33 length derivation from the form of the key schedule\r
34\r
35 This file contains the compilation options for AES (Rijndael) and code\r
36 that is common across encryption, key scheduling and table generation.\r
37\r
38 OPERATION\r
39\r
40 These source code files implement the AES algorithm Rijndael designed by\r
41 Joan Daemen and Vincent Rijmen. This version is designed for the standard\r
42 block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24\r
43 and 32 bytes).\r
44\r
45 This version is designed for flexibility and speed using operations on\r
46 32-bit words rather than operations on bytes. It can be compiled with\r
47 either big or little endian internal byte order but is faster when the\r
48 native byte order for the processor is used.\r
49\r
50 THE CIPHER INTERFACE\r
51\r
52 The cipher interface is implemented as an array of bytes in which lower\r
53 AES bit sequence indexes map to higher numeric significance within bytes.\r
54\r
55 aes_08t (an unsigned 8-bit type)\r
56 aes_32t (an unsigned 32-bit type)\r
57 struct aes_encrypt_ctx (structure for the cipher encryption context)\r
58 struct aes_decrypt_ctx (structure for the cipher decryption context)\r
59 aes_rval the function return type\r
60\r
61 C subroutine calls:\r
62\r
63 aes_rval aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);\r
64 aes_rval aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);\r
65 aes_rval aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);\r
66 aes_rval aes_encrypt(const unsigned char *in, unsigned char *out,\r
67 const aes_encrypt_ctx cx[1]);\r
68\r
69 aes_rval aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);\r
70 aes_rval aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);\r
71 aes_rval aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);\r
72 aes_rval aes_decrypt(const unsigned char *in, unsigned char *out,\r
73 const aes_decrypt_ctx cx[1]);\r
74\r
75 IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that\r
76 you call genTabs() before AES is used so that the tables are initialised.\r
77\r
78 C++ aes class subroutines:\r
79\r
80 Class AESencrypt for encryption\r
81\r
82 Construtors:\r
83 AESencrypt(void)\r
84 AESencrypt(const unsigned char *key) - 128 bit key\r
85 Members:\r
86 aes_rval key128(const unsigned char *key)\r
87 aes_rval key192(const unsigned char *key)\r
88 aes_rval key256(const unsigned char *key)\r
89 aes_rval encrypt(const unsigned char *in, unsigned char *out) const\r
90\r
91 Class AESdecrypt for encryption\r
92 Construtors:\r
93 AESdecrypt(void)\r
94 AESdecrypt(const unsigned char *key) - 128 bit key\r
95 Members:\r
96 aes_rval key128(const unsigned char *key)\r
97 aes_rval key192(const unsigned char *key)\r
98 aes_rval key256(const unsigned char *key)\r
99 aes_rval decrypt(const unsigned char *in, unsigned char *out) const\r
100\r
101 COMPILATION\r
102\r
103 The files used to provide AES (Rijndael) are\r
104\r
105 a. aes.h for the definitions needed for use in C.\r
106 b. aescpp.h for the definitions needed for use in C++.\r
107 c. aesopt.h for setting compilation options (also includes common code).\r
108 d. aescrypt.c for encryption and decrytpion, or\r
109 e. aeskey.c for key scheduling.\r
110 f. aestab.c for table loading or generation.\r
111 g. aescrypt.asm for encryption and decryption using assembler code.\r
112 h. aescrypt.mmx.asm for encryption and decryption using MMX assembler.\r
113\r
114 To compile AES (Rijndael) for use in C code use aes.h and set the\r
115 defines here for the facilities you need (key lengths, encryption\r
116 and/or decryption). Do not define AES_DLL or AES_CPP. Set the options\r
117 for optimisations and table sizes here.\r
118\r
119 To compile AES (Rijndael) for use in in C++ code use aescpp.h but do\r
120 not define AES_DLL\r
121\r
122 To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use\r
123 aes.h and include the AES_DLL define.\r
124\r
125 CONFIGURATION OPTIONS (here and in aes.h)\r
