]>
Commit | Line | Data |
---|---|---|
39236c6e A |
1 | /* |
2 | * Copyright (c) 2012-2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <mach/host_priv.h> | |
29 | #include <mach/host_special_ports.h> | |
30 | #include <mach/mach_types.h> | |
31 | #include <mach/telemetry_notification_server.h> | |
32 | ||
33 | #include <kern/assert.h> | |
34 | #include <kern/clock.h> | |
35 | #include <kern/debug.h> | |
36 | #include <kern/host.h> | |
37 | #include <kern/kalloc.h> | |
38 | #include <kern/kern_types.h> | |
39 | #include <kern/locks.h> | |
40 | #include <kern/misc_protos.h> | |
41 | #include <kern/sched.h> | |
42 | #include <kern/sched_prim.h> | |
43 | #include <kern/telemetry.h> | |
44 | #include <kern/timer_call.h> | |
45 | ||
46 | #include <pexpert/pexpert.h> | |
47 | ||
48 | #include <vm/vm_kern.h> | |
49 | #include <vm/vm_shared_region.h> | |
50 | ||
51 | #include <kperf/kperf.h> | |
52 | #include <kperf/context.h> | |
53 | #include <kperf/callstack.h> | |
54 | ||
55 | #include <sys/kdebug.h> | |
56 | #include <uuid/uuid.h> | |
57 | #include <kdp/kdp_dyld.h> | |
58 | ||
59 | #define TELEMETRY_DEBUG 0 | |
60 | ||
61 | extern int proc_pid(void *); | |
62 | extern char *proc_name_address(void *p); | |
63 | extern uint64_t proc_uniqueid(void *p); | |
64 | extern uint64_t proc_was_throttled(void *p); | |
65 | extern uint64_t proc_did_throttle(void *p); | |
66 | extern uint64_t get_dispatchqueue_serialno_offset_from_proc(void *p); | |
67 | extern int proc_selfpid(void); | |
68 | ||
69 | void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags); | |
70 | ||
71 | #define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */ | |
72 | #define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024) | |
73 | #define TELEMETRY_MAX_BUFFER_SIZE (64*1024) | |
74 | ||
75 | #define TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification | |
143464d5 | 76 | #define TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication |
39236c6e A |
77 | |
78 | uint32_t telemetry_sample_rate = 0; | |
79 | volatile boolean_t telemetry_needs_record = FALSE; | |
80 | volatile boolean_t telemetry_needs_timer_arming_record = FALSE; | |
81 | ||
82 | /* | |
83 | * If TRUE, record micro-stackshot samples for all tasks. | |
84 | * If FALSE, only sample tasks which are marked for telemetry. | |
85 | */ | |
86 | boolean_t telemetry_sample_all_tasks = FALSE; | |
87 | uint32_t telemetry_active_tasks = 0; // Number of tasks opted into telemetry | |
88 | ||
89 | uint32_t telemetry_timestamp = 0; | |
90 | ||
91 | vm_offset_t telemetry_buffer = 0; | |
92 | uint32_t telemetry_buffer_size = 0; | |
93 | uint32_t telemetry_buffer_current_position = 0; | |
94 | uint32_t telemetry_buffer_end_point = 0; // If we've wrapped, where does the last record end? | |
95 | int telemetry_bytes_since_last_mark = -1; // How much data since buf was last marked? | |
96 | int telemetry_buffer_notify_at = 0; | |
97 | ||
98 | lck_grp_t telemetry_lck_grp; | |
99 | lck_mtx_t telemetry_mtx; | |
100 | ||
101 | #define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while(0) | |
102 | #define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx) | |
103 | #define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while(0) | |
104 | ||
105 | void telemetry_init(void) | |
106 | { | |
107 | kern_return_t ret; | |
108 | uint32_t telemetry_notification_leeway; | |
109 | ||
110 | lck_grp_init(&telemetry_lck_grp, "telemetry group", LCK_GRP_ATTR_NULL); | |
111 | lck_mtx_init(&telemetry_mtx, &telemetry_lck_grp, LCK_ATTR_NULL); | |
112 | ||
113 | if (!PE_parse_boot_argn("telemetry_buffer_size", &telemetry_buffer_size, sizeof(telemetry_buffer_size))) { | |
114 | telemetry_buffer_size = TELEMETRY_DEFAULT_BUFFER_SIZE; | |
115 | } | |
116 | ||
117 | if (telemetry_buffer_size > TELEMETRY_MAX_BUFFER_SIZE) | |
118 | telemetry_buffer_size = TELEMETRY_MAX_BUFFER_SIZE; | |
119 | ||
120 | ret = kmem_alloc(kernel_map, &telemetry_buffer, telemetry_buffer_size); | |
121 | if (ret != KERN_SUCCESS) { | |
122 | kprintf("Telemetry: Allocation failed: %d\n", ret); | |
123 | return; | |
124 | } | |
125 | ||
126 | if (!PE_parse_boot_argn("telemetry_notification_leeway", &telemetry_notification_leeway, sizeof(telemetry_notification_leeway))) { | |
127 | /* | |
128 | * By default, notify the user to collect the buffer when there is this much space left in the buffer. | |
129 | */ | |
130 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; | |
131 | } | |
132 | if (telemetry_notification_leeway >= telemetry_buffer_size) { | |
133 | printf("telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n", | |
134 | telemetry_notification_leeway, TELEMETRY_DEFAULT_NOTIFY_LEEWAY); | |
135 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; | |
136 | } | |
137 | telemetry_buffer_notify_at = telemetry_buffer_size - telemetry_notification_leeway; | |
138 | ||
139 | if (!PE_parse_boot_argn("telemetry_sample_rate", &telemetry_sample_rate, sizeof(telemetry_sample_rate))) { | |
140 | telemetry_sample_rate = TELEMETRY_DEFAULT_SAMPLE_RATE; | |
