]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
55e303ae | 2 | * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved. |
1c79356b A |
3 | * |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
e5568f75 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
1c79356b | 11 | * |
e5568f75 A |
12 | * This Original Code and all software distributed under the License are |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
e5568f75 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
1c79356b A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: vm_fault.c | |
54 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
55 | * | |
56 | * Page fault handling module. | |
57 | */ | |
58 | #ifdef MACH_BSD | |
59 | /* remove after component interface available */ | |
60 | extern int vnode_pager_workaround; | |
0b4e3aa0 | 61 | extern int device_pager_workaround; |
1c79356b A |
62 | #endif |
63 | ||
64 | #include <mach_cluster_stats.h> | |
65 | #include <mach_pagemap.h> | |
66 | #include <mach_kdb.h> | |
67 | ||
68 | #include <vm/vm_fault.h> | |
69 | #include <mach/kern_return.h> | |
70 | #include <mach/message.h> /* for error codes */ | |
71 | #include <kern/host_statistics.h> | |
72 | #include <kern/counters.h> | |
73 | #include <kern/task.h> | |
74 | #include <kern/thread.h> | |
75 | #include <kern/sched_prim.h> | |
76 | #include <kern/host.h> | |
77 | #include <kern/xpr.h> | |
0b4e3aa0 | 78 | #include <ppc/proc_reg.h> |
0b4e3aa0 | 79 | #include <vm/task_working_set.h> |
1c79356b A |
80 | #include <vm/vm_map.h> |
81 | #include <vm/vm_object.h> | |
82 | #include <vm/vm_page.h> | |
55e303ae | 83 | #include <vm/vm_kern.h> |
1c79356b A |
84 | #include <vm/pmap.h> |
85 | #include <vm/vm_pageout.h> | |
86 | #include <mach/vm_param.h> | |
87 | #include <mach/vm_behavior.h> | |
88 | #include <mach/memory_object.h> | |
89 | /* For memory_object_data_{request,unlock} */ | |
90 | #include <kern/mach_param.h> | |
91 | #include <kern/macro_help.h> | |
92 | #include <kern/zalloc.h> | |
93 | #include <kern/misc_protos.h> | |
94 | ||
95 | #include <sys/kdebug.h> | |
96 | ||
97 | #define VM_FAULT_CLASSIFY 0 | |
98 | #define VM_FAULT_STATIC_CONFIG 1 | |
99 | ||
100 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ | |
101 | ||
102 | int vm_object_absent_max = 50; | |
103 | ||
104 | int vm_fault_debug = 0; | |
1c79356b A |
105 | |
106 | #if !VM_FAULT_STATIC_CONFIG | |
107 | boolean_t vm_fault_dirty_handling = FALSE; | |
108 | boolean_t vm_fault_interruptible = FALSE; | |
109 | boolean_t software_reference_bits = TRUE; | |
110 | #endif | |
111 | ||
112 | #if MACH_KDB | |
113 | extern struct db_watchpoint *db_watchpoint_list; | |
114 | #endif /* MACH_KDB */ | |
115 | ||
116 | /* Forward declarations of internal routines. */ | |
117 | extern kern_return_t vm_fault_wire_fast( | |
118 | vm_map_t map, | |
119 | vm_offset_t va, | |
120 | vm_map_entry_t entry, | |
9bccf70c A |
121 | pmap_t pmap, |
122 | vm_offset_t pmap_addr); | |
1c79356b A |
123 | |
124 | extern void vm_fault_continue(void); | |
125 | ||
126 | extern void vm_fault_copy_cleanup( | |
127 | vm_page_t page, | |
128 | vm_page_t top_page); | |
129 | ||
130 | extern void vm_fault_copy_dst_cleanup( | |
131 | vm_page_t page); | |
132 | ||
133 | #if VM_FAULT_CLASSIFY | |
134 | extern void vm_fault_classify(vm_object_t object, | |
135 | vm_object_offset_t offset, | |
136 | vm_prot_t fault_type); | |
137 | ||
138 | extern void vm_fault_classify_init(void); | |
139 | #endif | |
140 | ||
141 | /* | |
142 | * Routine: vm_fault_init | |
143 | * Purpose: | |
144 | * Initialize our private data structures. | |
145 | */ | |
146 | void | |
147 | vm_fault_init(void) | |
148 | { | |
149 | } | |
150 | ||
151 | /* | |
152 | * Routine: vm_fault_cleanup | |
153 | * Purpose: | |
154 | * Clean up the result of vm_fault_page. | |
155 | * Results: | |
156 | * The paging reference for "object" is released. | |
157 | * "object" is unlocked. | |
158 | * If "top_page" is not null, "top_page" is | |
159 | * freed and the paging reference for the object | |
160 | * containing it is released. | |
161 | * | |
162 | * In/out conditions: | |
163 | * "object" must be locked. | |
164 | */ | |
165 | void | |
166 | vm_fault_cleanup( | |
167 | register vm_object_t object, | |
168 | register vm_page_t top_page) | |
169 | { | |
170 | vm_object_paging_end(object); | |
171 | vm_object_unlock(object); | |
172 | ||
173 | if (top_page != VM_PAGE_NULL) { | |
174 | object = top_page->object; | |
175 | vm_object_lock(object); | |
176 | VM_PAGE_FREE(top_page); | |
177 | vm_object_paging_end(object); | |
178 | vm_object_unlock(object); | |
179 | } | |
180 | } | |
181 | ||
182 | #if MACH_CLUSTER_STATS | |
183 | #define MAXCLUSTERPAGES 16 | |
184 | struct { | |
185 | unsigned long pages_in_cluster; | |
186 | unsigned long pages_at_higher_offsets; | |
187 | unsigned long pages_at_lower_offsets; | |
188 | } cluster_stats_in[MAXCLUSTERPAGES]; | |
189 | #define CLUSTER_STAT(clause) clause | |
190 | #define CLUSTER_STAT_HIGHER(x) \ | |
191 | ((cluster_stats_in[(x)].pages_at_higher_offsets)++) | |
192 | #define CLUSTER_STAT_LOWER(x) \ | |
193 | ((cluster_stats_in[(x)].pages_at_lower_offsets)++) | |
194 | #define CLUSTER_STAT_CLUSTER(x) \ | |
195 | ((cluster_stats_in[(x)].pages_in_cluster)++) | |
196 | #else /* MACH_CLUSTER_STATS */ | |
197 | #define CLUSTER_STAT(clause) | |
198 | #endif /* MACH_CLUSTER_STATS */ | |
199 | ||
200 | /* XXX - temporary */ | |
201 | boolean_t vm_allow_clustered_pagein = FALSE; | |
202 | int vm_pagein_cluster_used = 0; | |
203 | ||
55e303ae A |
204 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) |
205 | ||
206 | ||
207 | boolean_t vm_page_deactivate_behind = TRUE; | |
1c79356b A |
208 | /* |
209 | * Prepage default sizes given VM_BEHAVIOR_DEFAULT reference behavior | |
210 | */ | |
55e303ae A |
211 | int vm_default_ahead = 0; |
212 | int vm_default_behind = MAX_UPL_TRANSFER; | |
213 | ||
214 | /* | |
215 | * vm_page_deactivate_behind | |
216 | * | |
217 | * Determine if sequential access is in progress | |
218 | * in accordance with the behavior specified. If | |
219 | * so, compute a potential page to deactive and | |
220 | * deactivate it. | |
221 | * | |
222 | * The object must be locked. | |
223 | */ | |
224 | static | |
225 | boolean_t | |
226 | vm_fault_deactivate_behind( | |
227 | vm_object_t object, | |
228 | vm_offset_t offset, | |
229 | vm_behavior_t behavior) | |
230 | { | |
231 | vm_page_t m; | |
232 | ||
233 | #if TRACEFAULTPAGE | |
234 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */ | |
235 | #endif | |
236 | ||
237 | switch (behavior) { | |
238 | case VM_BEHAVIOR_RANDOM: | |
239 | object->sequential = PAGE_SIZE_64; | |
240 | m = VM_PAGE_NULL; | |
241 | break; | |
242 | case VM_BEHAVIOR_SEQUENTIAL: | |
243 | if (offset && | |
244 | object->last_alloc == offset - PAGE_SIZE_64) { | |
245 | object->sequential += PAGE_SIZE_64; | |
246 | m = vm_page_lookup(object, offset - PAGE_SIZE_64); | |
247 | } else { | |
248 | object->sequential = PAGE_SIZE_64; /* reset */ | |
249 | m = VM_PAGE_NULL; | |
250 | } | |
251 | break; | |
252 | case VM_BEHAVIOR_RSEQNTL: | |
253 | if (object->last_alloc && | |
254 | object->last_alloc == offset + PAGE_SIZE_64) { | |
255 | object->sequential += PAGE_SIZE_64; | |
256 | m = vm_page_lookup(object, offset + PAGE_SIZE_64); | |
257 | } else { | |
258 | object->sequential = PAGE_SIZE_64; /* reset */ | |
259 | m = VM_PAGE_NULL; | |
260 | } | |
261 | break; | |
262 | case VM_BEHAVIOR_DEFAULT: | |
263 | default: | |
264 | if (offset && | |
265 | object->last_alloc == offset - PAGE_SIZE_64) { | |
266 | vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; | |
267 | ||
268 | object->sequential += PAGE_SIZE_64; | |
269 | m = (offset >= behind && | |
270 | object->sequential >= behind) ? | |
271 | vm_page_lookup(object, offset - behind) : | |
272 | VM_PAGE_NULL; | |
273 | } else if (object->last_alloc && | |
274 | object->last_alloc == offset + PAGE_SIZE_64) { | |
275 | vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; | |
276 | ||
277 | object->sequential += PAGE_SIZE_64; | |
278 | m = (offset < -behind && | |
279 | object->sequential >= behind) ? | |
280 | vm_page_lookup(object, offset + behind) : | |
281 | VM_PAGE_NULL; | |
282 | } else { | |
283 | object->sequential = PAGE_SIZE_64; | |
284 | m = VM_PAGE_NULL; | |
285 | } | |
286 | break; | |
287 | } | |
288 | ||
289 | object->last_alloc = offset; | |
290 | ||
291 | if (m) { | |
292 | if (!m->busy) { | |
293 | vm_page_lock_queues(); | |
294 | vm_page_deactivate(m); | |
295 | vm_page_unlock_queues(); | |
296 | #if TRACEFAULTPAGE | |
297 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
298 | #endif | |
299 | } | |
300 | return TRUE; | |
301 | } | |
302 | return FALSE; | |
303 | } | |
1c79356b | 304 | |
1c79356b A |
305 | |
306 | /* | |
307 | * Routine: vm_fault_page | |
308 | * Purpose: | |
309 | * Find the resident page for the virtual memory | |
310 | * specified by the given virtual memory object | |
311 | * and offset. | |
312 | * Additional arguments: | |
313 | * The required permissions for the page is given | |
314 | * in "fault_type". Desired permissions are included | |
315 | * in "protection". The minimum and maximum valid offsets | |
316 | * within the object for the relevant map entry are | |
317 | * passed in "lo_offset" and "hi_offset" respectively and | |
318 | * the expected page reference pattern is passed in "behavior". | |
319 | * These three parameters are used to determine pagein cluster | |
320 | * limits. | |
321 | * | |
322 | * If the desired page is known to be resident (for | |
323 | * example, because it was previously wired down), asserting | |
324 | * the "unwiring" parameter will speed the search. | |
325 | * | |
326 | * If the operation can be interrupted (by thread_abort | |
327 | * or thread_terminate), then the "interruptible" | |
328 | * parameter should be asserted. | |
329 | * | |
330 | * Results: | |
331 | * The page containing the proper data is returned | |
332 | * in "result_page". | |
333 | * | |
334 | * In/out conditions: | |
335 | * The source object must be locked and referenced, | |
336 | * and must donate one paging reference. The reference | |
337 | * is not affected. The paging reference and lock are | |
338 | * consumed. | |
339 | * | |
340 | * If the call succeeds, the object in which "result_page" | |
341 | * resides is left locked and holding a paging reference. | |
342 | * If this is not the original object, a busy page in the | |
343 | * original object is returned in "top_page", to prevent other | |
344 | * callers from pursuing this same data, along with a paging | |
345 | * reference for the original object. The "top_page" should | |
346 | * be destroyed when this guarantee is no longer required. | |
347 | * The "result_page" is also left busy. It is not removed | |
348 | * from the pageout queues. | |
349 | */ | |
350 | ||
351 | vm_fault_return_t | |
352 | vm_fault_page( | |
353 | /* Arguments: */ | |
354 | vm_object_t first_object, /* Object to begin search */ | |
355 | vm_object_offset_t first_offset, /* Offset into object */ | |
356 | vm_prot_t fault_type, /* What access is requested */ | |
357 | boolean_t must_be_resident,/* Must page be resident? */ | |
358 | int interruptible, /* how may fault be interrupted? */ | |
359 | vm_object_offset_t lo_offset, /* Map entry start */ | |
360 | vm_object_offset_t hi_offset, /* Map entry end */ | |
361 | vm_behavior_t behavior, /* Page reference behavior */ | |
362 | /* Modifies in place: */ | |
363 | vm_prot_t *protection, /* Protection for mapping */ | |
364 | /* Returns: */ | |
365 | vm_page_t *result_page, /* Page found, if successful */ | |
366 | vm_page_t *top_page, /* Page in top object, if | |
367 | * not result_page. */ | |
368 | int *type_of_fault, /* if non-null, fill in with type of fault | |
369 | * COW, zero-fill, etc... returned in trace point */ | |
370 | /* More arguments: */ | |
371 | kern_return_t *error_code, /* code if page is in error */ | |
372 | boolean_t no_zero_fill, /* don't zero fill absent pages */ | |
0b4e3aa0 | 373 | boolean_t data_supply, /* treat as data_supply if |
1c79356b A |
374 | * it is a write fault and a full |
375 | * page is provided */ | |
0b4e3aa0 A |
376 | vm_map_t map, |
377 | vm_offset_t vaddr) | |
1c79356b A |
378 | { |
379 | register | |
380 | vm_page_t m; | |
381 | register | |
382 | vm_object_t object; | |
383 | register | |
384 | vm_object_offset_t offset; | |
385 | vm_page_t first_m; | |
386 | vm_object_t next_object; | |
387 | vm_object_t copy_object; | |
388 | boolean_t look_for_page; | |
389 | vm_prot_t access_required = fault_type; | |
390 | vm_prot_t wants_copy_flag; | |
391 | vm_size_t cluster_size, length; | |
392 | vm_object_offset_t cluster_offset; | |
393 | vm_object_offset_t cluster_start, cluster_end, paging_offset; | |
394 | vm_object_offset_t align_offset; | |
395 | CLUSTER_STAT(int pages_at_higher_offsets;) | |
396 | CLUSTER_STAT(int pages_at_lower_offsets;) | |
397 | kern_return_t wait_result; | |
1c79356b | 398 | boolean_t interruptible_state; |
0b4e3aa0 | 399 | boolean_t bumped_pagein = FALSE; |
1c79356b | 400 | |
1c79356b A |
401 | |
402 | #if MACH_PAGEMAP | |
403 | /* | |
404 | * MACH page map - an optional optimization where a bit map is maintained | |
405 | * by the VM subsystem for internal objects to indicate which pages of | |
406 | * the object currently reside on backing store. This existence map | |
407 | * duplicates information maintained by the vnode pager. It is | |
408 | * created at the time of the first pageout against the object, i.e. | |
409 | * at the same time pager for the object is created. The optimization | |
410 | * is designed to eliminate pager interaction overhead, if it is | |
411 | * 'known' that the page does not exist on backing store. | |
412 | * | |
413 | * LOOK_FOR() evaluates to TRUE if the page specified by object/offset is | |
414 | * either marked as paged out in the existence map for the object or no | |
415 | * existence map exists for the object. LOOK_FOR() is one of the | |
416 | * criteria in the decision to invoke the pager. It is also used as one | |
417 | * of the criteria to terminate the scan for adjacent pages in a clustered | |
418 | * pagein operation. Note that LOOK_FOR() always evaluates to TRUE for | |
419 | * permanent objects. Note also that if the pager for an internal object | |
420 | * has not been created, the pager is not invoked regardless of the value | |
421 | * of LOOK_FOR() and that clustered pagein scans are only done on an object | |
422 | * for which a pager has been created. | |
423 | * | |
424 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset | |
425 | * is marked as paged out in the existence map for the object. PAGED_OUT() | |
426 | * PAGED_OUT() is used to determine if a page has already been pushed | |
427 | * into a copy object in order to avoid a redundant page out operation. | |
428 | */ | |
429 | #define LOOK_FOR(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
430 | != VM_EXTERNAL_STATE_ABSENT) | |
431 | #define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
432 | == VM_EXTERNAL_STATE_EXISTS) | |
433 | #else /* MACH_PAGEMAP */ | |
434 | /* | |
435 | * If the MACH page map optimization is not enabled, | |
436 | * LOOK_FOR() always evaluates to TRUE. The pager will always be | |
437 | * invoked to resolve missing pages in an object, assuming the pager | |
438 | * has been created for the object. In a clustered page operation, the | |
439 | * absence of a page on backing backing store cannot be used to terminate | |
440 | * a scan for adjacent pages since that information is available only in | |
441 | * the pager. Hence pages that may not be paged out are potentially | |
442 | * included in a clustered request. The vnode pager is coded to deal | |
443 | * with any combination of absent/present pages in a clustered | |
444 | * pagein request. PAGED_OUT() always evaluates to FALSE, i.e. the pager | |
445 | * will always be invoked to push a dirty page into a copy object assuming | |
446 | * a pager has been created. If the page has already been pushed, the | |
447 | * pager will ingore the new request. | |
448 | */ | |
449 | #define LOOK_FOR(o, f) TRUE | |
450 | #define PAGED_OUT(o, f) FALSE | |
451 | #endif /* MACH_PAGEMAP */ | |
452 | ||
453 | /* | |
454 | * Recovery actions | |
455 | */ | |
456 | #define PREPARE_RELEASE_PAGE(m) \ | |
457 | MACRO_BEGIN \ | |
458 | vm_page_lock_queues(); \ | |
459 | MACRO_END | |
460 | ||
461 | #define DO_RELEASE_PAGE(m) \ | |
462 | MACRO_BEGIN \ | |
463 | PAGE_WAKEUP_DONE(m); \ | |
464 | if (!m->active && !m->inactive) \ | |
465 | vm_page_activate(m); \ | |
466 | vm_page_unlock_queues(); \ | |
467 | MACRO_END | |
468 | ||
469 | #define RELEASE_PAGE(m) \ | |
470 | MACRO_BEGIN \ | |
471 | PREPARE_RELEASE_PAGE(m); \ | |
472 | DO_RELEASE_PAGE(m); \ | |
473 | MACRO_END | |
474 | ||
475 | #if TRACEFAULTPAGE | |
476 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ | |
477 | #endif | |
478 | ||
479 | ||
480 | ||
481 | #if !VM_FAULT_STATIC_CONFIG | |
482 | if (vm_fault_dirty_handling | |
483 | #if MACH_KDB | |
484 | /* | |
485 | * If there are watchpoints set, then | |