126\r
127 a. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL\r
128 b. You may need to set PLATFORM_BYTE_ORDER to define the byte order.\r
129 c. If you want the code to run in a specific internal byte order, then\r
130 ALGORITHM_BYTE_ORDER must be set accordingly.\r
131 d. set other configuration options decribed below.\r
132*/\r
133\r
134#if !defined( _AESOPT_H )\r
135#define _AESOPT_H\r
136\r
137#include "aes.h"\r
138\r
139/* CONFIGURATION - USE OF DEFINES\r
140\r
141 Later in this section there are a number of defines that control the\r
142 operation of the code. In each section, the purpose of each define is\r
143 explained so that the relevant form can be included or excluded by\r
144 setting either 1's or 0's respectively on the branches of the related\r
145 #if clauses.\r
146\r
147 PLATFORM SPECIFIC INCLUDES AND BYTE ORDER IN 32-BIT WORDS\r
148\r
149 To obtain the highest speed on processors with 32-bit words, this code\r
150 needs to determine the byte order of the target machine. The following\r
151 block of code is an attempt to capture the most obvious ways in which\r
152 various environemnts define byte order. It may well fail, in which case\r
153 the definitions will need to be set by editing at the points marked\r
154 **** EDIT HERE IF NECESSARY **** below. My thanks go to Peter Gutmann\r
155 for his assistance with this endian detection nightmare.\r
156*/\r
157\r
158#define BRG_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */\r
159#define BRG_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */\r
160\r
161#if defined(__GNUC__) || defined(__GNU_LIBRARY__)\r
162# if defined(__FreeBSD__) || defined(__OpenBSD__)\r
163# include <sys/endian.h>\r
164# elif defined( BSD ) && BSD >= 199103\r
165# include <machine/endian.h>\r
166# elif defined(__APPLE__)\r
167# if defined(__BIG_ENDIAN__) && !defined( BIG_ENDIAN )\r
168# define BIG_ENDIAN\r
169# elif defined(__LITTLE_ENDIAN__) && !defined( LITTLE_ENDIAN )\r
170# define LITTLE_ENDIAN\r
171# endif\r
172# else\r
173# include <endian.h>\r
174# if defined(__BEOS__)\r
175# include <byteswap.h>\r
176# endif\r
177# endif\r
178#endif\r
179\r
180#if !defined(PLATFORM_BYTE_ORDER)\r
181# if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)\r
182# if defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)\r
183# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN\r
184# elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)\r
185# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN\r
186# elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)\r
187# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN\r
188# elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)\r
189# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN\r
190# endif\r
191# elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)\r
192# if defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)\r
193# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN\r
194# elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)\r
195# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN\r
196# elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)\r
197# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN\r
198# elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)\r
199# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN\r
200# endif\r
201# elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)\r
202# if defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)\r
203# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN\r
204# elif !defined(__LITTLE_ENDIAN__) && defined(__BIG_ENDIAN__)\r
205# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN\r
206# elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)\r
207# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN\r
208# elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)\r
209# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN\r
210# endif\r
211# endif\r