141 | } | |
142 | ||
143 | /* | |
144 | * To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args. | |
145 | */ | |
146 | if (!PE_parse_boot_argn("telemetry_sample_all_tasks", &telemetry_sample_all_tasks, sizeof(telemetry_sample_all_tasks))) { | |
147 | ||
148 | telemetry_sample_all_tasks = TRUE; | |
149 | ||
150 | } | |
151 | ||
152 | kprintf("Telemetry: Sampling %stasks once per %u second%s\n", | |
153 | (telemetry_sample_all_tasks) ? "all " : "", | |
154 | telemetry_sample_rate, telemetry_sample_rate == 1 ? "" : "s"); | |
155 | } | |
156 | ||
157 | /* | |
158 | * Enable or disable global microstackshots (ie telemetry_sample_all_tasks). | |
159 | * | |
160 | * enable_disable == 1: turn it on | |
161 | * enable_disable == 0: turn it off | |
162 | */ | |
163 | void | |
164 | telemetry_global_ctl(int enable_disable) | |
165 | { | |
166 | if (enable_disable == 1) { | |
167 | telemetry_sample_all_tasks = TRUE; | |
168 | } else { | |
169 | telemetry_sample_all_tasks = FALSE; | |
170 | } | |
171 | } | |
172 | ||
173 | /* | |
174 | * Opt the given task into or out of the telemetry stream. | |
175 | * | |
176 | * Supported reasons (callers may use any or all of): | |
177 | * TF_CPUMON_WARNING | |
178 | * TF_WAKEMON_WARNING | |
179 | * | |
180 | * enable_disable == 1: turn it on | |
181 | * enable_disable == 0: turn it off | |
182 | */ | |
183 | void | |
184 | telemetry_task_ctl(task_t task, uint32_t reasons, int enable_disable) | |
185 | { | |
186 | task_lock(task); | |
187 | telemetry_task_ctl_locked(task, reasons, enable_disable); | |
188 | task_unlock(task); | |
189 | } | |
190 | ||
191 | void | |
192 | telemetry_task_ctl_locked(task_t task, uint32_t reasons, int enable_disable) | |
193 | { | |
194 | uint32_t origflags; | |
195 | ||
196 | assert((reasons != 0) && ((reasons | TF_TELEMETRY) == TF_TELEMETRY)); | |
197 | ||
198 | task_lock_assert_owned(task); | |
199 | ||
200 | origflags = task->t_flags; | |
201 | ||
202 | if (enable_disable == 1) { | |
203 | task->t_flags |= reasons; | |
204 | if ((origflags & TF_TELEMETRY) == 0) { | |
205 | OSIncrementAtomic(&telemetry_active_tasks); | |
206 | #if TELEMETRY_DEBUG | |
207 | printf("%s: telemetry OFF -> ON (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks); | |
208 | #endif | |
209 | } | |
210 | } else { | |
211 | task->t_flags &= ~reasons; | |
212 | if (((origflags & TF_TELEMETRY) != 0) && ((task->t_flags & TF_TELEMETRY) == 0)) { | |
213 | /* | |
214 | * If this task went from having at least one telemetry bit to having none, | |
215 | * the net change was to disable telemetry for the task. | |
216 | */ | |
217 | OSDecrementAtomic(&telemetry_active_tasks); | |
218 | #if TELEMETRY_DEBUG | |
219 | printf("%s: telemetry ON -> OFF (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks); | |
220 | #endif | |
221 | } | |
222 | } | |
223 | } | |
224 | ||
225 | /* | |
226 | * Determine if the current thread is eligible for telemetry: | |
227 | * | |
228 | * telemetry_sample_all_tasks: All threads are eligible. This takes precedence. | |
229 | * telemetry_active_tasks: Count of tasks opted in. | |
230 | * task->t_flags & TF_TELEMETRY: This task is opted in. | |
231 | */ | |
232 | static boolean_t | |
233 | telemetry_is_active(thread_t thread) | |
234 | { | |
235 | if (telemetry_sample_all_tasks == TRUE) { | |
236 | return (TRUE); | |
237 | } | |
238 | ||
239 | if ((telemetry_active_tasks > 0) && ((thread->task->t_flags & TF_TELEMETRY) != 0)) { | |
240 | return (TRUE); | |
241 | } | |
242 | ||
243 | return (FALSE); | |
244 | } | |
245 | ||
246 | /* | |
247 | * Userland is arming a timer. If we are eligible for such a record, | |
248 | * sample now. No need to do this one at the AST because we're already at | |
249 | * a safe place in this system call. | |
250 | */ | |
251 | int telemetry_timer_event(__unused uint64_t deadline, __unused uint64_t interval, __unused uint64_t leeway) | |
252 | { | |
253 | if (telemetry_needs_timer_arming_record == TRUE) { | |
254 | telemetry_needs_timer_arming_record = FALSE; | |
255 | telemetry_take_sample(current_thread(), kTimerArmingRecord | kUserMode); | |
256 | } | |
257 | ||
258 | return (0); | |
259 | } | |
260 | ||
261 | /* | |
262 | * Mark the current thread for an interrupt-based | |
263 | * telemetry record, to be sampled at the next AST boundary. | |
264 | */ | |
265 | void telemetry_mark_curthread(boolean_t interrupted_userspace) | |
266 | { | |
267 | thread_t thread = current_thread(); | |
268 | ||
269 | /* | |
270 | * If telemetry isn't active for this thread, return and try | |
271 | * again next time. | |
272 | */ | |
273 | if (telemetry_is_active(thread) == FALSE) { | |
274 | return; | |
275 | } | |
276 | ||
277 | telemetry_needs_record = FALSE; | |
278 | thread_ast_set(thread, interrupted_userspace ? AST_TELEMETRY_USER : AST_TELEMETRY_KERNEL); | |
279 | ast_propagate(thread->ast); | |
280 | } | |
281 | ||
282 | void compute_telemetry(void *arg __unused) | |
283 | { | |
284 | if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) { | |
