]>
Commit | Line | Data |
---|---|---|
39236c6e A |
1 | /* |
2 | * Copyright (c) 2012-2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <mach/host_priv.h> | |
29 | #include <mach/host_special_ports.h> | |
30 | #include <mach/mach_types.h> | |
31 | #include <mach/telemetry_notification_server.h> | |
32 | ||
33 | #include <kern/assert.h> | |
34 | #include <kern/clock.h> | |
35 | #include <kern/debug.h> | |
36 | #include <kern/host.h> | |
37 | #include <kern/kalloc.h> | |
38 | #include <kern/kern_types.h> | |
39 | #include <kern/locks.h> | |
40 | #include <kern/misc_protos.h> | |
41 | #include <kern/sched.h> | |
42 | #include <kern/sched_prim.h> | |
43 | #include <kern/telemetry.h> | |
44 | #include <kern/timer_call.h> | |
45 | ||
46 | #include <pexpert/pexpert.h> | |
47 | ||
48 | #include <vm/vm_kern.h> | |
49 | #include <vm/vm_shared_region.h> | |
50 | ||
51 | #include <kperf/kperf.h> | |
52 | #include <kperf/context.h> | |
53 | #include <kperf/callstack.h> | |
54 | ||
55 | #include <sys/kdebug.h> | |
56 | #include <uuid/uuid.h> | |
57 | #include <kdp/kdp_dyld.h> | |
58 | ||
59 | #define TELEMETRY_DEBUG 0 | |
60 | ||
61 | extern int proc_pid(void *); | |
62 | extern char *proc_name_address(void *p); | |
63 | extern uint64_t proc_uniqueid(void *p); | |
64 | extern uint64_t proc_was_throttled(void *p); | |
65 | extern uint64_t proc_did_throttle(void *p); | |
66 | extern uint64_t get_dispatchqueue_serialno_offset_from_proc(void *p); | |
67 | extern int proc_selfpid(void); | |
68 | ||
fe8ab488 A |
69 | struct micro_snapshot_buffer { |
70 | vm_offset_t buffer; | |
71 | uint32_t size; | |
72 | uint32_t current_position; | |
73 | uint32_t end_point; | |
74 | }; | |
75 | ||
76 | void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer); | |
77 | int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer); | |
39236c6e A |
78 | |
79 | #define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */ | |
fe8ab488 | 80 | #define TELEMETRY_DEFAULT_WINDOW_BUFFER_SIZE (512*1024) /* Should hopefully provide 10 seconds worth of samples */ |
39236c6e A |
81 | #define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024) |
82 | #define TELEMETRY_MAX_BUFFER_SIZE (64*1024) | |
83 | ||
84 | #define TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification | |
143464d5 | 85 | #define TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication |
39236c6e A |
86 | |
87 | uint32_t telemetry_sample_rate = 0; | |
88 | volatile boolean_t telemetry_needs_record = FALSE; | |
fe8ab488 | 89 | volatile boolean_t telemetry_windowed_record = FALSE; |
39236c6e A |
90 | volatile boolean_t telemetry_needs_timer_arming_record = FALSE; |
91 | ||
fe8ab488 A |
92 | /* |
93 | * Tells the scheduler that we want it to invoke | |
94 | * compute_telemetry_windowed(); it is still our responsibility | |
95 | * to ensure that we do not panic if someone disables the window | |
96 | * buffer immediately after the scheduler does so. | |
97 | */ | |
98 | volatile boolean_t telemetry_window_enabled = FALSE; | |
99 | ||
39236c6e A |
100 | /* |
101 | * If TRUE, record micro-stackshot samples for all tasks. | |
102 | * If FALSE, only sample tasks which are marked for telemetry. | |
103 | */ | |
104 | boolean_t telemetry_sample_all_tasks = FALSE; | |
105 | uint32_t telemetry_active_tasks = 0; // Number of tasks opted into telemetry | |
