]>
Commit | Line | Data |
---|---|---|
39236c6e A |
1 | /* |
2 | * Copyright (c) 2012-2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <mach/host_priv.h> | |
29 | #include <mach/host_special_ports.h> | |
30 | #include <mach/mach_types.h> | |
31 | #include <mach/telemetry_notification_server.h> | |
32 | ||
33 | #include <kern/assert.h> | |
34 | #include <kern/clock.h> | |
35 | #include <kern/debug.h> | |
36 | #include <kern/host.h> | |
37 | #include <kern/kalloc.h> | |
38 | #include <kern/kern_types.h> | |
39 | #include <kern/locks.h> | |
40 | #include <kern/misc_protos.h> | |
41 | #include <kern/sched.h> | |
42 | #include <kern/sched_prim.h> | |
43 | #include <kern/telemetry.h> | |
44 | #include <kern/timer_call.h> | |
39037602 A |
45 | #include <kern/policy_internal.h> |
46 | #include <kern/kcdata.h> | |
39236c6e A |
47 | |
48 | #include <pexpert/pexpert.h> | |
49 | ||
50 | #include <vm/vm_kern.h> | |
51 | #include <vm/vm_shared_region.h> | |
52 | ||
53 | #include <kperf/kperf.h> | |
54 | #include <kperf/context.h> | |
55 | #include <kperf/callstack.h> | |
56 | ||
57 | #include <sys/kdebug.h> | |
58 | #include <uuid/uuid.h> | |
59 | #include <kdp/kdp_dyld.h> | |
60 | ||
61 | #define TELEMETRY_DEBUG 0 | |
62 | ||
63 | extern int proc_pid(void *); | |
64 | extern char *proc_name_address(void *p); | |
65 | extern uint64_t proc_uniqueid(void *p); | |
66 | extern uint64_t proc_was_throttled(void *p); | |
67 | extern uint64_t proc_did_throttle(void *p); | |
39236c6e | 68 | extern int proc_selfpid(void); |
743345f9 A |
69 | extern boolean_t task_did_exec(task_t task); |
70 | extern boolean_t task_is_exec_copy(task_t task); | |
39236c6e | 71 | |
fe8ab488 A |
72 | struct micro_snapshot_buffer { |
73 | vm_offset_t buffer; | |
74 | uint32_t size; | |
75 | uint32_t current_position; | |
76 | uint32_t end_point; | |
77 | }; | |
78 | ||
79 | void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer); | |
80 | int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer); | |
39236c6e A |
81 | |
82 | #define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */ | |
83 | #define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024) | |
84 | #define TELEMETRY_MAX_BUFFER_SIZE (64*1024) | |
85 | ||
86 | #define TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification | |
143464d5 | 87 | #define TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication |
39236c6e A |
88 | |
89 | uint32_t telemetry_sample_rate = 0; | |
90 | volatile boolean_t telemetry_needs_record = FALSE; | |
91 | volatile boolean_t telemetry_needs_timer_arming_record = FALSE; | |
92 | ||
93 | /* | |
94 | * If TRUE, record micro-stackshot samples for all tasks. | |
95 | * If FALSE, only sample tasks which are marked for telemetry. | |
96 | */ | |
97 | boolean_t telemetry_sample_all_tasks = FALSE; | |
98 | uint32_t telemetry_active_tasks = 0; // Number of tasks opted into telemetry | |
99 | ||
100 | uint32_t telemetry_timestamp = 0; | |
101 | ||
fe8ab488 | 102 | /* |
39037602 | 103 | * The telemetry_buffer is responsible |
fe8ab488 A |
104 | * for timer samples and interrupt samples that are driven by |
105 | * compute_averages(). It will notify its client (if one | |
106 | * exists) when it has enough data to be worth flushing. | |
fe8ab488 A |
107 | */ |
108 | struct micro_snapshot_buffer telemetry_buffer = {0, 0, 0, 0}; | |
fe8ab488 | 109 | |
39236c6e A |
110 | int telemetry_bytes_since_last_mark = -1; // How much data since buf was last marked? |
111 | int telemetry_buffer_notify_at = 0; | |
112 | ||
113 | lck_grp_t telemetry_lck_grp; | |
114 | lck_mtx_t telemetry_mtx; | |
115 | ||
116 | #define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while(0) | |
117 | #define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx) | |
118 | #define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while(0) | |
119 | ||
120 | void telemetry_init(void) | |
121 | { | |
122 | kern_return_t ret; | |
123 | uint32_t telemetry_notification_leeway; | |
124 | ||
125 | lck_grp_init(&telemetry_lck_grp, "telemetry group", LCK_GRP_ATTR_NULL); | |
126 | lck_mtx_init(&telemetry_mtx, &telemetry_lck_grp, LCK_ATTR_NULL); | |
127 | ||
fe8ab488 A |
128 | if (!PE_parse_boot_argn("telemetry_buffer_size", &telemetry_buffer.size, sizeof(telemetry_buffer.size))) { |
129 | telemetry_buffer.size = TELEMETRY_DEFAULT_BUFFER_SIZE; | |
39236c6e A |
130 | } |
131 | ||
fe8ab488 A |
132 | if (telemetry_buffer.size > TELEMETRY_MAX_BUFFER_SIZE) |
133 | telemetry_buffer.size = TELEMETRY_MAX_BUFFER_SIZE; | |
39236c6e | 134 | |
3e170ce0 | 135 | ret = kmem_alloc(kernel_map, &telemetry_buffer.buffer, telemetry_buffer.size, VM_KERN_MEMORY_DIAG); |
39236c6e A |
136 | if (ret != KERN_SUCCESS) { |
137 | kprintf("Telemetry: Allocation failed: %d\n", ret); | |
138 | return; | |
139 | } | |
fe8ab488 | 140 | bzero((void *) telemetry_buffer.buffer, telemetry_buffer.size); |
39236c6e A |
141 | |
142 | if (!PE_parse_boot_argn("telemetry_notification_leeway", &telemetry_notification_leeway, sizeof(telemetry_notification_leeway))) { | |
143 | /* | |
144 | * By default, notify the user to collect the buffer when there is this much space left in the buffer. | |
145 | */ | |
146 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; | |
147 | } | |
fe8ab488 | 148 | if (telemetry_notification_leeway >= telemetry_buffer.size) { |
39236c6e A |
149 | printf("telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n", |
150 | telemetry_notification_leeway, TELEMETRY_DEFAULT_NOTIFY_LEEWAY); | |
151 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; | |
152 | } | |
fe8ab488 | 153 | telemetry_buffer_notify_at = telemetry_buffer.size - telemetry_notification_leeway; |
39236c6e A |
154 | |
155 | if (!PE_parse_boot_argn("telemetry_sample_rate", &telemetry_sample_rate, sizeof(telemetry_sample_rate))) { | |
156 | telemetry_sample_rate = TELEMETRY_DEFAULT_SAMPLE_RATE; | |
157 | } | |
158 | ||
159 | /* | |
160 | * To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args. | |
161 | */ | |