486 | * we don't want to give away write permission | |
487 | * on a read fault. Make the task write fault, | |
488 | * so that the watchpoint code notices the access. | |
489 | */ | |
490 | || db_watchpoint_list | |
491 | #endif /* MACH_KDB */ | |
492 | ) { | |
493 | /* | |
494 | * If we aren't asking for write permission, | |
495 | * then don't give it away. We're using write | |
496 | * faults to set the dirty bit. | |
497 | */ | |
498 | if (!(fault_type & VM_PROT_WRITE)) | |
499 | *protection &= ~VM_PROT_WRITE; | |
500 | } | |
501 | ||
502 | if (!vm_fault_interruptible) | |
503 | interruptible = THREAD_UNINT; | |
504 | #else /* STATIC_CONFIG */ | |
505 | #if MACH_KDB | |
506 | /* | |
507 | * If there are watchpoints set, then | |
508 | * we don't want to give away write permission | |
509 | * on a read fault. Make the task write fault, | |
510 | * so that the watchpoint code notices the access. | |
511 | */ | |
512 | if (db_watchpoint_list) { | |
513 | /* | |
514 | * If we aren't asking for write permission, | |
515 | * then don't give it away. We're using write | |
516 | * faults to set the dirty bit. | |
517 | */ | |
518 | if (!(fault_type & VM_PROT_WRITE)) | |
519 | *protection &= ~VM_PROT_WRITE; | |
520 | } | |
521 | ||
522 | #endif /* MACH_KDB */ | |
523 | #endif /* STATIC_CONFIG */ | |
524 | ||
9bccf70c | 525 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b A |
526 | |
527 | /* | |
528 | * INVARIANTS (through entire routine): | |
529 | * | |
530 | * 1) At all times, we must either have the object | |
531 | * lock or a busy page in some object to prevent | |
532 | * some other thread from trying to bring in | |
533 | * the same page. | |
534 | * | |
535 | * Note that we cannot hold any locks during the | |
536 | * pager access or when waiting for memory, so | |
537 | * we use a busy page then. | |
538 | * | |
539 | * Note also that we aren't as concerned about more than | |
540 | * one thread attempting to memory_object_data_unlock | |
541 | * the same page at once, so we don't hold the page | |
542 | * as busy then, but do record the highest unlock | |
543 | * value so far. [Unlock requests may also be delivered | |
544 | * out of order.] | |
545 | * | |
546 | * 2) To prevent another thread from racing us down the | |
547 | * shadow chain and entering a new page in the top | |
548 | * object before we do, we must keep a busy page in | |
549 | * the top object while following the shadow chain. | |
550 | * | |
551 | * 3) We must increment paging_in_progress on any object | |
552 | * for which we have a busy page | |
553 | * | |
554 | * 4) We leave busy pages on the pageout queues. | |
555 | * If the pageout daemon comes across a busy page, | |
556 | * it will remove the page from the pageout queues. | |
557 | */ | |
558 | ||
559 | /* | |
560 | * Search for the page at object/offset. | |
561 | */ | |
562 | ||
563 | object = first_object; | |
564 | offset = first_offset; | |
565 | first_m = VM_PAGE_NULL; | |
566 | access_required = fault_type; | |
567 | ||
568 | XPR(XPR_VM_FAULT, | |
569 | "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n", | |
570 | (integer_t)object, offset, fault_type, *protection, 0); | |
571 | ||
572 | /* | |
573 | * See whether this page is resident | |
574 | */ | |
575 | ||
576 | while (TRUE) { | |
577 | #if TRACEFAULTPAGE | |
578 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
579 | #endif | |
580 | if (!object->alive) { | |
581 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 582 | thread_interrupt_level(interruptible_state); |
1c79356b A |
583 | return(VM_FAULT_MEMORY_ERROR); |
584 | } | |
585 | m = vm_page_lookup(object, offset); | |
586 | #if TRACEFAULTPAGE | |
587 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
588 | #endif | |
589 | if (m != VM_PAGE_NULL) { | |
590 | /* | |
591 | * If the page was pre-paged as part of a | |
592 | * cluster, record the fact. | |
593 | */ | |
594 | if (m->clustered) { | |
595 | vm_pagein_cluster_used++; | |
596 | m->clustered = FALSE; | |
597 | } | |
598 | ||
599 | /* | |
600 | * If the page is being brought in, | |
601 | * wait for it and then retry. | |
602 | * | |
603 | * A possible optimization: if the page | |
604 | * is known to be resident, we can ignore | |
605 | * pages that are absent (regardless of | |
606 | * whether they're busy). | |
607 | */ | |
608 | ||
609 | if (m->busy) { | |
610 | #if TRACEFAULTPAGE | |
611 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
612 | #endif | |
9bccf70c | 613 | wait_result = PAGE_SLEEP(object, m, interruptible); |
1c79356b A |
614 | XPR(XPR_VM_FAULT, |
615 | "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n", | |
616 | (integer_t)object, offset, | |
617 | (integer_t)m, 0, 0); | |
618 | counter(c_vm_fault_page_block_busy_kernel++); | |
1c79356b | 619 | |
1c79356b A |
620 | if (wait_result != THREAD_AWAKENED) { |
621 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 622 | thread_interrupt_level(interruptible_state); |
1c79356b A |
623 | if (wait_result == THREAD_RESTART) |
624 | { | |
625 | return(VM_FAULT_RETRY); | |
626 | } | |
627 | else | |
628 | { | |
629 | return(VM_FAULT_INTERRUPTED); | |
630 | } | |
631 | } | |
632 | continue; | |
633 | } | |
634 | ||
635 | /* | |
636 | * If the page is in error, give up now. | |
637 | */ | |
638 | ||
639 | if (m->error) { | |
640 | #if TRACEFAULTPAGE | |
641 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ | |
642 | #endif | |
643 | if (error_code) | |
644 | *error_code = m->page_error; | |
645 | VM_PAGE_FREE(m); | |
646 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 647 | thread_interrupt_level(interruptible_state); |
1c79356b A |
648 | return(VM_FAULT_MEMORY_ERROR); |
649 | } | |
650 | ||
651 | /* | |
652 | * If the pager wants us to restart | |
653 | * at the top of the chain, | |
654 | * typically because it has moved the | |
655 | * page to another pager, then do so. | |
656 | */ | |
657 | ||
658 | if (m->restart) { | |
659 | #if TRACEFAULTPAGE | |
660 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
661 | #endif | |
662 | VM_PAGE_FREE(m); | |
663 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 664 | thread_interrupt_level(interruptible_state); |
1c79356b A |
665 | return(VM_FAULT_RETRY); |
666 | } | |
667 | ||
668 | /* | |
669 | * If the page isn't busy, but is absent, | |
670 | * then it was deemed "unavailable". | |
671 | */ | |
672 | ||
673 | if (m->absent) { | |
674 | /* | |
675 | * Remove the non-existent page (unless it's | |
676 | * in the top object) and move on down to the | |
677 | * next object (if there is one). | |
678 | */ | |
679 | #if TRACEFAULTPAGE | |
680 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ | |
681 | #endif | |
682 | ||
683 | next_object = object->shadow; | |
684 | if (next_object == VM_OBJECT_NULL) { | |
685 | vm_page_t real_m; | |
686 | ||
687 | assert(!must_be_resident); | |
688 | ||
689 | if (object->shadow_severed) { | |
690 | vm_fault_cleanup( | |
691 | object, first_m); | |
9bccf70c | 692 | thread_interrupt_level(interruptible_state); |
1c79356b A |
693 | return VM_FAULT_MEMORY_ERROR; |
694 | } | |
695 | ||
696 | /* | |
697 | * Absent page at bottom of shadow | |
698 | * chain; zero fill the page we left | |
699 | * busy in the first object, and flush | |
700 | * the absent page. But first we | |
701 | * need to allocate a real page. | |
702 | */ | |
703 | if (VM_PAGE_THROTTLED() || | |
55e303ae A |
704 | (real_m = vm_page_grab()) |
705 | == VM_PAGE_NULL) { | |
706 | vm_fault_cleanup( | |
707 | object, first_m); | |
708 | thread_interrupt_level( | |
709 | interruptible_state); | |
710 | return( | |
711 | VM_FAULT_MEMORY_SHORTAGE); | |
712 | } | |
713 | ||
714 | /* | |
715 | * are we protecting the system from | |
716 | * backing store exhaustion. If so | |
717 | * sleep unless we are privileged. | |
718 | */ | |
719 | ||
720 | if(vm_backing_store_low) { | |
721 | if(!(current_task()->priv_flags | |
722 | & VM_BACKING_STORE_PRIV)) { | |
723 | assert_wait((event_t) | |
724 | &vm_backing_store_low, | |
725 | THREAD_UNINT); | |
726 | vm_fault_cleanup(object, | |
727 | first_m); | |
728 | thread_block((void(*)(void)) 0); | |
729 | thread_interrupt_level( | |
730 | interruptible_state); | |
731 | return(VM_FAULT_RETRY); | |
732 | } | |
1c79356b A |
733 | } |
734 | ||
55e303ae | 735 | |
1c79356b A |
736 | XPR(XPR_VM_FAULT, |
737 | "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n", | |
738 | (integer_t)object, offset, | |
739 | (integer_t)m, | |
740 | (integer_t)first_object, 0); | |
741 | if (object != first_object) { | |
742 | VM_PAGE_FREE(m); | |
743 | vm_object_paging_end(object); | |
744 | vm_object_unlock(object); | |
745 | object = first_object; | |
746 | offset = first_offset; | |
747 | m = first_m; | |
748 | first_m = VM_PAGE_NULL; | |
749 | vm_object_lock(object); | |
750 | } | |
751 | ||
752 | VM_PAGE_FREE(m); | |
753 | assert(real_m->busy); | |
754 | vm_page_insert(real_m, object, offset); | |
755 | m = real_m; | |
756 | ||
757 | /* | |
758 | * Drop the lock while zero filling | |
759 | * page. Then break because this | |
760 | * is the page we wanted. Checking | |
761 | * the page lock is a waste of time; | |
762 | * this page was either absent or | |
763 | * newly allocated -- in both cases | |
764 | * it can't be page locked by a pager. | |
765 | */ | |
0b4e3aa0 A |
766 | m->no_isync = FALSE; |
767 | ||
1c79356b A |
768 | if (!no_zero_fill) { |
769 | vm_object_unlock(object); | |
770 | vm_page_zero_fill(m); | |
1c79356b A |
771 | vm_object_lock(object); |
772 | } | |
55e303ae A |
773 | if (type_of_fault) |
774 | *type_of_fault = DBG_ZERO_FILL_FAULT; | |
775 | VM_STAT(zero_fill_count++); | |
776 | ||
777 | if (bumped_pagein == TRUE) { | |
778 | VM_STAT(pageins--); | |
779 | current_task()->pageins--; | |
780 | } | |
781 | #if 0 | |
782 | pmap_clear_modify(m->phys_page); | |
783 | #endif | |
1c79356b A |
784 | vm_page_lock_queues(); |
785 | VM_PAGE_QUEUES_REMOVE(m); | |
0b4e3aa0 | 786 | m->page_ticket = vm_page_ticket; |
9bccf70c A |
787 | if(m->object->size > 0x80000) { |
788 | m->zero_fill = TRUE; | |
789 | /* depends on the queues lock */ | |
790 | vm_zf_count += 1; | |
791 | queue_enter(&vm_page_queue_zf, | |
792 | m, vm_page_t, pageq); | |
793 | } else { | |
794 | queue_enter( | |
795 | &vm_page_queue_inactive, | |
796 | m, vm_page_t, pageq); | |
797 | } | |
0b4e3aa0 A |
798 | vm_page_ticket_roll++; |
799 | if(vm_page_ticket_roll == | |
800 | VM_PAGE_TICKETS_IN_ROLL) { | |
801 | vm_page_ticket_roll = 0; | |
802 | if(vm_page_ticket == | |
803 | VM_PAGE_TICKET_ROLL_IDS) | |
804 | vm_page_ticket= 0; | |
805 | else | |
806 | vm_page_ticket++; | |
807 | } | |
1c79356b A |
808 | m->inactive = TRUE; |
809 | vm_page_inactive_count++; | |
810 | vm_page_unlock_queues(); | |
811 | break; | |
812 | } else { | |
813 | if (must_be_resident) { | |
814 | vm_object_paging_end(object); | |
815 | } else if (object != first_object) { | |
816 | vm_object_paging_end(object); | |
817 | VM_PAGE_FREE(m); | |
818 | } else { | |
819 | first_m = m; | |
820 | m->absent = FALSE; | |
821 | m->unusual = FALSE; | |
822 | vm_object_absent_release(object); | |
823 | m->busy = TRUE; | |
824 | ||
825 | vm_page_lock_queues(); | |
826 | VM_PAGE_QUEUES_REMOVE(m); | |
827 | vm_page_unlock_queues(); | |
828 | } | |
829 | XPR(XPR_VM_FAULT, | |
830 | "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n", | |
831 | (integer_t)object, offset, | |
832 | (integer_t)next_object, | |
833 | offset+object->shadow_offset,0); | |
834 | offset += object->shadow_offset; | |
835 | hi_offset += object->shadow_offset; | |
836 | lo_offset += object->shadow_offset; | |
837 | access_required = VM_PROT_READ; | |
838 | vm_object_lock(next_object); | |
839 | vm_object_unlock(object); | |
840 | object = next_object; | |
841 | vm_object_paging_begin(object); | |
842 | continue; | |
843 | } | |
844 | } | |
845 | ||
846 | if ((m->cleaning) | |
847 | && ((object != first_object) || | |
848 | (object->copy != VM_OBJECT_NULL)) | |
849 | && (fault_type & VM_PROT_WRITE)) { | |
850 | /* | |
851 | * This is a copy-on-write fault that will | |
852 | * cause us to revoke access to this page, but | |
853 | * this page is in the process of being cleaned | |
854 | * in a clustered pageout. We must wait until | |
855 | * the cleaning operation completes before | |
856 | * revoking access to the original page, | |
857 | * otherwise we might attempt to remove a | |
858 | * wired mapping. | |
859 | */ | |
860 | #if TRACEFAULTPAGE | |
861 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ | |
862 | #endif | |
863 | XPR(XPR_VM_FAULT, | |
864 | "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n", | |
865 | (integer_t)object, offset, | |
866 | (integer_t)m, 0, 0); | |
867 | /* take an extra ref so that object won't die */ | |
868 | assert(object->ref_count > 0); | |
869 | object->ref_count++; | |
870 | vm_object_res_reference(object); | |
871 | vm_fault_cleanup(object, first_m); | |
872 | counter(c_vm_fault_page_block_backoff_kernel++); | |
873 | vm_object_lock(object); | |
874 | assert(object->ref_count > 0); | |
875 | m = vm_page_lookup(object, offset); | |
876 | if (m != VM_PAGE_NULL && m->cleaning) { | |
877 | PAGE_ASSERT_WAIT(m, interruptible); | |
878 | vm_object_unlock(object); | |
9bccf70c | 879 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
880 | vm_object_deallocate(object); |
881 | goto backoff; | |
882 | } else { | |
883 | vm_object_unlock(object); | |
884 | vm_object_deallocate(object); | |
9bccf70c | 885 | thread_interrupt_level(interruptible_state); |
1c79356b A |
886 | return VM_FAULT_RETRY; |
887 | } | |
888 | } | |
889 | ||
890 | /* | |
891 | * If the desired access to this page has | |
892 | * been locked out, request that it be unlocked. | |
893 | */ | |
894 | ||
895 | if (access_required & m->page_lock) { | |
896 | if ((access_required & m->unlock_request) != access_required) { | |
897 | vm_prot_t new_unlock_request; | |
898 | kern_return_t rc; | |
899 | ||
900 | #if TRACEFAULTPAGE | |
901 | dbgTrace(0xBEEF000A, (unsigned int) m, (unsigned int) object->pager_ready); /* (TEST/DEBUG) */ | |
902 | #endif | |
903 | if (!object->pager_ready) { | |
904 | XPR(XPR_VM_FAULT, | |
905 | "vm_f_page: ready wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n", | |
906 | access_required, | |
907 | (integer_t)object, offset, | |
908 | (integer_t)m, 0); | |
909 | /* take an extra ref */ | |
910 | assert(object->ref_count > 0); | |
911 | object->ref_count++; | |
912 | vm_object_res_reference(object); | |
913 | vm_fault_cleanup(object, | |
914 | first_m); | |
915 | counter(c_vm_fault_page_block_backoff_kernel++); | |
916 | vm_object_lock(object); | |
917 | assert(object->ref_count > 0); | |
918 | if (!object->pager_ready) { | |
9bccf70c | 919 | wait_result = vm_object_assert_wait( |
1c79356b A |
920 | object, |
921 | VM_OBJECT_EVENT_PAGER_READY, | |
922 | interruptible); | |
923 | vm_object_unlock(object); | |
9bccf70c A |
924 | if (wait_result == THREAD_WAITING) |
925 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
926 | vm_object_deallocate(object); |
927 | goto backoff; | |
928 | } else { | |
929 | vm_object_unlock(object); | |
930 | vm_object_deallocate(object); | |
9bccf70c | 931 | thread_interrupt_level(interruptible_state); |
1c79356b A |
932 | return VM_FAULT_RETRY; |
933 | } | |
934 | } | |
935 | ||
936 | new_unlock_request = m->unlock_request = | |
937 | (access_required | m->unlock_request); | |
938 | vm_object_unlock(object); | |
939 | XPR(XPR_VM_FAULT, | |
940 | "vm_f_page: unlock obj 0x%X, offset 0x%X, page 0x%X, unl_req %d\n", | |
941 | (integer_t)object, offset, | |
942 | (integer_t)m, new_unlock_request, 0); | |
943 | if ((rc = memory_object_data_unlock( | |
944 | object->pager, | |
1c79356b A |
945 | offset + object->paging_offset, |
946 | PAGE_SIZE, | |
947 | new_unlock_request)) | |
948 | != KERN_SUCCESS) { | |
949 | if (vm_fault_debug) | |
950 | printf("vm_fault: memory_object_data_unlock failed\n"); | |
951 | vm_object_lock(object); | |
952 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 953 | thread_interrupt_level(interruptible_state); |
1c79356b A |
954 | return((rc == MACH_SEND_INTERRUPTED) ? |
955 | VM_FAULT_INTERRUPTED : | |
956 | VM_FAULT_MEMORY_ERROR); | |
957 | } | |
958 | vm_object_lock(object); | |
959 | continue; | |
960 | } | |
961 | ||
962 | XPR(XPR_VM_FAULT, | |
963 | "vm_f_page: access wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n", | |
964 | access_required, (integer_t)object, | |
965 | offset, (integer_t)m, 0); | |
966 | /* take an extra ref so object won't die */ | |
967 | assert(object->ref_count > 0); | |
968 | object->ref_count++; | |
969 | vm_object_res_reference(object); | |
970 | vm_fault_cleanup(object, first_m); | |
971 | counter(c_vm_fault_page_block_backoff_kernel++); | |
972 | vm_object_lock(object); | |
973 | assert(object->ref_count > 0); | |
974 | m = vm_page_lookup(object, offset); | |
975 | if (m != VM_PAGE_NULL && | |
976 | (access_required & m->page_lock) && | |
977 | !((access_required & m->unlock_request) != access_required)) { | |
978 | PAGE_ASSERT_WAIT(m, interruptible); | |
979 | vm_object_unlock(object); | |