285 | if ((++telemetry_timestamp) % telemetry_sample_rate == 0) { | |
286 | /* | |
287 | * To avoid overloading the system with telemetry ASTs, make | |
288 | * sure we don't add more requests while existing ones | |
289 | * are in-flight. | |
290 | */ | |
291 | if (TELEMETRY_TRY_SPIN_LOCK()) { | |
292 | telemetry_needs_record = TRUE; | |
293 | telemetry_needs_timer_arming_record = TRUE; | |
294 | TELEMETRY_UNLOCK(); | |
295 | } | |
296 | } | |
297 | } | |
298 | } | |
299 | ||
300 | /* | |
301 | * If userland has registered a port for telemetry notifications, send one now. | |
302 | */ | |
303 | static void | |
304 | telemetry_notify_user(void) | |
305 | { | |
306 | mach_port_t user_port; | |
307 | uint32_t flags = 0; | |
308 | int error; | |
309 | ||
310 | error = host_get_telemetry_port(host_priv_self(), &user_port); | |
311 | if ((error != KERN_SUCCESS) || !IPC_PORT_VALID(user_port)) { | |
312 | return; | |
313 | } | |
314 | ||
315 | telemetry_notification(user_port, flags); | |
316 | } | |
317 | ||
318 | void telemetry_ast(thread_t thread, boolean_t interrupted_userspace) | |
319 | { | |
320 | uint8_t microsnapshot_flags = kInterruptRecord; | |
321 | ||
322 | if (interrupted_userspace) | |
323 | microsnapshot_flags |= kUserMode; | |
324 | ||
325 | telemetry_take_sample(thread, microsnapshot_flags); | |
326 | } | |
327 | ||
328 | void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags) | |
329 | { | |
330 | task_t task; | |
331 | void *p; | |
332 | struct kperf_context ctx; | |
333 | struct callstack cs; | |
334 | uint32_t btcount, bti; | |
335 | struct micro_snapshot *msnap; | |
336 | struct task_snapshot *tsnap; | |
337 | struct thread_snapshot *thsnap; | |
338 | clock_sec_t secs; | |
339 | clock_usec_t usecs; | |
340 | vm_size_t framesize; | |
341 | uint32_t current_record_start; | |
342 | uint32_t tmp = 0; | |
343 | boolean_t notify = FALSE; | |
344 | ||
345 | if (thread == THREAD_NULL) | |
346 | return; | |
347 | ||
348 | task = thread->task; | |
349 | if ((task == TASK_NULL) || (task == kernel_task)) | |
350 | return; | |
351 | ||
352 | /* telemetry_XXX accessed outside of lock for instrumentation only */ | |
353 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_START, microsnapshot_flags, telemetry_bytes_since_last_mark, 0, 0, 0); | |
354 | ||
355 | p = get_bsdtask_info(task); | |
356 | ||
357 | ctx.cur_thread = thread; | |
358 | ctx.cur_pid = proc_pid(p); | |
359 | ||
360 | /* | |
361 | * Gather up the data we'll need for this sample. The sample is written into the kernel | |
362 | * buffer with the global telemetry lock held -- so we must do our (possibly faulting) | |
363 | * copies from userland here, before taking the lock. | |
364 | */ | |
365 | kperf_ucallstack_sample(&cs, &ctx); | |
366 | if (!(cs.flags & CALLSTACK_VALID)) | |
367 | return; | |
368 | ||
369 | /* | |
370 | * Find the actual [slid] address of the shared cache's UUID, and copy it in from userland. | |
371 | */ | |
372 | int shared_cache_uuid_valid = 0; | |
373 | uint64_t shared_cache_base_address; | |
374 | struct _dyld_cache_header shared_cache_header; | |
375 | uint64_t shared_cache_slide; | |
376 | ||
377 | /* | |
378 | * Don't copy in the entire shared cache header; we only need the UUID. Calculate the | |
379 | * offset of that one field. | |
380 | */ | |
381 | int sc_header_uuid_offset = (char *)&shared_cache_header.uuid - (char *)&shared_cache_header; | |
382 | vm_shared_region_t sr = vm_shared_region_get(task); | |
383 | if (sr != NULL) { | |
384 | if ((vm_shared_region_start_address(sr, &shared_cache_base_address) == KERN_SUCCESS) && | |
385 | (copyin(shared_cache_base_address + sc_header_uuid_offset, (char *)&shared_cache_header.uuid, | |
386 | sizeof (shared_cache_header.uuid)) == 0)) { | |
387 | shared_cache_uuid_valid = 1; | |
388 | shared_cache_slide = vm_shared_region_get_slide(sr); | |
389 | } | |
390 | // vm_shared_region_get() gave us a reference on the shared region. | |
391 | vm_shared_region_deallocate(sr); | |
392 | } | |
393 | ||
394 | /* | |
395 | * Retrieve the array of UUID's for binaries used by this task. | |
396 | * We reach down into DYLD's data structures to find the array. | |
397 | * | |
398 | * XXX - make this common with kdp? | |
399 | */ | |
400 | uint32_t uuid_info_count = 0; | |
401 | mach_vm_address_t uuid_info_addr = 0; | |
402 | if (task_has_64BitAddr(task)) { | |
403 | struct user64_dyld_all_image_infos task_image_infos; | |
404 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { | |
405 | uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; | |
406 | uuid_info_addr = task_image_infos.uuidArray; | |
407 | } | |
408 | } else { | |
409 | struct user32_dyld_all_image_infos task_image_infos; | |
410 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { | |
411 | uuid_info_count = task_image_infos.uuidArrayCount; | |
412 | uuid_info_addr = task_image_infos.uuidArray; | |
413 | } | |
414 | } | |
415 | ||
416 | /* | |
417 | * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating | |
