]>
Commit | Line | Data |
---|---|---|
5ba3f43e A |
1 | /* |
2 | * Copyright (c) 2007-2011 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <mach_debug.h> | |
30 | #include <mach_kdp.h> | |
31 | #include <debug.h> | |
32 | ||
33 | #include <mach/vm_types.h> | |
34 | #include <mach/vm_param.h> | |
35 | #include <kern/misc_protos.h> | |
36 | #include <kern/assert.h> | |
37 | #include <vm/vm_kern.h> | |
38 | #include <vm/vm_page.h> | |
39 | #include <vm/pmap.h> | |
40 | ||
41 | #include <arm64/proc_reg.h> | |
42 | #include <arm64/lowglobals.h> | |
43 | #include <arm/cpu_data_internal.h> | |
44 | #include <arm/misc_protos.h> | |
45 | #include <pexpert/arm64/boot.h> | |
46 | ||
47 | #include <libkern/kernel_mach_header.h> | |
48 | #include <libkern/section_keywords.h> | |
49 | ||
50 | #if KASAN | |
51 | extern vm_offset_t shadow_pbase; | |
52 | extern vm_offset_t shadow_ptop; | |
53 | extern vm_offset_t physmap_vbase; | |
54 | extern vm_offset_t physmap_vtop; | |
55 | #endif | |
56 | ||
57 | /* | |
58 | * Denotes the end of xnu. | |
59 | */ | |
60 | extern void *last_kernel_symbol; | |
61 | ||
62 | /* | |
63 | * KASLR parameters | |
64 | */ | |
65 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_base; | |
66 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_top; | |
67 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kext_base; | |
68 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kext_top; | |
69 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_stext; | |
70 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_etext; | |
71 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_slide; | |
72 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_slid_base; | |
73 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_slid_top; | |
74 | ||
75 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_stext; | |
76 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_etext; | |
77 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_sdata; | |
78 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_edata; | |
79 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_sinfo; | |
80 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_einfo; | |
81 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_slinkedit; | |
82 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_elinkedit; | |
83 | ||
84 | /* Used by <mach/arm/vm_param.h> */ | |
85 | SECURITY_READ_ONLY_LATE(unsigned long) gVirtBase; | |
86 | SECURITY_READ_ONLY_LATE(unsigned long) gPhysBase; | |
87 | SECURITY_READ_ONLY_LATE(unsigned long) gPhysSize; | |
88 | ||
89 | ||
90 | /* | |
91 | * NOTE: mem_size is bogus on large memory machines. | |
92 | * We will pin it to 0x80000000 if there is more than 2 GB | |
93 | * This is left only for compatibility and max_mem should be used. | |
94 | */ | |
95 | vm_offset_t mem_size; /* Size of actual physical memory present | |
96 | * minus any performance buffer and possibly | |
97 | * limited by mem_limit in bytes */ | |
98 | uint64_t mem_actual; /* The "One True" physical memory size | |
99 | * actually, it's the highest physical | |
100 | * address + 1 */ | |
101 | uint64_t max_mem; /* Size of physical memory (bytes), adjusted | |
102 | * by maxmem */ | |
103 | uint64_t sane_size; /* Memory size to use for defaults | |
104 | * calculations */ | |
105 | /* This no longer appears to be used; kill it? */ | |
106 | addr64_t vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Highest kernel | |
107 | * virtual address known | |
108 | * to the VM system */ | |
109 | ||
110 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segTEXTB; | |
111 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizeTEXT; | |
112 | ||
113 | ||
114 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segDATACONSTB; | |
115 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizeDATACONST; | |
116 | ||
117 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segTEXTEXECB; | |
118 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizeTEXTEXEC; | |
119 | ||
120 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segDATAB; | |
121 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizeDATA; | |
122 | ||
123 | ||
124 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segLINKB; | |
125 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizeLINK; | |
126 | ||
127 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segKLDB; | |
128 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizeKLD; | |
129 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segLASTB; | |
130 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizeLAST; | |
131 | ||
132 | SECURITY_READ_ONLY_LATE(vm_offset_t) segPRELINKTEXTB; | |
133 | SECURITY_READ_ONLY_LATE(unsigned long) segSizePRELINKTEXT; | |
134 | ||
135 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKTEXTEXECB; | |
136 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKTEXTEXEC; | |
137 | ||
138 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKDATACONSTB; | |
139 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKDATACONST; | |
140 | ||
141 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segPRELINKDATAB; | |
142 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizePRELINKDATA; | |
143 | ||
144 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKLLVMCOVB = 0; | |
145 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKLLVMCOV = 0; | |
146 | ||
147 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKLINKEDITB; | |
148 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKLINKEDIT; | |
149 | ||
150 | SECURITY_READ_ONLY_LATE(static vm_offset_t) segPRELINKINFOB; | |
151 | SECURITY_READ_ONLY_LATE(static unsigned long) segSizePRELINKINFO; | |
152 | ||
153 | SECURITY_READ_ONLY_LATE(static boolean_t) use_contiguous_hint = TRUE; | |
154 | ||
155 | SECURITY_READ_ONLY_LATE(unsigned) PAGE_SHIFT_CONST; | |
156 | ||
157 | SECURITY_READ_ONLY_LATE(vm_offset_t) end_kern; | |
158 | SECURITY_READ_ONLY_LATE(vm_offset_t) etext; | |
159 | SECURITY_READ_ONLY_LATE(vm_offset_t) sdata; | |
160 | SECURITY_READ_ONLY_LATE(vm_offset_t) edata; | |
161 | ||
162 | vm_offset_t alloc_ptpage(boolean_t map_static); | |
163 | SECURITY_READ_ONLY_LATE(vm_offset_t) ropage_next; | |
164 | ||
165 | /* | |