162 | if (!PE_parse_boot_argn("telemetry_sample_all_tasks", &telemetry_sample_all_tasks, sizeof(telemetry_sample_all_tasks))) { | |
163 | ||
164 | telemetry_sample_all_tasks = TRUE; | |
165 | ||
166 | } | |
167 | ||
168 | kprintf("Telemetry: Sampling %stasks once per %u second%s\n", | |
169 | (telemetry_sample_all_tasks) ? "all " : "", | |
170 | telemetry_sample_rate, telemetry_sample_rate == 1 ? "" : "s"); | |
171 | } | |
172 | ||
173 | /* | |
174 | * Enable or disable global microstackshots (ie telemetry_sample_all_tasks). | |
175 | * | |
176 | * enable_disable == 1: turn it on | |
177 | * enable_disable == 0: turn it off | |
178 | */ | |
179 | void | |
180 | telemetry_global_ctl(int enable_disable) | |
181 | { | |
182 | if (enable_disable == 1) { | |
183 | telemetry_sample_all_tasks = TRUE; | |
184 | } else { | |
185 | telemetry_sample_all_tasks = FALSE; | |
186 | } | |
187 | } | |
188 | ||
189 | /* | |
190 | * Opt the given task into or out of the telemetry stream. | |
191 | * | |
192 | * Supported reasons (callers may use any or all of): | |
193 | * TF_CPUMON_WARNING | |
194 | * TF_WAKEMON_WARNING | |
195 | * | |
196 | * enable_disable == 1: turn it on | |
197 | * enable_disable == 0: turn it off | |
198 | */ | |
199 | void | |
200 | telemetry_task_ctl(task_t task, uint32_t reasons, int enable_disable) | |
201 | { | |
202 | task_lock(task); | |
203 | telemetry_task_ctl_locked(task, reasons, enable_disable); | |
204 | task_unlock(task); | |
205 | } | |
206 | ||
207 | void | |
208 | telemetry_task_ctl_locked(task_t task, uint32_t reasons, int enable_disable) | |
209 | { | |
210 | uint32_t origflags; | |
211 | ||
212 | assert((reasons != 0) && ((reasons | TF_TELEMETRY) == TF_TELEMETRY)); | |
213 | ||
214 | task_lock_assert_owned(task); | |
215 | ||
216 | origflags = task->t_flags; | |
217 | ||
218 | if (enable_disable == 1) { | |
219 | task->t_flags |= reasons; | |
220 | if ((origflags & TF_TELEMETRY) == 0) { | |
221 | OSIncrementAtomic(&telemetry_active_tasks); | |
222 | #if TELEMETRY_DEBUG | |
223 | printf("%s: telemetry OFF -> ON (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks); | |
224 | #endif | |
225 | } | |
226 | } else { | |
227 | task->t_flags &= ~reasons; | |
228 | if (((origflags & TF_TELEMETRY) != 0) && ((task->t_flags & TF_TELEMETRY) == 0)) { | |
229 | /* | |
230 | * If this task went from having at least one telemetry bit to having none, | |
231 | * the net change was to disable telemetry for the task. | |
232 | */ | |
233 | OSDecrementAtomic(&telemetry_active_tasks); | |
234 | #if TELEMETRY_DEBUG | |
235 | printf("%s: telemetry ON -> OFF (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks); | |
236 | #endif | |
237 | } | |
238 | } | |
239 | } | |
240 | ||
241 | /* | |
242 | * Determine if the current thread is eligible for telemetry: | |
243 | * | |
244 | * telemetry_sample_all_tasks: All threads are eligible. This takes precedence. | |
245 | * telemetry_active_tasks: Count of tasks opted in. | |
246 | * task->t_flags & TF_TELEMETRY: This task is opted in. | |
247 | */ | |
248 | static boolean_t | |
249 | telemetry_is_active(thread_t thread) | |
250 | { | |
3e170ce0 A |
251 | task_t task = thread->task; |
252 | ||
253 | if (task == kernel_task) { | |
254 | /* Kernel threads never return to an AST boundary, and are ineligible */ | |
255 | return FALSE; | |
256 | } | |
257 | ||
39236c6e A |
258 | if (telemetry_sample_all_tasks == TRUE) { |
259 | return (TRUE); | |
260 | } | |
261 | ||
262 | if ((telemetry_active_tasks > 0) && ((thread->task->t_flags & TF_TELEMETRY) != 0)) { | |
263 | return (TRUE); | |
264 | } | |
265 | ||
266 | return (FALSE); | |
267 | } | |
268 | ||
269 | /* | |
270 | * Userland is arming a timer. If we are eligible for such a record, | |
271 | * sample now. No need to do this one at the AST because we're already at | |
272 | * a safe place in this system call. | |
273 | */ | |
274 | int telemetry_timer_event(__unused uint64_t deadline, __unused uint64_t interval, __unused uint64_t leeway) | |
275 | { | |
276 | if (telemetry_needs_timer_arming_record == TRUE) { | |
277 | telemetry_needs_timer_arming_record = FALSE; | |
fe8ab488 | 278 | telemetry_take_sample(current_thread(), kTimerArmingRecord | kUserMode, &telemetry_buffer); |
39236c6e A |
279 | } |
280 | ||
281 | return (0); | |
282 | } | |
283 | ||
284 | /* | |
285 | * Mark the current thread for an interrupt-based | |
286 | * telemetry record, to be sampled at the next AST boundary. | |
287 | */ | |
288 | void telemetry_mark_curthread(boolean_t interrupted_userspace) | |
289 | { | |
fe8ab488 | 290 | uint32_t ast_bits = 0; |
39236c6e A |
291 | thread_t thread = current_thread(); |
292 | ||
293 | /* | |
294 | * If telemetry isn't active for this thread, return and try | |
295 | * again next time. | |
296 | */ | |
297 | if (telemetry_is_active(thread) == FALSE) { | |
298 | return; | |
299 | } | |
300 | ||
fe8ab488 A |
301 | ast_bits |= (interrupted_userspace ? AST_TELEMETRY_USER : AST_TELEMETRY_KERNEL); |
302 | ||
39236c6e | 303 | telemetry_needs_record = FALSE; |
fe8ab488 | 304 | thread_ast_set(thread, ast_bits); |
39236c6e A |
305 | ast_propagate(thread->ast); |
306 | } | |
307 | ||
308 | void compute_telemetry(void *arg __unused) | |
309 | { | |
310 | if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) { | |
311 | if ((++telemetry_timestamp) % telemetry_sample_rate == 0) { | |
fe8ab488 A |
312 | telemetry_needs_record = TRUE; |
313 | telemetry_needs_timer_arming_record = TRUE; | |
314 | } | |
315 | } | |
316 | } | |
317 | ||
39236c6e A |
318 | /* |
319 | * If userland has registered a port for telemetry notifications, send one now. | |
320 | */ | |
321 | static void | |
322 | telemetry_notify_user(void) | |
323 | { | |
324 | mach_port_t user_port; | |
325 | uint32_t flags = 0; | |
326 | int error; | |
327 | ||
328 | error = host_get_telemetry_port(host_priv_self(), &user_port); | |
329 | if ((error != KERN_SUCCESS) || !IPC_PORT_VALID(user_port)) { | |
330 | return; | |
331 | } | |
332 | ||
333 | telemetry_notification(user_port, flags); | |
