]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
fe8ab488 | 2 | * Copyright (c) 2000-2014 Apple Inc. All rights reserved. |
5d5c5d0d | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95 | |
62 | */ | |
63 | ||
64 | #include <sys/param.h> | |
91447636 A |
65 | #include <sys/proc_internal.h> |
66 | #include <sys/buf_internal.h> | |
67 | #include <sys/mount_internal.h> | |
68 | #include <sys/vnode_internal.h> | |
1c79356b A |
69 | #include <sys/trace.h> |
70 | #include <sys/malloc.h> | |
55e303ae A |
71 | #include <sys/time.h> |
72 | #include <sys/kernel.h> | |
1c79356b | 73 | #include <sys/resourcevar.h> |
316670eb | 74 | #include <miscfs/specfs/specdev.h> |
91447636 | 75 | #include <sys/uio_internal.h> |
1c79356b | 76 | #include <libkern/libkern.h> |
55e303ae | 77 | #include <machine/machine_routines.h> |
1c79356b | 78 | |
91447636 | 79 | #include <sys/ubc_internal.h> |
2d21ac55 | 80 | #include <vm/vnode_pager.h> |
1c79356b | 81 | |
55e303ae A |
82 | #include <mach/mach_types.h> |
83 | #include <mach/memory_object_types.h> | |
91447636 A |
84 | #include <mach/vm_map.h> |
85 | #include <mach/upl.h> | |
6d2010ae | 86 | #include <kern/task.h> |
39037602 | 87 | #include <kern/policy_internal.h> |
91447636 A |
88 | |
89 | #include <vm/vm_kern.h> | |
90 | #include <vm/vm_map.h> | |
91 | #include <vm/vm_pageout.h> | |
fe8ab488 | 92 | #include <vm/vm_fault.h> |
55e303ae | 93 | |
1c79356b | 94 | #include <sys/kdebug.h> |
b0d623f7 A |
95 | #include <libkern/OSAtomic.h> |
96 | ||
6d2010ae A |
97 | #include <sys/sdt.h> |
98 | ||
3e170ce0 A |
99 | #include <stdbool.h> |
100 | ||
b0d623f7 A |
101 | #if 0 |
102 | #undef KERNEL_DEBUG | |
103 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT | |
104 | #endif | |
105 | ||
1c79356b | 106 | |
2d21ac55 | 107 | #define CL_READ 0x01 |
b0d623f7 | 108 | #define CL_WRITE 0x02 |
cf7d32b8 A |
109 | #define CL_ASYNC 0x04 |
110 | #define CL_COMMIT 0x08 | |
2d21ac55 A |
111 | #define CL_PAGEOUT 0x10 |
112 | #define CL_AGE 0x20 | |
113 | #define CL_NOZERO 0x40 | |
114 | #define CL_PAGEIN 0x80 | |
115 | #define CL_DEV_MEMORY 0x100 | |
116 | #define CL_PRESERVE 0x200 | |
117 | #define CL_THROTTLE 0x400 | |
118 | #define CL_KEEPCACHED 0x800 | |
119 | #define CL_DIRECT_IO 0x1000 | |
120 | #define CL_PASSIVE 0x2000 | |
b0d623f7 | 121 | #define CL_IOSTREAMING 0x4000 |
6d2010ae A |
122 | #define CL_CLOSE 0x8000 |
123 | #define CL_ENCRYPTED 0x10000 | |
316670eb A |
124 | #define CL_RAW_ENCRYPTED 0x20000 |
125 | #define CL_NOCACHE 0x40000 | |
b0d623f7 A |
126 | |
127 | #define MAX_VECTOR_UPL_ELEMENTS 8 | |
fe8ab488 | 128 | #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES) |
b4c24cb9 | 129 | |
39037602 A |
130 | #define CLUSTER_IO_WAITING ((buf_t)1) |
131 | ||
b0d623f7 A |
132 | extern upl_t vector_upl_create(vm_offset_t); |
133 | extern boolean_t vector_upl_is_valid(upl_t); | |
134 | extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t); | |
135 | extern void vector_upl_set_pagelist(upl_t); | |
136 | extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t); | |
d7e50217 | 137 | |
b4c24cb9 | 138 | struct clios { |
6d2010ae | 139 | lck_mtx_t io_mtxp; |
d7e50217 A |
140 | u_int io_completed; /* amount of io that has currently completed */ |
141 | u_int io_issued; /* amount of io that was successfully issued */ | |
142 | int io_error; /* error code of first error encountered */ | |
143 | int io_wanted; /* someone is sleeping waiting for a change in state */ | |
b4c24cb9 A |
144 | }; |
145 | ||
3e170ce0 A |
146 | struct cl_direct_read_lock { |
147 | LIST_ENTRY(cl_direct_read_lock) chain; | |
148 | int32_t ref_count; | |
149 | vnode_t vp; | |
150 | lck_rw_t rw_lock; | |
151 | }; | |
152 | ||
153 | #define CL_DIRECT_READ_LOCK_BUCKETS 61 | |
154 | ||
155 | static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock) | |
156 | cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS]; | |
157 | ||
158 | static lck_spin_t cl_direct_read_spin_lock; | |
159 | ||
91447636 A |
160 | static lck_grp_t *cl_mtx_grp; |
161 | static lck_attr_t *cl_mtx_attr; | |
162 | static lck_grp_attr_t *cl_mtx_grp_attr; | |
060df5ea | 163 | static lck_mtx_t *cl_transaction_mtxp; |
91447636 | 164 | |
2d21ac55 A |
165 | #define IO_UNKNOWN 0 |
166 | #define IO_DIRECT 1 | |
167 | #define IO_CONTIG 2 | |
168 | #define IO_COPY 3 | |
169 | ||
170 | #define PUSH_DELAY 0x01 | |
171 | #define PUSH_ALL 0x02 | |
172 | #define PUSH_SYNC 0x04 | |
173 | ||
174 | ||
175 | static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset); | |
176 | static void cluster_wait_IO(buf_t cbp_head, int async); | |
177 | static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait); | |
178 | ||
179 | static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length); | |
180 | ||
91447636 | 181 | static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
2d21ac55 A |
182 | int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg); |
183 | static int cluster_iodone(buf_t bp, void *callback_arg); | |
39236c6e A |
184 | static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp); |
185 | static int cluster_is_throttled(vnode_t vp); | |
91447636 | 186 | |
6d2010ae A |
187 | static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name); |
188 | ||
fe8ab488 | 189 | static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags); |
2d21ac55 | 190 | |
b0d623f7 | 191 | static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference); |
2d21ac55 A |
192 | static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference); |
193 | ||
194 | static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, | |
195 | int (*)(buf_t, void *), void *callback_arg); | |
196 | static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
197 | int flags, int (*)(buf_t, void *), void *callback_arg); | |
198 | static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
199 | int (*)(buf_t, void *), void *callback_arg, int flags); | |
1c79356b | 200 | |
2d21ac55 A |
201 | static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, |
202 | off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg); | |
203 | static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, | |
204 | int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg); | |
205 | static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, | |
206 | int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag); | |
91447636 | 207 | |
2d21ac55 | 208 | static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg); |
91447636 | 209 | |
2d21ac55 A |
210 | static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag); |
211 | static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag); | |
91447636 | 212 | |
2d21ac55 | 213 | static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg); |
55e303ae | 214 | |
6d2010ae | 215 | static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg); |
2d21ac55 A |
216 | |
217 | static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg); | |
6d2010ae | 218 | static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg); |
b0d623f7 | 219 | static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg); |
2d21ac55 A |
220 | |
221 | static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp); | |
55e303ae A |
222 | static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); |
223 | static kern_return_t vfs_drt_control(void **cmapp, int op_type); | |
224 | ||
9bccf70c | 225 | |
316670eb A |
226 | /* |
227 | * For throttled IO to check whether | |
228 | * a block is cached by the boot cache | |
229 | * and thus it can avoid delaying the IO. | |
230 | * | |
231 | * bootcache_contains_block is initially | |
232 | * NULL. The BootCache will set it while | |
233 | * the cache is active and clear it when | |
234 | * the cache is jettisoned. | |
235 | * | |
236 | * Returns 0 if the block is not | |
237 | * contained in the cache, 1 if it is | |
238 | * contained. | |
239 | * | |
240 | * The function pointer remains valid | |
241 | * after the cache has been evicted even | |
242 | * if bootcache_contains_block has been | |
243 | * cleared. | |
244 | * | |
245 | * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs | |
246 | */ | |
247 | int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL; | |
248 | ||
249 | ||
2d21ac55 A |
250 | /* |
251 | * limit the internal I/O size so that we | |
252 | * can represent it in a 32 bit int | |
253 | */ | |
b0d623f7 | 254 | #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512) |
fe8ab488 | 255 | #define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES |
b0d623f7 | 256 | #define MAX_VECTS 16 |
3e170ce0 A |
257 | /* |
258 | * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider | |
259 | * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k), | |
260 | * we have not historically allowed the write to bypass the UBC. | |
261 | */ | |
262 | #define MIN_DIRECT_WRITE_SIZE (16384) | |
2d21ac55 | 263 | |
6d2010ae A |
264 | #define WRITE_THROTTLE 6 |
265 | #define WRITE_THROTTLE_SSD 2 | |
266 | #define WRITE_BEHIND 1 | |
267 | #define WRITE_BEHIND_SSD 1 | |
316670eb | 268 | |
6d2010ae | 269 | #define PREFETCH 3 |
fe8ab488 A |
270 | #define PREFETCH_SSD 2 |
271 | uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */ | |
272 | uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/ | |
316670eb | 273 | |
6d2010ae | 274 | |
316670eb | 275 | #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base)) |
b0d623f7 | 276 | #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE)) |
316670eb | 277 | #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH))) |
cf7d32b8 | 278 | |
6d2010ae A |
279 | int ignore_is_ssd = 0; |
280 | int speculative_reads_disabled = 0; | |
2d21ac55 | 281 | |
1c79356b A |
282 | /* |
283 | * throttle the number of async writes that | |
284 | * can be outstanding on a single vnode | |
285 | * before we issue a synchronous write | |
286 | */ | |
39236c6e | 287 | #define THROTTLE_MAXCNT 0 |
316670eb | 288 | |
39236c6e | 289 | uint32_t throttle_max_iosize = (128 * 1024); |
316670eb | 290 | |
39236c6e A |
291 | #define THROTTLE_MAX_IOSIZE (throttle_max_iosize) |
292 | ||
293 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, ""); | |
316670eb | 294 | |
55e303ae | 295 | |
91447636 A |
296 | void |
297 | cluster_init(void) { | |
2d21ac55 | 298 | /* |
91447636 A |
299 | * allocate lock group attribute and group |
300 | */ | |
2d21ac55 | 301 | cl_mtx_grp_attr = lck_grp_attr_alloc_init(); |
91447636 A |
302 | cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr); |
303 | ||
304 | /* | |
305 | * allocate the lock attribute | |
306 | */ | |
307 | cl_mtx_attr = lck_attr_alloc_init(); | |
91447636 | 308 | |
060df5ea A |
309 | cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr); |
310 | ||
311 | if (cl_transaction_mtxp == NULL) | |
312 | panic("cluster_init: failed to allocate cl_transaction_mtxp"); | |
3e170ce0 A |
313 | |
314 | lck_spin_init(&cl_direct_read_spin_lock, cl_mtx_grp, cl_mtx_attr); | |
315 | ||
316 | for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i) | |
317 | LIST_INIT(&cl_direct_read_locks[i]); | |
91447636 A |
318 | } |
319 | ||
320 | ||
cf7d32b8 A |
321 | uint32_t |
322 | cluster_max_io_size(mount_t mp, int type) | |
323 | { | |
b0d623f7 A |
324 | uint32_t max_io_size; |
325 | uint32_t segcnt; | |
326 | uint32_t maxcnt; | |
327 | ||
328 | switch(type) { | |
329 | ||
330 | case CL_READ: | |
331 | segcnt = mp->mnt_segreadcnt; | |
332 | maxcnt = mp->mnt_maxreadcnt; | |
333 | break; | |
334 | case CL_WRITE: | |
335 | segcnt = mp->mnt_segwritecnt; | |
336 | maxcnt = mp->mnt_maxwritecnt; | |
337 | break; | |
338 | default: | |
339 | segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt); | |
340 | maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt); | |
341 | break; | |
342 | } | |
fe8ab488 | 343 | if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) { |
cf7d32b8 A |
344 | /* |
345 | * don't allow a size beyond the max UPL size we can create | |
346 | */ | |
fe8ab488 | 347 | segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT; |
cf7d32b8 A |
348 | } |
349 | max_io_size = min((segcnt * PAGE_SIZE), maxcnt); | |
350 | ||
fe8ab488 | 351 | if (max_io_size < MAX_UPL_TRANSFER_BYTES) { |
cf7d32b8 A |
352 | /* |
353 | * don't allow a size smaller than the old fixed limit | |
354 | */ | |
fe8ab488 | 355 | max_io_size = MAX_UPL_TRANSFER_BYTES; |
cf7d32b8 A |
356 | } else { |
357 | /* | |
358 | * make sure the size specified is a multiple of PAGE_SIZE | |
359 | */ | |
360 | max_io_size &= ~PAGE_MASK; | |
361 | } | |
362 | return (max_io_size); | |
363 | } | |
364 | ||
365 | ||
366 | ||
91447636 A |
367 | |
368 | #define CLW_ALLOCATE 0x01 | |
369 | #define CLW_RETURNLOCKED 0x02 | |
2d21ac55 A |
370 | #define CLW_IONOCACHE 0x04 |
371 | #define CLW_IOPASSIVE 0x08 | |
372 | ||
91447636 A |
373 | /* |
374 | * if the read ahead context doesn't yet exist, | |
375 | * allocate and initialize it... | |
376 | * the vnode lock serializes multiple callers | |
377 | * during the actual assignment... first one | |
378 | * to grab the lock wins... the other callers | |
379 | * will release the now unnecessary storage | |
380 | * | |
381 | * once the context is present, try to grab (but don't block on) | |
382 | * the lock associated with it... if someone | |
383 | * else currently owns it, than the read | |
384 | * will run without read-ahead. this allows | |
385 | * multiple readers to run in parallel and | |
386 | * since there's only 1 read ahead context, | |
387 | * there's no real loss in only allowing 1 | |
388 | * reader to have read-ahead enabled. | |
389 | */ | |
390 | static struct cl_readahead * | |
391 | cluster_get_rap(vnode_t vp) | |
392 | { | |
393 | struct ubc_info *ubc; | |
394 | struct cl_readahead *rap; | |
395 | ||
396 | ubc = vp->v_ubcinfo; | |
397 | ||
398 | if ((rap = ubc->cl_rahead) == NULL) { | |
399 | MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK); | |
400 | ||
401 | bzero(rap, sizeof *rap); | |
402 | rap->cl_lastr = -1; | |
403 | lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr); | |
404 | ||
405 | vnode_lock(vp); | |
406 | ||
407 | if (ubc->cl_rahead == NULL) | |
408 | ubc->cl_rahead = rap; | |
409 | else { | |
410 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
411 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
2d21ac55 | 412 | rap = ubc->cl_rahead; |
91447636 A |
413 | } |
414 | vnode_unlock(vp); | |
415 | } | |
416 | if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE) | |
417 | return(rap); | |
418 | ||
419 | return ((struct cl_readahead *)NULL); | |
420 | } | |
421 | ||
422 | ||
423 | /* | |
424 | * if the write behind context doesn't yet exist, | |
425 | * and CLW_ALLOCATE is specified, allocate and initialize it... | |
426 | * the vnode lock serializes multiple callers | |
427 | * during the actual assignment... first one | |
428 | * to grab the lock wins... the other callers | |
429 | * will release the now unnecessary storage | |
430 | * | |
431 | * if CLW_RETURNLOCKED is set, grab (blocking if necessary) | |
432 | * the lock associated with the write behind context before | |
433 | * returning | |
434 | */ | |
435 | ||
436 | static struct cl_writebehind * | |
437 | cluster_get_wbp(vnode_t vp, int flags) | |
438 | { | |
439 | struct ubc_info *ubc; | |
440 | struct cl_writebehind *wbp; | |
441 | ||
442 | ubc = vp->v_ubcinfo; | |
443 | ||
444 | if ((wbp = ubc->cl_wbehind) == NULL) { | |
445 | ||
446 | if ( !(flags & CLW_ALLOCATE)) | |
447 | return ((struct cl_writebehind *)NULL); | |
448 | ||
449 | MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK); | |
450 | ||
451 | bzero(wbp, sizeof *wbp); | |
452 | lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr); | |
453 | ||
454 | vnode_lock(vp); | |
455 | ||
456 | if (ubc->cl_wbehind == NULL) | |
457 | ubc->cl_wbehind = wbp; | |
458 | else { | |
459 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
460 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
2d21ac55 | 461 | wbp = ubc->cl_wbehind; |
91447636 A |
462 | } |
463 | vnode_unlock(vp); | |
464 | } | |
465 | if (flags & CLW_RETURNLOCKED) | |
466 | lck_mtx_lock(&wbp->cl_lockw); | |
467 | ||
468 | return (wbp); | |
469 | } | |
470 | ||
471 | ||
2d21ac55 | 472 | static void |
fe8ab488 | 473 | cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags) |
2d21ac55 A |
474 | { |
475 | struct cl_writebehind *wbp; | |
476 | ||
477 | if ((wbp = cluster_get_wbp(vp, 0)) != NULL) { | |
478 | ||
479 | if (wbp->cl_number) { | |
480 | lck_mtx_lock(&wbp->cl_lockw); | |
481 | ||
fe8ab488 | 482 | cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg); |
2d21ac55 A |
483 | |
484 | lck_mtx_unlock(&wbp->cl_lockw); | |
485 | } | |
486 | } | |
487 | } | |
488 | ||
489 | ||
316670eb A |
490 | static int |
491 | cluster_io_present_in_BC(vnode_t vp, off_t f_offset) | |
492 | { | |
493 | daddr64_t blkno; | |
494 | size_t io_size; | |
495 | int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block; | |
496 | ||
497 | if (bootcache_check_fn) { | |
498 | if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL)) | |
499 | return(0); | |
500 | ||
501 | if (io_size == 0) | |
502 | return (0); | |
503 | ||
504 | if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno)) | |
505 | return(1); | |
506 | } | |
507 | return(0); | |
508 | } | |
509 | ||
510 | ||
55e303ae | 511 | static int |
39236c6e | 512 | cluster_is_throttled(vnode_t vp) |
55e303ae | 513 | { |
39236c6e | 514 | return (throttle_io_will_be_throttled(-1, vp->v_mount)); |
55e303ae A |
515 | } |
516 | ||
1c79356b | 517 | |
6d2010ae A |
518 | static void |
519 | cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name) | |
520 | { | |
521 | ||
522 | lck_mtx_lock(&iostate->io_mtxp); | |
523 | ||
524 | while ((iostate->io_issued - iostate->io_completed) > target) { | |
525 | ||
526 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START, | |
527 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
528 | ||
529 | iostate->io_wanted = 1; | |
530 | msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL); | |
531 | ||
532 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END, | |
533 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
534 | } | |
535 | lck_mtx_unlock(&iostate->io_mtxp); | |
536 | } | |
537 | ||
3e170ce0 A |
538 | static void cluster_handle_associated_upl(struct clios *iostate, upl_t upl, |
539 | upl_offset_t upl_offset, upl_size_t size) | |
540 | { | |
541 | if (!size) | |
542 | return; | |
543 | ||
544 | upl_t associated_upl = upl_associated_upl(upl); | |
545 | ||
546 | if (!associated_upl) | |
547 | return; | |
548 | ||
549 | #if 0 | |
550 | printf("1: %d %d\n", upl_offset, upl_offset + size); | |
551 | #endif | |
552 | ||
553 | /* | |
554 | * The associated UPL is page aligned to file offsets whereas the | |
555 | * UPL it's attached to has different alignment requirements. The | |
556 | * upl_offset that we have refers to @upl. The code that follows | |
557 | * has to deal with the first and last pages in this transaction | |
558 | * which might straddle pages in the associated UPL. To keep | |
559 | * track of these pages, we use the mark bits: if the mark bit is | |
560 | * set, we know another transaction has completed its part of that | |
561 | * page and so we can unlock that page here. | |
562 | * | |
563 | * The following illustrates what we have to deal with: | |
564 | * | |
565 | * MEM u <------------ 1 PAGE ------------> e | |
566 | * +-------------+----------------------+----------------- | |
567 | * | |######################|################# | |
568 | * +-------------+----------------------+----------------- | |
569 | * FILE | <--- a ---> o <------------ 1 PAGE ------------> | |
570 | * | |
571 | * So here we show a write to offset @o. The data that is to be | |
572 | * written is in a buffer that is not page aligned; it has offset | |
573 | * @a in the page. The upl that carries the data starts in memory | |
574 | * at @u. The associated upl starts in the file at offset @o. A | |
575 | * transaction will always end on a page boundary (like @e above) | |
576 | * except for the very last transaction in the group. We cannot | |
577 | * unlock the page at @o in the associated upl until both the | |
578 | * transaction ending at @e and the following transaction (that | |
579 | * starts at @e) has completed. | |
580 | */ | |
581 | ||
582 | /* | |
583 | * We record whether or not the two UPLs are aligned as the mark | |
584 | * bit in the first page of @upl. | |
585 | */ | |
586 | upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
587 | bool is_unaligned = upl_page_get_mark(pl, 0); | |
588 | ||
589 | if (is_unaligned) { | |
590 | upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl); | |
591 | ||
592 | upl_offset_t upl_end = upl_offset + size; | |
593 | assert(upl_end >= PAGE_SIZE); | |
594 | ||
595 | upl_size_t assoc_upl_size = upl_get_size(associated_upl); | |
596 | ||
597 | /* | |
598 | * In the very first transaction in the group, upl_offset will | |
599 | * not be page aligned, but after that it will be and in that | |
600 | * case we want the preceding page in the associated UPL hence | |
601 | * the minus one. | |
602 | */ | |
603 | assert(upl_offset); | |
604 | if (upl_offset) | |
605 | upl_offset = trunc_page_32(upl_offset - 1); | |
606 | ||
607 | lck_mtx_lock_spin(&iostate->io_mtxp); | |
608 | ||
609 | // Look at the first page... | |
610 | if (upl_offset | |
611 | && !upl_page_get_mark(assoc_pl, upl_offset >> PAGE_SHIFT)) { | |
612 | /* | |
613 | * The first page isn't marked so let another transaction | |
614 | * completion handle it. | |
615 | */ | |
616 | upl_page_set_mark(assoc_pl, upl_offset >> PAGE_SHIFT, true); | |
617 | upl_offset += PAGE_SIZE; | |
618 | } | |
619 | ||
620 | // And now the last page... | |
621 | ||
622 | /* | |
623 | * This needs to be > rather than >= because if it's equal, it | |
624 | * means there's another transaction that is sharing the last | |
625 | * page. | |
626 | */ | |
627 | if (upl_end > assoc_upl_size) | |
628 | upl_end = assoc_upl_size; | |
629 | else { | |
630 | upl_end = trunc_page_32(upl_end); | |
631 | const int last_pg = (upl_end >> PAGE_SHIFT) - 1; | |
632 | ||
633 | if (!upl_page_get_mark(assoc_pl, last_pg)) { | |
634 | /* | |
635 | * The last page isn't marked so mark the page and let another | |
636 | * transaction completion handle it. | |
637 | */ | |
638 | upl_page_set_mark(assoc_pl, last_pg, true); | |
639 | upl_end -= PAGE_SIZE; | |
640 | } | |
641 | } | |
642 | ||
643 | lck_mtx_unlock(&iostate->io_mtxp); | |
644 | ||
645 | #if 0 | |
646 | printf("2: %d %d\n", upl_offset, upl_end); | |
647 | #endif | |
648 | ||
649 | if (upl_end <= upl_offset) | |
650 | return; | |
651 | ||
652 | size = upl_end - upl_offset; | |
653 | } else { | |
654 | assert(!(upl_offset & PAGE_MASK)); | |
655 | assert(!(size & PAGE_MASK)); | |
656 | } | |
657 | ||
658 | boolean_t empty; | |
659 | ||
660 | /* | |
661 | * We can unlock these pages now and as this is for a | |
662 | * direct/uncached write, we want to dump the pages too. | |
663 | */ | |
664 | kern_return_t kr = upl_abort_range(associated_upl, upl_offset, size, | |
665 | UPL_ABORT_DUMP_PAGES, &empty); | |
666 | ||
667 | assert(!kr); | |
668 | ||
669 | if (!kr && empty) { | |
670 | upl_set_associated_upl(upl, NULL); | |
671 | upl_deallocate(associated_upl); | |
672 | } | |
673 | } | |
6d2010ae | 674 | |
1c79356b | 675 | static int |
39236c6e | 676 | cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp) |
2d21ac55 A |
677 | { |
678 | int upl_abort_code = 0; | |
679 | int page_in = 0; | |
680 | int page_out = 0; | |
681 | ||
6d2010ae | 682 | if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE)) |
2d21ac55 A |
683 | /* |
684 | * direct write of any flavor, or a direct read that wasn't aligned | |
685 | */ | |
686 | ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY); | |
687 | else { | |
688 | if (io_flags & B_PAGEIO) { | |
689 | if (io_flags & B_READ) | |
690 | page_in = 1; | |
691 | else | |
692 | page_out = 1; | |
693 | } | |
694 | if (io_flags & B_CACHE) | |
695 | /* | |
696 | * leave pages in the cache unchanged on error | |
697 | */ | |
698 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
39236c6e | 699 | else if (page_out && ((error != ENXIO) || vnode_isswap(vp))) |
2d21ac55 A |
700 | /* |
701 | * transient error... leave pages unchanged | |
702 | */ | |
703 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
704 | else if (page_in) | |
705 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; | |
706 | else | |
707 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
708 | ||
709 | ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code); | |
710 | } | |
711 | return (upl_abort_code); | |
712 | } | |
713 | ||
714 | ||
715 | static int | |
716 | cluster_iodone(buf_t bp, void *callback_arg) | |
1c79356b | 717 | { |
91447636 A |
718 | int b_flags; |
719 | int error; | |
720 | int total_size; | |
721 | int total_resid; | |
722 | int upl_offset; | |
723 | int zero_offset; | |
2d21ac55 A |
724 | int pg_offset = 0; |
725 | int commit_size = 0; | |
726 | int upl_flags = 0; | |
727 | int transaction_size = 0; | |
91447636 A |
728 | upl_t upl; |
729 | buf_t cbp; | |
730 | buf_t cbp_head; | |
731 | buf_t cbp_next; | |
732 | buf_t real_bp; | |
39236c6e | 733 | vnode_t vp; |
91447636 | 734 | struct clios *iostate; |
2d21ac55 | 735 | boolean_t transaction_complete = FALSE; |
91447636 | 736 | |
3e170ce0 | 737 | __IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head)); |
1c79356b A |
738 | |
739 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, | |
b0d623f7 | 740 | cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
1c79356b | 741 | |
060df5ea | 742 | if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) { |
060df5ea A |
743 | lck_mtx_lock_spin(cl_transaction_mtxp); |
744 | ||
745 | bp->b_flags |= B_TDONE; | |
3e170ce0 | 746 | |
060df5ea | 747 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { |
6d2010ae | 748 | /* |
060df5ea A |
749 | * all I/O requests that are part of this transaction |
750 | * have to complete before we can process it | |
751 | */ | |
6d2010ae | 752 | if ( !(cbp->b_flags & B_TDONE)) { |
1c79356b | 753 | |
6d2010ae | 754 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
060df5ea A |
755 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); |
756 | ||
757 | lck_mtx_unlock(cl_transaction_mtxp); | |
6d2010ae | 758 | |
39037602 A |
759 | return 0; |
760 | } | |
761 | ||
762 | if (cbp->b_trans_next == CLUSTER_IO_WAITING) { | |
763 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
764 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); | |
765 | ||
766 | lck_mtx_unlock(cl_transaction_mtxp); | |
767 | wakeup(cbp); | |
6d2010ae | 768 | |
060df5ea A |
769 | return 0; |
770 | } | |
39037602 | 771 | |
060df5ea | 772 | if (cbp->b_flags & B_EOT) |
6d2010ae | 773 | transaction_complete = TRUE; |
060df5ea A |
774 | } |
775 | lck_mtx_unlock(cl_transaction_mtxp); | |
776 | ||
777 | if (transaction_complete == FALSE) { | |
6d2010ae | 778 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
060df5ea | 779 | cbp_head, 0, 0, 0, 0); |
2d21ac55 | 780 | return 0; |
1c79356b A |
781 | } |
782 | } | |
783 | error = 0; | |
784 | total_size = 0; | |
785 | total_resid = 0; | |
786 | ||
787 | cbp = cbp_head; | |
39236c6e | 788 | vp = cbp->b_vp; |
1c79356b | 789 | upl_offset = cbp->b_uploffset; |
91447636 | 790 | upl = cbp->b_upl; |
1c79356b A |
791 | b_flags = cbp->b_flags; |
792 | real_bp = cbp->b_real_bp; | |
9bccf70c | 793 | zero_offset= cbp->b_validend; |
b4c24cb9 | 794 | iostate = (struct clios *)cbp->b_iostate; |
1c79356b | 795 | |
91447636 A |
796 | if (real_bp) |
797 | real_bp->b_dev = cbp->b_dev; | |
798 | ||
1c79356b | 799 | while (cbp) { |
1c79356b A |
800 | if ((cbp->b_flags & B_ERROR) && error == 0) |
801 | error = cbp->b_error; | |
802 | ||
803 | total_resid += cbp->b_resid; | |
804 | total_size += cbp->b_bcount; | |
805 | ||
806 | cbp_next = cbp->b_trans_next; | |
807 | ||
2d21ac55 A |
808 | if (cbp_next == NULL) |
809 | /* | |
810 | * compute the overall size of the transaction | |
811 | * in case we created one that has 'holes' in it | |
812 | * 'total_size' represents the amount of I/O we | |
813 | * did, not the span of the transaction w/r to the UPL | |
814 | */ | |
815 | transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset; | |
816 | ||
817 | if (cbp != cbp_head) | |
818 | free_io_buf(cbp); | |
1c79356b A |
819 | |
820 | cbp = cbp_next; | |
821 | } | |
3e170ce0 A |
822 | |
823 | if (ISSET(b_flags, B_COMMIT_UPL)) { | |
824 | cluster_handle_associated_upl(iostate, | |
825 | cbp_head->b_upl, | |
826 | upl_offset, | |
827 | transaction_size); | |
828 | } | |
829 | ||
2d21ac55 A |
830 | if (error == 0 && total_resid) |
831 | error = EIO; | |
832 | ||
833 | if (error == 0) { | |
834 | int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone); | |
835 | ||
836 | if (cliodone_func != NULL) { | |
837 | cbp_head->b_bcount = transaction_size; | |
838 | ||
839 | error = (*cliodone_func)(cbp_head, callback_arg); | |
840 | } | |
841 | } | |
b4c24cb9 A |
842 | if (zero_offset) |
843 | cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); | |
844 | ||
2d21ac55 A |
845 | free_io_buf(cbp_head); |
846 | ||
b4c24cb9 | 847 | if (iostate) { |
91447636 A |
848 | int need_wakeup = 0; |
849 | ||
d7e50217 A |
850 | /* |
851 | * someone has issued multiple I/Os asynchrounsly | |
852 | * and is waiting for them to complete (streaming) | |
853 | */ | |
6d2010ae | 854 | lck_mtx_lock_spin(&iostate->io_mtxp); |
91447636 | 855 | |
d7e50217 A |
856 | if (error && iostate->io_error == 0) |
857 | iostate->io_error = error; | |
9bccf70c | 858 | |
b4c24cb9 A |
859 | iostate->io_completed += total_size; |
860 | ||
861 | if (iostate->io_wanted) { | |
d7e50217 A |
862 | /* |
863 | * someone is waiting for the state of | |
864 | * this io stream to change | |
865 | */ | |
b4c24cb9 | 866 | iostate->io_wanted = 0; |
91447636 | 867 | need_wakeup = 1; |
b4c24cb9 | 868 | } |
6d2010ae | 869 | lck_mtx_unlock(&iostate->io_mtxp); |
91447636 A |
870 | |
871 | if (need_wakeup) | |
872 | wakeup((caddr_t)&iostate->io_wanted); | |
b4c24cb9 | 873 | } |
1c79356b A |
874 | |
875 | if (b_flags & B_COMMIT_UPL) { | |
3e170ce0 | 876 | pg_offset = upl_offset & PAGE_MASK; |
2d21ac55 | 877 | commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 878 | |
2d21ac55 | 879 | if (error) |
39236c6e | 880 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp); |
2d21ac55 | 881 | else { |
3e170ce0 | 882 | upl_flags = UPL_COMMIT_FREE_ON_EMPTY; |
1c79356b | 883 | |
91447636 | 884 | if ((b_flags & B_PHYS) && (b_flags & B_READ)) |
2d21ac55 | 885 | upl_flags |= UPL_COMMIT_SET_DIRTY; |
55e303ae | 886 | |
1c79356b | 887 | if (b_flags & B_AGE) |
2d21ac55 | 888 | upl_flags |= UPL_COMMIT_INACTIVATE; |
1c79356b | 889 | |
2d21ac55 | 890 | ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags); |
1c79356b | 891 | } |
91447636 | 892 | } |
6d2010ae | 893 | if (real_bp) { |
2d21ac55 A |
894 | if (error) { |
895 | real_bp->b_flags |= B_ERROR; | |
896 | real_bp->b_error = error; | |
897 | } | |
898 | real_bp->b_resid = total_resid; | |
899 | ||
900 | buf_biodone(real_bp); | |
901 | } | |
902 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
b0d623f7 | 903 | upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0); |
1c79356b A |
904 | |
905 | return (error); | |
906 | } | |
907 | ||
908 | ||
b0d623f7 | 909 | uint32_t |
39236c6e | 910 | cluster_throttle_io_limit(vnode_t vp, uint32_t *limit) |
b0d623f7 | 911 | { |
39236c6e | 912 | if (cluster_is_throttled(vp)) { |
316670eb | 913 | *limit = THROTTLE_MAX_IOSIZE; |
b0d623f7 A |
914 | return 1; |
915 | } | |
916 | return 0; | |
917 | } | |
918 | ||
919 | ||
91447636 | 920 | void |
b0d623f7 | 921 | cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp) |
1c79356b | 922 | { |
1c79356b | 923 | |
55e303ae | 924 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, |
b0d623f7 | 925 | upl_offset, size, bp, 0, 0); |
9bccf70c | 926 | |
91447636 | 927 | if (bp == NULL || bp->b_datap == 0) { |
2d21ac55 A |
928 | upl_page_info_t *pl; |
929 | addr64_t zero_addr; | |
9bccf70c | 930 | |
55e303ae A |
931 | pl = ubc_upl_pageinfo(upl); |
932 | ||
2d21ac55 | 933 | if (upl_device_page(pl) == TRUE) { |
fe8ab488 | 934 | zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset; |
2d21ac55 A |
935 | |
936 | bzero_phys_nc(zero_addr, size); | |
937 | } else { | |
938 | while (size) { | |
939 | int page_offset; | |
940 | int page_index; | |
941 | int zero_cnt; | |
55e303ae | 942 | |
2d21ac55 A |
943 | page_index = upl_offset / PAGE_SIZE; |
944 | page_offset = upl_offset & PAGE_MASK; | |
55e303ae | 945 | |
fe8ab488 | 946 | zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset; |
2d21ac55 | 947 | zero_cnt = min(PAGE_SIZE - page_offset, size); |
55e303ae | 948 | |
2d21ac55 | 949 | bzero_phys(zero_addr, zero_cnt); |
55e303ae | 950 | |
2d21ac55 A |
951 | size -= zero_cnt; |
952 | upl_offset += zero_cnt; | |
953 | } | |
55e303ae | 954 | } |
1c79356b | 955 | } else |