418 | * this data structure), we zero the uuid_info_count so that we won't even try to save load info | |
419 | * for this task. | |
420 | */ | |
421 | if (!uuid_info_addr) { | |
422 | uuid_info_count = 0; | |
423 | } | |
424 | ||
143464d5 A |
425 | /* |
426 | * Don't copy in an unbounded amount of memory. The main binary and interesting | |
427 | * non-shared-cache libraries should be in the first few images. | |
428 | */ | |
429 | if (uuid_info_count > TELEMETRY_MAX_UUID_COUNT) { | |
430 | uuid_info_count = TELEMETRY_MAX_UUID_COUNT; | |
431 | } | |
432 | ||
39236c6e A |
433 | uint32_t uuid_info_size = (uint32_t)(task_has_64BitAddr(thread->task) ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info)); |
434 | uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size; | |
435 | char *uuid_info_array = NULL; | |
436 | ||
437 | if (uuid_info_count > 0) { | |
438 | if ((uuid_info_array = (char *)kalloc(uuid_info_array_size)) == NULL) { | |
439 | return; | |
440 | } | |
441 | ||
442 | /* | |
443 | * Copy in the UUID info array. | |
444 | * It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot. | |
445 | */ | |
446 | if (copyin(uuid_info_addr, uuid_info_array, uuid_info_array_size) != 0) { | |
447 | kfree(uuid_info_array, uuid_info_array_size); | |
448 | uuid_info_array = NULL; | |
449 | uuid_info_array_size = 0; | |
450 | } | |
451 | } | |
452 | ||
453 | /* | |
454 | * Look for a dispatch queue serial number, and copy it in from userland if present. | |
455 | */ | |
456 | uint64_t dqserialnum = 0; | |
457 | int dqserialnum_valid = 0; | |
458 | ||
459 | uint64_t dqkeyaddr = thread_dispatchqaddr(thread); | |
460 | if (dqkeyaddr != 0) { | |
461 | uint64_t dqaddr = 0; | |
462 | uint64_t dq_serialno_offset = get_dispatchqueue_serialno_offset_from_proc(task->bsd_info); | |
463 | if ((copyin(dqkeyaddr, (char *)&dqaddr, (task_has_64BitAddr(task) ? 8 : 4)) == 0) && | |
464 | (dqaddr != 0) && (dq_serialno_offset != 0)) { | |
465 | uint64_t dqserialnumaddr = dqaddr + dq_serialno_offset; | |
466 | if (copyin(dqserialnumaddr, (char *)&dqserialnum, (task_has_64BitAddr(task) ? 8 : 4)) == 0) { | |
467 | dqserialnum_valid = 1; | |
468 | } | |
469 | } | |
470 | } | |
471 | ||
472 | clock_get_calendar_microtime(&secs, &usecs); | |
473 | ||
474 | TELEMETRY_LOCK(); | |
475 | ||
476 | /* | |
477 | * We do the bulk of the operation under the telemetry lock, on assumption that | |
478 | * any page faults during execution will not cause another AST_TELEMETRY_ALL | |
479 | * to deadlock; they will just block until we finish. This makes it easier | |
480 | * to copy into the buffer directly. As soon as we unlock, userspace can copy | |
481 | * out of our buffer. | |
482 | */ | |
483 | ||
484 | copytobuffer: | |
485 | ||
486 | current_record_start = telemetry_buffer_current_position; | |
487 | ||
488 | if ((telemetry_buffer_size - telemetry_buffer_current_position) < sizeof(struct micro_snapshot)) { | |
489 | /* | |
490 | * We can't fit a record in the space available, so wrap around to the beginning. | |
491 | * Save the current position as the known end point of valid data. | |
492 | */ | |
493 | telemetry_buffer_end_point = current_record_start; | |
494 | telemetry_buffer_current_position = 0; | |
143464d5 A |
495 | if (current_record_start == 0) { |
496 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
497 | goto cancel_sample; | |
498 | } | |
39236c6e A |
499 | goto copytobuffer; |
500 | } | |
501 | ||
502 | msnap = (struct micro_snapshot *)(uintptr_t)(telemetry_buffer + telemetry_buffer_current_position); | |
503 | msnap->snapshot_magic = STACKSHOT_MICRO_SNAPSHOT_MAGIC; | |
504 | msnap->ms_flags = microsnapshot_flags; | |
505 | msnap->ms_opaque_flags = 0; /* namespace managed by userspace */ | |
506 | msnap->ms_cpu = 0; /* XXX - does this field make sense for a micro-stackshot? */ | |
507 | msnap->ms_time = secs; | |
508 | msnap->ms_time_microsecs = usecs; | |
509 | ||
510 | telemetry_buffer_current_position += sizeof(struct micro_snapshot); | |
511 | ||
512 | if ((telemetry_buffer_size - telemetry_buffer_current_position) < sizeof(struct task_snapshot)) { | |
513 | telemetry_buffer_end_point = current_record_start; | |
514 | telemetry_buffer_current_position = 0; | |
143464d5 A |
515 | if (current_record_start == 0) { |
516 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
517 | goto cancel_sample; | |
518 | } | |
39236c6e A |
519 | goto copytobuffer; |
520 | } | |
521 | ||
522 | tsnap = (struct task_snapshot *)(uintptr_t)(telemetry_buffer + telemetry_buffer_current_position); | |
523 | bzero(tsnap, sizeof(*tsnap)); | |
524 | tsnap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC; | |
525 | tsnap->pid = proc_pid(p); | |
526 | tsnap->uniqueid = proc_uniqueid(p); | |
527 | tsnap->user_time_in_terminated_threads = task->total_user_time; | |
528 | tsnap->system_time_in_terminated_threads = task->total_system_time; | |
529 | tsnap->suspend_count = task->suspend_count; | |
530 | tsnap->task_size = pmap_resident_count(task->map->pmap); | |
531 | tsnap->faults = task->faults; | |
