]> git.saurik.com Git - apple/xnu.git/blame - bsd/netinet6/nd6_prproxy.c
xnu-2050.7.9.tar.gz
[apple/xnu.git] / bsd / netinet6 / nd6_prproxy.c
CommitLineData
316670eb
A
1/*
2 * Copyright (c) 2011-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29/*
30 * Prefix-based Neighbor Discovery Proxy
31 *
32 * When an interface is marked with the ND6_IFF_PROXY_PREFIXES flag, all
33 * of current and future non-scoped on-link prefixes configured on the
34 * interface will be shared with the scoped variant of such prefixes on
35 * other interfaces. This allows for one or more prefixes to be shared
36 * across multiple links, with full support for Duplicate Addres Detection,
37 * Address Resolution and Neighbor Unreachability Detection.
38 *
39 * A non-scoped prefix may be configured statically, or dynamically via
40 * Router Advertisement. An interface is said to be an "upstream" interface
41 * when it is marked with ND6_IFF_PROXY_PREFIXES and has at least one prefix
42 * that is non-scoped (global, not scoped.) Such prefixes are marked with
43 * the NDPRF_PRPROXY flag.
44 *
45 * A scoped prefix typically gets configured by way of adding an address
46 * to a "downstream" interface, when the added address is part of an existing
47 * prefix that is allowed to be shared (i.e. NDPRF_PRPROXY prefixes.) Unlike
48 * non-scoped prefixes, however, scoped prefixes will never be marked with
49 * the NDPRF_PRPROXY flag.
50 *
51 * The setting of NDPRF_PRPROXY depends on whether the prefix is on-link;
52 * an off-link prefix on an interface marked with ND6_IFF_PROXY_PREFIXES
53 * will not cause NDPRF_PRPROXY to be set (it will only happen when that
54 * prefix goes on-link.) Likewise, a previously on-link prefix that has
55 * transitioned to off-link will cause its NDPRF_PRPROXY flag to be cleared.
56 *
57 * Prefix proxying relies on IPv6 Scoped Routing to be in effect, as it would
58 * otherwise be impossible to install scoped prefix route entries in the
59 * routing table. By default, such cloning prefix routes will generate cloned
60 * routes that are scoped according to their interfaces. Because prefix
61 * proxying is essentially creating a larger network comprised of multiple
62 * links sharing a prefix, we need to treat the cloned routes as if they
63 * weren't scoped route entries. This requires marking such cloning prefix
64 * routes with the RTF_PROXY flag, which serves as an indication that the
65 * route entry (and its clones) are part of a proxied prefix, and that the
66 * entries are non-scoped.
67 *
68 * In order to handle solicited-node destined ND packets (Address Resolution,
69 * Neighbor Unreachability Detection), prefix proxying also requires that the
70 * "upstream" and "downstream" interfaces be configured for all-multicast mode.
71 *
72 * The setting and clearing of RTF_PROXY flag, as well as the entering and
73 * exiting of all-multicast mode on those interfaces happen when a prefix
74 * transitions between on-link and off-link (vice versa.)
75 *
76 * Note that this is not a strict implementation of RFC 4389, but rather a
77 * derivative based on similar concept. In particular, we only proxy NS and
78 * NA packets; RA packets are never proxied. Care should be taken to enable
79 * prefix proxying only on non-looping network topology.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/malloc.h>
85#include <sys/mbuf.h>
86#include <sys/errno.h>
87#include <sys/syslog.h>
88#include <sys/sysctl.h>
89#include <sys/mcache.h>
90#include <sys/protosw.h>
91
92#include <kern/queue.h>
93#include <kern/zalloc.h>
94
95#include <net/if.h>
96#include <net/if_var.h>
97#include <net/if_types.h>
98#include <net/route.h>
99
100#include <netinet/in.h>
101#include <netinet/in_var.h>
102#include <netinet6/in6_var.h>
103#include <netinet/ip6.h>
104#include <netinet6/ip6_var.h>
105#include <netinet/icmp6.h>
106#include <netinet6/nd6.h>
107#include <netinet6/scope6_var.h>
108
109struct nd6_prproxy_prelist {
110 SLIST_ENTRY(nd6_prproxy_prelist) ndprl_le;
111 struct nd_prefix *ndprl_pr; /* prefix */
112 struct nd_prefix *ndprl_up; /* non-NULL for upstream */
113 struct ifnet *ndprl_fwd_ifp; /* outgoing interface */
114 boolean_t ndprl_sol; /* unicast solicitor? */
115 struct in6_addr ndprl_sol_saddr; /* solicitor's address */
116};
117
118/*
119 * Soliciting node (source) record.
120 */
121struct nd6_prproxy_solsrc {
122 TAILQ_ENTRY(nd6_prproxy_solsrc) solsrc_tqe;
123 struct in6_addr solsrc_saddr; /* soliciting (src) address */
124 struct ifnet *solsrc_ifp; /* iface where NS arrived on */
125};
126
127/*
128 * Solicited node (target) record.
129 */
130struct nd6_prproxy_soltgt {
131 RB_ENTRY(nd6_prproxy_soltgt) soltgt_link; /* RB tree links */
132 struct soltgt_key_s {
133 struct in6_addr taddr; /* solicited (tgt) address */
134 } soltgt_key;
135 u_int64_t soltgt_expire; /* expiration time */
136 u_int32_t soltgt_cnt; /* total # of solicitors */
137 TAILQ_HEAD(, nd6_prproxy_solsrc) soltgt_q;
138};
139
140SLIST_HEAD(nd6_prproxy_prelist_head, nd6_prproxy_prelist);
141
142static void nd6_prproxy_prelist_setroute(boolean_t enable,
143 struct nd6_prproxy_prelist_head *, struct nd6_prproxy_prelist_head *);
144static struct nd6_prproxy_prelist *nd6_ndprl_alloc(int);
145static void nd6_ndprl_free(struct nd6_prproxy_prelist *);
146static struct nd6_prproxy_solsrc *nd6_solsrc_alloc(int);
147static void nd6_solsrc_free(struct nd6_prproxy_solsrc *);
148static boolean_t nd6_solsrc_enq(struct nd_prefix *, struct ifnet *,
149 struct in6_addr *, struct in6_addr *);
150static boolean_t nd6_solsrc_deq(struct nd_prefix *, struct in6_addr *,
151 struct in6_addr *, struct ifnet **);
152static struct nd6_prproxy_soltgt *nd6_soltgt_alloc(int);
153static void nd6_soltgt_free(struct nd6_prproxy_soltgt *);
154static void nd6_soltgt_prune(struct nd6_prproxy_soltgt *, u_int32_t);
155static __inline int soltgt_cmp(const struct nd6_prproxy_soltgt *,
156 const struct nd6_prproxy_soltgt *);
157static void nd6_prproxy_sols_purge(struct nd_prefix *, u_int64_t);
158
159RB_PROTOTYPE_SC_PREV(__private_extern__, prproxy_sols_tree, nd6_prproxy_soltgt,
160 soltgt_link, soltgt_cmp);
161
162/*
163 * Time (in seconds) before a target record expires (is idle).