212#endif\r
213\r
214/* if the platform is still unknown, try to find its byte order */\r
215/* from commonly used machine defines */\r
216\r
217#if !defined(PLATFORM_BYTE_ORDER)\r
218\r
219#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \\r
220 defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \\r
221 defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \\r
222 defined( vax ) || defined( vms ) || defined( VMS ) || \\r
223 defined( __VMS )\r
224# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN\r
225\r
226#elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \\r
227 defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \\r
228 defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \\r
229 defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \\r
230 defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \\r
231 defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ )\r
232# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN\r
233\r
234#elif 0 /* **** EDIT HERE IF NECESSARY **** */\r
235# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN\r
236#elif 0 /* **** EDIT HERE IF NECESSARY **** */\r
237# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN\r
238#else\r
239# error Please edit aesopt.h (line 234 or 236) to set the platform byte order\r
240#endif\r
241\r
242#endif\r
243\r
244/* SOME LOCAL DEFINITIONS */\r
245\r
246#define NO_TABLES 0\r
247#define ONE_TABLE 1\r
248#define FOUR_TABLES 4\r
249#define NONE 0\r
250#define PARTIAL 1\r
251#define FULL 2\r
252\r
253#if defined(bswap32)\r
254#define aes_sw32 bswap32\r
255#elif defined(bswap_32)\r
256#define aes_sw32 bswap_32\r
257#else\r
258#define brot(x,n) (((aes_32t)(x) << n) | ((aes_32t)(x) >> (32 - n)))\r
259#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))\r
260#endif\r
261\r
262/* 1. FUNCTIONS REQUIRED\r
263\r
264 This implementation provides subroutines for encryption, decryption\r
265 and for setting the three key lengths (separately) for encryption\r
266 and decryption. When the assembler code is not being used the following\r
267 definition blocks allow the selection of the routines that are to be\r
268 included in the compilation.\r
269*/\r
270#if defined( AES_ENCRYPT )\r
271#define ENCRYPTION\r
272#define ENCRYPTION_KEY_SCHEDULE\r
273#endif\r
274\r
275#if defined( AES_DECRYPT )\r
276#define DECRYPTION\r
277#define DECRYPTION_KEY_SCHEDULE\r
278#endif\r
279\r
280/* 2. ASSEMBLER SUPPORT\r
281\r
282 This define (which can be on the command line) enables the use of the\r
283 assembler code routines for encryption and decryption with the C code\r
284 only providing key scheduling\r
285*/\r
286#if 0 && !defined(AES_ASM)\r
287#define AES_ASM\r
288#endif\r
289\r
290/* 3. BYTE ORDER WITHIN 32 BIT WORDS\r
291\r
292 The fundamental data processing units in Rijndael are 8-bit bytes. The\r
293 input, output and key input are all enumerated arrays of bytes in which\r
294 bytes are numbered starting at zero and increasing to one less than the\r
295 number of bytes in the array in question. This enumeration is only used\r
296 for naming bytes and does not imply any adjacency or order relationship\r
297 from one byte to another. When these inputs and outputs are considered\r
298 as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to\r
299 byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.\r
300 In this implementation bits are numbered from 0 to 7 starting at the\r
301 numerically least significant end of each byte (bit n represents 2^n).\r
302\r
303 However, Rijndael can be implemented more efficiently using 32-bit\r
304 words by packing bytes into words so that bytes 4*n to 4*n+3 are placed\r
305 into word[n]. While in principle these bytes can be assembled into words\r
306 in any positions, this implementation only supports the two formats in\r
307 which bytes in adjacent positions within words also have adjacent byte\r
308 numbers. This order is called big-endian if the lowest numbered bytes\r