9bccf70c | 980 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
981 | vm_object_deallocate(object); |
982 | goto backoff; | |
983 | } else { | |
984 | vm_object_unlock(object); | |
985 | vm_object_deallocate(object); | |
9bccf70c | 986 | thread_interrupt_level(interruptible_state); |
1c79356b A |
987 | return VM_FAULT_RETRY; |
988 | } | |
989 | } | |
990 | /* | |
991 | * We mark the page busy and leave it on | |
992 | * the pageout queues. If the pageout | |
993 | * deamon comes across it, then it will | |
994 | * remove the page. | |
995 | */ | |
996 | ||
997 | #if TRACEFAULTPAGE | |
998 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
999 | #endif | |
1000 | ||
1001 | #if !VM_FAULT_STATIC_CONFIG | |
1002 | if (!software_reference_bits) { | |
1003 | vm_page_lock_queues(); | |
1004 | if (m->inactive) | |
1005 | vm_stat.reactivations++; | |
1006 | ||
1007 | VM_PAGE_QUEUES_REMOVE(m); | |
1008 | vm_page_unlock_queues(); | |
1009 | } | |
1010 | #endif | |
1011 | XPR(XPR_VM_FAULT, | |
1012 | "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n", | |
1013 | (integer_t)object, offset, (integer_t)m, 0, 0); | |
1014 | assert(!m->busy); | |
1015 | m->busy = TRUE; | |
1016 | assert(!m->absent); | |
1017 | break; | |
1018 | } | |
1019 | ||
1020 | look_for_page = | |
1021 | (object->pager_created) && | |
1022 | LOOK_FOR(object, offset) && | |
1023 | (!data_supply); | |
1024 | ||
1025 | #if TRACEFAULTPAGE | |
1026 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ | |
1027 | #endif | |
1028 | if ((look_for_page || (object == first_object)) | |
0b4e3aa0 A |
1029 | && !must_be_resident |
1030 | && !(object->phys_contiguous)) { | |
1c79356b A |
1031 | /* |
1032 | * Allocate a new page for this object/offset | |
1033 | * pair. | |
1034 | */ | |
1035 | ||
1036 | m = vm_page_grab_fictitious(); | |
1037 | #if TRACEFAULTPAGE | |
1038 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
1039 | #endif | |
1040 | if (m == VM_PAGE_NULL) { | |
1041 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1042 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1043 | return(VM_FAULT_FICTITIOUS_SHORTAGE); |
1044 | } | |
1045 | vm_page_insert(m, object, offset); | |
1046 | } | |
1047 | ||
0b4e3aa0 | 1048 | if ((look_for_page && !must_be_resident)) { |
1c79356b A |
1049 | kern_return_t rc; |
1050 | ||
1051 | /* | |
1052 | * If the memory manager is not ready, we | |
1053 | * cannot make requests. | |
1054 | */ | |
1055 | if (!object->pager_ready) { | |
1056 | #if TRACEFAULTPAGE | |
1057 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1058 | #endif | |
0b4e3aa0 A |
1059 | if(m != VM_PAGE_NULL) |
1060 | VM_PAGE_FREE(m); | |
1c79356b A |
1061 | XPR(XPR_VM_FAULT, |
1062 | "vm_f_page: ready wait obj 0x%X, offset 0x%X\n", | |
1063 | (integer_t)object, offset, 0, 0, 0); | |
1064 | /* take an extra ref so object won't die */ | |
1065 | assert(object->ref_count > 0); | |
1066 | object->ref_count++; | |
1067 | vm_object_res_reference(object); | |
1068 | vm_fault_cleanup(object, first_m); | |
1069 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1070 | vm_object_lock(object); | |
1071 | assert(object->ref_count > 0); | |
1072 | if (!object->pager_ready) { | |
9bccf70c | 1073 | wait_result = vm_object_assert_wait(object, |
1c79356b A |
1074 | VM_OBJECT_EVENT_PAGER_READY, |
1075 | interruptible); | |
1076 | vm_object_unlock(object); | |
9bccf70c A |
1077 | if (wait_result == THREAD_WAITING) |
1078 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
1079 | vm_object_deallocate(object); |
1080 | goto backoff; | |
1081 | } else { | |
1082 | vm_object_unlock(object); | |
1083 | vm_object_deallocate(object); | |
9bccf70c | 1084 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1085 | return VM_FAULT_RETRY; |
1086 | } | |
1087 | } | |
1088 | ||
0b4e3aa0 A |
1089 | if(object->phys_contiguous) { |
1090 | if(m != VM_PAGE_NULL) { | |
1091 | VM_PAGE_FREE(m); | |
1092 | m = VM_PAGE_NULL; | |
1093 | } | |
1094 | goto no_clustering; | |
1095 | } | |
1c79356b A |
1096 | if (object->internal) { |
1097 | /* | |
1098 | * Requests to the default pager | |
1099 | * must reserve a real page in advance, | |
1100 | * because the pager's data-provided | |
1101 | * won't block for pages. IMPORTANT: | |
1102 | * this acts as a throttling mechanism | |
1103 | * for data_requests to the default | |
1104 | * pager. | |
1105 | */ | |
1106 | ||
1107 | #if TRACEFAULTPAGE | |
1108 | dbgTrace(0xBEEF000F, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1109 | #endif | |
1110 | if (m->fictitious && !vm_page_convert(m)) { | |
1111 | VM_PAGE_FREE(m); | |
1112 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1113 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1114 | return(VM_FAULT_MEMORY_SHORTAGE); |
1115 | } | |
1116 | } else if (object->absent_count > | |
1117 | vm_object_absent_max) { | |
1118 | /* | |
1119 | * If there are too many outstanding page | |
1120 | * requests pending on this object, we | |
1121 | * wait for them to be resolved now. | |
1122 | */ | |
1123 | ||
1124 | #if TRACEFAULTPAGE | |
1125 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1126 | #endif | |
0b4e3aa0 A |
1127 | if(m != VM_PAGE_NULL) |
1128 | VM_PAGE_FREE(m); | |
1c79356b A |
1129 | /* take an extra ref so object won't die */ |
1130 | assert(object->ref_count > 0); | |
1131 | object->ref_count++; | |
1132 | vm_object_res_reference(object); | |
1133 | vm_fault_cleanup(object, first_m); | |
1134 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1135 | vm_object_lock(object); | |
1136 | assert(object->ref_count > 0); | |
1137 | if (object->absent_count > vm_object_absent_max) { | |
1138 | vm_object_absent_assert_wait(object, | |
1139 | interruptible); | |
1140 | vm_object_unlock(object); | |
9bccf70c | 1141 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
1142 | vm_object_deallocate(object); |
1143 | goto backoff; | |
1144 | } else { | |
1145 | vm_object_unlock(object); | |
1146 | vm_object_deallocate(object); | |
9bccf70c | 1147 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1148 | return VM_FAULT_RETRY; |
1149 | } | |
1150 | } | |
1151 | ||
1152 | /* | |
1153 | * Indicate that the page is waiting for data | |
1154 | * from the memory manager. | |
1155 | */ | |
1156 | ||
0b4e3aa0 A |
1157 | if(m != VM_PAGE_NULL) { |
1158 | ||
1159 | m->list_req_pending = TRUE; | |
1160 | m->absent = TRUE; | |
1161 | m->unusual = TRUE; | |
1162 | object->absent_count++; | |
1163 | ||
1164 | } | |
1c79356b | 1165 | |
9bccf70c | 1166 | no_clustering: |
1c79356b A |
1167 | cluster_start = offset; |
1168 | length = PAGE_SIZE; | |
1c79356b | 1169 | |
0b4e3aa0 A |
1170 | /* |
1171 | * lengthen the cluster by the pages in the working set | |
1172 | */ | |
1173 | if((map != NULL) && | |
1174 | (current_task()->dynamic_working_set != 0)) { | |
1175 | cluster_end = cluster_start + length; | |
1176 | /* tws values for start and end are just a | |
1177 | * suggestions. Therefore, as long as | |
1178 | * build_cluster does not use pointers or | |
1179 | * take action based on values that | |
1180 | * could be affected by re-entrance we | |
1181 | * do not need to take the map lock. | |
1182 | */ | |
9bccf70c | 1183 | cluster_end = offset + PAGE_SIZE_64; |
0b4e3aa0 A |
1184 | tws_build_cluster((tws_hash_t) |
1185 | current_task()->dynamic_working_set, | |
1186 | object, &cluster_start, | |
9bccf70c | 1187 | &cluster_end, 0x40000); |
0b4e3aa0 A |
1188 | length = cluster_end - cluster_start; |
1189 | } | |
1c79356b A |
1190 | #if TRACEFAULTPAGE |
1191 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1192 | #endif | |
1193 | /* | |
1194 | * We have a busy page, so we can | |
1195 | * release the object lock. | |
1196 | */ | |
1197 | vm_object_unlock(object); | |
1198 | ||
1199 | /* | |
1200 | * Call the memory manager to retrieve the data. | |
1201 | */ | |
1202 | ||
1203 | if (type_of_fault) | |
9bccf70c | 1204 | *type_of_fault = (length << 8) | DBG_PAGEIN_FAULT; |
1c79356b A |
1205 | VM_STAT(pageins++); |
1206 | current_task()->pageins++; | |
0b4e3aa0 | 1207 | bumped_pagein = TRUE; |
1c79356b A |
1208 | |
1209 | /* | |
1210 | * If this object uses a copy_call strategy, | |
1211 | * and we are interested in a copy of this object | |
1212 | * (having gotten here only by following a | |
1213 | * shadow chain), then tell the memory manager | |
1214 | * via a flag added to the desired_access | |
1215 | * parameter, so that it can detect a race | |
1216 | * between our walking down the shadow chain | |
1217 | * and its pushing pages up into a copy of | |
1218 | * the object that it manages. | |
1219 | */ | |
1220 | ||
1221 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && | |
1222 | object != first_object) { | |
1223 | wants_copy_flag = VM_PROT_WANTS_COPY; | |
1224 | } else { | |
1225 | wants_copy_flag = VM_PROT_NONE; | |
1226 | } | |
1227 | ||
1228 | XPR(XPR_VM_FAULT, | |
1229 | "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n", | |
1230 | (integer_t)object, offset, (integer_t)m, | |
1231 | access_required | wants_copy_flag, 0); | |
1232 | ||
1c79356b | 1233 | rc = memory_object_data_request(object->pager, |
1c79356b A |
1234 | cluster_start + object->paging_offset, |
1235 | length, | |
1236 | access_required | wants_copy_flag); | |
1237 | ||
1c79356b A |
1238 | |
1239 | #if TRACEFAULTPAGE | |
1240 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ | |
1241 | #endif | |
1242 | if (rc != KERN_SUCCESS) { | |
1243 | if (rc != MACH_SEND_INTERRUPTED | |
1244 | && vm_fault_debug) | |
0b4e3aa0 | 1245 | printf("%s(0x%x, 0x%x, 0x%x, 0x%x) failed, rc=%d\n", |
1c79356b A |
1246 | "memory_object_data_request", |
1247 | object->pager, | |
1c79356b | 1248 | cluster_start + object->paging_offset, |
0b4e3aa0 | 1249 | length, access_required, rc); |
1c79356b A |
1250 | /* |
1251 | * Don't want to leave a busy page around, | |
1252 | * but the data request may have blocked, | |
1253 | * so check if it's still there and busy. | |
1254 | */ | |
0b4e3aa0 A |
1255 | if(!object->phys_contiguous) { |
1256 | vm_object_lock(object); | |
1257 | for (; length; length -= PAGE_SIZE, | |
1258 | cluster_start += PAGE_SIZE_64) { | |
1259 | vm_page_t p; | |
1260 | if ((p = vm_page_lookup(object, | |
1c79356b | 1261 | cluster_start)) |
0b4e3aa0 A |
1262 | && p->absent && p->busy |
1263 | && p != first_m) { | |
1264 | VM_PAGE_FREE(p); | |
1265 | } | |
1266 | } | |
1c79356b A |
1267 | } |
1268 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1269 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1270 | return((rc == MACH_SEND_INTERRUPTED) ? |
1271 | VM_FAULT_INTERRUPTED : | |
1272 | VM_FAULT_MEMORY_ERROR); | |
0b4e3aa0 A |
1273 | } else { |
1274 | #ifdef notdefcdy | |
1275 | tws_hash_line_t line; | |
1276 | task_t task; | |
1277 | ||
1278 | task = current_task(); | |
1279 | ||
1280 | if((map != NULL) && | |
9bccf70c A |
1281 | (task->dynamic_working_set != 0)) |
1282 | && !(object->private)) { | |
1283 | vm_object_t base_object; | |
1284 | vm_object_offset_t base_offset; | |
1285 | base_object = object; | |
1286 | base_offset = offset; | |
1287 | while(base_object->shadow) { | |
1288 | base_offset += | |
1289 | base_object->shadow_offset; | |
1290 | base_object = | |
1291 | base_object->shadow; | |
1292 | } | |
0b4e3aa0 A |
1293 | if(tws_lookup |
1294 | ((tws_hash_t) | |
1295 | task->dynamic_working_set, | |
9bccf70c | 1296 | base_offset, base_object, |
0b4e3aa0 A |
1297 | &line) == KERN_SUCCESS) { |
1298 | tws_line_signal((tws_hash_t) | |
1299 | task->dynamic_working_set, | |
1300 | map, line, vaddr); | |
1301 | } | |
1302 | } | |
1303 | #endif | |
1c79356b A |
1304 | } |
1305 | ||
1306 | /* | |
1307 | * Retry with same object/offset, since new data may | |
1308 | * be in a different page (i.e., m is meaningless at | |
1309 | * this point). | |
1310 | */ | |
1311 | vm_object_lock(object); | |
1312 | if ((interruptible != THREAD_UNINT) && | |
1313 | (current_thread()->state & TH_ABORT)) { | |
1314 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1315 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1316 | return(VM_FAULT_INTERRUPTED); |
1317 | } | |
0b4e3aa0 A |
1318 | if(m == VM_PAGE_NULL) |
1319 | break; | |
1c79356b A |
1320 | continue; |
1321 | } | |
1322 | ||
1323 | /* | |
1324 | * The only case in which we get here is if | |
1325 | * object has no pager (or unwiring). If the pager doesn't | |
1326 | * have the page this is handled in the m->absent case above | |
1327 | * (and if you change things here you should look above). | |
1328 | */ | |
1329 | #if TRACEFAULTPAGE | |
1330 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1331 | #endif | |
1332 | if (object == first_object) | |
1333 | first_m = m; | |
1334 | else | |
1335 | assert(m == VM_PAGE_NULL); | |
1336 | ||
1337 | XPR(XPR_VM_FAULT, | |
1338 | "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n", | |
1339 | (integer_t)object, offset, (integer_t)m, | |
1340 | (integer_t)object->shadow, 0); | |
1341 | /* | |
1342 | * Move on to the next object. Lock the next | |
1343 | * object before unlocking the current one. | |
1344 | */ | |
1345 | next_object = object->shadow; | |
1346 | if (next_object == VM_OBJECT_NULL) { | |
1347 | assert(!must_be_resident); | |
1348 | /* | |
1349 | * If there's no object left, fill the page | |
1350 | * in the top object with zeros. But first we | |
1351 | * need to allocate a real page. | |
1352 | */ | |
1353 | ||
1354 | if (object != first_object) { | |
1355 | vm_object_paging_end(object); | |
1356 | vm_object_unlock(object); | |
1357 | ||
1358 | object = first_object; | |
1359 | offset = first_offset; | |
1360 | vm_object_lock(object); | |
1361 | } | |
1362 | ||
1363 | m = first_m; | |
1364 | assert(m->object == object); | |
1365 | first_m = VM_PAGE_NULL; | |
1366 | ||
55e303ae A |
1367 | if(m == VM_PAGE_NULL) { |
1368 | m = vm_page_grab(); | |
1369 | if (m == VM_PAGE_NULL) { | |
1370 | vm_fault_cleanup( | |
1371 | object, VM_PAGE_NULL); | |
1372 | thread_interrupt_level( | |
1373 | interruptible_state); | |
1374 | return(VM_FAULT_MEMORY_SHORTAGE); | |
1375 | } | |
1376 | vm_page_insert( | |
1377 | m, object, offset); | |
1378 | } | |
1379 | ||
1c79356b A |
1380 | if (object->shadow_severed) { |
1381 | VM_PAGE_FREE(m); | |
1382 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
9bccf70c | 1383 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1384 | return VM_FAULT_MEMORY_ERROR; |
1385 | } | |
1386 | ||
55e303ae A |
1387 | /* |
1388 | * are we protecting the system from | |
1389 | * backing store exhaustion. If so | |
1390 | * sleep unless we are privileged. | |
1391 | */ | |
1392 | ||
1393 | if(vm_backing_store_low) { | |
1394 | if(!(current_task()->priv_flags | |
1395 | & VM_BACKING_STORE_PRIV)) { | |
1396 | assert_wait((event_t) | |
1397 | &vm_backing_store_low, | |
1398 | THREAD_UNINT); | |
1399 | VM_PAGE_FREE(m); | |
1400 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
1401 | thread_block((void (*)(void)) 0); | |
1402 | thread_interrupt_level( | |
1403 | interruptible_state); | |
1404 | return(VM_FAULT_RETRY); | |
1405 | } | |
1406 | } | |
1407 | ||
1c79356b A |
1408 | if (VM_PAGE_THROTTLED() || |
1409 | (m->fictitious && !vm_page_convert(m))) { | |
1410 | VM_PAGE_FREE(m); | |
1411 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
9bccf70c | 1412 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1413 | return(VM_FAULT_MEMORY_SHORTAGE); |
1414 | } | |
0b4e3aa0 | 1415 | m->no_isync = FALSE; |
1c79356b A |
1416 | |
1417 | if (!no_zero_fill) { | |
1418 | vm_object_unlock(object); | |
1419 | vm_page_zero_fill(m); | |
1c79356b A |
1420 | vm_object_lock(object); |
1421 | } | |
55e303ae A |
1422 | if (type_of_fault) |
1423 | *type_of_fault = DBG_ZERO_FILL_FAULT; | |
1424 | VM_STAT(zero_fill_count++); | |
1425 | ||
1426 | if (bumped_pagein == TRUE) { | |
1427 | VM_STAT(pageins--); | |
1428 | current_task()->pageins--; | |
1429 | } | |
1430 | ||
1c79356b A |
1431 | vm_page_lock_queues(); |
1432 | VM_PAGE_QUEUES_REMOVE(m); | |
9bccf70c A |
1433 | if(m->object->size > 0x80000) { |
1434 | m->zero_fill = TRUE; | |
1435 | /* depends on the queues lock */ | |
1436 | vm_zf_count += 1; | |
1437 | queue_enter(&vm_page_queue_zf, | |
1438 | m, vm_page_t, pageq); | |
1439 | } else { | |
1440 | queue_enter( | |
1441 | &vm_page_queue_inactive, | |
1442 | m, vm_page_t, pageq); | |
1443 | } | |
0b4e3aa0 A |
1444 | m->page_ticket = vm_page_ticket; |
1445 | vm_page_ticket_roll++; | |
1446 | if(vm_page_ticket_roll == VM_PAGE_TICKETS_IN_ROLL) { | |
1447 | vm_page_ticket_roll = 0; | |
1448 | if(vm_page_ticket == | |
1449 | VM_PAGE_TICKET_ROLL_IDS) | |
1450 | vm_page_ticket= 0; | |
1451 | else | |
1452 | vm_page_ticket++; | |
1453 | } | |
1c79356b A |
1454 | m->inactive = TRUE; |
1455 | vm_page_inactive_count++; | |
1456 | vm_page_unlock_queues(); | |
55e303ae A |
1457 | #if 0 |
1458 | pmap_clear_modify(m->phys_page); | |
1459 | #endif | |
1c79356b A |
1460 | break; |
1461 | } | |
1462 | else { | |
1463 | if ((object != first_object) || must_be_resident) | |
1464 | vm_object_paging_end(object); | |
1465 | offset += object->shadow_offset; | |
1466 | hi_offset += object->shadow_offset; | |
1467 | lo_offset += object->shadow_offset; | |
1468 | access_required = VM_PROT_READ; | |
