]>
Commit | Line | Data |
---|---|---|
6d2010ae A |
1 | /* |
2 | * Copyright (c) 2011 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /* | |
30 | * Link-layer Reachability Record | |
31 | * | |
32 | * Each interface maintains a red-black tree which contains records related | |
33 | * to the on-link nodes which we are interested in communicating with. Each | |
34 | * record gets allocated and inserted into the tree in the following manner: | |
35 | * upon processing an ARP announcement or reply from a known node (i.e. there | |
36 | * exists a ARP route entry for the node), and if a link-layer reachability | |
37 | * record for the node doesn't yet exist; and, upon processing a ND6 RS/RA/ | |
38 | * NS/NA/redirect from a node, and if a link-layer reachability record for the | |
39 | * node doesn't yet exist. | |
40 | * | |
41 | * Each newly created record is then referred to by the resolver route entry; | |
42 | * if a record already exists, its reference count gets increased for the new | |
43 | * resolver entry which now refers to it. A record gets removed from the tree | |
44 | * and freed once its reference counts drops to zero, i.e. when there is no | |
45 | * more resolver entry referring to it. | |
46 | * | |
47 | * A record contains the link-layer protocol (e.g. Ethertype IP/IPv6), the | |
48 | * HW address of the sender, the "last heard from" timestamp (lr_lastrcvd) and | |
49 | * the number of references made to it (lr_reqcnt). Because the key for each | |
50 | * record in the red-black tree consists of the link-layer protocol, therefore | |
51 | * the namespace for the records is partitioned based on the type of link-layer | |
52 | * protocol, i.e. an Ethertype IP link-layer record is only referred to by one | |
53 | * or more ARP entries; an Ethernet IPv6 link-layer record is only referred to | |
54 | * by one or more ND6 entries. Therefore, lr_reqcnt represents the number of | |
55 | * resolver entry references to the record for the same protocol family. | |
56 | * | |
57 | * Upon receiving packets from the network, the protocol's input callback | |
58 | * (e.g. ether_inet{6}_input) informs the corresponding resolver (ARP/ND6) | |
59 | * about the (link-layer) origin of the packet. This results in searching | |
60 | * for a matching record in the red-black tree for the interface where the | |
61 | * packet arrived on. If there's no match, no further processing takes place. | |
62 | * Otherwise, the lr_lastrcvd timestamp of the record is updated. | |
63 | * | |
64 | * When an IP/IPv6 packet is transmitted to the resolver (i.e. the destination | |
65 | * is on-link), ARP/ND6 records the "last spoken to" timestamp in the route | |
66 | * entry ({la,ln}_lastused). | |
67 | * | |
68 | * The reachability of the on-link node is determined by the following logic, | |
69 | * upon sending a packet thru the resolver: | |
70 | * | |
71 | * a) If the record is only used by exactly one resolver entry (lr_reqcnt | |
72 | * is 1), i.e. the target host does not have IP/IPv6 aliases that we know | |
73 | * of, check if lr_lastrcvd is "recent." If so, simply send the packet; | |
74 | * otherwise, re-resolve the target node. | |
75 | * | |
76 | * b) If the record is shared by multiple resolver entries (lr_reqcnt is | |
77 | * greater than 1), i.e. the target host has more than one IP/IPv6 aliases | |
78 | * on the same network interface, we can't rely on lr_lastrcvd alone, as | |