309 in words have the highest numeric significance and little-endian if the\r
310 opposite applies.\r
311\r
312 This code can work in either order irrespective of the order used by the\r
313 machine on which it runs. Normally the internal byte order will be set\r
314 to the order of the processor on which the code is to be run but this\r
315 define can be used to reverse this in special situations\r
316\r
317 NOTE: Assembler code versions rely on PLATFORM_BYTE_ORDER being set\r
318*/\r
319#if 1 || defined(AES_ASM)\r
320#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER\r
321#elif 0\r
322#define ALGORITHM_BYTE_ORDER BRG_LITTLE_ENDIAN\r
323#elif 0\r
324#define ALGORITHM_BYTE_ORDER BRG_BIG_ENDIAN\r
325#else\r
326#error The algorithm byte order is not defined\r
327#endif\r
328\r
329/* 4. FAST INPUT/OUTPUT OPERATIONS.\r
330\r
331 On some machines it is possible to improve speed by transferring the\r
332 bytes in the input and output arrays to and from the internal 32-bit\r
333 variables by addressing these arrays as if they are arrays of 32-bit\r
334 words. On some machines this will always be possible but there may\r
335 be a large performance penalty if the byte arrays are not aligned on\r
336 the normal word boundaries. On other machines this technique will\r
337 lead to memory access errors when such 32-bit word accesses are not\r
338 properly aligned. The option SAFE_IO avoids such problems but will\r
339 often be slower on those machines that support misaligned access\r
340 (especially so if care is taken to align the input and output byte\r
341 arrays on 32-bit word boundaries). If SAFE_IO is not defined it is\r
342 assumed that access to byte arrays as if they are arrays of 32-bit\r
343 words will not cause problems when such accesses are misaligned.\r
344*/\r
345#if 0 && !defined(_MSC_VER)\r
346#define SAFE_IO\r
347#endif\r
348\r
349/* 5. LOOP UNROLLING\r
350\r
351 The code for encryption and decrytpion cycles through a number of rounds\r
352 that can be implemented either in a loop or by expanding the code into a\r
353 long sequence of instructions, the latter producing a larger program but\r
354 one that will often be much faster. The latter is called loop unrolling.\r
355 There are also potential speed advantages in expanding two iterations in\r
356 a loop with half the number of iterations, which is called partial loop\r
357 unrolling. The following options allow partial or full loop unrolling\r
358 to be set independently for encryption and decryption\r
359*/\r
360#if 1\r
361#define ENC_UNROLL FULL\r
362#elif 0\r
363#define ENC_UNROLL PARTIAL\r
364#else\r
365#define ENC_UNROLL NONE\r
366#endif\r
367\r
368#if 1\r
369#define DEC_UNROLL FULL\r
370#elif 0\r
371#define DEC_UNROLL PARTIAL\r
372#else\r
373#define DEC_UNROLL NONE\r
374#endif\r
375\r
376/* 6. FAST FINITE FIELD OPERATIONS\r
377\r
378 If this section is included, tables are used to provide faster finite\r
379 field arithmetic (this has no effect if FIXED_TABLES is defined).\r
380*/\r
381#if 1\r
382#define FF_TABLES\r
383#endif\r
384\r
385/* 7. INTERNAL STATE VARIABLE FORMAT\r
386\r
387 The internal state of Rijndael is stored in a number of local 32-bit\r
388 word varaibles which can be defined either as an array or as individual\r
389 names variables. Include this section if you want to store these local\r
390 varaibles in arrays. Otherwise individual local variables will be used.\r
391*/\r
392#if 0\r
393#define ARRAYS\r
394#endif\r
395\r
396/* In this implementation the columns of the state array are each held in\r
397 32-bit words. The state array can be held in various ways: in an array\r
398 of words, in a number of individual word variables or in a number of\r
399 processor registers. The following define maps a variable name x and\r
400 a column number c to the way the state array variable is to be held.\r
401 The first define below maps the state into an array x[c] whereas the\r