166 | * Bootstrap the system enough to run with virtual memory. | |
167 | * Map the kernel's code and data, and allocate the system page table. | |
168 | * Page_size must already be set. | |
169 | * | |
170 | * Parameters: | |
171 | * first_avail: first available physical page - | |
172 | * after kernel page tables | |
173 | * avail_start: PA of first physical page | |
174 | * avail_end: PA of last physical page | |
175 | */ | |
176 | SECURITY_READ_ONLY_LATE(vm_offset_t) first_avail; | |
177 | SECURITY_READ_ONLY_LATE(vm_offset_t) static_memory_end; | |
178 | SECURITY_READ_ONLY_LATE(pmap_paddr_t) avail_start; | |
179 | SECURITY_READ_ONLY_LATE(pmap_paddr_t) avail_end; | |
180 | ||
181 | #define MEM_SIZE_MAX 0x100000000ULL | |
182 | ||
183 | #if defined(KERNEL_INTEGRITY_KTRR) | |
184 | #if __ARM64_TWO_LEVEL_PMAP__ | |
185 | /* We could support this configuration, but it adds memory overhead. */ | |
186 | #error This configuration is not supported | |
187 | #endif | |
188 | #endif | |
189 | ||
190 | /* | |
191 | * This rounds the given address up to the nearest boundary for a PTE contiguous | |
192 | * hint. | |
193 | */ | |
194 | static vm_offset_t | |
195 | round_up_pte_hint_address(vm_offset_t address) | |
196 | { | |
197 | vm_offset_t hint_size = ARM_PTE_SIZE << ARM_PTE_HINT_ENTRIES_SHIFT; | |
198 | return ((address + (hint_size - 1)) & ~(hint_size - 1)); | |
199 | } | |
200 | ||
201 | /* allocate a page for a page table: we support static and dynamic mappings. | |
202 | * | |
203 | * returns a virtual address for the allocated page | |
204 | * | |
205 | * for static mappings, we allocate from the region ropagetable_begin to ro_pagetable_end-1, | |
206 | * which is defined in the DATA_CONST segment and will be protected RNX when vm_prot_finalize runs. | |
207 | * | |
208 | * for dynamic mappings, we allocate from avail_start, which should remain RWNX. | |
209 | */ | |
210 | ||
211 | vm_offset_t alloc_ptpage(boolean_t map_static) { | |
212 | vm_offset_t vaddr; | |
213 | ||
214 | #if !(defined(KERNEL_INTEGRITY_KTRR)) | |
215 | map_static = FALSE; | |
216 | #endif | |
217 | ||
218 | if (!ropage_next) { | |
219 | ropage_next = (vm_offset_t)&ropagetable_begin; | |
220 | } | |
221 | ||
222 | if (map_static) { | |
223 | assert(ropage_next < (vm_offset_t)&ropagetable_end); | |
224 | ||
225 | vaddr = ropage_next; | |
226 | ropage_next += ARM_PGBYTES; | |
227 | ||
228 | return vaddr; | |
229 | } else { | |
230 | vaddr = phystokv(avail_start); | |
231 | avail_start += ARM_PGBYTES; | |
232 | ||
233 | return vaddr; | |
234 | } | |
235 | } | |
236 | ||
237 | #if DEBUG | |
238 | ||
239 | void dump_kva_l2(vm_offset_t tt_base, tt_entry_t *tt, int indent, uint64_t *rosz_out, uint64_t *rwsz_out); | |
240 | ||
241 | void dump_kva_l2(vm_offset_t tt_base, tt_entry_t *tt, int indent, uint64_t *rosz_out, uint64_t *rwsz_out) { | |
242 | unsigned int i; | |
243 | boolean_t cur_ro, prev_ro = 0; | |
244 | int start_entry = -1; | |
245 | tt_entry_t cur, prev = 0; | |
246 | pmap_paddr_t robegin = kvtophys((vm_offset_t)&ropagetable_begin); | |
247 | pmap_paddr_t roend = kvtophys((vm_offset_t)&ropagetable_end); | |
248 | boolean_t tt_static = kvtophys((vm_offset_t)tt) >= robegin && | |
249 | kvtophys((vm_offset_t)tt) < roend; | |
250 | ||
251 | for(i=0; i<TTE_PGENTRIES; i++) { | |
252 | int tte_type = tt[i] & ARM_TTE_TYPE_MASK; | |
253 | cur = tt[i] & ARM_TTE_TABLE_MASK; | |
254 | ||
255 | if (tt_static) { | |
256 | /* addresses mapped by this entry are static if it is a block mapping, | |
257 | * or the table was allocated from the RO page table region */ | |
258 | cur_ro = (tte_type == ARM_TTE_TYPE_BLOCK) || (cur >= robegin && cur < roend); | |
259 | } else { | |
260 | cur_ro = 0; | |
261 | } | |
262 | ||
263 | if ((cur == 0 && prev != 0) || (cur_ro != prev_ro && prev != 0)) { // falling edge | |
264 | uintptr_t start,end,sz; | |
265 | ||
266 | start = (uintptr_t)start_entry << ARM_TT_L2_SHIFT; | |
267 | start += tt_base; | |
268 | end = ((uintptr_t)i << ARM_TT_L2_SHIFT) - 1; | |
269 | end += tt_base; | |
270 | ||
271 | sz = end - start + 1; | |
272 | printf("%*s0x%08x_%08x-0x%08x_%08x %s (%luMB)\n", | |
273 | indent*4, "", | |
274 | (uint32_t)(start >> 32),(uint32_t)start, | |
275 | (uint32_t)(end >> 32),(uint32_t)end, | |
276 | prev_ro ? "Static " : "Dynamic", | |
277 | (sz >> 20)); | |
278 | ||
279 | if (prev_ro) { | |
280 | *rosz_out += sz; | |
281 | } else { | |
282 | *rwsz_out += sz; | |
283 | } | |
284 | } | |
285 | ||
286 | if ((prev == 0 && cur != 0) || cur_ro != prev_ro) { // rising edge: set start | |
287 | start_entry = i; | |
288 | } | |
289 | ||
290 | prev = cur; | |
291 | prev_ro = cur_ro; | |
292 | } | |
293 | } | |
294 | ||
295 | void dump_kva_space() { | |
296 | uint64_t tot_rosz=0, tot_rwsz=0; | |
297 | int ro_ptpages, rw_ptpages; | |
298 | pmap_paddr_t robegin = kvtophys((vm_offset_t)&ropagetable_begin); | |
299 | pmap_paddr_t roend = kvtophys((vm_offset_t)&ropagetable_end); | |
300 | boolean_t root_static = kvtophys((vm_offset_t)cpu_tte) >= robegin && | |
301 | kvtophys((vm_offset_t)cpu_tte) < roend; | |
302 | uint64_t kva_base = ~((1ULL << (64 - T1SZ_BOOT)) - 1); | |
303 | ||
304 | printf("Root page table: %s\n", root_static ? "Static" : "Dynamic"); | |
305 | ||
306 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
307 | for(unsigned int i=0; i<TTE_PGENTRIES; i++) { | |
308 | pmap_paddr_t cur; | |
309 | boolean_t cur_ro; | |
310 | uintptr_t start,end; | |
311 | uint64_t rosz = 0, rwsz = 0; | |
312 | ||
313 | if ((cpu_tte[i] & ARM_TTE_VALID) == 0) | |
314 | continue; | |
315 | ||
316 | cur = cpu_tte[i] & ARM_TTE_TABLE_MASK; | |
317 | start = (uint64_t)i << ARM_TT_L1_SHIFT; | |
318 | start = start + kva_base; | |
319 | end = start + (ARM_TT_L1_SIZE - 1); | |
320 | cur_ro = cur >= robegin && cur < roend; | |
321 | ||
322 | printf("0x%08x_%08x-0x%08x_%08x %s\n", | |
323 | (uint32_t)(start >> 32),(uint32_t)start, | |
324 | (uint32_t)(end >> 32),(uint32_t)end, | |
325 | cur_ro ? "Static " : "Dynamic"); | |
326 | ||
327 | dump_kva_l2(start, (tt_entry_t*)phystokv(cur), 1, &rosz, &rwsz); | |
328 | tot_rosz += rosz; | |
329 | tot_rwsz += rwsz; | |
330 | } | |
331 | #else | |
332 | dump_kva_l2(kva_base, cpu_tte, 0, &tot_rosz, &tot_rwsz); | |
333 | #endif /* !_ARM64_TWO_LEVEL_PMAP__ */ | |