39037602 | 334 | ipc_port_release_send(user_port); |
39236c6e A |
335 | } |
336 | ||
39037602 | 337 | void telemetry_ast(thread_t thread, boolean_t interrupted_userspace, boolean_t io_telemetry) |
39236c6e A |
338 | { |
339 | uint8_t microsnapshot_flags = kInterruptRecord; | |
39037602 A |
340 | if (io_telemetry == TRUE) { |
341 | microsnapshot_flags = kIORecord; | |
342 | } | |
39236c6e A |
343 | |
344 | if (interrupted_userspace) | |
345 | microsnapshot_flags |= kUserMode; | |
346 | ||
39037602 | 347 | telemetry_take_sample(thread, microsnapshot_flags, &telemetry_buffer); |
39236c6e A |
348 | } |
349 | ||
fe8ab488 | 350 | void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer) |
39236c6e A |
351 | { |
352 | task_t task; | |
353 | void *p; | |
354 | struct kperf_context ctx; | |
355 | struct callstack cs; | |
356 | uint32_t btcount, bti; | |
357 | struct micro_snapshot *msnap; | |
358 | struct task_snapshot *tsnap; | |
359 | struct thread_snapshot *thsnap; | |
360 | clock_sec_t secs; | |
361 | clock_usec_t usecs; | |
362 | vm_size_t framesize; | |
363 | uint32_t current_record_start; | |
364 | uint32_t tmp = 0; | |
365 | boolean_t notify = FALSE; | |
366 | ||
367 | if (thread == THREAD_NULL) | |
368 | return; | |
369 | ||
370 | task = thread->task; | |
743345f9 | 371 | if ((task == TASK_NULL) || (task == kernel_task) || task_did_exec(task) || task_is_exec_copy(task)) |
39236c6e A |
372 | return; |
373 | ||
fe8ab488 A |
374 | /* |
375 | * To avoid overloading the system with telemetry requests, make | |
376 | * sure we don't add more requests while existing ones are | |
377 | * in-flight. Attempt this by checking if we can grab the lock. | |
378 | * | |
379 | * This concerns me a little; this working as intended is | |
380 | * contingent on the workload being done in the context of the | |
381 | * telemetry lock being the expensive part of telemetry. This | |
382 | * includes populating the buffer and the client gathering it, | |
383 | * but excludes the copyin overhead. | |
384 | */ | |
385 | if (!TELEMETRY_TRY_SPIN_LOCK()) | |
386 | return; | |
387 | ||
388 | TELEMETRY_UNLOCK(); | |
389 | ||
39236c6e | 390 | /* telemetry_XXX accessed outside of lock for instrumentation only */ |
fe8ab488 A |
391 | /* TODO */ |
392 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_START, microsnapshot_flags, telemetry_bytes_since_last_mark, 0, 0, (&telemetry_buffer != current_buffer)); | |
39236c6e A |
393 | |
394 | p = get_bsdtask_info(task); | |
395 | ||
396 | ctx.cur_thread = thread; | |
397 | ctx.cur_pid = proc_pid(p); | |
398 | ||
399 | /* | |
400 | * Gather up the data we'll need for this sample. The sample is written into the kernel | |
401 | * buffer with the global telemetry lock held -- so we must do our (possibly faulting) | |
402 | * copies from userland here, before taking the lock. | |
403 | */ | |
39037602 | 404 | cs.nframes = MAX_CALLSTACK_FRAMES; |
39236c6e A |
405 | kperf_ucallstack_sample(&cs, &ctx); |
406 | if (!(cs.flags & CALLSTACK_VALID)) | |
407 | return; | |
408 | ||
409 | /* | |
410 | * Find the actual [slid] address of the shared cache's UUID, and copy it in from userland. | |
411 | */ | |
412 | int shared_cache_uuid_valid = 0; | |
413 | uint64_t shared_cache_base_address; | |
414 | struct _dyld_cache_header shared_cache_header; | |
415 | uint64_t shared_cache_slide; | |
416 | ||
417 | /* | |
418 | * Don't copy in the entire shared cache header; we only need the UUID. Calculate the | |
419 | * offset of that one field. | |
420 | */ | |
421 | int sc_header_uuid_offset = (char *)&shared_cache_header.uuid - (char *)&shared_cache_header; | |
422 | vm_shared_region_t sr = vm_shared_region_get(task); | |
423 | if (sr != NULL) { | |
424 | if ((vm_shared_region_start_address(sr, &shared_cache_base_address) == KERN_SUCCESS) && | |
425 | (copyin(shared_cache_base_address + sc_header_uuid_offset, (char *)&shared_cache_header.uuid, | |
426 | sizeof (shared_cache_header.uuid)) == 0)) { | |
427 | shared_cache_uuid_valid = 1; | |
428 | shared_cache_slide = vm_shared_region_get_slide(sr); | |
429 | } | |
430 | // vm_shared_region_get() gave us a reference on the shared region. | |
431 | vm_shared_region_deallocate(sr); | |
432 | } | |
433 | ||
434 | /* | |
435 | * Retrieve the array of UUID's for binaries used by this task. | |
436 | * We reach down into DYLD's data structures to find the array. | |
437 | * | |
438 | * XXX - make this common with kdp? | |
439 | */ | |
440 | uint32_t uuid_info_count = 0; | |
441 | mach_vm_address_t uuid_info_addr = 0; | |
442 | if (task_has_64BitAddr(task)) { | |
443 | struct user64_dyld_all_image_infos task_image_infos; | |
444 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { | |
445 | uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; | |
446 | uuid_info_addr = task_image_infos.uuidArray; | |
447 | } | |
448 | } else { | |
449 | struct user32_dyld_all_image_infos task_image_infos; | |
450 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { | |
451 | uuid_info_count = task_image_infos.uuidArrayCount; | |
452 | uuid_info_addr = task_image_infos.uuidArray; | |
453 | } | |
454 | } | |
455 | ||
456 | /* | |
457 | * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating | |
458 | * this data structure), we zero the uuid_info_count so that we won't even try to save load info | |
459 | * for this task. | |
460 | */ | |
461 | if (!uuid_info_addr) { | |
462 | uuid_info_count = 0; | |
463 | } | |
464 | ||
143464d5 A |
465 | /* |
466 | * Don't copy in an unbounded amount of memory. The main binary and interesting | |
467 | * non-shared-cache libraries should be in the first few images. | |
468 | */ | |
469 | if (uuid_info_count > TELEMETRY_MAX_UUID_COUNT) { | |
470 | uuid_info_count = TELEMETRY_MAX_UUID_COUNT; | |
471 | } | |
472 | ||
39236c6e A |
473 | uint32_t uuid_info_size = (uint32_t)(task_has_64BitAddr(thread->task) ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info)); |
474 | uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size; | |