164 */
165#define ND6_TGT_SOLS_EXPIRE 5
166
167/*
168 * Maximum number of queued soliciting (source) records per target.
169 */
170#define ND6_MAX_SRC_SOLS_DEFAULT 4
171
172/*
173 * Maximum number of queued solicited (target) records per prefix.
174 */
175#define ND6_MAX_TGT_SOLS_DEFAULT 8
176
177static u_int32_t nd6_max_tgt_sols = ND6_MAX_TGT_SOLS_DEFAULT;
178static u_int32_t nd6_max_src_sols = ND6_MAX_SRC_SOLS_DEFAULT;
179
180static unsigned int ndprl_size; /* size of zone element */
181static struct zone *ndprl_zone; /* nd6_prproxy_prelist zone */
182
183#define NDPRL_ZONE_MAX 256 /* maximum elements in zone */
184#define NDPRL_ZONE_NAME "nd6_prproxy_prelist" /* name for zone */
185
186static unsigned int solsrc_size; /* size of zone element */
187static struct zone *solsrc_zone; /* nd6_prproxy_solsrc zone */
188
189#define SOLSRC_ZONE_MAX 256 /* maximum elements in zone */
190#define SOLSRC_ZONE_NAME "nd6_prproxy_solsrc" /* name for zone */
191
192static unsigned int soltgt_size; /* size of zone element */
193static struct zone *soltgt_zone; /* nd6_prproxy_soltgt zone */
194
195#define SOLTGT_ZONE_MAX 256 /* maximum elements in zone */
196#define SOLTGT_ZONE_NAME "nd6_prproxy_soltgt" /* name for zone */
197
198/* The following is protected by ndpr_lock */
199RB_GENERATE_PREV(prproxy_sols_tree, nd6_prproxy_soltgt,
200 soltgt_link, soltgt_cmp);
201
202/* The following is protected by proxy6_lock (for updates) */
203u_int32_t nd6_prproxy;
204
205extern lck_mtx_t *nd6_mutex;
206
207SYSCTL_DECL(_net_inet6_icmp6);
208
209SYSCTL_UINT(_net_inet6_icmp6, OID_AUTO, nd6_maxsolstgt,
210 CTLFLAG_RW | CTLFLAG_LOCKED, &nd6_max_tgt_sols, ND6_MAX_TGT_SOLS_DEFAULT,
211 "maximum number of outstanding solicited targets per prefix");
212
213SYSCTL_UINT(_net_inet6_icmp6, OID_AUTO, nd6_maxproxiedsol,
214 CTLFLAG_RW | CTLFLAG_LOCKED, &nd6_max_src_sols, ND6_MAX_SRC_SOLS_DEFAULT,
215 "maximum number of outstanding solicitations per target");
216
217SYSCTL_UINT(_net_inet6_icmp6, OID_AUTO, prproxy_cnt,
218 CTLFLAG_RD | CTLFLAG_LOCKED, &nd6_prproxy, 0,
219 "total number of proxied prefixes");
220
221/*
222 * Called by nd6_init() during initialization time.
223 */
224void
225nd6_prproxy_init(void)
226{
227 ndprl_size = sizeof (struct nd6_prproxy_prelist);
228 ndprl_zone = zinit(ndprl_size, NDPRL_ZONE_MAX * ndprl_size, 0,
229 NDPRL_ZONE_NAME);
230 if (ndprl_zone == NULL)
231 panic("%s: failed allocating ndprl_zone", __func__);
232
233 zone_change(ndprl_zone, Z_EXPAND, TRUE);
234 zone_change(ndprl_zone, Z_CALLERACCT, FALSE);
235
236 solsrc_size = sizeof (struct nd6_prproxy_solsrc);
237 solsrc_zone = zinit(solsrc_size, SOLSRC_ZONE_MAX * solsrc_size, 0,
238 SOLSRC_ZONE_NAME);
239 if (solsrc_zone == NULL)
240 panic("%s: failed allocating solsrc_zone", __func__);
241
242 zone_change(solsrc_zone, Z_EXPAND, TRUE);
243 zone_change(solsrc_zone, Z_CALLERACCT, FALSE);
244
245 soltgt_size = sizeof (struct nd6_prproxy_soltgt);
246 soltgt_zone = zinit(soltgt_size, SOLTGT_ZONE_MAX * soltgt_size, 0,
247 SOLTGT_ZONE_NAME);
248 if (soltgt_zone == NULL)
249 panic("%s: failed allocating soltgt_zone", __func__);
250
251 zone_change(soltgt_zone, Z_EXPAND, TRUE);
252 zone_change(soltgt_zone, Z_CALLERACCT, FALSE);
253}
254
255static struct nd6_prproxy_prelist *
256nd6_ndprl_alloc(int how)
257{
258 struct nd6_prproxy_prelist *ndprl;
259
260 ndprl = (how == M_WAITOK) ? zalloc(ndprl_zone) :
261 zalloc_noblock(ndprl_zone);
262 if (ndprl != NULL)
263 bzero(ndprl, ndprl_size);
264
265 return (ndprl);
266}
267
268static void
269nd6_ndprl_free(struct nd6_prproxy_prelist *ndprl)
270{
271 zfree(ndprl_zone, ndprl);
272}
273
274/*
275 * Apply routing function on the affected upstream and downstream prefixes,
276 * i.e. either set or clear RTF_PROXY on the cloning prefix route; all route
277 * entries that were cloned off these prefixes will be blown away. Caller
278 * must have acquried proxy6_lock and must not be holding nd6_mutex.