79 | * one of the IP/IPv6 aliases could have been silently moved to another | |
80 | * node for which we don't have a link-layer record. If lr_lastrcvd is | |
81 | * not "recent", we re-resolve the target node. Otherwise, we perform | |
82 | * an additional check against {la,ln}_lastused to see whether it is also | |
83 | * "recent", relative to lr_lastrcvd. If so, simply send the packet; | |
84 | * otherwise, re-resolve the target node. | |
85 | * | |
86 | * The value for "recent" is configurable by adjusting the basetime value for | |
87 | * net.link.ether.inet.arp_llreach_base or net.inet6.icmp6.nd6_llreach_base. | |
88 | * The default basetime value is 30 seconds, and the actual expiration time | |
89 | * is calculated by multiplying the basetime value with some random factor, | |
90 | * which results in a number between 15 to 45 seconds. Setting the basetime | |
91 | * value to 0 effectively disables this feature for the corresponding resolver. | |
92 | * | |
93 | * Assumptions: | |
94 | * | |
95 | * The above logic is based upon the following assumptions: | |
96 | * | |
97 | * i) Network traffics are mostly bi-directional, i.e. the act of sending | |
98 | * packets to an on-link node would most likely cause us to receive | |
99 | * packets from that node. | |
100 | * | |
101 | * ii) If the on-link node's IP/IPv6 address silently moves to another | |
102 | * on-link node for which we are not aware of, non-unicast packets | |
103 | * from the old node would trigger the record's lr_lastrcvd to be | |
104 | * kept recent. | |
105 | * | |
106 | * We can mitigate the above by having the resolver check its {la,ln}_lastused | |
107 | * timestamp at all times, i.e. not only when lr_reqcnt is greater than 1; but | |
108 | * we currently optimize for the common cases. | |
109 | */ | |
110 | ||
111 | #include <sys/param.h> | |
112 | #include <sys/systm.h> | |
113 | #include <sys/kernel.h> | |
114 | #include <sys/malloc.h> | |
115 | #include <sys/tree.h> | |
116 | #include <sys/sysctl.h> | |
117 | #include <sys/mcache.h> | |
118 | #include <sys/protosw.h> | |
119 | ||
120 | #include <net/if_dl.h> | |
121 | #include <net/if.h> | |
122 | #include <net/if_var.h> | |
123 | #include <net/if_llreach.h> | |
124 | #include <net/dlil.h> | |
125 | ||
126 | #include <kern/assert.h> | |
127 | #include <kern/locks.h> | |
128 | #include <kern/zalloc.h> | |
129 | ||
130 | #if INET6 | |
131 | #include <netinet6/in6_var.h> | |
132 | #include <netinet6/nd6.h> | |
133 | #endif /* INET6 */ | |
134 | ||
135 | static unsigned int iflr_size; /* size of if_llreach */ | |
136 | static struct zone *iflr_zone; /* zone for if_llreach */ | |
137 | ||
138 | #define IFLR_ZONE_MAX 128 /* maximum elements in zone */ | |
139 | #define IFLR_ZONE_NAME "if_llreach" /* zone name */ | |
140 | ||
141 | static struct if_llreach *iflr_alloc(int); | |
142 | static void iflr_free(struct if_llreach *); | |
143 | static __inline int iflr_cmp(const struct if_llreach *, | |
144 | const struct if_llreach *); | |
145 | static __inline int iflr_reachable(struct if_llreach *, int, u_int64_t); | |
146 | static int sysctl_llreach_ifinfo SYSCTL_HANDLER_ARGS; | |
147 | ||
148 | /* The following is protected by if_llreach_lock */ | |
149 | RB_GENERATE_PREV(ll_reach_tree, if_llreach, lr_link, iflr_cmp); | |
150 | ||
151 | SYSCTL_DECL(_net_link_generic_system); | |
152 | ||
153 | SYSCTL_NODE(_net_link_generic_system, OID_AUTO, llreach_info, | |