334 | ||
335 | printf("L2 Address space mapped: Static %lluMB Dynamic %lluMB Total %lluMB\n", | |
336 | tot_rosz >> 20, | |
337 | tot_rwsz >> 20, | |
338 | (tot_rosz >> 20) + (tot_rwsz >> 20)); | |
339 | ||
340 | ro_ptpages = (int)((ropage_next - (vm_offset_t)&ropagetable_begin) >> ARM_PGSHIFT); | |
341 | rw_ptpages = (int)(lowGlo.lgStaticSize >> ARM_PGSHIFT); | |
342 | printf("Pages used: static %d dynamic %d\n", ro_ptpages, rw_ptpages); | |
343 | } | |
344 | ||
345 | #endif /* DEBUG */ | |
346 | ||
347 | #if defined(KERNEL_INTEGRITY_KTRR) | |
348 | extern void bootstrap_instructions; | |
349 | ||
350 | /* | |
351 | * arm_replace_identity_map takes the V=P map that we construct in start.s | |
352 | * and repurposes it in order to have it map only the page we need in order | |
353 | * to turn on the MMU. This prevents us from running into issues where | |
354 | * KTRR will cause us to fault on executable block mappings that cross the | |
355 | * KTRR boundary. | |
356 | */ | |
357 | static void arm_replace_identity_map(boot_args * args) | |
358 | { | |
359 | vm_offset_t addr; | |
360 | pmap_paddr_t paddr; | |
361 | ||
362 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
363 | pmap_paddr_t l1_ptp_phys = 0; | |
364 | tt_entry_t *l1_ptp_virt = NULL; | |
365 | tt_entry_t *tte1 = NULL; | |
366 | #endif | |
367 | pmap_paddr_t l2_ptp_phys = 0; | |
368 | tt_entry_t *l2_ptp_virt = NULL; | |
369 | tt_entry_t *tte2 = NULL; | |
370 | pmap_paddr_t l3_ptp_phys = 0; | |
371 | pt_entry_t *l3_ptp_virt = NULL; | |
372 | pt_entry_t *ptep = NULL; | |
373 | ||
374 | addr = ((vm_offset_t)&bootstrap_instructions) & ~ARM_PGMASK; | |
375 | paddr = kvtophys(addr); | |
376 | ||
377 | /* | |
378 | * The V=P page tables (at the time this comment was written) start | |
379 | * after the last bit of kernel data, and consist of 1 to 2 pages. | |
380 | * Grab references to those pages, and allocate an L3 page. | |
381 | */ | |
382 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
383 | l1_ptp_phys = args->topOfKernelData; | |
384 | l1_ptp_virt = (tt_entry_t *)phystokv(l1_ptp_phys); | |
385 | tte1 = &l1_ptp_virt[(((paddr) & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT)]; | |
386 | ||
387 | l2_ptp_phys = l1_ptp_phys + ARM_PGBYTES; | |
388 | #else | |
389 | l2_ptp_phys = args->topOfKernelData; | |
390 | #endif | |
391 | l2_ptp_virt = (tt_entry_t *)phystokv(l2_ptp_phys); | |
392 | tte2 = &l2_ptp_virt[(((paddr) & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)]; | |
393 | ||
394 | l3_ptp_virt = (pt_entry_t *)alloc_ptpage(FALSE); | |
395 | l3_ptp_phys = kvtophys((vm_offset_t)l3_ptp_virt); | |
396 | ptep = &l3_ptp_virt[(((paddr) & ARM_TT_L3_INDEX_MASK) >> ARM_TT_L3_SHIFT)]; | |
397 | ||
398 | /* | |
399 | * Replace the large V=P mapping with a mapping that provides only the | |
400 | * mappings needed to turn on the MMU. | |
401 | */ | |
402 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
403 | bzero(l1_ptp_virt, ARM_PGBYTES); | |
404 | *tte1 = ARM_TTE_BOOT_TABLE | (l2_ptp_phys & ARM_TTE_TABLE_MASK); | |
405 | #endif | |
406 | bzero(l2_ptp_virt, ARM_PGBYTES); | |
407 | *tte2 = ARM_TTE_BOOT_TABLE | (l3_ptp_phys & ARM_TTE_TABLE_MASK); | |
408 | ||
409 | *ptep = (paddr & ARM_PTE_MASK) | | |
410 | ARM_PTE_TYPE_VALID | | |
411 | ARM_PTE_SH(SH_OUTER_MEMORY) | | |
412 | ARM_PTE_ATTRINDX(CACHE_ATTRINDX_WRITEBACK) | | |
413 | ARM_PTE_AF | | |
414 | ARM_PTE_AP(AP_RONA) | | |
415 | ARM_PTE_NX; | |
416 | } | |
417 | #endif /* defined(KERNEL_INTEGRITY_KTRR)*/ | |
418 | ||
419 | /* | |
420 | * arm_vm_page_granular_helper updates protections at the L3 level. It will (if | |
421 | * neccessary) allocate a page for the L3 table and update the corresponding L2 | |
422 | * entry. Then, it will iterate over the L3 table, updating protections as necessary. | |
423 | * This expects to be invoked on a L2 entry or sub L2 entry granularity, so this should | |
424 | * not be invoked from a context that does not do L2 iteration separately (basically, | |
425 | * don't call this except from arm_vm_page_granular_prot). | |
426 | */ | |
427 | static void | |
428 | arm_vm_page_granular_helper(vm_offset_t start, vm_offset_t _end, vm_offset_t va, | |
429 | int pte_prot_APX, int pte_prot_XN, int forceCoarse, | |
430 | pt_entry_t **deferred_pte, pt_entry_t *deferred_ptmp) | |
431 | { | |
432 | if (va & ARM_TT_L2_OFFMASK) { /* ragged edge hanging over a ARM_TT_L2_SIZE boundary */ | |
433 | #if __ARM64_TWO_LEVEL_PMAP__ | |
434 | tt_entry_t *tte2; | |
435 | #else | |
436 | tt_entry_t *tte1, *tte2; | |
437 | #endif | |
438 | tt_entry_t tmplate; | |
439 | pmap_paddr_t pa; | |
440 | pt_entry_t *ppte, *recursive_pte = NULL, ptmp, recursive_ptmp = 0; | |
441 | addr64_t ppte_phys; | |
442 | unsigned i; | |
443 | ||
444 | va &= ~ARM_TT_L2_OFFMASK; | |
445 | pa = va - gVirtBase + gPhysBase; | |
446 | ||
447 | #if __ARM64_TWO_LEVEL_PMAP__ | |
448 | tte2 = &cpu_tte[(((va) & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)]; | |
449 | #else | |
450 | tte1 = &cpu_tte[(((va) & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT)]; | |
451 | tte2 = &((tt_entry_t*) phystokv((*tte1) & ARM_TTE_TABLE_MASK))[(((va) & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)]; | |
452 | #endif | |
453 | ||
454 | tmplate = *tte2; | |
455 | ||
456 | if (ARM_TTE_TYPE_TABLE == (tmplate & ARM_TTE_TYPE_MASK)) { | |
457 | /* pick up the existing page table. */ | |
458 | ppte = (pt_entry_t *)phystokv((tmplate & ARM_TTE_TABLE_MASK)); | |
459 | } else { | |
460 | // TTE must be reincarnated COARSE. | |
461 | ppte = (pt_entry_t*)alloc_ptpage(TRUE); | |
462 | ppte_phys = kvtophys((vm_offset_t)ppte); | |
463 | ||
464 | pmap_init_pte_static_page(kernel_pmap, ppte, pa); | |
465 | ||
466 | *tte2 = pa_to_tte(ppte_phys) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID; | |
467 | } | |
468 | ||
469 | /* Apply the desired protections to the specified page range */ | |
470 | for (i = 0; i <= (ARM_TT_L3_INDEX_MASK>>ARM_TT_L3_SHIFT); i++) { | |
471 | if ((start <= va) && (va < _end)) { | |
472 | ||
473 | ptmp = pa | ARM_PTE_AF | ARM_PTE_SH(SH_OUTER_MEMORY) | ARM_PTE_TYPE; | |
474 | ptmp = ptmp | ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DEFAULT); | |
475 | ptmp = ptmp | ARM_PTE_AP(pte_prot_APX); | |