279 */
280static void
281nd6_prproxy_prelist_setroute(boolean_t enable,
282 struct nd6_prproxy_prelist_head *up_head,
283 struct nd6_prproxy_prelist_head *down_head)
284{
285 struct nd6_prproxy_prelist *up, *down, *ndprl_tmp;
286 struct nd_prefix *pr;
287
288 lck_mtx_assert(&proxy6_lock, LCK_MTX_ASSERT_OWNED);
289 lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED);
290
291 SLIST_FOREACH_SAFE(up, up_head, ndprl_le, ndprl_tmp) {
292 struct rtentry *rt;
293 boolean_t prproxy;
294
295 SLIST_REMOVE(up_head, up, nd6_prproxy_prelist, ndprl_le);
296 pr = up->ndprl_pr;
297 VERIFY(up->ndprl_up == NULL);
298
299 NDPR_LOCK(pr);
300 prproxy = (pr->ndpr_stateflags & NDPRF_PRPROXY);
301 VERIFY(!prproxy || ((pr->ndpr_stateflags & NDPRF_ONLINK) &&
302 !(pr->ndpr_stateflags & NDPRF_IFSCOPE)));
303
304 nd6_prproxy_sols_reap(pr);
305 VERIFY(pr->ndpr_prproxy_sols_cnt == 0);
306 VERIFY(RB_EMPTY(&pr->ndpr_prproxy_sols));
307
308 if (enable && pr->ndpr_allmulti_cnt == 0) {
309 nd6_prproxy++;
310 pr->ndpr_allmulti_cnt++;
311 if_allmulti(pr->ndpr_ifp, TRUE);
312 } else if (!enable && pr->ndpr_allmulti_cnt > 0) {
313 nd6_prproxy--;
314 pr->ndpr_allmulti_cnt--;
315 if_allmulti(pr->ndpr_ifp, FALSE);
316 }
317
318 if ((rt = pr->ndpr_rt) != NULL) {
319 if ((enable && prproxy) || (!enable && !prproxy))
320 RT_ADDREF(rt);
321 else
322 rt = NULL;
323 NDPR_UNLOCK(pr);
324 } else {
325 NDPR_UNLOCK(pr);
326 }
327 NDPR_REMREF(pr);
328 if (rt != NULL) {
329 rt_set_proxy(rt, enable);
330 rtfree(rt);
331 }
332 nd6_ndprl_free(up);
333 }
334
335 SLIST_FOREACH_SAFE(down, down_head, ndprl_le, ndprl_tmp) {
336 struct nd_prefix *pr_up;
337 struct rtentry *rt;
338 boolean_t prproxy;
339
340 SLIST_REMOVE(down_head, down, nd6_prproxy_prelist, ndprl_le);
341 pr = down->ndprl_pr;
342 pr_up = down->ndprl_up;
343 VERIFY(pr_up != NULL);
344
345 NDPR_LOCK(pr_up);
346 prproxy = (pr_up->ndpr_stateflags & NDPRF_PRPROXY);
347 VERIFY(!prproxy || ((pr_up->ndpr_stateflags & NDPRF_ONLINK) &&
348 !(pr_up->ndpr_stateflags & NDPRF_IFSCOPE)));
349 NDPR_UNLOCK(pr_up);
350
351 NDPR_LOCK(pr);
352 if (enable && pr->ndpr_allmulti_cnt == 0) {
353 pr->ndpr_allmulti_cnt++;
354 if_allmulti(pr->ndpr_ifp, TRUE);
355 } else if (!enable && pr->ndpr_allmulti_cnt > 0) {
356 pr->ndpr_allmulti_cnt--;
357 if_allmulti(pr->ndpr_ifp, FALSE);
358 }
359
360 if ((rt = pr->ndpr_rt) != NULL) {
361 if ((enable && prproxy) || (!enable && !prproxy))
362 RT_ADDREF(rt);
363 else
364 rt = NULL;
365 NDPR_UNLOCK(pr);
366 } else {
367 NDPR_UNLOCK(pr);
368 }
369 NDPR_REMREF(pr);
370 NDPR_REMREF(pr_up);
371 if (rt != NULL) {
372 rt_set_proxy(rt, enable);
373 rtfree(rt);
374 }
375 nd6_ndprl_free(down);
376 }
377}
378
379/*
380 * Enable/disable prefix proxying on an interface; typically called
381 * as part of handling SIOCSIFINFO_FLAGS[IFEF_IPV6_ROUTER].
382 */
383int
384nd6_if_prproxy(struct ifnet *ifp, boolean_t enable)
385{
386 SLIST_HEAD(, nd6_prproxy_prelist) up_head;
387 SLIST_HEAD(, nd6_prproxy_prelist) down_head;
388 struct nd6_prproxy_prelist *up, *down;
389 struct nd_prefix *pr;
390
391 /* Can't be enabled if we are an advertising router on the interface */
392 ifnet_lock_shared(ifp);
393 if (enable && (ifp->if_eflags & IFEF_IPV6_ROUTER)) {
394 ifnet_lock_done(ifp);
395 return (EBUSY);
396 }
397 ifnet_lock_done(ifp);
398
399 SLIST_INIT(&up_head);
400 SLIST_INIT(&down_head);
401
402 /*
403 * Serialize the clearing/setting of NDPRF_PRPROXY.
404 */
405 lck_mtx_lock(&proxy6_lock);
406
407 /*
408 * First build a list of upstream prefixes on this interface for
409 * which we need to enable/disable prefix proxy functionality.
410 */
411 lck_mtx_lock(nd6_mutex);
412 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
413 NDPR_LOCK(pr);
414 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr) ||
415 (!enable && !(pr->ndpr_stateflags & NDPRF_PRPROXY)) ||
416 (enable && (pr->ndpr_stateflags & NDPRF_PRPROXY)) ||
417 (pr->ndpr_stateflags & NDPRF_IFSCOPE) ||
418 pr->ndpr_ifp != ifp) {
419 NDPR_UNLOCK(pr);
420 continue;
421 }
422
423 /*
424 * At present, in order for the prefix to be eligible
425 * as a proxying/proxied prefix, we require that the
426 * prefix route entry be marked as a cloning route with
427 * RTF_PROXY; i.e. nd6_need_cache() needs to return
428 * true for the interface type.
429 */
430 if (enable && (pr->ndpr_stateflags & NDPRF_ONLINK) &&
431 nd6_need_cache(ifp)) {
432 pr->ndpr_stateflags |= NDPRF_PRPROXY;
433 NDPR_ADDREF_LOCKED(pr);
434 NDPR_UNLOCK(pr);
435 } else if (!enable) {
436 pr->ndpr_stateflags &= ~NDPRF_PRPROXY;
437 NDPR_ADDREF_LOCKED(pr);
438 NDPR_UNLOCK(pr);
439 } else {
440 NDPR_UNLOCK(pr);
441 pr = NULL; /* don't go further */
442 }
443
444 if (pr == NULL)
445 continue;
446
447 up = nd6_ndprl_alloc(M_WAITOK);
448 if (up == NULL) {
449 NDPR_REMREF(pr);
450 continue;
451 }
452
453 up->ndprl_pr = pr; /* keep reference from above */
454 SLIST_INSERT_HEAD(&up_head, up, ndprl_le);
455 }
456
457 /*
458 * Now build a list of matching (scoped) downstream prefixes on other
459 * interfaces which need to be enabled/disabled accordingly. Note that
460 * the NDPRF_PRPROXY is never set/cleared on the downstream prefixes.
461 */
462 SLIST_FOREACH(up, &up_head, ndprl_le) {
463 struct nd_prefix *fwd;
464 struct in6_addr pr_addr;
465 u_char pr_len;
466
467 pr = up->ndprl_pr;
468
469 NDPR_LOCK(pr);
470 bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof (pr_addr));
471 pr_len = pr->ndpr_plen;
472 NDPR_UNLOCK(pr);
473
474 for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) {
475 NDPR_LOCK(fwd);
476 if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) ||
477 !(fwd->ndpr_stateflags & NDPRF_IFSCOPE) ||
478 fwd->ndpr_plen != pr_len ||
479 !in6_are_prefix_equal(&fwd->ndpr_prefix.sin6_addr,
480 &pr_addr, pr_len)) {
481 NDPR_UNLOCK(fwd);
482 continue;
483 }
484 NDPR_UNLOCK(fwd);
485
486 down = nd6_ndprl_alloc(M_WAITOK);
487 if (down == NULL)
488 continue;
489
490 NDPR_ADDREF(fwd);
491 down->ndprl_pr = fwd;
492 NDPR_ADDREF(pr);
493 down->ndprl_up = pr;
494 SLIST_INSERT_HEAD(&down_head, down, ndprl_le);
495 }
496 }
497 lck_mtx_unlock(nd6_mutex);
498
499 /*
500 * Apply routing function on prefixes; callee will free resources.