91447636 | 956 | bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size); |
1c79356b | 957 | |
55e303ae A |
958 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, |
959 | upl_offset, size, 0, 0, 0); | |
1c79356b A |
960 | } |
961 | ||
91447636 | 962 | |
2d21ac55 A |
963 | static void |
964 | cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset) | |
965 | { | |
966 | cbp_head->b_validend = zero_offset; | |
967 | cbp_tail->b_flags |= B_EOT; | |
968 | } | |
969 | ||
970 | static void | |
971 | cluster_wait_IO(buf_t cbp_head, int async) | |
972 | { | |
973 | buf_t cbp; | |
974 | ||
975 | if (async) { | |
39037602 A |
976 | /* |
977 | * Async callback completion will not normally generate a | |
978 | * wakeup upon I/O completion. To get woken up, we set | |
979 | * b_trans_next (which is safe for us to modify) on the last | |
980 | * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows | |
981 | * to wake us up when all buffers as part of this transaction | |
982 | * are completed. This is done under the umbrella of | |
983 | * cl_transaction_mtxp which is also taken in cluster_iodone. | |
2d21ac55 | 984 | */ |
39037602 A |
985 | bool done = true; |
986 | buf_t last = NULL; | |
987 | ||
6d2010ae | 988 | lck_mtx_lock_spin(cl_transaction_mtxp); |
2d21ac55 | 989 | |
39037602 A |
990 | for (cbp = cbp_head; cbp; last = cbp, cbp = cbp->b_trans_next) { |
991 | if (!ISSET(cbp->b_flags, B_TDONE)) | |
992 | done = false; | |
993 | } | |
2d21ac55 | 994 | |
39037602 A |
995 | if (!done) { |
996 | last->b_trans_next = CLUSTER_IO_WAITING; | |
997 | ||
998 | DTRACE_IO1(wait__start, buf_t, last); | |
999 | do { | |
1000 | msleep(last, cl_transaction_mtxp, PSPIN | (PRIBIO+1), "cluster_wait_IO", NULL); | |
6d2010ae | 1001 | |
39037602 A |
1002 | /* |
1003 | * We should only have been woken up if all the | |
1004 | * buffers are completed, but just in case... | |
1005 | */ | |
1006 | done = true; | |
1007 | for (cbp = cbp_head; cbp != CLUSTER_IO_WAITING; cbp = cbp->b_trans_next) { | |
1008 | if (!ISSET(cbp->b_flags, B_TDONE)) { | |
1009 | done = false; | |
1010 | break; | |
1011 | } | |
1012 | } | |
1013 | } while (!done); | |
1014 | DTRACE_IO1(wait__done, buf_t, last); | |
6d2010ae | 1015 | |
39037602 A |
1016 | last->b_trans_next = NULL; |
1017 | } | |
6d2010ae | 1018 | |
39037602 A |
1019 | lck_mtx_unlock(cl_transaction_mtxp); |
1020 | } else { // !async | |
1021 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) | |
1022 | buf_biowait(cbp); | |
2d21ac55 A |
1023 | } |
1024 | } | |
1025 | ||
1026 | static void | |
1027 | cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait) | |
1028 | { | |
1029 | buf_t cbp; | |
1030 | int error; | |
39236c6e | 1031 | boolean_t isswapout = FALSE; |
2d21ac55 A |
1032 | |
1033 | /* | |
1034 | * cluster_complete_transaction will | |
1035 | * only be called if we've issued a complete chain in synchronous mode | |
1036 | * or, we've already done a cluster_wait_IO on an incomplete chain | |
1037 | */ | |
1038 | if (needwait) { | |
1039 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) | |
1040 | buf_biowait(cbp); | |
1041 | } | |
060df5ea A |
1042 | /* |
1043 | * we've already waited on all of the I/Os in this transaction, | |
1044 | * so mark all of the buf_t's in this transaction as B_TDONE | |
1045 | * so that cluster_iodone sees the transaction as completed | |
1046 | */ | |
1047 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) | |
6d2010ae | 1048 | cbp->b_flags |= B_TDONE; |
39236c6e | 1049 | cbp = *cbp_head; |
060df5ea | 1050 | |
39236c6e A |
1051 | if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp)) |
1052 | isswapout = TRUE; | |
1053 | ||
1054 | error = cluster_iodone(cbp, callback_arg); | |
2d21ac55 A |
1055 | |
1056 | if ( !(flags & CL_ASYNC) && error && *retval == 0) { | |
39236c6e A |
1057 | if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO)) |
1058 | *retval = error; | |
1059 | else if (isswapout == TRUE) | |
1060 | *retval = error; | |
2d21ac55 A |
1061 | } |
1062 | *cbp_head = (buf_t)NULL; | |
1063 | } | |
1064 | ||
1065 | ||
1c79356b | 1066 | static int |
91447636 | 1067 | cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
2d21ac55 | 1068 | int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b | 1069 | { |
91447636 A |
1070 | buf_t cbp; |
1071 | u_int size; | |
1072 | u_int io_size; | |
1073 | int io_flags; | |
1074 | int bmap_flags; | |
1075 | int error = 0; | |
1076 | int retval = 0; | |
1077 | buf_t cbp_head = NULL; | |
1078 | buf_t cbp_tail = NULL; | |
1079 | int trans_count = 0; | |
2d21ac55 | 1080 | int max_trans_count; |
91447636 A |
1081 | u_int pg_count; |
1082 | int pg_offset; | |
1083 | u_int max_iosize; | |
1084 | u_int max_vectors; | |
1085 | int priv; | |
1086 | int zero_offset = 0; | |
1087 | int async_throttle = 0; | |
1088 | mount_t mp; | |
2d21ac55 A |
1089 | vm_offset_t upl_end_offset; |
1090 | boolean_t need_EOT = FALSE; | |
1091 | ||
1092 | /* | |
1093 | * we currently don't support buffers larger than a page | |
1094 | */ | |
1095 | if (real_bp && non_rounded_size > PAGE_SIZE) | |
1096 | panic("%s(): Called with real buffer of size %d bytes which " | |
1097 | "is greater than the maximum allowed size of " | |
1098 | "%d bytes (the system PAGE_SIZE).\n", | |
1099 | __FUNCTION__, non_rounded_size, PAGE_SIZE); | |
91447636 A |
1100 | |
1101 | mp = vp->v_mount; | |
1102 | ||
2d21ac55 A |
1103 | /* |
1104 | * we don't want to do any funny rounding of the size for IO requests | |
1105 | * coming through the DIRECT or CONTIGUOUS paths... those pages don't | |
1106 | * belong to us... we can't extend (nor do we need to) the I/O to fill | |
1107 | * out a page | |
1108 | */ | |
1109 | if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) { | |
91447636 A |
1110 | /* |
1111 | * round the requested size up so that this I/O ends on a | |
1112 | * page boundary in case this is a 'write'... if the filesystem | |
1113 | * has blocks allocated to back the page beyond the EOF, we want to | |
1114 | * make sure to write out the zero's that are sitting beyond the EOF | |
1115 | * so that in case the filesystem doesn't explicitly zero this area | |
1116 | * if a hole is created via a lseek/write beyond the current EOF, | |
1117 | * it will return zeros when it's read back from the disk. If the | |
1118 | * physical allocation doesn't extend for the whole page, we'll | |
1119 | * only write/read from the disk up to the end of this allocation | |
1120 | * via the extent info returned from the VNOP_BLOCKMAP call. | |
1121 | */ | |
1122 | pg_offset = upl_offset & PAGE_MASK; | |
55e303ae | 1123 | |
91447636 A |
1124 | size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; |
1125 | } else { | |
1126 | /* | |
1127 | * anyone advertising a blocksize of 1 byte probably | |
1128 | * can't deal with us rounding up the request size | |
1129 | * AFP is one such filesystem/device | |
1130 | */ | |
1131 | size = non_rounded_size; | |
1132 | } | |
2d21ac55 A |
1133 | upl_end_offset = upl_offset + size; |
1134 | ||
1135 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0); | |
1136 | ||
1137 | /* | |
1138 | * Set the maximum transaction size to the maximum desired number of | |
1139 | * buffers. | |
1140 | */ | |
1141 | max_trans_count = 8; | |
1142 | if (flags & CL_DEV_MEMORY) | |
1143 | max_trans_count = 16; | |
55e303ae | 1144 | |
0b4e3aa0 | 1145 | if (flags & CL_READ) { |
2d21ac55 | 1146 | io_flags = B_READ; |
91447636 | 1147 | bmap_flags = VNODE_READ; |
0b4e3aa0 | 1148 | |
91447636 A |
1149 | max_iosize = mp->mnt_maxreadcnt; |
1150 | max_vectors = mp->mnt_segreadcnt; | |
0b4e3aa0 | 1151 | } else { |
2d21ac55 | 1152 | io_flags = B_WRITE; |
91447636 | 1153 | bmap_flags = VNODE_WRITE; |
1c79356b | 1154 | |
91447636 A |
1155 | max_iosize = mp->mnt_maxwritecnt; |
1156 | max_vectors = mp->mnt_segwritecnt; | |
0b4e3aa0 | 1157 | } |
91447636 A |
1158 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); |
1159 | ||
55e303ae | 1160 | /* |
91447636 A |
1161 | * make sure the maximum iosize is a |
1162 | * multiple of the page size | |
55e303ae A |
1163 | */ |
1164 | max_iosize &= ~PAGE_MASK; | |
1165 | ||
2d21ac55 A |
1166 | /* |
1167 | * Ensure the maximum iosize is sensible. | |
1168 | */ | |
1169 | if (!max_iosize) | |
1170 | max_iosize = PAGE_SIZE; | |
1171 | ||
55e303ae | 1172 | if (flags & CL_THROTTLE) { |
39236c6e | 1173 | if ( !(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) { |
316670eb A |
1174 | if (max_iosize > THROTTLE_MAX_IOSIZE) |
1175 | max_iosize = THROTTLE_MAX_IOSIZE; | |
39236c6e | 1176 | async_throttle = THROTTLE_MAXCNT; |
2d21ac55 A |
1177 | } else { |
1178 | if ( (flags & CL_DEV_MEMORY) ) | |
b0d623f7 | 1179 | async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE); |
2d21ac55 A |
1180 | else { |
1181 | u_int max_cluster; | |
cf7d32b8 | 1182 | u_int max_cluster_size; |
6d2010ae A |
1183 | u_int scale; |
1184 | ||
39037602 A |
1185 | if (vp->v_mount->mnt_minsaturationbytecount) { |
1186 | max_cluster_size = vp->v_mount->mnt_minsaturationbytecount; | |
b0d623f7 | 1187 | |
39037602 A |
1188 | scale = 1; |
1189 | } else { | |
1190 | max_cluster_size = MAX_CLUSTER_SIZE(vp); | |
1191 | ||
1192 | if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) | |
1193 | scale = WRITE_THROTTLE_SSD; | |
1194 | else | |
1195 | scale = WRITE_THROTTLE; | |
1196 | } | |
cf7d32b8 | 1197 | if (max_iosize > max_cluster_size) |
b0d623f7 | 1198 | max_cluster = max_cluster_size; |
2d21ac55 A |
1199 | else |
1200 | max_cluster = max_iosize; | |
1201 | ||
1202 | if (size < max_cluster) | |
1203 | max_cluster = size; | |
6d2010ae | 1204 | |
6d2010ae A |
1205 | if (flags & CL_CLOSE) |
1206 | scale += MAX_CLUSTERS; | |
39037602 | 1207 | |
6d2010ae | 1208 | async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1); |
2d21ac55 A |
1209 | } |
1210 | } | |
55e303ae | 1211 | } |
1c79356b A |
1212 | if (flags & CL_AGE) |
1213 | io_flags |= B_AGE; | |
91447636 A |
1214 | if (flags & (CL_PAGEIN | CL_PAGEOUT)) |
1215 | io_flags |= B_PAGEIO; | |
b0d623f7 A |
1216 | if (flags & (CL_IOSTREAMING)) |
1217 | io_flags |= B_IOSTREAMING; | |
b4c24cb9 A |
1218 | if (flags & CL_COMMIT) |
1219 | io_flags |= B_COMMIT_UPL; | |
6d2010ae | 1220 | if (flags & CL_DIRECT_IO) |
b4c24cb9 | 1221 | io_flags |= B_PHYS; |
6d2010ae A |
1222 | if (flags & (CL_PRESERVE | CL_KEEPCACHED)) |
1223 | io_flags |= B_CACHE; | |
2d21ac55 A |
1224 | if (flags & CL_PASSIVE) |
1225 | io_flags |= B_PASSIVE; | |
6d2010ae A |
1226 | if (flags & CL_ENCRYPTED) |
1227 | io_flags |= B_ENCRYPTED_IO; | |
3e170ce0 | 1228 | |
2d21ac55 A |
1229 | if (vp->v_flag & VSYSTEM) |
1230 | io_flags |= B_META; | |
1c79356b | 1231 | |
9bccf70c | 1232 | if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { |
1c79356b A |
1233 | /* |
1234 | * then we are going to end up | |
1235 | * with a page that we can't complete (the file size wasn't a multiple | |
1236 | * of PAGE_SIZE and we're trying to read to the end of the file | |
1237 | * so we'll go ahead and zero out the portion of the page we can't | |
1238 | * read in from the file | |
1239 | */ | |
9bccf70c | 1240 | zero_offset = upl_offset + non_rounded_size; |
3e170ce0 A |
1241 | } else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) { |
1242 | assert(ISSET(flags, CL_COMMIT)); | |
1243 | ||
1244 | // For a direct/uncached write, we need to lock pages... | |
1245 | ||
1246 | upl_t cached_upl; | |
1247 | ||
1248 | /* | |
1249 | * Create a UPL to lock the pages in the cache whilst the | |
1250 | * write is in progress. | |
1251 | */ | |
1252 | ubc_create_upl(vp, f_offset, non_rounded_size, &cached_upl, | |
1253 | NULL, UPL_SET_LITE); | |
1254 | ||
1255 | /* | |
1256 | * Attach this UPL to the other UPL so that we can find it | |
1257 | * later. | |
1258 | */ | |
1259 | upl_set_associated_upl(upl, cached_upl); | |
1260 | ||
1261 | if (upl_offset & PAGE_MASK) { | |
1262 | /* | |
1263 | * The two UPLs are not aligned, so mark the first page in | |
1264 | * @upl so that cluster_handle_associated_upl can handle | |
1265 | * it accordingly. | |
1266 | */ | |
1267 | upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
1268 | upl_page_set_mark(pl, 0, true); | |
1269 | } | |
1c79356b | 1270 | } |
3e170ce0 | 1271 | |
1c79356b | 1272 | while (size) { |
91447636 A |
1273 | daddr64_t blkno; |
1274 | daddr64_t lblkno; | |
2d21ac55 | 1275 | u_int io_size_wanted; |
b0d623f7 | 1276 | size_t io_size_tmp; |
1c79356b | 1277 | |
0b4e3aa0 A |
1278 | if (size > max_iosize) |
1279 | io_size = max_iosize; | |
1c79356b A |
1280 | else |
1281 | io_size = size; | |
2d21ac55 A |
1282 | |
1283 | io_size_wanted = io_size; | |
b0d623f7 | 1284 | io_size_tmp = (size_t)io_size; |
91447636 | 1285 | |
b0d623f7 | 1286 | if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL))) |
1c79356b | 1287 | break; |
2d21ac55 | 1288 | |
b0d623f7 | 1289 | if (io_size_tmp > io_size_wanted) |
2d21ac55 | 1290 | io_size = io_size_wanted; |
b0d623f7 A |
1291 | else |
1292 | io_size = (u_int)io_size_tmp; | |
2d21ac55 | 1293 | |
91447636 A |
1294 | if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) |
1295 | real_bp->b_blkno = blkno; | |
1c79356b A |
1296 | |
1297 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, | |
2d21ac55 | 1298 | (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0); |
1c79356b | 1299 | |
91447636 A |
1300 | if (io_size == 0) { |
1301 | /* | |
1302 | * vnop_blockmap didn't return an error... however, it did | |
1303 | * return an extent size of 0 which means we can't | |
1304 | * make forward progress on this I/O... a hole in the | |
1305 | * file would be returned as a blkno of -1 with a non-zero io_size | |
1306 | * a real extent is returned with a blkno != -1 and a non-zero io_size | |
1307 | */ | |
1308 | error = EINVAL; | |
1309 | break; | |
1310 | } | |
1311 | if ( !(flags & CL_READ) && blkno == -1) { | |
2d21ac55 A |
1312 | off_t e_offset; |
1313 | int pageout_flags; | |
91447636 | 1314 | |
6d2010ae | 1315 | if (upl_get_internal_vectorupl(upl)) |
b0d623f7 | 1316 | panic("Vector UPLs should not take this code-path\n"); |
91447636 A |
1317 | /* |
1318 | * we're writing into a 'hole' | |
1319 | */ | |
0b4e3aa0 | 1320 | if (flags & CL_PAGEOUT) { |
91447636 A |
1321 | /* |
1322 | * if we got here via cluster_pageout | |
1323 | * then just error the request and return | |
1324 | * the 'hole' should already have been covered | |
1325 | */ | |
0b4e3aa0 A |
1326 | error = EINVAL; |
1327 | break; | |
91447636 | 1328 | } |
91447636 A |
1329 | /* |
1330 | * we can get here if the cluster code happens to | |
1331 | * pick up a page that was dirtied via mmap vs | |
1332 | * a 'write' and the page targets a 'hole'... | |
1333 | * i.e. the writes to the cluster were sparse | |
1334 | * and the file was being written for the first time | |
1335 | * | |
1336 | * we can also get here if the filesystem supports | |
1337 | * 'holes' that are less than PAGE_SIZE.... because | |
1338 | * we can't know if the range in the page that covers | |
1339 | * the 'hole' has been dirtied via an mmap or not, | |
1340 | * we have to assume the worst and try to push the | |
1341 | * entire page to storage. | |
1342 | * | |
1343 | * Try paging out the page individually before | |
1344 | * giving up entirely and dumping it (the pageout | |
1345 | * path will insure that the zero extent accounting | |
1346 | * has been taken care of before we get back into cluster_io) | |
2d21ac55 A |
1347 | * |
1348 | * go direct to vnode_pageout so that we don't have to | |
1349 | * unbusy the page from the UPL... we used to do this | |
fe8ab488 | 1350 | * so that we could call ubc_msync, but that results |
2d21ac55 A |
1351 | * in a potential deadlock if someone else races us to acquire |
1352 | * that page and wins and in addition needs one of the pages | |
1353 | * we're continuing to hold in the UPL | |
0b4e3aa0 | 1354 | */ |
2d21ac55 | 1355 | pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT; |
91447636 | 1356 | |
2d21ac55 A |
1357 | if ( !(flags & CL_ASYNC)) |
1358 | pageout_flags |= UPL_IOSYNC; | |
1359 | if ( !(flags & CL_COMMIT)) | |
1360 | pageout_flags |= UPL_NOCOMMIT; | |
1361 | ||
1362 | if (cbp_head) { | |
1363 | buf_t last_cbp; | |
1364 | ||
1365 | /* | |
1366 | * first we have to wait for the the current outstanding I/Os | |
1367 | * to complete... EOT hasn't been set yet on this transaction | |
1368 | * so the pages won't be released just because all of the current | |
1369 | * I/O linked to this transaction has completed... | |
1370 | */ | |
1371 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
1372 | ||
1373 | /* | |
1374 | * we've got a transcation that | |
1375 | * includes the page we're about to push out through vnode_pageout... | |
1376 | * find the last bp in the list which will be the one that | |
1377 | * includes the head of this page and round it's iosize down | |
1378 | * to a page boundary... | |
1379 | */ | |
1380 | for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next) | |
1381 | last_cbp = cbp; | |
1382 | ||
1383 | cbp->b_bcount &= ~PAGE_MASK; | |
1384 | ||
1385 | if (cbp->b_bcount == 0) { | |
1386 | /* | |
1387 | * this buf no longer has any I/O associated with it | |
1388 | */ | |
1389 | free_io_buf(cbp); | |
1390 | ||
1391 | if (cbp == cbp_head) { | |
1392 | /* | |
1393 | * the buf we just freed was the only buf in | |
1394 | * this transaction... so there's no I/O to do | |
1395 | */ | |
1396 | cbp_head = NULL; | |
1397 | } else { | |
1398 | /* | |
1399 | * remove the buf we just freed from | |
1400 | * the transaction list | |
1401 | */ | |
1402 | last_cbp->b_trans_next = NULL; | |
1403 | cbp_tail = last_cbp; | |
1404 | } | |
1405 | } | |
1406 | if (cbp_head) { | |
1407 | /* | |
1408 | * there was more to the current transaction | |
1409 | * than just the page we are pushing out via vnode_pageout... | |
1410 | * mark it as finished and complete it... we've already | |
1411 | * waited for the I/Os to complete above in the call to cluster_wait_IO | |
1412 | */ | |
1413 | cluster_EOT(cbp_head, cbp_tail, 0); | |
91447636 | 1414 | |
2d21ac55 A |
1415 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); |
1416 | ||
1417 | trans_count = 0; | |
1418 | } | |
1419 | } | |
1420 | if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) { | |
91447636 | 1421 | error = EINVAL; |
91447636 | 1422 | } |
2d21ac55 | 1423 | e_offset = round_page_64(f_offset + 1); |
91447636 A |
1424 | io_size = e_offset - f_offset; |
1425 | ||
1426 | f_offset += io_size; | |
1427 | upl_offset += io_size; | |
1428 | ||
1429 | if (size >= io_size) | |
1430 | size -= io_size; | |
1431 | else | |
1432 | size = 0; | |
1433 | /* | |
1434 | * keep track of how much of the original request | |
1435 | * that we've actually completed... non_rounded_size | |
1436 | * may go negative due to us rounding the request | |
1437 | * to a page size multiple (i.e. size > non_rounded_size) | |
1438 | */ | |
1439 | non_rounded_size -= io_size; | |
1440 | ||
1441 | if (non_rounded_size <= 0) { | |
1442 | /* | |
1443 | * we've transferred all of the data in the original | |
1444 | * request, but we were unable to complete the tail | |
1445 | * of the last page because the file didn't have | |
1446 | * an allocation to back that portion... this is ok. | |
1447 | */ | |
1448 | size = 0; | |
1449 | } | |
6d2010ae A |
1450 | if (error) { |
1451 | if (size == 0) | |
1452 | flags &= ~CL_COMMIT; | |
1453 | break; | |
1454 | } | |
0b4e3aa0 | 1455 | continue; |
1c79356b | 1456 | } |
fe8ab488 | 1457 | lblkno = (daddr64_t)(f_offset / 0x1000); |
1c79356b A |
1458 | /* |
1459 | * we have now figured out how much I/O we can do - this is in 'io_size' | |
1c79356b A |
1460 | * pg_offset is the starting point in the first page for the I/O |
1461 | * pg_count is the number of full and partial pages that 'io_size' encompasses | |
1462 | */ | |
1c79356b | 1463 | pg_offset = upl_offset & PAGE_MASK; |
1c79356b | 1464 | |
0b4e3aa0 | 1465 | if (flags & CL_DEV_MEMORY) { |
0b4e3aa0 A |
1466 | /* |
1467 | * treat physical requests as one 'giant' page | |
1468 | */ | |
1469 | pg_count = 1; | |
55e303ae A |
1470 | } else |
1471 | pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1472 | ||
91447636 | 1473 | if ((flags & CL_READ) && blkno == -1) { |
2d21ac55 | 1474 | vm_offset_t commit_offset; |
9bccf70c | 1475 | int bytes_to_zero; |
2d21ac55 | 1476 | int complete_transaction_now = 0; |
9bccf70c | 1477 | |
1c79356b A |
1478 | /* |
1479 | * if we're reading and blkno == -1, then we've got a | |
1480 | * 'hole' in the file that we need to deal with by zeroing | |
1481 | * out the affected area in the upl | |
1482 | */ | |
2d21ac55 | 1483 | if (io_size >= (u_int)non_rounded_size) { |
9bccf70c A |
1484 | /* |
1485 | * if this upl contains the EOF and it is not a multiple of PAGE_SIZE | |
1486 | * than 'zero_offset' will be non-zero | |
91447636 | 1487 | * if the 'hole' returned by vnop_blockmap extends all the way to the eof |
9bccf70c A |
1488 | * (indicated by the io_size finishing off the I/O request for this UPL) |
1489 | * than we're not going to issue an I/O for the | |
1490 | * last page in this upl... we need to zero both the hole and the tail | |
1491 | * of the page beyond the EOF, since the delayed zero-fill won't kick in | |
1492 | */ | |
2d21ac55 A |
1493 | bytes_to_zero = non_rounded_size; |
1494 | if (!(flags & CL_NOZERO)) | |
1495 | bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset; | |
1c79356b | 1496 | |
9bccf70c A |
1497 | zero_offset = 0; |
1498 | } else | |
1499 | bytes_to_zero = io_size; | |
1c79356b | 1500 | |
2d21ac55 A |
1501 | pg_count = 0; |
1502 | ||
1503 | cluster_zero(upl, upl_offset, bytes_to_zero, real_bp); | |
9bccf70c | 1504 | |
2d21ac55 A |
1505 | if (cbp_head) { |
1506 | int pg_resid; | |
1507 | ||
9bccf70c A |
1508 | /* |
1509 | * if there is a current I/O chain pending | |
1510 | * then the first page of the group we just zero'd | |
1511 | * will be handled by the I/O completion if the zero | |
1512 | * fill started in the middle of the page | |
1513 | */ | |
2d21ac55 A |
1514 | commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1515 | ||
1516 | pg_resid = commit_offset - upl_offset; | |
1517 | ||
1518 | if (bytes_to_zero >= pg_resid) { | |
1519 | /* | |
1520 | * the last page of the current I/O | |
1521 | * has been completed... | |
1522 | * compute the number of fully zero'd | |
1523 | * pages that are beyond it | |
1524 | * plus the last page if its partial | |
1525 | * and we have no more I/O to issue... | |
1526 | * otherwise a partial page is left | |
1527 | * to begin the next I/O | |
1528 | */ | |
1529 | if ((int)io_size >= non_rounded_size) | |
1530 | pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1531 | else | |
1532 | pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE; | |
1533 | ||
1534 | complete_transaction_now = 1; | |
1535 | } | |
1536 | } else { | |
9bccf70c | 1537 | /* |
2d21ac55 A |
1538 | * no pending I/O to deal with |
1539 | * so, commit all of the fully zero'd pages | |
1540 | * plus the last page if its partial | |
1541 | * and we have no more I/O to issue... | |
1542 | * otherwise a partial page is left | |
1543 | * to begin the next I/O | |
9bccf70c | 1544 | */ |
2d21ac55 A |
1545 | if ((int)io_size >= non_rounded_size) |
1546 | pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1c79356b | 1547 | else |
2d21ac55 | 1548 | pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE; |
9bccf70c | 1549 | |
2d21ac55 A |
1550 | commit_offset = upl_offset & ~PAGE_MASK; |
1551 | } | |
3e170ce0 A |
1552 | |
1553 | // Associated UPL is currently only used in the direct write path | |
1554 | assert(!upl_associated_upl(upl)); | |
1555 | ||
2d21ac55 A |
1556 | if ( (flags & CL_COMMIT) && pg_count) { |
1557 | ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE, | |
1558 | UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); | |
1c79356b A |
1559 | } |
1560 | upl_offset += io_size; | |
1561 | f_offset += io_size; | |
1562 | size -= io_size; | |
2d21ac55 | 1563 | |
91447636 A |
1564 | /* |
1565 | * keep track of how much of the original request | |
1566 | * that we've actually completed... non_rounded_size | |
1567 | * may go negative due to us rounding the request | |
1568 | * to a page size multiple (i.e. size > non_rounded_size) | |
1569 | */ | |
1570 | non_rounded_size -= io_size; | |
1c79356b | 1571 | |
91447636 A |
1572 | if (non_rounded_size <= 0) { |
1573 | /* | |
1574 | * we've transferred all of the data in the original | |
1575 | * request, but we were unable to complete the tail | |
1576 | * of the last page because the file didn't have | |
1577 | * an allocation to back that portion... this is ok. | |
1578 | */ | |
1579 | size = 0; | |
1580 | } | |
2d21ac55 A |
1581 | if (cbp_head && (complete_transaction_now || size == 0)) { |
1582 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
9bccf70c | 1583 | |
2d21ac55 A |
1584 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); |
1585 | ||
1586 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); | |
1587 | ||
1588 | trans_count = 0; | |
1589 | } | |
1590 | continue; | |
1c79356b | 1591 | } |
55e303ae | 1592 | if (pg_count > max_vectors) { |
91447636 | 1593 | if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { |
55e303ae A |
1594 | io_size = PAGE_SIZE - pg_offset; |
1595 | pg_count = 1; | |
91447636 A |
1596 | } else { |
1597 | io_size -= (pg_count - max_vectors) * PAGE_SIZE; | |
55e303ae | 1598 | pg_count = max_vectors; |
91447636 | 1599 | } |
1c79356b | 1600 | } |
2d21ac55 A |
1601 | /* |
1602 | * If the transaction is going to reach the maximum number of | |
1603 | * desired elements, truncate the i/o to the nearest page so | |
1604 | * that the actual i/o is initiated after this buffer is | |
1605 | * created and added to the i/o chain. | |
1606 | * | |
1607 | * I/O directed to physically contiguous memory | |
1608 | * doesn't have a requirement to make sure we 'fill' a page | |
1609 | */ | |
1610 | if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count && | |
1611 | ((upl_offset + io_size) & PAGE_MASK)) { | |
1612 | vm_offset_t aligned_ofs; | |
1613 | ||
1614 | aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK; | |
1615 | /* | |
1616 | * If the io_size does not actually finish off even a | |
1617 | * single page we have to keep adding buffers to the | |
1618 | * transaction despite having reached the desired limit. | |
1619 | * | |
1620 | * Eventually we get here with the page being finished | |
1621 | * off (and exceeded) and then we truncate the size of | |
1622 | * this i/o request so that it is page aligned so that | |
1623 | * we can finally issue the i/o on the transaction. | |
1624 | */ | |
1625 | if (aligned_ofs > upl_offset) { | |
1626 | io_size = aligned_ofs - upl_offset; | |
1627 | pg_count--; | |
1628 | } | |
1629 | } | |
1c79356b | 1630 | |
91447636 | 1631 | if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) |
55e303ae A |
1632 | /* |
1633 | * if we're not targeting a virtual device i.e. a disk image | |
1634 | * it's safe to dip into the reserve pool since real devices | |
1635 | * can complete this I/O request without requiring additional | |
1636 | * bufs from the alloc_io_buf pool | |
1637 | */ | |
1638 | priv = 1; | |
1639 | else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT)) | |
1640 | /* | |
1641 | * Throttle the speculative IO | |
1642 | */ | |
0b4e3aa0 A |
1643 | priv = 0; |
1644 | else | |
1645 | priv = 1; | |
1646 | ||
1647 | cbp = alloc_io_buf(vp, priv); | |
1c79356b | 1648 | |
55e303ae | 1649 | if (flags & CL_PAGEOUT) { |
91447636 A |
1650 | u_int i; |
1651 | ||
3e170ce0 A |
1652 | /* |
1653 | * since blocks are in offsets of 0x1000, scale | |
1654 | * iteration to (PAGE_SIZE * pg_count) of blks. | |
1655 | */ | |
1656 | for (i = 0; i < (PAGE_SIZE * pg_count)/0x1000; i++) { | |
1657 | if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY) | |
1658 | panic("BUSY bp found in cluster_io"); | |
1c79356b | 1659 | } |
1c79356b | 1660 | } |
b4c24cb9 | 1661 | if (flags & CL_ASYNC) { |
2d21ac55 | 1662 | if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg)) |
91447636 | 1663 | panic("buf_setcallback failed\n"); |
b4c24cb9 | 1664 | } |
2d21ac55 | 1665 | cbp->b_cliodone = (void *)callback; |
1c79356b | 1666 | cbp->b_flags |= io_flags; |
316670eb A |
1667 | if (flags & CL_NOCACHE) |
1668 | cbp->b_attr.ba_flags |= BA_NOCACHE; | |
1c79356b A |
1669 | |
1670 | cbp->b_lblkno = lblkno; | |
1671 | cbp->b_blkno = blkno; | |
1672 | cbp->b_bcount = io_size; | |
1c79356b | 1673 | |
91447636 A |
1674 | if (buf_setupl(cbp, upl, upl_offset)) |
1675 | panic("buf_setupl failed\n"); | |
fe8ab488 A |
1676 | #if CONFIG_IOSCHED |
1677 | upl_set_blkno(upl, upl_offset, io_size, blkno); | |
1678 | #endif | |
91447636 A |
1679 | cbp->b_trans_next = (buf_t)NULL; |
1680 | ||
1681 | if ((cbp->b_iostate = (void *)iostate)) | |
d7e50217 A |
1682 | /* |
1683 | * caller wants to track the state of this | |
1684 | * io... bump the amount issued against this stream | |
1685 | */ | |
b4c24cb9 A |
1686 | iostate->io_issued += io_size; |
1687 | ||
91447636 | 1688 | if (flags & CL_READ) { |
1c79356b | 1689 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, |
91447636 A |
1690 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
1691 | } | |
1692 | else { | |
1c79356b | 1693 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, |
91447636 A |
1694 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
1695 | } | |
1c79356b A |
1696 | |
1697 | if (cbp_head) { | |
1698 | cbp_tail->b_trans_next = cbp; | |
1699 | cbp_tail = cbp; | |
1700 | } else { | |
1701 | cbp_head = cbp; | |
1702 | cbp_tail = cbp; | |
2d21ac55 | 1703 | |
6d2010ae | 1704 | if ( (cbp_head->b_real_bp = real_bp) ) |
2d21ac55 | 1705 | real_bp = (buf_t)NULL; |
1c79356b | 1706 | } |
2d21ac55 A |
1707 | *(buf_t *)(&cbp->b_trans_head) = cbp_head; |
1708 | ||
91447636 | 1709 | trans_count++; |
1c79356b A |
1710 | |
1711 | upl_offset += io_size; | |
1712 | f_offset += io_size; | |
1713 | size -= io_size; | |
91447636 A |
1714 | /* |
1715 | * keep track of how much of the original request | |
1716 | * that we've actually completed... non_rounded_size | |
1717 | * may go negative due to us rounding the request | |
1718 | * to a page size multiple (i.e. size > non_rounded_size) | |
1719 | */ | |
1720 | non_rounded_size -= io_size; | |
1c79356b | 1721 | |
91447636 A |
1722 | if (non_rounded_size <= 0) { |
1723 | /* | |
1724 | * we've transferred all of the data in the original | |
1725 | * request, but we were unable to complete the tail | |
1726 | * of the last page because the file didn't have | |
1727 | * an allocation to back that portion... this is ok. | |
1728 | */ | |
1729 | size = 0; | |
1730 | } | |
2d21ac55 A |
1731 | if (size == 0) { |
1732 | /* | |
1733 | * we have no more I/O to issue, so go | |
1734 | * finish the final transaction | |
1735 | */ | |
1736 | need_EOT = TRUE; | |
1737 | } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) && | |
1738 | ((flags & CL_ASYNC) || trans_count > max_trans_count) ) { | |
1c79356b | 1739 | /* |
2d21ac55 A |
1740 | * I/O directed to physically contiguous memory... |
1741 | * which doesn't have a requirement to make sure we 'fill' a page | |
1742 | * or... | |
1c79356b A |
1743 | * the current I/O we've prepared fully |
1744 | * completes the last page in this request | |
2d21ac55 A |
1745 | * and ... |
1746 | * it's either an ASYNC request or | |
9bccf70c | 1747 | * we've already accumulated more than 8 I/O's into |
2d21ac55 A |
1748 | * this transaction so mark it as complete so that |
1749 | * it can finish asynchronously or via the cluster_complete_transaction | |
1750 | * below if the request is synchronous | |
1c79356b | 1751 | */ |
2d21ac55 A |
1752 | need_EOT = TRUE; |
1753 | } | |
1754 | if (need_EOT == TRUE) | |
1755 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); | |
1c79356b | 1756 | |
2d21ac55 A |
1757 | if (flags & CL_THROTTLE) |
1758 | (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io"); | |
1c79356b | 1759 | |
2d21ac55 A |
1760 | if ( !(io_flags & B_READ)) |
1761 | vnode_startwrite(vp); | |
9bccf70c | 1762 | |
316670eb A |
1763 | if (flags & CL_RAW_ENCRYPTED) { |
1764 | /* | |
1765 | * User requested raw encrypted bytes. | |
1766 | * Twiddle the bit in the ba_flags for the buffer | |
1767 | */ | |
1768 | cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO; | |
1769 | } | |
1770 | ||
2d21ac55 A |
1771 | (void) VNOP_STRATEGY(cbp); |
1772 | ||
1773 | if (need_EOT == TRUE) { | |
1774 | if ( !(flags & CL_ASYNC)) | |
1775 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1); | |
9bccf70c | 1776 | |
2d21ac55 | 1777 | need_EOT = FALSE; |
91447636 | 1778 | trans_count = 0; |
2d21ac55 | 1779 | cbp_head = NULL; |
1c79356b | 1780 | } |
2d21ac55 | 1781 | } |
1c79356b | 1782 | if (error) { |
3e170ce0 | 1783 | int abort_size; |
0b4e3aa0 | 1784 | |
b4c24cb9 | 1785 | io_size = 0; |
3e170ce0 | 1786 | |
2d21ac55 | 1787 | if (cbp_head) { |
3e170ce0 A |
1788 | /* |
1789 | * Wait until all of the outstanding I/O | |
1790 | * for this partial transaction has completed | |