106 | ||
107 | uint32_t telemetry_timestamp = 0; | |
108 | ||
fe8ab488 A |
109 | /* |
110 | * We have two buffers. The telemetry_buffer is responsible | |
111 | * for timer samples and interrupt samples that are driven by | |
112 | * compute_averages(). It will notify its client (if one | |
113 | * exists) when it has enough data to be worth flushing. | |
114 | * | |
115 | * The window_buffer contains only interrupt_samples that are | |
116 | * driven by the scheduler. Its intent is to provide a | |
117 | * window of recent activity on the cpu(s). | |
118 | */ | |
119 | struct micro_snapshot_buffer telemetry_buffer = {0, 0, 0, 0}; | |
120 | struct micro_snapshot_buffer window_buffer = {0, 0, 0, 0}; | |
121 | ||
39236c6e A |
122 | int telemetry_bytes_since_last_mark = -1; // How much data since buf was last marked? |
123 | int telemetry_buffer_notify_at = 0; | |
124 | ||
125 | lck_grp_t telemetry_lck_grp; | |
126 | lck_mtx_t telemetry_mtx; | |
127 | ||
128 | #define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while(0) | |
129 | #define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx) | |
130 | #define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while(0) | |
131 | ||
132 | void telemetry_init(void) | |
133 | { | |
134 | kern_return_t ret; | |
135 | uint32_t telemetry_notification_leeway; | |
136 | ||
137 | lck_grp_init(&telemetry_lck_grp, "telemetry group", LCK_GRP_ATTR_NULL); | |
138 | lck_mtx_init(&telemetry_mtx, &telemetry_lck_grp, LCK_ATTR_NULL); | |
139 | ||
fe8ab488 A |
140 | if (!PE_parse_boot_argn("telemetry_buffer_size", &telemetry_buffer.size, sizeof(telemetry_buffer.size))) { |
141 | telemetry_buffer.size = TELEMETRY_DEFAULT_BUFFER_SIZE; | |
39236c6e A |
142 | } |
143 | ||
fe8ab488 A |
144 | if (telemetry_buffer.size > TELEMETRY_MAX_BUFFER_SIZE) |
145 | telemetry_buffer.size = TELEMETRY_MAX_BUFFER_SIZE; | |
39236c6e | 146 | |
3e170ce0 | 147 | ret = kmem_alloc(kernel_map, &telemetry_buffer.buffer, telemetry_buffer.size, VM_KERN_MEMORY_DIAG); |
39236c6e A |
148 | if (ret != KERN_SUCCESS) { |
149 | kprintf("Telemetry: Allocation failed: %d\n", ret); | |
150 | return; | |
151 | } | |
fe8ab488 | 152 | bzero((void *) telemetry_buffer.buffer, telemetry_buffer.size); |
39236c6e A |
153 | |
154 | if (!PE_parse_boot_argn("telemetry_notification_leeway", &telemetry_notification_leeway, sizeof(telemetry_notification_leeway))) { | |
155 | /* | |
156 | * By default, notify the user to collect the buffer when there is this much space left in the buffer. | |
157 | */ | |
158 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; | |
159 | } | |
fe8ab488 | 160 | if (telemetry_notification_leeway >= telemetry_buffer.size) { |
39236c6e A |
161 | printf("telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n", |
162 | telemetry_notification_leeway, TELEMETRY_DEFAULT_NOTIFY_LEEWAY); | |
163 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; | |
164 | } | |
fe8ab488 | 165 | telemetry_buffer_notify_at = telemetry_buffer.size - telemetry_notification_leeway; |
39236c6e A |
166 | |
167 | if (!PE_parse_boot_argn("telemetry_sample_rate", &telemetry_sample_rate, sizeof(telemetry_sample_rate))) { | |
168 | telemetry_sample_rate = TELEMETRY_DEFAULT_SAMPLE_RATE; | |
169 | } | |
170 | ||
171 | /* | |
172 | * To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args. | |