476 | ptmp = ptmp | ARM_PTE_NX; | |
477 | ||
478 | if (pte_prot_XN) { | |
479 | ptmp = ptmp | ARM_PTE_PNX; | |
480 | } | |
481 | ||
482 | /* | |
483 | * If we can, apply the contiguous hint to this range. The hint is | |
484 | * applicable if we are not trying to create per-page mappings and | |
485 | * if the current address falls within a hint-sized range that will | |
486 | * be fully covered by this mapping request. | |
487 | */ | |
488 | if ((va >= round_up_pte_hint_address(start)) && (round_up_pte_hint_address(va + 1) < _end) && | |
489 | !forceCoarse && use_contiguous_hint) { | |
490 | ptmp |= ARM_PTE_HINT; | |
491 | } | |
492 | ||
493 | if ((pt_entry_t*)(phystokv(pa)) == ppte) { | |
494 | assert(recursive_pte == NULL); | |
495 | /* This assert should be reenabled as part of rdar://problem/30149465 */ | |
496 | assert(!forceCoarse); | |
497 | recursive_pte = &ppte[i]; | |
498 | recursive_ptmp = ptmp; | |
499 | } else if ((deferred_pte != NULL) && (&ppte[i] == &recursive_pte[1])) { | |
500 | assert(*deferred_pte == NULL); | |
501 | assert(deferred_ptmp != NULL); | |
502 | *deferred_pte = &ppte[i]; | |
503 | *deferred_ptmp = ptmp; | |
504 | } else { | |
505 | ppte[i] = ptmp; | |
506 | } | |
507 | } | |
508 | ||
509 | va += ARM_PGBYTES; | |
510 | pa += ARM_PGBYTES; | |
511 | } | |
512 | if (recursive_pte != NULL) | |
513 | *recursive_pte = recursive_ptmp; | |
514 | } | |
515 | } | |
516 | ||
517 | /* | |
518 | * arm_vm_page_granular_prot updates protections by iterating over the L2 entries and | |
519 | * changing them. If a particular chunk necessitates L3 entries (for reasons of | |
520 | * alignment or length, or an explicit request that the entry be fully expanded), we | |
521 | * hand off to arm_vm_page_granular_helper to deal with the L3 chunk of the logic. | |
522 | * | |
523 | * Note that counterintuitively a forceCoarse request is a request to expand the entries | |
524 | * out to L3, i.e. to make *finer* grained mappings. That comes from historical arm32 | |
525 | * nomenclature in which the 4K granule is "coarse" vs. the 1K "fine" granule (which we | |
526 | * don't use). | |
527 | */ | |
528 | static void | |
529 | arm_vm_page_granular_prot(vm_offset_t start, unsigned long size, | |
530 | int tte_prot_XN, int pte_prot_APX, int pte_prot_XN, int forceCoarse) | |
531 | { | |
532 | pt_entry_t *deferred_pte = NULL, deferred_ptmp = 0; | |
533 | vm_offset_t _end = start + size; | |
534 | vm_offset_t align_start = (start + ARM_TT_L2_OFFMASK) & ~ARM_TT_L2_OFFMASK; | |
535 | ||
536 | if (size == 0x0UL) | |
537 | return; | |
538 | ||
539 | if (align_start > _end) { | |
540 | arm_vm_page_granular_helper(start, _end, start, pte_prot_APX, pte_prot_XN, forceCoarse, NULL, NULL); | |
541 | return; | |
542 | } | |
543 | ||
544 | arm_vm_page_granular_helper(start, align_start, start, pte_prot_APX, pte_prot_XN, forceCoarse, &deferred_pte, &deferred_ptmp); | |
545 | ||
546 | while ((_end - align_start) >= ARM_TT_L2_SIZE) { | |
547 | if (forceCoarse) | |
548 | arm_vm_page_granular_helper(align_start, align_start+ARM_TT_L2_SIZE, align_start + 1, | |
549 | pte_prot_APX, pte_prot_XN, forceCoarse, NULL, NULL); | |
550 | else { | |
551 | #if __ARM64_TWO_LEVEL_PMAP__ | |
552 | tt_entry_t *tte2; | |
553 | #else | |
554 | tt_entry_t *tte1, *tte2; | |
555 | #endif | |
556 | tt_entry_t tmplate; | |
557 | ||
558 | #if __ARM64_TWO_LEVEL_PMAP__ | |
559 | tte2 = &cpu_tte[((align_start & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)]; | |
560 | #else | |
561 | tte1 = &cpu_tte[((align_start & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT)]; | |
562 | tte2 = &((tt_entry_t*) phystokv((*tte1) & ARM_TTE_TABLE_MASK))[((align_start & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)]; | |
563 | #endif | |
564 | ||
565 | tmplate = *tte2; | |
566 | ||
567 | tmplate = (tmplate & ~ARM_TTE_BLOCK_APMASK) | ARM_TTE_BLOCK_AP(pte_prot_APX); | |
568 | tmplate = tmplate | ARM_TTE_BLOCK_NX; | |
569 | if (tte_prot_XN) | |
570 | tmplate = tmplate | ARM_TTE_BLOCK_PNX; | |
571 | ||
572 | *tte2 = tmplate; | |
573 | } | |
574 | align_start += ARM_TT_L2_SIZE; | |
575 | } | |
576 | ||
577 | if (align_start < _end) | |
578 | arm_vm_page_granular_helper(align_start, _end, _end, pte_prot_APX, pte_prot_XN, forceCoarse, &deferred_pte, &deferred_ptmp); | |
579 | ||
580 | if (deferred_pte != NULL) | |
581 | *deferred_pte = deferred_ptmp; | |
582 | } | |
583 | ||
584 | static inline void | |
585 | arm_vm_page_granular_RNX(vm_offset_t start, unsigned long size, int forceCoarse) | |
586 | { | |
587 | arm_vm_page_granular_prot(start, size, 1, AP_RONA, 1, forceCoarse); | |
588 | } | |
589 | ||
590 | static inline void | |
591 | arm_vm_page_granular_ROX(vm_offset_t start, unsigned long size, int forceCoarse) | |
592 | { | |
593 | arm_vm_page_granular_prot(start, size, 0, AP_RONA, 0, forceCoarse); | |
594 | } | |
595 | ||
596 | static inline void | |
597 | arm_vm_page_granular_RWNX(vm_offset_t start, unsigned long size, int forceCoarse) | |
598 | { | |
599 | arm_vm_page_granular_prot(start, size, 1, AP_RWNA, 1, forceCoarse); | |
600 | } | |
601 | ||
602 | static inline void | |
603 | arm_vm_page_granular_RWX(vm_offset_t start, unsigned long size, int forceCoarse) | |
604 | { | |
605 | arm_vm_page_granular_prot(start, size, 0, AP_RWNA, 0, forceCoarse); | |
606 | } | |
607 | ||
608 | void | |
609 | arm_vm_prot_init(boot_args * args) | |
610 | { | |
611 | /* | |
612 | * Enforce W^X protections on sections that have been identified so far. This will be | |
613 | * further refined for each KEXT's TEXT and DATA segments in readPrelinkedExtensions() | |
614 | */ | |
615 | bool use_small_page_mappings = FALSE; | |
616 | ||
617 | /* | |
618 | * First off, we'll create mappings for any physical memory preceeding the kernel TEXT. | |
619 | * This is memory that we want to give to the VM; this will be accomplished through an | |
620 | * ml_static_mfree call in arm_vm_prot_finalize. This allows the pmap/vm bootstrap | |
621 | * routines to assume they will have a physically contiguous chunk of memory to deal | |
622 | * with during bootstrap, while reclaiming this memory later. | |
623 | */ | |
624 | arm_vm_page_granular_RWNX(gVirtBase, segPRELINKTEXTB - gVirtBase, use_small_page_mappings); // Memory for the VM | |