475 | char *uuid_info_array = NULL; | |
476 | ||
477 | if (uuid_info_count > 0) { | |
478 | if ((uuid_info_array = (char *)kalloc(uuid_info_array_size)) == NULL) { | |
479 | return; | |
480 | } | |
481 | ||
482 | /* | |
483 | * Copy in the UUID info array. | |
484 | * It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot. | |
485 | */ | |
486 | if (copyin(uuid_info_addr, uuid_info_array, uuid_info_array_size) != 0) { | |
487 | kfree(uuid_info_array, uuid_info_array_size); | |
488 | uuid_info_array = NULL; | |
489 | uuid_info_array_size = 0; | |
490 | } | |
491 | } | |
492 | ||
493 | /* | |
494 | * Look for a dispatch queue serial number, and copy it in from userland if present. | |
495 | */ | |
496 | uint64_t dqserialnum = 0; | |
497 | int dqserialnum_valid = 0; | |
498 | ||
499 | uint64_t dqkeyaddr = thread_dispatchqaddr(thread); | |
500 | if (dqkeyaddr != 0) { | |
501 | uint64_t dqaddr = 0; | |
39037602 | 502 | uint64_t dq_serialno_offset = get_task_dispatchqueue_serialno_offset(task); |
39236c6e A |
503 | if ((copyin(dqkeyaddr, (char *)&dqaddr, (task_has_64BitAddr(task) ? 8 : 4)) == 0) && |
504 | (dqaddr != 0) && (dq_serialno_offset != 0)) { | |
505 | uint64_t dqserialnumaddr = dqaddr + dq_serialno_offset; | |
506 | if (copyin(dqserialnumaddr, (char *)&dqserialnum, (task_has_64BitAddr(task) ? 8 : 4)) == 0) { | |
507 | dqserialnum_valid = 1; | |
508 | } | |
509 | } | |
510 | } | |
511 | ||
512 | clock_get_calendar_microtime(&secs, &usecs); | |
513 | ||
514 | TELEMETRY_LOCK(); | |
515 | ||
fe8ab488 | 516 | /* |
39037602 | 517 | * If our buffer is not backed by anything, |
fe8ab488 A |
518 | * then we cannot take the sample. Meant to allow us to deallocate the window |
519 | * buffer if it is disabled. | |
520 | */ | |
521 | if (!current_buffer->buffer) | |
522 | goto cancel_sample; | |
523 | ||
39236c6e A |
524 | /* |
525 | * We do the bulk of the operation under the telemetry lock, on assumption that | |
526 | * any page faults during execution will not cause another AST_TELEMETRY_ALL | |
527 | * to deadlock; they will just block until we finish. This makes it easier | |
528 | * to copy into the buffer directly. As soon as we unlock, userspace can copy | |
529 | * out of our buffer. | |
530 | */ | |
531 | ||
532 | copytobuffer: | |
533 | ||
fe8ab488 | 534 | current_record_start = current_buffer->current_position; |
39236c6e | 535 | |
fe8ab488 | 536 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct micro_snapshot)) { |
39236c6e A |
537 | /* |
538 | * We can't fit a record in the space available, so wrap around to the beginning. | |
539 | * Save the current position as the known end point of valid data. | |
540 | */ | |
fe8ab488 A |
541 | current_buffer->end_point = current_record_start; |
542 | current_buffer->current_position = 0; | |
143464d5 A |
543 | if (current_record_start == 0) { |
544 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
545 | goto cancel_sample; | |
546 | } | |
39236c6e A |
547 | goto copytobuffer; |
548 | } | |
549 | ||
fe8ab488 | 550 | msnap = (struct micro_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
39236c6e A |
551 | msnap->snapshot_magic = STACKSHOT_MICRO_SNAPSHOT_MAGIC; |
552 | msnap->ms_flags = microsnapshot_flags; | |
553 | msnap->ms_opaque_flags = 0; /* namespace managed by userspace */ | |
554 | msnap->ms_cpu = 0; /* XXX - does this field make sense for a micro-stackshot? */ | |
555 | msnap->ms_time = secs; | |
556 | msnap->ms_time_microsecs = usecs; | |
557 | ||
fe8ab488 | 558 | current_buffer->current_position += sizeof(struct micro_snapshot); |
39236c6e | 559 | |
fe8ab488 A |
560 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct task_snapshot)) { |
561 | current_buffer->end_point = current_record_start; | |
562 | current_buffer->current_position = 0; | |
143464d5 A |
563 | if (current_record_start == 0) { |
564 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
565 | goto cancel_sample; | |
566 | } | |
39236c6e A |
567 | goto copytobuffer; |
568 | } | |
569 | ||
fe8ab488 | 570 | tsnap = (struct task_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
39236c6e A |
571 | bzero(tsnap, sizeof(*tsnap)); |
572 | tsnap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC; | |
573 | tsnap->pid = proc_pid(p); | |
574 | tsnap->uniqueid = proc_uniqueid(p); | |
575 | tsnap->user_time_in_terminated_threads = task->total_user_time; | |
576 | tsnap->system_time_in_terminated_threads = task->total_system_time; | |
577 | tsnap->suspend_count = task->suspend_count; | |
578 | tsnap->task_size = pmap_resident_count(task->map->pmap); | |
579 | tsnap->faults = task->faults; | |
580 | tsnap->pageins = task->pageins; | |
581 | tsnap->cow_faults = task->cow_faults; | |
582 | /* | |
583 | * The throttling counters are maintained as 64-bit counters in the proc | |
584 | * structure. However, we reserve 32-bits (each) for them in the task_snapshot | |
585 | * struct to save space and since we do not expect them to overflow 32-bits. If we | |
586 | * find these values overflowing in the future, the fix would be to simply | |
587 | * upgrade these counters to 64-bit in the task_snapshot struct | |
588 | */ | |
589 | tsnap->was_throttled = (uint32_t) proc_was_throttled(p); | |
590 | tsnap->did_throttle = (uint32_t) proc_did_throttle(p); | |
591 | ||
592 | if (task->t_flags & TF_TELEMETRY) { | |
593 | tsnap->ss_flags |= kTaskRsrcFlagged; | |
594 | } | |
595 | ||
39037602 | 596 | if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG)) { |
39236c6e A |
597 | tsnap->ss_flags |= kTaskDarwinBG; |
598 | } | |
15129b1c A |
599 | |
600 | proc_get_darwinbgstate(task, &tmp); | |
39236c6e | 601 | |
39037602 | 602 | if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) { |
39236c6e A |
603 | tsnap->ss_flags |= kTaskIsForeground; |
604 | } | |
605 | ||
606 | if (tmp & PROC_FLAG_ADAPTIVE_IMPORTANT) { | |
607 | tsnap->ss_flags |= kTaskIsBoosted; | |
608 | } | |
609 | ||
610 | if (tmp & PROC_FLAG_SUPPRESSED) { | |
611 | tsnap->ss_flags |= kTaskIsSuppressed; | |
612 | } | |
613 | ||