1791 | */ | |
1792 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
0b4e3aa0 | 1793 | |
2d21ac55 A |
1794 | /* |
1795 | * Rewind the upl offset to the beginning of the | |
1796 | * transaction. | |
1797 | */ | |
1798 | upl_offset = cbp_head->b_uploffset; | |
3e170ce0 | 1799 | } |
2d21ac55 | 1800 | |
3e170ce0 A |
1801 | if (ISSET(flags, CL_COMMIT)) { |
1802 | cluster_handle_associated_upl(iostate, upl, upl_offset, | |
1803 | upl_end_offset - upl_offset); | |
1804 | } | |
2d21ac55 | 1805 | |
3e170ce0 A |
1806 | // Free all the IO buffers in this transaction |
1807 | for (cbp = cbp_head; cbp;) { | |
1808 | buf_t cbp_next; | |
1809 | ||
1810 | size += cbp->b_bcount; | |
1811 | io_size += cbp->b_bcount; | |
1812 | ||
1813 | cbp_next = cbp->b_trans_next; | |
1814 | free_io_buf(cbp); | |
1815 | cbp = cbp_next; | |
1c79356b | 1816 | } |
3e170ce0 | 1817 | |
b4c24cb9 | 1818 | if (iostate) { |
91447636 A |
1819 | int need_wakeup = 0; |
1820 | ||
d7e50217 A |
1821 | /* |
1822 | * update the error condition for this stream | |
1823 | * since we never really issued the io | |
1824 | * just go ahead and adjust it back | |
1825 | */ | |
6d2010ae | 1826 | lck_mtx_lock_spin(&iostate->io_mtxp); |
91447636 | 1827 | |
d7e50217 | 1828 | if (iostate->io_error == 0) |
b4c24cb9 | 1829 | iostate->io_error = error; |
b4c24cb9 A |
1830 | iostate->io_issued -= io_size; |
1831 | ||
1832 | if (iostate->io_wanted) { | |
d7e50217 A |
1833 | /* |
1834 | * someone is waiting for the state of | |
1835 | * this io stream to change | |
1836 | */ | |
b4c24cb9 | 1837 | iostate->io_wanted = 0; |
2d21ac55 | 1838 | need_wakeup = 1; |
b4c24cb9 | 1839 | } |
6d2010ae | 1840 | lck_mtx_unlock(&iostate->io_mtxp); |
91447636 A |
1841 | |
1842 | if (need_wakeup) | |
1843 | wakeup((caddr_t)&iostate->io_wanted); | |
b4c24cb9 | 1844 | } |
3e170ce0 | 1845 | |
1c79356b | 1846 | if (flags & CL_COMMIT) { |
2d21ac55 | 1847 | int upl_flags; |
1c79356b | 1848 | |
3e170ce0 | 1849 | pg_offset = upl_offset & PAGE_MASK; |
2d21ac55 | 1850 | abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK; |
3e170ce0 | 1851 | |
39236c6e | 1852 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp); |
2d21ac55 | 1853 | |
1c79356b | 1854 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, |
b0d623f7 | 1855 | upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0); |
1c79356b A |
1856 | } |
1857 | if (retval == 0) | |
1858 | retval = error; | |
2d21ac55 A |
1859 | } else if (cbp_head) |
1860 | panic("%s(): cbp_head is not NULL.\n", __FUNCTION__); | |
1861 | ||
1862 | if (real_bp) { | |
1863 | /* | |
1864 | * can get here if we either encountered an error | |
1865 | * or we completely zero-filled the request and | |
1866 | * no I/O was issued | |
1867 | */ | |
1868 | if (error) { | |
1869 | real_bp->b_flags |= B_ERROR; | |
1870 | real_bp->b_error = error; | |
1871 | } | |
1872 | buf_biodone(real_bp); | |
1c79356b | 1873 | } |
2d21ac55 | 1874 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0); |
1c79356b A |
1875 | |
1876 | return (retval); | |
1877 | } | |
1878 | ||
b0d623f7 A |
1879 | #define reset_vector_run_state() \ |
1880 | issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0; | |
1881 | ||
1882 | static int | |
1883 | vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize, | |
1884 | int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) | |
1885 | { | |
1886 | vector_upl_set_pagelist(vector_upl); | |
1887 | ||
1888 | if(io_flag & CL_READ) { | |
1889 | if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0)) | |
1890 | io_flag &= ~CL_PRESERVE; /*don't zero fill*/ | |
1891 | else | |
1892 | io_flag |= CL_PRESERVE; /*zero fill*/ | |
1893 | } | |
1894 | return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg)); | |
1895 | ||
1896 | } | |
1c79356b A |
1897 | |
1898 | static int | |
2d21ac55 | 1899 | cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag) |
1c79356b | 1900 | { |
55e303ae | 1901 | int pages_in_prefetch; |
1c79356b A |
1902 | |
1903 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, | |
1904 | (int)f_offset, size, (int)filesize, 0, 0); | |
1905 | ||
1906 | if (f_offset >= filesize) { | |
1907 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
1908 | (int)f_offset, 0, 0, 0, 0); | |
1909 | return(0); | |
1910 | } | |
9bccf70c A |
1911 | if ((off_t)size > (filesize - f_offset)) |
1912 | size = filesize - f_offset; | |
55e303ae | 1913 | pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; |
1c79356b | 1914 | |
2d21ac55 | 1915 | advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag); |
1c79356b A |
1916 | |
1917 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
55e303ae | 1918 | (int)f_offset + size, pages_in_prefetch, 0, 1, 0); |
1c79356b | 1919 | |
55e303ae | 1920 | return (pages_in_prefetch); |
1c79356b A |
1921 | } |
1922 | ||
1923 | ||
1924 | ||
1925 | static void | |
2d21ac55 A |
1926 | cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg, |
1927 | int bflag) | |
1c79356b | 1928 | { |
91447636 A |
1929 | daddr64_t r_addr; |
1930 | off_t f_offset; | |
1931 | int size_of_prefetch; | |
b0d623f7 | 1932 | u_int max_prefetch; |
91447636 | 1933 | |
1c79356b A |
1934 | |
1935 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, | |
91447636 | 1936 | (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); |
1c79356b | 1937 | |
91447636 | 1938 | if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { |
1c79356b | 1939 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
91447636 | 1940 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); |
1c79356b A |
1941 | return; |
1942 | } | |
2d21ac55 | 1943 | if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) { |
91447636 A |
1944 | rap->cl_ralen = 0; |
1945 | rap->cl_maxra = 0; | |
1c79356b A |
1946 | |
1947 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 1948 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); |
1c79356b A |
1949 | |
1950 | return; | |
1951 | } | |
6d2010ae | 1952 | max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD)); |
cf7d32b8 | 1953 | |
fe8ab488 A |
1954 | if (max_prefetch > speculative_prefetch_max) |
1955 | max_prefetch = speculative_prefetch_max; | |
6d2010ae A |
1956 | |
1957 | if (max_prefetch <= PAGE_SIZE) { | |
1958 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1959 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0); | |
1960 | return; | |
1961 | } | |
fe8ab488 A |
1962 | if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) { |
1963 | if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) { | |
1c79356b A |
1964 | |
1965 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 1966 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); |
1c79356b A |
1967 | return; |
1968 | } | |
1969 | } | |
91447636 A |
1970 | r_addr = max(extent->e_addr, rap->cl_maxra) + 1; |
1971 | f_offset = (off_t)(r_addr * PAGE_SIZE_64); | |
1c79356b | 1972 | |
55e303ae A |
1973 | size_of_prefetch = 0; |
1974 | ||
1975 | ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch); | |
1976 | ||
1977 | if (size_of_prefetch) { | |
1978 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 1979 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); |
55e303ae A |
1980 | return; |
1981 | } | |
9bccf70c | 1982 | if (f_offset < filesize) { |
91447636 | 1983 | daddr64_t read_size; |
55e303ae | 1984 | |
cf7d32b8 | 1985 | rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1; |
55e303ae | 1986 | |
91447636 A |
1987 | read_size = (extent->e_addr + 1) - extent->b_addr; |
1988 | ||
1989 | if (read_size > rap->cl_ralen) { | |
cf7d32b8 A |
1990 | if (read_size > max_prefetch / PAGE_SIZE) |
1991 | rap->cl_ralen = max_prefetch / PAGE_SIZE; | |
91447636 A |
1992 | else |
1993 | rap->cl_ralen = read_size; | |
1994 | } | |
2d21ac55 | 1995 | size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag); |
1c79356b | 1996 | |
9bccf70c | 1997 | if (size_of_prefetch) |
91447636 | 1998 | rap->cl_maxra = (r_addr + size_of_prefetch) - 1; |
9bccf70c | 1999 | } |
1c79356b | 2000 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
91447636 | 2001 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); |
1c79356b A |
2002 | } |
2003 | ||
2d21ac55 | 2004 | |
9bccf70c | 2005 | int |
b0d623f7 | 2006 | cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
91447636 | 2007 | int size, off_t filesize, int flags) |
2d21ac55 A |
2008 | { |
2009 | return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
2010 | ||
2011 | } | |
2012 | ||
2013 | ||
2014 | int | |
b0d623f7 | 2015 | cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
2d21ac55 | 2016 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
2017 | { |
2018 | int io_size; | |
55e303ae | 2019 | int rounded_size; |
1c79356b | 2020 | off_t max_size; |
55e303ae A |
2021 | int local_flags; |
2022 | ||
6d2010ae | 2023 | local_flags = CL_PAGEOUT | CL_THROTTLE; |
1c79356b A |
2024 | |
2025 | if ((flags & UPL_IOSYNC) == 0) | |
2026 | local_flags |= CL_ASYNC; | |
2027 | if ((flags & UPL_NOCOMMIT) == 0) | |
2028 | local_flags |= CL_COMMIT; | |
91447636 A |
2029 | if ((flags & UPL_KEEPCACHED)) |
2030 | local_flags |= CL_KEEPCACHED; | |
6d2010ae A |
2031 | if (flags & UPL_PAGING_ENCRYPTED) |
2032 | local_flags |= CL_ENCRYPTED; | |
1c79356b | 2033 | |
1c79356b A |
2034 | |
2035 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, | |
2036 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
2037 | ||
2038 | /* | |
2039 | * If they didn't specify any I/O, then we are done... | |
2040 | * we can't issue an abort because we don't know how | |
2041 | * big the upl really is | |
2042 | */ | |
2043 | if (size <= 0) | |
2044 | return (EINVAL); | |
2045 | ||
2046 | if (vp->v_mount->mnt_flag & MNT_RDONLY) { | |
2047 | if (local_flags & CL_COMMIT) | |
9bccf70c | 2048 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); |
1c79356b A |
2049 | return (EROFS); |
2050 | } | |
2051 | /* | |
2052 | * can't page-in from a negative offset | |
2053 | * or if we're starting beyond the EOF | |
2054 | * or if the file offset isn't page aligned | |
2055 | * or the size requested isn't a multiple of PAGE_SIZE | |
2056 | */ | |
2057 | if (f_offset < 0 || f_offset >= filesize || | |
2058 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) { | |
0b4e3aa0 A |
2059 | if (local_flags & CL_COMMIT) |
2060 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
2061 | return (EINVAL); |
2062 | } | |
2063 | max_size = filesize - f_offset; | |
2064 | ||
2065 | if (size < max_size) | |
2066 | io_size = size; | |
2067 | else | |
9bccf70c | 2068 | io_size = max_size; |
1c79356b | 2069 | |
55e303ae | 2070 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 2071 | |
55e303ae | 2072 | if (size > rounded_size) { |
0b4e3aa0 | 2073 | if (local_flags & CL_COMMIT) |
55e303ae | 2074 | ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, |
1c79356b A |
2075 | UPL_ABORT_FREE_ON_EMPTY); |
2076 | } | |
91447636 | 2077 | return (cluster_io(vp, upl, upl_offset, f_offset, io_size, |
2d21ac55 | 2078 | local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg)); |
1c79356b A |
2079 | } |
2080 | ||
2d21ac55 | 2081 | |
9bccf70c | 2082 | int |
b0d623f7 | 2083 | cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
91447636 | 2084 | int size, off_t filesize, int flags) |
2d21ac55 A |
2085 | { |
2086 | return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
2087 | } | |
2088 | ||
2089 | ||
2090 | int | |
b0d623f7 | 2091 | cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
2d21ac55 | 2092 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
2093 | { |
2094 | u_int io_size; | |
9bccf70c | 2095 | int rounded_size; |
1c79356b A |
2096 | off_t max_size; |
2097 | int retval; | |
2098 | int local_flags = 0; | |
1c79356b | 2099 | |
9bccf70c A |
2100 | if (upl == NULL || size < 0) |
2101 | panic("cluster_pagein: NULL upl passed in"); | |
1c79356b | 2102 | |
9bccf70c A |
2103 | if ((flags & UPL_IOSYNC) == 0) |
2104 | local_flags |= CL_ASYNC; | |
1c79356b | 2105 | if ((flags & UPL_NOCOMMIT) == 0) |
9bccf70c | 2106 | local_flags |= CL_COMMIT; |
b0d623f7 A |
2107 | if (flags & UPL_IOSTREAMING) |
2108 | local_flags |= CL_IOSTREAMING; | |
6d2010ae A |
2109 | if (flags & UPL_PAGING_ENCRYPTED) |
2110 | local_flags |= CL_ENCRYPTED; | |
9bccf70c | 2111 | |
1c79356b A |
2112 | |
2113 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, | |
2114 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
2115 | ||
2116 | /* | |
2117 | * can't page-in from a negative offset | |
2118 | * or if we're starting beyond the EOF | |
2119 | * or if the file offset isn't page aligned | |
2120 | * or the size requested isn't a multiple of PAGE_SIZE | |
2121 | */ | |
2122 | if (f_offset < 0 || f_offset >= filesize || | |
9bccf70c A |
2123 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) { |
2124 | if (local_flags & CL_COMMIT) | |
2125 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
1c79356b A |
2126 | return (EINVAL); |
2127 | } | |
2128 | max_size = filesize - f_offset; | |
2129 | ||
2130 | if (size < max_size) | |
2131 | io_size = size; | |
2132 | else | |
9bccf70c | 2133 | io_size = max_size; |
1c79356b | 2134 | |
9bccf70c | 2135 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 2136 | |
9bccf70c A |
2137 | if (size > rounded_size && (local_flags & CL_COMMIT)) |
2138 | ubc_upl_abort_range(upl, upl_offset + rounded_size, | |
55e303ae | 2139 | size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); |
9bccf70c | 2140 | |
91447636 | 2141 | retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, |
2d21ac55 | 2142 | local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 2143 | |
1c79356b A |
2144 | return (retval); |
2145 | } | |
2146 | ||
2d21ac55 | 2147 | |
9bccf70c | 2148 | int |
91447636 | 2149 | cluster_bp(buf_t bp) |
2d21ac55 A |
2150 | { |
2151 | return cluster_bp_ext(bp, NULL, NULL); | |
2152 | } | |
2153 | ||
2154 | ||
2155 | int | |
2156 | cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
2157 | { |
2158 | off_t f_offset; | |
2159 | int flags; | |
2160 | ||
9bccf70c | 2161 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, |
b0d623f7 | 2162 | bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
9bccf70c | 2163 | |
1c79356b | 2164 | if (bp->b_flags & B_READ) |
9bccf70c | 2165 | flags = CL_ASYNC | CL_READ; |
1c79356b | 2166 | else |
9bccf70c | 2167 | flags = CL_ASYNC; |
2d21ac55 A |
2168 | if (bp->b_flags & B_PASSIVE) |
2169 | flags |= CL_PASSIVE; | |
1c79356b A |
2170 | |
2171 | f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); | |
2172 | ||
2d21ac55 | 2173 | return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg)); |
1c79356b A |
2174 | } |
2175 | ||
2d21ac55 A |
2176 | |
2177 | ||
9bccf70c | 2178 | int |
91447636 | 2179 | cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) |
1c79356b | 2180 | { |
2d21ac55 A |
2181 | return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL); |
2182 | } | |
2183 | ||
2184 | ||
2185 | int | |
2186 | cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, | |
2187 | int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
2188 | { | |
2189 | user_ssize_t cur_resid; | |
2190 | int retval = 0; | |
2191 | int flags; | |
2192 | int zflags; | |
2193 | int bflag; | |
2194 | int write_type = IO_COPY; | |
2195 | u_int32_t write_length; | |
1c79356b | 2196 | |
91447636 A |
2197 | flags = xflags; |
2198 | ||
2d21ac55 | 2199 | if (flags & IO_PASSIVE) |
b0d623f7 | 2200 | bflag = CL_PASSIVE; |
2d21ac55 | 2201 | else |
b0d623f7 | 2202 | bflag = 0; |
2d21ac55 | 2203 | |
316670eb | 2204 | if (vp->v_flag & VNOCACHE_DATA){ |
91447636 | 2205 | flags |= IO_NOCACHE; |
316670eb A |
2206 | bflag |= CL_NOCACHE; |
2207 | } | |
2d21ac55 | 2208 | if (uio == NULL) { |
91447636 | 2209 | /* |
2d21ac55 A |
2210 | * no user data... |
2211 | * this call is being made to zero-fill some range in the file | |
91447636 | 2212 | */ |
2d21ac55 | 2213 | retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg); |
91447636 | 2214 | |
2d21ac55 | 2215 | return(retval); |
91447636 | 2216 | } |
2d21ac55 A |
2217 | /* |
2218 | * do a write through the cache if one of the following is true.... | |
6d2010ae | 2219 | * NOCACHE is not true or NODIRECT is true |
2d21ac55 A |
2220 | * the uio request doesn't target USERSPACE |
2221 | * otherwise, find out if we want the direct or contig variant for | |
2222 | * the first vector in the uio request | |
2223 | */ | |
6d2010ae | 2224 | if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ) |
2d21ac55 A |
2225 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); |
2226 | ||
2227 | if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT) | |
2228 | /* | |
2229 | * must go through the cached variant in this case | |
0b4e3aa0 | 2230 | */ |
2d21ac55 | 2231 | write_type = IO_COPY; |
0b4e3aa0 | 2232 | |
2d21ac55 A |
2233 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) { |
2234 | ||
2235 | switch (write_type) { | |
91447636 | 2236 | |
2d21ac55 | 2237 | case IO_COPY: |
91447636 | 2238 | /* |
2d21ac55 A |
2239 | * make sure the uio_resid isn't too big... |
2240 | * internally, we want to handle all of the I/O in | |
2241 | * chunk sizes that fit in a 32 bit int | |
91447636 | 2242 | */ |
2d21ac55 | 2243 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { |
91447636 | 2244 | /* |
2d21ac55 A |
2245 | * we're going to have to call cluster_write_copy |
2246 | * more than once... | |
2247 | * | |
2248 | * only want the last call to cluster_write_copy to | |
2249 | * have the IO_TAILZEROFILL flag set and only the | |
2250 | * first call should have IO_HEADZEROFILL | |
91447636 | 2251 | */ |
2d21ac55 A |
2252 | zflags = flags & ~IO_TAILZEROFILL; |
2253 | flags &= ~IO_HEADZEROFILL; | |
91447636 | 2254 | |
2d21ac55 A |
2255 | write_length = MAX_IO_REQUEST_SIZE; |
2256 | } else { | |
2257 | /* | |
2258 | * last call to cluster_write_copy | |
91447636 | 2259 | */ |
2d21ac55 A |
2260 | zflags = flags; |
2261 | ||
2262 | write_length = (u_int32_t)cur_resid; | |
2263 | } | |
2264 | retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg); | |
2265 | break; | |
91447636 | 2266 | |
2d21ac55 A |
2267 | case IO_CONTIG: |
2268 | zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL); | |
91447636 | 2269 | |
2d21ac55 A |
2270 | if (flags & IO_HEADZEROFILL) { |
2271 | /* | |
2272 | * only do this once per request | |
91447636 | 2273 | */ |
2d21ac55 | 2274 | flags &= ~IO_HEADZEROFILL; |
91447636 | 2275 | |
2d21ac55 A |
2276 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset, |
2277 | headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2278 | if (retval) | |
2279 | break; | |
91447636 | 2280 | } |
2d21ac55 A |
2281 | retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag); |
2282 | ||
2283 | if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) { | |
2284 | /* | |
2285 | * we're done with the data from the user specified buffer(s) | |
2286 | * and we've been requested to zero fill at the tail | |
2287 | * treat this as an IO_HEADZEROFILL which doesn't require a uio | |
2288 | * by rearranging the args and passing in IO_HEADZEROFILL | |
91447636 | 2289 | */ |
2d21ac55 A |
2290 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset, |
2291 | (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2292 | } | |
2293 | break; | |
91447636 | 2294 | |
2d21ac55 A |
2295 | case IO_DIRECT: |
2296 | /* | |
2297 | * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL | |
2298 | */ | |
2299 | retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg); | |
2300 | break; | |
91447636 | 2301 | |
2d21ac55 A |
2302 | case IO_UNKNOWN: |
2303 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); | |
2304 | break; | |
2305 | } | |
b0d623f7 A |
2306 | /* |
2307 | * in case we end up calling cluster_write_copy (from cluster_write_direct) | |
2308 | * multiple times to service a multi-vector request that is not aligned properly | |
2309 | * we need to update the oldEOF so that we | |
2310 | * don't zero-fill the head of a page if we've successfully written | |
2311 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2312 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2313 | * want that to happen for the very first page of the cluster_write, | |
2314 | * NOT the first page of each vector making up a multi-vector write. | |
2315 | */ | |
2316 | if (uio->uio_offset > oldEOF) | |
2317 | oldEOF = uio->uio_offset; | |
2d21ac55 A |
2318 | } |
2319 | return (retval); | |
1c79356b A |
2320 | } |
2321 | ||
b4c24cb9 | 2322 | |
9bccf70c | 2323 | static int |
2d21ac55 A |
2324 | cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length, |
2325 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
2326 | { |
2327 | upl_t upl; | |
2328 | upl_page_info_t *pl; | |
1c79356b | 2329 | vm_offset_t upl_offset; |
b0d623f7 | 2330 | vm_offset_t vector_upl_offset = 0; |
2d21ac55 A |
2331 | u_int32_t io_req_size; |
2332 | u_int32_t offset_in_file; | |
2333 | u_int32_t offset_in_iovbase; | |
b0d623f7 A |
2334 | u_int32_t io_size; |
2335 | int io_flag = 0; | |
2336 | upl_size_t upl_size, vector_upl_size = 0; | |
2d21ac55 A |
2337 | vm_size_t upl_needed_size; |
2338 | mach_msg_type_number_t pages_in_pl; | |
3e170ce0 | 2339 | upl_control_flags_t upl_flags; |
1c79356b | 2340 | kern_return_t kret; |
2d21ac55 | 2341 | mach_msg_type_number_t i; |
1c79356b | 2342 | int force_data_sync; |
2d21ac55 A |
2343 | int retval = 0; |
2344 | int first_IO = 1; | |
d7e50217 | 2345 | struct clios iostate; |
2d21ac55 A |
2346 | user_addr_t iov_base; |
2347 | u_int32_t mem_alignment_mask; | |
2348 | u_int32_t devblocksize; | |
316670eb | 2349 | u_int32_t max_io_size; |
b0d623f7 | 2350 | u_int32_t max_upl_size; |
316670eb | 2351 | u_int32_t max_vector_size; |
39037602 | 2352 | u_int32_t bytes_outstanding_limit; |
316670eb | 2353 | boolean_t io_throttled = FALSE; |
cf7d32b8 | 2354 | |
b0d623f7 A |
2355 | u_int32_t vector_upl_iosize = 0; |
2356 | int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); | |
2357 | off_t v_upl_uio_offset = 0; | |
2358 | int vector_upl_index=0; | |
2359 | upl_t vector_upl = NULL; | |
cf7d32b8 | 2360 | |
1c79356b A |
2361 | |
2362 | /* | |
2363 | * When we enter this routine, we know | |
1c79356b A |
2364 | * -- the resid will not exceed iov_len |
2365 | */ | |
2d21ac55 A |
2366 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, |
2367 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
91447636 | 2368 | |
b0d623f7 A |
2369 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE); |
2370 | ||
2371 | io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO; | |
2372 | ||
2373 | if (flags & IO_PASSIVE) | |
2374 | io_flag |= CL_PASSIVE; | |
316670eb A |
2375 | |
2376 | if (flags & IO_NOCACHE) | |
2377 | io_flag |= CL_NOCACHE; | |
2378 | ||
fe8ab488 A |
2379 | if (flags & IO_SKIP_ENCRYPTION) |
2380 | io_flag |= CL_ENCRYPTED; | |
2381 | ||
d7e50217 A |
2382 | iostate.io_completed = 0; |
2383 | iostate.io_issued = 0; | |
2384 | iostate.io_error = 0; | |
2385 | iostate.io_wanted = 0; | |
2386 | ||
6d2010ae A |
2387 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
2388 | ||
2d21ac55 A |
2389 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; |
2390 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
2391 | ||
2392 | if (devblocksize == 1) { | |
2393 | /* | |
2394 | * the AFP client advertises a devblocksize of 1 | |
2395 | * however, its BLOCKMAP routine maps to physical | |
2396 | * blocks that are PAGE_SIZE in size... | |
2397 | * therefore we can't ask for I/Os that aren't page aligned | |
2398 | * or aren't multiples of PAGE_SIZE in size | |
2399 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
2400 | * the old behavior we had before the mem_alignment_mask | |
2401 | * changes went in... | |
2402 | */ | |
2403 | devblocksize = PAGE_SIZE; | |
2404 | } | |
2405 | ||
2406 | next_dwrite: | |
2407 | io_req_size = *write_length; | |
2408 | iov_base = uio_curriovbase(uio); | |
cc9f6e38 | 2409 | |
2d21ac55 A |
2410 | offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK; |
2411 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
1c79356b | 2412 | |
2d21ac55 A |
2413 | if (offset_in_file || offset_in_iovbase) { |
2414 | /* | |
2415 | * one of the 2 important offsets is misaligned | |
2416 | * so fire an I/O through the cache for this entire vector | |
2417 | */ | |
2418 | goto wait_for_dwrites; | |
2419 | } | |
2420 | if (iov_base & (devblocksize - 1)) { | |
2421 | /* | |
2422 | * the offset in memory must be on a device block boundary | |
2423 | * so that we can guarantee that we can generate an | |
2424 | * I/O that ends on a page boundary in cluster_io | |
2425 | */ | |
2426 | goto wait_for_dwrites; | |
2427 | } | |
1c79356b | 2428 | |
39037602 | 2429 | task_update_logical_writes(current_task(), (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE, vp); |
2d21ac55 | 2430 | while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) { |
316670eb A |
2431 | int throttle_type; |
2432 | ||
39236c6e | 2433 | if ( (throttle_type = cluster_is_throttled(vp)) ) { |
316670eb A |
2434 | /* |
2435 | * we're in the throttle window, at the very least | |
2436 | * we want to limit the size of the I/O we're about | |
2437 | * to issue | |
2438 | */ | |
39236c6e | 2439 | if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) { |
316670eb A |
2440 | /* |
2441 | * we're in the throttle window and at least 1 I/O | |
2442 | * has already been issued by a throttleable thread | |
2443 | * in this window, so return with EAGAIN to indicate | |
2444 | * to the FS issuing the cluster_write call that it | |
2445 | * should now throttle after dropping any locks | |
2446 | */ | |
2447 | throttle_info_update_by_mount(vp->v_mount); | |
2448 | ||
2449 | io_throttled = TRUE; | |
2450 | goto wait_for_dwrites; | |
2451 | } | |
2452 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
2453 | max_io_size = THROTTLE_MAX_IOSIZE; | |
2454 | } else { | |
2455 | max_vector_size = MAX_VECTOR_UPL_SIZE; | |
2456 | max_io_size = max_upl_size; | |
2457 | } | |
2d21ac55 A |
2458 | |
2459 | if (first_IO) { | |
fe8ab488 | 2460 | cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); |
2d21ac55 A |
2461 | first_IO = 0; |
2462 | } | |
2463 | io_size = io_req_size & ~PAGE_MASK; | |
cc9f6e38 A |
2464 | iov_base = uio_curriovbase(uio); |
2465 | ||
316670eb A |
2466 | if (io_size > max_io_size) |
2467 | io_size = max_io_size; | |
2d21ac55 | 2468 | |
b0d623f7 A |
2469 | if(useVectorUPL && (iov_base & PAGE_MASK)) { |
2470 | /* | |
2471 | * We have an iov_base that's not page-aligned. | |
2472 | * Issue all I/O's that have been collected within | |
2473 | * this Vectored UPL. | |
2474 | */ | |
2475 | if(vector_upl_index) { | |
2476 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2477 | reset_vector_run_state(); | |
2478 | } | |
2479 | ||
2480 | /* | |
2481 | * After this point, if we are using the Vector UPL path and the base is | |
2482 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
2483 | */ | |
2484 | } | |
2485 | ||
2d21ac55 | 2486 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
d7e50217 A |
2487 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; |
2488 | ||
2489 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, | |
cc9f6e38 | 2490 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
d7e50217 | 2491 | |
3e170ce0 | 2492 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
d7e50217 A |
2493 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { |
2494 | pages_in_pl = 0; | |
2495 | upl_size = upl_needed_size; | |
2496 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | | |
3e170ce0 A |
2497 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE |
2498 | | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE); | |
d7e50217 | 2499 | |
3e170ce0 | 2500 | kret = vm_map_get_upl(map, |
cc9f6e38 | 2501 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
d7e50217 A |
2502 | &upl_size, |
2503 | &upl, | |
2504 | NULL, | |
2505 | &pages_in_pl, | |
2506 | &upl_flags, | |
2507 | force_data_sync); | |
2508 | ||
2509 | if (kret != KERN_SUCCESS) { | |
2510 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2511 | 0, 0, 0, kret, 0); | |
d7e50217 | 2512 | /* |
2d21ac55 | 2513 | * failed to get pagelist |
d7e50217 A |
2514 | * |
2515 | * we may have already spun some portion of this request | |
2516 | * off as async requests... we need to wait for the I/O | |
2517 | * to complete before returning | |
2518 | */ | |
2d21ac55 | 2519 | goto wait_for_dwrites; |
d7e50217 A |
2520 | } |
2521 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
2522 | pages_in_pl = upl_size / PAGE_SIZE; | |
1c79356b | 2523 | |
d7e50217 A |
2524 | for (i = 0; i < pages_in_pl; i++) { |
2525 | if (!upl_valid_page(pl, i)) | |
2526 | break; | |
2527 | } | |
2528 | if (i == pages_in_pl) | |
2529 | break; | |
1c79356b | 2530 | |
d7e50217 A |
2531 | /* |
2532 | * didn't get all the pages back that we | |
2533 | * needed... release this upl and try again | |
2534 | */ | |
2d21ac55 | 2535 | ubc_upl_abort(upl, 0); |
1c79356b | 2536 | } |
d7e50217 A |
2537 | if (force_data_sync >= 3) { |
2538 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2539 | i, pages_in_pl, upl_size, kret, 0); | |
d7e50217 A |
2540 | /* |
2541 | * for some reason, we couldn't acquire a hold on all | |
2542 | * the pages needed in the user's address space | |
2543 | * | |
2544 | * we may have already spun some portion of this request | |
2545 | * off as async requests... we need to wait for the I/O | |
2546 | * to complete before returning | |
2547 | */ | |
2d21ac55 | 2548 | goto wait_for_dwrites; |
1c79356b | 2549 | } |
0b4e3aa0 | 2550 | |
d7e50217 A |
2551 | /* |
2552 | * Consider the possibility that upl_size wasn't satisfied. | |
2553 | */ | |
2d21ac55 A |
2554 | if (upl_size < upl_needed_size) { |
2555 | if (upl_size && upl_offset == 0) | |
2556 | io_size = upl_size; | |
2557 | else | |
2558 | io_size = 0; | |
2559 | } | |
d7e50217 | 2560 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, |
cc9f6e38 | 2561 | (int)upl_offset, upl_size, (int)iov_base, io_size, 0); |
1c79356b | 2562 | |
d7e50217 | 2563 | if (io_size == 0) { |
2d21ac55 | 2564 | ubc_upl_abort(upl, 0); |
d7e50217 A |
2565 | /* |
2566 | * we may have already spun some portion of this request | |
2567 | * off as async requests... we need to wait for the I/O | |
2568 | * to complete before returning | |
2569 | */ | |
2d21ac55 | 2570 | goto wait_for_dwrites; |
d7e50217 | 2571 | } |
b0d623f7 A |
2572 | |
2573 | if(useVectorUPL) { | |
2574 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
2575 | if(end_off) | |
2576 | issueVectorUPL = 1; | |
2577 | /* | |
2578 | * After this point, if we are using a vector UPL, then | |
2579 | * either all the UPL elements end on a page boundary OR | |
2580 | * this UPL is the last element because it does not end | |
2581 | * on a page boundary. | |
2582 | */ | |
2583 | } | |
2d21ac55 | 2584 | |
d7e50217 A |
2585 | /* |
2586 | * we want push out these writes asynchronously so that we can overlap | |
2587 | * the preparation of the next I/O | |
2588 | * if there are already too many outstanding writes | |
2589 | * wait until some complete before issuing the next | |
2590 | */ | |
39037602 A |
2591 | if (vp->v_mount->mnt_minsaturationbytecount) |
2592 | bytes_outstanding_limit = vp->v_mount->mnt_minsaturationbytecount; | |
2593 | else | |
2594 | bytes_outstanding_limit = max_upl_size * IO_SCALE(vp, 2); | |
2595 | ||
2596 | cluster_iostate_wait(&iostate, bytes_outstanding_limit, "cluster_write_direct"); | |
cf7d32b8 | 2597 | |
d7e50217 A |
2598 | if (iostate.io_error) { |
2599 | /* | |
2600 | * one of the earlier writes we issued ran into a hard error | |
2601 | * don't issue any more writes, cleanup the UPL | |
2602 | * that was just created but not used, then | |
2603 | * go wait for all writes that are part of this stream | |
2604 | * to complete before returning the error to the caller | |
2605 | */ | |
2d21ac55 | 2606 | ubc_upl_abort(upl, 0); |
1c79356b | 2607 | |
2d21ac55 | 2608 | goto wait_for_dwrites; |
d7e50217 | 2609 | } |
1c79356b | 2610 | |
d7e50217 A |
2611 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, |
2612 | (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); | |
1c79356b | 2613 | |
b0d623f7 A |
2614 | if(!useVectorUPL) |
2615 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, | |
2d21ac55 | 2616 | io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
7b1edb79 | 2617 | |
b0d623f7 A |
2618 | else { |
2619 | if(!vector_upl_index) { | |
2620 | vector_upl = vector_upl_create(upl_offset); | |
2621 | v_upl_uio_offset = uio->uio_offset; | |
2622 | vector_upl_offset = upl_offset; | |
2623 | } | |
2624 | ||
2625 | vector_upl_set_subupl(vector_upl,upl,upl_size); | |
2626 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
2627 | vector_upl_index++; | |
2628 | vector_upl_iosize += io_size; | |
2629 | vector_upl_size += upl_size; | |
2630 | ||
316670eb | 2631 | if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { |
b0d623f7 A |
2632 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
2633 | reset_vector_run_state(); | |
2634 | } | |
2635 | } | |