625 | ||
626 | /* Map coalesced kext TEXT segment RWNX for now */ | |
627 | arm_vm_page_granular_RWNX(segPRELINKTEXTB, segSizePRELINKTEXT, FALSE); // Refined in OSKext::readPrelinkedExtensions | |
628 | ||
629 | /* Map coalesced kext DATA_CONST segment RWNX (could be empty) */ | |
630 | arm_vm_page_granular_RWNX(segPLKDATACONSTB, segSizePLKDATACONST, FALSE); // Refined in OSKext::readPrelinkedExtensions | |
631 | ||
632 | /* Map coalesced kext TEXT_EXEC segment RWX (could be empty) */ | |
633 | arm_vm_page_granular_ROX(segPLKTEXTEXECB, segSizePLKTEXTEXEC, FALSE); // Refined in OSKext::readPrelinkedExtensions | |
634 | ||
635 | /* if new segments not present, set space between PRELINK_TEXT and xnu TEXT to RWNX | |
636 | * otherwise we no longer expecting any space between the coalesced kext read only segments and xnu rosegments | |
637 | */ | |
638 | if (!segSizePLKDATACONST && !segSizePLKTEXTEXEC) { | |
639 | arm_vm_page_granular_RWNX(segPRELINKTEXTB + segSizePRELINKTEXT, segTEXTB - (segPRELINKTEXTB + segSizePRELINKTEXT), FALSE); | |
640 | } else { | |
641 | /* | |
642 | * If we have the new segments, we should still protect the gap between kext | |
643 | * read-only pages and kernel read-only pages, in the event that this gap | |
644 | * exists. | |
645 | */ | |
646 | if ((segPLKDATACONSTB + segSizePLKDATACONST) < segTEXTB) { | |
647 | arm_vm_page_granular_RWNX(segPLKDATACONSTB + segSizePLKDATACONST, segTEXTB - (segPLKDATACONSTB + segSizePLKDATACONST), FALSE); | |
648 | } | |
649 | } | |
650 | ||
651 | /* | |
652 | * Protection on kernel text is loose here to allow shenanigans early on. These | |
653 | * protections are tightened in arm_vm_prot_finalize(). This is necessary because | |
654 | * we currently patch LowResetVectorBase in cpu.c. | |
655 | * | |
656 | * TEXT segment contains mach headers and other non-executable data. This will become RONX later. | |
657 | */ | |
658 | arm_vm_page_granular_RNX(segTEXTB, segSizeTEXT, FALSE); | |
659 | ||
660 | /* Can DATACONST start out and stay RNX? | |
661 | * NO, stuff in this segment gets modified during startup (viz. mac_policy_init()/mac_policy_list) | |
662 | * Make RNX in prot_finalize | |
663 | */ | |
664 | arm_vm_page_granular_RWNX(segDATACONSTB, segSizeDATACONST, FALSE); | |
665 | ||
666 | /* TEXTEXEC contains read only executable code: becomes ROX in prot_finalize */ | |
667 | arm_vm_page_granular_RWX(segTEXTEXECB, segSizeTEXTEXEC, FALSE); | |
668 | ||
669 | ||
670 | /* DATA segment will remain RWNX */ | |
671 | arm_vm_page_granular_RWNX(segDATAB, segSizeDATA, FALSE); | |
672 | ||
673 | arm_vm_page_granular_ROX(segKLDB, segSizeKLD, FALSE); | |
674 | arm_vm_page_granular_RWNX(segLINKB, segSizeLINK, FALSE); | |
675 | arm_vm_page_granular_ROX(segLASTB, segSizeLAST, FALSE); // __LAST may be empty, but we cannot assume this | |
676 | ||
677 | arm_vm_page_granular_RWNX(segPRELINKDATAB, segSizePRELINKDATA, FALSE); // Prelink __DATA for kexts (RW data) | |
678 | ||
679 | if (segSizePLKLLVMCOV > 0) | |
680 | arm_vm_page_granular_RWNX(segPLKLLVMCOVB, segSizePLKLLVMCOV, FALSE); // LLVM code coverage data | |
681 | ||
682 | arm_vm_page_granular_RWNX(segPLKLINKEDITB, segSizePLKLINKEDIT, use_small_page_mappings); // Coalesced kext LINKEDIT segment | |
683 | ||
684 | arm_vm_page_granular_RWNX(segPRELINKINFOB, segSizePRELINKINFO, FALSE); /* PreLinkInfoDictionary */ | |
685 | arm_vm_page_granular_RWNX(end_kern, phystokv(args->topOfKernelData) - end_kern, use_small_page_mappings); /* Device Tree, RAM Disk (if present), bootArgs */ | |
686 | ||
687 | /* | |
688 | * This is offset by 4 pages to make room for the boot page tables; we could probably | |
689 | * include them in the overall mapping, but we'll be paranoid for now. | |
690 | */ | |
691 | vm_offset_t extra = 0; | |
692 | #if KASAN | |
693 | /* add the KASAN stolen memory to the physmap */ | |
694 | extra = shadow_ptop - shadow_pbase; | |
695 | ||
696 | /* record the extent of the physmap */ | |
697 | physmap_vbase = phystokv(args->topOfKernelData) + ARM_PGBYTES * 4; | |
698 | physmap_vtop = static_memory_end; | |
699 | #endif | |
700 | arm_vm_page_granular_RNX(phystokv(args->topOfKernelData), ARM_PGBYTES * 4, FALSE); // Boot page tables; they should not be mutable. | |
701 | arm_vm_page_granular_RWNX(phystokv(args->topOfKernelData) + ARM_PGBYTES * 4, | |
702 | extra + static_memory_end - ((phystokv(args->topOfKernelData) + ARM_PGBYTES * 4)), use_small_page_mappings); // rest of physmem | |
703 | } | |
704 | ||
705 | void | |
706 | arm_vm_prot_finalize(boot_args * args) | |
707 | { | |
708 | #pragma unused(args) | |
709 | /* | |
710 | * At this point, we are far enough along in the boot process that it will be | |
711 | * safe to free up all of the memory preceeding the kernel. It may in fact | |
712 | * be safe to do this earlier. | |
713 | * | |
714 | * This keeps the memory in the V-to-P mapping, but advertises it to the VM | |
715 | * as usable. | |
716 | */ | |
717 | ||
718 | /* | |
719 | * if old style PRELINK segment exists, free memory before it, and after it before XNU text | |
720 | * otherwise we're dealing with a new style kernel cache, so we should just free the | |
721 | * memory before PRELINK_TEXT segment, since the rest of the KEXT read only data segments | |
722 | * should be immediately followed by XNU's TEXT segment | |
723 | */ | |
724 | ||
725 | ml_static_mfree(gVirtBase, segPRELINKTEXTB - gVirtBase); | |
726 | ||
727 | if (!segSizePLKDATACONST && !segSizePLKTEXTEXEC) { | |
728 | /* If new segments not present, PRELINK_TEXT is not dynamically sized, free DRAM between it and xnu TEXT */ | |
729 | ml_static_mfree(segPRELINKTEXTB + segSizePRELINKTEXT, segTEXTB - (segPRELINKTEXTB + segSizePRELINKTEXT)); | |
730 | } | |
731 | ||
732 | /* | |
733 | * LowResetVectorBase patching should be done by now, so tighten executable | |
734 | * protections. | |
735 | */ | |
736 | arm_vm_page_granular_ROX(segTEXTEXECB, segSizeTEXTEXEC, FALSE); | |
737 | ||
738 | /* tighten permissions on kext read only data and code */ | |
739 | if (segSizePLKDATACONST && segSizePLKTEXTEXEC) { | |
740 | arm_vm_page_granular_RNX(segPRELINKTEXTB, segSizePRELINKTEXT, FALSE); | |
741 | arm_vm_page_granular_ROX(segPLKTEXTEXECB, segSizePLKTEXTEXEC, FALSE); | |