501 */
502 nd6_prproxy_prelist_setroute(enable,
503 (struct nd6_prproxy_prelist_head *)&up_head,
504 (struct nd6_prproxy_prelist_head *)&down_head);
505
506 VERIFY(SLIST_EMPTY(&up_head));
507 VERIFY(SLIST_EMPTY(&down_head));
508
509 lck_mtx_unlock(&proxy6_lock);
510
511 return (0);
512}
513
514/*
515 * Called from the input path to determine whether the packet is destined
516 * to a proxied node; if so, mark the mbuf with MAUXF_PROXY_DST so that
517 * icmp6_input() knows that this is not to be delivered to socket(s).
518 */
519boolean_t
520nd6_prproxy_isours(struct mbuf *m, struct ip6_hdr *ip6, struct route_in6 *ro6,
521 unsigned int ifscope)
522{
523 struct rtentry *rt;
524 boolean_t ours = FALSE;
525
526 if (ip6->ip6_hlim != IPV6_MAXHLIM || ip6->ip6_nxt != IPPROTO_ICMPV6)
527 goto done;
528
529 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst) ||
530 IN6_IS_ADDR_MC_LINKLOCAL(&ip6->ip6_dst)) {
531 VERIFY(ro6 == NULL);
532 ours = TRUE;
533 goto done;
534 } else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
535 goto done;
536 }
537
538 if (ro6 == NULL)
539 goto done;
540
541 if ((rt = ro6->ro_rt) != NULL)
542 RT_LOCK(rt);
543
544 if (rt == NULL || !(rt->rt_flags & RTF_UP) ||
545 rt->generation_id != route_generation) {
546 if (rt != NULL) {
547 RT_UNLOCK(rt);
548 rtfree(rt);
549 rt = ro6->ro_rt = NULL;
550 }
551
552 /* Caller must have ensured this condition (not srcrt) */
553 VERIFY(IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
554 &ro6->ro_dst.sin6_addr));
555
556 rtalloc_scoped_ign((struct route *)ro6, RTF_PRCLONING, ifscope);
557 if ((rt = ro6->ro_rt) == NULL)
558 goto done;
559
560 RT_LOCK(rt);
561 }
562
563 ours = (rt->rt_flags & RTF_PROXY) ? TRUE : FALSE;
564 RT_UNLOCK(rt);
565
566done:
567 if (ours)
568 m->m_pkthdr.aux_flags |= MAUXF_PROXY_DST;
569
570 return (ours);
571}
572
573/*
574 * Called when a prefix transitions between on-link and off-link. Perform
575 * routing (RTF_PROXY) and interface (all-multicast) related operations on
576 * the affected prefixes.
577 */
578void
579nd6_prproxy_prelist_update(struct nd_prefix *pr_cur, struct nd_prefix *pr_up)
580{
581 SLIST_HEAD(, nd6_prproxy_prelist) up_head;
582 SLIST_HEAD(, nd6_prproxy_prelist) down_head;
583 struct nd6_prproxy_prelist *up, *down;
584 struct nd_prefix *pr;
585 struct in6_addr pr_addr;
586 boolean_t enable;
587 u_char pr_len;
588
589 SLIST_INIT(&up_head);
590 SLIST_INIT(&down_head);
591 VERIFY(pr_cur != NULL);
592
593 lck_mtx_assert(&proxy6_lock, LCK_MTX_ASSERT_OWNED);
594
595 /*
596 * Upstream prefix. If caller did not specify one, search for one
597 * based on the information in current prefix. Caller is expected
598 * to have held an extra reference for the passed-in prefixes.
599 */
600 lck_mtx_lock(nd6_mutex);
601 if (pr_up == NULL) {
602 NDPR_LOCK(pr_cur);
603 bcopy(&pr_cur->ndpr_prefix.sin6_addr, &pr_addr,
604 sizeof (pr_addr));
605 pr_len = pr_cur->ndpr_plen;
606 NDPR_UNLOCK(pr_cur);
607
608 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
609 NDPR_LOCK(pr);
610 if (!(pr->ndpr_stateflags & NDPRF_ONLINK) ||
611 !(pr->ndpr_stateflags & NDPRF_PRPROXY) ||
612 pr->ndpr_plen != pr_len ||
613 !in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr,
614 &pr_addr, pr_len)) {
615 NDPR_UNLOCK(pr);
616 continue;
617 }
618 NDPR_UNLOCK(pr);
619 break;
620 }
621
622 if ((pr_up = pr) == NULL) {
623 lck_mtx_unlock(nd6_mutex);
624 goto done;
625 }
626 NDPR_LOCK(pr_up);
627 } else {
628 NDPR_LOCK(pr_up);
629 bcopy(&pr_up->ndpr_prefix.sin6_addr, &pr_addr,
630 sizeof (pr_addr));
631 pr_len = pr_up->ndpr_plen;
632 }
633 NDPR_LOCK_ASSERT_HELD(pr_up);
634 /*
635 * Upstream prefix could be offlink by now; therefore we cannot
636 * assert that NDPRF_PRPROXY is set; however, we can insist that
637 * it must not be a scoped prefix.
638 */
639 VERIFY(!(pr_up->ndpr_stateflags & NDPRF_IFSCOPE));
640 enable = (pr_up->ndpr_stateflags & NDPRF_PRPROXY);
641 NDPR_UNLOCK(pr_up);
642
643 up = nd6_ndprl_alloc(M_WAITOK);
644 if (up == NULL) {
645 lck_mtx_unlock(nd6_mutex);
646 goto done;
647 }
648
649 NDPR_ADDREF(pr_up);
650 up->ndprl_pr = pr_up;
651 SLIST_INSERT_HEAD(&up_head, up, ndprl_le);
652
653 /*
654 * Now build a list of matching (scoped) downstream prefixes on other
655 * interfaces which need to be enabled/disabled accordingly. Note that
656 * the NDPRF_PRPROXY is never set/cleared on the downstream prefixes.
657 */
658 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
659 NDPR_LOCK(pr);
660 if (!(pr->ndpr_stateflags & NDPRF_ONLINK) ||
661 !(pr->ndpr_stateflags & NDPRF_IFSCOPE) ||
662 pr->ndpr_plen != pr_len ||
663 !in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr,
664 &pr_addr, pr_len)) {
665 NDPR_UNLOCK(pr);
666 continue;
667 }
668 NDPR_UNLOCK(pr);
669
670 down = nd6_ndprl_alloc(M_WAITOK);
671 if (down == NULL)
672 continue;
673
674 NDPR_ADDREF(pr);
675 down->ndprl_pr = pr;
676 NDPR_ADDREF(pr_up);
677 down->ndprl_up = pr_up;
678 SLIST_INSERT_HEAD(&down_head, down, ndprl_le);
679 }
680 lck_mtx_unlock(nd6_mutex);
681
682 /*
683 * Apply routing function on prefixes; callee will free resources.