2636 | ||
2d21ac55 A |
2637 | /* |
2638 | * update the uio structure to | |
2639 | * reflect the I/O that we just issued | |
2640 | */ | |
cc9f6e38 | 2641 | uio_update(uio, (user_size_t)io_size); |
1c79356b | 2642 | |
b0d623f7 A |
2643 | /* |
2644 | * in case we end up calling through to cluster_write_copy to finish | |
2645 | * the tail of this request, we need to update the oldEOF so that we | |
2646 | * don't zero-fill the head of a page if we've successfully written | |
2647 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2648 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2649 | * want that to happen for the very first page of the cluster_write, | |
2650 | * NOT the first page of each vector making up a multi-vector write. | |
2651 | */ | |
2652 | if (uio->uio_offset > oldEOF) | |
2653 | oldEOF = uio->uio_offset; | |
2654 | ||
2d21ac55 A |
2655 | io_req_size -= io_size; |
2656 | ||
d7e50217 | 2657 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, |
2d21ac55 | 2658 | (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0); |
1c79356b A |
2659 | |
2660 | } /* end while */ | |
2661 | ||
2d21ac55 | 2662 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) { |
91447636 | 2663 | |
2d21ac55 A |
2664 | retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE); |
2665 | ||
2666 | if (retval == 0 && *write_type == IO_DIRECT) { | |
2667 | ||
2668 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE, | |
2669 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
2670 | ||
2671 | goto next_dwrite; | |
2672 | } | |
2673 | } | |
2674 | ||
2675 | wait_for_dwrites: | |
b0d623f7 | 2676 | |
6d2010ae | 2677 | if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { |
b0d623f7 A |
2678 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
2679 | reset_vector_run_state(); | |
2680 | } | |
fe8ab488 A |
2681 | /* |
2682 | * make sure all async writes issued as part of this stream | |
2683 | * have completed before we return | |
2684 | */ | |
2685 | cluster_iostate_wait(&iostate, 0, "cluster_write_direct"); | |
b0d623f7 | 2686 | |
d7e50217 | 2687 | if (iostate.io_error) |
2d21ac55 A |
2688 | retval = iostate.io_error; |
2689 | ||
6d2010ae A |
2690 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
2691 | ||
316670eb A |
2692 | if (io_throttled == TRUE && retval == 0) |
2693 | retval = EAGAIN; | |
2694 | ||
2d21ac55 A |
2695 | if (io_req_size && retval == 0) { |
2696 | /* | |
2697 | * we couldn't handle the tail of this request in DIRECT mode | |
2698 | * so fire it through the copy path | |
2699 | * | |
2700 | * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set | |
2701 | * so we can just pass 0 in for the headOff and tailOff | |
2702 | */ | |
b0d623f7 A |
2703 | if (uio->uio_offset > oldEOF) |
2704 | oldEOF = uio->uio_offset; | |
2705 | ||
2d21ac55 | 2706 | retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg); |
1c79356b | 2707 | |
2d21ac55 A |
2708 | *write_type = IO_UNKNOWN; |
2709 | } | |
1c79356b | 2710 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, |
2d21ac55 | 2711 | (int)uio->uio_offset, io_req_size, retval, 4, 0); |
1c79356b | 2712 | |
2d21ac55 | 2713 | return (retval); |
1c79356b A |
2714 | } |
2715 | ||
b4c24cb9 | 2716 | |
9bccf70c | 2717 | static int |
2d21ac55 A |
2718 | cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length, |
2719 | int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
0b4e3aa0 | 2720 | { |
b4c24cb9 | 2721 | upl_page_info_t *pl; |
2d21ac55 A |
2722 | addr64_t src_paddr = 0; |
2723 | upl_t upl[MAX_VECTS]; | |
0b4e3aa0 | 2724 | vm_offset_t upl_offset; |
2d21ac55 A |
2725 | u_int32_t tail_size = 0; |
2726 | u_int32_t io_size; | |
2727 | u_int32_t xsize; | |
b0d623f7 | 2728 | upl_size_t upl_size; |
2d21ac55 A |
2729 | vm_size_t upl_needed_size; |
2730 | mach_msg_type_number_t pages_in_pl; | |
3e170ce0 | 2731 | upl_control_flags_t upl_flags; |
0b4e3aa0 | 2732 | kern_return_t kret; |
2d21ac55 | 2733 | struct clios iostate; |
0b4e3aa0 | 2734 | int error = 0; |
2d21ac55 A |
2735 | int cur_upl = 0; |
2736 | int num_upl = 0; | |
2737 | int n; | |
cc9f6e38 | 2738 | user_addr_t iov_base; |
2d21ac55 A |
2739 | u_int32_t devblocksize; |
2740 | u_int32_t mem_alignment_mask; | |
0b4e3aa0 A |
2741 | |
2742 | /* | |
2743 | * When we enter this routine, we know | |
2d21ac55 A |
2744 | * -- the io_req_size will not exceed iov_len |
2745 | * -- the target address is physically contiguous | |
0b4e3aa0 | 2746 | */ |
fe8ab488 | 2747 | cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0); |
0b4e3aa0 | 2748 | |
2d21ac55 A |
2749 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
2750 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
91447636 | 2751 | |
2d21ac55 A |
2752 | iostate.io_completed = 0; |
2753 | iostate.io_issued = 0; | |
2754 | iostate.io_error = 0; | |
2755 | iostate.io_wanted = 0; | |
2756 | ||
6d2010ae A |
2757 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
2758 | ||
2d21ac55 A |
2759 | next_cwrite: |
2760 | io_size = *write_length; | |
91447636 | 2761 | |
cc9f6e38 A |
2762 | iov_base = uio_curriovbase(uio); |
2763 | ||
2d21ac55 | 2764 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
0b4e3aa0 A |
2765 | upl_needed_size = upl_offset + io_size; |
2766 | ||
2767 | pages_in_pl = 0; | |
2768 | upl_size = upl_needed_size; | |
9bccf70c | 2769 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | |
3e170ce0 A |
2770 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE |
2771 | | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE); | |
0b4e3aa0 | 2772 | |
3e170ce0 A |
2773 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
2774 | kret = vm_map_get_upl(map, | |
cc9f6e38 | 2775 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
2d21ac55 | 2776 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0); |
0b4e3aa0 | 2777 | |
b4c24cb9 A |
2778 | if (kret != KERN_SUCCESS) { |
2779 | /* | |
2d21ac55 | 2780 | * failed to get pagelist |
b4c24cb9 | 2781 | */ |
2d21ac55 A |
2782 | error = EINVAL; |
2783 | goto wait_for_cwrites; | |
b4c24cb9 | 2784 | } |
2d21ac55 A |
2785 | num_upl++; |
2786 | ||
0b4e3aa0 A |
2787 | /* |
2788 | * Consider the possibility that upl_size wasn't satisfied. | |
0b4e3aa0 | 2789 | */ |
b4c24cb9 | 2790 | if (upl_size < upl_needed_size) { |
2d21ac55 A |
2791 | /* |
2792 | * This is a failure in the physical memory case. | |
2793 | */ | |
2794 | error = EINVAL; | |
2795 | goto wait_for_cwrites; | |
b4c24cb9 | 2796 | } |
2d21ac55 | 2797 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
0b4e3aa0 | 2798 | |
fe8ab488 | 2799 | src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; |
0b4e3aa0 | 2800 | |
b4c24cb9 | 2801 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
2d21ac55 | 2802 | u_int32_t head_size; |
0b4e3aa0 | 2803 | |
2d21ac55 | 2804 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
0b4e3aa0 | 2805 | |
b4c24cb9 A |
2806 | if (head_size > io_size) |
2807 | head_size = io_size; | |
2808 | ||
2d21ac55 | 2809 | error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg); |
b4c24cb9 | 2810 | |
2d21ac55 A |
2811 | if (error) |
2812 | goto wait_for_cwrites; | |
b4c24cb9 | 2813 | |
b4c24cb9 A |
2814 | upl_offset += head_size; |
2815 | src_paddr += head_size; | |
2816 | io_size -= head_size; | |
2d21ac55 A |
2817 | |
2818 | iov_base += head_size; | |
2819 | } | |
2820 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
2821 | /* | |
2822 | * request doesn't set up on a memory boundary | |
2823 | * the underlying DMA engine can handle... | |
2824 | * return an error instead of going through | |
2825 | * the slow copy path since the intent of this | |
2826 | * path is direct I/O from device memory | |
2827 | */ | |
2828 | error = EINVAL; | |
2829 | goto wait_for_cwrites; | |
0b4e3aa0 | 2830 | } |
2d21ac55 | 2831 | |
b4c24cb9 A |
2832 | tail_size = io_size & (devblocksize - 1); |
2833 | io_size -= tail_size; | |
2834 | ||
2d21ac55 A |
2835 | while (io_size && error == 0) { |
2836 | ||
2837 | if (io_size > MAX_IO_CONTIG_SIZE) | |
2838 | xsize = MAX_IO_CONTIG_SIZE; | |
2839 | else | |
2840 | xsize = io_size; | |
2841 | /* | |
2842 | * request asynchronously so that we can overlap | |
2843 | * the preparation of the next I/O... we'll do | |
2844 | * the commit after all the I/O has completed | |
2845 | * since its all issued against the same UPL | |
2846 | * if there are already too many outstanding writes | |
2847 | * wait until some have completed before issuing the next | |
b4c24cb9 | 2848 | */ |
fe8ab488 | 2849 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig"); |
2d21ac55 | 2850 | |
2d21ac55 A |
2851 | if (iostate.io_error) { |
2852 | /* | |
2853 | * one of the earlier writes we issued ran into a hard error | |
2854 | * don't issue any more writes... | |
2855 | * go wait for all writes that are part of this stream | |
2856 | * to complete before returning the error to the caller | |
2857 | */ | |
2858 | goto wait_for_cwrites; | |
2859 | } | |
b4c24cb9 | 2860 | /* |
2d21ac55 | 2861 | * issue an asynchronous write to cluster_io |
b4c24cb9 | 2862 | */ |
2d21ac55 A |
2863 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, |
2864 | xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg); | |
cc9f6e38 | 2865 | |
2d21ac55 A |
2866 | if (error == 0) { |
2867 | /* | |
2868 | * The cluster_io write completed successfully, | |
2869 | * update the uio structure | |
2870 | */ | |
2871 | uio_update(uio, (user_size_t)xsize); | |
b4c24cb9 | 2872 | |
2d21ac55 A |
2873 | upl_offset += xsize; |
2874 | src_paddr += xsize; | |
2875 | io_size -= xsize; | |
2876 | } | |
b4c24cb9 | 2877 | } |
cf7d32b8 | 2878 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) { |
2d21ac55 A |
2879 | |
2880 | error = cluster_io_type(uio, write_type, write_length, 0); | |
2881 | ||
2882 | if (error == 0 && *write_type == IO_CONTIG) { | |
2883 | cur_upl++; | |
2884 | goto next_cwrite; | |
2885 | } | |
2886 | } else | |
2887 | *write_type = IO_UNKNOWN; | |
2888 | ||
2889 | wait_for_cwrites: | |
b4c24cb9 | 2890 | /* |
2d21ac55 A |
2891 | * make sure all async writes that are part of this stream |
2892 | * have completed before we proceed | |
2893 | */ | |
fe8ab488 | 2894 | cluster_iostate_wait(&iostate, 0, "cluster_write_contig"); |
cf7d32b8 | 2895 | |
2d21ac55 A |
2896 | if (iostate.io_error) |
2897 | error = iostate.io_error; | |
2898 | ||
6d2010ae A |
2899 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
2900 | ||
2d21ac55 A |
2901 | if (error == 0 && tail_size) |
2902 | error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg); | |
2903 | ||
2904 | for (n = 0; n < num_upl; n++) | |
2905 | /* | |
2906 | * just release our hold on each physically contiguous | |
2907 | * region without changing any state | |
2908 | */ | |
2909 | ubc_upl_abort(upl[n], 0); | |
0b4e3aa0 A |
2910 | |
2911 | return (error); | |
2912 | } | |
2913 | ||
b4c24cb9 | 2914 | |
b0d623f7 A |
2915 | /* |
2916 | * need to avoid a race between an msync of a range of pages dirtied via mmap | |
2917 | * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's | |
2918 | * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd | |
2919 | * | |
2920 | * we should never force-zero-fill pages that are already valid in the cache... | |
2921 | * the entire page contains valid data (either from disk, zero-filled or dirtied | |
2922 | * via an mmap) so we can only do damage by trying to zero-fill | |
2923 | * | |
2924 | */ | |
2925 | static int | |
2926 | cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero) | |
2927 | { | |
2928 | int zero_pg_index; | |
2929 | boolean_t need_cluster_zero = TRUE; | |
2930 | ||
2931 | if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { | |
2932 | ||
2933 | bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); | |
2934 | zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); | |
2935 | ||
2936 | if (upl_valid_page(pl, zero_pg_index)) { | |
2937 | /* | |
2938 | * never force zero valid pages - dirty or clean | |
2939 | * we'll leave these in the UPL for cluster_write_copy to deal with | |
2940 | */ | |
2941 | need_cluster_zero = FALSE; | |
2942 | } | |
2943 | } | |
2944 | if (need_cluster_zero == TRUE) | |
2945 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
2946 | ||
2947 | return (bytes_to_zero); | |
2948 | } | |
2949 | ||
2950 | ||
9bccf70c | 2951 | static int |
2d21ac55 A |
2952 | cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff, |
2953 | off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
2954 | { |
2955 | upl_page_info_t *pl; | |
2956 | upl_t upl; | |
91447636 | 2957 | vm_offset_t upl_offset = 0; |
2d21ac55 | 2958 | vm_size_t upl_size; |
1c79356b A |
2959 | off_t upl_f_offset; |
2960 | int pages_in_upl; | |
2961 | int start_offset; | |
2962 | int xfer_resid; | |
2963 | int io_size; | |
1c79356b A |
2964 | int io_offset; |
2965 | int bytes_to_zero; | |
2966 | int bytes_to_move; | |
2967 | kern_return_t kret; | |
2968 | int retval = 0; | |
91447636 | 2969 | int io_resid; |
1c79356b A |
2970 | long long total_size; |
2971 | long long zero_cnt; | |
2972 | off_t zero_off; | |
2973 | long long zero_cnt1; | |
2974 | off_t zero_off1; | |
6d2010ae A |
2975 | off_t write_off = 0; |
2976 | int write_cnt = 0; | |
2977 | boolean_t first_pass = FALSE; | |
91447636 | 2978 | struct cl_extent cl; |
91447636 | 2979 | struct cl_writebehind *wbp; |
2d21ac55 | 2980 | int bflag; |
b0d623f7 A |
2981 | u_int max_cluster_pgcount; |
2982 | u_int max_io_size; | |
1c79356b A |
2983 | |
2984 | if (uio) { | |
2985 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
2d21ac55 | 2986 | (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0); |
1c79356b | 2987 | |
2d21ac55 | 2988 | io_resid = io_req_size; |
1c79356b A |
2989 | } else { |
2990 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
2991 | 0, 0, (int)oldEOF, (int)newEOF, 0); | |
2992 | ||
91447636 | 2993 | io_resid = 0; |
1c79356b | 2994 | } |
b0d623f7 A |
2995 | if (flags & IO_PASSIVE) |
2996 | bflag = CL_PASSIVE; | |
2997 | else | |
2998 | bflag = 0; | |
316670eb A |
2999 | if (flags & IO_NOCACHE) |
3000 | bflag |= CL_NOCACHE; | |
3001 | ||
fe8ab488 A |
3002 | if (flags & IO_SKIP_ENCRYPTION) |
3003 | bflag |= CL_ENCRYPTED; | |
3004 | ||
1c79356b A |
3005 | zero_cnt = 0; |
3006 | zero_cnt1 = 0; | |
91447636 A |
3007 | zero_off = 0; |
3008 | zero_off1 = 0; | |
1c79356b | 3009 | |
cf7d32b8 A |
3010 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; |
3011 | max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE); | |
3012 | ||
1c79356b A |
3013 | if (flags & IO_HEADZEROFILL) { |
3014 | /* | |
3015 | * some filesystems (HFS is one) don't support unallocated holes within a file... | |
3016 | * so we zero fill the intervening space between the old EOF and the offset | |
3017 | * where the next chunk of real data begins.... ftruncate will also use this | |
3018 | * routine to zero fill to the new EOF when growing a file... in this case, the | |
3019 | * uio structure will not be provided | |
3020 | */ | |
3021 | if (uio) { | |
3022 | if (headOff < uio->uio_offset) { | |
3023 | zero_cnt = uio->uio_offset - headOff; | |
3024 | zero_off = headOff; | |
3025 | } | |
3026 | } else if (headOff < newEOF) { | |
3027 | zero_cnt = newEOF - headOff; | |
3028 | zero_off = headOff; | |
3029 | } | |
b0d623f7 A |
3030 | } else { |
3031 | if (uio && uio->uio_offset > oldEOF) { | |
3032 | zero_off = uio->uio_offset & ~PAGE_MASK_64; | |
3033 | ||
3034 | if (zero_off >= oldEOF) { | |
3035 | zero_cnt = uio->uio_offset - zero_off; | |
3036 | ||
3037 | flags |= IO_HEADZEROFILL; | |
3038 | } | |
3039 | } | |
1c79356b A |
3040 | } |
3041 | if (flags & IO_TAILZEROFILL) { | |
3042 | if (uio) { | |
2d21ac55 | 3043 | zero_off1 = uio->uio_offset + io_req_size; |
1c79356b A |
3044 | |
3045 | if (zero_off1 < tailOff) | |
3046 | zero_cnt1 = tailOff - zero_off1; | |
3047 | } | |
b0d623f7 A |
3048 | } else { |
3049 | if (uio && newEOF > oldEOF) { | |
3050 | zero_off1 = uio->uio_offset + io_req_size; | |
3051 | ||
3052 | if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) { | |
3053 | zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64); | |
3054 | ||
3055 | flags |= IO_TAILZEROFILL; | |
3056 | } | |
3057 | } | |
1c79356b | 3058 | } |
55e303ae | 3059 | if (zero_cnt == 0 && uio == (struct uio *) 0) { |
91447636 A |
3060 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, |
3061 | retval, 0, 0, 0, 0); | |
3062 | return (0); | |
55e303ae | 3063 | } |
6d2010ae A |
3064 | if (uio) { |
3065 | write_off = uio->uio_offset; | |
3066 | write_cnt = uio_resid(uio); | |
3067 | /* | |
3068 | * delay updating the sequential write info | |
3069 | * in the control block until we've obtained | |
3070 | * the lock for it | |
3071 | */ | |
3072 | first_pass = TRUE; | |
3073 | } | |
91447636 | 3074 | while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { |
1c79356b A |
3075 | /* |
3076 | * for this iteration of the loop, figure out where our starting point is | |
3077 | */ | |
3078 | if (zero_cnt) { | |
3079 | start_offset = (int)(zero_off & PAGE_MASK_64); | |
3080 | upl_f_offset = zero_off - start_offset; | |
91447636 | 3081 | } else if (io_resid) { |
1c79356b A |
3082 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); |
3083 | upl_f_offset = uio->uio_offset - start_offset; | |
3084 | } else { | |
3085 | start_offset = (int)(zero_off1 & PAGE_MASK_64); | |
3086 | upl_f_offset = zero_off1 - start_offset; | |
3087 | } | |
3088 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, | |
3089 | (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); | |
3090 | ||
cf7d32b8 A |
3091 | if (total_size > max_io_size) |
3092 | total_size = max_io_size; | |
1c79356b | 3093 | |
91447636 | 3094 | cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); |
55e303ae | 3095 | |
2d21ac55 | 3096 | if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { |
55e303ae | 3097 | /* |
91447636 | 3098 | * assumption... total_size <= io_resid |
55e303ae A |
3099 | * because IO_HEADZEROFILL and IO_TAILZEROFILL not set |
3100 | */ | |
cf7d32b8 | 3101 | if ((start_offset + total_size) > max_io_size) |
b7266188 | 3102 | total_size = max_io_size - start_offset; |
55e303ae A |
3103 | xfer_resid = total_size; |
3104 | ||
2d21ac55 | 3105 | retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1); |
b0d623f7 | 3106 | |
55e303ae A |
3107 | if (retval) |
3108 | break; | |
3109 | ||
2d21ac55 | 3110 | io_resid -= (total_size - xfer_resid); |
55e303ae A |
3111 | total_size = xfer_resid; |
3112 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
3113 | upl_f_offset = uio->uio_offset - start_offset; | |
3114 | ||
3115 | if (total_size == 0) { | |
3116 | if (start_offset) { | |
3117 | /* | |
3118 | * the write did not finish on a page boundary | |
3119 | * which will leave upl_f_offset pointing to the | |
3120 | * beginning of the last page written instead of | |
3121 | * the page beyond it... bump it in this case | |
3122 | * so that the cluster code records the last page | |
3123 | * written as dirty | |
3124 | */ | |
3125 | upl_f_offset += PAGE_SIZE_64; | |
3126 | } | |
3127 | upl_size = 0; | |
3128 | ||
3129 | goto check_cluster; | |
3130 | } | |
3131 | } | |
1c79356b A |
3132 | /* |
3133 | * compute the size of the upl needed to encompass | |
3134 | * the requested write... limit each call to cluster_io | |
0b4e3aa0 A |
3135 | * to the maximum UPL size... cluster_io will clip if |
3136 | * this exceeds the maximum io_size for the device, | |
3137 | * make sure to account for | |
1c79356b A |
3138 | * a starting offset that's not page aligned |
3139 | */ | |
3140 | upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
3141 | ||
cf7d32b8 A |
3142 | if (upl_size > max_io_size) |
3143 | upl_size = max_io_size; | |
1c79356b A |
3144 | |
3145 | pages_in_upl = upl_size / PAGE_SIZE; | |
3146 | io_size = upl_size - start_offset; | |
3147 | ||
3148 | if ((long long)io_size > total_size) | |
3149 | io_size = total_size; | |
3150 | ||
55e303ae A |
3151 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); |
3152 | ||
1c79356b | 3153 | |
91447636 A |
3154 | /* |
3155 | * Gather the pages from the buffer cache. | |
3156 | * The UPL_WILL_MODIFY flag lets the UPL subsystem know | |
3157 | * that we intend to modify these pages. | |
3158 | */ | |
0b4e3aa0 | 3159 | kret = ubc_create_upl(vp, |
91447636 A |
3160 | upl_f_offset, |
3161 | upl_size, | |
3162 | &upl, | |
3163 | &pl, | |
b0d623f7 | 3164 | UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY)); |
1c79356b | 3165 | if (kret != KERN_SUCCESS) |
2d21ac55 | 3166 | panic("cluster_write_copy: failed to get pagelist"); |
1c79356b | 3167 | |
55e303ae | 3168 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, |
b0d623f7 | 3169 | upl, (int)upl_f_offset, start_offset, 0, 0); |
1c79356b | 3170 | |
b0d623f7 | 3171 | if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) { |
0b4e3aa0 | 3172 | int read_size; |
1c79356b | 3173 | |
0b4e3aa0 | 3174 | /* |
1c79356b A |
3175 | * we're starting in the middle of the first page of the upl |
3176 | * and the page isn't currently valid, so we're going to have | |
3177 | * to read it in first... this is a synchronous operation | |
3178 | */ | |
3179 | read_size = PAGE_SIZE; | |
3180 | ||
b0d623f7 A |
3181 | if ((upl_f_offset + read_size) > oldEOF) |
3182 | read_size = oldEOF - upl_f_offset; | |
9bccf70c | 3183 | |
91447636 | 3184 | retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, |
2d21ac55 | 3185 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 3186 | if (retval) { |
0b4e3aa0 | 3187 | /* |
1c79356b A |
3188 | * we had an error during the read which causes us to abort |
3189 | * the current cluster_write request... before we do, we need | |
3190 | * to release the rest of the pages in the upl without modifying | |
3191 | * there state and mark the failed page in error | |
3192 | */ | |
935ed37a | 3193 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); |
91447636 A |
3194 | |
3195 | if (upl_size > PAGE_SIZE) | |
3196 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
3197 | |
3198 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 3199 | upl, 0, 0, retval, 0); |
1c79356b A |
3200 | break; |
3201 | } | |
3202 | } | |
3203 | if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) { | |
3204 | /* | |
3205 | * the last offset we're writing to in this upl does not end on a page | |
3206 | * boundary... if it's not beyond the old EOF, then we'll also need to | |
3207 | * pre-read this page in if it isn't already valid | |
3208 | */ | |
3209 | upl_offset = upl_size - PAGE_SIZE; | |
3210 | ||
3211 | if ((upl_f_offset + start_offset + io_size) < oldEOF && | |
3212 | !upl_valid_page(pl, upl_offset / PAGE_SIZE)) { | |
3213 | int read_size; | |
3214 | ||
3215 | read_size = PAGE_SIZE; | |
3216 | ||
b0d623f7 A |
3217 | if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF) |
3218 | read_size = oldEOF - (upl_f_offset + upl_offset); | |
9bccf70c | 3219 | |
91447636 | 3220 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, |
2d21ac55 | 3221 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 3222 | if (retval) { |
0b4e3aa0 | 3223 | /* |
1c79356b | 3224 | * we had an error during the read which causes us to abort |
0b4e3aa0 A |
3225 | * the current cluster_write request... before we do, we |
3226 | * need to release the rest of the pages in the upl without | |
3227 | * modifying there state and mark the failed page in error | |
1c79356b | 3228 | */ |
935ed37a | 3229 | ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); |
91447636 A |
3230 | |
3231 | if (upl_size > PAGE_SIZE) | |
3232 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
3233 | |
3234 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 3235 | upl, 0, 0, retval, 0); |
1c79356b A |
3236 | break; |
3237 | } | |
3238 | } | |
3239 | } | |
1c79356b A |
3240 | xfer_resid = io_size; |
3241 | io_offset = start_offset; | |
3242 | ||
3243 | while (zero_cnt && xfer_resid) { | |
3244 | ||
3245 | if (zero_cnt < (long long)xfer_resid) | |
3246 | bytes_to_zero = zero_cnt; | |
3247 | else | |
3248 | bytes_to_zero = xfer_resid; | |
3249 | ||
b0d623f7 | 3250 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero); |
9bccf70c | 3251 | |
1c79356b A |
3252 | xfer_resid -= bytes_to_zero; |
3253 | zero_cnt -= bytes_to_zero; | |
3254 | zero_off += bytes_to_zero; | |
3255 | io_offset += bytes_to_zero; | |
3256 | } | |
91447636 | 3257 | if (xfer_resid && io_resid) { |
2d21ac55 A |
3258 | u_int32_t io_requested; |
3259 | ||
91447636 | 3260 | bytes_to_move = min(io_resid, xfer_resid); |
2d21ac55 | 3261 | io_requested = bytes_to_move; |
1c79356b | 3262 | |
2d21ac55 | 3263 | retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested); |
9bccf70c | 3264 | |
1c79356b | 3265 | if (retval) { |
9bccf70c | 3266 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
1c79356b A |
3267 | |
3268 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 3269 | upl, 0, 0, retval, 0); |
1c79356b | 3270 | } else { |
2d21ac55 | 3271 | io_resid -= bytes_to_move; |
1c79356b A |
3272 | xfer_resid -= bytes_to_move; |
3273 | io_offset += bytes_to_move; | |
3274 | } | |
3275 | } | |
3276 | while (xfer_resid && zero_cnt1 && retval == 0) { | |
3277 | ||
3278 | if (zero_cnt1 < (long long)xfer_resid) | |
3279 | bytes_to_zero = zero_cnt1; | |
3280 | else | |
3281 | bytes_to_zero = xfer_resid; | |
3282 | ||
b0d623f7 A |
3283 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero); |
3284 | ||
1c79356b A |
3285 | xfer_resid -= bytes_to_zero; |
3286 | zero_cnt1 -= bytes_to_zero; | |
3287 | zero_off1 += bytes_to_zero; | |
3288 | io_offset += bytes_to_zero; | |
3289 | } | |
1c79356b | 3290 | if (retval == 0) { |
9bccf70c | 3291 | int cl_index; |
2d21ac55 | 3292 | int ret_cluster_try_push; |
1c79356b A |
3293 | |
3294 | io_size += start_offset; | |
3295 | ||
2d21ac55 | 3296 | if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) { |
1c79356b A |
3297 | /* |
3298 | * if we're extending the file with this write | |
3299 | * we'll zero fill the rest of the page so that | |
3300 | * if the file gets extended again in such a way as to leave a | |
3301 | * hole starting at this EOF, we'll have zero's in the correct spot | |
3302 | */ | |
55e303ae | 3303 | cluster_zero(upl, io_size, upl_size - io_size, NULL); |
1c79356b | 3304 | } |
935ed37a A |
3305 | /* |
3306 | * release the upl now if we hold one since... | |
3307 | * 1) pages in it may be present in the sparse cluster map | |
3308 | * and may span 2 separate buckets there... if they do and | |
3309 | * we happen to have to flush a bucket to make room and it intersects | |
3310 | * this upl, a deadlock may result on page BUSY | |
3311 | * 2) we're delaying the I/O... from this point forward we're just updating | |
3312 | * the cluster state... no need to hold the pages, so commit them | |
3313 | * 3) IO_SYNC is set... | |
3314 | * because we had to ask for a UPL that provides currenty non-present pages, the | |
3315 | * UPL has been automatically set to clear the dirty flags (both software and hardware) | |
3316 | * upon committing it... this is not the behavior we want since it's possible for | |
3317 | * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. | |
3318 | * we'll pick these pages back up later with the correct behavior specified. | |
3319 | * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush | |
3320 | * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages | |
3321 | * we hold since the flushing context is holding the cluster lock. | |
3322 | */ | |
3323 | ubc_upl_commit_range(upl, 0, upl_size, | |
3324 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
3325 | check_cluster: | |
3326 | /* | |
3327 | * calculate the last logical block number | |
3328 | * that this delayed I/O encompassed | |
3329 | */ | |
3330 | cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); | |
3331 | ||
b0d623f7 | 3332 | if (flags & IO_SYNC) { |
9bccf70c A |
3333 | /* |
3334 | * if the IO_SYNC flag is set than we need to | |
3335 | * bypass any clusters and immediately issue | |
3336 | * the I/O | |
3337 | */ | |
3338 | goto issue_io; | |
b0d623f7 | 3339 | } |
91447636 A |
3340 | /* |
3341 | * take the lock to protect our accesses | |
3342 | * of the writebehind and sparse cluster state | |
3343 | */ | |
3344 | wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); | |
3345 | ||
91447636 | 3346 | if (wbp->cl_scmap) { |
55e303ae | 3347 | |
91447636 | 3348 | if ( !(flags & IO_NOCACHE)) { |
55e303ae A |
3349 | /* |
3350 | * we've fallen into the sparse | |
3351 | * cluster method of delaying dirty pages | |
55e303ae | 3352 | */ |
b0d623f7 | 3353 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); |
91447636 A |
3354 | |
3355 | lck_mtx_unlock(&wbp->cl_lockw); | |
55e303ae A |
3356 | |
3357 | continue; | |
3358 | } | |
3359 | /* | |
3360 | * must have done cached writes that fell into | |
3361 | * the sparse cluster mechanism... we've switched | |
3362 | * to uncached writes on the file, so go ahead | |
3363 | * and push whatever's in the sparse map | |
3364 | * and switch back to normal clustering | |
55e303ae | 3365 | */ |
91447636 | 3366 | wbp->cl_number = 0; |
935ed37a | 3367 | |
6d2010ae | 3368 | sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg); |
55e303ae A |
3369 | /* |
3370 | * no clusters of either type present at this point | |
3371 | * so just go directly to start_new_cluster since | |
3372 | * we know we need to delay this I/O since we've | |
3373 | * already released the pages back into the cache | |
3374 | * to avoid the deadlock with sparse_cluster_push | |
3375 | */ | |
3376 | goto start_new_cluster; | |
6d2010ae A |
3377 | } |
3378 | if (first_pass) { | |
3379 | if (write_off == wbp->cl_last_write) | |
3380 | wbp->cl_seq_written += write_cnt; | |
3381 | else | |
3382 | wbp->cl_seq_written = write_cnt; | |
3383 | ||
3384 | wbp->cl_last_write = write_off + write_cnt; | |
3385 | ||
3386 | first_pass = FALSE; | |
3387 | } | |
91447636 | 3388 | if (wbp->cl_number == 0) |
9bccf70c A |
3389 | /* |
3390 | * no clusters currently present | |
3391 | */ | |
3392 | goto start_new_cluster; | |
1c79356b | 3393 | |
91447636 | 3394 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
1c79356b | 3395 | /* |
55e303ae A |
3396 | * check each cluster that we currently hold |
3397 | * try to merge some or all of this write into | |
3398 | * one or more of the existing clusters... if | |
3399 | * any portion of the write remains, start a | |
3400 | * new cluster | |
1c79356b | 3401 | */ |
91447636 | 3402 | if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) { |
9bccf70c A |
3403 | /* |
3404 | * the current write starts at or after the current cluster | |
3405 | */ | |
cf7d32b8 | 3406 | if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { |
1c79356b A |
3407 | /* |
3408 | * we have a write that fits entirely | |
3409 | * within the existing cluster limits | |
3410 | */ | |
91447636 | 3411 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) |
1c79356b | 3412 | /* |
9bccf70c | 3413 | * update our idea of where the cluster ends |
1c79356b | 3414 | */ |
91447636 | 3415 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; |
9bccf70c | 3416 | break; |
1c79356b | 3417 | } |
cf7d32b8 | 3418 | if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { |
1c79356b A |
3419 | /* |
3420 | * we have a write that starts in the middle of the current cluster | |
55e303ae A |
3421 | * but extends beyond the cluster's limit... we know this because |
3422 | * of the previous checks | |
3423 | * we'll extend the current cluster to the max | |
91447636 | 3424 | * and update the b_addr for the current write to reflect that |
55e303ae A |
3425 | * the head of it was absorbed into this cluster... |
3426 | * note that we'll always have a leftover tail in this case since | |
3427 | * full absorbtion would have occurred in the clause above | |
1c79356b | 3428 | */ |
cf7d32b8 | 3429 | wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount; |
55e303ae | 3430 | |
91447636 | 3431 | cl.b_addr = wbp->cl_clusters[cl_index].e_addr; |
1c79356b A |
3432 | } |
3433 | /* | |
55e303ae A |
3434 | * we come here for the case where the current write starts |
3435 | * beyond the limit of the existing cluster or we have a leftover | |
3436 | * tail after a partial absorbtion | |
9bccf70c A |
3437 | * |
3438 | * in either case, we'll check the remaining clusters before | |
3439 | * starting a new one | |
1c79356b | 3440 | */ |
9bccf70c | 3441 | } else { |
1c79356b | 3442 | /* |
55e303ae | 3443 | * the current write starts in front of the cluster we're currently considering |
1c79356b | 3444 | */ |
cf7d32b8 | 3445 | if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) { |
1c79356b | 3446 | /* |
55e303ae A |
3447 | * we can just merge the new request into |
3448 | * this cluster and leave it in the cache | |
3449 | * since the resulting cluster is still | |
3450 | * less than the maximum allowable size | |
1c79356b | 3451 | */ |
91447636 | 3452 | wbp->cl_clusters[cl_index].b_addr = cl.b_addr; |
1c79356b | 3453 | |
91447636 | 3454 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) { |