402 second form maps the state into a number of individual variables x0,\r
403 x1, etc. Another form could map individual state colums to machine\r
404 register names.\r
405*/\r
406\r
407#if defined(ARRAYS)\r
408#define s(x,c) x[c]\r
409#else\r
410#define s(x,c) x##c\r
411#endif\r
412\r
413/* 8. FIXED OR DYNAMIC TABLES\r
414\r
415 When this section is included the tables used by the code are compiled\r
416 statically into the binary file. Otherwise the subroutine gen_tabs()\r
417 must be called to compute them before the code is first used.\r
418*/\r
419#if 1\r
420#define FIXED_TABLES\r
421#endif\r
422\r
423/* 9. TABLE ALIGNMENT\r
424\r
425 On some sytsems speed will be improved by aligning the AES large lookup\r
426 tables on particular boundaries. This define should be set to a power of\r
427 two giving the desired alignment. It can be left undefined if alignment\r
428 is not needed. This option is specific to the Microsft VC++ compiler -\r
429 it seems to sometimes cause trouble for the VC++ version 6 compiler.\r
430*/\r
431\r
432#if 0 && defined(_MSC_VER) && (_MSC_VER >= 1300)\r
433#define TABLE_ALIGN 64\r
434#endif\r
435\r
436/* 10. INTERNAL TABLE CONFIGURATION\r
437\r
438 This cipher proceeds by repeating in a number of cycles known as 'rounds'\r
439 which are implemented by a round function which can optionally be speeded\r
440 up using tables. The basic tables are each 256 32-bit words, with either\r
441 one or four tables being required for each round function depending on\r
442 how much speed is required. The encryption and decryption round functions\r
443 are different and the last encryption and decrytpion round functions are\r
444 different again making four different round functions in all.\r
445\r
446 This means that:\r
447 1. Normal encryption and decryption rounds can each use either 0, 1\r
448 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.\r
449 2. The last encryption and decryption rounds can also use either 0, 1\r
450 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.\r
451\r
452 Include or exclude the appropriate definitions below to set the number\r
453 of tables used by this implementation.\r
454*/\r
455\r
456#if 1 /* set tables for the normal encryption round */\r
457#define ENC_ROUND FOUR_TABLES\r
458#elif 0\r
459#define ENC_ROUND ONE_TABLE\r
460#else\r
461#define ENC_ROUND NO_TABLES\r
462#endif\r
463\r
464#if 1 /* set tables for the last encryption round */\r
465#define LAST_ENC_ROUND FOUR_TABLES\r
466#elif 0\r
467#define LAST_ENC_ROUND ONE_TABLE\r
468#else\r
469#define LAST_ENC_ROUND NO_TABLES\r
470#endif\r
471\r
472#if 1 /* set tables for the normal decryption round */\r
473#define DEC_ROUND FOUR_TABLES\r
474#elif 0\r
475#define DEC_ROUND ONE_TABLE\r
476#else\r
477#define DEC_ROUND NO_TABLES\r
478#endif\r
479\r
480#if 1 /* set tables for the last decryption round */\r
481#define LAST_DEC_ROUND FOUR_TABLES\r
482#elif 0\r
483#define LAST_DEC_ROUND ONE_TABLE\r
484#else\r
485#define LAST_DEC_ROUND NO_TABLES\r
486#endif\r
487\r
488/* The decryption key schedule can be speeded up with tables in the same\r
489 way that the round functions can. Include or exclude the following\r
490 defines to set this requirement.\r
491*/\r
492#if 1\r
493#define KEY_SCHED FOUR_TABLES\r
494#elif 0\r
495#define KEY_SCHED ONE_TABLE\r
496#else\r
497#define KEY_SCHED NO_TABLES\r
498#endif\r
499\r
500/* 11. TABLE POINTER CACHING\r
501\r
502 Normally tables are referenced directly, Enable this option if you wish to\r
503 cache pointers to the tables in the encrypt/decrypt code. Note that this\r
504 only works if you are using FOUR_TABLES for the ROUND you enable this for.\r
505*/\r
506#if 1\r
507#define ENC_ROUND_CACHE_TABLES\r
508#endif\r
509#if 1\r
510#define LAST_ENC_ROUND_CACHE_TABLES\r
511#endif\r
512#if 1\r
513#define DEC_ROUND_CACHE_TABLES\r
514#endif\r
515#if 1\r
516#define LAST_DEC_ROUND_CACHE_TABLES\r
517#endif\r
518\r
519\r