684 */
685 nd6_prproxy_prelist_setroute(enable,
686 (struct nd6_prproxy_prelist_head *)&up_head,
687 (struct nd6_prproxy_prelist_head *)&down_head);
688
689done:
690 VERIFY(SLIST_EMPTY(&up_head));
691 VERIFY(SLIST_EMPTY(&down_head));
692}
693
694/*
695 * Given an interface address, determine whether or not the address
696 * is part of of a proxied prefix.
697 */
698boolean_t
699nd6_prproxy_ifaddr(struct in6_ifaddr *ia)
700{
701 struct nd_prefix *pr;
702 struct in6_addr addr, pr_mask;
703 u_int32_t pr_len;
704 boolean_t proxied = FALSE;
705
706 lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED);
707
708 IFA_LOCK(&ia->ia_ifa);
709 bcopy(&ia->ia_addr.sin6_addr, &addr, sizeof (addr));
710 bcopy(&ia->ia_prefixmask.sin6_addr, &pr_mask, sizeof (pr_mask));
711 pr_len = ia->ia_plen;
712 IFA_UNLOCK(&ia->ia_ifa);
713
714 lck_mtx_lock(nd6_mutex);
715 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
716 NDPR_LOCK(pr);
717 if ((pr->ndpr_stateflags & NDPRF_ONLINK) &&
718 (pr->ndpr_stateflags & NDPRF_PRPROXY) &&
719 in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr,
720 &addr, pr_len)) {
721 NDPR_UNLOCK(pr);
722 proxied = TRUE;
723 break;
724 }
725 NDPR_UNLOCK(pr);
726 }
727 lck_mtx_unlock(nd6_mutex);
728
729 return (proxied);
730}
731
732/*
733 * Perform automatic proxy function with NS output.
734 *
735 * If the target address matches a global prefix obtained from a router
736 * advertisement received on an interface with the ND6_IFF_PROXY_PREFIXES
737 * flag set, then we send solicitations for the target address to all other
738 * interfaces where a matching prefix is currently on-link, in addition to
739 * the original interface.
740 */
741void
742nd6_prproxy_ns_output(struct ifnet *ifp, struct in6_addr *daddr,
743 struct in6_addr *taddr, struct llinfo_nd6 *ln)
744{
745 SLIST_HEAD(, nd6_prproxy_prelist) ndprl_head;
746 struct nd6_prproxy_prelist *ndprl, *ndprl_tmp;
747 struct nd_prefix *pr, *fwd;
748 struct ifnet *fwd_ifp;
749 struct in6_addr pr_addr;
750 u_char pr_len;
751
752 SLIST_INIT(&ndprl_head);
753
754 lck_mtx_lock(nd6_mutex);
755
756 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
757 NDPR_LOCK(pr);
758 if (!(pr->ndpr_stateflags & NDPRF_ONLINK) ||
759 !(pr->ndpr_stateflags & NDPRF_PRPROXY) ||
760 !IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
761 taddr, &pr->ndpr_mask)) {
762 NDPR_UNLOCK(pr);
763 continue;
764 }
765
766 VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE));
767 bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof (pr_addr));
768 pr_len = pr->ndpr_plen;
769 NDPR_UNLOCK(pr);
770
771 for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) {
772 NDPR_LOCK(fwd);
773 if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) ||
774 fwd->ndpr_ifp == ifp ||
775 fwd->ndpr_plen != pr_len ||
776 !in6_are_prefix_equal(&fwd->ndpr_prefix.sin6_addr,
777 &pr_addr, pr_len)) {
778 NDPR_UNLOCK(fwd);
779 continue;
780 }
781
782 fwd_ifp = fwd->ndpr_ifp;
783 NDPR_UNLOCK(fwd);
784
785 ndprl = nd6_ndprl_alloc(M_WAITOK);
786 if (ndprl == NULL)
787 continue;
788
789 NDPR_ADDREF(fwd);
790 ndprl->ndprl_pr = fwd;
791 ndprl->ndprl_fwd_ifp = fwd_ifp;
792
793 SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le);
794 }
795 break;
796 }
797
798 lck_mtx_unlock(nd6_mutex);
799
800 SLIST_FOREACH_SAFE(ndprl, &ndprl_head, ndprl_le, ndprl_tmp) {
801 SLIST_REMOVE(&ndprl_head, ndprl, nd6_prproxy_prelist, ndprl_le);
802
803 pr = ndprl->ndprl_pr;
804 fwd_ifp = ndprl->ndprl_fwd_ifp;
805
806 if ((fwd_ifp->if_eflags & IFEF_IPV6_ND6ALT) != 0) {
807 NDPR_REMREF(pr);
808 nd6_ndprl_free(ndprl);
809 continue;
810 }
811
812 NDPR_LOCK(pr);
813 if (pr->ndpr_stateflags & NDPRF_ONLINK) {
814 NDPR_UNLOCK(pr);
815 nd6log2((LOG_DEBUG,
816 "%s%d: Sending cloned NS who has %s on %s%d\n",
817 fwd_ifp->if_name, fwd_ifp->if_unit,
818 ip6_sprintf(taddr), ifp->if_name,
819 ifp->if_unit));
820
821 nd6_ns_output(fwd_ifp, daddr, taddr, NULL, 0);
822 } else {
823 NDPR_UNLOCK(pr);
824 }
825 NDPR_REMREF(pr);
826
827 nd6_ndprl_free(ndprl);
828 }
829 VERIFY(SLIST_EMPTY(&ndprl_head));
830
831 nd6_ns_output(ifp, daddr, taddr, ln, 0);
832}
833
834/*
835 * Perform automatic proxy function with NS input.
836 *
837 * If the target address matches a global prefix obtained from a router
838 * advertisement received on an interface with the ND6_IFF_PROXY_PREFIXES
839 * flag set, then we send solicitations for the target address to all other
840 * interfaces where a matching prefix is currently on-link.
841 */
842void
843nd6_prproxy_ns_input(struct ifnet *ifp, struct in6_addr *saddr,
844 char *lladdr, int lladdrlen, struct in6_addr *daddr, struct in6_addr *taddr)
845{
846 SLIST_HEAD(, nd6_prproxy_prelist) ndprl_head;
847 struct nd6_prproxy_prelist *ndprl, *ndprl_tmp;
848 struct nd_prefix *pr, *fwd;
849 struct ifnet *fwd_ifp;
850 struct in6_addr pr_addr;
851 u_char pr_len;
852 boolean_t solrec = FALSE;
853
854 SLIST_INIT(&ndprl_head);
855
856 lck_mtx_lock(nd6_mutex);
857
858 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
859 NDPR_LOCK(pr);
860 if (!(pr->ndpr_stateflags & NDPRF_ONLINK) ||
861 !(pr->ndpr_stateflags & NDPRF_PRPROXY) ||
862 !IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
863 taddr, &pr->ndpr_mask)) {
864 NDPR_UNLOCK(pr);
865 continue;
866 }
867
868 VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE));
869 bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof (pr_addr));
870 pr_len = pr->ndpr_plen;
871
872 /*
873 * If this is a NS for NUD/AR, record it so that we know
874 * how to forward the NA reply later on (if/when it arrives.)