173 | */ | |
174 | if (!PE_parse_boot_argn("telemetry_sample_all_tasks", &telemetry_sample_all_tasks, sizeof(telemetry_sample_all_tasks))) { | |
175 | ||
176 | telemetry_sample_all_tasks = TRUE; | |
177 | ||
178 | } | |
179 | ||
180 | kprintf("Telemetry: Sampling %stasks once per %u second%s\n", | |
181 | (telemetry_sample_all_tasks) ? "all " : "", | |
182 | telemetry_sample_rate, telemetry_sample_rate == 1 ? "" : "s"); | |
183 | } | |
184 | ||
185 | /* | |
186 | * Enable or disable global microstackshots (ie telemetry_sample_all_tasks). | |
187 | * | |
188 | * enable_disable == 1: turn it on | |
189 | * enable_disable == 0: turn it off | |
190 | */ | |
191 | void | |
192 | telemetry_global_ctl(int enable_disable) | |
193 | { | |
194 | if (enable_disable == 1) { | |
195 | telemetry_sample_all_tasks = TRUE; | |
196 | } else { | |
197 | telemetry_sample_all_tasks = FALSE; | |
198 | } | |
199 | } | |
200 | ||
201 | /* | |
202 | * Opt the given task into or out of the telemetry stream. | |
203 | * | |
204 | * Supported reasons (callers may use any or all of): | |
205 | * TF_CPUMON_WARNING | |
206 | * TF_WAKEMON_WARNING | |
207 | * | |
208 | * enable_disable == 1: turn it on | |
209 | * enable_disable == 0: turn it off | |
210 | */ | |
211 | void | |
212 | telemetry_task_ctl(task_t task, uint32_t reasons, int enable_disable) | |
213 | { | |
214 | task_lock(task); | |
215 | telemetry_task_ctl_locked(task, reasons, enable_disable); | |
216 | task_unlock(task); | |
217 | } | |
218 | ||
219 | void | |
220 | telemetry_task_ctl_locked(task_t task, uint32_t reasons, int enable_disable) | |
221 | { | |
222 | uint32_t origflags; | |
223 | ||
224 | assert((reasons != 0) && ((reasons | TF_TELEMETRY) == TF_TELEMETRY)); | |
225 | ||
226 | task_lock_assert_owned(task); | |
227 | ||
228 | origflags = task->t_flags; | |
229 | ||
230 | if (enable_disable == 1) { | |
231 | task->t_flags |= reasons; | |
232 | if ((origflags & TF_TELEMETRY) == 0) { | |
233 | OSIncrementAtomic(&telemetry_active_tasks); | |
234 | #if TELEMETRY_DEBUG | |
235 | printf("%s: telemetry OFF -> ON (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks); | |
236 | #endif | |
237 | } | |
238 | } else { | |
239 | task->t_flags &= ~reasons; | |
240 | if (((origflags & TF_TELEMETRY) != 0) && ((task->t_flags & TF_TELEMETRY) == 0)) { | |
241 | /* | |
242 | * If this task went from having at least one telemetry bit to having none, | |
243 | * the net change was to disable telemetry for the task. | |
244 | */ | |
245 | OSDecrementAtomic(&telemetry_active_tasks); | |
246 | #if TELEMETRY_DEBUG | |
247 | printf("%s: telemetry ON -> OFF (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks); | |
248 | #endif | |
249 | } | |
250 | } | |
251 | } | |
252 | ||
fe8ab488 A |
253 | /* |
254 | * Enable the window_buffer, and do any associated setup. | |
255 | */ | |
256 | kern_return_t | |
257 | telemetry_enable_window(void) | |
258 | { | |
259 | kern_return_t ret = KERN_SUCCESS; | |
260 | vm_offset_t kern_buffer = 0; | |
261 | vm_size_t kern_buffer_size = TELEMETRY_DEFAULT_WINDOW_BUFFER_SIZE; | |
262 | ||
263 | /* | |
264 | * We have no guarantee we won't allocate the buffer, take | |
265 | * the lock, and then discover someone beat us to the punch, | |
266 | * but we would prefer to avoid blocking while holding the | |
267 | * lock. | |