742 | arm_vm_page_granular_RNX(segPLKDATACONSTB, segSizePLKDATACONST, FALSE); | |
743 | } | |
744 | ||
745 | #if defined(KERNEL_INTEGRITY_KTRR) | |
746 | /* | |
747 | * __LAST,__pinst should no longer be executable. | |
748 | */ | |
749 | arm_vm_page_granular_RNX(segLASTB, segSizeLAST, FALSE); | |
750 | ||
751 | /* | |
752 | * Must wait until all other region permissions are set before locking down DATA_CONST | |
753 | * as the kernel static page tables live in DATA_CONST on KTRR enabled systems | |
754 | * and will become immutable. | |
755 | */ | |
756 | #endif | |
757 | arm_vm_page_granular_RNX(segDATACONSTB, segSizeDATACONST, FALSE); | |
758 | ||
759 | #ifndef __ARM_L1_PTW__ | |
760 | FlushPoC_Dcache(); | |
761 | #endif | |
762 | flush_mmu_tlb(); | |
763 | } | |
764 | ||
765 | #define TBI_USER 0x1 | |
766 | #define TBI_KERNEL 0x2 | |
767 | ||
768 | boolean_t user_tbi = TRUE; | |
769 | ||
770 | /* | |
771 | * TBI (top-byte ignore) is an ARMv8 feature for ignoring the top 8 bits of | |
772 | * address accesses. It can be enabled separately for TTBR0 (user) and | |
773 | * TTBR1 (kernel). We enable it by default for user only, but allow both | |
774 | * to be controlled by the 'tbi' boot-arg. | |
775 | */ | |
776 | static void | |
777 | set_tbi(void) | |
778 | { | |
779 | uint64_t old_tcr, new_tcr; | |
780 | int tbi = 0; | |
781 | ||
782 | if (PE_parse_boot_argn("tbi", &tbi, sizeof(tbi))) | |
783 | user_tbi = ((tbi & TBI_USER) == TBI_USER); | |
784 | old_tcr = new_tcr = get_tcr(); | |
785 | new_tcr |= (user_tbi) ? TCR_TBI0_TOPBYTE_IGNORED : 0; | |
786 | new_tcr |= (tbi & TBI_KERNEL) ? TCR_TBI1_TOPBYTE_IGNORED : 0; | |
787 | ||
788 | if (old_tcr != new_tcr) { | |
789 | set_tcr(new_tcr); | |
790 | sysreg_restore.tcr_el1 = new_tcr; | |
791 | } | |
792 | } | |
793 | ||
794 | void | |
795 | arm_vm_init(uint64_t memory_size, boot_args * args) | |
796 | { | |
797 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
798 | vm_map_address_t va_l1, va_l1_end; | |
799 | pmap_paddr_t pa_l1; | |
800 | tt_entry_t *cpu_l1_tte; | |
801 | #else | |
802 | /* | |
803 | * If we are using two level page tables, rather than the | |
804 | * 3 level page tables that xnu defaults to for ARM64, | |
805 | * then a great deal of the code in this path becomes | |
806 | * redundant. As a result, most of the logic having to | |
807 | * do with L1 pages will be excluded from such | |
808 | * configurations in this function. | |
809 | */ | |
810 | #endif | |
811 | vm_map_address_t va_l2, va_l2_end; | |
812 | pmap_paddr_t pa_l2; | |
813 | tt_entry_t *cpu_l2_tte; | |
814 | pmap_paddr_t boot_ttep; | |
815 | tt_entry_t *boot_tte; | |
816 | uint64_t mem_segments; | |
817 | vm_offset_t ptpage_vaddr; | |
818 | ||
819 | ||
820 | /* | |
821 | * Get the virtual and physical memory base from boot_args. | |
822 | */ | |
823 | gVirtBase = args->virtBase; | |
824 | gPhysBase = args->physBase; | |
825 | gPhysSize = args->memSize; | |
826 | mem_size = args->memSize; | |
827 | if ((memory_size != 0) && (mem_size > memory_size)) | |
828 | mem_size = memory_size; | |
829 | if (mem_size > MEM_SIZE_MAX ) | |
830 | mem_size = MEM_SIZE_MAX; | |
831 | static_memory_end = gVirtBase + mem_size; | |
832 | ||
833 | boot_ttep = args->topOfKernelData; | |
834 | boot_tte = (tt_entry_t *) phystokv(boot_ttep); | |
835 | ||
836 | /* | |
837 | * Four pages: | |
838 | * TTBR0 L1, TTBR0 L2 - 1:1 bootstrap mapping. | |
839 | * TTBR1 L1, TTBR1 L2 - kernel mapping | |
840 | */ | |
841 | avail_start = boot_ttep + 4*ARM_PGBYTES; | |
842 | ||
843 | #if defined(KERNEL_INTEGRITY_KTRR) | |
844 | arm_replace_identity_map(args); | |
845 | #endif | |
846 | ||
847 | /* Initialize invalid tte page */ | |
848 | invalid_tte = (tt_entry_t *)alloc_ptpage(TRUE); | |
849 | invalid_ttep = kvtophys((vm_offset_t)invalid_tte); | |
850 | bzero(invalid_tte, ARM_PGBYTES); | |
851 | ||
852 | /* | |
853 | * Initialize l1 page table page | |
854 | */ | |
855 | #if __ARM64_TWO_LEVEL_PMAP__ | |
856 | /* | |
857 | * If we're using a two level page table, we still need to | |
858 | * set the cpu_ttep to avail_start, as this will be the root | |
859 | * of our page table regardless of how many levels we are | |
860 | * using. | |
861 | */ | |
862 | #endif | |
863 | cpu_tte = (tt_entry_t *)alloc_ptpage(TRUE); | |
864 | cpu_ttep = kvtophys((vm_offset_t)cpu_tte); | |
865 | bzero(cpu_tte, ARM_PGBYTES); | |
866 | ||
867 | avail_end = gPhysBase + mem_size; | |
868 | ||
869 | /* | |
870 | * Initialize l1 and l2 page table pages : | |
871 | * map physical memory at the kernel base virtual address | |
872 | * cover the kernel dynamic address range section | |
873 | * | |
874 | * the so called physical aperture should be statically mapped | |
875 | */ | |
876 | ||
877 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
878 | pa_l1 = gPhysBase; | |
879 | va_l1 = gVirtBase; | |
880 | va_l1_end = gVirtBase + mem_size; | |
881 | #if KASAN | |
882 | /* add the KASAN stolen memory to the physmap */ | |
883 | va_l1_end = gVirtBase + (shadow_ptop - gPhysBase); | |
884 | #endif | |
885 | cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
886 | ||
887 | while (va_l1 < va_l1_end) { | |
888 | tt_entry_t *new_tte = (tt_entry_t *)alloc_ptpage(TRUE); | |
889 | /* Allocate a page and setup L1 Table TTE in L1 */ | |
890 | *cpu_l1_tte = (kvtophys((vm_offset_t)new_tte) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID; | |
891 | bzero((void *)new_tte, ARM_PGBYTES); | |
892 | ||
893 | va_l2 = va_l1; | |
894 | ||
895 | if (((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE) < va_l1) { | |
896 | /* If this is the last L1 entry, it must cover the last mapping. */ | |
897 | va_l2_end = va_l1_end; | |
898 | } else { | |
899 | va_l2_end = MIN((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE, va_l1_end); | |
900 | } | |
901 | ||
902 | pa_l2 = pa_l1; | |
903 | cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l1 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
904 | #else | |
905 | va_l2 = gVirtBase; | |
906 | va_l2_end = gVirtBase + mem_size; | |
907 | pa_l2 = gPhysBase; | |
908 | cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
909 | ||
910 | #if KASAN | |
911 | /* add the KASAN stolen memory to the physmap */ | |