875 * Give up if we fail to save the NS info.
876 */
877 if ((solrec = !IN6_IS_ADDR_UNSPECIFIED(saddr)) &&
878 !nd6_solsrc_enq(pr, ifp, saddr, taddr)) {
879 NDPR_UNLOCK(pr);
880 solrec = FALSE;
881 break; /* bail out */
882 } else {
883 NDPR_UNLOCK(pr);
884 }
885
886 for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) {
887 NDPR_LOCK(fwd);
888 if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) ||
889 fwd->ndpr_ifp == ifp ||
890 fwd->ndpr_plen != pr_len ||
891 !in6_are_prefix_equal(&fwd->ndpr_prefix.sin6_addr,
892 &pr_addr, pr_len)) {
893 NDPR_UNLOCK(fwd);
894 continue;
895 }
896
897 fwd_ifp = fwd->ndpr_ifp;
898 NDPR_UNLOCK(fwd);
899
900 ndprl = nd6_ndprl_alloc(M_WAITOK);
901 if (ndprl == NULL)
902 continue;
903
904 NDPR_ADDREF(fwd);
905 ndprl->ndprl_pr = fwd;
906 ndprl->ndprl_fwd_ifp = fwd_ifp;
907 ndprl->ndprl_sol = solrec;
908
909 SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le);
910 }
911 break;
912 }
913
914 lck_mtx_unlock(nd6_mutex);
915
916 /*
917 * If this is a recorded solicitation (NS for NUD/AR), create
918 * or update the neighbor cache entry for the soliciting node.
919 * Later on, when the NA reply arrives, we will need this cache
920 * entry in order to send the NA back to the original solicitor.
921 * Without a neighbor cache entry, we'd end up with an endless
922 * cycle of NS ping-pong between the us (the proxy) and the node
923 * which is soliciting for the address.
924 */
925 if (solrec) {
926 VERIFY(!IN6_IS_ADDR_UNSPECIFIED(saddr));
927 nd6_cache_lladdr(ifp, saddr, lladdr, lladdrlen,
928 ND_NEIGHBOR_SOLICIT, 0);
929 }
930
931 SLIST_FOREACH_SAFE(ndprl, &ndprl_head, ndprl_le, ndprl_tmp) {
932 SLIST_REMOVE(&ndprl_head, ndprl, nd6_prproxy_prelist, ndprl_le);
933
934 pr = ndprl->ndprl_pr;
935 fwd_ifp = ndprl->ndprl_fwd_ifp;
936
937 if ((fwd_ifp->if_eflags & IFEF_IPV6_ND6ALT) != 0) {
938 NDPR_REMREF(pr);
939 nd6_ndprl_free(ndprl);
940 continue;
941 }
942
943 NDPR_LOCK(pr);
944 if (pr->ndpr_stateflags & NDPRF_ONLINK) {
945 NDPR_UNLOCK(pr);
946 nd6log2((LOG_DEBUG,
947 "%s%d: Forwarding NS (%s) from %s to %s who has %s "
948 "on %s%d\n", fwd_ifp->if_name, fwd_ifp->if_unit,
949 ndprl->ndprl_sol ? "NUD/AR" : "DAD",
950 ip6_sprintf(saddr), ip6_sprintf(daddr),
951 ip6_sprintf(taddr), ifp->if_name, ifp->if_unit));
952
953 nd6_ns_output(fwd_ifp, ndprl->ndprl_sol ? taddr : NULL,
954 taddr, NULL, !ndprl->ndprl_sol);
955 } else {
956 NDPR_UNLOCK(pr);
957 }
958 NDPR_REMREF(pr);
959
960 nd6_ndprl_free(ndprl);
961 }
962 VERIFY(SLIST_EMPTY(&ndprl_head));
963}
964
965/*
966 * Perform automatic proxy function with NA input.
967 *
968 * If the target address matches a global prefix obtained from a router
969 * advertisement received on an interface with the ND6_IFF_PROXY_PREFIXES flag
970 * set, then we send neighbor advertisements for the target address on all
971 * other interfaces where a matching prefix is currently on link.
972 */
973void
974nd6_prproxy_na_input(struct ifnet *ifp, struct in6_addr *saddr,
975 struct in6_addr *daddr0, struct in6_addr *taddr, int flags)
976{
977 SLIST_HEAD(, nd6_prproxy_prelist) ndprl_head;
978 struct nd6_prproxy_prelist *ndprl, *ndprl_tmp;
979 struct nd_prefix *pr;
980 struct ifnet *fwd_ifp;
981 struct in6_addr daddr;
982
983 SLIST_INIT(&ndprl_head);
984
985
986 lck_mtx_lock(nd6_mutex);
987
988 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
989 NDPR_LOCK(pr);
990 if (!(pr->ndpr_stateflags & NDPRF_ONLINK) ||
991 !(pr->ndpr_stateflags & NDPRF_PRPROXY) ||
992 !IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
993 taddr, &pr->ndpr_mask)) {
994 NDPR_UNLOCK(pr);
995 continue;
996 }
997
998 VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE));
999 /*
1000 * If this is a NA for NUD, see if there is a record created
1001 * for the corresponding NS; upon success, we get back the
1002 * interface where the NS originally arrived on, as well as
1003 * the soliciting node's address. Give up if we can't find it.