1469 | vm_object_lock(next_object); | |
1470 | vm_object_unlock(object); | |
1471 | object = next_object; | |
1472 | vm_object_paging_begin(object); | |
1473 | } | |
1474 | } | |
1475 | ||
1476 | /* | |
1477 | * PAGE HAS BEEN FOUND. | |
1478 | * | |
1479 | * This page (m) is: | |
1480 | * busy, so that we can play with it; | |
1481 | * not absent, so that nobody else will fill it; | |
1482 | * possibly eligible for pageout; | |
1483 | * | |
1484 | * The top-level page (first_m) is: | |
1485 | * VM_PAGE_NULL if the page was found in the | |
1486 | * top-level object; | |
1487 | * busy, not absent, and ineligible for pageout. | |
1488 | * | |
1489 | * The current object (object) is locked. A paging | |
1490 | * reference is held for the current and top-level | |
1491 | * objects. | |
1492 | */ | |
1493 | ||
1494 | #if TRACEFAULTPAGE | |
1495 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1496 | #endif | |
1497 | #if EXTRA_ASSERTIONS | |
0b4e3aa0 A |
1498 | if(m != VM_PAGE_NULL) { |
1499 | assert(m->busy && !m->absent); | |
1500 | assert((first_m == VM_PAGE_NULL) || | |
1501 | (first_m->busy && !first_m->absent && | |
1502 | !first_m->active && !first_m->inactive)); | |
1503 | } | |
1c79356b A |
1504 | #endif /* EXTRA_ASSERTIONS */ |
1505 | ||
1506 | XPR(XPR_VM_FAULT, | |
1507 | "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n", | |
1508 | (integer_t)object, offset, (integer_t)m, | |
1509 | (integer_t)first_object, (integer_t)first_m); | |
1510 | /* | |
1511 | * If the page is being written, but isn't | |
1512 | * already owned by the top-level object, | |
1513 | * we have to copy it into a new page owned | |
1514 | * by the top-level object. | |
1515 | */ | |
1516 | ||
0b4e3aa0 | 1517 | if ((object != first_object) && (m != VM_PAGE_NULL)) { |
1c79356b A |
1518 | /* |
1519 | * We only really need to copy if we | |
1520 | * want to write it. | |
1521 | */ | |
1522 | ||
1523 | #if TRACEFAULTPAGE | |
1524 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1525 | #endif | |
1526 | if (fault_type & VM_PROT_WRITE) { | |
1527 | vm_page_t copy_m; | |
1528 | ||
1529 | assert(!must_be_resident); | |
1530 | ||
55e303ae A |
1531 | /* |
1532 | * are we protecting the system from | |
1533 | * backing store exhaustion. If so | |
1534 | * sleep unless we are privileged. | |
1535 | */ | |
1536 | ||
1537 | if(vm_backing_store_low) { | |
1538 | if(!(current_task()->priv_flags | |
1539 | & VM_BACKING_STORE_PRIV)) { | |
1540 | assert_wait((event_t) | |
1541 | &vm_backing_store_low, | |
1542 | THREAD_UNINT); | |
1543 | RELEASE_PAGE(m); | |
1544 | vm_fault_cleanup(object, first_m); | |
1545 | thread_block((void (*)(void)) 0); | |
1546 | thread_interrupt_level( | |
1547 | interruptible_state); | |
1548 | return(VM_FAULT_RETRY); | |
1549 | } | |
1550 | } | |
1551 | ||
1c79356b A |
1552 | /* |
1553 | * If we try to collapse first_object at this | |
1554 | * point, we may deadlock when we try to get | |
1555 | * the lock on an intermediate object (since we | |
1556 | * have the bottom object locked). We can't | |
1557 | * unlock the bottom object, because the page | |
1558 | * we found may move (by collapse) if we do. | |
1559 | * | |
1560 | * Instead, we first copy the page. Then, when | |
1561 | * we have no more use for the bottom object, | |
1562 | * we unlock it and try to collapse. | |
1563 | * | |
1564 | * Note that we copy the page even if we didn't | |
1565 | * need to... that's the breaks. | |
1566 | */ | |
1567 | ||
1568 | /* | |
1569 | * Allocate a page for the copy | |
1570 | */ | |
1571 | copy_m = vm_page_grab(); | |
1572 | if (copy_m == VM_PAGE_NULL) { | |
1573 | RELEASE_PAGE(m); | |
1574 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1575 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1576 | return(VM_FAULT_MEMORY_SHORTAGE); |
1577 | } | |
1578 | ||
1579 | ||
1580 | XPR(XPR_VM_FAULT, | |
1581 | "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n", | |
1582 | (integer_t)object, offset, | |
1583 | (integer_t)m, (integer_t)copy_m, 0); | |
1584 | vm_page_copy(m, copy_m); | |
1585 | ||
1586 | /* | |
1587 | * If another map is truly sharing this | |
1588 | * page with us, we have to flush all | |
1589 | * uses of the original page, since we | |
1590 | * can't distinguish those which want the | |
1591 | * original from those which need the | |
1592 | * new copy. | |
1593 | * | |
1594 | * XXXO If we know that only one map has | |
1595 | * access to this page, then we could | |
1596 | * avoid the pmap_page_protect() call. | |
1597 | */ | |
1598 | ||
1599 | vm_page_lock_queues(); | |
1600 | assert(!m->cleaning); | |
55e303ae | 1601 | pmap_page_protect(m->phys_page, VM_PROT_NONE); |
1c79356b A |
1602 | vm_page_deactivate(m); |
1603 | copy_m->dirty = TRUE; | |
1604 | /* | |
1605 | * Setting reference here prevents this fault from | |
1606 | * being counted as a (per-thread) reactivate as well | |
1607 | * as a copy-on-write. | |
1608 | */ | |
1609 | first_m->reference = TRUE; | |
1610 | vm_page_unlock_queues(); | |
1611 | ||
1612 | /* | |
1613 | * We no longer need the old page or object. | |
1614 | */ | |
1615 | ||
1616 | PAGE_WAKEUP_DONE(m); | |
1617 | vm_object_paging_end(object); | |
1618 | vm_object_unlock(object); | |
1619 | ||
1620 | if (type_of_fault) | |
1621 | *type_of_fault = DBG_COW_FAULT; | |
1622 | VM_STAT(cow_faults++); | |
1623 | current_task()->cow_faults++; | |
1624 | object = first_object; | |
1625 | offset = first_offset; | |
1626 | ||
1627 | vm_object_lock(object); | |
1628 | VM_PAGE_FREE(first_m); | |
1629 | first_m = VM_PAGE_NULL; | |
1630 | assert(copy_m->busy); | |
1631 | vm_page_insert(copy_m, object, offset); | |
1632 | m = copy_m; | |
1633 | ||
1634 | /* | |
1635 | * Now that we've gotten the copy out of the | |
1636 | * way, let's try to collapse the top object. | |
1637 | * But we have to play ugly games with | |
1638 | * paging_in_progress to do that... | |
1639 | */ | |
1640 | ||
1641 | vm_object_paging_end(object); | |
55e303ae | 1642 | vm_object_collapse(object, offset); |
1c79356b A |
1643 | vm_object_paging_begin(object); |
1644 | ||
1645 | } | |
1646 | else { | |
1647 | *protection &= (~VM_PROT_WRITE); | |
1648 | } | |
1649 | } | |
1650 | ||
1651 | /* | |
1652 | * Now check whether the page needs to be pushed into the | |
1653 | * copy object. The use of asymmetric copy on write for | |
1654 | * shared temporary objects means that we may do two copies to | |
1655 | * satisfy the fault; one above to get the page from a | |
1656 | * shadowed object, and one here to push it into the copy. | |
1657 | */ | |
1658 | ||
9bccf70c | 1659 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL && |
0b4e3aa0 | 1660 | (m!= VM_PAGE_NULL)) { |
1c79356b A |
1661 | vm_object_offset_t copy_offset; |
1662 | vm_page_t copy_m; | |
1663 | ||
1664 | #if TRACEFAULTPAGE | |
1665 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1666 | #endif | |
1667 | /* | |
1668 | * If the page is being written, but hasn't been | |
1669 | * copied to the copy-object, we have to copy it there. | |
1670 | */ | |
1671 | ||
1672 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
1673 | *protection &= ~VM_PROT_WRITE; | |
1674 | break; | |
1675 | } | |
1676 | ||
1677 | /* | |
1678 | * If the page was guaranteed to be resident, | |
1679 | * we must have already performed the copy. | |
1680 | */ | |
1681 | ||
1682 | if (must_be_resident) | |
1683 | break; | |
1684 | ||
1685 | /* | |
1686 | * Try to get the lock on the copy_object. | |
1687 | */ | |
1688 | if (!vm_object_lock_try(copy_object)) { | |
1689 | vm_object_unlock(object); | |
1690 | ||
1691 | mutex_pause(); /* wait a bit */ | |
1692 | ||
1693 | vm_object_lock(object); | |
1694 | continue; | |
1695 | } | |
1696 | ||
1697 | /* | |
1698 | * Make another reference to the copy-object, | |
1699 | * to keep it from disappearing during the | |
1700 | * copy. | |
1701 | */ | |
1702 | assert(copy_object->ref_count > 0); | |
1703 | copy_object->ref_count++; | |
1704 | VM_OBJ_RES_INCR(copy_object); | |
1705 | ||
1706 | /* | |
1707 | * Does the page exist in the copy? | |
1708 | */ | |
1709 | copy_offset = first_offset - copy_object->shadow_offset; | |
1710 | if (copy_object->size <= copy_offset) | |
1711 | /* | |
1712 | * Copy object doesn't cover this page -- do nothing. | |
1713 | */ | |
1714 | ; | |
1715 | else if ((copy_m = | |
1716 | vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { | |
1717 | /* Page currently exists in the copy object */ | |
1718 | if (copy_m->busy) { | |
1719 | /* | |
1720 | * If the page is being brought | |
1721 | * in, wait for it and then retry. | |
1722 | */ | |
1723 | RELEASE_PAGE(m); | |
1724 | /* take an extra ref so object won't die */ | |
1725 | assert(copy_object->ref_count > 0); | |
1726 | copy_object->ref_count++; | |
1727 | vm_object_res_reference(copy_object); | |
1728 | vm_object_unlock(copy_object); | |
1729 | vm_fault_cleanup(object, first_m); | |
1730 | counter(c_vm_fault_page_block_backoff_kernel++); | |
1731 | vm_object_lock(copy_object); | |
1732 | assert(copy_object->ref_count > 0); | |
1733 | VM_OBJ_RES_DECR(copy_object); | |
1734 | copy_object->ref_count--; | |
1735 | assert(copy_object->ref_count > 0); | |
1736 | copy_m = vm_page_lookup(copy_object, copy_offset); | |
1737 | if (copy_m != VM_PAGE_NULL && copy_m->busy) { | |
1738 | PAGE_ASSERT_WAIT(copy_m, interruptible); | |
1739 | vm_object_unlock(copy_object); | |
9bccf70c | 1740 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
1741 | vm_object_deallocate(copy_object); |
1742 | goto backoff; | |
1743 | } else { | |
1744 | vm_object_unlock(copy_object); | |
1745 | vm_object_deallocate(copy_object); | |
9bccf70c | 1746 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1747 | return VM_FAULT_RETRY; |
1748 | } | |
1749 | } | |
1750 | } | |
1751 | else if (!PAGED_OUT(copy_object, copy_offset)) { | |
1752 | /* | |
1753 | * If PAGED_OUT is TRUE, then the page used to exist | |
1754 | * in the copy-object, and has already been paged out. | |
1755 | * We don't need to repeat this. If PAGED_OUT is | |
1756 | * FALSE, then either we don't know (!pager_created, | |
1757 | * for example) or it hasn't been paged out. | |
1758 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) | |
1759 | * We must copy the page to the copy object. | |
1760 | */ | |
1761 | ||
55e303ae A |
1762 | /* |
1763 | * are we protecting the system from | |
1764 | * backing store exhaustion. If so | |
1765 | * sleep unless we are privileged. | |
1766 | */ | |
1767 | ||
1768 | if(vm_backing_store_low) { | |
1769 | if(!(current_task()->priv_flags | |
1770 | & VM_BACKING_STORE_PRIV)) { | |
1771 | assert_wait((event_t) | |
1772 | &vm_backing_store_low, | |
1773 | THREAD_UNINT); | |
1774 | RELEASE_PAGE(m); | |
1775 | VM_OBJ_RES_DECR(copy_object); | |
1776 | copy_object->ref_count--; | |
1777 | assert(copy_object->ref_count > 0); | |
1778 | vm_object_unlock(copy_object); | |
1779 | vm_fault_cleanup(object, first_m); | |
1780 | thread_block((void (*)(void)) 0); | |
1781 | thread_interrupt_level( | |
1782 | interruptible_state); | |
1783 | return(VM_FAULT_RETRY); | |
1784 | } | |
1785 | } | |
1786 | ||
1c79356b A |
1787 | /* |
1788 | * Allocate a page for the copy | |
1789 | */ | |
1790 | copy_m = vm_page_alloc(copy_object, copy_offset); | |
1791 | if (copy_m == VM_PAGE_NULL) { | |
1792 | RELEASE_PAGE(m); | |
1793 | VM_OBJ_RES_DECR(copy_object); | |
1794 | copy_object->ref_count--; | |
1795 | assert(copy_object->ref_count > 0); | |
1796 | vm_object_unlock(copy_object); | |
1797 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1798 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1799 | return(VM_FAULT_MEMORY_SHORTAGE); |
1800 | } | |
1801 | ||
1802 | /* | |
1803 | * Must copy page into copy-object. | |
1804 | */ | |
1805 | ||
1806 | vm_page_copy(m, copy_m); | |
1807 | ||
1808 | /* | |
1809 | * If the old page was in use by any users | |
1810 | * of the copy-object, it must be removed | |
1811 | * from all pmaps. (We can't know which | |
1812 | * pmaps use it.) | |
1813 | */ | |
1814 | ||
1815 | vm_page_lock_queues(); | |
1816 | assert(!m->cleaning); | |
55e303ae | 1817 | pmap_page_protect(m->phys_page, VM_PROT_NONE); |
1c79356b A |
1818 | copy_m->dirty = TRUE; |
1819 | vm_page_unlock_queues(); | |
1820 | ||
1821 | /* | |
1822 | * If there's a pager, then immediately | |
1823 | * page out this page, using the "initialize" | |
1824 | * option. Else, we use the copy. | |
1825 | */ | |
1826 | ||
1827 | if | |
1828 | #if MACH_PAGEMAP | |
1829 | ((!copy_object->pager_created) || | |
1830 | vm_external_state_get( | |
1831 | copy_object->existence_map, copy_offset) | |
1832 | == VM_EXTERNAL_STATE_ABSENT) | |
1833 | #else | |
1834 | (!copy_object->pager_created) | |
1835 | #endif | |
1836 | { | |
1837 | vm_page_lock_queues(); | |
1838 | vm_page_activate(copy_m); | |
1839 | vm_page_unlock_queues(); | |
1840 | PAGE_WAKEUP_DONE(copy_m); | |
1841 | } | |
1842 | else { | |
1843 | assert(copy_m->busy == TRUE); | |
1844 | ||
1845 | /* | |
1846 | * The page is already ready for pageout: | |
1847 | * not on pageout queues and busy. | |
1848 | * Unlock everything except the | |
1849 | * copy_object itself. | |
1850 | */ | |
1851 | ||
1852 | vm_object_unlock(object); | |
1853 | ||
1854 | /* | |
1855 | * Write the page to the copy-object, | |
1856 | * flushing it from the kernel. | |
1857 | */ | |
1858 | ||
1859 | vm_pageout_initialize_page(copy_m); | |
1860 | ||
1861 | /* | |
1862 | * Since the pageout may have | |
1863 | * temporarily dropped the | |
1864 | * copy_object's lock, we | |
1865 | * check whether we'll have | |
1866 | * to deallocate the hard way. | |
1867 | */ | |
1868 | ||
1869 | if ((copy_object->shadow != object) || | |
1870 | (copy_object->ref_count == 1)) { | |
1871 | vm_object_unlock(copy_object); | |
1872 | vm_object_deallocate(copy_object); | |
1873 | vm_object_lock(object); | |
1874 | continue; | |
1875 | } | |
1876 | ||
1877 | /* | |
1878 | * Pick back up the old object's | |
1879 | * lock. [It is safe to do so, | |
1880 | * since it must be deeper in the | |
1881 | * object tree.] | |
1882 | */ | |
1883 | ||
1884 | vm_object_lock(object); | |
1885 | } | |
1886 | ||
1887 | /* | |
1888 | * Because we're pushing a page upward | |
1889 | * in the object tree, we must restart | |
1890 | * any faults that are waiting here. | |
1891 | * [Note that this is an expansion of | |
1892 | * PAGE_WAKEUP that uses the THREAD_RESTART | |
1893 | * wait result]. Can't turn off the page's | |
1894 | * busy bit because we're not done with it. | |
1895 | */ | |
1896 | ||
1897 | if (m->wanted) { | |
1898 | m->wanted = FALSE; | |
1899 | thread_wakeup_with_result((event_t) m, | |
1900 | THREAD_RESTART); | |
1901 | } | |
1902 | } | |
1903 | ||
1904 | /* | |
1905 | * The reference count on copy_object must be | |
1906 | * at least 2: one for our extra reference, | |
1907 | * and at least one from the outside world | |
1908 | * (we checked that when we last locked | |
1909 | * copy_object). | |
1910 | */ | |
1911 | copy_object->ref_count--; | |
1912 | assert(copy_object->ref_count > 0); | |
1913 | VM_OBJ_RES_DECR(copy_object); | |
1914 | vm_object_unlock(copy_object); | |
1915 | ||
1916 | break; | |
1917 | } | |
1918 | ||
1919 | *result_page = m; | |
1920 | *top_page = first_m; | |
1921 | ||
1922 | XPR(XPR_VM_FAULT, | |
1923 | "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n", | |
1924 | (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0); | |
1925 | /* | |
1926 | * If the page can be written, assume that it will be. | |
1927 | * [Earlier, we restrict the permission to allow write | |
1928 | * access only if the fault so required, so we don't | |
1929 | * mark read-only data as dirty.] | |
1930 | */ | |
1931 | ||
55e303ae A |
1932 | |
1933 | if(m != VM_PAGE_NULL) { | |
1c79356b | 1934 | #if !VM_FAULT_STATIC_CONFIG |
55e303ae A |
1935 | if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE)) |
1936 | m->dirty = TRUE; | |
1c79356b | 1937 | #endif |
55e303ae A |
1938 | if (vm_page_deactivate_behind) |
1939 | vm_fault_deactivate_behind(object, offset, behavior); | |
1940 | } else { | |
1941 | vm_object_unlock(object); | |
1c79356b | 1942 | } |
55e303ae A |
1943 | thread_interrupt_level(interruptible_state); |
1944 | ||
1c79356b A |
1945 | #if TRACEFAULTPAGE |
1946 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ | |
1947 | #endif | |
1c79356b A |
1948 | return(VM_FAULT_SUCCESS); |
1949 | ||
1950 | #if 0 | |
1951 | block_and_backoff: | |
1952 | vm_fault_cleanup(object, first_m); | |
1953 | ||
1954 | counter(c_vm_fault_page_block_backoff_kernel++); | |
9bccf70c | 1955 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
1956 | #endif |
1957 | ||
1958 | backoff: | |
9bccf70c | 1959 | thread_interrupt_level(interruptible_state); |
1c79356b A |
1960 | if (wait_result == THREAD_INTERRUPTED) |
1961 | return VM_FAULT_INTERRUPTED; | |
1962 | return VM_FAULT_RETRY; | |
1963 | ||
1964 | #undef RELEASE_PAGE | |
1965 | } | |
1966 | ||
55e303ae A |
1967 | /* |
1968 | * Routine: vm_fault_tws_insert | |
1969 | * Purpose: | |
1970 | * Add fault information to the task working set. | |
1971 | * Implementation: | |
1972 | * We always insert the base object/offset pair | |