912 | va_l2_end = gVirtBase + (shadow_ptop - gPhysBase); | |
913 | #endif | |
914 | ||
915 | #endif | |
916 | ||
917 | while (va_l2 < va_l2_end) { | |
918 | /* Set up L2 Block TTE in L2 */ | |
919 | *cpu_l2_tte = (pa_l2 & ARM_TTE_BLOCK_L2_MASK) | ARM_TTE_TYPE_BLOCK | |
920 | | ARM_TTE_VALID | ARM_TTE_BLOCK_AF | |
921 | | ARM_TTE_BLOCK_AP(AP_RWNA) | ARM_TTE_BLOCK_SH(SH_OUTER_MEMORY) | |
922 | | ARM_TTE_BLOCK_ATTRINDX(CACHE_ATTRINDX_WRITEBACK); | |
923 | va_l2 += ARM_TT_L2_SIZE; | |
924 | pa_l2 += ARM_TT_L2_SIZE; | |
925 | cpu_l2_tte++; | |
926 | } | |
927 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
928 | cpu_l1_tte++; | |
929 | va_l1 = va_l2; | |
930 | pa_l1 = pa_l2; | |
931 | } | |
932 | #endif | |
933 | ||
934 | /* | |
935 | * Now retrieve addresses for end, edata, and etext from MACH-O headers | |
936 | */ | |
937 | segPRELINKTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PRELINK_TEXT", &segSizePRELINKTEXT); | |
938 | segPLKDATACONSTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_DATA_CONST", &segSizePLKDATACONST); | |
939 | segPLKTEXTEXECB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_TEXT_EXEC", &segSizePLKTEXTEXEC); | |
940 | segTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__TEXT", &segSizeTEXT); | |
941 | segDATACONSTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__DATA_CONST", &segSizeDATACONST); | |
942 | segTEXTEXECB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__TEXT_EXEC", &segSizeTEXTEXEC); | |
943 | segDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__DATA", &segSizeDATA); | |
944 | segLINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__LINKEDIT", &segSizeLINK); | |
945 | segKLDB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__KLD", &segSizeKLD); | |
946 | segPRELINKDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PRELINK_DATA", &segSizePRELINKDATA); | |
947 | segPRELINKINFOB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PRELINK_INFO", &segSizePRELINKINFO); | |
948 | segPLKLLVMCOVB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_LLVM_COV", &segSizePLKLLVMCOV); | |
949 | segPLKLINKEDITB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_LINKEDIT", &segSizePLKLINKEDIT); | |
950 | segLASTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__LAST", &segSizeLAST); | |
951 | ||
952 | (void) PE_parse_boot_argn("use_contiguous_hint", &use_contiguous_hint, sizeof(use_contiguous_hint)); | |
953 | assert(segSizePRELINKTEXT < 0x03000000); /* 23355738 */ | |
954 | ||
955 | /* if one of the new segments is present, the other one better be as well */ | |
956 | if (segSizePLKDATACONST || segSizePLKTEXTEXEC) { | |
957 | assert(segSizePLKDATACONST && segSizePLKTEXTEXEC); | |
958 | } | |
959 | ||
960 | etext = (vm_offset_t) segTEXTB + segSizeTEXT; | |
961 | sdata = (vm_offset_t) segDATAB; | |
962 | edata = (vm_offset_t) segDATAB + segSizeDATA; | |
963 | end_kern = round_page(getlastaddr()); /* Force end to next page */ | |
964 | ||
965 | vm_set_page_size(); | |
966 | ||
967 | vm_kernel_base = segTEXTB; | |
968 | vm_kernel_top = (vm_offset_t) &last_kernel_symbol; | |
969 | vm_kext_base = segPRELINKTEXTB; | |
970 | vm_kext_top = vm_kext_base + segSizePRELINKTEXT; | |
971 | ||
972 | vm_prelink_stext = segPRELINKTEXTB; | |
973 | if (!segSizePLKTEXTEXEC && !segSizePLKDATACONST) { | |
974 | vm_prelink_etext = segPRELINKTEXTB + segSizePRELINKTEXT; | |
975 | } else { | |
976 | vm_prelink_etext = segPRELINKTEXTB + segSizePRELINKTEXT + segSizePLKDATACONST + segSizePLKTEXTEXEC; | |
977 | } | |
978 | vm_prelink_sinfo = segPRELINKINFOB; | |
979 | vm_prelink_einfo = segPRELINKINFOB + segSizePRELINKINFO; | |
980 | vm_slinkedit = segLINKB; | |
981 | vm_elinkedit = segLINKB + segSizeLINK; | |
982 | ||
983 | vm_prelink_sdata = segPRELINKDATAB; | |
984 | vm_prelink_edata = segPRELINKDATAB + segSizePRELINKDATA; | |
985 | ||
986 | arm_vm_prot_init(args); | |
987 | ||
988 | ||
989 | /* | |
990 | * Initialize the page tables for the low globals: | |
991 | * cover this address range: | |
992 | * LOW_GLOBAL_BASE_ADDRESS + 2MB | |
993 | */ | |
994 | #if __ARM64_TWO_LEVEL_PMAP__ | |
995 | va_l2 = LOW_GLOBAL_BASE_ADDRESS; | |
996 | cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
997 | #else | |
998 | va_l1 = va_l2 = LOW_GLOBAL_BASE_ADDRESS; | |
999 | cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
1000 | cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
1001 | #endif | |
1002 | ptpage_vaddr = alloc_ptpage(TRUE); | |
1003 | *cpu_l2_tte = (kvtophys(ptpage_vaddr) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN; | |
1004 | bzero((void *)ptpage_vaddr, ARM_PGBYTES); | |
1005 | ||
1006 | /* | |
1007 | * Initialize l2 page table pages : | |
1008 | * cover this address range: | |
1009 | * KERNEL_DYNAMIC_ADDR - VM_MAX_KERNEL_ADDRESS | |
1010 | */ | |
1011 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
1012 | va_l1 = (gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL; | |
1013 | va_l1_end = VM_MAX_KERNEL_ADDRESS; | |
1014 | cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
1015 | ||
1016 | while (va_l1 < va_l1_end) { | |
1017 | if (*cpu_l1_tte == ARM_TTE_EMPTY) { | |
1018 | /* Allocate a page and setup L1 Table TTE in L1 */ | |
1019 | ptpage_vaddr = alloc_ptpage(TRUE); | |
1020 | *cpu_l1_tte = (kvtophys(ptpage_vaddr) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN; | |
1021 | bzero((void *)ptpage_vaddr, ARM_PGBYTES); | |
1022 | } | |
1023 | ||
1024 | if ((va_l1 + ARM_TT_L1_SIZE) < va_l1) { | |
1025 | /* If this is the last L1 entry, it must cover the last mapping. */ | |
1026 | break; | |
1027 | } | |
1028 | ||
1029 | va_l1 += ARM_TT_L1_SIZE; | |
1030 | cpu_l1_tte++; | |
1031 | } | |
1032 | #endif | |
1033 | ||
1034 | #if KASAN | |
1035 | kasan_init(); | |
1036 | #endif | |
1037 | ||
1038 | set_mmu_ttb(invalid_ttep & TTBR_BADDR_MASK); | |
1039 | set_mmu_ttb_alternate(cpu_ttep & TTBR_BADDR_MASK); | |
1040 | set_tbi(); | |
1041 | flush_mmu_tlb(); | |
1042 | ||
1043 | /* | |
1044 | * TODO: We're hardcoding the expected virtual TEXT base here; | |
1045 | * that gives us an ugly dependency on a linker argument in | |
1046 | * the make files. Clean this up, so we don't hardcode it | |
1047 | * twice; this is nothing but trouble. | |
1048 | */ | |