532 | tsnap->pageins = task->pageins; | |
533 | tsnap->cow_faults = task->cow_faults; | |
534 | /* | |
535 | * The throttling counters are maintained as 64-bit counters in the proc | |
536 | * structure. However, we reserve 32-bits (each) for them in the task_snapshot | |
537 | * struct to save space and since we do not expect them to overflow 32-bits. If we | |
538 | * find these values overflowing in the future, the fix would be to simply | |
539 | * upgrade these counters to 64-bit in the task_snapshot struct | |
540 | */ | |
541 | tsnap->was_throttled = (uint32_t) proc_was_throttled(p); | |
542 | tsnap->did_throttle = (uint32_t) proc_did_throttle(p); | |
543 | ||
544 | if (task->t_flags & TF_TELEMETRY) { | |
545 | tsnap->ss_flags |= kTaskRsrcFlagged; | |
546 | } | |
547 | ||
15129b1c | 548 | if (task->effective_policy.darwinbg == 1) { |
39236c6e A |
549 | tsnap->ss_flags |= kTaskDarwinBG; |
550 | } | |
15129b1c A |
551 | |
552 | proc_get_darwinbgstate(task, &tmp); | |
39236c6e A |
553 | |
554 | if (task->requested_policy.t_role == TASK_FOREGROUND_APPLICATION) { | |
555 | tsnap->ss_flags |= kTaskIsForeground; | |
556 | } | |
557 | ||
558 | if (tmp & PROC_FLAG_ADAPTIVE_IMPORTANT) { | |
559 | tsnap->ss_flags |= kTaskIsBoosted; | |
560 | } | |
561 | ||
562 | if (tmp & PROC_FLAG_SUPPRESSED) { | |
563 | tsnap->ss_flags |= kTaskIsSuppressed; | |
564 | } | |
565 | ||
566 | tsnap->latency_qos = task_grab_latency_qos(task); | |
567 | ||
568 | strlcpy(tsnap->p_comm, proc_name_address(p), sizeof(tsnap->p_comm)); | |
569 | if (task_has_64BitAddr(thread->task)) { | |
570 | tsnap->ss_flags |= kUser64_p; | |
571 | } | |
572 | ||
573 | if (shared_cache_uuid_valid) { | |
574 | tsnap->shared_cache_slide = shared_cache_slide; | |
575 | bcopy(shared_cache_header.uuid, tsnap->shared_cache_identifier, sizeof (shared_cache_header.uuid)); | |
576 | } | |
577 | ||
578 | telemetry_buffer_current_position += sizeof(struct task_snapshot); | |
579 | ||
580 | /* | |
581 | * Directly after the task snapshot, place the array of UUID's corresponding to the binaries | |
582 | * used by this task. | |
583 | */ | |
584 | if ((telemetry_buffer_size - telemetry_buffer_current_position) < uuid_info_array_size) { | |
585 | telemetry_buffer_end_point = current_record_start; | |
586 | telemetry_buffer_current_position = 0; | |
143464d5 A |
587 | if (current_record_start == 0) { |
588 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
589 | goto cancel_sample; | |
590 | } | |
39236c6e A |
591 | goto copytobuffer; |
592 | } | |
593 | ||
594 | /* | |
595 | * Copy the UUID info array into our sample. | |
596 | */ | |
597 | if (uuid_info_array_size > 0) { | |
598 | bcopy(uuid_info_array, (char *)(telemetry_buffer + telemetry_buffer_current_position), uuid_info_array_size); | |
599 | tsnap->nloadinfos = uuid_info_count; | |
600 | } | |
601 | ||
602 | telemetry_buffer_current_position += uuid_info_array_size; | |
603 | ||
604 | /* | |
605 | * After the task snapshot & list of binary UUIDs, we place a thread snapshot. | |
606 | */ | |
607 | ||
608 | if ((telemetry_buffer_size - telemetry_buffer_current_position) < sizeof(struct thread_snapshot)) { | |
609 | /* wrap and overwrite */ | |
610 | telemetry_buffer_end_point = current_record_start; | |
611 | telemetry_buffer_current_position = 0; | |
143464d5 A |
612 | if (current_record_start == 0) { |
613 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
614 | goto cancel_sample; | |
615 | } | |
39236c6e A |
616 | goto copytobuffer; |
617 | } | |
618 | ||
619 | thsnap = (struct thread_snapshot *)(uintptr_t)(telemetry_buffer + telemetry_buffer_current_position); | |
620 | bzero(thsnap, sizeof(*thsnap)); | |
621 | ||
622 | thsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC; | |
623 | thsnap->thread_id = thread_tid(thread); | |
624 | thsnap->state = thread->state; | |
625 | thsnap->priority = thread->priority; | |
626 | thsnap->sched_pri = thread->sched_pri; | |
627 | thsnap->sched_flags = thread->sched_flags; | |
628 | thsnap->ss_flags |= kStacksPCOnly; | |
629 | ||
630 | if (thread->effective_policy.darwinbg) { | |
631 | thsnap->ss_flags |= kThreadDarwinBG; | |
632 | } | |
633 | ||
634 | thsnap->user_time = timer_grab(&thread->user_timer); | |
635 | ||
636 | uint64_t tval = timer_grab(&thread->system_timer); | |
637 | ||
638 | if (thread->precise_user_kernel_time) { | |
639 | thsnap->system_time = tval; | |
640 | } else { | |
641 | thsnap->user_time += tval; | |
642 | thsnap->system_time = 0; | |
643 | } | |
644 | ||
645 | telemetry_buffer_current_position += sizeof(struct thread_snapshot); | |
646 | ||
647 | /* | |
648 | * If this thread has a dispatch queue serial number, include it here. | |
649 | */ | |
650 | if (dqserialnum_valid) { | |
651 | if ((telemetry_buffer_size - telemetry_buffer_current_position) < sizeof(dqserialnum)) { | |
652 | /* wrap and overwrite */ | |
653 | telemetry_buffer_end_point = current_record_start; | |
654 | telemetry_buffer_current_position = 0; | |
143464d5 A |
655 | if (current_record_start == 0) { |