9bccf70c A |
3455 | /* |
3456 | * the current write completely | |
55e303ae | 3457 | * envelops the existing cluster and since |
cf7d32b8 | 3458 | * each write is limited to at most max_cluster_pgcount pages |
55e303ae A |
3459 | * we can just use the start and last blocknos of the write |
3460 | * to generate the cluster limits | |
9bccf70c | 3461 | */ |
91447636 | 3462 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; |
9bccf70c A |
3463 | } |
3464 | break; | |
1c79356b | 3465 | } |
9bccf70c | 3466 | |
1c79356b | 3467 | /* |
9bccf70c A |
3468 | * if we were to combine this write with the current cluster |
3469 | * we would exceed the cluster size limit.... so, | |
3470 | * let's see if there's any overlap of the new I/O with | |
55e303ae A |
3471 | * the cluster we're currently considering... in fact, we'll |
3472 | * stretch the cluster out to it's full limit and see if we | |
3473 | * get an intersection with the current write | |
9bccf70c | 3474 | * |
1c79356b | 3475 | */ |
cf7d32b8 | 3476 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) { |
1c79356b | 3477 | /* |
55e303ae A |
3478 | * the current write extends into the proposed cluster |
3479 | * clip the length of the current write after first combining it's | |
3480 | * tail with the newly shaped cluster | |
1c79356b | 3481 | */ |
cf7d32b8 | 3482 | wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount; |
55e303ae | 3483 | |
91447636 | 3484 | cl.e_addr = wbp->cl_clusters[cl_index].b_addr; |
55e303ae | 3485 | } |
9bccf70c A |
3486 | /* |
3487 | * if we get here, there was no way to merge | |
55e303ae A |
3488 | * any portion of this write with this cluster |
3489 | * or we could only merge part of it which | |
3490 | * will leave a tail... | |
9bccf70c A |
3491 | * we'll check the remaining clusters before starting a new one |
3492 | */ | |
1c79356b | 3493 | } |
9bccf70c | 3494 | } |
91447636 | 3495 | if (cl_index < wbp->cl_number) |
9bccf70c | 3496 | /* |
55e303ae A |
3497 | * we found an existing cluster(s) that we |
3498 | * could entirely merge this I/O into | |
9bccf70c A |
3499 | */ |
3500 | goto delay_io; | |
3501 | ||
6d2010ae A |
3502 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && |
3503 | wbp->cl_number == MAX_CLUSTERS && | |
3504 | wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) { | |
3505 | uint32_t n; | |
3506 | ||
39037602 A |
3507 | if (vp->v_mount->mnt_minsaturationbytecount) { |
3508 | n = vp->v_mount->mnt_minsaturationbytecount / MAX_CLUSTER_SIZE(vp); | |
3509 | ||
3510 | if (n > MAX_CLUSTERS) | |
3511 | n = MAX_CLUSTERS; | |
3512 | } else | |
3513 | n = 0; | |
6d2010ae | 3514 | |
39037602 A |
3515 | if (n == 0) { |
3516 | if (vp->v_mount->mnt_kern_flag & MNTK_SSD) | |
3517 | n = WRITE_BEHIND_SSD; | |
3518 | else | |
3519 | n = WRITE_BEHIND; | |
3520 | } | |
6d2010ae A |
3521 | while (n--) |
3522 | cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg); | |
3523 | } | |
3524 | if (wbp->cl_number < MAX_CLUSTERS) { | |
9bccf70c A |
3525 | /* |
3526 | * we didn't find an existing cluster to | |
3527 | * merge into, but there's room to start | |
1c79356b A |
3528 | * a new one |
3529 | */ | |
9bccf70c | 3530 | goto start_new_cluster; |
6d2010ae | 3531 | } |
9bccf70c A |
3532 | /* |
3533 | * no exisitng cluster to merge with and no | |
3534 | * room to start a new one... we'll try | |
55e303ae A |
3535 | * pushing one of the existing ones... if none of |
3536 | * them are able to be pushed, we'll switch | |
3537 | * to the sparse cluster mechanism | |
91447636 | 3538 | * cluster_try_push updates cl_number to the |
55e303ae A |
3539 | * number of remaining clusters... and |
3540 | * returns the number of currently unused clusters | |
9bccf70c | 3541 | */ |
2d21ac55 A |
3542 | ret_cluster_try_push = 0; |
3543 | ||
3544 | /* | |
3545 | * if writes are not deferred, call cluster push immediately | |
3546 | */ | |
91447636 | 3547 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) { |
91447636 | 3548 | |
6d2010ae | 3549 | ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg); |
91447636 | 3550 | } |
9bccf70c | 3551 | |
2d21ac55 A |
3552 | /* |
3553 | * execute following regardless of writes being deferred or not | |
3554 | */ | |
91447636 | 3555 | if (ret_cluster_try_push == 0) { |
55e303ae A |
3556 | /* |
3557 | * no more room in the normal cluster mechanism | |
3558 | * so let's switch to the more expansive but expensive | |
3559 | * sparse mechanism.... | |
55e303ae | 3560 | */ |
2d21ac55 | 3561 | sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg); |
b0d623f7 | 3562 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); |
91447636 A |
3563 | |
3564 | lck_mtx_unlock(&wbp->cl_lockw); | |
55e303ae A |
3565 | |
3566 | continue; | |
9bccf70c A |
3567 | } |
3568 | start_new_cluster: | |
91447636 A |
3569 | wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr; |
3570 | wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr; | |
9bccf70c | 3571 | |
2d21ac55 A |
3572 | wbp->cl_clusters[wbp->cl_number].io_flags = 0; |
3573 | ||
91447636 | 3574 | if (flags & IO_NOCACHE) |
2d21ac55 A |
3575 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE; |
3576 | ||
3577 | if (bflag & CL_PASSIVE) | |
3578 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE; | |
3579 | ||
91447636 | 3580 | wbp->cl_number++; |
55e303ae | 3581 | delay_io: |
91447636 A |
3582 | lck_mtx_unlock(&wbp->cl_lockw); |
3583 | ||
9bccf70c A |
3584 | continue; |
3585 | issue_io: | |
3586 | /* | |
935ed37a | 3587 | * we don't hold the lock at this point |
91447636 | 3588 | * |
935ed37a | 3589 | * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set |
91447636 | 3590 | * so that we correctly deal with a change in state of the hardware modify bit... |
2d21ac55 A |
3591 | * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force |
3592 | * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also | |
91447636 | 3593 | * responsible for generating the correct sized I/O(s) |
9bccf70c | 3594 | */ |
2d21ac55 | 3595 | retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg); |
1c79356b A |
3596 | } |
3597 | } | |
2d21ac55 | 3598 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0); |
1c79356b A |
3599 | |
3600 | return (retval); | |
3601 | } | |
3602 | ||
2d21ac55 A |
3603 | |
3604 | ||
9bccf70c | 3605 | int |
91447636 | 3606 | cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) |
1c79356b | 3607 | { |
2d21ac55 A |
3608 | return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL); |
3609 | } | |
3610 | ||
3611 | ||
3612 | int | |
3613 | cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
3614 | { | |
3615 | int retval = 0; | |
3616 | int flags; | |
3617 | user_ssize_t cur_resid; | |
3618 | u_int32_t io_size; | |
3619 | u_int32_t read_length = 0; | |
3620 | int read_type = IO_COPY; | |
1c79356b | 3621 | |
91447636 | 3622 | flags = xflags; |
1c79356b | 3623 | |
91447636 A |
3624 | if (vp->v_flag & VNOCACHE_DATA) |
3625 | flags |= IO_NOCACHE; | |
2d21ac55 | 3626 | if ((vp->v_flag & VRAOFF) || speculative_reads_disabled) |
91447636 | 3627 | flags |= IO_RAOFF; |
3e170ce0 | 3628 | |
fe8ab488 A |
3629 | if (flags & IO_SKIP_ENCRYPTION) |
3630 | flags |= IO_ENCRYPTED; | |
91447636 | 3631 | |
316670eb | 3632 | /* |
2d21ac55 A |
3633 | * do a read through the cache if one of the following is true.... |
3634 | * NOCACHE is not true | |
3635 | * the uio request doesn't target USERSPACE | |
316670eb A |
3636 | * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well. |
3637 | * Reading encrypted data from a CP filesystem should never result in the data touching | |
3638 | * the UBC. | |
3639 | * | |
2d21ac55 A |
3640 | * otherwise, find out if we want the direct or contig variant for |
3641 | * the first vector in the uio request | |
3642 | */ | |
fe8ab488 | 3643 | if ( ((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED) ) { |
39236c6e | 3644 | |
fe8ab488 | 3645 | retval = cluster_io_type(uio, &read_type, &read_length, 0); |
316670eb | 3646 | } |
39037602 | 3647 | |
2d21ac55 | 3648 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) { |
91447636 | 3649 | |
2d21ac55 A |
3650 | switch (read_type) { |
3651 | ||
3652 | case IO_COPY: | |
91447636 | 3653 | /* |
2d21ac55 A |
3654 | * make sure the uio_resid isn't too big... |
3655 | * internally, we want to handle all of the I/O in | |
3656 | * chunk sizes that fit in a 32 bit int | |
91447636 | 3657 | */ |
2d21ac55 A |
3658 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) |
3659 | io_size = MAX_IO_REQUEST_SIZE; | |
3660 | else | |
3661 | io_size = (u_int32_t)cur_resid; | |
91447636 | 3662 | |
2d21ac55 A |
3663 | retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg); |
3664 | break; | |
1c79356b | 3665 | |
2d21ac55 A |
3666 | case IO_DIRECT: |
3667 | retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg); | |
3668 | break; | |
91447636 | 3669 | |
2d21ac55 A |
3670 | case IO_CONTIG: |
3671 | retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags); | |
3672 | break; | |
3673 | ||
3674 | case IO_UNKNOWN: | |
3675 | retval = cluster_io_type(uio, &read_type, &read_length, 0); | |
3676 | break; | |
3677 | } | |
3678 | } | |
3679 | return (retval); | |
3680 | } | |
91447636 | 3681 | |
91447636 | 3682 | |
91447636 | 3683 | |
2d21ac55 | 3684 | static void |
b0d623f7 | 3685 | cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference) |
2d21ac55 A |
3686 | { |
3687 | int range; | |
3688 | int abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
1c79356b | 3689 | |
2d21ac55 | 3690 | if ((range = last_pg - start_pg)) { |
b0d623f7 | 3691 | if (take_reference) |
2d21ac55 A |
3692 | abort_flags |= UPL_ABORT_REFERENCE; |
3693 | ||
3694 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags); | |
3695 | } | |
1c79356b A |
3696 | } |
3697 | ||
2d21ac55 | 3698 | |
9bccf70c | 3699 | static int |
2d21ac55 | 3700 | cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
3701 | { |
3702 | upl_page_info_t *pl; | |
3703 | upl_t upl; | |
3704 | vm_offset_t upl_offset; | |
b0d623f7 | 3705 | u_int32_t upl_size; |
1c79356b A |
3706 | off_t upl_f_offset; |
3707 | int start_offset; | |
3708 | int start_pg; | |
3709 | int last_pg; | |
91447636 | 3710 | int uio_last = 0; |
1c79356b A |
3711 | int pages_in_upl; |
3712 | off_t max_size; | |
55e303ae A |
3713 | off_t last_ioread_offset; |
3714 | off_t last_request_offset; | |
1c79356b | 3715 | kern_return_t kret; |
1c79356b A |
3716 | int error = 0; |
3717 | int retval = 0; | |
2d21ac55 A |
3718 | u_int32_t size_of_prefetch; |
3719 | u_int32_t xsize; | |
3720 | u_int32_t io_size; | |
cf7d32b8 | 3721 | u_int32_t max_rd_size; |
b0d623f7 A |
3722 | u_int32_t max_io_size; |
3723 | u_int32_t max_prefetch; | |
55e303ae A |
3724 | u_int rd_ahead_enabled = 1; |
3725 | u_int prefetch_enabled = 1; | |
91447636 A |
3726 | struct cl_readahead * rap; |
3727 | struct clios iostate; | |
3728 | struct cl_extent extent; | |
2d21ac55 A |
3729 | int bflag; |
3730 | int take_reference = 1; | |
2d21ac55 | 3731 | int policy = IOPOL_DEFAULT; |
6d2010ae | 3732 | boolean_t iolock_inited = FALSE; |
b0d623f7 A |
3733 | |
3734 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, | |
3735 | (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0); | |
316670eb A |
3736 | |
3737 | if (flags & IO_ENCRYPTED) { | |
3738 | panic ("encrypted blocks will hit UBC!"); | |
3739 | } | |
b0d623f7 | 3740 | |
39236c6e | 3741 | policy = throttle_get_io_policy(NULL); |
2d21ac55 | 3742 | |
39236c6e | 3743 | if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE)) |
2d21ac55 A |
3744 | take_reference = 0; |
3745 | ||
3746 | if (flags & IO_PASSIVE) | |
cf7d32b8 | 3747 | bflag = CL_PASSIVE; |
2d21ac55 | 3748 | else |
b0d623f7 | 3749 | bflag = 0; |
cf7d32b8 | 3750 | |
316670eb A |
3751 | if (flags & IO_NOCACHE) |
3752 | bflag |= CL_NOCACHE; | |
3753 | ||
fe8ab488 A |
3754 | if (flags & IO_SKIP_ENCRYPTION) |
3755 | bflag |= CL_ENCRYPTED; | |
3756 | ||
b0d623f7 | 3757 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); |
6d2010ae | 3758 | max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD)); |
b0d623f7 | 3759 | max_rd_size = max_prefetch; |
55e303ae | 3760 | |
2d21ac55 | 3761 | last_request_offset = uio->uio_offset + io_req_size; |
55e303ae | 3762 | |
b0d623f7 A |
3763 | if (last_request_offset > filesize) |
3764 | last_request_offset = filesize; | |
3765 | ||
2d21ac55 | 3766 | if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { |
55e303ae | 3767 | rd_ahead_enabled = 0; |
91447636 A |
3768 | rap = NULL; |
3769 | } else { | |
39236c6e | 3770 | if (cluster_is_throttled(vp)) { |
316670eb A |
3771 | /* |
3772 | * we're in the throttle window, at the very least | |
3773 | * we want to limit the size of the I/O we're about | |
3774 | * to issue | |
3775 | */ | |
91447636 A |
3776 | rd_ahead_enabled = 0; |
3777 | prefetch_enabled = 0; | |
55e303ae | 3778 | |
316670eb | 3779 | max_rd_size = THROTTLE_MAX_IOSIZE; |
91447636 A |
3780 | } |
3781 | if ((rap = cluster_get_rap(vp)) == NULL) | |
3782 | rd_ahead_enabled = 0; | |
b0d623f7 A |
3783 | else { |
3784 | extent.b_addr = uio->uio_offset / PAGE_SIZE_64; | |
3785 | extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; | |
3786 | } | |
55e303ae | 3787 | } |
91447636 | 3788 | if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { |
55e303ae A |
3789 | /* |
3790 | * determine if we already have a read-ahead in the pipe courtesy of the | |
3791 | * last read systemcall that was issued... | |
3792 | * if so, pick up it's extent to determine where we should start | |
3793 | * with respect to any read-ahead that might be necessary to | |
3794 | * garner all the data needed to complete this read systemcall | |
3795 | */ | |
91447636 | 3796 | last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; |
1c79356b | 3797 | |
55e303ae A |
3798 | if (last_ioread_offset < uio->uio_offset) |
3799 | last_ioread_offset = (off_t)0; | |
3800 | else if (last_ioread_offset > last_request_offset) | |
3801 | last_ioread_offset = last_request_offset; | |
3802 | } else | |
3803 | last_ioread_offset = (off_t)0; | |
1c79356b | 3804 | |
2d21ac55 | 3805 | while (io_req_size && uio->uio_offset < filesize && retval == 0) { |
b0d623f7 A |
3806 | |
3807 | max_size = filesize - uio->uio_offset; | |
1c79356b | 3808 | |
2d21ac55 A |
3809 | if ((off_t)(io_req_size) < max_size) |
3810 | io_size = io_req_size; | |
1c79356b A |
3811 | else |
3812 | io_size = max_size; | |
9bccf70c | 3813 | |
91447636 | 3814 | if (!(flags & IO_NOCACHE)) { |
1c79356b | 3815 | |
55e303ae | 3816 | while (io_size) { |
2d21ac55 A |
3817 | u_int32_t io_resid; |
3818 | u_int32_t io_requested; | |
1c79356b | 3819 | |
55e303ae A |
3820 | /* |
3821 | * if we keep finding the pages we need already in the cache, then | |
2d21ac55 | 3822 | * don't bother to call cluster_read_prefetch since it costs CPU cycles |
55e303ae A |
3823 | * to determine that we have all the pages we need... once we miss in |
3824 | * the cache and have issued an I/O, than we'll assume that we're likely | |
3825 | * to continue to miss in the cache and it's to our advantage to try and prefetch | |
3826 | */ | |
3827 | if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) { | |
3828 | if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) { | |
3829 | /* | |
3830 | * we've already issued I/O for this request and | |
3831 | * there's still work to do and | |
3832 | * our prefetch stream is running dry, so issue a | |
3833 | * pre-fetch I/O... the I/O latency will overlap | |
3834 | * with the copying of the data | |
3835 | */ | |
3836 | if (size_of_prefetch > max_rd_size) | |
3837 | size_of_prefetch = max_rd_size; | |
1c79356b | 3838 | |
2d21ac55 | 3839 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); |
1c79356b | 3840 | |
55e303ae A |
3841 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); |
3842 | ||
3843 | if (last_ioread_offset > last_request_offset) | |
3844 | last_ioread_offset = last_request_offset; | |
3845 | } | |
3846 | } | |
3847 | /* | |
3848 | * limit the size of the copy we're about to do so that | |
3849 | * we can notice that our I/O pipe is running dry and | |
3850 | * get the next I/O issued before it does go dry | |
3851 | */ | |
cf7d32b8 A |
3852 | if (last_ioread_offset && io_size > (max_io_size / 4)) |
3853 | io_resid = (max_io_size / 4); | |
55e303ae A |
3854 | else |
3855 | io_resid = io_size; | |
1c79356b | 3856 | |
55e303ae | 3857 | io_requested = io_resid; |
1c79356b | 3858 | |
6d2010ae | 3859 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference); |
2d21ac55 A |
3860 | |
3861 | xsize = io_requested - io_resid; | |
1c79356b | 3862 | |
2d21ac55 A |
3863 | io_size -= xsize; |
3864 | io_req_size -= xsize; | |
1c79356b | 3865 | |
55e303ae A |
3866 | if (retval || io_resid) |
3867 | /* | |
3868 | * if we run into a real error or | |
3869 | * a page that is not in the cache | |
3870 | * we need to leave streaming mode | |
3871 | */ | |
3872 | break; | |
3873 | ||
b0d623f7 | 3874 | if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) { |
55e303ae A |
3875 | /* |
3876 | * we're already finished the I/O for this read request | |
3877 | * let's see if we should do a read-ahead | |
3878 | */ | |
2d21ac55 | 3879 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); |
55e303ae | 3880 | } |
1c79356b | 3881 | } |
1c79356b A |
3882 | if (retval) |
3883 | break; | |
1c79356b | 3884 | if (io_size == 0) { |
91447636 A |
3885 | if (rap != NULL) { |
3886 | if (extent.e_addr < rap->cl_lastr) | |
3887 | rap->cl_maxra = 0; | |
3888 | rap->cl_lastr = extent.e_addr; | |
3889 | } | |
1c79356b A |
3890 | break; |
3891 | } | |
b0d623f7 A |
3892 | /* |
3893 | * recompute max_size since cluster_copy_ubc_data_internal | |
3894 | * may have advanced uio->uio_offset | |
3895 | */ | |
3896 | max_size = filesize - uio->uio_offset; | |
1c79356b | 3897 | } |
316670eb A |
3898 | |
3899 | iostate.io_completed = 0; | |
3900 | iostate.io_issued = 0; | |
3901 | iostate.io_error = 0; | |
3902 | iostate.io_wanted = 0; | |
3903 | ||
3904 | if ( (flags & IO_RETURN_ON_THROTTLE) ) { | |
39236c6e | 3905 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { |
316670eb A |
3906 | if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) { |
3907 | /* | |
3908 | * we're in the throttle window and at least 1 I/O | |
3909 | * has already been issued by a throttleable thread | |
3910 | * in this window, so return with EAGAIN to indicate | |
3911 | * to the FS issuing the cluster_read call that it | |
3912 | * should now throttle after dropping any locks | |
3913 | */ | |
3914 | throttle_info_update_by_mount(vp->v_mount); | |
3915 | ||
3916 | retval = EAGAIN; | |
3917 | break; | |
3918 | } | |
3919 | } | |
3920 | } | |
3921 | ||
b0d623f7 A |
3922 | /* |
3923 | * compute the size of the upl needed to encompass | |
3924 | * the requested read... limit each call to cluster_io | |
3925 | * to the maximum UPL size... cluster_io will clip if | |
3926 | * this exceeds the maximum io_size for the device, | |
3927 | * make sure to account for | |
3928 | * a starting offset that's not page aligned | |
3929 | */ | |
3930 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
3931 | upl_f_offset = uio->uio_offset - (off_t)start_offset; | |
3932 | ||
55e303ae A |
3933 | if (io_size > max_rd_size) |
3934 | io_size = max_rd_size; | |
3935 | ||
1c79356b | 3936 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
55e303ae | 3937 | |
2d21ac55 | 3938 | if (flags & IO_NOCACHE) { |
cf7d32b8 A |
3939 | if (upl_size > max_io_size) |
3940 | upl_size = max_io_size; | |
2d21ac55 | 3941 | } else { |
fe8ab488 | 3942 | if (upl_size > max_io_size / 4) { |
cf7d32b8 | 3943 | upl_size = max_io_size / 4; |
fe8ab488 A |
3944 | upl_size &= ~PAGE_MASK; |
3945 | ||
3946 | if (upl_size == 0) | |
3947 | upl_size = PAGE_SIZE; | |
3948 | } | |
2d21ac55 | 3949 | } |
1c79356b A |
3950 | pages_in_upl = upl_size / PAGE_SIZE; |
3951 | ||
3952 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, | |
b0d623f7 | 3953 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
1c79356b | 3954 | |
0b4e3aa0 | 3955 | kret = ubc_create_upl(vp, |
91447636 A |
3956 | upl_f_offset, |
3957 | upl_size, | |
3958 | &upl, | |
3959 | &pl, | |
2d21ac55 | 3960 | UPL_FILE_IO | UPL_SET_LITE); |
1c79356b | 3961 | if (kret != KERN_SUCCESS) |
2d21ac55 | 3962 | panic("cluster_read_copy: failed to get pagelist"); |
1c79356b | 3963 | |
1c79356b | 3964 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, |
b0d623f7 | 3965 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
1c79356b A |
3966 | |
3967 | /* | |
3968 | * scan from the beginning of the upl looking for the first | |
3969 | * non-valid page.... this will become the first page in | |
3970 | * the request we're going to make to 'cluster_io'... if all | |
3971 | * of the pages are valid, we won't call through to 'cluster_io' | |
3972 | */ | |
3973 | for (start_pg = 0; start_pg < pages_in_upl; start_pg++) { | |
3974 | if (!upl_valid_page(pl, start_pg)) | |
3975 | break; | |
3976 | } | |
3977 | ||
3978 | /* | |
3979 | * scan from the starting invalid page looking for a valid | |
3980 | * page before the end of the upl is reached, if we | |
3981 | * find one, then it will be the last page of the request to | |
3982 | * 'cluster_io' | |
3983 | */ | |
3984 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
3985 | if (upl_valid_page(pl, last_pg)) | |
3986 | break; | |
3987 | } | |
3988 | ||
3989 | if (start_pg < last_pg) { | |
3990 | /* | |
3991 | * we found a range of 'invalid' pages that must be filled | |
3992 | * if the last page in this range is the last page of the file | |
3993 | * we may have to clip the size of it to keep from reading past | |
3994 | * the end of the last physical block associated with the file | |
3995 | */ | |
6d2010ae A |
3996 | if (iolock_inited == FALSE) { |
3997 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); | |
3998 | ||
3999 | iolock_inited = TRUE; | |
4000 | } | |
1c79356b A |
4001 | upl_offset = start_pg * PAGE_SIZE; |
4002 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
4003 | ||
b0d623f7 | 4004 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) |
1c79356b | 4005 | io_size = filesize - (upl_f_offset + upl_offset); |
9bccf70c | 4006 | |
1c79356b | 4007 | /* |
55e303ae | 4008 | * issue an asynchronous read to cluster_io |
1c79356b A |
4009 | */ |
4010 | ||
4011 | error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, | |
2d21ac55 | 4012 | io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg); |
6d2010ae A |
4013 | |
4014 | if (rap) { | |
4015 | if (extent.e_addr < rap->cl_maxra) { | |
4016 | /* | |
4017 | * we've just issued a read for a block that should have been | |
4018 | * in the cache courtesy of the read-ahead engine... something | |
4019 | * has gone wrong with the pipeline, so reset the read-ahead | |
4020 | * logic which will cause us to restart from scratch | |
4021 | */ | |
4022 | rap->cl_maxra = 0; | |
4023 | } | |
4024 | } | |
1c79356b A |
4025 | } |
4026 | if (error == 0) { | |
4027 | /* | |
4028 | * if the read completed successfully, or there was no I/O request | |
55e303ae A |
4029 | * issued, than copy the data into user land via 'cluster_upl_copy_data' |
4030 | * we'll first add on any 'valid' | |
1c79356b A |
4031 | * pages that were present in the upl when we acquired it. |
4032 | */ | |
4033 | u_int val_size; | |
1c79356b A |
4034 | |
4035 | for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { | |
4036 | if (!upl_valid_page(pl, uio_last)) | |
4037 | break; | |
4038 | } | |
2d21ac55 A |
4039 | if (uio_last < pages_in_upl) { |
4040 | /* | |
4041 | * there were some invalid pages beyond the valid pages | |
4042 | * that we didn't issue an I/O for, just release them | |
4043 | * unchanged now, so that any prefetch/readahed can | |
4044 | * include them | |
4045 | */ | |
4046 | ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, | |
4047 | (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
4048 | } | |
4049 | ||
1c79356b | 4050 | /* |
2d21ac55 | 4051 | * compute size to transfer this round, if io_req_size is |
55e303ae | 4052 | * still non-zero after this attempt, we'll loop around and |
1c79356b A |
4053 | * set up for another I/O. |
4054 | */ | |
4055 | val_size = (uio_last * PAGE_SIZE) - start_offset; | |
4056 | ||
55e303ae | 4057 | if (val_size > max_size) |
1c79356b A |
4058 | val_size = max_size; |
4059 | ||
2d21ac55 A |
4060 | if (val_size > io_req_size) |
4061 | val_size = io_req_size; | |
1c79356b | 4062 | |
2d21ac55 | 4063 | if ((uio->uio_offset + val_size) > last_ioread_offset) |
55e303ae | 4064 | last_ioread_offset = uio->uio_offset + val_size; |
1c79356b | 4065 | |
55e303ae | 4066 | if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) { |
1c79356b | 4067 | |
2d21ac55 A |
4068 | if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) { |
4069 | /* | |
4070 | * if there's still I/O left to do for this request, and... | |
4071 | * we're not in hard throttle mode, and... | |
4072 | * we're close to using up the previous prefetch, then issue a | |
4073 | * new pre-fetch I/O... the I/O latency will overlap | |
4074 | * with the copying of the data | |
4075 | */ | |
4076 | if (size_of_prefetch > max_rd_size) | |
4077 | size_of_prefetch = max_rd_size; | |
4078 | ||
4079 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); | |
4080 | ||
4081 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); | |
55e303ae | 4082 | |
2d21ac55 A |
4083 | if (last_ioread_offset > last_request_offset) |
4084 | last_ioread_offset = last_request_offset; | |
4085 | } | |
1c79356b | 4086 | |
55e303ae A |
4087 | } else if ((uio->uio_offset + val_size) == last_request_offset) { |
4088 | /* | |
4089 | * this transfer will finish this request, so... | |
4090 | * let's try to read ahead if we're in | |
4091 | * a sequential access pattern and we haven't | |
4092 | * explicitly disabled it | |
4093 | */ | |
4094 | if (rd_ahead_enabled) | |
2d21ac55 | 4095 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); |
91447636 A |
4096 | |
4097 | if (rap != NULL) { | |
4098 | if (extent.e_addr < rap->cl_lastr) | |
4099 | rap->cl_maxra = 0; | |
4100 | rap->cl_lastr = extent.e_addr; | |
4101 | } | |
9bccf70c | 4102 | } |
fe8ab488 | 4103 | if (iolock_inited == TRUE) |
6d2010ae | 4104 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); |
cf7d32b8 | 4105 | |
55e303ae A |
4106 | if (iostate.io_error) |
4107 | error = iostate.io_error; | |
2d21ac55 A |
4108 | else { |
4109 | u_int32_t io_requested; | |
4110 | ||
4111 | io_requested = val_size; | |
4112 | ||
4113 | retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested); | |
4114 | ||
4115 | io_req_size -= (val_size - io_requested); | |
4116 | } | |
6d2010ae | 4117 | } else { |
fe8ab488 | 4118 | if (iolock_inited == TRUE) |
6d2010ae | 4119 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); |
1c79356b A |
4120 | } |
4121 | if (start_pg < last_pg) { | |
4122 | /* | |
4123 | * compute the range of pages that we actually issued an I/O for | |
4124 | * and either commit them as valid if the I/O succeeded | |
2d21ac55 A |
4125 | * or abort them if the I/O failed or we're not supposed to |
4126 | * keep them in the cache | |
1c79356b A |
4127 | */ |
4128 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
4129 | ||
b0d623f7 | 4130 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0); |
1c79356b | 4131 | |
91447636 | 4132 | if (error || (flags & IO_NOCACHE)) |
0b4e3aa0 | 4133 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, |
2d21ac55 | 4134 | UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
b0d623f7 A |
4135 | else { |
4136 | int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY; | |
4137 | ||
4138 | if (take_reference) | |
4139 | commit_flags |= UPL_COMMIT_INACTIVATE; | |
4140 | else | |
4141 | commit_flags |= UPL_COMMIT_SPECULATE; | |
1c79356b | 4142 | |
b0d623f7 A |
4143 | ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags); |
4144 | } | |
4145 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0); | |
1c79356b A |
4146 | } |
4147 | if ((last_pg - start_pg) < pages_in_upl) { | |
1c79356b A |
4148 | /* |
4149 | * the set of pages that we issued an I/O for did not encompass | |
4150 | * the entire upl... so just release these without modifying | |
55e303ae | 4151 | * their state |
1c79356b A |
4152 | */ |
4153 | if (error) | |
9bccf70c | 4154 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); |
1c79356b | 4155 | else { |
1c79356b | 4156 | |
2d21ac55 | 4157 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, |
b0d623f7 | 4158 | upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); |
2d21ac55 A |
4159 | |
4160 | /* | |
4161 | * handle any valid pages at the beginning of | |
4162 | * the upl... release these appropriately | |
4163 | */ | |
b0d623f7 | 4164 | cluster_read_upl_release(upl, 0, start_pg, take_reference); |
2d21ac55 A |
4165 | |
4166 | /* | |
4167 | * handle any valid pages immediately after the | |
4168 | * pages we issued I/O for... ... release these appropriately | |
4169 | */ | |
b0d623f7 | 4170 | cluster_read_upl_release(upl, last_pg, uio_last, take_reference); |
2d21ac55 | 4171 | |
b0d623f7 | 4172 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0); |
1c79356b A |
4173 | } |
4174 | } | |
4175 | if (retval == 0) | |
4176 | retval = error; | |
91447636 | 4177 | |
2d21ac55 | 4178 | if (io_req_size) { |
39236c6e | 4179 | if (cluster_is_throttled(vp)) { |
316670eb A |
4180 | /* |
4181 | * we're in the throttle window, at the very least | |
4182 | * we want to limit the size of the I/O we're about | |
4183 | * to issue | |
4184 | */ | |
91447636 A |
4185 | rd_ahead_enabled = 0; |
4186 | prefetch_enabled = 0; | |
316670eb | 4187 | max_rd_size = THROTTLE_MAX_IOSIZE; |
91447636 | 4188 | } else { |
316670eb | 4189 | if (max_rd_size == THROTTLE_MAX_IOSIZE) { |
2d21ac55 A |
4190 | /* |
4191 | * coming out of throttled state | |
4192 | */ | |
39236c6e | 4193 | if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) { |
b0d623f7 A |
4194 | if (rap != NULL) |
4195 | rd_ahead_enabled = 1; | |
4196 | prefetch_enabled = 1; | |
4197 | } | |
cf7d32b8 | 4198 | max_rd_size = max_prefetch; |
2d21ac55 A |
4199 | last_ioread_offset = 0; |
4200 | } | |
91447636 A |
4201 | } |
4202 | } | |
4203 | } | |
6d2010ae | 4204 | if (iolock_inited == TRUE) { |
fe8ab488 A |
4205 | /* |
4206 | * cluster_io returned an error after it | |
4207 | * had already issued some I/O. we need | |
4208 | * to wait for that I/O to complete before | |
4209 | * we can destroy the iostate mutex... | |
4210 | * 'retval' already contains the early error | |
4211 | * so no need to pick it up from iostate.io_error | |
4212 | */ | |
4213 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
4214 | ||
6d2010ae A |
4215 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
4216 | } | |
91447636 A |
4217 | if (rap != NULL) { |
4218 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
2d21ac55 | 4219 | (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0); |
91447636 A |
4220 | |
4221 | lck_mtx_unlock(&rap->cl_lockr); | |
4222 | } else { | |
4223 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
2d21ac55 | 4224 | (int)uio->uio_offset, io_req_size, 0, retval, 0); |
1c79356b A |
4225 | } |
4226 | ||
4227 | return (retval); | |
4228 | } | |
4229 | ||
3e170ce0 A |
4230 | /* |
4231 | * We don't want another read/write lock for every vnode in the system | |
4232 | * so we keep a hash of them here. There should never be very many of | |
4233 | * these around at any point in time. | |
4234 | */ | |
4235 | cl_direct_read_lock_t *cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type) | |
4236 | { | |
4237 | struct cl_direct_read_locks *head | |
4238 | = &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp) | |
4239 | % CL_DIRECT_READ_LOCK_BUCKETS]; | |
4240 | ||
4241 | struct cl_direct_read_lock *lck, *new_lck = NULL; | |
4242 | ||
4243 | for (;;) { | |
4244 | lck_spin_lock(&cl_direct_read_spin_lock); | |
4245 | ||
4246 | LIST_FOREACH(lck, head, chain) { | |
4247 | if (lck->vp == vp) { | |
4248 | ++lck->ref_count; | |
4249 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4250 | if (new_lck) { | |
4251 | // Someone beat us to it, ditch the allocation | |
4252 | lck_rw_destroy(&new_lck->rw_lock, cl_mtx_grp); | |
4253 | FREE(new_lck, M_TEMP); | |
4254 | } | |
4255 | lck_rw_lock(&lck->rw_lock, type); | |
4256 | return lck; | |
4257 | } | |
4258 | } | |
4259 | ||
4260 | if (new_lck) { | |
4261 | // Use the lock we allocated | |
4262 | LIST_INSERT_HEAD(head, new_lck, chain); | |
4263 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4264 | lck_rw_lock(&new_lck->rw_lock, type); | |
4265 | return new_lck; | |
4266 | } | |
4267 | ||
4268 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4269 | ||
4270 | // Allocate a new lock | |
4271 | MALLOC(new_lck, cl_direct_read_lock_t *, sizeof(*new_lck), | |
4272 | M_TEMP, M_WAITOK); | |
4273 | lck_rw_init(&new_lck->rw_lock, cl_mtx_grp, cl_mtx_attr); | |
4274 | new_lck->vp = vp; | |
4275 | new_lck->ref_count = 1; | |
4276 | ||
4277 | // Got to go round again | |
4278 | } | |