520/* END OF CONFIGURATION OPTIONS */\r
521\r
522#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))\r
523\r
524/* Disable or report errors on some combinations of options */\r
525\r
526#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES\r
527#undef LAST_ENC_ROUND\r
528#define LAST_ENC_ROUND NO_TABLES\r
529#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES\r
530#undef LAST_ENC_ROUND\r
531#define LAST_ENC_ROUND ONE_TABLE\r
532#endif\r
533\r
534#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE\r
535#undef ENC_UNROLL\r
536#define ENC_UNROLL NONE\r
537#endif\r
538\r
539#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES\r
540#undef LAST_DEC_ROUND\r
541#define LAST_DEC_ROUND NO_TABLES\r
542#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES\r
543#undef LAST_DEC_ROUND\r
544#define LAST_DEC_ROUND ONE_TABLE\r
545#endif\r
546\r
547#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE\r
548#undef DEC_UNROLL\r
549#define DEC_UNROLL NONE\r
550#endif\r
551\r
552/* upr(x,n): rotates bytes within words by n positions, moving bytes to\r
553 higher index positions with wrap around into low positions\r
554 ups(x,n): moves bytes by n positions to higher index positions in\r
555 words but without wrap around\r
556 bval(x,n): extracts a byte from a word\r
557\r
558 NOTE: The definitions given here are intended only for use with\r
559 unsigned variables and with shift counts that are compile\r
560 time constants\r
561*/\r
562\r
563#if (ALGORITHM_BYTE_ORDER == BRG_LITTLE_ENDIAN)\r
564#define upr(x,n) (((aes_32t)(x) << (8 * (n))) | ((aes_32t)(x) >> (32 - 8 * (n))))\r
565#define ups(x,n) ((aes_32t) (x) << (8 * (n)))\r
566#define bval(x,n) ((aes_08t)((x) >> (8 * (n))))\r
567#define bytes2word(b0, b1, b2, b3) \\r
568 (((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0))\r
569#endif\r
570\r
571#if (ALGORITHM_BYTE_ORDER == BRG_BIG_ENDIAN)\r
572#define upr(x,n) (((aes_32t)(x) >> (8 * (n))) | ((aes_32t)(x) << (32 - 8 * (n))))\r
573#define ups(x,n) ((aes_32t) (x) >> (8 * (n))))\r
574#define bval(x,n) ((aes_08t)((x) >> (24 - 8 * (n))))\r
575#define bytes2word(b0, b1, b2, b3) \\r
576 (((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3))\r
577#endif\r
578\r
579#if defined(SAFE_IO)\r
580\r
581#define word_in(x,c) bytes2word(((aes_08t*)(x)+4*c)[0], ((aes_08t*)(x)+4*c)[1], \\r
582 ((aes_08t*)(x)+4*c)[2], ((aes_08t*)(x)+4*c)[3])\r
583#define word_out(x,c,v) { ((aes_08t*)(x)+4*c)[0] = bval(v,0); ((aes_08t*)(x)+4*c)[1] = bval(v,1); \\r
584 ((aes_08t*)(x)+4*c)[2] = bval(v,2); ((aes_08t*)(x)+4*c)[3] = bval(v,3); }\r
585\r
586#elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)\r
587\r
588#define word_in(x,c) (*((aes_32t*)(x)+(c)))\r
589#define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = (v))\r
590\r
591#else\r
592\r
593#define word_in(x,c) aes_sw32(*((aes_32t*)(x)+(c)))\r
594#define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = aes_sw32(v))\r
595\r
596#endif\r
597\r
598/* the finite field modular polynomial and elements */\r
599\r
600#define WPOLY 0x011b\r
601#define BPOLY 0x1b\r
602\r
603/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */\r
604\r
605#define m1 0x80808080\r
606#define m2 0x7f7f7f7f\r
607#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))\r
608\r
609/* The following defines provide alternative definitions of gf_mulx that might\r
610 give improved performance if a fast 32-bit multiply is not available. Note\r
611 that a temporary variable u needs to be defined where gf_mulx is used.\r
612\r
613#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))\r
614#define m4 (0x01010101 * BPOLY)\r
615#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)\r
616*/\r
617\r
618/* Work out which tables are needed for the different options */\r
619\r
620#if defined( AES_ASM )\r
621#if defined( ENC_ROUND )\r
622#undef ENC_ROUND\r
623#endif\r
624#define ENC_ROUND FOUR_TABLES\r
625#if defined( LAST_ENC_ROUND )\r
626#undef LAST_ENC_ROUND\r
627#endif\r