1973 | * rather the actual object/offset. | |
1974 | * Assumptions: | |
1975 | * Map and pmap_map locked. | |
1976 | * Object locked and referenced. | |
1977 | * Returns: | |
1978 | * TRUE if startup file should be written. | |
1979 | * With object locked and still referenced. | |
1980 | * But we may drop the object lock temporarily. | |
1981 | */ | |
1982 | static boolean_t | |
1983 | vm_fault_tws_insert( | |
1984 | vm_map_t map, | |
1985 | vm_map_t pmap_map, | |
1986 | vm_offset_t vaddr, | |
1987 | vm_object_t object, | |
1988 | vm_object_offset_t offset) | |
1989 | { | |
1990 | tws_hash_line_t line; | |
1991 | task_t task; | |
1992 | kern_return_t kr; | |
1993 | boolean_t result = FALSE; | |
1994 | extern vm_map_t kalloc_map; | |
1995 | ||
1996 | /* Avoid possible map lock deadlock issues */ | |
1997 | if (map == kernel_map || map == kalloc_map || | |
1998 | pmap_map == kernel_map || pmap_map == kalloc_map) | |
1999 | return result; | |
2000 | ||
2001 | task = current_task(); | |
2002 | if (task->dynamic_working_set != 0) { | |
2003 | vm_object_t base_object; | |
2004 | vm_object_t base_shadow; | |
2005 | vm_object_offset_t base_offset; | |
2006 | base_object = object; | |
2007 | base_offset = offset; | |
2008 | while(base_shadow = base_object->shadow) { | |
2009 | vm_object_lock(base_shadow); | |
2010 | vm_object_unlock(base_object); | |
2011 | base_offset += | |
2012 | base_object->shadow_offset; | |
2013 | base_object = base_shadow; | |
2014 | } | |
2015 | kr = tws_lookup((tws_hash_t) | |
2016 | task->dynamic_working_set, | |
2017 | base_offset, base_object, | |
2018 | &line); | |
2019 | if (kr == KERN_OPERATION_TIMED_OUT){ | |
2020 | result = TRUE; | |
2021 | if (base_object != object) { | |
2022 | vm_object_unlock(base_object); | |
2023 | vm_object_lock(object); | |
2024 | } | |
2025 | } else if (kr != KERN_SUCCESS) { | |
2026 | if(base_object != object) | |
2027 | vm_object_reference_locked(base_object); | |
2028 | kr = tws_insert((tws_hash_t) | |
2029 | task->dynamic_working_set, | |
2030 | base_offset, base_object, | |
2031 | vaddr, pmap_map); | |
2032 | if(base_object != object) { | |
2033 | vm_object_unlock(base_object); | |
2034 | vm_object_deallocate(base_object); | |
2035 | } | |
2036 | if(kr == KERN_NO_SPACE) { | |
2037 | if (base_object == object) | |
2038 | vm_object_unlock(object); | |
2039 | tws_expand_working_set( | |
2040 | task->dynamic_working_set, | |
2041 | TWS_HASH_LINE_COUNT, | |
2042 | FALSE); | |
2043 | if (base_object == object) | |
2044 | vm_object_lock(object); | |
2045 | } else if(kr == KERN_OPERATION_TIMED_OUT) { | |
2046 | result = TRUE; | |
2047 | } | |
2048 | if(base_object != object) | |
2049 | vm_object_lock(object); | |
2050 | } else if (base_object != object) { | |
2051 | vm_object_unlock(base_object); | |
2052 | vm_object_lock(object); | |
2053 | } | |
2054 | } | |
2055 | return result; | |
2056 | } | |
2057 | ||
1c79356b A |
2058 | /* |
2059 | * Routine: vm_fault | |
2060 | * Purpose: | |
2061 | * Handle page faults, including pseudo-faults | |
2062 | * used to change the wiring status of pages. | |
2063 | * Returns: | |
2064 | * Explicit continuations have been removed. | |
2065 | * Implementation: | |
2066 | * vm_fault and vm_fault_page save mucho state | |
2067 | * in the moral equivalent of a closure. The state | |
2068 | * structure is allocated when first entering vm_fault | |
2069 | * and deallocated when leaving vm_fault. | |
2070 | */ | |
2071 | ||
2072 | kern_return_t | |
2073 | vm_fault( | |
2074 | vm_map_t map, | |
2075 | vm_offset_t vaddr, | |
2076 | vm_prot_t fault_type, | |
2077 | boolean_t change_wiring, | |
9bccf70c A |
2078 | int interruptible, |
2079 | pmap_t caller_pmap, | |
2080 | vm_offset_t caller_pmap_addr) | |
1c79356b A |
2081 | { |
2082 | vm_map_version_t version; /* Map version for verificiation */ | |
2083 | boolean_t wired; /* Should mapping be wired down? */ | |
2084 | vm_object_t object; /* Top-level object */ | |
2085 | vm_object_offset_t offset; /* Top-level offset */ | |
2086 | vm_prot_t prot; /* Protection for mapping */ | |
2087 | vm_behavior_t behavior; /* Expected paging behavior */ | |
2088 | vm_object_offset_t lo_offset, hi_offset; | |
2089 | vm_object_t old_copy_object; /* Saved copy object */ | |
2090 | vm_page_t result_page; /* Result of vm_fault_page */ | |
2091 | vm_page_t top_page; /* Placeholder page */ | |
2092 | kern_return_t kr; | |
2093 | ||
2094 | register | |
2095 | vm_page_t m; /* Fast access to result_page */ | |
2096 | kern_return_t error_code; /* page error reasons */ | |
2097 | register | |
2098 | vm_object_t cur_object; | |
2099 | register | |
2100 | vm_object_offset_t cur_offset; | |
2101 | vm_page_t cur_m; | |
2102 | vm_object_t new_object; | |
2103 | int type_of_fault; | |
2104 | vm_map_t pmap_map = map; | |
2105 | vm_map_t original_map = map; | |
2106 | pmap_t pmap = NULL; | |
2107 | boolean_t funnel_set = FALSE; | |
2108 | funnel_t *curflock; | |
2109 | thread_t cur_thread; | |
2110 | boolean_t interruptible_state; | |
9bccf70c A |
2111 | unsigned int cache_attr; |
2112 | int write_startup_file = 0; | |
2113 | vm_prot_t full_fault_type; | |
1c79356b | 2114 | |
55e303ae A |
2115 | if (get_preemption_level() != 0) |
2116 | return (KERN_FAILURE); | |
de355530 | 2117 | |
1c79356b A |
2118 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_START, |
2119 | vaddr, | |
2120 | 0, | |
2121 | 0, | |
2122 | 0, | |
2123 | 0); | |
2124 | ||
9bccf70c A |
2125 | /* at present we do not fully check for execute permission */ |
2126 | /* we generally treat it is read except in certain device */ | |
2127 | /* memory settings */ | |
2128 | full_fault_type = fault_type; | |
2129 | if(fault_type & VM_PROT_EXECUTE) { | |
2130 | fault_type &= ~VM_PROT_EXECUTE; | |
2131 | fault_type |= VM_PROT_READ; | |
2132 | } | |
1c79356b | 2133 | |
9bccf70c | 2134 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b A |
2135 | |
2136 | /* | |
2137 | * assume we will hit a page in the cache | |
2138 | * otherwise, explicitly override with | |
2139 | * the real fault type once we determine it | |
2140 | */ | |
2141 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
2142 | ||
2143 | VM_STAT(faults++); | |
2144 | current_task()->faults++; | |
2145 | ||
2146 | /* | |
2147 | * drop funnel if it is already held. Then restore while returning | |
2148 | */ | |
55e303ae A |
2149 | cur_thread = current_thread(); |
2150 | ||
1c79356b A |
2151 | if ((cur_thread->funnel_state & TH_FN_OWNED) == TH_FN_OWNED) { |
2152 | funnel_set = TRUE; | |
2153 | curflock = cur_thread->funnel_lock; | |
2154 | thread_funnel_set( curflock , FALSE); | |
2155 | } | |
2156 | ||
2157 | RetryFault: ; | |
2158 | ||
2159 | /* | |
2160 | * Find the backing store object and offset into | |
2161 | * it to begin the search. | |
2162 | */ | |
2163 | map = original_map; | |
2164 | vm_map_lock_read(map); | |
2165 | kr = vm_map_lookup_locked(&map, vaddr, fault_type, &version, | |
2166 | &object, &offset, | |
2167 | &prot, &wired, | |
2168 | &behavior, &lo_offset, &hi_offset, &pmap_map); | |
2169 | ||
2170 | pmap = pmap_map->pmap; | |
2171 | ||
2172 | if (kr != KERN_SUCCESS) { | |
2173 | vm_map_unlock_read(map); | |
2174 | goto done; | |
2175 | } | |
2176 | ||
2177 | /* | |
2178 | * If the page is wired, we must fault for the current protection | |
2179 | * value, to avoid further faults. | |
2180 | */ | |
2181 | ||
2182 | if (wired) | |
2183 | fault_type = prot | VM_PROT_WRITE; | |
2184 | ||
2185 | #if VM_FAULT_CLASSIFY | |
2186 | /* | |
2187 | * Temporary data gathering code | |
2188 | */ | |
2189 | vm_fault_classify(object, offset, fault_type); | |
2190 | #endif | |
2191 | /* | |
2192 | * Fast fault code. The basic idea is to do as much as | |
2193 | * possible while holding the map lock and object locks. | |
2194 | * Busy pages are not used until the object lock has to | |
2195 | * be dropped to do something (copy, zero fill, pmap enter). | |
2196 | * Similarly, paging references aren't acquired until that | |
2197 | * point, and object references aren't used. | |
2198 | * | |
2199 | * If we can figure out what to do | |
2200 | * (zero fill, copy on write, pmap enter) while holding | |
2201 | * the locks, then it gets done. Otherwise, we give up, | |
2202 | * and use the original fault path (which doesn't hold | |
2203 | * the map lock, and relies on busy pages). | |
2204 | * The give up cases include: | |
2205 | * - Have to talk to pager. | |
2206 | * - Page is busy, absent or in error. | |
2207 | * - Pager has locked out desired access. | |
2208 | * - Fault needs to be restarted. | |
2209 | * - Have to push page into copy object. | |
2210 | * | |
2211 | * The code is an infinite loop that moves one level down | |
2212 | * the shadow chain each time. cur_object and cur_offset | |
2213 | * refer to the current object being examined. object and offset | |
2214 | * are the original object from the map. The loop is at the | |
2215 | * top level if and only if object and cur_object are the same. | |
2216 | * | |
2217 | * Invariants: Map lock is held throughout. Lock is held on | |
2218 | * original object and cur_object (if different) when | |
2219 | * continuing or exiting loop. | |
2220 | * | |
2221 | */ | |
2222 | ||
2223 | ||
2224 | /* | |
2225 | * If this page is to be inserted in a copy delay object | |
2226 | * for writing, and if the object has a copy, then the | |
2227 | * copy delay strategy is implemented in the slow fault page. | |
2228 | */ | |
2229 | if (object->copy_strategy != MEMORY_OBJECT_COPY_DELAY || | |
2230 | object->copy == VM_OBJECT_NULL || | |
2231 | (fault_type & VM_PROT_WRITE) == 0) { | |
2232 | cur_object = object; | |
2233 | cur_offset = offset; | |
2234 | ||
2235 | while (TRUE) { | |
2236 | m = vm_page_lookup(cur_object, cur_offset); | |
2237 | if (m != VM_PAGE_NULL) { | |
55e303ae | 2238 | if (m->busy) { |
143cc14e A |
2239 | wait_result_t result; |
2240 | ||
2241 | if (object != cur_object) | |
2242 | vm_object_unlock(object); | |
2243 | ||
2244 | vm_map_unlock_read(map); | |
2245 | if (pmap_map != map) | |
2246 | vm_map_unlock(pmap_map); | |
2247 | ||
2248 | #if !VM_FAULT_STATIC_CONFIG | |
2249 | if (!vm_fault_interruptible) | |
2250 | interruptible = THREAD_UNINT; | |
2251 | #endif | |
2252 | result = PAGE_ASSERT_WAIT(m, interruptible); | |
1c79356b | 2253 | |
143cc14e A |
2254 | vm_object_unlock(cur_object); |
2255 | ||
2256 | if (result == THREAD_WAITING) { | |
2257 | result = thread_block(THREAD_CONTINUE_NULL); | |
2258 | ||
2259 | counter(c_vm_fault_page_block_busy_kernel++); | |
2260 | } | |
2261 | if (result == THREAD_AWAKENED || result == THREAD_RESTART) | |
2262 | goto RetryFault; | |
2263 | ||
2264 | kr = KERN_ABORTED; | |
2265 | goto done; | |
2266 | } | |
0b4e3aa0 A |
2267 | if (m->unusual && (m->error || m->restart || m->private |
2268 | || m->absent || (fault_type & m->page_lock))) { | |
1c79356b | 2269 | |
143cc14e | 2270 | /* |
1c79356b A |
2271 | * Unusual case. Give up. |
2272 | */ | |
2273 | break; | |
2274 | } | |
2275 | ||
2276 | /* | |
2277 | * Two cases of map in faults: | |
2278 | * - At top level w/o copy object. | |
2279 | * - Read fault anywhere. | |
2280 | * --> must disallow write. | |
2281 | */ | |
2282 | ||
2283 | if (object == cur_object && | |
2284 | object->copy == VM_OBJECT_NULL) | |
2285 | goto FastMapInFault; | |
2286 | ||
2287 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
55e303ae | 2288 | boolean_t sequential; |
1c79356b A |
2289 | |
2290 | prot &= ~VM_PROT_WRITE; | |
2291 | ||
2292 | /* | |
2293 | * Set up to map the page ... | |
2294 | * mark the page busy, drop | |
2295 | * locks and take a paging reference | |
2296 | * on the object with the page. | |
2297 | */ | |
2298 | ||
2299 | if (object != cur_object) { | |
2300 | vm_object_unlock(object); | |
2301 | object = cur_object; | |
2302 | } | |
2303 | FastMapInFault: | |
2304 | m->busy = TRUE; | |
2305 | ||
2306 | vm_object_paging_begin(object); | |
1c79356b A |
2307 | |
2308 | FastPmapEnter: | |
2309 | /* | |
2310 | * Check a couple of global reasons to | |
2311 | * be conservative about write access. | |
2312 | * Then do the pmap_enter. | |
2313 | */ | |
2314 | #if !VM_FAULT_STATIC_CONFIG | |
2315 | if (vm_fault_dirty_handling | |
2316 | #if MACH_KDB | |
2317 | || db_watchpoint_list | |
2318 | #endif | |
2319 | && (fault_type & VM_PROT_WRITE) == 0) | |
2320 | prot &= ~VM_PROT_WRITE; | |
2321 | #else /* STATIC_CONFIG */ | |
2322 | #if MACH_KDB | |
2323 | if (db_watchpoint_list | |
2324 | && (fault_type & VM_PROT_WRITE) == 0) | |
2325 | prot &= ~VM_PROT_WRITE; | |
2326 | #endif /* MACH_KDB */ | |
2327 | #endif /* STATIC_CONFIG */ | |
55e303ae A |
2328 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; |
2329 | ||
2330 | sequential = FALSE; | |
de355530 | 2331 | if (m->no_isync == TRUE) { |
143cc14e | 2332 | m->no_isync = FALSE; |
55e303ae A |
2333 | pmap_sync_caches_phys(m->phys_page); |
2334 | if (type_of_fault == DBG_CACHE_HIT_FAULT) { | |
2335 | /* | |
2336 | * found it in the cache, but this | |
2337 | * is the first fault-in of the page (no_isync == TRUE) | |
2338 | * so it must have come in as part of | |
2339 | * a cluster... account 1 pagein against it | |
2340 | */ | |
2341 | VM_STAT(pageins++); | |
2342 | current_task()->pageins++; | |
2343 | type_of_fault = DBG_PAGEIN_FAULT; | |
2344 | sequential = TRUE; | |
2345 | } | |
2346 | } else if (cache_attr != VM_WIMG_DEFAULT) { | |
2347 | pmap_sync_caches_phys(m->phys_page); | |
143cc14e | 2348 | } |
0b4e3aa0 | 2349 | |
9bccf70c A |
2350 | if(caller_pmap) { |
2351 | PMAP_ENTER(caller_pmap, | |
2352 | caller_pmap_addr, m, | |
2353 | prot, cache_attr, wired); | |
2354 | } else { | |
2355 | PMAP_ENTER(pmap, vaddr, m, | |
2356 | prot, cache_attr, wired); | |
2357 | } | |
0b4e3aa0 | 2358 | |
1c79356b | 2359 | /* |
55e303ae | 2360 | * Hold queues lock to manipulate |
1c79356b A |
2361 | * the page queues. Change wiring |
2362 | * case is obvious. In soft ref bits | |
2363 | * case activate page only if it fell | |
2364 | * off paging queues, otherwise just | |
2365 | * activate it if it's inactive. | |
2366 | * | |
2367 | * NOTE: original vm_fault code will | |
2368 | * move active page to back of active | |
2369 | * queue. This code doesn't. | |
2370 | */ | |
1c79356b | 2371 | vm_page_lock_queues(); |
765c9de3 A |
2372 | if (m->clustered) { |
2373 | vm_pagein_cluster_used++; | |
2374 | m->clustered = FALSE; | |
2375 | } | |
1c79356b A |
2376 | m->reference = TRUE; |
2377 | ||
2378 | if (change_wiring) { | |
2379 | if (wired) | |
2380 | vm_page_wire(m); | |
2381 | else | |
2382 | vm_page_unwire(m); | |
2383 | } | |
2384 | #if VM_FAULT_STATIC_CONFIG | |
2385 | else { | |
2386 | if (!m->active && !m->inactive) | |
2387 | vm_page_activate(m); | |
2388 | } | |
2389 | #else | |
2390 | else if (software_reference_bits) { | |
2391 | if (!m->active && !m->inactive) | |
2392 | vm_page_activate(m); | |
2393 | } | |
2394 | else if (!m->active) { | |
2395 | vm_page_activate(m); | |
2396 | } | |
2397 | #endif | |
2398 | vm_page_unlock_queues(); | |
2399 | ||
2400 | /* | |
2401 | * That's it, clean up and return. | |
2402 | */ | |
2403 | PAGE_WAKEUP_DONE(m); | |
143cc14e | 2404 | |
55e303ae A |
2405 | sequential = (sequential && vm_page_deactivate_behind) ? |
2406 | vm_fault_deactivate_behind(object, cur_offset, behavior) : | |
2407 | FALSE; | |
2408 | ||
2409 | /* | |
2410 | * Add non-sequential pages to the working set. | |
2411 | * The sequential pages will be brought in through | |
2412 | * normal clustering behavior. | |
2413 | */ | |
2414 | if (!sequential && !object->private) { | |
2415 | write_startup_file = | |
2416 | vm_fault_tws_insert(map, pmap_map, vaddr, | |
2417 | object, cur_offset); | |
143cc14e | 2418 | } |
55e303ae A |
2419 | |
2420 | vm_object_paging_end(object); | |
1c79356b | 2421 | vm_object_unlock(object); |
143cc14e | 2422 | |
1c79356b A |
2423 | vm_map_unlock_read(map); |
2424 | if(pmap_map != map) | |
2425 | vm_map_unlock(pmap_map); | |
2426 | ||
9bccf70c A |
2427 | if(write_startup_file) |
2428 | tws_send_startup_info(current_task()); | |
2429 | ||
143cc14e | 2430 | if (funnel_set) |
1c79356b | 2431 | thread_funnel_set( curflock, TRUE); |
143cc14e | 2432 | |
9bccf70c | 2433 | thread_interrupt_level(interruptible_state); |
1c79356b | 2434 | |
143cc14e | 2435 | |
1c79356b A |
2436 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END, |
2437 | vaddr, | |
9bccf70c | 2438 | type_of_fault & 0xff, |
1c79356b | 2439 | KERN_SUCCESS, |
9bccf70c | 2440 | type_of_fault >> 8, |
1c79356b | 2441 | 0); |
143cc14e | 2442 | |
1c79356b A |
2443 | return KERN_SUCCESS; |
2444 | } | |
2445 | ||
2446 | /* | |
2447 | * Copy on write fault. If objects match, then | |
2448 | * object->copy must not be NULL (else control | |
2449 | * would be in previous code block), and we | |
2450 | * have a potential push into the copy object | |
2451 | * with which we won't cope here. | |
2452 | */ | |
2453 | ||
2454 | if (cur_object == object) | |
2455 | break; | |
1c79356b A |
2456 | /* |
2457 | * This is now a shadow based copy on write | |
2458 | * fault -- it requires a copy up the shadow | |
2459 | * chain. | |
2460 | * | |