4279 | } | |
4280 | ||
4281 | void cluster_unlock_direct_read(cl_direct_read_lock_t *lck) | |
4282 | { | |
4283 | lck_rw_done(&lck->rw_lock); | |
4284 | ||
4285 | lck_spin_lock(&cl_direct_read_spin_lock); | |
4286 | if (lck->ref_count == 1) { | |
4287 | LIST_REMOVE(lck, chain); | |
4288 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4289 | lck_rw_destroy(&lck->rw_lock, cl_mtx_grp); | |
4290 | FREE(lck, M_TEMP); | |
4291 | } else { | |
4292 | --lck->ref_count; | |
4293 | lck_spin_unlock(&cl_direct_read_spin_lock); | |
4294 | } | |
4295 | } | |
4296 | ||
9bccf70c | 4297 | static int |
2d21ac55 A |
4298 | cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
4299 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
4300 | { |
4301 | upl_t upl; | |
4302 | upl_page_info_t *pl; | |
2d21ac55 | 4303 | off_t max_io_size; |
b0d623f7 A |
4304 | vm_offset_t upl_offset, vector_upl_offset = 0; |
4305 | upl_size_t upl_size, vector_upl_size = 0; | |
2d21ac55 A |
4306 | vm_size_t upl_needed_size; |
4307 | unsigned int pages_in_pl; | |
3e170ce0 | 4308 | upl_control_flags_t upl_flags; |
1c79356b | 4309 | kern_return_t kret; |
2d21ac55 | 4310 | unsigned int i; |
1c79356b | 4311 | int force_data_sync; |
1c79356b | 4312 | int retval = 0; |
91447636 | 4313 | int no_zero_fill = 0; |
2d21ac55 A |
4314 | int io_flag = 0; |
4315 | int misaligned = 0; | |
d7e50217 | 4316 | struct clios iostate; |
2d21ac55 A |
4317 | user_addr_t iov_base; |
4318 | u_int32_t io_req_size; | |
4319 | u_int32_t offset_in_file; | |
4320 | u_int32_t offset_in_iovbase; | |
4321 | u_int32_t io_size; | |
4322 | u_int32_t io_min; | |
4323 | u_int32_t xsize; | |
4324 | u_int32_t devblocksize; | |
4325 | u_int32_t mem_alignment_mask; | |
b0d623f7 A |
4326 | u_int32_t max_upl_size; |
4327 | u_int32_t max_rd_size; | |
4328 | u_int32_t max_rd_ahead; | |
316670eb | 4329 | u_int32_t max_vector_size; |
6d2010ae | 4330 | boolean_t strict_uncached_IO = FALSE; |
316670eb | 4331 | boolean_t io_throttled = FALSE; |
cf7d32b8 | 4332 | |
b0d623f7 A |
4333 | u_int32_t vector_upl_iosize = 0; |
4334 | int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); | |
4335 | off_t v_upl_uio_offset = 0; | |
4336 | int vector_upl_index=0; | |
4337 | upl_t vector_upl = NULL; | |
3e170ce0 | 4338 | cl_direct_read_lock_t *lock = NULL; |
cf7d32b8 | 4339 | |
fe8ab488 A |
4340 | user_addr_t orig_iov_base = 0; |
4341 | user_addr_t last_iov_base = 0; | |
4342 | user_addr_t next_iov_base = 0; | |
4343 | ||
b0d623f7 A |
4344 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, |
4345 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
cf7d32b8 | 4346 | |
b0d623f7 | 4347 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ); |
2d21ac55 | 4348 | |
b0d623f7 A |
4349 | max_rd_size = max_upl_size; |
4350 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); | |
1c79356b | 4351 | |
b0d623f7 | 4352 | io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO; |
6d2010ae | 4353 | |
b0d623f7 A |
4354 | if (flags & IO_PASSIVE) |
4355 | io_flag |= CL_PASSIVE; | |
1c79356b | 4356 | |
316670eb A |
4357 | if (flags & IO_ENCRYPTED) { |
4358 | io_flag |= CL_RAW_ENCRYPTED; | |
4359 | } | |
4360 | ||
4361 | if (flags & IO_NOCACHE) { | |
4362 | io_flag |= CL_NOCACHE; | |
4363 | } | |
4364 | ||
fe8ab488 A |
4365 | if (flags & IO_SKIP_ENCRYPTION) |
4366 | io_flag |= CL_ENCRYPTED; | |
4367 | ||
d7e50217 A |
4368 | iostate.io_completed = 0; |
4369 | iostate.io_issued = 0; | |
4370 | iostate.io_error = 0; | |
4371 | iostate.io_wanted = 0; | |
4372 | ||
6d2010ae A |
4373 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
4374 | ||
2d21ac55 A |
4375 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
4376 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
4377 | ||
4378 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
4379 | (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0); | |
4380 | ||
4381 | if (devblocksize == 1) { | |
4382 | /* | |
4383 | * the AFP client advertises a devblocksize of 1 | |
4384 | * however, its BLOCKMAP routine maps to physical | |
4385 | * blocks that are PAGE_SIZE in size... | |
4386 | * therefore we can't ask for I/Os that aren't page aligned | |
4387 | * or aren't multiples of PAGE_SIZE in size | |
4388 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
4389 | * the old behavior we had before the mem_alignment_mask | |
4390 | * changes went in... | |
4391 | */ | |
4392 | devblocksize = PAGE_SIZE; | |
4393 | } | |
6d2010ae A |
4394 | |
4395 | strict_uncached_IO = ubc_strict_uncached_IO(vp); | |
4396 | ||
fe8ab488 A |
4397 | orig_iov_base = uio_curriovbase(uio); |
4398 | last_iov_base = orig_iov_base; | |
4399 | ||
2d21ac55 A |
4400 | next_dread: |
4401 | io_req_size = *read_length; | |
4402 | iov_base = uio_curriovbase(uio); | |
4403 | ||
2d21ac55 A |
4404 | offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1); |
4405 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
4406 | ||
4407 | if (offset_in_file || offset_in_iovbase) { | |
4408 | /* | |
4409 | * one of the 2 important offsets is misaligned | |
4410 | * so fire an I/O through the cache for this entire vector | |
4411 | */ | |
4412 | misaligned = 1; | |
4413 | } | |
4414 | if (iov_base & (devblocksize - 1)) { | |
4415 | /* | |
4416 | * the offset in memory must be on a device block boundary | |
4417 | * so that we can guarantee that we can generate an | |
4418 | * I/O that ends on a page boundary in cluster_io | |
4419 | */ | |
4420 | misaligned = 1; | |
316670eb A |
4421 | } |
4422 | ||
39037602 A |
4423 | max_io_size = filesize - uio->uio_offset; |
4424 | ||
316670eb A |
4425 | /* |
4426 | * The user must request IO in aligned chunks. If the | |
4427 | * offset into the file is bad, or the userland pointer | |
4428 | * is non-aligned, then we cannot service the encrypted IO request. | |
4429 | */ | |
39037602 A |
4430 | if (flags & IO_ENCRYPTED) { |
4431 | if (misaligned || (io_req_size & (devblocksize - 1))) | |
4432 | retval = EINVAL; | |
4433 | ||
4434 | max_io_size = roundup(max_io_size, devblocksize); | |
316670eb A |
4435 | } |
4436 | ||
39037602 A |
4437 | if ((off_t)io_req_size > max_io_size) |
4438 | io_req_size = max_io_size; | |
4439 | ||
2d21ac55 A |
4440 | /* |
4441 | * When we get to this point, we know... | |
4442 | * -- the offset into the file is on a devblocksize boundary | |
4443 | */ | |
4444 | ||
4445 | while (io_req_size && retval == 0) { | |
4446 | u_int32_t io_start; | |
1c79356b | 4447 | |
39236c6e | 4448 | if (cluster_is_throttled(vp)) { |
316670eb A |
4449 | /* |
4450 | * we're in the throttle window, at the very least | |
4451 | * we want to limit the size of the I/O we're about | |
4452 | * to issue | |
4453 | */ | |
4454 | max_rd_size = THROTTLE_MAX_IOSIZE; | |
4455 | max_rd_ahead = THROTTLE_MAX_IOSIZE - 1; | |
4456 | max_vector_size = THROTTLE_MAX_IOSIZE; | |
91447636 | 4457 | } else { |
cf7d32b8 | 4458 | max_rd_size = max_upl_size; |
b0d623f7 | 4459 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); |
316670eb | 4460 | max_vector_size = MAX_VECTOR_UPL_SIZE; |
91447636 | 4461 | } |
2d21ac55 | 4462 | io_start = io_size = io_req_size; |
1c79356b | 4463 | |
d7e50217 A |
4464 | /* |
4465 | * First look for pages already in the cache | |
316670eb A |
4466 | * and move them to user space. But only do this |
4467 | * check if we are not retrieving encrypted data directly | |
4468 | * from the filesystem; those blocks should never | |
4469 | * be in the UBC. | |
2d21ac55 A |
4470 | * |
4471 | * cluster_copy_ubc_data returns the resid | |
4472 | * in io_size | |
d7e50217 | 4473 | */ |
316670eb | 4474 | if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) { |
6d2010ae A |
4475 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0); |
4476 | } | |
2d21ac55 A |
4477 | /* |
4478 | * calculate the number of bytes actually copied | |
4479 | * starting size - residual | |
4480 | */ | |
4481 | xsize = io_start - io_size; | |
4482 | ||
4483 | io_req_size -= xsize; | |
4484 | ||
b0d623f7 A |
4485 | if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) { |
4486 | /* | |
4487 | * We found something in the cache or we have an iov_base that's not | |
4488 | * page-aligned. | |
4489 | * | |
4490 | * Issue all I/O's that have been collected within this Vectored UPL. | |
4491 | */ | |
4492 | if(vector_upl_index) { | |
4493 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4494 | reset_vector_run_state(); | |
4495 | } | |
4496 | ||
4497 | if(xsize) | |
4498 | useVectorUPL = 0; | |
4499 | ||
4500 | /* | |
4501 | * After this point, if we are using the Vector UPL path and the base is | |
4502 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
4503 | */ | |
4504 | } | |
4505 | ||
2d21ac55 | 4506 | /* |
316670eb A |
4507 | * check to see if we are finished with this request. |
4508 | * | |
4509 | * If we satisfied this IO already, then io_req_size will be 0. | |
4510 | * Otherwise, see if the IO was mis-aligned and needs to go through | |
4511 | * the UBC to deal with the 'tail'. | |
4512 | * | |
2d21ac55 | 4513 | */ |
316670eb | 4514 | if (io_req_size == 0 || (misaligned)) { |
2d21ac55 A |
4515 | /* |
4516 | * see if there's another uio vector to | |
4517 | * process that's of type IO_DIRECT | |
4518 | * | |
4519 | * break out of while loop to get there | |
d7e50217 | 4520 | */ |
2d21ac55 | 4521 | break; |
0b4e3aa0 | 4522 | } |
d7e50217 | 4523 | /* |
2d21ac55 | 4524 | * assume the request ends on a device block boundary |
d7e50217 | 4525 | */ |
2d21ac55 A |
4526 | io_min = devblocksize; |
4527 | ||
4528 | /* | |
4529 | * we can handle I/O's in multiples of the device block size | |
4530 | * however, if io_size isn't a multiple of devblocksize we | |
4531 | * want to clip it back to the nearest page boundary since | |
4532 | * we are going to have to go through cluster_read_copy to | |
4533 | * deal with the 'overhang'... by clipping it to a PAGE_SIZE | |
4534 | * multiple, we avoid asking the drive for the same physical | |
4535 | * blocks twice.. once for the partial page at the end of the | |
4536 | * request and a 2nd time for the page we read into the cache | |
4537 | * (which overlaps the end of the direct read) in order to | |
4538 | * get at the overhang bytes | |
4539 | */ | |
39037602 A |
4540 | if (io_size & (devblocksize - 1)) { |
4541 | assert(!(flags & IO_ENCRYPTED)); | |
4542 | /* | |
4543 | * Clip the request to the previous page size boundary | |
4544 | * since request does NOT end on a device block boundary | |
4545 | */ | |
4546 | io_size &= ~PAGE_MASK; | |
4547 | io_min = PAGE_SIZE; | |
2d21ac55 A |
4548 | } |
4549 | if (retval || io_size < io_min) { | |
4550 | /* | |
4551 | * either an error or we only have the tail left to | |
4552 | * complete via the copy path... | |
d7e50217 A |
4553 | * we may have already spun some portion of this request |
4554 | * off as async requests... we need to wait for the I/O | |
4555 | * to complete before returning | |
4556 | */ | |
2d21ac55 | 4557 | goto wait_for_dreads; |
d7e50217 | 4558 | } |
55e303ae | 4559 | |
3e170ce0 | 4560 | /* |
316670eb A |
4561 | * Don't re-check the UBC data if we are looking for uncached IO |
4562 | * or asking for encrypted blocks. | |
4563 | */ | |
4564 | if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) { | |
1c79356b | 4565 | |
6d2010ae | 4566 | if ((xsize = io_size) > max_rd_size) |
316670eb | 4567 | xsize = max_rd_size; |
55e303ae | 4568 | |
6d2010ae A |
4569 | io_size = 0; |
4570 | ||
3e170ce0 A |
4571 | if (!lock) { |
4572 | /* | |
4573 | * We hold a lock here between the time we check the | |
4574 | * cache and the time we issue I/O. This saves us | |
4575 | * from having to lock the pages in the cache. Not | |
4576 | * all clients will care about this lock but some | |
4577 | * clients may want to guarantee stability between | |
4578 | * here and when the I/O is issued in which case they | |
4579 | * will take the lock exclusively. | |
4580 | */ | |
4581 | lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED); | |
4582 | } | |
4583 | ||
6d2010ae A |
4584 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size); |
4585 | ||
4586 | if (io_size == 0) { | |
4587 | /* | |
4588 | * a page must have just come into the cache | |
4589 | * since the first page in this range is no | |
4590 | * longer absent, go back and re-evaluate | |
4591 | */ | |
4592 | continue; | |
4593 | } | |
2d21ac55 | 4594 | } |
316670eb | 4595 | if ( (flags & IO_RETURN_ON_THROTTLE) ) { |
39236c6e | 4596 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { |
316670eb A |
4597 | if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) { |
4598 | /* | |
4599 | * we're in the throttle window and at least 1 I/O | |
4600 | * has already been issued by a throttleable thread | |
4601 | * in this window, so return with EAGAIN to indicate | |
4602 | * to the FS issuing the cluster_read call that it | |
4603 | * should now throttle after dropping any locks | |
4604 | */ | |
4605 | throttle_info_update_by_mount(vp->v_mount); | |
4606 | ||
4607 | io_throttled = TRUE; | |
4608 | goto wait_for_dreads; | |
4609 | } | |
4610 | } | |
4611 | } | |
4612 | if (io_size > max_rd_size) | |
4613 | io_size = max_rd_size; | |
6d2010ae | 4614 | |
cc9f6e38 | 4615 | iov_base = uio_curriovbase(uio); |
1c79356b | 4616 | |
2d21ac55 | 4617 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
d7e50217 | 4618 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; |
1c79356b | 4619 | |
d7e50217 | 4620 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, |
cc9f6e38 | 4621 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
1c79356b | 4622 | |
0b4c1975 | 4623 | if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) |
91447636 | 4624 | no_zero_fill = 1; |
0b4c1975 | 4625 | else |
91447636 | 4626 | no_zero_fill = 0; |
0b4c1975 | 4627 | |
3e170ce0 | 4628 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
d7e50217 A |
4629 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { |
4630 | pages_in_pl = 0; | |
4631 | upl_size = upl_needed_size; | |
3e170ce0 A |
4632 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE |
4633 | | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE); | |
91447636 A |
4634 | if (no_zero_fill) |
4635 | upl_flags |= UPL_NOZEROFILL; | |
4636 | if (force_data_sync) | |
4637 | upl_flags |= UPL_FORCE_DATA_SYNC; | |
4638 | ||
3e170ce0 | 4639 | kret = vm_map_create_upl(map, |
cc9f6e38 | 4640 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
91447636 | 4641 | &upl_size, &upl, NULL, &pages_in_pl, &upl_flags); |
1c79356b | 4642 | |
d7e50217 A |
4643 | if (kret != KERN_SUCCESS) { |
4644 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4645 | (int)upl_offset, upl_size, io_size, kret, 0); | |
d7e50217 | 4646 | /* |
2d21ac55 | 4647 | * failed to get pagelist |
d7e50217 A |
4648 | * |
4649 | * we may have already spun some portion of this request | |
4650 | * off as async requests... we need to wait for the I/O | |
4651 | * to complete before returning | |
4652 | */ | |
2d21ac55 | 4653 | goto wait_for_dreads; |
d7e50217 A |
4654 | } |
4655 | pages_in_pl = upl_size / PAGE_SIZE; | |
4656 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
1c79356b | 4657 | |
d7e50217 | 4658 | for (i = 0; i < pages_in_pl; i++) { |
0b4c1975 | 4659 | if (!upl_page_present(pl, i)) |
d7e50217 A |
4660 | break; |
4661 | } | |
4662 | if (i == pages_in_pl) | |
4663 | break; | |
0b4e3aa0 | 4664 | |
0b4c1975 | 4665 | ubc_upl_abort(upl, 0); |
1c79356b | 4666 | } |
d7e50217 A |
4667 | if (force_data_sync >= 3) { |
4668 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4669 | (int)upl_offset, upl_size, io_size, kret, 0); | |
1c79356b | 4670 | |
2d21ac55 | 4671 | goto wait_for_dreads; |
d7e50217 A |
4672 | } |
4673 | /* | |
4674 | * Consider the possibility that upl_size wasn't satisfied. | |
4675 | */ | |
2d21ac55 A |
4676 | if (upl_size < upl_needed_size) { |
4677 | if (upl_size && upl_offset == 0) | |
4678 | io_size = upl_size; | |
4679 | else | |
4680 | io_size = 0; | |
4681 | } | |
d7e50217 | 4682 | if (io_size == 0) { |
0b4c1975 | 4683 | ubc_upl_abort(upl, 0); |
2d21ac55 | 4684 | goto wait_for_dreads; |
d7e50217 A |
4685 | } |
4686 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4687 | (int)upl_offset, upl_size, io_size, kret, 0); | |
1c79356b | 4688 | |
b0d623f7 A |
4689 | if(useVectorUPL) { |
4690 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
4691 | if(end_off) | |
4692 | issueVectorUPL = 1; | |
4693 | /* | |
4694 | * After this point, if we are using a vector UPL, then | |
4695 | * either all the UPL elements end on a page boundary OR | |
4696 | * this UPL is the last element because it does not end | |
4697 | * on a page boundary. | |
4698 | */ | |
4699 | } | |
4700 | ||
d7e50217 A |
4701 | /* |
4702 | * request asynchronously so that we can overlap | |
4703 | * the preparation of the next I/O | |
4704 | * if there are already too many outstanding reads | |
4705 | * wait until some have completed before issuing the next read | |
4706 | */ | |
fe8ab488 | 4707 | cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct"); |
91447636 | 4708 | |
d7e50217 A |
4709 | if (iostate.io_error) { |
4710 | /* | |
4711 | * one of the earlier reads we issued ran into a hard error | |
4712 | * don't issue any more reads, cleanup the UPL | |
4713 | * that was just created but not used, then | |
4714 | * go wait for any other reads to complete before | |
4715 | * returning the error to the caller | |
4716 | */ | |
0b4c1975 | 4717 | ubc_upl_abort(upl, 0); |
1c79356b | 4718 | |
2d21ac55 | 4719 | goto wait_for_dreads; |
d7e50217 A |
4720 | } |
4721 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, | |
b0d623f7 | 4722 | upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); |
1c79356b | 4723 | |
b0d623f7 A |
4724 | if(!useVectorUPL) { |
4725 | if (no_zero_fill) | |
4726 | io_flag &= ~CL_PRESERVE; | |
4727 | else | |
4728 | io_flag |= CL_PRESERVE; | |
4729 | ||
4730 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4731 | ||
4732 | } else { | |
1c79356b | 4733 | |
b0d623f7 A |
4734 | if(!vector_upl_index) { |
4735 | vector_upl = vector_upl_create(upl_offset); | |
4736 | v_upl_uio_offset = uio->uio_offset; | |
4737 | vector_upl_offset = upl_offset; | |
4738 | } | |
4739 | ||
4740 | vector_upl_set_subupl(vector_upl,upl, upl_size); | |
4741 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
4742 | vector_upl_index++; | |
4743 | vector_upl_size += upl_size; | |
4744 | vector_upl_iosize += io_size; | |
4745 | ||
316670eb | 4746 | if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) { |
b0d623f7 A |
4747 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
4748 | reset_vector_run_state(); | |
4749 | } | |
fe8ab488 A |
4750 | } |
4751 | last_iov_base = iov_base + io_size; | |
4752 | ||
3e170ce0 A |
4753 | if (lock) { |
4754 | // We don't need to wait for the I/O to complete | |
4755 | cluster_unlock_direct_read(lock); | |
4756 | lock = NULL; | |
4757 | } | |
4758 | ||
d7e50217 A |
4759 | /* |
4760 | * update the uio structure | |
4761 | */ | |
316670eb A |
4762 | if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) { |
4763 | uio_update(uio, (user_size_t)max_io_size); | |
4764 | } | |
4765 | else { | |
4766 | uio_update(uio, (user_size_t)io_size); | |
4767 | } | |
39037602 A |
4768 | |
4769 | io_req_size -= io_size; | |
2d21ac55 | 4770 | |
d7e50217 | 4771 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, |
b0d623f7 | 4772 | upl, (int)uio->uio_offset, io_req_size, retval, 0); |
1c79356b A |
4773 | |
4774 | } /* end while */ | |
4775 | ||
2d21ac55 | 4776 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) { |
91447636 | 4777 | |
2d21ac55 A |
4778 | retval = cluster_io_type(uio, read_type, read_length, 0); |
4779 | ||
4780 | if (retval == 0 && *read_type == IO_DIRECT) { | |
4781 | ||
4782 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
4783 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
4784 | ||
4785 | goto next_dread; | |
4786 | } | |
4787 | } | |
4788 | ||
4789 | wait_for_dreads: | |
b0d623f7 A |
4790 | |
4791 | if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { | |
4792 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4793 | reset_vector_run_state(); | |
4794 | } | |
3e170ce0 A |
4795 | |
4796 | // We don't need to wait for the I/O to complete | |
4797 | if (lock) | |
4798 | cluster_unlock_direct_read(lock); | |
4799 | ||
b0d623f7 A |
4800 | /* |
4801 | * make sure all async reads that are part of this stream | |
4802 | * have completed before we return | |
4803 | */ | |
fe8ab488 | 4804 | cluster_iostate_wait(&iostate, 0, "cluster_read_direct"); |
b0d623f7 | 4805 | |
d7e50217 | 4806 | if (iostate.io_error) |
2d21ac55 A |
4807 | retval = iostate.io_error; |
4808 | ||
6d2010ae A |
4809 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
4810 | ||
316670eb A |
4811 | if (io_throttled == TRUE && retval == 0) |
4812 | retval = EAGAIN; | |
4813 | ||
fe8ab488 A |
4814 | for (next_iov_base = orig_iov_base; next_iov_base < last_iov_base; next_iov_base += PAGE_SIZE) { |
4815 | /* | |
4816 | * This is specifically done for pmap accounting purposes. | |
4817 | * vm_pre_fault() will call vm_fault() to enter the page into | |
4818 | * the pmap if there isn't _a_ physical page for that VA already. | |
4819 | */ | |
4820 | vm_pre_fault(vm_map_trunc_page(next_iov_base, PAGE_MASK)); | |
4821 | } | |
4822 | ||
2d21ac55 A |
4823 | if (io_req_size && retval == 0) { |
4824 | /* | |
4825 | * we couldn't handle the tail of this request in DIRECT mode | |
4826 | * so fire it through the copy path | |
4827 | */ | |
4828 | retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg); | |
1c79356b | 4829 | |
2d21ac55 A |
4830 | *read_type = IO_UNKNOWN; |
4831 | } | |
1c79356b | 4832 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, |
2d21ac55 | 4833 | (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0); |
1c79356b A |
4834 | |
4835 | return (retval); | |
4836 | } | |
4837 | ||
4838 | ||
9bccf70c | 4839 | static int |
2d21ac55 A |
4840 | cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
4841 | int (*callback)(buf_t, void *), void *callback_arg, int flags) | |
0b4e3aa0 | 4842 | { |
b4c24cb9 | 4843 | upl_page_info_t *pl; |
2d21ac55 | 4844 | upl_t upl[MAX_VECTS]; |
0b4e3aa0 | 4845 | vm_offset_t upl_offset; |
2d21ac55 | 4846 | addr64_t dst_paddr = 0; |
cc9f6e38 | 4847 | user_addr_t iov_base; |
2d21ac55 | 4848 | off_t max_size; |
b0d623f7 | 4849 | upl_size_t upl_size; |
2d21ac55 A |
4850 | vm_size_t upl_needed_size; |
4851 | mach_msg_type_number_t pages_in_pl; | |
3e170ce0 | 4852 | upl_control_flags_t upl_flags; |
0b4e3aa0 | 4853 | kern_return_t kret; |
b4c24cb9 | 4854 | struct clios iostate; |
2d21ac55 A |
4855 | int error= 0; |
4856 | int cur_upl = 0; | |
4857 | int num_upl = 0; | |
4858 | int n; | |
4859 | u_int32_t xsize; | |
4860 | u_int32_t io_size; | |
4861 | u_int32_t devblocksize; | |
4862 | u_int32_t mem_alignment_mask; | |
4863 | u_int32_t tail_size = 0; | |
4864 | int bflag; | |
4865 | ||
4866 | if (flags & IO_PASSIVE) | |
b0d623f7 | 4867 | bflag = CL_PASSIVE; |
2d21ac55 | 4868 | else |
b0d623f7 | 4869 | bflag = 0; |
316670eb A |
4870 | |
4871 | if (flags & IO_NOCACHE) | |
4872 | bflag |= CL_NOCACHE; | |
4873 | ||
0b4e3aa0 A |
4874 | /* |
4875 | * When we enter this routine, we know | |
2d21ac55 A |
4876 | * -- the read_length will not exceed the current iov_len |
4877 | * -- the target address is physically contiguous for read_length | |
0b4e3aa0 | 4878 | */ |
fe8ab488 | 4879 | cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC); |
0b4e3aa0 | 4880 | |
2d21ac55 A |
4881 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
4882 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
91447636 | 4883 | |
2d21ac55 A |
4884 | iostate.io_completed = 0; |
4885 | iostate.io_issued = 0; | |
4886 | iostate.io_error = 0; | |
4887 | iostate.io_wanted = 0; | |
4888 | ||
6d2010ae A |
4889 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
4890 | ||
2d21ac55 A |
4891 | next_cread: |
4892 | io_size = *read_length; | |
0b4e3aa0 A |
4893 | |
4894 | max_size = filesize - uio->uio_offset; | |
4895 | ||
2d21ac55 | 4896 | if (io_size > max_size) |
b4c24cb9 | 4897 | io_size = max_size; |
0b4e3aa0 | 4898 | |
2d21ac55 A |
4899 | iov_base = uio_curriovbase(uio); |
4900 | ||
4901 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
0b4e3aa0 A |
4902 | upl_needed_size = upl_offset + io_size; |
4903 | ||
4904 | pages_in_pl = 0; | |
4905 | upl_size = upl_needed_size; | |
3e170ce0 A |
4906 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE |
4907 | | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE); | |
0b4e3aa0 | 4908 | |
2d21ac55 A |
4909 | |
4910 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START, | |
4911 | (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0); | |
4912 | ||
3e170ce0 A |
4913 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
4914 | kret = vm_map_get_upl(map, | |
cc9f6e38 | 4915 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
2d21ac55 A |
4916 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0); |
4917 | ||
4918 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END, | |
4919 | (int)upl_offset, upl_size, io_size, kret, 0); | |
0b4e3aa0 | 4920 | |
b4c24cb9 A |
4921 | if (kret != KERN_SUCCESS) { |
4922 | /* | |
2d21ac55 | 4923 | * failed to get pagelist |
b4c24cb9 | 4924 | */ |
2d21ac55 A |
4925 | error = EINVAL; |
4926 | goto wait_for_creads; | |
b4c24cb9 | 4927 | } |
2d21ac55 A |
4928 | num_upl++; |
4929 | ||
b4c24cb9 A |
4930 | if (upl_size < upl_needed_size) { |
4931 | /* | |
4932 | * The upl_size wasn't satisfied. | |
4933 | */ | |
2d21ac55 A |
4934 | error = EINVAL; |
4935 | goto wait_for_creads; | |
b4c24cb9 | 4936 | } |
2d21ac55 | 4937 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
b4c24cb9 | 4938 | |
fe8ab488 | 4939 | dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset; |
0b4e3aa0 | 4940 | |
b4c24cb9 | 4941 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
2d21ac55 | 4942 | u_int32_t head_size; |
b4c24cb9 | 4943 | |
2d21ac55 | 4944 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
b4c24cb9 A |
4945 | |
4946 | if (head_size > io_size) | |
4947 | head_size = io_size; | |
4948 | ||
2d21ac55 | 4949 | error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg); |
b4c24cb9 | 4950 | |
2d21ac55 A |
4951 | if (error) |
4952 | goto wait_for_creads; | |
b4c24cb9 | 4953 | |
b4c24cb9 A |
4954 | upl_offset += head_size; |
4955 | dst_paddr += head_size; | |
4956 | io_size -= head_size; | |
2d21ac55 A |
4957 | |
4958 | iov_base += head_size; | |
4959 | } | |
4960 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
4961 | /* | |
4962 | * request doesn't set up on a memory boundary | |
4963 | * the underlying DMA engine can handle... | |
4964 | * return an error instead of going through | |
4965 | * the slow copy path since the intent of this | |
4966 | * path is direct I/O to device memory | |
4967 | */ | |
4968 | error = EINVAL; | |
4969 | goto wait_for_creads; | |
b4c24cb9 | 4970 | } |
2d21ac55 | 4971 | |
b4c24cb9 | 4972 | tail_size = io_size & (devblocksize - 1); |
b4c24cb9 | 4973 | |
2d21ac55 | 4974 | io_size -= tail_size; |
b4c24cb9 A |
4975 | |
4976 | while (io_size && error == 0) { | |
b4c24cb9 | 4977 | |
2d21ac55 A |
4978 | if (io_size > MAX_IO_CONTIG_SIZE) |
4979 | xsize = MAX_IO_CONTIG_SIZE; | |
b4c24cb9 A |
4980 | else |
4981 | xsize = io_size; | |
4982 | /* | |
4983 | * request asynchronously so that we can overlap | |
4984 | * the preparation of the next I/O... we'll do | |
4985 | * the commit after all the I/O has completed | |
4986 | * since its all issued against the same UPL | |
4987 | * if there are already too many outstanding reads | |
d7e50217 | 4988 | * wait until some have completed before issuing the next |
b4c24cb9 | 4989 | */ |
fe8ab488 | 4990 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig"); |
cf7d32b8 | 4991 | |
2d21ac55 A |
4992 | if (iostate.io_error) { |
4993 | /* | |
4994 | * one of the earlier reads we issued ran into a hard error | |
4995 | * don't issue any more reads... | |
4996 | * go wait for any other reads to complete before | |
4997 | * returning the error to the caller | |
4998 | */ | |
4999 | goto wait_for_creads; | |
5000 | } | |
5001 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize, | |
5002 | CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag, | |
5003 | (buf_t)NULL, &iostate, callback, callback_arg); | |
b4c24cb9 A |
5004 | /* |
5005 | * The cluster_io read was issued successfully, | |
5006 | * update the uio structure | |
5007 | */ | |
5008 | if (error == 0) { | |
cc9f6e38 A |
5009 | uio_update(uio, (user_size_t)xsize); |
5010 | ||
5011 | dst_paddr += xsize; | |
5012 | upl_offset += xsize; | |
5013 | io_size -= xsize; | |
b4c24cb9 A |
5014 | } |
5015 | } | |
2d21ac55 A |
5016 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) { |
5017 | ||
5018 | error = cluster_io_type(uio, read_type, read_length, 0); | |
5019 | ||
5020 | if (error == 0 && *read_type == IO_CONTIG) { | |
5021 | cur_upl++; | |
5022 | goto next_cread; | |
5023 | } | |
5024 | } else | |
5025 | *read_type = IO_UNKNOWN; | |
5026 | ||
5027 | wait_for_creads: | |
0b4e3aa0 | 5028 | /* |
d7e50217 A |
5029 | * make sure all async reads that are part of this stream |
5030 | * have completed before we proceed | |
0b4e3aa0 | 5031 | */ |
fe8ab488 | 5032 | cluster_iostate_wait(&iostate, 0, "cluster_read_contig"); |
91447636 A |
5033 | |
5034 | if (iostate.io_error) | |
b4c24cb9 | 5035 | error = iostate.io_error; |
91447636 | 5036 | |
6d2010ae A |
5037 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
5038 | ||
b4c24cb9 | 5039 | if (error == 0 && tail_size) |
2d21ac55 | 5040 | error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg); |
0b4e3aa0 | 5041 | |
2d21ac55 A |
5042 | for (n = 0; n < num_upl; n++) |
5043 | /* | |
5044 | * just release our hold on each physically contiguous | |
5045 | * region without changing any state | |
5046 | */ | |
5047 | ubc_upl_abort(upl[n], 0); | |
0b4e3aa0 A |
5048 | |
5049 | return (error); | |
5050 | } | |
1c79356b | 5051 | |
b4c24cb9 | 5052 | |
2d21ac55 A |
5053 | static int |
5054 | cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length) | |
5055 | { | |
5056 | user_size_t iov_len; | |
5057 | user_addr_t iov_base = 0; | |
5058 | upl_t upl; | |
b0d623f7 | 5059 | upl_size_t upl_size; |
3e170ce0 | 5060 | upl_control_flags_t upl_flags; |
2d21ac55 A |
5061 | int retval = 0; |
5062 | ||
5063 | /* | |
5064 | * skip over any emtpy vectors | |
5065 | */ | |
5066 | uio_update(uio, (user_size_t)0); | |
5067 | ||
5068 | iov_len = uio_curriovlen(uio); | |
5069 | ||
b0d623f7 | 5070 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0); |
2d21ac55 A |
5071 | |
5072 | if (iov_len) { | |
5073 | iov_base = uio_curriovbase(uio); | |
5074 | /* | |
5075 | * make sure the size of the vector isn't too big... | |
5076 | * internally, we want to handle all of the I/O in | |
5077 | * chunk sizes that fit in a 32 bit int | |
5078 | */ | |
5079 | if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE) | |
5080 | upl_size = MAX_IO_REQUEST_SIZE; | |
5081 | else | |
5082 | upl_size = (u_int32_t)iov_len; | |
5083 | ||
3e170ce0 A |
5084 | upl_flags = UPL_QUERY_OBJECT_TYPE | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE); |
5085 | ||
5086 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; | |
5087 | if ((vm_map_get_upl(map, | |
2d21ac55 A |
5088 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
5089 | &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) { | |
5090 | /* | |
5091 | * the user app must have passed in an invalid address | |
5092 | */ | |
5093 | retval = EFAULT; | |
5094 | } | |
5095 | if (upl_size == 0) | |
5096 | retval = EFAULT; | |
5097 | ||
5098 | *io_length = upl_size; | |
5099 | ||
5100 | if (upl_flags & UPL_PHYS_CONTIG) | |
5101 | *io_type = IO_CONTIG; | |
5102 | else if (iov_len >= min_length) | |
5103 | *io_type = IO_DIRECT; | |
5104 | else | |
5105 | *io_type = IO_COPY; | |
5106 | } else { | |
5107 | /* | |
5108 | * nothing left to do for this uio | |
5109 | */ | |
5110 | *io_length = 0; | |
5111 | *io_type = IO_UNKNOWN; | |
5112 | } | |
b0d623f7 | 5113 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0); |
2d21ac55 A |
5114 | |
5115 | return (retval); | |
5116 | } | |
5117 | ||
5118 | ||
1c79356b A |
5119 | /* |
5120 | * generate advisory I/O's in the largest chunks possible | |
5121 | * the completed pages will be released into the VM cache | |
5122 | */ | |
9bccf70c | 5123 | int |
91447636 | 5124 | advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) |
2d21ac55 A |
5125 | { |
5126 | return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE); | |
5127 | } | |
5128 | ||
5129 | int | |
5130 | advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
1c79356b | 5131 | { |
1c79356b A |
5132 | upl_page_info_t *pl; |
5133 | upl_t upl; | |
5134 | vm_offset_t upl_offset; | |
b0d623f7 | 5135 | int upl_size; |
1c79356b A |
5136 | off_t upl_f_offset; |
5137 | int start_offset; | |
5138 | int start_pg; | |
5139 | int last_pg; | |
5140 | int pages_in_upl; | |