268 | */ | |
3e170ce0 | 269 | ret = kmem_alloc(kernel_map, &kern_buffer, kern_buffer_size, VM_KERN_MEMORY_DIAG); |
fe8ab488 A |
270 | |
271 | TELEMETRY_LOCK(); | |
272 | ||
273 | if (!window_buffer.buffer) { | |
274 | if (ret == KERN_SUCCESS) { | |
275 | /* No existing buffer was found, so... */ | |
276 | window_buffer.end_point = 0; | |
277 | window_buffer.current_position = 0; | |
278 | ||
279 | /* Hand off the buffer, and... */ | |
280 | window_buffer.size = (uint32_t) kern_buffer_size; | |
281 | window_buffer.buffer = kern_buffer; | |
282 | kern_buffer = 0; | |
283 | kern_buffer_size = 0; | |
284 | bzero((void *) window_buffer.buffer, window_buffer.size); | |
285 | ||
286 | /* Let the scheduler know it should drive windowed samples */ | |
287 | telemetry_window_enabled = TRUE; | |
288 | } | |
289 | } else { | |
290 | /* We already have a buffer, so we have "succeeded" */ | |
291 | ret = KERN_SUCCESS; | |
292 | } | |
293 | ||
294 | TELEMETRY_UNLOCK(); | |
295 | ||
296 | if (kern_buffer) | |
297 | kmem_free(kernel_map, kern_buffer, kern_buffer_size); | |
298 | ||
299 | return ret; | |
300 | } | |
301 | ||
302 | /* | |
303 | * Disable the window_buffer, and do any associated teardown. | |
304 | */ | |
305 | void | |
306 | telemetry_disable_window(void) | |
307 | { | |
308 | vm_offset_t kern_buffer = 0; | |
309 | vm_size_t kern_buffer_size = 0; | |
310 | ||
311 | TELEMETRY_LOCK(); | |
312 | ||
313 | if (window_buffer.buffer) { | |
314 | /* We have a window buffer, so tear it down */ | |
315 | telemetry_window_enabled = FALSE; | |
316 | kern_buffer = window_buffer.buffer; | |
317 | kern_buffer_size = window_buffer.size; | |
318 | window_buffer.buffer = 0; | |
319 | window_buffer.size = 0; | |
320 | window_buffer.current_position = 0; | |
321 | window_buffer.end_point = 0; | |
322 | } | |
323 | ||
324 | TELEMETRY_UNLOCK(); | |
325 | ||
326 | if (kern_buffer) | |
327 | kmem_free(kernel_map, kern_buffer, kern_buffer_size); | |
328 | } | |
329 | ||
39236c6e A |
330 | /* |
331 | * Determine if the current thread is eligible for telemetry: | |
332 | * | |
333 | * telemetry_sample_all_tasks: All threads are eligible. This takes precedence. | |
334 | * telemetry_active_tasks: Count of tasks opted in. | |
335 | * task->t_flags & TF_TELEMETRY: This task is opted in. | |
336 | */ | |
337 | static boolean_t | |
338 | telemetry_is_active(thread_t thread) | |
339 | { | |
3e170ce0 A |
340 | task_t task = thread->task; |
341 | ||
342 | if (task == kernel_task) { | |
343 | /* Kernel threads never return to an AST boundary, and are ineligible */ | |
344 | return FALSE; | |
345 | } | |
346 | ||
39236c6e A |
347 | if (telemetry_sample_all_tasks == TRUE) { |
348 | return (TRUE); | |
349 | } | |
350 | ||
351 | if ((telemetry_active_tasks > 0) && ((thread->task->t_flags & TF_TELEMETRY) != 0)) { | |
352 | return (TRUE); | |
353 | } | |
354 | ||
355 | return (FALSE); | |
356 | } | |
357 | ||
358 | /* | |
359 | * Userland is arming a timer. If we are eligible for such a record, | |
360 | * sample now. No need to do this one at the AST because we're already at | |
361 | * a safe place in this system call. | |
362 | */ | |
363 | int telemetry_timer_event(__unused uint64_t deadline, __unused uint64_t interval, __unused uint64_t leeway) | |
364 | { | |
365 | if (telemetry_needs_timer_arming_record == TRUE) { | |