2461 | * Allocate a page in the original top level | |
2462 | * object. Give up if allocate fails. Also | |
2463 | * need to remember current page, as it's the | |
2464 | * source of the copy. | |
2465 | */ | |
2466 | cur_m = m; | |
2467 | m = vm_page_grab(); | |
2468 | if (m == VM_PAGE_NULL) { | |
2469 | break; | |
2470 | } | |
1c79356b A |
2471 | /* |
2472 | * Now do the copy. Mark the source busy | |
2473 | * and take out paging references on both | |
2474 | * objects. | |
2475 | * | |
2476 | * NOTE: This code holds the map lock across | |
2477 | * the page copy. | |
2478 | */ | |
2479 | ||
2480 | cur_m->busy = TRUE; | |
2481 | vm_page_copy(cur_m, m); | |
2482 | vm_page_insert(m, object, offset); | |
2483 | ||
2484 | vm_object_paging_begin(cur_object); | |
2485 | vm_object_paging_begin(object); | |
2486 | ||
2487 | type_of_fault = DBG_COW_FAULT; | |
2488 | VM_STAT(cow_faults++); | |
2489 | current_task()->cow_faults++; | |
2490 | ||
2491 | /* | |
2492 | * Now cope with the source page and object | |
2493 | * If the top object has a ref count of 1 | |
2494 | * then no other map can access it, and hence | |
2495 | * it's not necessary to do the pmap_page_protect. | |
2496 | */ | |
2497 | ||
2498 | ||
2499 | vm_page_lock_queues(); | |
2500 | vm_page_deactivate(cur_m); | |
2501 | m->dirty = TRUE; | |
55e303ae | 2502 | pmap_page_protect(cur_m->phys_page, |
1c79356b A |
2503 | VM_PROT_NONE); |
2504 | vm_page_unlock_queues(); | |
2505 | ||
2506 | PAGE_WAKEUP_DONE(cur_m); | |
2507 | vm_object_paging_end(cur_object); | |
2508 | vm_object_unlock(cur_object); | |
2509 | ||
2510 | /* | |
2511 | * Slight hack to call vm_object collapse | |
2512 | * and then reuse common map in code. | |
2513 | * note that the object lock was taken above. | |
2514 | */ | |
2515 | ||
2516 | vm_object_paging_end(object); | |
55e303ae | 2517 | vm_object_collapse(object, offset); |
1c79356b | 2518 | vm_object_paging_begin(object); |
1c79356b A |
2519 | |
2520 | goto FastPmapEnter; | |
2521 | } | |
2522 | else { | |
2523 | ||
2524 | /* | |
2525 | * No page at cur_object, cur_offset | |
2526 | */ | |
2527 | ||
2528 | if (cur_object->pager_created) { | |
2529 | ||
2530 | /* | |
2531 | * Have to talk to the pager. Give up. | |
2532 | */ | |
1c79356b A |
2533 | break; |
2534 | } | |
2535 | ||
2536 | ||
2537 | if (cur_object->shadow == VM_OBJECT_NULL) { | |
2538 | ||
2539 | if (cur_object->shadow_severed) { | |
2540 | vm_object_paging_end(object); | |
2541 | vm_object_unlock(object); | |
2542 | vm_map_unlock_read(map); | |
2543 | if(pmap_map != map) | |
2544 | vm_map_unlock(pmap_map); | |
2545 | ||
9bccf70c A |
2546 | if(write_startup_file) |
2547 | tws_send_startup_info( | |
2548 | current_task()); | |
2549 | ||
1c79356b A |
2550 | if (funnel_set) { |
2551 | thread_funnel_set( curflock, TRUE); | |
2552 | funnel_set = FALSE; | |
2553 | } | |
9bccf70c | 2554 | thread_interrupt_level(interruptible_state); |
1c79356b A |
2555 | |
2556 | return VM_FAULT_MEMORY_ERROR; | |
2557 | } | |
2558 | ||
2559 | /* | |
2560 | * Zero fill fault. Page gets | |
2561 | * filled in top object. Insert | |
2562 | * page, then drop any lower lock. | |
2563 | * Give up if no page. | |
2564 | */ | |
55e303ae A |
2565 | if (VM_PAGE_THROTTLED()) { |
2566 | break; | |
2567 | } | |
2568 | ||
2569 | /* | |
2570 | * are we protecting the system from | |
2571 | * backing store exhaustion. If so | |
2572 | * sleep unless we are privileged. | |
2573 | */ | |
2574 | if(vm_backing_store_low) { | |
2575 | if(!(current_task()->priv_flags | |
2576 | & VM_BACKING_STORE_PRIV)) | |
1c79356b A |
2577 | break; |
2578 | } | |
2579 | m = vm_page_alloc(object, offset); | |
2580 | if (m == VM_PAGE_NULL) { | |
2581 | break; | |
2582 | } | |
0b4e3aa0 A |
2583 | /* |
2584 | * This is a zero-fill or initial fill | |
2585 | * page fault. As such, we consider it | |
2586 | * undefined with respect to instruction | |
2587 | * execution. i.e. it is the responsibility | |
2588 | * of higher layers to call for an instruction | |
2589 | * sync after changing the contents and before | |
2590 | * sending a program into this area. We | |
2591 | * choose this approach for performance | |
2592 | */ | |
2593 | ||
2594 | m->no_isync = FALSE; | |
1c79356b A |
2595 | |
2596 | if (cur_object != object) | |
2597 | vm_object_unlock(cur_object); | |
2598 | ||
2599 | vm_object_paging_begin(object); | |
2600 | vm_object_unlock(object); | |
2601 | ||
2602 | /* | |
2603 | * Now zero fill page and map it. | |
2604 | * the page is probably going to | |
2605 | * be written soon, so don't bother | |
2606 | * to clear the modified bit | |
2607 | * | |
2608 | * NOTE: This code holds the map | |
2609 | * lock across the zero fill. | |
2610 | */ | |
2611 | ||
2612 | if (!map->no_zero_fill) { | |
2613 | vm_page_zero_fill(m); | |
2614 | type_of_fault = DBG_ZERO_FILL_FAULT; | |
2615 | VM_STAT(zero_fill_count++); | |
2616 | } | |
2617 | vm_page_lock_queues(); | |
2618 | VM_PAGE_QUEUES_REMOVE(m); | |
0b4e3aa0 A |
2619 | |
2620 | m->page_ticket = vm_page_ticket; | |
9bccf70c A |
2621 | if(m->object->size > 0x80000) { |
2622 | m->zero_fill = TRUE; | |
2623 | /* depends on the queues lock */ | |
2624 | vm_zf_count += 1; | |
2625 | queue_enter(&vm_page_queue_zf, | |
2626 | m, vm_page_t, pageq); | |
2627 | } else { | |
2628 | queue_enter( | |
2629 | &vm_page_queue_inactive, | |
2630 | m, vm_page_t, pageq); | |
2631 | } | |
0b4e3aa0 A |
2632 | vm_page_ticket_roll++; |
2633 | if(vm_page_ticket_roll == | |
2634 | VM_PAGE_TICKETS_IN_ROLL) { | |
2635 | vm_page_ticket_roll = 0; | |
2636 | if(vm_page_ticket == | |
2637 | VM_PAGE_TICKET_ROLL_IDS) | |
2638 | vm_page_ticket= 0; | |
2639 | else | |
2640 | vm_page_ticket++; | |
2641 | } | |
2642 | ||
1c79356b A |
2643 | m->inactive = TRUE; |
2644 | vm_page_inactive_count++; | |
2645 | vm_page_unlock_queues(); | |
143cc14e A |
2646 | vm_object_lock(object); |
2647 | ||
1c79356b A |
2648 | goto FastPmapEnter; |
2649 | } | |
2650 | ||
2651 | /* | |
2652 | * On to the next level | |
2653 | */ | |
2654 | ||
2655 | cur_offset += cur_object->shadow_offset; | |
2656 | new_object = cur_object->shadow; | |
2657 | vm_object_lock(new_object); | |
2658 | if (cur_object != object) | |
2659 | vm_object_unlock(cur_object); | |
2660 | cur_object = new_object; | |
2661 | ||
2662 | continue; | |
2663 | } | |
2664 | } | |
2665 | ||
2666 | /* | |
2667 | * Cleanup from fast fault failure. Drop any object | |
2668 | * lock other than original and drop map lock. | |
2669 | */ | |
2670 | ||
2671 | if (object != cur_object) | |
2672 | vm_object_unlock(cur_object); | |
2673 | } | |
2674 | vm_map_unlock_read(map); | |
143cc14e | 2675 | |
1c79356b A |
2676 | if(pmap_map != map) |
2677 | vm_map_unlock(pmap_map); | |
2678 | ||
2679 | /* | |
2680 | * Make a reference to this object to | |
2681 | * prevent its disposal while we are messing with | |
2682 | * it. Once we have the reference, the map is free | |
2683 | * to be diddled. Since objects reference their | |
2684 | * shadows (and copies), they will stay around as well. | |
2685 | */ | |
2686 | ||
2687 | assert(object->ref_count > 0); | |
2688 | object->ref_count++; | |
2689 | vm_object_res_reference(object); | |
2690 | vm_object_paging_begin(object); | |
2691 | ||
2692 | XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0); | |
55e303ae A |
2693 | |
2694 | if (!object->private) { | |
2695 | write_startup_file = | |
2696 | vm_fault_tws_insert(map, pmap_map, vaddr, object, offset); | |
9bccf70c | 2697 | } |
55e303ae | 2698 | |
1c79356b A |
2699 | kr = vm_fault_page(object, offset, fault_type, |
2700 | (change_wiring && !wired), | |
2701 | interruptible, | |
2702 | lo_offset, hi_offset, behavior, | |
2703 | &prot, &result_page, &top_page, | |
2704 | &type_of_fault, | |
0b4e3aa0 | 2705 | &error_code, map->no_zero_fill, FALSE, map, vaddr); |
1c79356b A |
2706 | |
2707 | /* | |
2708 | * If we didn't succeed, lose the object reference immediately. | |
2709 | */ | |
2710 | ||
2711 | if (kr != VM_FAULT_SUCCESS) | |
2712 | vm_object_deallocate(object); | |
2713 | ||
2714 | /* | |
2715 | * See why we failed, and take corrective action. | |
2716 | */ | |
2717 | ||
2718 | switch (kr) { | |
2719 | case VM_FAULT_SUCCESS: | |
2720 | break; | |
2721 | case VM_FAULT_MEMORY_SHORTAGE: | |
2722 | if (vm_page_wait((change_wiring) ? | |
2723 | THREAD_UNINT : | |
2724 | THREAD_ABORTSAFE)) | |
2725 | goto RetryFault; | |
2726 | /* fall thru */ | |
2727 | case VM_FAULT_INTERRUPTED: | |
2728 | kr = KERN_ABORTED; | |
2729 | goto done; | |
2730 | case VM_FAULT_RETRY: | |
2731 | goto RetryFault; | |
2732 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
2733 | vm_page_more_fictitious(); | |
2734 | goto RetryFault; | |
2735 | case VM_FAULT_MEMORY_ERROR: | |
2736 | if (error_code) | |
2737 | kr = error_code; | |
2738 | else | |
2739 | kr = KERN_MEMORY_ERROR; | |
2740 | goto done; | |
2741 | } | |
2742 | ||
2743 | m = result_page; | |
2744 | ||
0b4e3aa0 A |
2745 | if(m != VM_PAGE_NULL) { |
2746 | assert((change_wiring && !wired) ? | |
2747 | (top_page == VM_PAGE_NULL) : | |
2748 | ((top_page == VM_PAGE_NULL) == (m->object == object))); | |
2749 | } | |
1c79356b A |
2750 | |
2751 | /* | |
2752 | * How to clean up the result of vm_fault_page. This | |
2753 | * happens whether the mapping is entered or not. | |
2754 | */ | |
2755 | ||
2756 | #define UNLOCK_AND_DEALLOCATE \ | |
2757 | MACRO_BEGIN \ | |
2758 | vm_fault_cleanup(m->object, top_page); \ | |
2759 | vm_object_deallocate(object); \ | |
2760 | MACRO_END | |
2761 | ||
2762 | /* | |
2763 | * What to do with the resulting page from vm_fault_page | |
2764 | * if it doesn't get entered into the physical map: | |
2765 | */ | |
2766 | ||
2767 | #define RELEASE_PAGE(m) \ | |
2768 | MACRO_BEGIN \ | |
2769 | PAGE_WAKEUP_DONE(m); \ | |
2770 | vm_page_lock_queues(); \ | |
2771 | if (!m->active && !m->inactive) \ | |
2772 | vm_page_activate(m); \ | |
2773 | vm_page_unlock_queues(); \ | |
2774 | MACRO_END | |
2775 | ||
2776 | /* | |
2777 | * We must verify that the maps have not changed | |
2778 | * since our last lookup. | |
2779 | */ | |
2780 | ||
0b4e3aa0 A |
2781 | if(m != VM_PAGE_NULL) { |
2782 | old_copy_object = m->object->copy; | |
0b4e3aa0 A |
2783 | vm_object_unlock(m->object); |
2784 | } else { | |
2785 | old_copy_object = VM_OBJECT_NULL; | |
2786 | } | |
1c79356b A |
2787 | if ((map != original_map) || !vm_map_verify(map, &version)) { |
2788 | vm_object_t retry_object; | |
2789 | vm_object_offset_t retry_offset; | |
2790 | vm_prot_t retry_prot; | |
2791 | ||
2792 | /* | |
2793 | * To avoid trying to write_lock the map while another | |
2794 | * thread has it read_locked (in vm_map_pageable), we | |
2795 | * do not try for write permission. If the page is | |
2796 | * still writable, we will get write permission. If it | |
2797 | * is not, or has been marked needs_copy, we enter the | |
2798 | * mapping without write permission, and will merely | |
2799 | * take another fault. | |
2800 | */ | |
2801 | map = original_map; | |
2802 | vm_map_lock_read(map); | |
2803 | kr = vm_map_lookup_locked(&map, vaddr, | |
2804 | fault_type & ~VM_PROT_WRITE, &version, | |
2805 | &retry_object, &retry_offset, &retry_prot, | |
2806 | &wired, &behavior, &lo_offset, &hi_offset, | |
2807 | &pmap_map); | |
2808 | pmap = pmap_map->pmap; | |
2809 | ||
2810 | if (kr != KERN_SUCCESS) { | |
2811 | vm_map_unlock_read(map); | |
0b4e3aa0 A |
2812 | if(m != VM_PAGE_NULL) { |
2813 | vm_object_lock(m->object); | |
2814 | RELEASE_PAGE(m); | |
2815 | UNLOCK_AND_DEALLOCATE; | |
2816 | } else { | |
2817 | vm_object_deallocate(object); | |
2818 | } | |
1c79356b A |
2819 | goto done; |
2820 | } | |
2821 | ||
2822 | vm_object_unlock(retry_object); | |
0b4e3aa0 A |
2823 | if(m != VM_PAGE_NULL) { |
2824 | vm_object_lock(m->object); | |
2825 | } else { | |
2826 | vm_object_lock(object); | |
2827 | } | |
1c79356b A |
2828 | |
2829 | if ((retry_object != object) || | |
2830 | (retry_offset != offset)) { | |
2831 | vm_map_unlock_read(map); | |
2832 | if(pmap_map != map) | |
2833 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
2834 | if(m != VM_PAGE_NULL) { |
2835 | RELEASE_PAGE(m); | |
2836 | UNLOCK_AND_DEALLOCATE; | |
2837 | } else { | |
2838 | vm_object_deallocate(object); | |
2839 | } | |
1c79356b A |
2840 | goto RetryFault; |
2841 | } | |
2842 | ||
2843 | /* | |
2844 | * Check whether the protection has changed or the object | |
2845 | * has been copied while we left the map unlocked. | |
2846 | */ | |
2847 | prot &= retry_prot; | |
0b4e3aa0 A |
2848 | if(m != VM_PAGE_NULL) { |
2849 | vm_object_unlock(m->object); | |
2850 | } else { | |
2851 | vm_object_unlock(object); | |
2852 | } | |
2853 | } | |
2854 | if(m != VM_PAGE_NULL) { | |
2855 | vm_object_lock(m->object); | |
2856 | } else { | |
2857 | vm_object_lock(object); | |
1c79356b | 2858 | } |
1c79356b A |
2859 | |
2860 | /* | |
2861 | * If the copy object changed while the top-level object | |
2862 | * was unlocked, then we must take away write permission. | |
2863 | */ | |
2864 | ||
0b4e3aa0 A |
2865 | if(m != VM_PAGE_NULL) { |
2866 | if (m->object->copy != old_copy_object) | |
2867 | prot &= ~VM_PROT_WRITE; | |
2868 | } | |
1c79356b A |
2869 | |
2870 | /* | |
2871 | * If we want to wire down this page, but no longer have | |
2872 | * adequate permissions, we must start all over. | |
2873 | */ | |
2874 | ||
2875 | if (wired && (fault_type != (prot|VM_PROT_WRITE))) { | |
2876 | vm_map_verify_done(map, &version); | |
2877 | if(pmap_map != map) | |
2878 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
2879 | if(m != VM_PAGE_NULL) { |
2880 | RELEASE_PAGE(m); | |
2881 | UNLOCK_AND_DEALLOCATE; | |
2882 | } else { | |
2883 | vm_object_deallocate(object); | |
2884 | } | |
1c79356b A |
2885 | goto RetryFault; |
2886 | } | |
2887 | ||
1c79356b A |
2888 | /* |
2889 | * Put this page into the physical map. | |
2890 | * We had to do the unlock above because pmap_enter | |
2891 | * may cause other faults. The page may be on | |
2892 | * the pageout queues. If the pageout daemon comes | |
2893 | * across the page, it will remove it from the queues. | |
2894 | */ | |
765c9de3 A |
2895 | if (m != VM_PAGE_NULL) { |
2896 | if (m->no_isync == TRUE) { | |
55e303ae A |
2897 | pmap_sync_caches_phys(m->phys_page); |
2898 | ||
2899 | if (type_of_fault == DBG_CACHE_HIT_FAULT) { | |
2900 | /* | |
2901 | * found it in the cache, but this | |
2902 | * is the first fault-in of the page (no_isync == TRUE) | |
2903 | * so it must have come in as part of | |
2904 | * a cluster... account 1 pagein against it | |
2905 | */ | |
2906 | VM_STAT(pageins++); | |
2907 | current_task()->pageins++; | |
2908 | ||
2909 | type_of_fault = DBG_PAGEIN_FAULT; | |
2910 | } | |
765c9de3 A |
2911 | m->no_isync = FALSE; |
2912 | } | |
9bccf70c | 2913 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; |
0b4e3aa0 | 2914 | |
9bccf70c A |
2915 | if(caller_pmap) { |
2916 | PMAP_ENTER(caller_pmap, | |
2917 | caller_pmap_addr, m, | |
2918 | prot, cache_attr, wired); | |
2919 | } else { | |
2920 | PMAP_ENTER(pmap, vaddr, m, | |
2921 | prot, cache_attr, wired); | |
2922 | } | |
55e303ae A |
2923 | |
2924 | /* | |
2925 | * Add working set information for private objects here. | |
2926 | */ | |
2927 | if (m->object->private) { | |
2928 | write_startup_file = | |
2929 | vm_fault_tws_insert(map, pmap_map, vaddr, | |
2930 | m->object, m->offset); | |
0b4e3aa0 A |
2931 | } |
2932 | } else { | |
2933 | ||
9bccf70c A |
2934 | #ifndef i386 |
2935 | int memattr; | |
9bccf70c A |
2936 | vm_map_entry_t entry; |
2937 | vm_offset_t laddr; | |
2938 | vm_offset_t ldelta, hdelta; | |
143cc14e | 2939 | |
0b4e3aa0 A |
2940 | /* |
2941 | * do a pmap block mapping from the physical address | |
2942 | * in the object | |
2943 | */ | |
9bccf70c | 2944 | |
55e303ae A |
2945 | /* While we do not worry about execution protection in */ |
2946 | /* general, certian pages may have instruction execution */ | |
2947 | /* disallowed. We will check here, and if not allowed */ | |
2948 | /* to execute, we return with a protection failure. */ | |
9bccf70c | 2949 | |
55e303ae A |
2950 | if((full_fault_type & VM_PROT_EXECUTE) && |
2951 | (pmap_canExecute((ppnum_t) | |
2952 | (object->shadow_offset >> 12)) < 1)) { | |
9bccf70c | 2953 | |
9bccf70c A |
2954 | vm_map_verify_done(map, &version); |
2955 | if(pmap_map != map) | |
2956 | vm_map_unlock(pmap_map); | |
2957 | vm_fault_cleanup(object, top_page); | |
2958 | vm_object_deallocate(object); | |
2959 | kr = KERN_PROTECTION_FAILURE; | |
2960 | goto done; | |
0b4e3aa0 | 2961 | } |
1c79356b | 2962 | |
9bccf70c A |
2963 | if(pmap_map != map) { |
2964 | vm_map_unlock(pmap_map); | |
2965 | } | |
2966 | if (original_map != map) { | |
2967 | vm_map_unlock_read(map); | |
2968 | vm_map_lock_read(original_map); | |
2969 | map = original_map; | |
2970 | } | |
2971 | pmap_map = map; | |
2972 | ||
2973 | laddr = vaddr; | |
2974 | hdelta = 0xFFFFF000; | |
2975 | ldelta = 0xFFFFF000; | |
2976 | ||
2977 | ||
2978 | while(vm_map_lookup_entry(map, laddr, &entry)) { | |
2979 | if(ldelta > (laddr - entry->vme_start)) | |
2980 | ldelta = laddr - entry->vme_start; | |
2981 | if(hdelta > (entry->vme_end - laddr)) | |
2982 | hdelta = entry->vme_end - laddr; | |