154 | CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_llreach_ifinfo, | |
155 | "Per-interface tree of source link-layer reachability records"); | |
156 | ||
157 | /* | |
158 | * Link-layer reachability is based off node constants in RFC4861. | |
159 | */ | |
160 | #if INET6 | |
161 | #define LL_COMPUTE_RTIME(x) ND_COMPUTE_RTIME(x) | |
162 | #else | |
163 | #define LL_MIN_RANDOM_FACTOR 512 /* 1024 * 0.5 */ | |
164 | #define LL_MAX_RANDOM_FACTOR 1536 /* 1024 * 1.5 */ | |
165 | #define LL_COMPUTE_RTIME(x) \ | |
166 | (((LL_MIN_RANDOM_FACTOR * (x >> 10)) + (random() & \ | |
167 | ((LL_MAX_RANDOM_FACTOR - LL_MIN_RANDOM_FACTOR) * (x >> 10)))) / 1000) | |
168 | #endif /* !INET6 */ | |
169 | ||
170 | void | |
171 | ifnet_llreach_init(void) | |
172 | { | |
173 | iflr_size = sizeof (struct if_llreach); | |
174 | iflr_zone = zinit(iflr_size, | |
175 | IFLR_ZONE_MAX * iflr_size, 0, IFLR_ZONE_NAME); | |
176 | if (iflr_zone == NULL) { | |
177 | panic("%s: failed allocating %s", __func__, IFLR_ZONE_NAME); | |
178 | /* NOTREACHED */ | |
179 | } | |
180 | zone_change(iflr_zone, Z_EXPAND, TRUE); | |
181 | zone_change(iflr_zone, Z_CALLERACCT, FALSE); | |
182 | } | |
183 | ||
184 | void | |
185 | ifnet_llreach_ifattach(struct ifnet *ifp, boolean_t reuse) | |
186 | { | |
187 | lck_rw_lock_exclusive(&ifp->if_llreach_lock); | |
188 | /* Initialize link-layer source tree (if not already) */ | |
189 | if (!reuse) | |
190 | RB_INIT(&ifp->if_ll_srcs); | |
191 | lck_rw_done(&ifp->if_llreach_lock); | |
192 | } | |
193 | ||
194 | void | |
195 | ifnet_llreach_ifdetach(struct ifnet *ifp) | |
196 | { | |
197 | #pragma unused(ifp) | |
198 | /* | |
199 | * Nothing to do for now; the link-layer source tree might | |
200 | * contain entries at this point, that are still referred | |
201 | * to by route entries pointing to this ifp. | |
202 | */ | |
203 | } | |
204 | ||
205 | /* | |
206 | * Link-layer source tree comparison function. | |
207 | * | |
208 | * An ordered predicate is necessary; bcmp() is not documented to return | |
209 | * an indication of order, memcmp() is, and is an ISO C99 requirement. | |
210 | */ | |
211 | static __inline int | |
212 | iflr_cmp(const struct if_llreach *a, const struct if_llreach *b) | |
213 | { | |
214 | return (memcmp(&a->lr_key, &b->lr_key, sizeof (a->lr_key))); | |
215 | } | |
216 | ||
217 | static __inline int | |
218 | iflr_reachable(struct if_llreach *lr, int cmp_delta, u_int64_t tval) | |
219 | { | |
220 | u_int64_t now; | |
221 | u_int64_t expire; | |
222 | ||
223 | now = net_uptime(); /* current approx. uptime */ | |
224 | /* | |
225 | * No need for lr_lock; atomically read the last rcvd uptime. | |
226 | */ | |
227 | expire = lr->lr_lastrcvd + lr->lr_reachable; | |
228 | /* | |
229 | * If we haven't heard back from the local host for over | |
230 | * lr_reachable seconds, consider that the host is no | |
231 | * longer reachable. | |
232 | */ | |
233 | if (!cmp_delta) | |
234 | return (expire >= now); | |
235 | /* | |
236 | * If the caller supplied a reference time, consider the | |
237 | * host is reachable if the record hasn't expired (see above) | |
238 | * and if the reference time is within the past lr_reachable | |
239 | * seconds. | |
240 | */ | |
241 | return ((expire >= now) && (now - tval) < lr->lr_reachable); | |
242 | } | |
243 | ||
244 | int | |
245 | ifnet_llreach_reachable(struct if_llreach *lr) | |