656 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
657 | goto cancel_sample; | |
658 | } | |
39236c6e A |
659 | goto copytobuffer; |
660 | } | |
661 | ||
662 | thsnap->ss_flags |= kHasDispatchSerial; | |
663 | bcopy(&dqserialnum, (char *)telemetry_buffer + telemetry_buffer_current_position, sizeof (dqserialnum)); | |
664 | telemetry_buffer_current_position += sizeof (dqserialnum); | |
665 | } | |
666 | ||
667 | if (task_has_64BitAddr(task)) { | |
668 | framesize = 8; | |
669 | thsnap->ss_flags |= kUser64_p; | |
670 | } else { | |
671 | framesize = 4; | |
672 | } | |
673 | ||
674 | btcount = cs.nframes; | |
675 | ||
676 | /* | |
677 | * If we can't fit this entire stacktrace then cancel this record, wrap to the beginning, | |
678 | * and start again there so that we always store a full record. | |
679 | */ | |
680 | if ((telemetry_buffer_size - telemetry_buffer_current_position)/framesize < btcount) { | |
681 | telemetry_buffer_end_point = current_record_start; | |
682 | telemetry_buffer_current_position = 0; | |
143464d5 A |
683 | if (current_record_start == 0) { |
684 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
685 | goto cancel_sample; | |
686 | } | |
39236c6e A |
687 | goto copytobuffer; |
688 | } | |
689 | ||
690 | for (bti=0; bti < btcount; bti++, telemetry_buffer_current_position += framesize) { | |
691 | if (framesize == 8) { | |
692 | *(uint64_t *)(uintptr_t)(telemetry_buffer + telemetry_buffer_current_position) = cs.frames[bti]; | |
693 | } else { | |
694 | *(uint32_t *)(uintptr_t)(telemetry_buffer + telemetry_buffer_current_position) = (uint32_t)cs.frames[bti]; | |
695 | } | |
696 | } | |
697 | ||
698 | if (telemetry_buffer_end_point < telemetry_buffer_current_position) { | |
699 | /* | |
700 | * Each time the cursor wraps around to the beginning, we leave a | |
701 | * differing amount of unused space at the end of the buffer. Make | |
702 | * sure the cursor pushes the end point in case we're making use of | |
703 | * more of the buffer than we did the last time we wrapped. | |
704 | */ | |
705 | telemetry_buffer_end_point = telemetry_buffer_current_position; | |
706 | } | |
707 | ||
708 | thsnap->nuser_frames = btcount; | |
709 | ||
710 | telemetry_bytes_since_last_mark += (telemetry_buffer_current_position - current_record_start); | |
711 | if (telemetry_bytes_since_last_mark > telemetry_buffer_notify_at) { | |
712 | notify = TRUE; | |
713 | } | |
714 | ||
143464d5 A |
715 | cancel_sample: |
716 | ||
39236c6e A |
717 | TELEMETRY_UNLOCK(); |
718 | ||
719 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_END, notify, telemetry_bytes_since_last_mark, telemetry_buffer_current_position, telemetry_buffer_end_point, 0); | |
720 | ||
721 | if (notify) { | |
722 | telemetry_notify_user(); | |
723 | } | |
724 | ||
725 | if (uuid_info_array != NULL) { | |
726 | kfree(uuid_info_array, uuid_info_array_size); | |
727 | } | |
728 | } | |
729 | ||
730 | #if TELEMETRY_DEBUG | |
731 | static void | |
732 | log_telemetry_output(vm_offset_t buf, uint32_t pos, uint32_t sz) | |
733 | { | |
734 | struct micro_snapshot *p; | |
735 | uint32_t offset; | |
736 | ||
737 | printf("Copying out %d bytes of telemetry at offset %d\n", sz, pos); | |
738 | ||
739 | buf += pos; | |
740 | ||
741 | /* | |
742 | * Find and log each timestamp in this chunk of buffer. | |
743 | */ | |
744 | for (offset = 0; offset < sz; offset++) { | |
745 | p = (struct micro_snapshot *)(buf + offset); | |
746 | if (p->snapshot_magic == STACKSHOT_MICRO_SNAPSHOT_MAGIC) { | |
747 | printf("telemetry timestamp: %lld\n", p->ms_time); | |
748 | } | |
749 | } | |
750 | } | |
751 | #endif | |
752 | ||
753 | int telemetry_gather(user_addr_t buffer, uint32_t *length, boolean_t mark) | |
754 | { | |
755 | int result = 0; | |
756 | uint32_t oldest_record_offset; | |
757 | ||
758 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_START, mark, telemetry_bytes_since_last_mark, 0, 0, 0); | |
759 | ||
760 | TELEMETRY_LOCK(); | |
761 | ||
762 | if (telemetry_buffer == 0) { | |
763 | *length = 0; | |
764 | goto out; | |
765 | } | |
766 | ||
767 | if (*length < telemetry_buffer_size) { | |
768 | result = KERN_NO_SPACE; | |
769 | goto out; | |
770 | } | |
771 | ||
772 | /* | |
773 | * Copy the ring buffer out to userland in order sorted by time: least recent to most recent. | |
774 | * First, we need to search forward from the cursor to find the oldest record in our buffer. | |
775 | */ | |
776 | oldest_record_offset = telemetry_buffer_current_position; | |
777 | do { | |
778 | if ((oldest_record_offset == telemetry_buffer_size) || | |
779 | (oldest_record_offset == telemetry_buffer_end_point)) { | |
780 | ||
781 | if (*(uint32_t *)(uintptr_t)(telemetry_buffer) == 0) { | |
782 | /* | |
783 | * There is no magic number at the start of the buffer, which means | |
784 | * it's empty; nothing to see here yet. | |
785 | */ | |
786 | *length = 0; | |
787 | goto out; | |
788 | } | |
789 | /* | |
790 | * We've looked through the end of the active buffer without finding a valid | |