366 | telemetry_needs_timer_arming_record = FALSE; | |
fe8ab488 | 367 | telemetry_take_sample(current_thread(), kTimerArmingRecord | kUserMode, &telemetry_buffer); |
39236c6e A |
368 | } |
369 | ||
370 | return (0); | |
371 | } | |
372 | ||
373 | /* | |
374 | * Mark the current thread for an interrupt-based | |
375 | * telemetry record, to be sampled at the next AST boundary. | |
376 | */ | |
377 | void telemetry_mark_curthread(boolean_t interrupted_userspace) | |
378 | { | |
fe8ab488 | 379 | uint32_t ast_bits = 0; |
39236c6e A |
380 | thread_t thread = current_thread(); |
381 | ||
382 | /* | |
383 | * If telemetry isn't active for this thread, return and try | |
384 | * again next time. | |
385 | */ | |
386 | if (telemetry_is_active(thread) == FALSE) { | |
387 | return; | |
388 | } | |
389 | ||
fe8ab488 A |
390 | ast_bits |= (interrupted_userspace ? AST_TELEMETRY_USER : AST_TELEMETRY_KERNEL); |
391 | ||
392 | if (telemetry_windowed_record) { | |
393 | ast_bits |= AST_TELEMETRY_WINDOWED; | |
394 | } | |
395 | ||
396 | telemetry_windowed_record = FALSE; | |
39236c6e | 397 | telemetry_needs_record = FALSE; |
fe8ab488 | 398 | thread_ast_set(thread, ast_bits); |
39236c6e A |
399 | ast_propagate(thread->ast); |
400 | } | |
401 | ||
402 | void compute_telemetry(void *arg __unused) | |
403 | { | |
404 | if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) { | |
405 | if ((++telemetry_timestamp) % telemetry_sample_rate == 0) { | |
fe8ab488 A |
406 | telemetry_needs_record = TRUE; |
407 | telemetry_needs_timer_arming_record = TRUE; | |
408 | } | |
409 | } | |
410 | } | |
411 | ||
412 | void compute_telemetry_windowed(void) | |
413 | { | |
414 | if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) { | |
415 | /* | |
416 | * Due to the relationship between the two fields here, | |
417 | * a request for a windowed record will "squash" a | |
418 | * request for a regular interrupt record. We hedge | |
419 | * against this by doing a quick check for an existing | |
420 | * request. compute_telemetry doesn't hedge because | |
421 | * a regular request cannot squash a windowed request | |
422 | * (due to the implementation). | |
423 | * | |
424 | * If we really want to do this properly, we could make | |
425 | * telemetry_needs_record a bitfield, and process one | |
426 | * request per telemetry_mark_curthread... but that | |
427 | * would be more expensive (atomics). This should be | |
428 | * robust enough for now (although it biases in favor | |
429 | * of the regular records). | |
430 | */ | |
431 | if (!telemetry_needs_record) { | |
432 | telemetry_needs_record = TRUE; | |
433 | telemetry_windowed_record = TRUE; | |
39236c6e A |
434 | } |
435 | } | |
436 | } | |
437 | ||
438 | /* | |
439 | * If userland has registered a port for telemetry notifications, send one now. | |
440 | */ | |
441 | static void | |
442 | telemetry_notify_user(void) | |
443 | { | |
444 | mach_port_t user_port; | |
445 | uint32_t flags = 0; | |
446 | int error; | |
447 | ||
448 | error = host_get_telemetry_port(host_priv_self(), &user_port); | |
449 | if ((error != KERN_SUCCESS) || !IPC_PORT_VALID(user_port)) { | |
450 | return; | |
451 | } | |
452 | ||
453 | telemetry_notification(user_port, flags); | |
454 | } | |
455 | ||
fe8ab488 | 456 | void telemetry_ast(thread_t thread, boolean_t interrupted_userspace, boolean_t is_windowed) |