246 | { | |
247 | /* | |
248 | * Check whether the cache is too old to be trusted. | |
249 | */ | |
250 | return (iflr_reachable(lr, 0, 0)); | |
251 | } | |
252 | ||
253 | int | |
254 | ifnet_llreach_reachable_delta(struct if_llreach *lr, u_int64_t tval) | |
255 | { | |
256 | /* | |
257 | * Check whether the cache is too old to be trusted. | |
258 | */ | |
259 | return (iflr_reachable(lr, 1, tval)); | |
260 | } | |
261 | ||
262 | void | |
263 | ifnet_llreach_set_reachable(struct ifnet *ifp, u_int16_t llproto, void *addr, | |
264 | unsigned int alen) | |
265 | { | |
266 | struct if_llreach find, *lr; | |
267 | ||
268 | VERIFY(alen == IF_LLREACH_MAXLEN); /* for now */ | |
269 | ||
270 | find.lr_key.proto = llproto; | |
271 | bcopy(addr, &find.lr_key.addr, IF_LLREACH_MAXLEN); | |
272 | ||
273 | lck_rw_lock_shared(&ifp->if_llreach_lock); | |
274 | lr = RB_FIND(ll_reach_tree, &ifp->if_ll_srcs, &find); | |
275 | if (lr == NULL) { | |
276 | lck_rw_done(&ifp->if_llreach_lock); | |
277 | return; | |
278 | } | |
279 | /* | |
280 | * No need for lr_lock; atomically update the last rcvd uptime. | |
281 | */ | |
282 | lr->lr_lastrcvd = net_uptime(); | |
283 | lck_rw_done(&ifp->if_llreach_lock); | |
284 | } | |
285 | ||
286 | struct if_llreach * | |
287 | ifnet_llreach_alloc(struct ifnet *ifp, u_int16_t llproto, void *addr, | |
288 | unsigned int alen, u_int64_t llreach_base) | |
289 | { | |
290 | struct if_llreach find, *lr; | |
291 | struct timeval now; | |
292 | ||
293 | if (llreach_base == 0) | |
294 | return (NULL); | |
295 | ||
296 | VERIFY(alen == IF_LLREACH_MAXLEN); /* for now */ | |
297 | ||
298 | find.lr_key.proto = llproto; | |
299 | bcopy(addr, &find.lr_key.addr, IF_LLREACH_MAXLEN); | |
300 | ||
301 | lck_rw_lock_shared(&ifp->if_llreach_lock); | |
302 | lr = RB_FIND(ll_reach_tree, &ifp->if_ll_srcs, &find); | |
303 | if (lr != NULL) { | |
304 | found: | |
305 | IFLR_LOCK(lr); | |
306 | VERIFY(lr->lr_reqcnt >= 1); | |
307 | lr->lr_reqcnt++; | |
308 | VERIFY(lr->lr_reqcnt != 0); | |
309 | IFLR_ADDREF_LOCKED(lr); /* for caller */ | |
310 | lr->lr_lastrcvd = net_uptime(); /* current approx. uptime */ | |
311 | IFLR_UNLOCK(lr); | |
312 | lck_rw_done(&ifp->if_llreach_lock); | |
313 | return (lr); | |
314 | } | |
315 | ||
316 | if (!lck_rw_lock_shared_to_exclusive(&ifp->if_llreach_lock)) | |
317 | lck_rw_lock_exclusive(&ifp->if_llreach_lock); | |
318 | ||
319 | lck_rw_assert(&ifp->if_llreach_lock, LCK_RW_ASSERT_EXCLUSIVE); | |
320 | ||
321 | /* in case things have changed while becoming writer */ | |
322 | lr = RB_FIND(ll_reach_tree, &ifp->if_ll_srcs, &find); | |
323 | if (lr != NULL) | |
324 | goto found; | |
325 | ||
326 | lr = iflr_alloc(M_WAITOK); | |
327 | if (lr == NULL) { | |
328 | lck_rw_done(&ifp->if_llreach_lock); | |
329 | return (NULL); | |
330 | } | |
331 | IFLR_LOCK(lr); | |
332 | lr->lr_reqcnt++; | |
333 | VERIFY(lr->lr_reqcnt == 1); | |
334 | IFLR_ADDREF_LOCKED(lr); /* for RB tree */ | |
335 | IFLR_ADDREF_LOCKED(lr); /* for caller */ | |
336 | lr->lr_lastrcvd = net_uptime(); /* current approx. uptime */ | |
337 | lr->lr_baseup = lr->lr_lastrcvd; /* base uptime */ | |
338 | microtime(&now); | |
339 | lr->lr_basecal = now.tv_sec; /* base calendar time */ | |
340 | lr->lr_basereachable = llreach_base; | |
341 | lr->lr_reachable = LL_COMPUTE_RTIME(lr->lr_basereachable * 1000); | |
342 | lr->lr_debug |= IFD_ATTACHED; | |
343 | lr->lr_ifp = ifp; | |