1004 */
1005 if (!IN6_IS_ADDR_MULTICAST(daddr0)) {
1006 fwd_ifp = NULL;
1007 bzero(&daddr, sizeof (daddr));
1008 if (!nd6_solsrc_deq(pr, taddr, &daddr, &fwd_ifp)) {
1009 NDPR_UNLOCK(pr);
1010 break; /* bail out */
1011 }
1012 VERIFY(!IN6_IS_ADDR_UNSPECIFIED(&daddr) && fwd_ifp);
1013 NDPR_UNLOCK(pr);
1014
1015 ndprl = nd6_ndprl_alloc(M_WAITOK);
1016 if (ndprl == NULL)
1017 break; /* bail out */
1018
1019 ndprl->ndprl_fwd_ifp = fwd_ifp;
1020 ndprl->ndprl_sol = TRUE;
1021 ndprl->ndprl_sol_saddr = *(&daddr);
1022
1023 SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le);
1024 } else {
1025 struct nd_prefix *fwd;
1026 struct in6_addr pr_addr;
1027 u_char pr_len;
1028
1029 bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr,
1030 sizeof (pr_addr));
1031 pr_len = pr->ndpr_plen;
1032 NDPR_UNLOCK(pr);
1033
1034 for (fwd = nd_prefix.lh_first; fwd;
1035 fwd = fwd->ndpr_next) {
1036 NDPR_LOCK(fwd);
1037 if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) ||
1038 fwd->ndpr_ifp == ifp ||
1039 fwd->ndpr_plen != pr_len ||
1040 !in6_are_prefix_equal(
1041 &fwd->ndpr_prefix.sin6_addr,
1042 &pr_addr, pr_len)) {
1043 NDPR_UNLOCK(fwd);
1044 continue;
1045 }
1046
1047 fwd_ifp = fwd->ndpr_ifp;
1048 NDPR_UNLOCK(fwd);
1049
1050 ndprl = nd6_ndprl_alloc(M_WAITOK);
1051 if (ndprl == NULL)
1052 continue;
1053
1054 NDPR_ADDREF(fwd);
1055 ndprl->ndprl_pr = fwd;
1056 ndprl->ndprl_fwd_ifp = fwd_ifp;
1057
1058 SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le);
1059 }
1060 }
1061 break;
1062 }
1063
1064 lck_mtx_unlock(nd6_mutex);
1065
1066 SLIST_FOREACH_SAFE(ndprl, &ndprl_head, ndprl_le, ndprl_tmp) {
1067 boolean_t send_na;
1068
1069 SLIST_REMOVE(&ndprl_head, ndprl, nd6_prproxy_prelist, ndprl_le);
1070
1071 pr = ndprl->ndprl_pr;
1072 fwd_ifp = ndprl->ndprl_fwd_ifp;
1073
1074 if (ndprl->ndprl_sol) {
1075 VERIFY(pr == NULL);
1076 daddr = *(&ndprl->ndprl_sol_saddr);
1077 VERIFY(!IN6_IS_ADDR_UNSPECIFIED(&daddr));
1078 send_na = (in6_setscope(&daddr, fwd_ifp, NULL) == 0);
1079 } else {
1080 VERIFY(pr != NULL);
1081 daddr = *daddr0;
1082 NDPR_LOCK(pr);
1083 send_na = ((pr->ndpr_stateflags & NDPRF_ONLINK) &&
1084 in6_setscope(&daddr, fwd_ifp, NULL) == 0);
1085 NDPR_UNLOCK(pr);
1086 }
1087
1088 if (send_na) {
1089 if (!ndprl->ndprl_sol) {
1090 nd6log2((LOG_DEBUG,
1091 "%s%d: Forwarding NA (DAD) from %s to %s "
1092 "tgt is %s on %s%d\n",
1093 fwd_ifp->if_name, fwd_ifp->if_unit,
1094 ip6_sprintf(saddr), ip6_sprintf(&daddr),
1095 ip6_sprintf(taddr), ifp->if_name,
1096 ifp->if_unit));
1097 } else {
1098 nd6log2((LOG_DEBUG,
1099 "%s%d: Forwarding NA (NUD/AR) from %s to "
1100 "%s (was %s) tgt is %s on %s%d\n",
1101 fwd_ifp->if_name, fwd_ifp->if_unit,
1102 ip6_sprintf(saddr), ip6_sprintf(&daddr),
1103 ip6_sprintf(daddr0), ip6_sprintf(taddr),
1104 ifp->if_name, ifp->if_unit));
1105 }
1106
1107 nd6_na_output(fwd_ifp, &daddr, taddr, flags, 1, NULL);
1108 }
1109
1110 if (pr != NULL)
1111 NDPR_REMREF(pr);
1112
1113 nd6_ndprl_free(ndprl);
1114 }
1115 VERIFY(SLIST_EMPTY(&ndprl_head));
1116}
1117
1118static struct nd6_prproxy_solsrc *
1119nd6_solsrc_alloc(int how)
1120{
1121 struct nd6_prproxy_solsrc *ssrc;
1122
1123 ssrc = (how == M_WAITOK) ? zalloc(solsrc_zone) :
1124 zalloc_noblock(solsrc_zone);
1125 if (ssrc != NULL)
1126 bzero(ssrc, solsrc_size);
1127
1128 return (ssrc);
1129}
1130
1131static void
1132nd6_solsrc_free(struct nd6_prproxy_solsrc *ssrc)
1133{
1134 zfree(solsrc_zone, ssrc);
1135}
1136
1137static void
1138nd6_prproxy_sols_purge(struct nd_prefix *pr, u_int64_t max_stgt)
1139{
1140 struct nd6_prproxy_soltgt *soltgt, *tmp;
1141 u_int64_t expire = (max_stgt > 0) ? net_uptime() : 0;
1142
1143 NDPR_LOCK_ASSERT_HELD(pr);
1144
1145 /* Either trim all or those that have expired or are idle */
1146 RB_FOREACH_SAFE(soltgt, prproxy_sols_tree,
1147 &pr->ndpr_prproxy_sols, tmp) {
1148 VERIFY(pr->ndpr_prproxy_sols_cnt > 0);
1149 if (expire == 0 || soltgt->soltgt_expire <= expire ||
1150 soltgt->soltgt_cnt == 0) {
1151 pr->ndpr_prproxy_sols_cnt--;
1152 RB_REMOVE(prproxy_sols_tree,
1153 &pr->ndpr_prproxy_sols, soltgt);
1154 nd6_soltgt_free(soltgt);
1155 }
1156 }
1157
1158 if (max_stgt == 0 || pr->ndpr_prproxy_sols_cnt < max_stgt) {
1159 VERIFY(max_stgt != 0 || (pr->ndpr_prproxy_sols_cnt == 0 &&
1160 RB_EMPTY(&pr->ndpr_prproxy_sols)));
1161 return;
1162 }
1163
1164 /* Brute force; mercilessly evict entries until we are under limit */
1165 RB_FOREACH_SAFE(soltgt, prproxy_sols_tree,
1166 &pr->ndpr_prproxy_sols, tmp) {
1167 VERIFY(pr->ndpr_prproxy_sols_cnt > 0);
1168 pr->ndpr_prproxy_sols_cnt--;
1169 RB_REMOVE(prproxy_sols_tree, &pr->ndpr_prproxy_sols, soltgt);
1170 nd6_soltgt_free(soltgt);
1171 if (pr->ndpr_prproxy_sols_cnt < max_stgt)
1172 break;
1173 }
1174}
1175
1176/*
1177 * Purges all solicitation records on a given prefix.
1178 * Caller is responsible for holding prefix lock.
1179 */
1180void
1181nd6_prproxy_sols_reap(struct nd_prefix *pr)
1182{
1183 nd6_prproxy_sols_purge(pr, 0);
1184}
1185
1186/*
1187 * Purges expired or idle solicitation records on a given prefix.
1188 * Caller is responsible for holding prefix lock.
1189 */
1190void
1191nd6_prproxy_sols_prune(struct nd_prefix *pr, u_int32_t max_stgt)
1192{
1193 nd6_prproxy_sols_purge(pr, max_stgt);
1194}
1195
1196/*
1197 * Enqueue a soliciation record in the target record of a prefix.