5141 | off_t max_size; | |
5142 | int io_size; | |
5143 | kern_return_t kret; | |
5144 | int retval = 0; | |
9bccf70c | 5145 | int issued_io; |
55e303ae | 5146 | int skip_range; |
b0d623f7 A |
5147 | uint32_t max_io_size; |
5148 | ||
5149 | ||
91447636 | 5150 | if ( !UBCINFOEXISTS(vp)) |
1c79356b A |
5151 | return(EINVAL); |
5152 | ||
ca66cea6 A |
5153 | if (resid < 0) |
5154 | return(EINVAL); | |
5155 | ||
cf7d32b8 | 5156 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); |
b0d623f7 | 5157 | |
316670eb A |
5158 | if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) { |
5159 | if (max_io_size > speculative_prefetch_max_iosize) | |
5160 | max_io_size = speculative_prefetch_max_iosize; | |
5161 | } | |
316670eb | 5162 | |
1c79356b | 5163 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, |
b0d623f7 | 5164 | (int)f_offset, resid, (int)filesize, 0, 0); |
1c79356b A |
5165 | |
5166 | while (resid && f_offset < filesize && retval == 0) { | |
5167 | /* | |
5168 | * compute the size of the upl needed to encompass | |
5169 | * the requested read... limit each call to cluster_io | |
0b4e3aa0 A |
5170 | * to the maximum UPL size... cluster_io will clip if |
5171 | * this exceeds the maximum io_size for the device, | |
5172 | * make sure to account for | |
1c79356b A |
5173 | * a starting offset that's not page aligned |
5174 | */ | |
5175 | start_offset = (int)(f_offset & PAGE_MASK_64); | |
5176 | upl_f_offset = f_offset - (off_t)start_offset; | |
5177 | max_size = filesize - f_offset; | |
5178 | ||
5179 | if (resid < max_size) | |
5180 | io_size = resid; | |
5181 | else | |
5182 | io_size = max_size; | |
5183 | ||
5184 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
cf7d32b8 A |
5185 | if ((uint32_t)upl_size > max_io_size) |
5186 | upl_size = max_io_size; | |
55e303ae A |
5187 | |
5188 | skip_range = 0; | |
5189 | /* | |
5190 | * return the number of contiguously present pages in the cache | |
5191 | * starting at upl_f_offset within the file | |
5192 | */ | |
5193 | ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range); | |
5194 | ||
5195 | if (skip_range) { | |
5196 | /* | |
5197 | * skip over pages already present in the cache | |
5198 | */ | |
5199 | io_size = skip_range - start_offset; | |
5200 | ||
5201 | f_offset += io_size; | |
5202 | resid -= io_size; | |
5203 | ||
5204 | if (skip_range == upl_size) | |
5205 | continue; | |
5206 | /* | |
5207 | * have to issue some real I/O | |
5208 | * at this point, we know it's starting on a page boundary | |
5209 | * because we've skipped over at least the first page in the request | |
5210 | */ | |
5211 | start_offset = 0; | |
5212 | upl_f_offset += skip_range; | |
5213 | upl_size -= skip_range; | |
5214 | } | |
1c79356b A |
5215 | pages_in_upl = upl_size / PAGE_SIZE; |
5216 | ||
55e303ae | 5217 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, |
b0d623f7 | 5218 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
55e303ae | 5219 | |
0b4e3aa0 | 5220 | kret = ubc_create_upl(vp, |
91447636 A |
5221 | upl_f_offset, |
5222 | upl_size, | |
5223 | &upl, | |
5224 | &pl, | |
5225 | UPL_RET_ONLY_ABSENT | UPL_SET_LITE); | |
1c79356b | 5226 | if (kret != KERN_SUCCESS) |
9bccf70c A |
5227 | return(retval); |
5228 | issued_io = 0; | |
1c79356b A |
5229 | |
5230 | /* | |
9bccf70c A |
5231 | * before we start marching forward, we must make sure we end on |
5232 | * a present page, otherwise we will be working with a freed | |
5233 | * upl | |
1c79356b | 5234 | */ |
9bccf70c A |
5235 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { |
5236 | if (upl_page_present(pl, last_pg)) | |
5237 | break; | |
1c79356b | 5238 | } |
9bccf70c | 5239 | pages_in_upl = last_pg + 1; |
1c79356b | 5240 | |
1c79356b | 5241 | |
55e303ae | 5242 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, |
b0d623f7 | 5243 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
9bccf70c A |
5244 | |
5245 | ||
5246 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
1c79356b | 5247 | /* |
9bccf70c A |
5248 | * scan from the beginning of the upl looking for the first |
5249 | * page that is present.... this will become the first page in | |
5250 | * the request we're going to make to 'cluster_io'... if all | |
5251 | * of the pages are absent, we won't call through to 'cluster_io' | |
1c79356b | 5252 | */ |
9bccf70c A |
5253 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
5254 | if (upl_page_present(pl, start_pg)) | |
5255 | break; | |
1c79356b | 5256 | } |
1c79356b | 5257 | |
1c79356b | 5258 | /* |
9bccf70c A |
5259 | * scan from the starting present page looking for an absent |
5260 | * page before the end of the upl is reached, if we | |
5261 | * find one, then it will terminate the range of pages being | |
5262 | * presented to 'cluster_io' | |
1c79356b | 5263 | */ |
9bccf70c A |
5264 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
5265 | if (!upl_page_present(pl, last_pg)) | |
5266 | break; | |
5267 | } | |
5268 | ||
5269 | if (last_pg > start_pg) { | |
5270 | /* | |
5271 | * we found a range of pages that must be filled | |
5272 | * if the last page in this range is the last page of the file | |
5273 | * we may have to clip the size of it to keep from reading past | |
5274 | * the end of the last physical block associated with the file | |
5275 | */ | |
5276 | upl_offset = start_pg * PAGE_SIZE; | |
5277 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
5278 | ||
b0d623f7 | 5279 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) |
9bccf70c A |
5280 | io_size = filesize - (upl_f_offset + upl_offset); |
5281 | ||
5282 | /* | |
5283 | * issue an asynchronous read to cluster_io | |
5284 | */ | |
91447636 | 5285 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, |
2d21ac55 | 5286 | CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 5287 | |
9bccf70c A |
5288 | issued_io = 1; |
5289 | } | |
1c79356b | 5290 | } |
9bccf70c A |
5291 | if (issued_io == 0) |
5292 | ubc_upl_abort(upl, 0); | |
5293 | ||
5294 | io_size = upl_size - start_offset; | |
1c79356b A |
5295 | |
5296 | if (io_size > resid) | |
5297 | io_size = resid; | |
5298 | f_offset += io_size; | |
5299 | resid -= io_size; | |
5300 | } | |
9bccf70c | 5301 | |
1c79356b A |
5302 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END, |
5303 | (int)f_offset, resid, retval, 0, 0); | |
5304 | ||
5305 | return(retval); | |
5306 | } | |
5307 | ||
5308 | ||
9bccf70c | 5309 | int |
91447636 | 5310 | cluster_push(vnode_t vp, int flags) |
2d21ac55 A |
5311 | { |
5312 | return cluster_push_ext(vp, flags, NULL, NULL); | |
5313 | } | |
5314 | ||
5315 | ||
5316 | int | |
5317 | cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
9bccf70c | 5318 | { |
91447636 | 5319 | int retval; |
b0d623f7 | 5320 | int my_sparse_wait = 0; |
91447636 | 5321 | struct cl_writebehind *wbp; |
9bccf70c | 5322 | |
91447636 | 5323 | if ( !UBCINFOEXISTS(vp)) { |
39037602 | 5324 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -1, 0); |
91447636 A |
5325 | return (0); |
5326 | } | |
5327 | /* return if deferred write is set */ | |
5328 | if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { | |
5329 | return (0); | |
5330 | } | |
5331 | if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { | |
39037602 | 5332 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -2, 0); |
91447636 A |
5333 | return (0); |
5334 | } | |
fe8ab488 | 5335 | if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) { |
91447636 | 5336 | lck_mtx_unlock(&wbp->cl_lockw); |
9bccf70c | 5337 | |
39037602 | 5338 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -3, 0); |
91447636 A |
5339 | return(0); |
5340 | } | |
9bccf70c | 5341 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, |
b0d623f7 A |
5342 | wbp->cl_scmap, wbp->cl_number, flags, 0, 0); |
5343 | ||
5344 | /* | |
5345 | * if we have an fsync in progress, we don't want to allow any additional | |
5346 | * sync/fsync/close(s) to occur until it finishes. | |
5347 | * note that its possible for writes to continue to occur to this file | |
5348 | * while we're waiting and also once the fsync starts to clean if we're | |
5349 | * in the sparse map case | |
5350 | */ | |
5351 | while (wbp->cl_sparse_wait) { | |
39037602 | 5352 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5353 | |
5354 | msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5355 | ||
39037602 | 5356 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5357 | } |
5358 | if (flags & IO_SYNC) { | |
5359 | my_sparse_wait = 1; | |
5360 | wbp->cl_sparse_wait = 1; | |
9bccf70c | 5361 | |
b0d623f7 A |
5362 | /* |
5363 | * this is an fsync (or equivalent)... we must wait for any existing async | |
5364 | * cleaning operations to complete before we evaulate the current state | |
5365 | * and finish cleaning... this insures that all writes issued before this | |
5366 | * fsync actually get cleaned to the disk before this fsync returns | |
5367 | */ | |
5368 | while (wbp->cl_sparse_pushes) { | |
39037602 | 5369 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5370 | |
5371 | msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
5372 | ||
39037602 | 5373 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); |
b0d623f7 A |
5374 | } |
5375 | } | |
91447636 | 5376 | if (wbp->cl_scmap) { |
b0d623f7 A |
5377 | void *scmap; |
5378 | ||
5379 | if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) { | |
5380 | ||
5381 | scmap = wbp->cl_scmap; | |
5382 | wbp->cl_scmap = NULL; | |
5383 | ||
5384 | wbp->cl_sparse_pushes++; | |
5385 | ||
5386 | lck_mtx_unlock(&wbp->cl_lockw); | |
5387 | ||
39236c6e | 5388 | sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg); |
b0d623f7 A |
5389 | |
5390 | lck_mtx_lock(&wbp->cl_lockw); | |
9bccf70c | 5391 | |
b0d623f7 A |
5392 | wbp->cl_sparse_pushes--; |
5393 | ||
5394 | if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0) | |
5395 | wakeup((caddr_t)&wbp->cl_sparse_pushes); | |
5396 | } else { | |
39236c6e | 5397 | sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg); |
b0d623f7 | 5398 | } |
55e303ae | 5399 | retval = 1; |
b0d623f7 | 5400 | } else { |
39236c6e | 5401 | retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg); |
b0d623f7 | 5402 | } |
91447636 A |
5403 | lck_mtx_unlock(&wbp->cl_lockw); |
5404 | ||
5405 | if (flags & IO_SYNC) | |
2d21ac55 | 5406 | (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push"); |
9bccf70c | 5407 | |
b0d623f7 A |
5408 | if (my_sparse_wait) { |
5409 | /* | |
5410 | * I'm the owner of the serialization token | |
5411 | * clear it and wakeup anyone that is waiting | |
5412 | * for me to finish | |
5413 | */ | |
5414 | lck_mtx_lock(&wbp->cl_lockw); | |
5415 | ||
5416 | wbp->cl_sparse_wait = 0; | |
5417 | wakeup((caddr_t)&wbp->cl_sparse_wait); | |
5418 | ||
5419 | lck_mtx_unlock(&wbp->cl_lockw); | |
5420 | } | |
55e303ae | 5421 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, |
b0d623f7 | 5422 | wbp->cl_scmap, wbp->cl_number, retval, 0, 0); |
9bccf70c | 5423 | |
55e303ae A |
5424 | return (retval); |
5425 | } | |
9bccf70c | 5426 | |
9bccf70c | 5427 | |
91447636 A |
5428 | __private_extern__ void |
5429 | cluster_release(struct ubc_info *ubc) | |
55e303ae | 5430 | { |
91447636 A |
5431 | struct cl_writebehind *wbp; |
5432 | struct cl_readahead *rap; | |
5433 | ||
5434 | if ((wbp = ubc->cl_wbehind)) { | |
9bccf70c | 5435 | |
b0d623f7 | 5436 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0); |
91447636 A |
5437 | |
5438 | if (wbp->cl_scmap) | |
5439 | vfs_drt_control(&(wbp->cl_scmap), 0); | |
5440 | } else { | |
b0d623f7 | 5441 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0); |
91447636 | 5442 | } |
9bccf70c | 5443 | |
91447636 | 5444 | rap = ubc->cl_rahead; |
55e303ae | 5445 | |
91447636 A |
5446 | if (wbp != NULL) { |
5447 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
5448 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
5449 | } | |
5450 | if ((rap = ubc->cl_rahead)) { | |
5451 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
5452 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
55e303ae | 5453 | } |
91447636 A |
5454 | ubc->cl_rahead = NULL; |
5455 | ubc->cl_wbehind = NULL; | |
5456 | ||
b0d623f7 | 5457 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0); |
91447636 A |
5458 | } |
5459 | ||
5460 | ||
9bccf70c | 5461 | static int |
6d2010ae | 5462 | cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg) |
9bccf70c A |
5463 | { |
5464 | int cl_index; | |
5465 | int cl_index1; | |
5466 | int min_index; | |
5467 | int cl_len; | |
55e303ae | 5468 | int cl_pushed = 0; |
91447636 | 5469 | struct cl_wextent l_clusters[MAX_CLUSTERS]; |
b0d623f7 A |
5470 | u_int max_cluster_pgcount; |
5471 | ||
5472 | ||
5473 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; | |
9bccf70c | 5474 | /* |
91447636 A |
5475 | * the write behind context exists and has |
5476 | * already been locked... | |
2d21ac55 A |
5477 | */ |
5478 | if (wbp->cl_number == 0) | |
5479 | /* | |
5480 | * no clusters to push | |
5481 | * return number of empty slots | |
5482 | */ | |
5483 | return (MAX_CLUSTERS); | |
5484 | ||
5485 | /* | |
9bccf70c | 5486 | * make a local 'sorted' copy of the clusters |
91447636 | 5487 | * and clear wbp->cl_number so that new clusters can |
9bccf70c A |
5488 | * be developed |
5489 | */ | |
91447636 A |
5490 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
5491 | for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { | |
5492 | if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) | |
9bccf70c A |
5493 | continue; |
5494 | if (min_index == -1) | |
5495 | min_index = cl_index1; | |
91447636 | 5496 | else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) |
9bccf70c A |
5497 | min_index = cl_index1; |
5498 | } | |
5499 | if (min_index == -1) | |
5500 | break; | |
b0d623f7 | 5501 | |
91447636 A |
5502 | l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; |
5503 | l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; | |
2d21ac55 | 5504 | l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags; |
9bccf70c | 5505 | |
91447636 | 5506 | wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; |
9bccf70c | 5507 | } |
91447636 A |
5508 | wbp->cl_number = 0; |
5509 | ||
5510 | cl_len = cl_index; | |
9bccf70c | 5511 | |
39037602 A |
5512 | /* skip switching to the sparse cluster mechanism if on diskimage */ |
5513 | if ( ((push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) && | |
5514 | !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) ) { | |
55e303ae A |
5515 | int i; |
5516 | ||
5517 | /* | |
5518 | * determine if we appear to be writing the file sequentially | |
5519 | * if not, by returning without having pushed any clusters | |
5520 | * we will cause this vnode to be pushed into the sparse cluster mechanism | |
5521 | * used for managing more random I/O patterns | |
5522 | * | |
5523 | * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... | |
2d21ac55 | 5524 | * that's why we're in try_push with PUSH_DELAY... |
55e303ae A |
5525 | * |
5526 | * check to make sure that all the clusters except the last one are 'full'... and that each cluster | |
5527 | * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above | |
91447636 A |
5528 | * so we can just make a simple pass through, up to, but not including the last one... |
5529 | * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they | |
55e303ae A |
5530 | * are sequential |
5531 | * | |
5532 | * we let the last one be partial as long as it was adjacent to the previous one... | |
5533 | * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out | |
5534 | * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... | |
5535 | */ | |
5536 | for (i = 0; i < MAX_CLUSTERS - 1; i++) { | |
cf7d32b8 | 5537 | if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount) |
55e303ae | 5538 | goto dont_try; |
91447636 | 5539 | if (l_clusters[i].e_addr != l_clusters[i+1].b_addr) |
55e303ae A |
5540 | goto dont_try; |
5541 | } | |
5542 | } | |
5543 | for (cl_index = 0; cl_index < cl_len; cl_index++) { | |
2d21ac55 A |
5544 | int flags; |
5545 | struct cl_extent cl; | |
91447636 | 5546 | |
6d2010ae A |
5547 | flags = io_flags & (IO_PASSIVE|IO_CLOSE); |
5548 | ||
9bccf70c | 5549 | /* |
91447636 | 5550 | * try to push each cluster in turn... |
9bccf70c | 5551 | */ |
2d21ac55 | 5552 | if (l_clusters[cl_index].io_flags & CLW_IONOCACHE) |
6d2010ae | 5553 | flags |= IO_NOCACHE; |
2d21ac55 | 5554 | |
6d2010ae | 5555 | if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE) |
2d21ac55 A |
5556 | flags |= IO_PASSIVE; |
5557 | ||
5558 | if (push_flag & PUSH_SYNC) | |
5559 | flags |= IO_SYNC; | |
5560 | ||
91447636 A |
5561 | cl.b_addr = l_clusters[cl_index].b_addr; |
5562 | cl.e_addr = l_clusters[cl_index].e_addr; | |
9bccf70c | 5563 | |
2d21ac55 | 5564 | cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg); |
9bccf70c | 5565 | |
91447636 A |
5566 | l_clusters[cl_index].b_addr = 0; |
5567 | l_clusters[cl_index].e_addr = 0; | |
5568 | ||
5569 | cl_pushed++; | |
5570 | ||
2d21ac55 | 5571 | if ( !(push_flag & PUSH_ALL) ) |
91447636 | 5572 | break; |
9bccf70c | 5573 | } |
55e303ae | 5574 | dont_try: |
9bccf70c A |
5575 | if (cl_len > cl_pushed) { |
5576 | /* | |
5577 | * we didn't push all of the clusters, so | |
5578 | * lets try to merge them back in to the vnode | |
5579 | */ | |
91447636 | 5580 | if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { |
9bccf70c A |
5581 | /* |
5582 | * we picked up some new clusters while we were trying to | |
91447636 A |
5583 | * push the old ones... this can happen because I've dropped |
5584 | * the vnode lock... the sum of the | |
9bccf70c | 5585 | * leftovers plus the new cluster count exceeds our ability |
55e303ae | 5586 | * to represent them, so switch to the sparse cluster mechanism |
91447636 A |
5587 | * |
5588 | * collect the active public clusters... | |
9bccf70c | 5589 | */ |
2d21ac55 | 5590 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); |
55e303ae A |
5591 | |
5592 | for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { | |
91447636 | 5593 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) |
9bccf70c | 5594 | continue; |
91447636 A |
5595 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; |
5596 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
2d21ac55 | 5597 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
9bccf70c | 5598 | |
55e303ae | 5599 | cl_index1++; |
9bccf70c | 5600 | } |
55e303ae A |
5601 | /* |
5602 | * update the cluster count | |
5603 | */ | |
91447636 | 5604 | wbp->cl_number = cl_index1; |
55e303ae A |
5605 | |
5606 | /* | |
5607 | * and collect the original clusters that were moved into the | |
5608 | * local storage for sorting purposes | |
5609 | */ | |
2d21ac55 | 5610 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); |
55e303ae | 5611 | |
9bccf70c A |
5612 | } else { |
5613 | /* | |
5614 | * we've got room to merge the leftovers back in | |
5615 | * just append them starting at the next 'hole' | |
91447636 | 5616 | * represented by wbp->cl_number |
9bccf70c | 5617 | */ |
91447636 A |
5618 | for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { |
5619 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) | |
9bccf70c A |
5620 | continue; |
5621 | ||
91447636 A |
5622 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; |
5623 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
2d21ac55 | 5624 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
9bccf70c | 5625 | |
9bccf70c A |
5626 | cl_index1++; |
5627 | } | |
5628 | /* | |
5629 | * update the cluster count | |
5630 | */ | |
91447636 | 5631 | wbp->cl_number = cl_index1; |
9bccf70c A |
5632 | } |
5633 | } | |
2d21ac55 | 5634 | return (MAX_CLUSTERS - wbp->cl_number); |
9bccf70c A |
5635 | } |
5636 | ||
5637 | ||
5638 | ||
5639 | static int | |
2d21ac55 | 5640 | cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b | 5641 | { |
1c79356b A |
5642 | upl_page_info_t *pl; |
5643 | upl_t upl; | |
5644 | vm_offset_t upl_offset; | |
5645 | int upl_size; | |
5646 | off_t upl_f_offset; | |
5647 | int pages_in_upl; | |
5648 | int start_pg; | |
5649 | int last_pg; | |
5650 | int io_size; | |
5651 | int io_flags; | |
55e303ae | 5652 | int upl_flags; |
2d21ac55 | 5653 | int bflag; |
1c79356b | 5654 | int size; |
91447636 A |
5655 | int error = 0; |
5656 | int retval; | |
1c79356b A |
5657 | kern_return_t kret; |
5658 | ||
2d21ac55 | 5659 | if (flags & IO_PASSIVE) |
6d2010ae | 5660 | bflag = CL_PASSIVE; |
2d21ac55 | 5661 | else |
6d2010ae | 5662 | bflag = 0; |
1c79356b | 5663 | |
fe8ab488 A |
5664 | if (flags & IO_SKIP_ENCRYPTION) |
5665 | bflag |= CL_ENCRYPTED; | |
5666 | ||
9bccf70c | 5667 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, |
91447636 | 5668 | (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); |
9bccf70c | 5669 | |
91447636 | 5670 | if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { |
9bccf70c | 5671 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); |
1c79356b | 5672 | |
91447636 | 5673 | return (0); |
9bccf70c | 5674 | } |
1c79356b | 5675 | upl_size = pages_in_upl * PAGE_SIZE; |
91447636 | 5676 | upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
1c79356b | 5677 | |
9bccf70c A |
5678 | if (upl_f_offset + upl_size >= EOF) { |
5679 | ||
5680 | if (upl_f_offset >= EOF) { | |
5681 | /* | |
5682 | * must have truncated the file and missed | |
5683 | * clearing a dangling cluster (i.e. it's completely | |
5684 | * beyond the new EOF | |
5685 | */ | |
5686 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); | |
5687 | ||
91447636 | 5688 | return(0); |
9bccf70c A |
5689 | } |
5690 | size = EOF - upl_f_offset; | |
1c79356b | 5691 | |
55e303ae | 5692 | upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
9bccf70c | 5693 | pages_in_upl = upl_size / PAGE_SIZE; |
55e303ae | 5694 | } else |
9bccf70c | 5695 | size = upl_size; |
55e303ae A |
5696 | |
5697 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); | |
5698 | ||
91447636 A |
5699 | /* |
5700 | * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior | |
5701 | * | |
5702 | * - only pages that are currently dirty are returned... these are the ones we need to clean | |
5703 | * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set | |
5704 | * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page | |
5705 | * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if | |
5706 | * someone dirties this page while the I/O is in progress, we don't lose track of the new state | |
5707 | * | |
5708 | * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) | |
5709 | */ | |
5710 | ||
5711 | if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) | |
55e303ae A |
5712 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; |
5713 | else | |
5714 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; | |
5715 | ||
0b4e3aa0 A |
5716 | kret = ubc_create_upl(vp, |
5717 | upl_f_offset, | |
5718 | upl_size, | |
5719 | &upl, | |
9bccf70c | 5720 | &pl, |
55e303ae | 5721 | upl_flags); |
1c79356b A |
5722 | if (kret != KERN_SUCCESS) |
5723 | panic("cluster_push: failed to get pagelist"); | |
5724 | ||
b0d623f7 | 5725 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0); |
9bccf70c | 5726 | |
55e303ae A |
5727 | /* |
5728 | * since we only asked for the dirty pages back | |
5729 | * it's possible that we may only get a few or even none, so... | |
5730 | * before we start marching forward, we must make sure we know | |
5731 | * where the last present page is in the UPL, otherwise we could | |
5732 | * end up working with a freed upl due to the FREE_ON_EMPTY semantics | |
5733 | * employed by commit_range and abort_range. | |
5734 | */ | |
5735 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { | |
5736 | if (upl_page_present(pl, last_pg)) | |
5737 | break; | |
9bccf70c | 5738 | } |
55e303ae | 5739 | pages_in_upl = last_pg + 1; |
1c79356b | 5740 | |
55e303ae A |
5741 | if (pages_in_upl == 0) { |
5742 | ubc_upl_abort(upl, 0); | |
1c79356b | 5743 | |
55e303ae | 5744 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); |
91447636 | 5745 | return(0); |
55e303ae A |
5746 | } |
5747 | ||
5748 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
5749 | /* | |
5750 | * find the next dirty page in the UPL | |
5751 | * this will become the first page in the | |
5752 | * next I/O to generate | |
5753 | */ | |
1c79356b | 5754 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
55e303ae | 5755 | if (upl_dirty_page(pl, start_pg)) |
1c79356b | 5756 | break; |
55e303ae A |
5757 | if (upl_page_present(pl, start_pg)) |
5758 | /* | |
5759 | * RET_ONLY_DIRTY will return non-dirty 'precious' pages | |
5760 | * just release these unchanged since we're not going | |
5761 | * to steal them or change their state | |
5762 | */ | |
5763 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b | 5764 | } |
55e303ae A |
5765 | if (start_pg >= pages_in_upl) |
5766 | /* | |
5767 | * done... no more dirty pages to push | |
5768 | */ | |
5769 | break; | |
5770 | if (start_pg > last_pg) | |
5771 | /* | |
5772 | * skipped over some non-dirty pages | |
5773 | */ | |
5774 | size -= ((start_pg - last_pg) * PAGE_SIZE); | |
1c79356b | 5775 | |
55e303ae A |
5776 | /* |
5777 | * find a range of dirty pages to write | |
5778 | */ | |
1c79356b | 5779 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
55e303ae | 5780 | if (!upl_dirty_page(pl, last_pg)) |
1c79356b A |
5781 | break; |
5782 | } | |
5783 | upl_offset = start_pg * PAGE_SIZE; | |
5784 | ||
5785 | io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); | |
5786 | ||
2d21ac55 | 5787 | io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag; |
91447636 A |
5788 | |
5789 | if ( !(flags & IO_SYNC)) | |
5790 | io_flags |= CL_ASYNC; | |
5791 | ||
6d2010ae A |
5792 | if (flags & IO_CLOSE) |
5793 | io_flags |= CL_CLOSE; | |
5794 | ||
316670eb A |
5795 | if (flags & IO_NOCACHE) |
5796 | io_flags |= CL_NOCACHE; | |
5797 | ||
91447636 | 5798 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, |
2d21ac55 | 5799 | io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 5800 | |
91447636 A |
5801 | if (error == 0 && retval) |
5802 | error = retval; | |
1c79356b A |
5803 | |
5804 | size -= io_size; | |
5805 | } | |
9bccf70c A |
5806 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0); |
5807 | ||
91447636 | 5808 | return(error); |
1c79356b | 5809 | } |
b4c24cb9 A |
5810 | |
5811 | ||
91447636 A |
5812 | /* |
5813 | * sparse_cluster_switch is called with the write behind lock held | |
5814 | */ | |
5815 | static void | |
2d21ac55 | 5816 | sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) |
b4c24cb9 | 5817 | { |
91447636 | 5818 | int cl_index; |
b4c24cb9 | 5819 | |
39037602 | 5820 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0); |
91447636 A |
5821 | |
5822 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
5823 | int flags; | |
5824 | struct cl_extent cl; | |
5825 | ||
5826 | for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { | |
b4c24cb9 | 5827 | |
2d21ac55 | 5828 | if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) { |
91447636 A |
5829 | if (flags & UPL_POP_DIRTY) { |
5830 | cl.e_addr = cl.b_addr + 1; | |
b4c24cb9 | 5831 | |
b0d623f7 | 5832 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg); |
91447636 | 5833 | } |
55e303ae A |
5834 | } |
5835 | } | |
5836 | } | |
91447636 A |
5837 | wbp->cl_number = 0; |
5838 | ||
39037602 | 5839 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0); |
55e303ae A |
5840 | } |
5841 | ||
5842 | ||
91447636 | 5843 | /* |
b0d623f7 A |
5844 | * sparse_cluster_push must be called with the write-behind lock held if the scmap is |
5845 | * still associated with the write-behind context... however, if the scmap has been disassociated | |
5846 | * from the write-behind context (the cluster_push case), the wb lock is not held | |
91447636 A |
5847 | */ |
5848 | static void | |
6d2010ae | 5849 | sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5850 | { |
91447636 A |
5851 | struct cl_extent cl; |
5852 | off_t offset; | |
5853 | u_int length; | |
55e303ae | 5854 | |
39037602 | 5855 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, kdebug_vnode(vp), (*scmap), 0, push_flag, 0); |
55e303ae | 5856 | |
2d21ac55 | 5857 | if (push_flag & PUSH_ALL) |
b0d623f7 | 5858 | vfs_drt_control(scmap, 1); |
55e303ae A |
5859 | |
5860 | for (;;) { | |
b0d623f7 | 5861 | if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS) |
55e303ae | 5862 | break; |
55e303ae | 5863 | |
91447636 A |
5864 | cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); |
5865 | cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); | |
5866 | ||
6d2010ae | 5867 | cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg); |
2d21ac55 | 5868 | |
2d21ac55 | 5869 | if ( !(push_flag & PUSH_ALL) ) |
55e303ae A |
5870 | break; |
5871 | } | |
39037602 | 5872 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0); |
55e303ae A |
5873 | } |
5874 | ||
5875 | ||
91447636 A |
5876 | /* |
5877 | * sparse_cluster_add is called with the write behind lock held | |
5878 | */ | |
5879 | static void | |
b0d623f7 | 5880 | sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5881 | { |
91447636 A |
5882 | u_int new_dirty; |
5883 | u_int length; | |
5884 | off_t offset; | |
55e303ae | 5885 | |
b0d623f7 | 5886 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0); |
55e303ae | 5887 | |
91447636 A |
5888 | offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
5889 | length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; | |
55e303ae | 5890 | |
b0d623f7 | 5891 | while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) { |
55e303ae A |
5892 | /* |
5893 | * no room left in the map | |
5894 | * only a partial update was done | |
5895 | * push out some pages and try again | |
5896 | */ | |
6d2010ae | 5897 | sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg); |
55e303ae A |
5898 | |
5899 | offset += (new_dirty * PAGE_SIZE_64); | |
5900 | length -= (new_dirty * PAGE_SIZE); | |
5901 | } | |
39037602 | 5902 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0); |
55e303ae A |
5903 | } |
5904 | ||
5905 | ||
5906 | static int | |
2d21ac55 | 5907 | cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5908 | { |
55e303ae A |
5909 | upl_page_info_t *pl; |
5910 | upl_t upl; | |
5911 | addr64_t ubc_paddr; | |
5912 | kern_return_t kret; | |
5913 | int error = 0; | |
91447636 A |
5914 | int did_read = 0; |
5915 | int abort_flags; | |
5916 | int upl_flags; | |
2d21ac55 A |
5917 | int bflag; |
5918 | ||
5919 | if (flags & IO_PASSIVE) | |
6d2010ae | 5920 | bflag = CL_PASSIVE; |
2d21ac55 | 5921 | else |
6d2010ae | 5922 | bflag = 0; |
55e303ae | 5923 | |
316670eb A |
5924 | if (flags & IO_NOCACHE) |
5925 | bflag |= CL_NOCACHE; | |
5926 | ||
91447636 | 5927 | upl_flags = UPL_SET_LITE; |
2d21ac55 A |
5928 | |
5929 | if ( !(flags & CL_READ) ) { | |
91447636 A |
5930 | /* |
5931 | * "write" operation: let the UPL subsystem know | |
5932 | * that we intend to modify the buffer cache pages | |
5933 | * we're gathering. | |
5934 | */ | |
5935 | upl_flags |= UPL_WILL_MODIFY; | |
2d21ac55 A |
5936 | } else { |
5937 | /* | |
5938 | * indicate that there is no need to pull the | |
5939 | * mapping for this page... we're only going | |
5940 | * to read from it, not modify it. | |
5941 | */ | |
5942 | upl_flags |= UPL_FILE_IO; | |
91447636 | 5943 | } |
55e303ae A |
5944 | kret = ubc_create_upl(vp, |
5945 | uio->uio_offset & ~PAGE_MASK_64, | |
5946 | PAGE_SIZE, | |
5947 | &upl, | |
5948 | &pl, | |
91447636 | 5949 | upl_flags); |
55e303ae A |
5950 | |
5951 | if (kret != KERN_SUCCESS) | |
5952 | return(EINVAL); | |
5953 | ||
5954 | if (!upl_valid_page(pl, 0)) { | |
5955 | /* | |
5956 | * issue a synchronous read to cluster_io | |
5957 | */ | |
91447636 | 5958 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, |
2d21ac55 | 5959 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
55e303ae | 5960 | if (error) { |
b4c24cb9 A |
5961 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
5962 | ||
5963 | return(error); | |
5964 | } | |
91447636 | 5965 | did_read = 1; |
b4c24cb9 | 5966 | } |
fe8ab488 | 5967 | ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); |
b4c24cb9 | 5968 | |
55e303ae A |
5969 | /* |
5970 | * NOTE: There is no prototype for the following in BSD. It, and the definitions | |
5971 | * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in | |
5972 | * osfmk/ppc/mappings.h. They are not included here because there appears to be no | |
5973 | * way to do so without exporting them to kexts as well. | |
5974 | */ | |
de355530 | 5975 | if (flags & CL_READ) |
55e303ae A |
5976 | // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ |
5977 | copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */ | |
de355530 | 5978 | else |
4a249263 A |
5979 | // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ |
5980 | copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */ | |
55e303ae A |
5981 | |
5982 | if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) { | |
5983 | /* | |
5984 | * issue a synchronous write to cluster_io | |
5985 | */ | |