614 | tsnap->latency_qos = task_grab_latency_qos(task); | |
615 | ||
616 | strlcpy(tsnap->p_comm, proc_name_address(p), sizeof(tsnap->p_comm)); | |
617 | if (task_has_64BitAddr(thread->task)) { | |
618 | tsnap->ss_flags |= kUser64_p; | |
619 | } | |
620 | ||
621 | if (shared_cache_uuid_valid) { | |
622 | tsnap->shared_cache_slide = shared_cache_slide; | |
623 | bcopy(shared_cache_header.uuid, tsnap->shared_cache_identifier, sizeof (shared_cache_header.uuid)); | |
624 | } | |
625 | ||
fe8ab488 | 626 | current_buffer->current_position += sizeof(struct task_snapshot); |
39236c6e A |
627 | |
628 | /* | |
629 | * Directly after the task snapshot, place the array of UUID's corresponding to the binaries | |
630 | * used by this task. | |
631 | */ | |
fe8ab488 A |
632 | if ((current_buffer->size - current_buffer->current_position) < uuid_info_array_size) { |
633 | current_buffer->end_point = current_record_start; | |
634 | current_buffer->current_position = 0; | |
143464d5 A |
635 | if (current_record_start == 0) { |
636 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
637 | goto cancel_sample; | |
638 | } | |
39236c6e A |
639 | goto copytobuffer; |
640 | } | |
641 | ||
642 | /* | |
643 | * Copy the UUID info array into our sample. | |
644 | */ | |
645 | if (uuid_info_array_size > 0) { | |
fe8ab488 | 646 | bcopy(uuid_info_array, (char *)(current_buffer->buffer + current_buffer->current_position), uuid_info_array_size); |
39236c6e A |
647 | tsnap->nloadinfos = uuid_info_count; |
648 | } | |
649 | ||
fe8ab488 | 650 | current_buffer->current_position += uuid_info_array_size; |
39236c6e A |
651 | |
652 | /* | |
653 | * After the task snapshot & list of binary UUIDs, we place a thread snapshot. | |
654 | */ | |
655 | ||
fe8ab488 | 656 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct thread_snapshot)) { |
39236c6e | 657 | /* wrap and overwrite */ |
fe8ab488 A |
658 | current_buffer->end_point = current_record_start; |
659 | current_buffer->current_position = 0; | |
143464d5 A |
660 | if (current_record_start == 0) { |
661 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
662 | goto cancel_sample; | |
663 | } | |
39236c6e A |
664 | goto copytobuffer; |
665 | } | |
666 | ||
fe8ab488 | 667 | thsnap = (struct thread_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
39236c6e A |
668 | bzero(thsnap, sizeof(*thsnap)); |
669 | ||
670 | thsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC; | |
671 | thsnap->thread_id = thread_tid(thread); | |
672 | thsnap->state = thread->state; | |
3e170ce0 | 673 | thsnap->priority = thread->base_pri; |
39236c6e A |
674 | thsnap->sched_pri = thread->sched_pri; |
675 | thsnap->sched_flags = thread->sched_flags; | |
676 | thsnap->ss_flags |= kStacksPCOnly; | |
fe8ab488 | 677 | thsnap->ts_qos = thread->effective_policy.thep_qos; |
3e170ce0 A |
678 | thsnap->ts_rqos = thread->requested_policy.thrp_qos; |
679 | thsnap->ts_rqos_override = thread->requested_policy.thrp_qos_override; | |
39236c6e | 680 | |
39037602 | 681 | if (proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG)) { |
39236c6e A |
682 | thsnap->ss_flags |= kThreadDarwinBG; |
683 | } | |
684 | ||
685 | thsnap->user_time = timer_grab(&thread->user_timer); | |
686 | ||
687 | uint64_t tval = timer_grab(&thread->system_timer); | |
688 | ||
689 | if (thread->precise_user_kernel_time) { | |
690 | thsnap->system_time = tval; | |
691 | } else { | |
692 | thsnap->user_time += tval; | |
693 | thsnap->system_time = 0; | |
694 | } | |
695 | ||
fe8ab488 | 696 | current_buffer->current_position += sizeof(struct thread_snapshot); |
39236c6e A |
697 | |
698 | /* | |
699 | * If this thread has a dispatch queue serial number, include it here. | |
700 | */ | |
701 | if (dqserialnum_valid) { | |
fe8ab488 | 702 | if ((current_buffer->size - current_buffer->current_position) < sizeof(dqserialnum)) { |
39236c6e | 703 | /* wrap and overwrite */ |
fe8ab488 A |
704 | current_buffer->end_point = current_record_start; |
705 | current_buffer->current_position = 0; | |
143464d5 A |
706 | if (current_record_start == 0) { |
707 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
708 | goto cancel_sample; | |
709 | } | |
39236c6e A |
710 | goto copytobuffer; |
711 | } | |
712 | ||
713 | thsnap->ss_flags |= kHasDispatchSerial; | |
fe8ab488 A |
714 | bcopy(&dqserialnum, (char *)current_buffer->buffer + current_buffer->current_position, sizeof (dqserialnum)); |
715 | current_buffer->current_position += sizeof (dqserialnum); | |
39236c6e A |
716 | } |
717 | ||
718 | if (task_has_64BitAddr(task)) { | |
719 | framesize = 8; | |
720 | thsnap->ss_flags |= kUser64_p; | |
721 | } else { | |
722 | framesize = 4; | |
723 | } | |
724 | ||
725 | btcount = cs.nframes; | |
726 | ||
727 | /* | |
728 | * If we can't fit this entire stacktrace then cancel this record, wrap to the beginning, | |
729 | * and start again there so that we always store a full record. | |
730 | */ | |
fe8ab488 A |
731 | if ((current_buffer->size - current_buffer->current_position)/framesize < btcount) { |
732 | current_buffer->end_point = current_record_start; | |
733 | current_buffer->current_position = 0; | |
143464d5 A |
734 | if (current_record_start == 0) { |
735 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
736 | goto cancel_sample; | |
737 | } | |
39236c6e A |
738 | goto copytobuffer; |
739 | } | |
740 | ||
fe8ab488 | 741 | for (bti=0; bti < btcount; bti++, current_buffer->current_position += framesize) { |
39236c6e | 742 | if (framesize == 8) { |
fe8ab488 | 743 | *(uint64_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = cs.frames[bti]; |
39236c6e | 744 | } else { |
fe8ab488 | 745 | *(uint32_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = (uint32_t)cs.frames[bti]; |
39236c6e A |
746 | } |
747 | } | |
748 | ||
fe8ab488 | 749 | if (current_buffer->end_point < current_buffer->current_position) { |
39236c6e A |
750 | /* |
751 | * Each time the cursor wraps around to the beginning, we leave a | |
752 | * differing amount of unused space at the end of the buffer. Make | |