628#define LAST_ENC_ROUND FOUR_TABLES\r
629#if defined( DEC_ROUND )\r
630#undef DEC_ROUND\r
631#endif\r
632#define DEC_ROUND FOUR_TABLES\r
633#if defined( LAST_DEC_ROUND )\r
634#undef LAST_DEC_ROUND\r
635#endif\r
636#define LAST_DEC_ROUND FOUR_TABLES\r
637#if defined( KEY_SCHED )\r
638#undef KEY_SCHED\r
639#define KEY_SCHED FOUR_TABLES\r
640#endif\r
641#endif\r
642\r
643#if defined(ENCRYPTION) || defined(AES_ASM)\r
644#if ENC_ROUND == ONE_TABLE\r
645#define FT1_SET\r
646#elif ENC_ROUND == FOUR_TABLES\r
647#define FT4_SET\r
648#else\r
649#define SBX_SET\r
650#endif\r
651#if LAST_ENC_ROUND == ONE_TABLE\r
652#define FL1_SET\r
653#elif LAST_ENC_ROUND == FOUR_TABLES\r
654#define FL4_SET\r
655#elif !defined(SBX_SET)\r
656#define SBX_SET\r
657#endif\r
658#endif\r
659\r
660#if defined(DECRYPTION) || defined(AES_ASM)\r
661#if DEC_ROUND == ONE_TABLE\r
662#define IT1_SET\r
663#elif DEC_ROUND == FOUR_TABLES\r
664#define IT4_SET\r
665#else\r
666#define ISB_SET\r
667#endif\r
668#if LAST_DEC_ROUND == ONE_TABLE\r
669#define IL1_SET\r
670#elif LAST_DEC_ROUND == FOUR_TABLES\r
671#define IL4_SET\r
672#elif !defined(ISB_SET)\r
673#define ISB_SET\r
674#endif\r
675#endif\r
676\r
677#if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE)\r
678#if KEY_SCHED == ONE_TABLE\r
679#define LS1_SET\r
680#define IM1_SET\r
681#elif KEY_SCHED == FOUR_TABLES\r
682#define LS4_SET\r
683#define IM4_SET\r
684#elif !defined(SBX_SET)\r
685#define SBX_SET\r
686#endif\r
687#endif\r
688\r
689/* generic definitions of Rijndael macros that use tables */\r
690\r
691#define no_table(x,box,vf,rf,c) bytes2word( \\r
692 box[bval(vf(x,0,c),rf(0,c))], \\r
693 box[bval(vf(x,1,c),rf(1,c))], \\r
694 box[bval(vf(x,2,c),rf(2,c))], \\r
695 box[bval(vf(x,3,c),rf(3,c))])\r
696\r
697#define one_table(x,op,tab,vf,rf,c) \\r
698 ( tab[bval(vf(x,0,c),rf(0,c))] \\r
699 ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \\r
700 ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \\r
701 ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))\r
702\r
703#define four_tables(x,tab,vf,rf,c) \\r
704 ( tab[0][bval(vf(x,0,c),rf(0,c))] \\r
705 ^ tab[1][bval(vf(x,1,c),rf(1,c))] \\r
706 ^ tab[2][bval(vf(x,2,c),rf(2,c))] \\r
707 ^ tab[3][bval(vf(x,3,c),rf(3,c))])\r
708\r
709#define four_cached_tables(x,tab,vf,rf,c) \\r
710( tab##0[bval(vf(x,0,c),rf(0,c))] \\r
711 ^ tab##1[bval(vf(x,1,c),rf(1,c))] \\r
712 ^ tab##2[bval(vf(x,2,c),rf(2,c))] \\r
713 ^ tab##3[bval(vf(x,3,c),rf(3,c))])\r
714\r
715#define vf1(x,r,c) (x)\r
716#define rf1(r,c) (r)\r
717#define rf2(r,c) ((8+r-c)&3)\r
718\r
719/* perform forward and inverse column mix operation on four bytes in long word x in */\r
720/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */\r
721\r
722#if defined(FM4_SET) /* not currently used */\r
723#define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)\r
724#elif defined(FM1_SET) /* not currently used */\r
725#define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)\r
726#else\r
727#define dec_fmvars aes_32t g2\r
728#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))\r
729#endif\r
730\r
731#if defined(IM4_SET)\r
732#define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)\r
733#elif defined(IM1_SET)\r
734#define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)\r
735#else\r
736#define dec_imvars aes_32t g2, g4, g9\r
737#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \\r
738 (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))\r
739#endif\r
740\r
741#if defined(FL4_SET)\r
742#define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)\r
743#elif defined(LS4_SET)\r
744#define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)\r
745#elif defined(FL1_SET)\r
746#define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)\r
747#elif defined(LS1_SET)\r
748#define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)\r
749#else\r
750#define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)\r
751#endif\r
752\r
753#endif\r