91447636 | 5986 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, |
2d21ac55 | 5987 | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
de355530 | 5988 | } |
2d21ac55 | 5989 | if (error == 0) |
cc9f6e38 A |
5990 | uio_update(uio, (user_size_t)xsize); |
5991 | ||
91447636 A |
5992 | if (did_read) |
5993 | abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
5994 | else | |
5995 | abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
5996 | ||
5997 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); | |
55e303ae A |
5998 | |
5999 | return (error); | |
6000 | } | |
6001 | ||
55e303ae | 6002 | int |
2d21ac55 | 6003 | cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid) |
55e303ae A |
6004 | { |
6005 | int pg_offset; | |
6006 | int pg_index; | |
6007 | int csize; | |
6008 | int segflg; | |
6009 | int retval = 0; | |
2d21ac55 | 6010 | int xsize; |
55e303ae | 6011 | upl_page_info_t *pl; |
4bd07ac2 | 6012 | int dirty_count; |
55e303ae | 6013 | |
2d21ac55 A |
6014 | xsize = *io_resid; |
6015 | ||
55e303ae | 6016 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, |
2d21ac55 | 6017 | (int)uio->uio_offset, upl_offset, xsize, 0, 0); |
55e303ae A |
6018 | |
6019 | segflg = uio->uio_segflg; | |
6020 | ||
6021 | switch(segflg) { | |
6022 | ||
91447636 A |
6023 | case UIO_USERSPACE32: |
6024 | case UIO_USERISPACE32: | |
6025 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
6026 | break; | |
6027 | ||
55e303ae A |
6028 | case UIO_USERSPACE: |
6029 | case UIO_USERISPACE: | |
6030 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
6031 | break; | |
6032 | ||
91447636 A |
6033 | case UIO_USERSPACE64: |
6034 | case UIO_USERISPACE64: | |
6035 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
6036 | break; | |
6037 | ||
55e303ae A |
6038 | case UIO_SYSSPACE: |
6039 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
6040 | break; | |
91447636 | 6041 | |
55e303ae A |
6042 | } |
6043 | pl = ubc_upl_pageinfo(upl); | |
6044 | ||
6045 | pg_index = upl_offset / PAGE_SIZE; | |
6046 | pg_offset = upl_offset & PAGE_MASK; | |
6047 | csize = min(PAGE_SIZE - pg_offset, xsize); | |
6048 | ||
4bd07ac2 | 6049 | dirty_count = 0; |
55e303ae A |
6050 | while (xsize && retval == 0) { |
6051 | addr64_t paddr; | |
6052 | ||
fe8ab488 | 6053 | paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset; |
4bd07ac2 A |
6054 | if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(pl, pg_index) == FALSE)) |
6055 | dirty_count++; | |
de355530 | 6056 | |
55e303ae A |
6057 | retval = uiomove64(paddr, csize, uio); |
6058 | ||
6059 | pg_index += 1; | |
6060 | pg_offset = 0; | |
6061 | xsize -= csize; | |
6062 | csize = min(PAGE_SIZE, xsize); | |
6063 | } | |
2d21ac55 A |
6064 | *io_resid = xsize; |
6065 | ||
55e303ae A |
6066 | uio->uio_segflg = segflg; |
6067 | ||
39037602 | 6068 | task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED, upl_lookup_vnode(upl)); |
55e303ae | 6069 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
2d21ac55 | 6070 | (int)uio->uio_offset, xsize, retval, segflg, 0); |
39037602 | 6071 | |
55e303ae A |
6072 | return (retval); |
6073 | } | |
6074 | ||
6075 | ||
6076 | int | |
91447636 | 6077 | cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) |
2d21ac55 A |
6078 | { |
6079 | ||
6080 | return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1)); | |
6081 | } | |
6082 | ||
6083 | ||
6084 | static int | |
6085 | cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference) | |
55e303ae A |
6086 | { |
6087 | int segflg; | |
6088 | int io_size; | |
6089 | int xsize; | |
6090 | int start_offset; | |
55e303ae A |
6091 | int retval = 0; |
6092 | memory_object_control_t control; | |
55e303ae | 6093 | |
2d21ac55 | 6094 | io_size = *io_resid; |
55e303ae A |
6095 | |
6096 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, | |
6d2010ae | 6097 | (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0); |
55e303ae A |
6098 | |
6099 | control = ubc_getobject(vp, UBC_FLAGS_NONE); | |
2d21ac55 | 6100 | |
55e303ae A |
6101 | if (control == MEMORY_OBJECT_CONTROL_NULL) { |
6102 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
2d21ac55 | 6103 | (int)uio->uio_offset, io_size, retval, 3, 0); |
55e303ae A |
6104 | |
6105 | return(0); | |
6106 | } | |
55e303ae A |
6107 | segflg = uio->uio_segflg; |
6108 | ||
6109 | switch(segflg) { | |
6110 | ||
91447636 A |
6111 | case UIO_USERSPACE32: |
6112 | case UIO_USERISPACE32: | |
6113 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
6114 | break; | |
6115 | ||
6116 | case UIO_USERSPACE64: | |
6117 | case UIO_USERISPACE64: | |
6118 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
6119 | break; | |
6120 | ||
55e303ae A |
6121 | case UIO_USERSPACE: |
6122 | case UIO_USERISPACE: | |
6123 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
6124 | break; | |
6125 | ||
6126 | case UIO_SYSSPACE: | |
6127 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
6128 | break; | |
6129 | } | |
55e303ae | 6130 | |
91447636 A |
6131 | if ( (io_size = *io_resid) ) { |
6132 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
6133 | xsize = uio_resid(uio); | |
55e303ae | 6134 | |
2d21ac55 A |
6135 | retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio, |
6136 | start_offset, io_size, mark_dirty, take_reference); | |
91447636 A |
6137 | xsize -= uio_resid(uio); |
6138 | io_size -= xsize; | |
55e303ae A |
6139 | } |
6140 | uio->uio_segflg = segflg; | |
6141 | *io_resid = io_size; | |
6142 | ||
55e303ae | 6143 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
2d21ac55 | 6144 | (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0); |
55e303ae A |
6145 | |
6146 | return(retval); | |
6147 | } | |
6148 | ||
6149 | ||
6150 | int | |
91447636 | 6151 | is_file_clean(vnode_t vp, off_t filesize) |
55e303ae A |
6152 | { |
6153 | off_t f_offset; | |
6154 | int flags; | |
6155 | int total_dirty = 0; | |
6156 | ||
6157 | for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { | |
2d21ac55 | 6158 | if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) { |
55e303ae A |
6159 | if (flags & UPL_POP_DIRTY) { |
6160 | total_dirty++; | |
6161 | } | |
6162 | } | |
6163 | } | |
6164 | if (total_dirty) | |
6165 | return(EINVAL); | |
6166 | ||
6167 | return (0); | |
6168 | } | |
6169 | ||
6170 | ||
6171 | ||
6172 | /* | |
6173 | * Dirty region tracking/clustering mechanism. | |
6174 | * | |
6175 | * This code (vfs_drt_*) provides a mechanism for tracking and clustering | |
6176 | * dirty regions within a larger space (file). It is primarily intended to | |
6177 | * support clustering in large files with many dirty areas. | |
6178 | * | |
6179 | * The implementation assumes that the dirty regions are pages. | |
6180 | * | |
6181 | * To represent dirty pages within the file, we store bit vectors in a | |
6182 | * variable-size circular hash. | |
6183 | */ | |
6184 | ||
6185 | /* | |
6186 | * Bitvector size. This determines the number of pages we group in a | |
6187 | * single hashtable entry. Each hashtable entry is aligned to this | |
6188 | * size within the file. | |
6189 | */ | |
3e170ce0 | 6190 | #define DRT_BITVECTOR_PAGES ((1024 * 1024) / PAGE_SIZE) |
55e303ae A |
6191 | |
6192 | /* | |
6193 | * File offset handling. | |
6194 | * | |
3e170ce0 A |
6195 | * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES; |
6196 | * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) | |
55e303ae | 6197 | */ |
3e170ce0 | 6198 | #define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) |
55e303ae A |
6199 | #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK) |
6200 | ||
6201 | /* | |
6202 | * Hashtable address field handling. | |
6203 | * | |
6204 | * The low-order bits of the hashtable address are used to conserve | |
6205 | * space. | |
6206 | * | |
6207 | * DRT_HASH_COUNT_MASK must be large enough to store the range | |
6208 | * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value | |
6209 | * to indicate that the bucket is actually unoccupied. | |
6210 | */ | |
6211 | #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK) | |
6212 | #define DRT_HASH_SET_ADDRESS(scm, i, a) \ | |
6213 | do { \ | |
6214 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
6215 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \ | |
6216 | } while (0) | |
6217 | #define DRT_HASH_COUNT_MASK 0x1ff | |
6218 | #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK) | |
6219 | #define DRT_HASH_SET_COUNT(scm, i, c) \ | |
6220 | do { \ | |
6221 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
6222 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \ | |
6223 | } while (0) | |
6224 | #define DRT_HASH_CLEAR(scm, i) \ | |
6225 | do { \ | |
6226 | (scm)->scm_hashtable[(i)].dhe_control = 0; \ | |
6227 | } while (0) | |
6228 | #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK) | |
6229 | #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK) | |
6230 | #define DRT_HASH_COPY(oscm, oi, scm, i) \ | |
6231 | do { \ | |
6232 | (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \ | |
6233 | DRT_BITVECTOR_COPY(oscm, oi, scm, i); \ | |
6234 | } while(0); | |
6235 | ||
6236 | ||
6237 | /* | |
6238 | * Hash table moduli. | |
6239 | * | |
6240 | * Since the hashtable entry's size is dependent on the size of | |
6241 | * the bitvector, and since the hashtable size is constrained to | |
6242 | * both being prime and fitting within the desired allocation | |
6243 | * size, these values need to be manually determined. | |
6244 | * | |
6245 | * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes. | |
6246 | * | |
6247 | * The small hashtable allocation is 1024 bytes, so the modulus is 23. | |
6248 | * The large hashtable allocation is 16384 bytes, so the modulus is 401. | |
6249 | */ | |
6250 | #define DRT_HASH_SMALL_MODULUS 23 | |
6251 | #define DRT_HASH_LARGE_MODULUS 401 | |
6252 | ||
b7266188 A |
6253 | /* |
6254 | * Physical memory required before the large hash modulus is permitted. | |
6255 | * | |
6256 | * On small memory systems, the large hash modulus can lead to phsyical | |
6257 | * memory starvation, so we avoid using it there. | |
6258 | */ | |
6259 | #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */ | |
6260 | ||
55e303ae A |
6261 | #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */ |
6262 | #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */ | |
6263 | ||
6264 | /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */ | |
6265 | ||
6266 | /* | |
6267 | * Hashtable bitvector handling. | |
6268 | * | |
6269 | * Bitvector fields are 32 bits long. | |
6270 | */ | |
6271 | ||
6272 | #define DRT_HASH_SET_BIT(scm, i, bit) \ | |
6273 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32)) | |
6274 | ||
6275 | #define DRT_HASH_CLEAR_BIT(scm, i, bit) \ | |
6276 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32)) | |
6277 | ||
6278 | #define DRT_HASH_TEST_BIT(scm, i, bit) \ | |
6279 | ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32))) | |
6280 | ||
6281 | #define DRT_BITVECTOR_CLEAR(scm, i) \ | |
6282 | bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
6283 | ||
6284 | #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \ | |
6285 | bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \ | |
6286 | &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \ | |
6287 | (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
6288 | ||
6289 | ||
6290 | ||
6291 | /* | |
6292 | * Hashtable entry. | |
6293 | */ | |
6294 | struct vfs_drt_hashentry { | |
6295 | u_int64_t dhe_control; | |
3e170ce0 A |
6296 | /* |
6297 | * dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32]; | |
6298 | * DRT_BITVECTOR_PAGES is defined as ((1024 * 1024) / PAGE_SIZE) | |
6299 | * Since PAGE_SIZE is only known at boot time, | |
6300 | * -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k) | |
6301 | * -declare dhe_bitvector array for largest possible length | |
6302 | */ | |
6303 | #define MAX_DRT_BITVECTOR_PAGES (1024 * 1024)/( 4 * 1024) | |
6304 | u_int32_t dhe_bitvector[MAX_DRT_BITVECTOR_PAGES/32]; | |
55e303ae A |
6305 | }; |
6306 | ||
6307 | /* | |
6308 | * Dirty Region Tracking structure. | |
6309 | * | |
6310 | * The hashtable is allocated entirely inside the DRT structure. | |
6311 | * | |
6312 | * The hash is a simple circular prime modulus arrangement, the structure | |
6313 | * is resized from small to large if it overflows. | |
6314 | */ | |
6315 | ||
6316 | struct vfs_drt_clustermap { | |
6317 | u_int32_t scm_magic; /* sanity/detection */ | |
6318 | #define DRT_SCM_MAGIC 0x12020003 | |
6319 | u_int32_t scm_modulus; /* current ring size */ | |
6320 | u_int32_t scm_buckets; /* number of occupied buckets */ | |
6321 | u_int32_t scm_lastclean; /* last entry we cleaned */ | |
6322 | u_int32_t scm_iskips; /* number of slot skips */ | |
6323 | ||
6324 | struct vfs_drt_hashentry scm_hashtable[0]; | |
6325 | }; | |
6326 | ||
6327 | ||
6328 | #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus) | |
6329 | #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus) | |
6330 | ||
6331 | /* | |
6332 | * Debugging codes and arguments. | |
6333 | */ | |
6334 | #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */ | |
6335 | #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */ | |
6336 | #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */ | |
6337 | #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */ | |
6338 | #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length, | |
6339 | * dirty */ | |
6340 | /* 0, setcount */ | |
6341 | /* 1 (clean, no map) */ | |
6342 | /* 2 (map alloc fail) */ | |
6343 | /* 3, resid (partial) */ | |
6344 | #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87)) | |
6345 | #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets, | |
6346 | * lastclean, iskips */ | |
6347 | ||
6348 | ||
55e303ae A |
6349 | static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); |
6350 | static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); | |
6351 | static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, | |
6352 | u_int64_t offset, int *indexp); | |
6353 | static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, | |
6354 | u_int64_t offset, | |
6355 | int *indexp, | |
6356 | int recursed); | |
6357 | static kern_return_t vfs_drt_do_mark_pages( | |
6358 | void **cmapp, | |
6359 | u_int64_t offset, | |
6360 | u_int length, | |
2d21ac55 | 6361 | u_int *setcountp, |
55e303ae A |
6362 | int dirty); |
6363 | static void vfs_drt_trace( | |
6364 | struct vfs_drt_clustermap *cmap, | |
6365 | int code, | |
6366 | int arg1, | |
6367 | int arg2, | |
6368 | int arg3, | |
6369 | int arg4); | |
6370 | ||
6371 | ||
6372 | /* | |
6373 | * Allocate and initialise a sparse cluster map. | |
6374 | * | |
6375 | * Will allocate a new map, resize or compact an existing map. | |
6376 | * | |
6377 | * XXX we should probably have at least one intermediate map size, | |
6378 | * as the 1:16 ratio seems a bit drastic. | |
6379 | */ | |
6380 | static kern_return_t | |
6381 | vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) | |
6382 | { | |
6383 | struct vfs_drt_clustermap *cmap, *ocmap; | |
6384 | kern_return_t kret; | |
6385 | u_int64_t offset; | |
2d21ac55 A |
6386 | u_int32_t i; |
6387 | int nsize, active_buckets, index, copycount; | |
55e303ae A |
6388 | |
6389 | ocmap = NULL; | |
6390 | if (cmapp != NULL) | |
6391 | ocmap = *cmapp; | |
6392 | ||
6393 | /* | |
6394 | * Decide on the size of the new map. | |
6395 | */ | |
6396 | if (ocmap == NULL) { | |
6397 | nsize = DRT_HASH_SMALL_MODULUS; | |
6398 | } else { | |
6399 | /* count the number of active buckets in the old map */ | |
6400 | active_buckets = 0; | |
6401 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6402 | if (!DRT_HASH_VACANT(ocmap, i) && | |
6403 | (DRT_HASH_GET_COUNT(ocmap, i) != 0)) | |
6404 | active_buckets++; | |
6405 | } | |
6406 | /* | |
6407 | * If we're currently using the small allocation, check to | |
6408 | * see whether we should grow to the large one. | |
6409 | */ | |
6410 | if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { | |
b7266188 A |
6411 | /* |
6412 | * If the ring is nearly full and we are allowed to | |
6413 | * use the large modulus, upgrade. | |
6414 | */ | |
6415 | if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) && | |
6416 | (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) { | |
55e303ae A |
6417 | nsize = DRT_HASH_LARGE_MODULUS; |
6418 | } else { | |
6419 | nsize = DRT_HASH_SMALL_MODULUS; | |
6420 | } | |
6421 | } else { | |
6422 | /* already using the large modulus */ | |
6423 | nsize = DRT_HASH_LARGE_MODULUS; | |
6424 | /* | |
6425 | * If the ring is completely full, there's | |
6426 | * nothing useful for us to do. Behave as | |
6427 | * though we had compacted into the new | |
6428 | * array and return. | |
6429 | */ | |
6430 | if (active_buckets >= DRT_HASH_LARGE_MODULUS) | |
6431 | return(KERN_SUCCESS); | |
6432 | } | |
6433 | } | |
6434 | ||
6435 | /* | |
6436 | * Allocate and initialise the new map. | |
6437 | */ | |
6438 | ||
6439 | kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap, | |
3e170ce0 | 6440 | (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION, VM_KERN_MEMORY_FILE); |
55e303ae A |
6441 | if (kret != KERN_SUCCESS) |
6442 | return(kret); | |
6443 | cmap->scm_magic = DRT_SCM_MAGIC; | |
6444 | cmap->scm_modulus = nsize; | |
6445 | cmap->scm_buckets = 0; | |
6446 | cmap->scm_lastclean = 0; | |
6447 | cmap->scm_iskips = 0; | |
6448 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6449 | DRT_HASH_CLEAR(cmap, i); | |
6450 | DRT_HASH_VACATE(cmap, i); | |
6451 | DRT_BITVECTOR_CLEAR(cmap, i); | |
6452 | } | |
6453 | ||
6454 | /* | |
6455 | * If there's an old map, re-hash entries from it into the new map. | |
6456 | */ | |
6457 | copycount = 0; | |
6458 | if (ocmap != NULL) { | |
6459 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
6460 | /* skip empty buckets */ | |
6461 | if (DRT_HASH_VACANT(ocmap, i) || | |
6462 | (DRT_HASH_GET_COUNT(ocmap, i) == 0)) | |
6463 | continue; | |
6464 | /* get new index */ | |
6465 | offset = DRT_HASH_GET_ADDRESS(ocmap, i); | |
6466 | kret = vfs_drt_get_index(&cmap, offset, &index, 1); | |
6467 | if (kret != KERN_SUCCESS) { | |
6468 | /* XXX need to bail out gracefully here */ | |
6469 | panic("vfs_drt: new cluster map mysteriously too small"); | |
2d21ac55 | 6470 | index = 0; |
55e303ae A |
6471 | } |
6472 | /* copy */ | |
6473 | DRT_HASH_COPY(ocmap, i, cmap, index); | |
6474 | copycount++; | |
6475 | } | |
6476 | } | |
6477 | ||
6478 | /* log what we've done */ | |
6479 | vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0); | |
6480 | ||
6481 | /* | |
6482 | * It's important to ensure that *cmapp always points to | |
6483 | * a valid map, so we must overwrite it before freeing | |
6484 | * the old map. | |
6485 | */ | |
6486 | *cmapp = cmap; | |
6487 | if (ocmap != NULL) { | |
6488 | /* emit stats into trace buffer */ | |
6489 | vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA, | |
6490 | ocmap->scm_modulus, | |
6491 | ocmap->scm_buckets, | |
6492 | ocmap->scm_lastclean, | |
6493 | ocmap->scm_iskips); | |
6494 | ||
6495 | vfs_drt_free_map(ocmap); | |
6496 | } | |
6497 | return(KERN_SUCCESS); | |
6498 | } | |
6499 | ||
6500 | ||
6501 | /* | |
6502 | * Free a sparse cluster map. | |
6503 | */ | |
6504 | static kern_return_t | |
6505 | vfs_drt_free_map(struct vfs_drt_clustermap *cmap) | |
6506 | { | |
55e303ae A |
6507 | kmem_free(kernel_map, (vm_offset_t)cmap, |
6508 | (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); | |
6509 | return(KERN_SUCCESS); | |
6510 | } | |
6511 | ||
6512 | ||
6513 | /* | |
6514 | * Find the hashtable slot currently occupied by an entry for the supplied offset. | |
6515 | */ | |
6516 | static kern_return_t | |
6517 | vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) | |
6518 | { | |
2d21ac55 A |
6519 | int index; |
6520 | u_int32_t i; | |
55e303ae A |
6521 | |
6522 | offset = DRT_ALIGN_ADDRESS(offset); | |
6523 | index = DRT_HASH(cmap, offset); | |
6524 | ||
6525 | /* traverse the hashtable */ | |
6526 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6527 | ||
6528 | /* | |
6529 | * If the slot is vacant, we can stop. | |
6530 | */ | |
6531 | if (DRT_HASH_VACANT(cmap, index)) | |
6532 | break; | |
6533 | ||
6534 | /* | |
6535 | * If the address matches our offset, we have success. | |
6536 | */ | |
6537 | if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) { | |
6538 | *indexp = index; | |
6539 | return(KERN_SUCCESS); | |
6540 | } | |
6541 | ||
6542 | /* | |
6543 | * Move to the next slot, try again. | |
6544 | */ | |
6545 | index = DRT_HASH_NEXT(cmap, index); | |
6546 | } | |
6547 | /* | |
6548 | * It's not there. | |
6549 | */ | |
6550 | return(KERN_FAILURE); | |
6551 | } | |
6552 | ||
6553 | /* | |
6554 | * Find the hashtable slot for the supplied offset. If we haven't allocated | |
6555 | * one yet, allocate one and populate the address field. Note that it will | |
6556 | * not have a nonzero page count and thus will still technically be free, so | |
6557 | * in the case where we are called to clean pages, the slot will remain free. | |
6558 | */ | |
6559 | static kern_return_t | |
6560 | vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed) | |
6561 | { | |
6562 | struct vfs_drt_clustermap *cmap; | |
6563 | kern_return_t kret; | |
2d21ac55 A |
6564 | u_int32_t index; |
6565 | u_int32_t i; | |
55e303ae A |
6566 | |
6567 | cmap = *cmapp; | |
6568 | ||
6569 | /* look for an existing entry */ | |
6570 | kret = vfs_drt_search_index(cmap, offset, indexp); | |
6571 | if (kret == KERN_SUCCESS) | |
6572 | return(kret); | |
6573 | ||
6574 | /* need to allocate an entry */ | |
6575 | offset = DRT_ALIGN_ADDRESS(offset); | |
6576 | index = DRT_HASH(cmap, offset); | |
6577 | ||
6578 | /* scan from the index forwards looking for a vacant slot */ | |
6579 | for (i = 0; i < cmap->scm_modulus; i++) { | |
6580 | /* slot vacant? */ | |
6581 | if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) { | |
6582 | cmap->scm_buckets++; | |
6583 | if (index < cmap->scm_lastclean) | |
6584 | cmap->scm_lastclean = index; | |
6585 | DRT_HASH_SET_ADDRESS(cmap, index, offset); | |
6586 | DRT_HASH_SET_COUNT(cmap, index, 0); | |
6587 | DRT_BITVECTOR_CLEAR(cmap, index); | |
6588 | *indexp = index; | |
6589 | vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0); | |
6590 | return(KERN_SUCCESS); | |
6591 | } | |
6592 | cmap->scm_iskips += i; | |
6593 | index = DRT_HASH_NEXT(cmap, index); | |
6594 | } | |
6595 | ||
6596 | /* | |
6597 | * We haven't found a vacant slot, so the map is full. If we're not | |
6598 | * already recursed, try reallocating/compacting it. | |
6599 | */ | |
6600 | if (recursed) | |
6601 | return(KERN_FAILURE); | |
6602 | kret = vfs_drt_alloc_map(cmapp); | |
6603 | if (kret == KERN_SUCCESS) { | |
6604 | /* now try to insert again */ | |
6605 | kret = vfs_drt_get_index(cmapp, offset, indexp, 1); | |
6606 | } | |
6607 | return(kret); | |
6608 | } | |
6609 | ||
6610 | /* | |
6611 | * Implementation of set dirty/clean. | |
6612 | * | |
6613 | * In the 'clean' case, not finding a map is OK. | |
6614 | */ | |
6615 | static kern_return_t | |
6616 | vfs_drt_do_mark_pages( | |
6617 | void **private, | |
6618 | u_int64_t offset, | |
6619 | u_int length, | |
2d21ac55 | 6620 | u_int *setcountp, |
55e303ae A |
6621 | int dirty) |
6622 | { | |
6623 | struct vfs_drt_clustermap *cmap, **cmapp; | |
6624 | kern_return_t kret; | |
6625 | int i, index, pgoff, pgcount, setcount, ecount; | |
6626 | ||
6627 | cmapp = (struct vfs_drt_clustermap **)private; | |
6628 | cmap = *cmapp; | |
6629 | ||
6630 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0); | |
6631 | ||
6632 | if (setcountp != NULL) | |
6633 | *setcountp = 0; | |
6634 | ||
6635 | /* allocate a cluster map if we don't already have one */ | |
6636 | if (cmap == NULL) { | |
6637 | /* no cluster map, nothing to clean */ | |
6638 | if (!dirty) { | |
6639 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0); | |
6640 | return(KERN_SUCCESS); | |
6641 | } | |
6642 | kret = vfs_drt_alloc_map(cmapp); | |
6643 | if (kret != KERN_SUCCESS) { | |
6644 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0); | |
6645 | return(kret); | |
6646 | } | |
6647 | } | |
6648 | setcount = 0; | |
6649 | ||
6650 | /* | |
6651 | * Iterate over the length of the region. | |
6652 | */ | |
6653 | while (length > 0) { | |
6654 | /* | |
6655 | * Get the hashtable index for this offset. | |
6656 | * | |
6657 | * XXX this will add blank entries if we are clearing a range | |
6658 | * that hasn't been dirtied. | |
6659 | */ | |
6660 | kret = vfs_drt_get_index(cmapp, offset, &index, 0); | |
6661 | cmap = *cmapp; /* may have changed! */ | |
6662 | /* this may be a partial-success return */ | |
6663 | if (kret != KERN_SUCCESS) { | |
6664 | if (setcountp != NULL) | |
6665 | *setcountp = setcount; | |
6666 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0); | |
6667 | ||
6668 | return(kret); | |
6669 | } | |
6670 | ||
6671 | /* | |
6672 | * Work out how many pages we're modifying in this | |
6673 | * hashtable entry. | |
6674 | */ | |
6675 | pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE; | |
6676 | pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff)); | |
6677 | ||
6678 | /* | |
6679 | * Iterate over pages, dirty/clearing as we go. | |
6680 | */ | |
6681 | ecount = DRT_HASH_GET_COUNT(cmap, index); | |
6682 | for (i = 0; i < pgcount; i++) { | |
6683 | if (dirty) { | |
6684 | if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
6685 | DRT_HASH_SET_BIT(cmap, index, pgoff + i); | |
6686 | ecount++; | |
6687 | setcount++; | |
6688 | } | |
6689 | } else { | |
6690 | if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
6691 | DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i); | |
6692 | ecount--; | |
6693 | setcount++; | |
6694 | } | |
6695 | } | |
6696 | } | |
6697 | DRT_HASH_SET_COUNT(cmap, index, ecount); | |
91447636 | 6698 | |
55e303ae A |
6699 | offset += pgcount * PAGE_SIZE; |
6700 | length -= pgcount * PAGE_SIZE; | |
6701 | } | |
6702 | if (setcountp != NULL) | |
6703 | *setcountp = setcount; | |
6704 | ||
6705 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0); | |
6706 | ||
6707 | return(KERN_SUCCESS); | |
6708 | } | |
6709 | ||
6710 | /* | |
6711 | * Mark a set of pages as dirty/clean. | |
6712 | * | |
6713 | * This is a public interface. | |
6714 | * | |
6715 | * cmapp | |
6716 | * Pointer to storage suitable for holding a pointer. Note that | |
6717 | * this must either be NULL or a value set by this function. | |
6718 | * | |
6719 | * size | |
6720 | * Current file size in bytes. | |
6721 | * | |
6722 | * offset | |
6723 | * Offset of the first page to be marked as dirty, in bytes. Must be | |
6724 | * page-aligned. | |
6725 | * | |
6726 | * length | |
6727 | * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE. | |
6728 | * | |
6729 | * setcountp | |
6730 | * Number of pages newly marked dirty by this call (optional). | |
6731 | * | |
6732 | * Returns KERN_SUCCESS if all the pages were successfully marked. | |
6733 | */ | |
6734 | static kern_return_t | |
2d21ac55 | 6735 | vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp) |
55e303ae A |
6736 | { |
6737 | /* XXX size unused, drop from interface */ | |
6738 | return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1)); | |
6739 | } | |
6740 | ||
91447636 | 6741 | #if 0 |
55e303ae A |
6742 | static kern_return_t |
6743 | vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) | |
6744 | { | |
6745 | return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0)); | |
6746 | } | |
91447636 | 6747 | #endif |
55e303ae A |
6748 | |
6749 | /* | |
6750 | * Get a cluster of dirty pages. | |
6751 | * | |
6752 | * This is a public interface. | |
6753 | * | |
6754 | * cmapp | |
6755 | * Pointer to storage managed by drt_mark_pages. Note that this must | |
6756 | * be NULL or a value set by drt_mark_pages. | |
6757 | * | |
6758 | * offsetp | |
6759 | * Returns the byte offset into the file of the first page in the cluster. | |
6760 | * | |
6761 | * lengthp | |
6762 | * Returns the length in bytes of the cluster of dirty pages. | |
6763 | * | |
6764 | * Returns success if a cluster was found. If KERN_FAILURE is returned, there | |
6765 | * are no dirty pages meeting the minmum size criteria. Private storage will | |
6766 | * be released if there are no more dirty pages left in the map | |
6767 | * | |
6768 | */ | |
6769 | static kern_return_t | |
6770 | vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) | |
6771 | { | |
6772 | struct vfs_drt_clustermap *cmap; | |
6773 | u_int64_t offset; | |
6774 | u_int length; | |
2d21ac55 A |
6775 | u_int32_t j; |
6776 | int index, i, fs, ls; | |
55e303ae A |
6777 | |
6778 | /* sanity */ | |
6779 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
6780 | return(KERN_FAILURE); | |
6781 | cmap = *cmapp; | |
6782 | ||
6783 | /* walk the hashtable */ | |
6784 | for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) { | |
6785 | index = DRT_HASH(cmap, offset); | |
6786 | ||
6787 | if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0)) | |
6788 | continue; | |
6789 | ||
6790 | /* scan the bitfield for a string of bits */ | |
6791 | fs = -1; | |
6792 | ||
6793 | for (i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
6794 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { | |
6795 | fs = i; | |
6796 | break; | |
6797 | } | |
6798 | } | |
6799 | if (fs == -1) { | |
6800 | /* didn't find any bits set */ | |
6801 | panic("vfs_drt: entry summary count > 0 but no bits set in map"); | |
6802 | } | |
6803 | for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) { | |
6804 | if (!DRT_HASH_TEST_BIT(cmap, index, i)) | |
6805 | break; | |
6806 | } | |
6807 | ||
6808 | /* compute offset and length, mark pages clean */ | |
6809 | offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs); | |
6810 | length = ls * PAGE_SIZE; | |
6811 | vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); | |
6812 | cmap->scm_lastclean = index; | |
6813 | ||
6814 | /* return successful */ | |
6815 | *offsetp = (off_t)offset; | |
6816 | *lengthp = length; | |
6817 | ||
6818 | vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0); | |
6819 | return(KERN_SUCCESS); | |
6820 | } | |
6821 | /* | |
6822 | * We didn't find anything... hashtable is empty | |
6823 | * emit stats into trace buffer and | |
6824 | * then free it | |
6825 | */ | |
6826 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
6827 | cmap->scm_modulus, | |
6828 | cmap->scm_buckets, | |
6829 | cmap->scm_lastclean, | |
6830 | cmap->scm_iskips); | |
6831 | ||
6832 | vfs_drt_free_map(cmap); | |
6833 | *cmapp = NULL; | |
6834 | ||
6835 | return(KERN_FAILURE); | |
6836 | } | |
6837 | ||
6838 | ||
6839 | static kern_return_t | |
6840 | vfs_drt_control(void **cmapp, int op_type) | |
6841 | { | |
6842 | struct vfs_drt_clustermap *cmap; | |
6843 | ||
6844 | /* sanity */ | |
6845 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
6846 | return(KERN_FAILURE); | |
6847 | cmap = *cmapp; | |
6848 | ||
6849 | switch (op_type) { | |
6850 | case 0: | |
6851 | /* emit stats into trace buffer */ | |
6852 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
6853 | cmap->scm_modulus, | |
6854 | cmap->scm_buckets, | |
6855 | cmap->scm_lastclean, | |
6856 | cmap->scm_iskips); | |
6857 | ||
6858 | vfs_drt_free_map(cmap); | |
6859 | *cmapp = NULL; | |
6860 | break; | |
6861 | ||
6862 | case 1: | |
6863 | cmap->scm_lastclean = 0; | |
6864 | break; | |
6865 | } | |
6866 | return(KERN_SUCCESS); | |
6867 | } | |
6868 | ||
6869 | ||
6870 | ||
6871 | /* | |
6872 | * Emit a summary of the state of the clustermap into the trace buffer | |
6873 | * along with some caller-provided data. | |
6874 | */ | |
91447636 | 6875 | #if KDEBUG |
55e303ae | 6876 | static void |
91447636 | 6877 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) |
55e303ae A |
6878 | { |
6879 | KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); | |
6880 | } | |
91447636 A |
6881 | #else |
6882 | static void | |
6883 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, | |
6884 | __unused int arg1, __unused int arg2, __unused int arg3, | |
6885 | __unused int arg4) | |
6886 | { | |
6887 | } | |
6888 | #endif | |
55e303ae | 6889 | |
91447636 | 6890 | #if 0 |
55e303ae A |
6891 | /* |
6892 | * Perform basic sanity check on the hash entry summary count | |
6893 | * vs. the actual bits set in the entry. | |
6894 | */ | |
6895 | static void | |
6896 | vfs_drt_sanity(struct vfs_drt_clustermap *cmap) | |
6897 | { | |
6898 | int index, i; | |
6899 | int bits_on; | |
6900 | ||
6901 | for (index = 0; index < cmap->scm_modulus; index++) { | |
6902 | if (DRT_HASH_VACANT(cmap, index)) | |
6903 | continue; | |
6904 | ||
6905 | for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
6906 | if (DRT_HASH_TEST_BIT(cmap, index, i)) | |
6907 | bits_on++; | |
6908 | } | |
6909 | if (bits_on != DRT_HASH_GET_COUNT(cmap, index)) | |
6910 | panic("bits_on = %d, index = %d\n", bits_on, index); | |
6911 | } | |
b4c24cb9 | 6912 | } |
91447636 | 6913 | #endif |