1049 | sane_size = mem_size - (avail_start - gPhysBase); | |
1050 | max_mem = mem_size; | |
1051 | vm_kernel_slid_base = segPRELINKTEXTB; | |
1052 | vm_kernel_slid_top = vm_prelink_einfo; | |
1053 | vm_kernel_slide = segTEXTB-0xfffffff007004000; | |
1054 | vm_kernel_stext = segTEXTB; | |
1055 | assert(segDATACONSTB == segTEXTB + segSizeTEXT); | |
1056 | assert(segTEXTEXECB == segDATACONSTB + segSizeDATACONST); | |
1057 | vm_kernel_etext = segTEXTB + segSizeTEXT + segSizeDATACONST + segSizeTEXTEXEC; | |
1058 | ||
1059 | pmap_bootstrap((gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL); | |
1060 | ||
1061 | /* | |
1062 | * Initialize l3 page table pages : | |
1063 | * cover this address range: | |
1064 | * 2MB + FrameBuffer size + 10MB for each 256MB segment | |
1065 | */ | |
1066 | ||
1067 | mem_segments = (mem_size + 0x0FFFFFFF) >> 28; | |
1068 | ||
1069 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
1070 | va_l1 = (gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL; | |
1071 | va_l1_end = va_l1 + ((2 + (mem_segments * 10)) << 20); | |
1072 | va_l1_end += round_page(args->Video.v_height * args->Video.v_rowBytes); | |
1073 | va_l1_end = (va_l1_end + 0x00000000007FFFFFULL) & 0xFFFFFFFFFF800000ULL; | |
1074 | ||
1075 | cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
1076 | ||
1077 | while (va_l1 < va_l1_end) { | |
1078 | ||
1079 | va_l2 = va_l1; | |
1080 | ||
1081 | if (((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE) < va_l1) { | |
1082 | /* If this is the last L1 entry, it must cover the last mapping. */ | |
1083 | va_l2_end = va_l1_end; | |
1084 | } else { | |
1085 | va_l2_end = MIN((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE, va_l1_end); | |
1086 | } | |
1087 | ||
1088 | cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
1089 | #else | |
1090 | va_l2 = (gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL; | |
1091 | va_l2_end = va_l2 + ((2 + (mem_segments * 10)) << 20); | |
1092 | va_l2_end += round_page(args->Video.v_height * args->Video.v_rowBytes); | |
1093 | va_l2_end = (va_l2_end + 0x00000000007FFFFFULL) & 0xFFFFFFFFFF800000ULL; | |
1094 | cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
1095 | #endif | |
1096 | ||
1097 | while (va_l2 < va_l2_end) { | |
1098 | pt_entry_t * ptp; | |
1099 | pmap_paddr_t ptp_phys; | |
1100 | ||
1101 | /* Allocate a page and setup L3 Table TTE in L2 */ | |
1102 | ptp = (pt_entry_t *) alloc_ptpage(FALSE); | |
1103 | ptp_phys = (pmap_paddr_t)kvtophys((vm_offset_t)ptp); | |
1104 | ||
1105 | pmap_init_pte_page(kernel_pmap, ptp, va_l2, 3, TRUE); | |
1106 | ||
1107 | *cpu_l2_tte = (pa_to_tte (ptp_phys)) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN; | |
1108 | ||
1109 | va_l2 += ARM_TT_L2_SIZE; | |
1110 | cpu_l2_tte++; | |
1111 | }; | |
1112 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
1113 | va_l1 = va_l2_end; | |
1114 | cpu_l1_tte++; | |
1115 | } | |
1116 | #endif | |
1117 | ||
1118 | /* | |
1119 | * Initialize l3 page table pages : | |
1120 | * cover this address range: | |
1121 | * (VM_MAX_KERNEL_ADDRESS & CPUWINDOWS_BASE_MASK) - VM_MAX_KERNEL_ADDRESS | |
1122 | */ | |
1123 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
1124 | va_l1 = VM_MAX_KERNEL_ADDRESS & CPUWINDOWS_BASE_MASK; | |
1125 | va_l1_end = VM_MAX_KERNEL_ADDRESS; | |
1126 | ||
1127 | cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
1128 | ||
1129 | while (va_l1 < va_l1_end) { | |
1130 | ||
1131 | va_l2 = va_l1; | |
1132 | ||
1133 | if (((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE) < va_l1) { | |
1134 | /* If this is the last L1 entry, it must cover the last mapping. */ | |
1135 | va_l2_end = va_l1_end; | |
1136 | } else { | |
1137 | va_l2_end = MIN((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE, va_l1_end); | |
1138 | } | |
1139 | ||
1140 | cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
1141 | #else | |
1142 | va_l2 = VM_MAX_KERNEL_ADDRESS & CPUWINDOWS_BASE_MASK; | |
1143 | va_l2_end = VM_MAX_KERNEL_ADDRESS; | |
1144 | cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT); | |
1145 | #endif | |
1146 | ||
1147 | while (va_l2 < va_l2_end) { | |
1148 | pt_entry_t * ptp; | |
1149 | pmap_paddr_t ptp_phys; | |
1150 | ||
1151 | /* Allocate a page and setup L3 Table TTE in L2 */ | |
1152 | ptp = (pt_entry_t *) alloc_ptpage(FALSE); | |
1153 | ptp_phys = (pmap_paddr_t)kvtophys((vm_offset_t)ptp); | |
1154 | ||
1155 | pmap_init_pte_page(kernel_pmap, ptp, va_l2, 3, TRUE); | |
1156 | ||
1157 | *cpu_l2_tte = (pa_to_tte (ptp_phys)) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN; | |
1158 | ||
1159 | va_l2 += ARM_TT_L2_SIZE; | |
1160 | cpu_l2_tte++; | |
1161 | }; | |
1162 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
1163 | va_l1 = va_l2_end; | |
1164 | cpu_l1_tte++; | |
1165 | } | |
1166 | #endif | |
1167 | ||
1168 | #if __ARM64_PMAP_SUBPAGE_L1__ && __ARM_16K_PG__ | |
1169 | /* | |
1170 | * In this configuration, the bootstrap mappings (arm_vm_init) and | |
1171 | * the heap mappings occupy separate L1 regions. Explicitly set up | |
1172 | * the heap L1 allocations here. | |
1173 | */ | |
1174 | va_l1 = VM_MIN_KERNEL_ADDRESS & ~ARM_TT_L1_OFFMASK; | |
1175 | cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT); | |
1176 | ||
1177 | while ((va_l1 >= (VM_MIN_KERNEL_ADDRESS & ~ARM_TT_L1_OFFMASK)) && (va_l1 < VM_MAX_KERNEL_ADDRESS)) { | |
1178 | /* | |
1179 | * If the L1 entry has not yet been allocated, allocate it | |
1180 | * now and treat it as a heap table. | |
1181 | */ | |
1182 | if (*cpu_l1_tte == ARM_TTE_EMPTY) { | |
1183 | tt_entry_t *new_tte = (tt_entry_t*)alloc_ptpage(FALSE); | |
1184 | bzero(new_tte, ARM_PGBYTES); | |
1185 | *cpu_l1_tte = (kvtophys((vm_offset_t)new_tte) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN; | |
1186 | } | |
1187 | ||
1188 | cpu_l1_tte++; | |
1189 | va_l1 += ARM_TT_L1_SIZE; | |
1190 | } | |
1191 | #endif | |
1192 | ||
1193 | /* | |
1194 | * Adjust avail_start so that the range that the VM owns | |
1195 | * starts on a PAGE_SIZE aligned boundary. | |
1196 | */ | |
1197 | avail_start = (avail_start + PAGE_MASK) & ~PAGE_MASK; | |
1198 | ||
1199 | ||
1200 | first_avail = avail_start; | |
1201 | patch_low_glo_static_region(args->topOfKernelData, avail_start - args->topOfKernelData); | |
1202 | } | |
1203 |