753 | * sure the cursor pushes the end point in case we're making use of | |
754 | * more of the buffer than we did the last time we wrapped. | |
755 | */ | |
fe8ab488 | 756 | current_buffer->end_point = current_buffer->current_position; |
39236c6e A |
757 | } |
758 | ||
759 | thsnap->nuser_frames = btcount; | |
760 | ||
fe8ab488 A |
761 | /* |
762 | * Now THIS is a hack. | |
763 | */ | |
764 | if (current_buffer == &telemetry_buffer) { | |
765 | telemetry_bytes_since_last_mark += (current_buffer->current_position - current_record_start); | |
766 | if (telemetry_bytes_since_last_mark > telemetry_buffer_notify_at) { | |
767 | notify = TRUE; | |
768 | } | |
39236c6e A |
769 | } |
770 | ||
143464d5 A |
771 | cancel_sample: |
772 | ||
39236c6e A |
773 | TELEMETRY_UNLOCK(); |
774 | ||
fe8ab488 A |
775 | /* TODO */ |
776 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_END, notify, telemetry_bytes_since_last_mark, current_buffer->current_position, current_buffer->end_point, (&telemetry_buffer != current_buffer)); | |
39236c6e A |
777 | |
778 | if (notify) { | |
779 | telemetry_notify_user(); | |
780 | } | |
781 | ||
782 | if (uuid_info_array != NULL) { | |
783 | kfree(uuid_info_array, uuid_info_array_size); | |
784 | } | |
785 | } | |
786 | ||
787 | #if TELEMETRY_DEBUG | |
788 | static void | |
789 | log_telemetry_output(vm_offset_t buf, uint32_t pos, uint32_t sz) | |
790 | { | |
791 | struct micro_snapshot *p; | |
792 | uint32_t offset; | |
793 | ||
794 | printf("Copying out %d bytes of telemetry at offset %d\n", sz, pos); | |
795 | ||
796 | buf += pos; | |
797 | ||
798 | /* | |
799 | * Find and log each timestamp in this chunk of buffer. | |
800 | */ | |
801 | for (offset = 0; offset < sz; offset++) { | |
802 | p = (struct micro_snapshot *)(buf + offset); | |
803 | if (p->snapshot_magic == STACKSHOT_MICRO_SNAPSHOT_MAGIC) { | |
804 | printf("telemetry timestamp: %lld\n", p->ms_time); | |
805 | } | |
806 | } | |
807 | } | |
808 | #endif | |
809 | ||
810 | int telemetry_gather(user_addr_t buffer, uint32_t *length, boolean_t mark) | |
fe8ab488 A |
811 | { |
812 | return telemetry_buffer_gather(buffer, length, mark, &telemetry_buffer); | |
813 | } | |
814 | ||
fe8ab488 | 815 | int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer) |
39236c6e A |
816 | { |
817 | int result = 0; | |
818 | uint32_t oldest_record_offset; | |
819 | ||
fe8ab488 A |
820 | /* TODO */ |
821 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_START, mark, telemetry_bytes_since_last_mark, 0, 0, (&telemetry_buffer != current_buffer)); | |
39236c6e A |
822 | |
823 | TELEMETRY_LOCK(); | |
824 | ||
fe8ab488 | 825 | if (current_buffer->buffer == 0) { |
39236c6e A |
826 | *length = 0; |
827 | goto out; | |
828 | } | |
829 | ||
fe8ab488 | 830 | if (*length < current_buffer->size) { |
39236c6e A |
831 | result = KERN_NO_SPACE; |
832 | goto out; | |
833 | } | |
834 | ||
835 | /* | |
836 | * Copy the ring buffer out to userland in order sorted by time: least recent to most recent. | |
837 | * First, we need to search forward from the cursor to find the oldest record in our buffer. | |
838 | */ | |
fe8ab488 | 839 | oldest_record_offset = current_buffer->current_position; |
39236c6e | 840 | do { |
fe8ab488 A |
841 | if (((oldest_record_offset + sizeof(uint32_t)) > current_buffer->size) || |
842 | ((oldest_record_offset + sizeof(uint32_t)) > current_buffer->end_point)) { | |
39236c6e | 843 | |
fe8ab488 | 844 | if (*(uint32_t *)(uintptr_t)(current_buffer->buffer) == 0) { |
39236c6e A |
845 | /* |
846 | * There is no magic number at the start of the buffer, which means | |
847 | * it's empty; nothing to see here yet. | |
848 | */ | |
849 | *length = 0; | |
850 | goto out; | |
851 | } | |
852 | /* | |
853 | * We've looked through the end of the active buffer without finding a valid | |
854 | * record; that means all valid records are in a single chunk, beginning at | |
855 | * the very start of the buffer. | |
856 | */ | |
857 | ||
858 | oldest_record_offset = 0; | |
fe8ab488 | 859 | assert(*(uint32_t *)(uintptr_t)(current_buffer->buffer) == STACKSHOT_MICRO_SNAPSHOT_MAGIC); |
39236c6e A |
860 | break; |
861 | } | |
862 | ||
fe8ab488 | 863 | if (*(uint32_t *)(uintptr_t)(current_buffer->buffer + oldest_record_offset) == STACKSHOT_MICRO_SNAPSHOT_MAGIC) |
39236c6e A |
864 | break; |
865 | ||
866 | /* | |
867 | * There are no alignment guarantees for micro-stackshot records, so we must search at each | |
868 | * byte offset. | |
869 | */ | |
870 | oldest_record_offset++; | |
fe8ab488 | 871 | } while (oldest_record_offset != current_buffer->current_position); |
39236c6e A |
872 | |
873 | /* | |
874 | * If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then | |
875 | * from the beginning of the buffer up to the current position. | |
876 | */ | |
877 | if (oldest_record_offset != 0) { | |
878 | #if TELEMETRY_DEBUG | |
fe8ab488 A |
879 | log_telemetry_output(current_buffer->buffer, oldest_record_offset, |
880 | current_buffer->end_point - oldest_record_offset); | |
39236c6e | 881 | #endif |
fe8ab488 A |
882 | if ((result = copyout((void *)(current_buffer->buffer + oldest_record_offset), buffer, |
883 | current_buffer->end_point - oldest_record_offset)) != 0) { | |
39236c6e A |
884 | *length = 0; |
885 | goto out; | |
886 | } | |
fe8ab488 | 887 | *length = current_buffer->end_point - oldest_record_offset; |
39236c6e A |
888 | } else { |
889 | *length = 0; | |
890 | } | |
891 | ||
892 | #if TELEMETRY_DEBUG | |
fe8ab488 | 893 | log_telemetry_output(current_buffer->buffer, 0, current_buffer->current_position); |
39236c6e | 894 | #endif |
fe8ab488 A |
895 | if ((result = copyout((void *)current_buffer->buffer, buffer + *length, |
896 | current_buffer->current_position)) != 0) { | |
39236c6e A |
897 | *length = 0; |
898 | goto out; | |
899 | } | |
fe8ab488 | 900 | *length += (uint32_t)current_buffer->current_position; |
39236c6e A |
901 | |
902 | out: | |
903 | ||
904 | if (mark && (*length > 0)) { | |
905 | telemetry_bytes_since_last_mark = 0; | |