1198 */
1199static boolean_t
1200nd6_solsrc_enq(struct nd_prefix *pr, struct ifnet *ifp,
1201 struct in6_addr *saddr, struct in6_addr *taddr)
1202{
1203 struct nd6_prproxy_soltgt find, *soltgt;
1204 struct nd6_prproxy_solsrc *ssrc;
1205 u_int32_t max_stgt = nd6_max_tgt_sols;
1206 u_int32_t max_ssrc = nd6_max_src_sols;
1207
1208 NDPR_LOCK_ASSERT_HELD(pr);
1209 VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE));
1210 VERIFY((pr->ndpr_stateflags & (NDPRF_ONLINK|NDPRF_PRPROXY)) ==
1211 (NDPRF_ONLINK|NDPRF_PRPROXY));
1212 VERIFY(!IN6_IS_ADDR_UNSPECIFIED(saddr));
1213
1214 ssrc = nd6_solsrc_alloc(M_WAITOK);
1215 if (ssrc == NULL)
1216 return (FALSE);
1217
1218 ssrc->solsrc_saddr = *saddr;
1219 ssrc->solsrc_ifp = ifp;
1220
1221 find.soltgt_key.taddr = *taddr; /* search key */
1222
1223 soltgt = RB_FIND(prproxy_sols_tree, &pr->ndpr_prproxy_sols, &find);
1224 if (soltgt == NULL) {
1225 if (max_stgt != 0 && pr->ndpr_prproxy_sols_cnt >= max_stgt) {
1226 VERIFY(!RB_EMPTY(&pr->ndpr_prproxy_sols));
1227 nd6_prproxy_sols_prune(pr, max_stgt);
1228 VERIFY(pr->ndpr_prproxy_sols_cnt < max_stgt);
1229 }
1230
1231 soltgt = nd6_soltgt_alloc(M_WAITOK);
1232 if (soltgt == NULL) {
1233 nd6_solsrc_free(ssrc);
1234 return (FALSE);
1235 }
1236
1237 soltgt->soltgt_key.taddr = *taddr;
1238 VERIFY(soltgt->soltgt_cnt == 0);
1239 VERIFY(TAILQ_EMPTY(&soltgt->soltgt_q));
1240
1241 pr->ndpr_prproxy_sols_cnt++;
1242 VERIFY(pr->ndpr_prproxy_sols_cnt != 0);
1243 RB_INSERT(prproxy_sols_tree, &pr->ndpr_prproxy_sols, soltgt);
1244 }
1245
1246 if (max_ssrc != 0 && soltgt->soltgt_cnt >= max_ssrc) {
1247 VERIFY(!TAILQ_EMPTY(&soltgt->soltgt_q));
1248 nd6_soltgt_prune(soltgt, max_ssrc);
1249 VERIFY(soltgt->soltgt_cnt < max_ssrc);
1250 }
1251
1252 soltgt->soltgt_cnt++;
1253 VERIFY(soltgt->soltgt_cnt != 0);
1254 TAILQ_INSERT_TAIL(&soltgt->soltgt_q, ssrc, solsrc_tqe);
1255 if (soltgt->soltgt_cnt == 1)
1256 soltgt->soltgt_expire = net_uptime() + ND6_TGT_SOLS_EXPIRE;
1257
1258 return (TRUE);
1259}
1260
1261/*
1262 * Dequeue a solicitation record from a target record of a prefix.
1263 */
1264static boolean_t
1265nd6_solsrc_deq(struct nd_prefix *pr, struct in6_addr *taddr,
1266 struct in6_addr *daddr, struct ifnet **ifp)
1267{
1268 struct nd6_prproxy_soltgt find, *soltgt;
1269 struct nd6_prproxy_solsrc *ssrc;
1270
1271 NDPR_LOCK_ASSERT_HELD(pr);
1272 VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE));
1273 VERIFY((pr->ndpr_stateflags & (NDPRF_ONLINK|NDPRF_PRPROXY)) ==
1274 (NDPRF_ONLINK|NDPRF_PRPROXY));
1275
1276 bzero(daddr, sizeof (*daddr));
1277 *ifp = NULL;
1278
1279 find.soltgt_key.taddr = *taddr; /* search key */
1280
1281 soltgt = RB_FIND(prproxy_sols_tree, &pr->ndpr_prproxy_sols, &find);
1282 if (soltgt == NULL || soltgt->soltgt_cnt == 0) {
1283 VERIFY(soltgt == NULL || TAILQ_EMPTY(&soltgt->soltgt_q));
1284 return (FALSE);
1285 }
1286
1287 VERIFY(soltgt->soltgt_cnt != 0);
1288 --soltgt->soltgt_cnt;
1289 ssrc = TAILQ_FIRST(&soltgt->soltgt_q);
1290 VERIFY(ssrc != NULL);
1291 TAILQ_REMOVE(&soltgt->soltgt_q, ssrc, solsrc_tqe);
1292 *daddr = *(&ssrc->solsrc_saddr);
1293 *ifp = ssrc->solsrc_ifp;
1294 nd6_solsrc_free(ssrc);
1295
1296 return (TRUE);
1297}
1298
1299static struct nd6_prproxy_soltgt *
1300nd6_soltgt_alloc(int how)
1301{
1302 struct nd6_prproxy_soltgt *soltgt;
1303
1304 soltgt = (how == M_WAITOK) ? zalloc(soltgt_zone) :
1305 zalloc_noblock(soltgt_zone);
1306 if (soltgt != NULL) {
1307 bzero(soltgt, soltgt_size);
1308 TAILQ_INIT(&soltgt->soltgt_q);
1309 }
1310 return (soltgt);
1311}
1312
1313static void
1314nd6_soltgt_free(struct nd6_prproxy_soltgt *soltgt)
1315{
1316 struct nd6_prproxy_solsrc *ssrc, *tssrc;
1317
1318 TAILQ_FOREACH_SAFE(ssrc, &soltgt->soltgt_q, solsrc_tqe, tssrc) {
1319 VERIFY(soltgt->soltgt_cnt > 0);
1320 soltgt->soltgt_cnt--;
1321 TAILQ_REMOVE(&soltgt->soltgt_q, ssrc, solsrc_tqe);
1322 nd6_solsrc_free(ssrc);
1323 }
1324
1325 VERIFY(soltgt->soltgt_cnt == 0);
1326 VERIFY(TAILQ_EMPTY(&soltgt->soltgt_q));
1327
1328 zfree(soltgt_zone, soltgt);
1329}
1330
1331static void
1332nd6_soltgt_prune(struct nd6_prproxy_soltgt *soltgt, u_int32_t max_ssrc)
1333{
1334 while (soltgt->soltgt_cnt >= max_ssrc) {
1335 struct nd6_prproxy_solsrc *ssrc;
1336
1337 VERIFY(soltgt->soltgt_cnt != 0);
1338 --soltgt->soltgt_cnt;
1339 ssrc = TAILQ_FIRST(&soltgt->soltgt_q);
1340 VERIFY(ssrc != NULL);
1341 TAILQ_REMOVE(&soltgt->soltgt_q, ssrc, solsrc_tqe);
1342 nd6_solsrc_free(ssrc);
1343 }
1344}
1345
1346/*
1347 * Solicited target tree comparison function.
1348 *
1349 * An ordered predicate is necessary; bcmp() is not documented to return
1350 * an indication of order, memcmp() is, and is an ISO C99 requirement.
1351 */
1352static __inline int
1353soltgt_cmp(const struct nd6_prproxy_soltgt *a,
1354 const struct nd6_prproxy_soltgt *b)
1355{
1356 return (memcmp(&a->soltgt_key, &b->soltgt_key, sizeof (a->soltgt_key)));
1357}