2983 | if(entry->is_sub_map) { | |
2984 | ||
2985 | laddr = (laddr - entry->vme_start) | |
2986 | + entry->offset; | |
2987 | vm_map_lock_read(entry->object.sub_map); | |
2988 | if(map != pmap_map) | |
2989 | vm_map_unlock_read(map); | |
2990 | if(entry->use_pmap) { | |
2991 | vm_map_unlock_read(pmap_map); | |
2992 | pmap_map = entry->object.sub_map; | |
2993 | } | |
2994 | map = entry->object.sub_map; | |
2995 | ||
2996 | } else { | |
2997 | break; | |
2998 | } | |
2999 | } | |
3000 | ||
3001 | if(vm_map_lookup_entry(map, laddr, &entry) && | |
3002 | (entry->object.vm_object != NULL) && | |
3003 | (entry->object.vm_object == object)) { | |
3004 | ||
3005 | ||
3006 | if(caller_pmap) { | |
55e303ae | 3007 | /* Set up a block mapped area */ |
9bccf70c | 3008 | pmap_map_block(caller_pmap, |
55e303ae A |
3009 | (addr64_t)(caller_pmap_addr - ldelta), |
3010 | (((vm_offset_t) | |
9bccf70c A |
3011 | (entry->object.vm_object->shadow_offset)) |
3012 | + entry->offset + | |
55e303ae A |
3013 | (laddr - entry->vme_start) |
3014 | - ldelta)>>12, | |
9bccf70c | 3015 | ldelta + hdelta, prot, |
55e303ae A |
3016 | (VM_WIMG_MASK & (int)object->wimg_bits), 0); |
3017 | } else { | |
3018 | /* Set up a block mapped area */ | |
3019 | pmap_map_block(pmap_map->pmap, | |
3020 | (addr64_t)(vaddr - ldelta), | |
3021 | (((vm_offset_t) | |
9bccf70c | 3022 | (entry->object.vm_object->shadow_offset)) |
55e303ae A |
3023 | + entry->offset + |
3024 | (laddr - entry->vme_start) - ldelta)>>12, | |
3025 | ldelta + hdelta, prot, | |
3026 | (VM_WIMG_MASK & (int)object->wimg_bits), 0); | |
9bccf70c A |
3027 | } |
3028 | } | |
3029 | #else | |
3030 | #ifdef notyet | |
3031 | if(caller_pmap) { | |
3032 | pmap_enter(caller_pmap, caller_pmap_addr, | |
55e303ae | 3033 | object->shadow_offset>>12, prot, 0, TRUE); |
9bccf70c A |
3034 | } else { |
3035 | pmap_enter(pmap, vaddr, | |
55e303ae | 3036 | object->shadow_offset>>12, prot, 0, TRUE); |
9bccf70c | 3037 | } |
0b4e3aa0 | 3038 | /* Map it in */ |
9bccf70c | 3039 | #endif |
0b4e3aa0 A |
3040 | #endif |
3041 | ||
3042 | } | |
1c79356b A |
3043 | |
3044 | /* | |
3045 | * If the page is not wired down and isn't already | |
3046 | * on a pageout queue, then put it where the | |
3047 | * pageout daemon can find it. | |
3048 | */ | |
0b4e3aa0 | 3049 | if(m != VM_PAGE_NULL) { |
0b4e3aa0 A |
3050 | vm_page_lock_queues(); |
3051 | ||
3052 | if (change_wiring) { | |
3053 | if (wired) | |
3054 | vm_page_wire(m); | |
3055 | else | |
3056 | vm_page_unwire(m); | |
3057 | } | |
1c79356b | 3058 | #if VM_FAULT_STATIC_CONFIG |
0b4e3aa0 A |
3059 | else { |
3060 | if (!m->active && !m->inactive) | |
3061 | vm_page_activate(m); | |
3062 | m->reference = TRUE; | |
3063 | } | |
1c79356b | 3064 | #else |
0b4e3aa0 A |
3065 | else if (software_reference_bits) { |
3066 | if (!m->active && !m->inactive) | |
3067 | vm_page_activate(m); | |
3068 | m->reference = TRUE; | |
3069 | } else { | |
1c79356b | 3070 | vm_page_activate(m); |
0b4e3aa0 | 3071 | } |
1c79356b | 3072 | #endif |
0b4e3aa0 A |
3073 | vm_page_unlock_queues(); |
3074 | } | |
1c79356b A |
3075 | |
3076 | /* | |
3077 | * Unlock everything, and return | |
3078 | */ | |
3079 | ||
3080 | vm_map_verify_done(map, &version); | |
3081 | if(pmap_map != map) | |
3082 | vm_map_unlock(pmap_map); | |
0b4e3aa0 A |
3083 | if(m != VM_PAGE_NULL) { |
3084 | PAGE_WAKEUP_DONE(m); | |
3085 | UNLOCK_AND_DEALLOCATE; | |
3086 | } else { | |
3087 | vm_fault_cleanup(object, top_page); | |
3088 | vm_object_deallocate(object); | |
3089 | } | |
1c79356b | 3090 | kr = KERN_SUCCESS; |
1c79356b A |
3091 | |
3092 | #undef UNLOCK_AND_DEALLOCATE | |
3093 | #undef RELEASE_PAGE | |
3094 | ||
3095 | done: | |
9bccf70c A |
3096 | if(write_startup_file) |
3097 | tws_send_startup_info(current_task()); | |
1c79356b A |
3098 | if (funnel_set) { |
3099 | thread_funnel_set( curflock, TRUE); | |
3100 | funnel_set = FALSE; | |
3101 | } | |
9bccf70c | 3102 | thread_interrupt_level(interruptible_state); |
1c79356b A |
3103 | |
3104 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END, | |
3105 | vaddr, | |
9bccf70c | 3106 | type_of_fault & 0xff, |
1c79356b | 3107 | kr, |
9bccf70c | 3108 | type_of_fault >> 8, |
1c79356b | 3109 | 0); |
143cc14e | 3110 | |
1c79356b A |
3111 | return(kr); |
3112 | } | |
3113 | ||
3114 | /* | |
3115 | * vm_fault_wire: | |
3116 | * | |
3117 | * Wire down a range of virtual addresses in a map. | |
3118 | */ | |
3119 | kern_return_t | |
3120 | vm_fault_wire( | |
3121 | vm_map_t map, | |
3122 | vm_map_entry_t entry, | |
9bccf70c A |
3123 | pmap_t pmap, |
3124 | vm_offset_t pmap_addr) | |
1c79356b A |
3125 | { |
3126 | ||
3127 | register vm_offset_t va; | |
3128 | register vm_offset_t end_addr = entry->vme_end; | |
3129 | register kern_return_t rc; | |
3130 | ||
3131 | assert(entry->in_transition); | |
3132 | ||
9bccf70c A |
3133 | if ((entry->object.vm_object != NULL) && |
3134 | !entry->is_sub_map && | |
3135 | entry->object.vm_object->phys_contiguous) { | |
3136 | return KERN_SUCCESS; | |
3137 | } | |
3138 | ||
1c79356b A |
3139 | /* |
3140 | * Inform the physical mapping system that the | |
3141 | * range of addresses may not fault, so that | |
3142 | * page tables and such can be locked down as well. | |
3143 | */ | |
3144 | ||
9bccf70c A |
3145 | pmap_pageable(pmap, pmap_addr, |
3146 | pmap_addr + (end_addr - entry->vme_start), FALSE); | |
1c79356b A |
3147 | |
3148 | /* | |
3149 | * We simulate a fault to get the page and enter it | |
3150 | * in the physical map. | |
3151 | */ | |
3152 | ||
3153 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
3154 | if ((rc = vm_fault_wire_fast( | |
9bccf70c A |
3155 | map, va, entry, pmap, |
3156 | pmap_addr + (va - entry->vme_start) | |
3157 | )) != KERN_SUCCESS) { | |
1c79356b | 3158 | rc = vm_fault(map, va, VM_PROT_NONE, TRUE, |
9bccf70c A |
3159 | (pmap == kernel_pmap) ? |
3160 | THREAD_UNINT : THREAD_ABORTSAFE, | |
3161 | pmap, pmap_addr + (va - entry->vme_start)); | |
1c79356b A |
3162 | } |
3163 | ||
3164 | if (rc != KERN_SUCCESS) { | |
3165 | struct vm_map_entry tmp_entry = *entry; | |
3166 | ||
3167 | /* unwire wired pages */ | |
3168 | tmp_entry.vme_end = va; | |
9bccf70c A |
3169 | vm_fault_unwire(map, |
3170 | &tmp_entry, FALSE, pmap, pmap_addr); | |
1c79356b A |
3171 | |
3172 | return rc; | |
3173 | } | |
3174 | } | |
3175 | return KERN_SUCCESS; | |
3176 | } | |
3177 | ||
3178 | /* | |
3179 | * vm_fault_unwire: | |
3180 | * | |
3181 | * Unwire a range of virtual addresses in a map. | |
3182 | */ | |
3183 | void | |
3184 | vm_fault_unwire( | |
3185 | vm_map_t map, | |
3186 | vm_map_entry_t entry, | |
3187 | boolean_t deallocate, | |
9bccf70c A |
3188 | pmap_t pmap, |
3189 | vm_offset_t pmap_addr) | |
1c79356b A |
3190 | { |
3191 | register vm_offset_t va; | |
3192 | register vm_offset_t end_addr = entry->vme_end; | |
3193 | vm_object_t object; | |
3194 | ||
3195 | object = (entry->is_sub_map) | |
3196 | ? VM_OBJECT_NULL : entry->object.vm_object; | |
3197 | ||
3198 | /* | |
3199 | * Since the pages are wired down, we must be able to | |
3200 | * get their mappings from the physical map system. | |
3201 | */ | |
3202 | ||
3203 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
9bccf70c A |
3204 | pmap_change_wiring(pmap, |
3205 | pmap_addr + (va - entry->vme_start), FALSE); | |
1c79356b A |
3206 | |
3207 | if (object == VM_OBJECT_NULL) { | |
9bccf70c A |
3208 | (void) vm_fault(map, va, VM_PROT_NONE, |
3209 | TRUE, THREAD_UNINT, pmap, pmap_addr); | |
3210 | } else if (object->phys_contiguous) { | |
3211 | continue; | |
1c79356b A |
3212 | } else { |
3213 | vm_prot_t prot; | |
3214 | vm_page_t result_page; | |
3215 | vm_page_t top_page; | |
3216 | vm_object_t result_object; | |
3217 | vm_fault_return_t result; | |
3218 | ||
3219 | do { | |
3220 | prot = VM_PROT_NONE; | |
3221 | ||
3222 | vm_object_lock(object); | |
3223 | vm_object_paging_begin(object); | |
3224 | XPR(XPR_VM_FAULT, | |
3225 | "vm_fault_unwire -> vm_fault_page\n", | |
3226 | 0,0,0,0,0); | |
3227 | result = vm_fault_page(object, | |
3228 | entry->offset + | |
3229 | (va - entry->vme_start), | |
3230 | VM_PROT_NONE, TRUE, | |
3231 | THREAD_UNINT, | |
3232 | entry->offset, | |
3233 | entry->offset + | |
3234 | (entry->vme_end | |
3235 | - entry->vme_start), | |
3236 | entry->behavior, | |
3237 | &prot, | |
3238 | &result_page, | |
3239 | &top_page, | |
3240 | (int *)0, | |
3241 | 0, map->no_zero_fill, | |
0b4e3aa0 | 3242 | FALSE, NULL, 0); |
1c79356b A |
3243 | } while (result == VM_FAULT_RETRY); |
3244 | ||
3245 | if (result != VM_FAULT_SUCCESS) | |
3246 | panic("vm_fault_unwire: failure"); | |
3247 | ||
3248 | result_object = result_page->object; | |
3249 | if (deallocate) { | |
3250 | assert(!result_page->fictitious); | |
55e303ae | 3251 | pmap_page_protect(result_page->phys_page, |
1c79356b A |
3252 | VM_PROT_NONE); |
3253 | VM_PAGE_FREE(result_page); | |
3254 | } else { | |
3255 | vm_page_lock_queues(); | |
3256 | vm_page_unwire(result_page); | |
3257 | vm_page_unlock_queues(); | |
3258 | PAGE_WAKEUP_DONE(result_page); | |
3259 | } | |
3260 | ||
3261 | vm_fault_cleanup(result_object, top_page); | |
3262 | } | |
3263 | } | |
3264 | ||
3265 | /* | |
3266 | * Inform the physical mapping system that the range | |
3267 | * of addresses may fault, so that page tables and | |
3268 | * such may be unwired themselves. | |
3269 | */ | |
3270 | ||
9bccf70c A |
3271 | pmap_pageable(pmap, pmap_addr, |
3272 | pmap_addr + (end_addr - entry->vme_start), TRUE); | |
1c79356b A |
3273 | |
3274 | } | |
3275 | ||
3276 | /* | |
3277 | * vm_fault_wire_fast: | |
3278 | * | |
3279 | * Handle common case of a wire down page fault at the given address. | |
3280 | * If successful, the page is inserted into the associated physical map. | |
3281 | * The map entry is passed in to avoid the overhead of a map lookup. | |
3282 | * | |
3283 | * NOTE: the given address should be truncated to the | |
3284 | * proper page address. | |
3285 | * | |
3286 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, | |
3287 | * a standard error specifying why the fault is fatal is returned. | |
3288 | * | |
3289 | * The map in question must be referenced, and remains so. | |
3290 | * Caller has a read lock on the map. | |
3291 | * | |
3292 | * This is a stripped version of vm_fault() for wiring pages. Anything | |
3293 | * other than the common case will return KERN_FAILURE, and the caller | |
3294 | * is expected to call vm_fault(). | |
3295 | */ | |
3296 | kern_return_t | |
3297 | vm_fault_wire_fast( | |
3298 | vm_map_t map, | |
3299 | vm_offset_t va, | |
3300 | vm_map_entry_t entry, | |
9bccf70c A |
3301 | pmap_t pmap, |
3302 | vm_offset_t pmap_addr) | |
1c79356b A |
3303 | { |
3304 | vm_object_t object; | |
3305 | vm_object_offset_t offset; | |
3306 | register vm_page_t m; | |
3307 | vm_prot_t prot; | |
3308 | thread_act_t thr_act; | |
9bccf70c | 3309 | unsigned int cache_attr; |
1c79356b A |
3310 | |
3311 | VM_STAT(faults++); | |
3312 | ||
3313 | if((thr_act=current_act()) && (thr_act->task != TASK_NULL)) | |
3314 | thr_act->task->faults++; | |
3315 | ||
3316 | /* | |
3317 | * Recovery actions | |
3318 | */ | |
3319 | ||
3320 | #undef RELEASE_PAGE | |
3321 | #define RELEASE_PAGE(m) { \ | |
3322 | PAGE_WAKEUP_DONE(m); \ | |
3323 | vm_page_lock_queues(); \ | |
3324 | vm_page_unwire(m); \ | |
3325 | vm_page_unlock_queues(); \ | |
3326 | } | |
3327 | ||
3328 | ||
3329 | #undef UNLOCK_THINGS | |
3330 | #define UNLOCK_THINGS { \ | |
3331 | object->paging_in_progress--; \ | |
3332 | vm_object_unlock(object); \ | |
3333 | } | |
3334 | ||
3335 | #undef UNLOCK_AND_DEALLOCATE | |
3336 | #define UNLOCK_AND_DEALLOCATE { \ | |
3337 | UNLOCK_THINGS; \ | |
3338 | vm_object_deallocate(object); \ | |
3339 | } | |
3340 | /* | |
3341 | * Give up and have caller do things the hard way. | |
3342 | */ | |
3343 | ||
3344 | #define GIVE_UP { \ | |
3345 | UNLOCK_AND_DEALLOCATE; \ | |
3346 | return(KERN_FAILURE); \ | |
3347 | } | |
3348 | ||
3349 | ||
3350 | /* | |
3351 | * If this entry is not directly to a vm_object, bail out. | |
3352 | */ | |
3353 | if (entry->is_sub_map) | |
3354 | return(KERN_FAILURE); | |
3355 | ||
3356 | /* | |
3357 | * Find the backing store object and offset into it. | |
3358 | */ | |
3359 | ||
3360 | object = entry->object.vm_object; | |
3361 | offset = (va - entry->vme_start) + entry->offset; | |
3362 | prot = entry->protection; | |
3363 | ||
3364 | /* | |
3365 | * Make a reference to this object to prevent its | |
3366 | * disposal while we are messing with it. | |
3367 | */ | |
3368 | ||
3369 | vm_object_lock(object); | |
3370 | assert(object->ref_count > 0); | |
3371 | object->ref_count++; | |
3372 | vm_object_res_reference(object); | |
3373 | object->paging_in_progress++; | |
3374 | ||
3375 | /* | |
3376 | * INVARIANTS (through entire routine): | |
3377 | * | |
3378 | * 1) At all times, we must either have the object | |
3379 | * lock or a busy page in some object to prevent | |
3380 | * some other thread from trying to bring in | |
3381 | * the same page. | |
3382 | * | |
3383 | * 2) Once we have a busy page, we must remove it from | |
3384 | * the pageout queues, so that the pageout daemon | |
3385 | * will not grab it away. | |
3386 | * | |
3387 | */ | |
3388 | ||
3389 | /* | |
3390 | * Look for page in top-level object. If it's not there or | |
3391 | * there's something going on, give up. | |
3392 | */ | |
3393 | m = vm_page_lookup(object, offset); | |
3394 | if ((m == VM_PAGE_NULL) || (m->busy) || | |
3395 | (m->unusual && ( m->error || m->restart || m->absent || | |
3396 | prot & m->page_lock))) { | |
3397 | ||
3398 | GIVE_UP; | |
3399 | } | |
3400 | ||
3401 | /* | |
3402 | * Wire the page down now. All bail outs beyond this | |
3403 | * point must unwire the page. | |
3404 | */ | |
3405 | ||
3406 | vm_page_lock_queues(); | |
3407 | vm_page_wire(m); | |
3408 | vm_page_unlock_queues(); | |
3409 | ||
3410 | /* | |
3411 | * Mark page busy for other threads. | |
3412 | */ | |
3413 | assert(!m->busy); | |
3414 | m->busy = TRUE; | |
3415 | assert(!m->absent); | |
3416 | ||
3417 | /* | |
3418 | * Give up if the page is being written and there's a copy object | |
3419 | */ | |
3420 | if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { | |
3421 | RELEASE_PAGE(m); | |
3422 | GIVE_UP; | |
3423 | } | |
3424 | ||
3425 | /* | |
3426 | * Put this page into the physical map. | |
3427 | * We have to unlock the object because pmap_enter | |
3428 | * may cause other faults. | |
3429 | */ | |
765c9de3 | 3430 | if (m->no_isync == TRUE) { |
55e303ae | 3431 | pmap_sync_caches_phys(m->phys_page); |
0b4e3aa0 | 3432 | |
765c9de3 | 3433 | m->no_isync = FALSE; |
0b4e3aa0 | 3434 | } |
9bccf70c A |
3435 | |
3436 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; | |
765c9de3 | 3437 | |
9bccf70c | 3438 | PMAP_ENTER(pmap, pmap_addr, m, prot, cache_attr, TRUE); |
1c79356b | 3439 | |
1c79356b A |
3440 | /* |
3441 | * Unlock everything, and return | |
3442 | */ | |
3443 | ||
3444 | PAGE_WAKEUP_DONE(m); | |
3445 | UNLOCK_AND_DEALLOCATE; | |
3446 | ||
3447 | return(KERN_SUCCESS); | |
3448 | ||
3449 | } | |
3450 | ||
3451 | /* | |
3452 | * Routine: vm_fault_copy_cleanup | |
3453 | * Purpose: | |
3454 | * Release a page used by vm_fault_copy. | |
3455 | */ | |
3456 | ||
3457 | void | |
3458 | vm_fault_copy_cleanup( | |
3459 | vm_page_t page, | |
3460 | vm_page_t top_page) | |
3461 | { | |
3462 | vm_object_t object = page->object; | |
3463 | ||
3464 | vm_object_lock(object); | |
3465 | PAGE_WAKEUP_DONE(page); | |
3466 | vm_page_lock_queues(); | |
3467 | if (!page->active && !page->inactive) | |
3468 | vm_page_activate(page); | |
3469 | vm_page_unlock_queues(); | |
3470 | vm_fault_cleanup(object, top_page); | |
3471 | } | |
3472 | ||
3473 | void | |
3474 | vm_fault_copy_dst_cleanup( | |
3475 | vm_page_t page) | |
3476 | { | |
3477 | vm_object_t object; | |
3478 | ||
3479 | if (page != VM_PAGE_NULL) { | |
3480 | object = page->object; | |
3481 | vm_object_lock(object); | |
3482 | vm_page_lock_queues(); | |
3483 | vm_page_unwire(page); | |
3484 | vm_page_unlock_queues(); | |
3485 | vm_object_paging_end(object); | |
3486 | vm_object_unlock(object); | |
3487 | } | |
3488 | } | |
3489 | ||
3490 | /* | |
3491 | * Routine: vm_fault_copy | |
3492 | * | |
3493 | * Purpose: | |
3494 | * Copy pages from one virtual memory object to another -- | |
3495 | * neither the source nor destination pages need be resident. | |
3496 | * | |
3497 | * Before actually copying a page, the version associated with | |
3498 | * the destination address map wil be verified. | |
3499 | * | |
3500 | * In/out conditions: | |
3501 | * The caller must hold a reference, but not a lock, to | |
3502 | * each of the source and destination objects and to the | |
3503 | * destination map. | |
3504 | * | |
3505 | * Results: | |
3506 | * Returns KERN_SUCCESS if no errors were encountered in | |
3507 | * reading or writing the data. Returns KERN_INTERRUPTED if | |
3508 | * the operation was interrupted (only possible if the | |
3509 | * "interruptible" argument is asserted). Other return values | |
3510 | * indicate a permanent error in copying the data. | |
3511 | * | |
3512 | * The actual amount of data copied will be returned in the | |