906 | } | |
907 | ||
908 | TELEMETRY_UNLOCK(); | |
909 | ||
fe8ab488 | 910 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_END, current_buffer->current_position, *length, current_buffer->end_point, 0, (&telemetry_buffer != current_buffer)); |
39236c6e A |
911 | |
912 | return (result); | |
913 | } | |
914 | ||
915 | /************************/ | |
916 | /* BOOT PROFILE SUPPORT */ | |
917 | /************************/ | |
918 | /* | |
919 | * Boot Profiling | |
920 | * | |
921 | * The boot-profiling support is a mechanism to sample activity happening on the | |
922 | * system during boot. This mechanism sets up a periodic timer and on every timer fire, | |
923 | * captures a full backtrace into the boot profiling buffer. This buffer can be pulled | |
924 | * out and analyzed from user-space. It is turned on using the following boot-args: | |
925 | * "bootprofile_buffer_size" specifies the size of the boot profile buffer | |
926 | * "bootprofile_interval_ms" specifies the interval for the profiling timer | |
927 | * | |
928 | * Process Specific Boot Profiling | |
929 | * | |
930 | * The boot-arg "bootprofile_proc_name" can be used to specify a certain | |
931 | * process that needs to profiled during boot. Setting this boot-arg changes | |
932 | * the way stackshots are captured. At every timer fire, the code looks at the | |
933 | * currently running process and takes a stackshot only if the requested process | |
934 | * is on-core (which makes it unsuitable for MP systems). | |
935 | * | |
fe8ab488 A |
936 | * Trigger Events |
937 | * | |
938 | * The boot-arg "bootprofile_type=boot" starts the timer during early boot. Using | |
939 | * "wake" starts the timer at AP wake from suspend-to-RAM. | |
39236c6e A |
940 | */ |
941 | ||
942 | #define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */ | |
943 | ||
944 | vm_offset_t bootprofile_buffer = 0; | |
945 | uint32_t bootprofile_buffer_size = 0; | |
946 | uint32_t bootprofile_buffer_current_position = 0; | |
947 | uint32_t bootprofile_interval_ms = 0; | |
39037602 | 948 | uint32_t bootprofile_stackshot_flags = 0; |
39236c6e A |
949 | uint64_t bootprofile_interval_abs = 0; |
950 | uint64_t bootprofile_next_deadline = 0; | |
951 | uint32_t bootprofile_all_procs = 0; | |
952 | char bootprofile_proc_name[17]; | |
39037602 | 953 | uint64_t bootprofile_delta_since_timestamp = 0; |
39236c6e A |
954 | lck_grp_t bootprofile_lck_grp; |
955 | lck_mtx_t bootprofile_mtx; | |
956 | ||
39037602 | 957 | |
fe8ab488 A |
958 | enum { |
959 | kBootProfileDisabled = 0, | |
960 | kBootProfileStartTimerAtBoot, | |
961 | kBootProfileStartTimerAtWake | |
962 | } bootprofile_type = kBootProfileDisabled; | |
963 | ||
964 | ||
39236c6e A |
965 | static timer_call_data_t bootprofile_timer_call_entry; |
966 | ||
967 | #define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0) | |
968 | #define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx) | |
969 | #define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0) | |
970 | ||
971 | static void bootprofile_timer_call( | |
972 | timer_call_param_t param0, | |
973 | timer_call_param_t param1); | |
974 | ||
39236c6e A |
975 | void bootprofile_init(void) |
976 | { | |
977 | kern_return_t ret; | |
fe8ab488 | 978 | char type[32]; |
39236c6e A |
979 | |
980 | lck_grp_init(&bootprofile_lck_grp, "bootprofile group", LCK_GRP_ATTR_NULL); | |
981 | lck_mtx_init(&bootprofile_mtx, &bootprofile_lck_grp, LCK_ATTR_NULL); | |
982 | ||
983 | if (!PE_parse_boot_argn("bootprofile_buffer_size", &bootprofile_buffer_size, sizeof(bootprofile_buffer_size))) { | |
984 | bootprofile_buffer_size = 0; | |
985 | } | |
986 | ||
987 | if (bootprofile_buffer_size > BOOTPROFILE_MAX_BUFFER_SIZE) | |
988 | bootprofile_buffer_size = BOOTPROFILE_MAX_BUFFER_SIZE; | |
989 | ||
990 | if (!PE_parse_boot_argn("bootprofile_interval_ms", &bootprofile_interval_ms, sizeof(bootprofile_interval_ms))) { | |
991 | bootprofile_interval_ms = 0; | |
992 | } | |
993 | ||
39037602 A |
994 | if (!PE_parse_boot_argn("bootprofile_stackshot_flags", &bootprofile_stackshot_flags, sizeof(bootprofile_stackshot_flags))) { |
995 | bootprofile_stackshot_flags = 0; | |
996 | } | |
997 | ||
39236c6e A |
998 | if (!PE_parse_boot_argn("bootprofile_proc_name", &bootprofile_proc_name, sizeof(bootprofile_proc_name))) { |
999 | bootprofile_all_procs = 1; | |
1000 | bootprofile_proc_name[0] = '\0'; | |
1001 | } | |
1002 | ||
fe8ab488 A |
1003 | if (PE_parse_boot_argn("bootprofile_type", type, sizeof(type))) { |
1004 | if (0 == strcmp(type, "boot")) { | |
1005 | bootprofile_type = kBootProfileStartTimerAtBoot; | |
1006 | } else if (0 == strcmp(type, "wake")) { | |
1007 | bootprofile_type = kBootProfileStartTimerAtWake; | |
1008 | } else { | |
1009 | bootprofile_type = kBootProfileDisabled; | |
1010 | } | |
1011 | } else { | |
1012 | bootprofile_type = kBootProfileDisabled; | |
1013 | } | |
1014 | ||
39236c6e A |
1015 | clock_interval_to_absolutetime_interval(bootprofile_interval_ms, NSEC_PER_MSEC, &bootprofile_interval_abs); |
1016 | ||
1017 | /* Both boot args must be set to enable */ | |
fe8ab488 | 1018 | if ((bootprofile_type == kBootProfileDisabled) || (bootprofile_buffer_size == 0) || (bootprofile_interval_abs == 0)) { |
39236c6e A |
1019 | return; |
1020 | } | |
1021 | ||
3e170ce0 | 1022 | ret = kmem_alloc(kernel_map, &bootprofile_buffer, bootprofile_buffer_size, VM_KERN_MEMORY_DIAG); |
39236c6e A |
1023 | if (ret != KERN_SUCCESS) { |
1024 | kprintf("Boot profile: Allocation failed: %d\n", ret); | |
1025 | return; | |
1026 | } | |
fe8ab488 | 1027 | bzero((void *) bootprofile_buffer, bootprofile_buffer_size); |
39236c6e | 1028 | |
fe8ab488 A |
1029 | kprintf("Boot profile: Sampling %s once per %u ms at %s\n", bootprofile_all_procs ? "all procs" : bootprofile_proc_name, bootprofile_interval_ms, |
1030 | bootprofile_type == kBootProfileStartTimerAtBoot ? "boot" : (bootprofile_type == kBootProfileStartTimerAtWake ? "wake" : "unknown")); | |
39236c6e A |
1031 | |
1032 | timer_call_setup(&bootprofile_timer_call_entry, | |