39236c6e A |
457 | { |
458 | uint8_t microsnapshot_flags = kInterruptRecord; | |
459 | ||
460 | if (interrupted_userspace) | |
461 | microsnapshot_flags |= kUserMode; | |
462 | ||
fe8ab488 A |
463 | if (is_windowed) { |
464 | telemetry_take_sample(thread, microsnapshot_flags, &window_buffer); | |
465 | } else { | |
466 | telemetry_take_sample(thread, microsnapshot_flags, &telemetry_buffer); | |
467 | } | |
39236c6e A |
468 | } |
469 | ||
fe8ab488 | 470 | void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer) |
39236c6e A |
471 | { |
472 | task_t task; | |
473 | void *p; | |
474 | struct kperf_context ctx; | |
475 | struct callstack cs; | |
476 | uint32_t btcount, bti; | |
477 | struct micro_snapshot *msnap; | |
478 | struct task_snapshot *tsnap; | |
479 | struct thread_snapshot *thsnap; | |
480 | clock_sec_t secs; | |
481 | clock_usec_t usecs; | |
482 | vm_size_t framesize; | |
483 | uint32_t current_record_start; | |
484 | uint32_t tmp = 0; | |
485 | boolean_t notify = FALSE; | |
486 | ||
487 | if (thread == THREAD_NULL) | |
488 | return; | |
489 | ||
490 | task = thread->task; | |
491 | if ((task == TASK_NULL) || (task == kernel_task)) | |
492 | return; | |
493 | ||
fe8ab488 A |
494 | /* |
495 | * To avoid overloading the system with telemetry requests, make | |
496 | * sure we don't add more requests while existing ones are | |
497 | * in-flight. Attempt this by checking if we can grab the lock. | |
498 | * | |
499 | * This concerns me a little; this working as intended is | |
500 | * contingent on the workload being done in the context of the | |
501 | * telemetry lock being the expensive part of telemetry. This | |
502 | * includes populating the buffer and the client gathering it, | |
503 | * but excludes the copyin overhead. | |
504 | */ | |
505 | if (!TELEMETRY_TRY_SPIN_LOCK()) | |
506 | return; | |
507 | ||
508 | TELEMETRY_UNLOCK(); | |
509 | ||
39236c6e | 510 | /* telemetry_XXX accessed outside of lock for instrumentation only */ |
fe8ab488 A |
511 | /* TODO */ |
512 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_START, microsnapshot_flags, telemetry_bytes_since_last_mark, 0, 0, (&telemetry_buffer != current_buffer)); | |
39236c6e A |
513 | |
514 | p = get_bsdtask_info(task); | |
515 | ||
516 | ctx.cur_thread = thread; | |
517 | ctx.cur_pid = proc_pid(p); | |
518 | ||
519 | /* | |
520 | * Gather up the data we'll need for this sample. The sample is written into the kernel | |
521 | * buffer with the global telemetry lock held -- so we must do our (possibly faulting) | |
522 | * copies from userland here, before taking the lock. | |
523 | */ | |
524 | kperf_ucallstack_sample(&cs, &ctx); | |
525 | if (!(cs.flags & CALLSTACK_VALID)) | |
526 | return; | |
527 | ||
528 | /* | |
529 | * Find the actual [slid] address of the shared cache's UUID, and copy it in from userland. | |
530 | */ | |
531 | int shared_cache_uuid_valid = 0; | |
532 | uint64_t shared_cache_base_address; | |
533 | struct _dyld_cache_header shared_cache_header; | |
534 | uint64_t shared_cache_slide; | |
535 | ||
536 | /* | |
537 | * Don't copy in the entire shared cache header; we only need the UUID. Calculate the | |
538 | * offset of that one field. | |
539 | */ | |
540 | int sc_header_uuid_offset = (char *)&shared_cache_header.uuid - (char *)&shared_cache_header; | |