344 | lr->lr_key.proto = llproto; | |
345 | bcopy(addr, &lr->lr_key.addr, IF_LLREACH_MAXLEN); | |
346 | RB_INSERT(ll_reach_tree, &ifp->if_ll_srcs, lr); | |
347 | IFLR_UNLOCK(lr); | |
348 | lck_rw_done(&ifp->if_llreach_lock); | |
349 | ||
350 | return (lr); | |
351 | } | |
352 | ||
353 | void | |
354 | ifnet_llreach_free(struct if_llreach *lr) | |
355 | { | |
356 | struct ifnet *ifp; | |
357 | ||
358 | /* no need to lock here; lr_ifp never changes */ | |
359 | ifp = lr->lr_ifp; | |
360 | ||
361 | lck_rw_lock_exclusive(&ifp->if_llreach_lock); | |
362 | IFLR_LOCK(lr); | |
363 | if (lr->lr_reqcnt == 0) { | |
364 | panic("%s: lr=%p negative reqcnt", __func__, lr); | |
365 | /* NOTREACHED */ | |
366 | } | |
367 | --lr->lr_reqcnt; | |
368 | if (lr->lr_reqcnt > 0) { | |
369 | IFLR_UNLOCK(lr); | |
370 | lck_rw_done(&ifp->if_llreach_lock); | |
371 | IFLR_REMREF(lr); /* for caller */ | |
372 | return; | |
373 | } | |
374 | if (!(lr->lr_debug & IFD_ATTACHED)) { | |
375 | panic("%s: Attempt to detach an unattached llreach lr=%p", | |
376 | __func__, lr); | |
377 | /* NOTREACHED */ | |
378 | } | |
379 | lr->lr_debug &= ~IFD_ATTACHED; | |
380 | RB_REMOVE(ll_reach_tree, &ifp->if_ll_srcs, lr); | |
381 | IFLR_UNLOCK(lr); | |
382 | lck_rw_done(&ifp->if_llreach_lock); | |
383 | ||
384 | IFLR_REMREF(lr); /* for RB tree */ | |
385 | IFLR_REMREF(lr); /* for caller */ | |
386 | } | |
387 | ||
388 | u_int64_t | |
389 | ifnet_llreach_up2cal(struct if_llreach *lr, u_int64_t uptime) | |
390 | { | |
391 | u_int64_t calendar = 0; | |
392 | ||
393 | if (uptime != 0) { | |
394 | struct timeval cnow; | |
395 | u_int64_t unow; | |
396 | ||
397 | getmicrotime(&cnow); /* current calendar time */ | |
398 | unow = net_uptime(); /* current approx. uptime */ | |
399 | /* | |
400 | * Take into account possible calendar time changes; | |
401 | * adjust base calendar value if necessary, i.e. | |
402 | * the calendar skew should equate to the uptime skew. | |
403 | */ | |
404 | lr->lr_basecal += (cnow.tv_sec - lr->lr_basecal) - | |
405 | (unow - lr->lr_baseup); | |
406 | ||
407 | calendar = lr->lr_basecal + lr->lr_reachable + | |
408 | (uptime - lr->lr_baseup); | |
409 | } | |
410 | ||
411 | return (calendar); | |
412 | } | |
413 | ||
414 | static struct if_llreach * | |
415 | iflr_alloc(int how) | |
416 | { | |
417 | struct if_llreach *lr; | |
418 | ||
419 | lr = (how == M_WAITOK) ? zalloc(iflr_zone) : zalloc_noblock(iflr_zone); | |
420 | if (lr != NULL) { | |
421 | bzero(lr, iflr_size); | |
422 | lck_mtx_init(&lr->lr_lock, ifnet_lock_group, ifnet_lock_attr); | |
423 | lr->lr_debug |= IFD_ALLOC; | |
424 | } | |
425 | return (lr); | |
426 | } | |
427 | ||
428 | static void | |
429 | iflr_free(struct if_llreach *lr) | |
430 | { | |
431 | IFLR_LOCK(lr); | |
432 | if (lr->lr_debug & IFD_ATTACHED) { | |
433 | panic("%s: attached lr=%p is being freed", __func__, lr); | |
434 | /* NOTREACHED */ | |
435 | } else if (!(lr->lr_debug & IFD_ALLOC)) { | |
436 | panic("%s: lr %p cannot be freed", __func__, lr); | |
437 | /* NOTREACHED */ | |
438 | } else if (lr->lr_refcnt != 0) { | |
439 | panic("%s: non-zero refcount lr=%p", __func__, lr); | |
440 | /* NOTREACHED */ | |
441 | } else if (lr->lr_reqcnt != 0) { | |
442 | panic("%s: non-zero reqcnt lr=%p", __func__, lr); | |
443 | /* NOTREACHED */ | |
444 | } | |
445 | lr->lr_debug &= ~IFD_ALLOC; | |
446 | IFLR_UNLOCK(lr); | |
447 | ||
448 | lck_mtx_destroy(&lr->lr_lock, ifnet_lock_group); | |