3513 | * "copy_size" argument. In the event that the destination map | |
3514 | * verification failed, this amount may be less than the amount | |
3515 | * requested. | |
3516 | */ | |
3517 | kern_return_t | |
3518 | vm_fault_copy( | |
3519 | vm_object_t src_object, | |
3520 | vm_object_offset_t src_offset, | |
3521 | vm_size_t *src_size, /* INOUT */ | |
3522 | vm_object_t dst_object, | |
3523 | vm_object_offset_t dst_offset, | |
3524 | vm_map_t dst_map, | |
3525 | vm_map_version_t *dst_version, | |
3526 | int interruptible) | |
3527 | { | |
3528 | vm_page_t result_page; | |
3529 | ||
3530 | vm_page_t src_page; | |
3531 | vm_page_t src_top_page; | |
3532 | vm_prot_t src_prot; | |
3533 | ||
3534 | vm_page_t dst_page; | |
3535 | vm_page_t dst_top_page; | |
3536 | vm_prot_t dst_prot; | |
3537 | ||
3538 | vm_size_t amount_left; | |
3539 | vm_object_t old_copy_object; | |
3540 | kern_return_t error = 0; | |
3541 | ||
3542 | vm_size_t part_size; | |
3543 | ||
3544 | /* | |
3545 | * In order not to confuse the clustered pageins, align | |
3546 | * the different offsets on a page boundary. | |
3547 | */ | |
3548 | vm_object_offset_t src_lo_offset = trunc_page_64(src_offset); | |
3549 | vm_object_offset_t dst_lo_offset = trunc_page_64(dst_offset); | |
3550 | vm_object_offset_t src_hi_offset = round_page_64(src_offset + *src_size); | |
3551 | vm_object_offset_t dst_hi_offset = round_page_64(dst_offset + *src_size); | |
3552 | ||
3553 | #define RETURN(x) \ | |
3554 | MACRO_BEGIN \ | |
3555 | *src_size -= amount_left; \ | |
3556 | MACRO_RETURN(x); \ | |
3557 | MACRO_END | |
3558 | ||
3559 | amount_left = *src_size; | |
3560 | do { /* while (amount_left > 0) */ | |
3561 | /* | |
3562 | * There may be a deadlock if both source and destination | |
3563 | * pages are the same. To avoid this deadlock, the copy must | |
3564 | * start by getting the destination page in order to apply | |
3565 | * COW semantics if any. | |
3566 | */ | |
3567 | ||
3568 | RetryDestinationFault: ; | |
3569 | ||
3570 | dst_prot = VM_PROT_WRITE|VM_PROT_READ; | |
3571 | ||
3572 | vm_object_lock(dst_object); | |
3573 | vm_object_paging_begin(dst_object); | |
3574 | ||
3575 | XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0); | |
3576 | switch (vm_fault_page(dst_object, | |
3577 | trunc_page_64(dst_offset), | |
3578 | VM_PROT_WRITE|VM_PROT_READ, | |
3579 | FALSE, | |
3580 | interruptible, | |
3581 | dst_lo_offset, | |
3582 | dst_hi_offset, | |
3583 | VM_BEHAVIOR_SEQUENTIAL, | |
3584 | &dst_prot, | |
3585 | &dst_page, | |
3586 | &dst_top_page, | |
3587 | (int *)0, | |
3588 | &error, | |
3589 | dst_map->no_zero_fill, | |
0b4e3aa0 | 3590 | FALSE, NULL, 0)) { |
1c79356b A |
3591 | case VM_FAULT_SUCCESS: |
3592 | break; | |
3593 | case VM_FAULT_RETRY: | |
3594 | goto RetryDestinationFault; | |
3595 | case VM_FAULT_MEMORY_SHORTAGE: | |
3596 | if (vm_page_wait(interruptible)) | |
3597 | goto RetryDestinationFault; | |
3598 | /* fall thru */ | |
3599 | case VM_FAULT_INTERRUPTED: | |
3600 | RETURN(MACH_SEND_INTERRUPTED); | |
3601 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
3602 | vm_page_more_fictitious(); | |
3603 | goto RetryDestinationFault; | |
3604 | case VM_FAULT_MEMORY_ERROR: | |
3605 | if (error) | |
3606 | return (error); | |
3607 | else | |
3608 | return(KERN_MEMORY_ERROR); | |
3609 | } | |
3610 | assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); | |
3611 | ||
3612 | old_copy_object = dst_page->object->copy; | |
3613 | ||
3614 | /* | |
3615 | * There exists the possiblity that the source and | |
3616 | * destination page are the same. But we can't | |
3617 | * easily determine that now. If they are the | |
3618 | * same, the call to vm_fault_page() for the | |
3619 | * destination page will deadlock. To prevent this we | |
3620 | * wire the page so we can drop busy without having | |
3621 | * the page daemon steal the page. We clean up the | |
3622 | * top page but keep the paging reference on the object | |
3623 | * holding the dest page so it doesn't go away. | |
3624 | */ | |
3625 | ||
3626 | vm_page_lock_queues(); | |
3627 | vm_page_wire(dst_page); | |
3628 | vm_page_unlock_queues(); | |
3629 | PAGE_WAKEUP_DONE(dst_page); | |
3630 | vm_object_unlock(dst_page->object); | |
3631 | ||
3632 | if (dst_top_page != VM_PAGE_NULL) { | |
3633 | vm_object_lock(dst_object); | |
3634 | VM_PAGE_FREE(dst_top_page); | |
3635 | vm_object_paging_end(dst_object); | |
3636 | vm_object_unlock(dst_object); | |
3637 | } | |
3638 | ||
3639 | RetrySourceFault: ; | |
3640 | ||
3641 | if (src_object == VM_OBJECT_NULL) { | |
3642 | /* | |
3643 | * No source object. We will just | |
3644 | * zero-fill the page in dst_object. | |
3645 | */ | |
3646 | src_page = VM_PAGE_NULL; | |
e3027f41 | 3647 | result_page = VM_PAGE_NULL; |
1c79356b A |
3648 | } else { |
3649 | vm_object_lock(src_object); | |
3650 | src_page = vm_page_lookup(src_object, | |
3651 | trunc_page_64(src_offset)); | |
e3027f41 | 3652 | if (src_page == dst_page) { |
1c79356b | 3653 | src_prot = dst_prot; |
e3027f41 A |
3654 | result_page = VM_PAGE_NULL; |
3655 | } else { | |
1c79356b A |
3656 | src_prot = VM_PROT_READ; |
3657 | vm_object_paging_begin(src_object); | |
3658 | ||
3659 | XPR(XPR_VM_FAULT, | |
3660 | "vm_fault_copy(2) -> vm_fault_page\n", | |
3661 | 0,0,0,0,0); | |
3662 | switch (vm_fault_page(src_object, | |
3663 | trunc_page_64(src_offset), | |
3664 | VM_PROT_READ, | |
3665 | FALSE, | |
3666 | interruptible, | |
3667 | src_lo_offset, | |
3668 | src_hi_offset, | |
3669 | VM_BEHAVIOR_SEQUENTIAL, | |
3670 | &src_prot, | |
3671 | &result_page, | |
3672 | &src_top_page, | |
3673 | (int *)0, | |
3674 | &error, | |
3675 | FALSE, | |
0b4e3aa0 | 3676 | FALSE, NULL, 0)) { |
1c79356b A |
3677 | |
3678 | case VM_FAULT_SUCCESS: | |
3679 | break; | |
3680 | case VM_FAULT_RETRY: | |
3681 | goto RetrySourceFault; | |
3682 | case VM_FAULT_MEMORY_SHORTAGE: | |
3683 | if (vm_page_wait(interruptible)) | |
3684 | goto RetrySourceFault; | |
3685 | /* fall thru */ | |
3686 | case VM_FAULT_INTERRUPTED: | |
3687 | vm_fault_copy_dst_cleanup(dst_page); | |
3688 | RETURN(MACH_SEND_INTERRUPTED); | |
3689 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
3690 | vm_page_more_fictitious(); | |
3691 | goto RetrySourceFault; | |
3692 | case VM_FAULT_MEMORY_ERROR: | |
3693 | vm_fault_copy_dst_cleanup(dst_page); | |
3694 | if (error) | |
3695 | return (error); | |
3696 | else | |
3697 | return(KERN_MEMORY_ERROR); | |
3698 | } | |
3699 | ||
1c79356b A |
3700 | |
3701 | assert((src_top_page == VM_PAGE_NULL) == | |
e3027f41 | 3702 | (result_page->object == src_object)); |
1c79356b A |
3703 | } |
3704 | assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE); | |
e3027f41 | 3705 | vm_object_unlock(result_page->object); |
1c79356b A |
3706 | } |
3707 | ||
3708 | if (!vm_map_verify(dst_map, dst_version)) { | |
e3027f41 A |
3709 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3710 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3711 | vm_fault_copy_dst_cleanup(dst_page); |
3712 | break; | |
3713 | } | |
3714 | ||
3715 | vm_object_lock(dst_page->object); | |
3716 | ||
3717 | if (dst_page->object->copy != old_copy_object) { | |
3718 | vm_object_unlock(dst_page->object); | |
3719 | vm_map_verify_done(dst_map, dst_version); | |
e3027f41 A |
3720 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3721 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3722 | vm_fault_copy_dst_cleanup(dst_page); |
3723 | break; | |
3724 | } | |
3725 | vm_object_unlock(dst_page->object); | |
3726 | ||
3727 | /* | |
3728 | * Copy the page, and note that it is dirty | |
3729 | * immediately. | |
3730 | */ | |
3731 | ||
3732 | if (!page_aligned(src_offset) || | |
3733 | !page_aligned(dst_offset) || | |
3734 | !page_aligned(amount_left)) { | |
3735 | ||
3736 | vm_object_offset_t src_po, | |
3737 | dst_po; | |
3738 | ||
3739 | src_po = src_offset - trunc_page_64(src_offset); | |
3740 | dst_po = dst_offset - trunc_page_64(dst_offset); | |
3741 | ||
3742 | if (dst_po > src_po) { | |
3743 | part_size = PAGE_SIZE - dst_po; | |
3744 | } else { | |
3745 | part_size = PAGE_SIZE - src_po; | |
3746 | } | |
3747 | if (part_size > (amount_left)){ | |
3748 | part_size = amount_left; | |
3749 | } | |
3750 | ||
e3027f41 | 3751 | if (result_page == VM_PAGE_NULL) { |
1c79356b A |
3752 | vm_page_part_zero_fill(dst_page, |
3753 | dst_po, part_size); | |
3754 | } else { | |
e3027f41 | 3755 | vm_page_part_copy(result_page, src_po, |
1c79356b A |
3756 | dst_page, dst_po, part_size); |
3757 | if(!dst_page->dirty){ | |
3758 | vm_object_lock(dst_object); | |
3759 | dst_page->dirty = TRUE; | |
3760 | vm_object_unlock(dst_page->object); | |
3761 | } | |
3762 | ||
3763 | } | |
3764 | } else { | |
3765 | part_size = PAGE_SIZE; | |
3766 | ||
e3027f41 | 3767 | if (result_page == VM_PAGE_NULL) |
1c79356b A |
3768 | vm_page_zero_fill(dst_page); |
3769 | else{ | |
e3027f41 | 3770 | vm_page_copy(result_page, dst_page); |
1c79356b A |
3771 | if(!dst_page->dirty){ |
3772 | vm_object_lock(dst_object); | |
3773 | dst_page->dirty = TRUE; | |
3774 | vm_object_unlock(dst_page->object); | |
3775 | } | |
3776 | } | |
3777 | ||
3778 | } | |
3779 | ||
3780 | /* | |
3781 | * Unlock everything, and return | |
3782 | */ | |
3783 | ||
3784 | vm_map_verify_done(dst_map, dst_version); | |
3785 | ||
e3027f41 A |
3786 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3787 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3788 | vm_fault_copy_dst_cleanup(dst_page); |
3789 | ||
3790 | amount_left -= part_size; | |
3791 | src_offset += part_size; | |
3792 | dst_offset += part_size; | |
3793 | } while (amount_left > 0); | |
3794 | ||
3795 | RETURN(KERN_SUCCESS); | |
3796 | #undef RETURN | |
3797 | ||
3798 | /*NOTREACHED*/ | |
3799 | } | |
3800 | ||
3801 | #ifdef notdef | |
3802 | ||
3803 | /* | |
3804 | * Routine: vm_fault_page_overwrite | |
3805 | * | |
3806 | * Description: | |
3807 | * A form of vm_fault_page that assumes that the | |
3808 | * resulting page will be overwritten in its entirety, | |
3809 | * making it unnecessary to obtain the correct *contents* | |
3810 | * of the page. | |
3811 | * | |
3812 | * Implementation: | |
3813 | * XXX Untested. Also unused. Eventually, this technology | |
3814 | * could be used in vm_fault_copy() to advantage. | |
3815 | */ | |
3816 | vm_fault_return_t | |
3817 | vm_fault_page_overwrite( | |
3818 | register | |
3819 | vm_object_t dst_object, | |
3820 | vm_object_offset_t dst_offset, | |
3821 | vm_page_t *result_page) /* OUT */ | |
3822 | { | |
3823 | register | |
3824 | vm_page_t dst_page; | |
3825 | kern_return_t wait_result; | |
3826 | ||
3827 | #define interruptible THREAD_UNINT /* XXX */ | |
3828 | ||
3829 | while (TRUE) { | |
3830 | /* | |
3831 | * Look for a page at this offset | |
3832 | */ | |
3833 | ||
3834 | while ((dst_page = vm_page_lookup(dst_object, dst_offset)) | |
3835 | == VM_PAGE_NULL) { | |
3836 | /* | |
3837 | * No page, no problem... just allocate one. | |
3838 | */ | |
3839 | ||
3840 | dst_page = vm_page_alloc(dst_object, dst_offset); | |
3841 | if (dst_page == VM_PAGE_NULL) { | |
3842 | vm_object_unlock(dst_object); | |
3843 | VM_PAGE_WAIT(); | |
3844 | vm_object_lock(dst_object); | |
3845 | continue; | |
3846 | } | |
3847 | ||
3848 | /* | |
3849 | * Pretend that the memory manager | |
3850 | * write-protected the page. | |
3851 | * | |
3852 | * Note that we will be asking for write | |
3853 | * permission without asking for the data | |
3854 | * first. | |
3855 | */ | |
3856 | ||
3857 | dst_page->overwriting = TRUE; | |
3858 | dst_page->page_lock = VM_PROT_WRITE; | |
3859 | dst_page->absent = TRUE; | |
3860 | dst_page->unusual = TRUE; | |
3861 | dst_object->absent_count++; | |
3862 | ||
3863 | break; | |
3864 | ||
3865 | /* | |
3866 | * When we bail out, we might have to throw | |
3867 | * away the page created here. | |
3868 | */ | |
3869 | ||
3870 | #define DISCARD_PAGE \ | |
3871 | MACRO_BEGIN \ | |
3872 | vm_object_lock(dst_object); \ | |
3873 | dst_page = vm_page_lookup(dst_object, dst_offset); \ | |
3874 | if ((dst_page != VM_PAGE_NULL) && dst_page->overwriting) \ | |
3875 | VM_PAGE_FREE(dst_page); \ | |
3876 | vm_object_unlock(dst_object); \ | |
3877 | MACRO_END | |
3878 | } | |
3879 | ||
3880 | /* | |
3881 | * If the page is write-protected... | |
3882 | */ | |
3883 | ||
3884 | if (dst_page->page_lock & VM_PROT_WRITE) { | |
3885 | /* | |
3886 | * ... and an unlock request hasn't been sent | |
3887 | */ | |
3888 | ||
3889 | if ( ! (dst_page->unlock_request & VM_PROT_WRITE)) { | |
3890 | vm_prot_t u; | |
3891 | kern_return_t rc; | |
3892 | ||
3893 | /* | |
3894 | * ... then send one now. | |
3895 | */ | |
3896 | ||
3897 | if (!dst_object->pager_ready) { | |
9bccf70c A |
3898 | wait_result = vm_object_assert_wait(dst_object, |
3899 | VM_OBJECT_EVENT_PAGER_READY, | |
3900 | interruptible); | |
1c79356b | 3901 | vm_object_unlock(dst_object); |
9bccf70c A |
3902 | if (wait_result == THREAD_WAITING) |
3903 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
3904 | if (wait_result != THREAD_AWAKENED) { |
3905 | DISCARD_PAGE; | |
3906 | return(VM_FAULT_INTERRUPTED); | |
3907 | } | |
3908 | continue; | |
3909 | } | |
3910 | ||
3911 | u = dst_page->unlock_request |= VM_PROT_WRITE; | |
3912 | vm_object_unlock(dst_object); | |
3913 | ||
3914 | if ((rc = memory_object_data_unlock( | |
3915 | dst_object->pager, | |
1c79356b A |
3916 | dst_offset + dst_object->paging_offset, |
3917 | PAGE_SIZE, | |
3918 | u)) != KERN_SUCCESS) { | |
3919 | if (vm_fault_debug) | |
3920 | printf("vm_object_overwrite: memory_object_data_unlock failed\n"); | |
3921 | DISCARD_PAGE; | |
3922 | return((rc == MACH_SEND_INTERRUPTED) ? | |
3923 | VM_FAULT_INTERRUPTED : | |
3924 | VM_FAULT_MEMORY_ERROR); | |
3925 | } | |
3926 | vm_object_lock(dst_object); | |
3927 | continue; | |
3928 | } | |
3929 | ||
3930 | /* ... fall through to wait below */ | |
3931 | } else { | |
3932 | /* | |
3933 | * If the page isn't being used for other | |
3934 | * purposes, then we're done. | |
3935 | */ | |
3936 | if ( ! (dst_page->busy || dst_page->absent || | |
3937 | dst_page->error || dst_page->restart) ) | |
3938 | break; | |
3939 | } | |
3940 | ||
9bccf70c | 3941 | wait_result = PAGE_ASSERT_WAIT(dst_page, interruptible); |
1c79356b | 3942 | vm_object_unlock(dst_object); |
9bccf70c A |
3943 | if (wait_result == THREAD_WAITING) |
3944 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
3945 | if (wait_result != THREAD_AWAKENED) { |
3946 | DISCARD_PAGE; | |
3947 | return(VM_FAULT_INTERRUPTED); | |
3948 | } | |
3949 | } | |
3950 | ||
3951 | *result_page = dst_page; | |
3952 | return(VM_FAULT_SUCCESS); | |
3953 | ||
3954 | #undef interruptible | |
3955 | #undef DISCARD_PAGE | |
3956 | } | |
3957 | ||
3958 | #endif /* notdef */ | |
3959 | ||
3960 | #if VM_FAULT_CLASSIFY | |
3961 | /* | |
3962 | * Temporary statistics gathering support. | |
3963 | */ | |
3964 | ||
3965 | /* | |
3966 | * Statistics arrays: | |
3967 | */ | |
3968 | #define VM_FAULT_TYPES_MAX 5 | |
3969 | #define VM_FAULT_LEVEL_MAX 8 | |
3970 | ||
3971 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; | |
3972 | ||
3973 | #define VM_FAULT_TYPE_ZERO_FILL 0 | |
3974 | #define VM_FAULT_TYPE_MAP_IN 1 | |
3975 | #define VM_FAULT_TYPE_PAGER 2 | |
3976 | #define VM_FAULT_TYPE_COPY 3 | |
3977 | #define VM_FAULT_TYPE_OTHER 4 | |
3978 | ||
3979 | ||
3980 | void | |
3981 | vm_fault_classify(vm_object_t object, | |
3982 | vm_object_offset_t offset, | |
3983 | vm_prot_t fault_type) | |
3984 | { | |
3985 | int type, level = 0; | |
3986 | vm_page_t m; | |
3987 | ||
3988 | while (TRUE) { | |
3989 | m = vm_page_lookup(object, offset); | |
3990 | if (m != VM_PAGE_NULL) { | |
3991 | if (m->busy || m->error || m->restart || m->absent || | |
3992 | fault_type & m->page_lock) { | |
3993 | type = VM_FAULT_TYPE_OTHER; | |
3994 | break; | |
3995 | } | |
3996 | if (((fault_type & VM_PROT_WRITE) == 0) || | |
3997 | ((level == 0) && object->copy == VM_OBJECT_NULL)) { | |
3998 | type = VM_FAULT_TYPE_MAP_IN; | |
3999 | break; | |
4000 | } | |
4001 | type = VM_FAULT_TYPE_COPY; | |
4002 | break; | |
4003 | } | |
4004 | else { | |
4005 | if (object->pager_created) { | |
4006 | type = VM_FAULT_TYPE_PAGER; | |
4007 | break; | |
4008 | } | |
4009 | if (object->shadow == VM_OBJECT_NULL) { | |
4010 | type = VM_FAULT_TYPE_ZERO_FILL; | |
4011 | break; | |
4012 | } | |
4013 | ||
4014 | offset += object->shadow_offset; | |
4015 | object = object->shadow; | |
4016 | level++; | |
4017 | continue; | |
4018 | } | |
4019 | } | |
4020 | ||
4021 | if (level > VM_FAULT_LEVEL_MAX) | |
4022 | level = VM_FAULT_LEVEL_MAX; | |
4023 | ||
4024 | vm_fault_stats[type][level] += 1; | |
4025 | ||
4026 | return; | |
4027 | } | |
4028 | ||
4029 | /* cleanup routine to call from debugger */ | |
4030 | ||
4031 | void | |
4032 | vm_fault_classify_init(void) | |
4033 | { | |
4034 | int type, level; | |
4035 | ||
4036 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { | |
4037 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { | |
4038 | vm_fault_stats[type][level] = 0; | |
4039 | } | |
4040 | } | |
4041 | ||
4042 | return; | |
4043 | } | |
4044 | #endif /* VM_FAULT_CLASSIFY */ |