541 | vm_shared_region_t sr = vm_shared_region_get(task); | |
542 | if (sr != NULL) { | |
543 | if ((vm_shared_region_start_address(sr, &shared_cache_base_address) == KERN_SUCCESS) && | |
544 | (copyin(shared_cache_base_address + sc_header_uuid_offset, (char *)&shared_cache_header.uuid, | |
545 | sizeof (shared_cache_header.uuid)) == 0)) { | |
546 | shared_cache_uuid_valid = 1; | |
547 | shared_cache_slide = vm_shared_region_get_slide(sr); | |
548 | } | |
549 | // vm_shared_region_get() gave us a reference on the shared region. | |
550 | vm_shared_region_deallocate(sr); | |
551 | } | |
552 | ||
553 | /* | |
554 | * Retrieve the array of UUID's for binaries used by this task. | |
555 | * We reach down into DYLD's data structures to find the array. | |
556 | * | |
557 | * XXX - make this common with kdp? | |
558 | */ | |
559 | uint32_t uuid_info_count = 0; | |
560 | mach_vm_address_t uuid_info_addr = 0; | |
561 | if (task_has_64BitAddr(task)) { | |
562 | struct user64_dyld_all_image_infos task_image_infos; | |
563 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { | |
564 | uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; | |
565 | uuid_info_addr = task_image_infos.uuidArray; | |
566 | } | |
567 | } else { | |
568 | struct user32_dyld_all_image_infos task_image_infos; | |
569 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { | |
570 | uuid_info_count = task_image_infos.uuidArrayCount; | |
571 | uuid_info_addr = task_image_infos.uuidArray; | |
572 | } | |
573 | } | |
574 | ||
575 | /* | |
576 | * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating | |
577 | * this data structure), we zero the uuid_info_count so that we won't even try to save load info | |
578 | * for this task. | |
579 | */ | |
580 | if (!uuid_info_addr) { | |
581 | uuid_info_count = 0; | |
582 | } | |
583 | ||
143464d5 A |
584 | /* |
585 | * Don't copy in an unbounded amount of memory. The main binary and interesting | |
586 | * non-shared-cache libraries should be in the first few images. | |
587 | */ | |
588 | if (uuid_info_count > TELEMETRY_MAX_UUID_COUNT) { | |
589 | uuid_info_count = TELEMETRY_MAX_UUID_COUNT; | |
590 | } | |
591 | ||
39236c6e A |
592 | uint32_t uuid_info_size = (uint32_t)(task_has_64BitAddr(thread->task) ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info)); |
593 | uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size; | |
594 | char *uuid_info_array = NULL; | |
595 | ||
596 | if (uuid_info_count > 0) { | |
597 | if ((uuid_info_array = (char *)kalloc(uuid_info_array_size)) == NULL) { | |
598 | return; | |
599 | } | |
600 | ||
601 | /* | |
602 | * Copy in the UUID info array. | |
603 | * It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot. | |
604 | */ | |
605 | if (copyin(uuid_info_addr, uuid_info_array, uuid_info_array_size) != 0) { | |
606 | kfree(uuid_info_array, uuid_info_array_size); | |
607 | uuid_info_array = NULL; | |
608 | uuid_info_array_size = 0; | |
609 | } | |
610 | } | |
611 | ||
612 | /* | |
613 | * Look for a dispatch queue serial number, and copy it in from userland if present. | |
614 | */ | |
615 | uint64_t dqserialnum = 0; | |
616 | int dqserialnum_valid = 0; | |
617 | ||
618 | uint64_t dqkeyaddr = thread_dispatchqaddr(thread); | |
619 | if (dqkeyaddr != 0) { | |
620 | uint64_t dqaddr = 0; | |