791 | * record; that means all valid records are in a single chunk, beginning at | |
792 | * the very start of the buffer. | |
793 | */ | |
794 | ||
795 | oldest_record_offset = 0; | |
796 | assert(*(uint32_t *)(uintptr_t)(telemetry_buffer) == STACKSHOT_MICRO_SNAPSHOT_MAGIC); | |
797 | break; | |
798 | } | |
799 | ||
800 | if (*(uint32_t *)(uintptr_t)(telemetry_buffer + oldest_record_offset) == STACKSHOT_MICRO_SNAPSHOT_MAGIC) | |
801 | break; | |
802 | ||
803 | /* | |
804 | * There are no alignment guarantees for micro-stackshot records, so we must search at each | |
805 | * byte offset. | |
806 | */ | |
807 | oldest_record_offset++; | |
808 | } while (oldest_record_offset != telemetry_buffer_current_position); | |
809 | ||
810 | /* | |
811 | * If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then | |
812 | * from the beginning of the buffer up to the current position. | |
813 | */ | |
814 | if (oldest_record_offset != 0) { | |
815 | #if TELEMETRY_DEBUG | |
816 | log_telemetry_output(telemetry_buffer, oldest_record_offset, | |
817 | telemetry_buffer_end_point - oldest_record_offset); | |
818 | #endif | |
819 | if ((result = copyout((void *)(telemetry_buffer + oldest_record_offset), buffer, | |
820 | telemetry_buffer_end_point - oldest_record_offset)) != 0) { | |
821 | *length = 0; | |
822 | goto out; | |
823 | } | |
824 | *length = telemetry_buffer_end_point - oldest_record_offset; | |
825 | } else { | |
826 | *length = 0; | |
827 | } | |
828 | ||
829 | #if TELEMETRY_DEBUG | |
830 | log_telemetry_output(telemetry_buffer, 0, telemetry_buffer_current_position); | |
831 | #endif | |
832 | if ((result = copyout((void *)telemetry_buffer, buffer + *length, | |
833 | telemetry_buffer_current_position)) != 0) { | |
834 | *length = 0; | |
835 | goto out; | |
836 | } | |
837 | *length += (uint32_t)telemetry_buffer_current_position; | |
838 | ||
839 | out: | |
840 | ||
841 | if (mark && (*length > 0)) { | |
842 | telemetry_bytes_since_last_mark = 0; | |
843 | } | |
844 | ||
845 | TELEMETRY_UNLOCK(); | |
846 | ||
847 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_END, telemetry_buffer_current_position, *length, telemetry_buffer_end_point, 0, 0); | |
848 | ||
849 | return (result); | |
850 | } | |
851 | ||
852 | /************************/ | |
853 | /* BOOT PROFILE SUPPORT */ | |
854 | /************************/ | |
855 | /* | |
856 | * Boot Profiling | |
857 | * | |
858 | * The boot-profiling support is a mechanism to sample activity happening on the | |
859 | * system during boot. This mechanism sets up a periodic timer and on every timer fire, | |
860 | * captures a full backtrace into the boot profiling buffer. This buffer can be pulled | |
861 | * out and analyzed from user-space. It is turned on using the following boot-args: | |
862 | * "bootprofile_buffer_size" specifies the size of the boot profile buffer | |
863 | * "bootprofile_interval_ms" specifies the interval for the profiling timer | |
864 | * | |
865 | * Process Specific Boot Profiling | |
866 | * | |
867 | * The boot-arg "bootprofile_proc_name" can be used to specify a certain | |
868 | * process that needs to profiled during boot. Setting this boot-arg changes | |
869 | * the way stackshots are captured. At every timer fire, the code looks at the | |
870 | * currently running process and takes a stackshot only if the requested process | |
871 | * is on-core (which makes it unsuitable for MP systems). | |
872 | * | |
873 | */ | |
874 | ||
875 | #define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */ | |
876 | ||
877 | vm_offset_t bootprofile_buffer = 0; | |
878 | uint32_t bootprofile_buffer_size = 0; | |
879 | uint32_t bootprofile_buffer_current_position = 0; | |
880 | uint32_t bootprofile_interval_ms = 0; | |
881 | uint64_t bootprofile_interval_abs = 0; | |
882 | uint64_t bootprofile_next_deadline = 0; | |
883 | uint32_t bootprofile_all_procs = 0; | |
884 | char bootprofile_proc_name[17]; | |
885 | ||
886 | lck_grp_t bootprofile_lck_grp; | |
887 | lck_mtx_t bootprofile_mtx; | |
888 | ||
889 | static timer_call_data_t bootprofile_timer_call_entry; | |
890 | ||
891 | #define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0) | |
892 | #define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx) | |
893 | #define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0) | |
894 | ||
895 | static void bootprofile_timer_call( | |
896 | timer_call_param_t param0, | |
897 | timer_call_param_t param1); | |
898 | ||
899 | extern int | |
900 | stack_snapshot_from_kernel(int pid, void *buf, uint32_t size, uint32_t flags, unsigned *retbytes); | |
901 | ||
902 | void bootprofile_init(void) | |
903 | { | |
904 | kern_return_t ret; | |
905 | ||
906 | lck_grp_init(&bootprofile_lck_grp, "bootprofile group", LCK_GRP_ATTR_NULL); | |
907 | lck_mtx_init(&bootprofile_mtx, &bootprofile_lck_grp, LCK_ATTR_NULL); | |
908 | ||
909 | if (!PE_parse_boot_argn("bootprofile_buffer_size", &bootprofile_buffer_size, sizeof(bootprofile_buffer_size))) { | |
910 | bootprofile_buffer_size = 0; | |
911 | } | |
912 | ||