449 | zfree(iflr_zone, lr); | |
450 | } | |
451 | ||
452 | void | |
453 | iflr_addref(struct if_llreach *lr, int locked) | |
454 | { | |
455 | if (!locked) | |
456 | IFLR_LOCK(lr); | |
457 | else | |
458 | IFLR_LOCK_ASSERT_HELD(lr); | |
459 | ||
460 | if (++lr->lr_refcnt == 0) { | |
461 | panic("%s: lr=%p wraparound refcnt", __func__, lr); | |
462 | /* NOTREACHED */ | |
463 | } | |
464 | if (!locked) | |
465 | IFLR_UNLOCK(lr); | |
466 | } | |
467 | ||
468 | void | |
469 | iflr_remref(struct if_llreach *lr) | |
470 | { | |
471 | IFLR_LOCK(lr); | |
472 | if (lr->lr_refcnt == 0) { | |
473 | panic("%s: lr=%p negative refcnt", __func__, lr); | |
474 | /* NOTREACHED */ | |
475 | } | |
476 | --lr->lr_refcnt; | |
477 | if (lr->lr_refcnt > 0) { | |
478 | IFLR_UNLOCK(lr); | |
479 | return; | |
480 | } | |
481 | IFLR_UNLOCK(lr); | |
482 | ||
483 | iflr_free(lr); /* deallocate it */ | |
484 | } | |
485 | ||
486 | void | |
487 | ifnet_lr2ri(struct if_llreach *lr, struct rt_reach_info *ri) | |
488 | { | |
489 | struct if_llreach_info lri; | |
490 | ||
491 | IFLR_LOCK_ASSERT_HELD(lr); | |
492 | ||
493 | bzero(ri, sizeof (*ri)); | |
494 | ifnet_lr2lri(lr, &lri); | |
495 | ri->ri_refcnt = lri.lri_refcnt; | |
496 | ri->ri_probes = lri.lri_probes; | |
497 | ri->ri_rcv_expire = lri.lri_expire; | |
498 | } | |
499 | ||
500 | void | |
501 | ifnet_lr2lri(struct if_llreach *lr, struct if_llreach_info *lri) | |
502 | { | |
503 | IFLR_LOCK_ASSERT_HELD(lr); | |
504 | ||
505 | bzero(lri, sizeof (*lri)); | |
506 | /* | |
507 | * Note here we return request count, not actual memory refcnt. | |
508 | */ | |
509 | lri->lri_refcnt = lr->lr_reqcnt; | |
510 | lri->lri_ifindex = lr->lr_ifp->if_index; | |
511 | lri->lri_probes = lr->lr_probes; | |
512 | lri->lri_expire = ifnet_llreach_up2cal(lr, lr->lr_lastrcvd); | |
513 | lri->lri_proto = lr->lr_key.proto; | |
514 | bcopy(&lr->lr_key.addr, &lri->lri_addr, IF_LLREACH_MAXLEN); | |
515 | } | |
516 | ||
517 | static int | |
518 | sysctl_llreach_ifinfo SYSCTL_HANDLER_ARGS | |
519 | { | |
520 | #pragma unused(oidp) | |
521 | int *name, retval = 0; | |
522 | unsigned int namelen; | |
523 | uint32_t ifindex; | |
524 | struct if_llreach *lr; | |
525 | struct if_llreach_info lri; | |
526 | struct ifnet *ifp; | |
527 | ||
528 | name = (int *)arg1; | |
529 | namelen = (unsigned int)arg2; | |
530 | ||
531 | if (req->newptr != USER_ADDR_NULL) | |
532 | return (EPERM); | |
533 | ||
534 | if (namelen != 1) | |
535 | return (EINVAL); | |
536 | ||
537 | ifindex = name[0]; | |
538 | ifnet_head_lock_shared(); | |
539 | if (ifindex <= 0 || ifindex > (u_int)if_index) { | |
540 | printf("%s: ifindex %u out of range\n", __func__, ifindex); | |
541 | ifnet_head_done(); | |
542 | return (ENOENT); | |
543 | } | |
544 | ||
545 | ifp = ifindex2ifnet[ifindex]; | |
546 | ifnet_head_done(); | |
547 | if (ifp == NULL) { | |
548 | printf("%s: no ifp for ifindex %u\n", __func__, ifindex); | |
549 | return (ENOENT); | |
550 | } | |
551 | ||
552 | lck_rw_lock_shared(&ifp->if_llreach_lock); | |
553 | RB_FOREACH(lr, ll_reach_tree, &ifp->if_ll_srcs) { | |
554 | /* Export to if_llreach_info structure */ | |
555 | IFLR_LOCK(lr); | |
556 | ifnet_lr2lri(lr, &lri); | |
557 | IFLR_UNLOCK(lr); | |
558 | ||
559 | if ((retval = SYSCTL_OUT(req, &lri, sizeof (lri))) != 0) | |
560 | break; | |
561 | } | |
562 | lck_rw_done(&ifp->if_llreach_lock); | |
563 | ||
564 | return (retval); | |
565 | } |