1033 | bootprofile_timer_call, | |
1034 | NULL); | |
1035 | ||
fe8ab488 A |
1036 | if (bootprofile_type == kBootProfileStartTimerAtBoot) { |
1037 | bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs; | |
1038 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, | |
1039 | NULL, | |
1040 | bootprofile_next_deadline, | |
1041 | 0, | |
1042 | TIMER_CALL_SYS_NORMAL, | |
1043 | FALSE); | |
1044 | } | |
39236c6e A |
1045 | } |
1046 | ||
fe8ab488 A |
1047 | void |
1048 | bootprofile_wake_from_sleep(void) | |
1049 | { | |
1050 | if (bootprofile_type == kBootProfileStartTimerAtWake) { | |
1051 | bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs; | |
1052 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, | |
1053 | NULL, | |
1054 | bootprofile_next_deadline, | |
1055 | 0, | |
1056 | TIMER_CALL_SYS_NORMAL, | |
1057 | FALSE); | |
1058 | } | |
1059 | } | |
1060 | ||
1061 | ||
39037602 A |
1062 | static void |
1063 | bootprofile_timer_call( | |
39236c6e A |
1064 | timer_call_param_t param0 __unused, |
1065 | timer_call_param_t param1 __unused) | |
1066 | { | |
1067 | unsigned retbytes = 0; | |
1068 | int pid_to_profile = -1; | |
1069 | ||
1070 | if (!BOOTPROFILE_TRY_SPIN_LOCK()) { | |
1071 | goto reprogram; | |
1072 | } | |
1073 | ||
1074 | /* Check if process-specific boot profiling is turned on */ | |
1075 | if (!bootprofile_all_procs) { | |
1076 | /* | |
1077 | * Since boot profiling initializes really early in boot, it is | |
1078 | * possible that at this point, the task/proc is not initialized. | |
1079 | * Nothing to do in that case. | |
1080 | */ | |
1081 | ||
1082 | if ((current_task() != NULL) && (current_task()->bsd_info != NULL) && | |
1083 | (0 == strncmp(bootprofile_proc_name, proc_name_address(current_task()->bsd_info), 17))) { | |
1084 | pid_to_profile = proc_selfpid(); | |
1085 | } | |
1086 | else { | |
1087 | /* | |
1088 | * Process-specific boot profiling requested but the on-core process is | |
1089 | * something else. Nothing to do here. | |
1090 | */ | |
1091 | BOOTPROFILE_UNLOCK(); | |
1092 | goto reprogram; | |
1093 | } | |
1094 | } | |
1095 | ||
1096 | /* initiate a stackshot with whatever portion of the buffer is left */ | |
1097 | if (bootprofile_buffer_current_position < bootprofile_buffer_size) { | |
39037602 A |
1098 | |
1099 | uint32_t flags = STACKSHOT_KCDATA_FORMAT | STACKSHOT_TRYLOCK | STACKSHOT_SAVE_LOADINFO | |
1100 | | STACKSHOT_GET_GLOBAL_MEM_STATS; | |
1101 | #if __x86_64__ | |
1102 | flags |= STACKSHOT_SAVE_KEXT_LOADINFO; | |
1103 | #endif /* __x86_64__ */ | |
1104 | ||
1105 | ||
1106 | /* OR on flags specified in boot-args */ | |
1107 | flags |= bootprofile_stackshot_flags; | |
1108 | if ((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) && (bootprofile_delta_since_timestamp == 0)) { | |
1109 | /* Can't take deltas until the first one */ | |
1110 | flags &= ~ STACKSHOT_COLLECT_DELTA_SNAPSHOT; | |
1111 | } | |
1112 | ||
1113 | uint64_t timestamp = 0; | |
1114 | if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) { | |
1115 | timestamp = mach_absolute_time(); | |
1116 | } | |
1117 | ||
1118 | kern_return_t r = stack_snapshot_from_kernel( | |
1119 | pid_to_profile, (void *)(bootprofile_buffer + bootprofile_buffer_current_position), | |
1120 | bootprofile_buffer_size - bootprofile_buffer_current_position, | |
1121 | flags, bootprofile_delta_since_timestamp, &retbytes); | |
1122 | ||
1123 | /* | |
1124 | * We call with STACKSHOT_TRYLOCK because the stackshot lock is coarser | |
1125 | * than the bootprofile lock. If someone else has the lock we'll just | |
1126 | * try again later. | |
1127 | */ | |
1128 | ||
1129 | if (r == KERN_LOCK_OWNED) { | |
1130 | BOOTPROFILE_UNLOCK(); | |
1131 | goto reprogram; | |
1132 | } | |
1133 | ||
1134 | if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT && | |
1135 | r == KERN_SUCCESS) { | |
1136 | bootprofile_delta_since_timestamp = timestamp; | |
1137 | } | |
39236c6e A |
1138 | |
1139 | bootprofile_buffer_current_position += retbytes; | |
1140 | } | |
1141 | ||
1142 | BOOTPROFILE_UNLOCK(); | |
1143 | ||
1144 | /* If we didn't get any data or have run out of buffer space, stop profiling */ | |
1145 | if ((retbytes == 0) || (bootprofile_buffer_current_position == bootprofile_buffer_size)) { | |
1146 | return; | |
1147 | } | |
1148 | ||
1149 | ||
1150 | reprogram: | |
1151 | /* If the user gathered the buffer, no need to keep profiling */ | |
1152 | if (bootprofile_interval_abs == 0) { | |
1153 | return; | |
1154 | } | |
1155 | ||
1156 | clock_deadline_for_periodic_event(bootprofile_interval_abs, | |
1157 | mach_absolute_time(), | |
1158 | &bootprofile_next_deadline); | |
1159 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, | |
1160 | NULL, | |
1161 | bootprofile_next_deadline, | |
1162 | 0, | |
1163 | TIMER_CALL_SYS_NORMAL, | |
1164 | FALSE); | |
1165 | } | |
1166 | ||
39037602 A |
1167 | void bootprofile_get(void **buffer, uint32_t *length) |
1168 | { | |
1169 | BOOTPROFILE_LOCK(); | |
1170 | *buffer = (void*) bootprofile_buffer; | |
1171 | *length = bootprofile_buffer_current_position; | |
1172 | BOOTPROFILE_UNLOCK(); | |
1173 | } | |
1174 | ||
39236c6e A |
1175 | int bootprofile_gather(user_addr_t buffer, uint32_t *length) |
1176 | { | |
1177 | int result = 0; | |
1178 | ||
1179 | BOOTPROFILE_LOCK(); | |
1180 | ||
1181 | if (bootprofile_buffer == 0) { | |
1182 | *length = 0; | |
1183 | goto out; | |
1184 | } | |
1185 | ||
1186 | if (*length < bootprofile_buffer_current_position) { | |
1187 | result = KERN_NO_SPACE; | |
1188 | goto out; | |
1189 | } | |
1190 | ||
1191 | if ((result = copyout((void *)bootprofile_buffer, buffer, | |
1192 | bootprofile_buffer_current_position)) != 0) { | |
1193 | *length = 0; | |
1194 | goto out; | |
1195 | } | |
1196 | *length = bootprofile_buffer_current_position; | |
1197 | ||
1198 | /* cancel future timers */ | |
1199 | bootprofile_interval_abs = 0; | |
1200 | ||
1201 | out: | |
1202 | ||
1203 | BOOTPROFILE_UNLOCK(); | |
1204 | ||
1205 | return (result); | |
1206 | } |