913 | if (bootprofile_buffer_size > BOOTPROFILE_MAX_BUFFER_SIZE) | |
914 | bootprofile_buffer_size = BOOTPROFILE_MAX_BUFFER_SIZE; | |
915 | ||
916 | if (!PE_parse_boot_argn("bootprofile_interval_ms", &bootprofile_interval_ms, sizeof(bootprofile_interval_ms))) { | |
917 | bootprofile_interval_ms = 0; | |
918 | } | |
919 | ||
920 | if (!PE_parse_boot_argn("bootprofile_proc_name", &bootprofile_proc_name, sizeof(bootprofile_proc_name))) { | |
921 | bootprofile_all_procs = 1; | |
922 | bootprofile_proc_name[0] = '\0'; | |
923 | } | |
924 | ||
925 | clock_interval_to_absolutetime_interval(bootprofile_interval_ms, NSEC_PER_MSEC, &bootprofile_interval_abs); | |
926 | ||
927 | /* Both boot args must be set to enable */ | |
928 | if ((bootprofile_buffer_size == 0) || (bootprofile_interval_abs == 0)) { | |
929 | return; | |
930 | } | |
931 | ||
932 | ret = kmem_alloc(kernel_map, &bootprofile_buffer, bootprofile_buffer_size); | |
933 | if (ret != KERN_SUCCESS) { | |
934 | kprintf("Boot profile: Allocation failed: %d\n", ret); | |
935 | return; | |
936 | } | |
937 | ||
938 | kprintf("Boot profile: Sampling %s once per %u ms\n", bootprofile_all_procs ? "all procs" : bootprofile_proc_name, bootprofile_interval_ms); | |
939 | ||
940 | timer_call_setup(&bootprofile_timer_call_entry, | |
941 | bootprofile_timer_call, | |
942 | NULL); | |
943 | ||
944 | bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs; | |
945 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, | |
946 | NULL, | |
947 | bootprofile_next_deadline, | |
948 | 0, | |
949 | TIMER_CALL_SYS_NORMAL, | |
950 | FALSE); | |
951 | } | |
952 | ||
953 | static void bootprofile_timer_call( | |
954 | timer_call_param_t param0 __unused, | |
955 | timer_call_param_t param1 __unused) | |
956 | { | |
957 | unsigned retbytes = 0; | |
958 | int pid_to_profile = -1; | |
959 | ||
960 | if (!BOOTPROFILE_TRY_SPIN_LOCK()) { | |
961 | goto reprogram; | |
962 | } | |
963 | ||
964 | /* Check if process-specific boot profiling is turned on */ | |
965 | if (!bootprofile_all_procs) { | |
966 | /* | |
967 | * Since boot profiling initializes really early in boot, it is | |
968 | * possible that at this point, the task/proc is not initialized. | |
969 | * Nothing to do in that case. | |
970 | */ | |
971 | ||
972 | if ((current_task() != NULL) && (current_task()->bsd_info != NULL) && | |
973 | (0 == strncmp(bootprofile_proc_name, proc_name_address(current_task()->bsd_info), 17))) { | |
974 | pid_to_profile = proc_selfpid(); | |
975 | } | |
976 | else { | |
977 | /* | |
978 | * Process-specific boot profiling requested but the on-core process is | |
979 | * something else. Nothing to do here. | |
980 | */ | |
981 | BOOTPROFILE_UNLOCK(); | |
982 | goto reprogram; | |
983 | } | |
984 | } | |
985 | ||
986 | /* initiate a stackshot with whatever portion of the buffer is left */ | |
987 | if (bootprofile_buffer_current_position < bootprofile_buffer_size) { | |
988 | stack_snapshot_from_kernel( | |
989 | pid_to_profile, | |
990 | (void *)(bootprofile_buffer + bootprofile_buffer_current_position), | |
991 | bootprofile_buffer_size - bootprofile_buffer_current_position, | |
992 | STACKSHOT_SAVE_LOADINFO | STACKSHOT_SAVE_KEXT_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS, | |
993 | &retbytes | |
994 | ); | |
995 | ||
996 | bootprofile_buffer_current_position += retbytes; | |
997 | } | |
998 | ||
999 | BOOTPROFILE_UNLOCK(); | |
1000 | ||
1001 | /* If we didn't get any data or have run out of buffer space, stop profiling */ | |
1002 | if ((retbytes == 0) || (bootprofile_buffer_current_position == bootprofile_buffer_size)) { | |
1003 | return; | |
1004 | } | |
1005 | ||
1006 | ||
1007 | reprogram: | |
1008 | /* If the user gathered the buffer, no need to keep profiling */ | |
1009 | if (bootprofile_interval_abs == 0) { | |
1010 | return; | |
1011 | } | |
1012 | ||
1013 | clock_deadline_for_periodic_event(bootprofile_interval_abs, | |
1014 | mach_absolute_time(), | |
1015 | &bootprofile_next_deadline); | |
1016 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, | |
1017 | NULL, | |
1018 | bootprofile_next_deadline, | |
1019 | 0, | |
1020 | TIMER_CALL_SYS_NORMAL, | |
1021 | FALSE); | |
1022 | } | |
1023 | ||
1024 | int bootprofile_gather(user_addr_t buffer, uint32_t *length) | |
1025 | { | |
1026 | int result = 0; | |
1027 | ||
1028 | BOOTPROFILE_LOCK(); | |
1029 | ||
1030 | if (bootprofile_buffer == 0) { | |
1031 | *length = 0; | |
1032 | goto out; | |
1033 | } | |
1034 | ||
1035 | if (*length < bootprofile_buffer_current_position) { | |
1036 | result = KERN_NO_SPACE; | |
1037 | goto out; | |
1038 | } | |
1039 | ||
1040 | if ((result = copyout((void *)bootprofile_buffer, buffer, | |
1041 | bootprofile_buffer_current_position)) != 0) { | |
1042 | *length = 0; | |
1043 | goto out; | |
1044 | } | |
1045 | *length = bootprofile_buffer_current_position; | |
1046 | ||
1047 | /* cancel future timers */ | |
1048 | bootprofile_interval_abs = 0; | |
1049 | ||
1050 | out: | |
1051 | ||
1052 | BOOTPROFILE_UNLOCK(); | |
1053 | ||
1054 | return (result); | |
1055 | } |