621 | uint64_t dq_serialno_offset = get_dispatchqueue_serialno_offset_from_proc(task->bsd_info); | |
622 | if ((copyin(dqkeyaddr, (char *)&dqaddr, (task_has_64BitAddr(task) ? 8 : 4)) == 0) && | |
623 | (dqaddr != 0) && (dq_serialno_offset != 0)) { | |
624 | uint64_t dqserialnumaddr = dqaddr + dq_serialno_offset; | |
625 | if (copyin(dqserialnumaddr, (char *)&dqserialnum, (task_has_64BitAddr(task) ? 8 : 4)) == 0) { | |
626 | dqserialnum_valid = 1; | |
627 | } | |
628 | } | |
629 | } | |
630 | ||
631 | clock_get_calendar_microtime(&secs, &usecs); | |
632 | ||
633 | TELEMETRY_LOCK(); | |
634 | ||
fe8ab488 A |
635 | /* |
636 | * For the benefit of the window buffer; if our buffer is not backed by anything, | |
637 | * then we cannot take the sample. Meant to allow us to deallocate the window | |
638 | * buffer if it is disabled. | |
639 | */ | |
640 | if (!current_buffer->buffer) | |
641 | goto cancel_sample; | |
642 | ||
39236c6e A |
643 | /* |
644 | * We do the bulk of the operation under the telemetry lock, on assumption that | |
645 | * any page faults during execution will not cause another AST_TELEMETRY_ALL | |
646 | * to deadlock; they will just block until we finish. This makes it easier | |
647 | * to copy into the buffer directly. As soon as we unlock, userspace can copy | |
648 | * out of our buffer. | |
649 | */ | |
650 | ||
651 | copytobuffer: | |
652 | ||
fe8ab488 | 653 | current_record_start = current_buffer->current_position; |
39236c6e | 654 | |
fe8ab488 | 655 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct micro_snapshot)) { |
39236c6e A |
656 | /* |
657 | * We can't fit a record in the space available, so wrap around to the beginning. | |
658 | * Save the current position as the known end point of valid data. | |
659 | */ | |
fe8ab488 A |
660 | current_buffer->end_point = current_record_start; |
661 | current_buffer->current_position = 0; | |
143464d5 A |
662 | if (current_record_start == 0) { |
663 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
664 | goto cancel_sample; | |
665 | } | |
39236c6e A |
666 | goto copytobuffer; |
667 | } | |
668 | ||
fe8ab488 | 669 | msnap = (struct micro_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
39236c6e A |
670 | msnap->snapshot_magic = STACKSHOT_MICRO_SNAPSHOT_MAGIC; |
671 | msnap->ms_flags = microsnapshot_flags; | |
672 | msnap->ms_opaque_flags = 0; /* namespace managed by userspace */ | |
673 | msnap->ms_cpu = 0; /* XXX - does this field make sense for a micro-stackshot? */ | |
674 | msnap->ms_time = secs; | |
675 | msnap->ms_time_microsecs = usecs; | |
676 | ||
fe8ab488 | 677 | current_buffer->current_position += sizeof(struct micro_snapshot); |
39236c6e | 678 | |
fe8ab488 A |
679 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct task_snapshot)) { |
680 | current_buffer->end_point = current_record_start; | |
681 | current_buffer->current_position = 0; | |
143464d5 A |
682 | if (current_record_start == 0) { |
683 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
684 | goto cancel_sample; | |
685 | } | |
39236c6e A |
686 | goto copytobuffer; |
687 | } | |
688 | ||
fe8ab488 | 689 | tsnap = (struct task_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
39236c6e A |
690 | bzero(tsnap, sizeof(*tsnap)); |
691 | tsnap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC; | |
692 | tsnap->pid = proc_pid(p); | |
693 | tsnap->uniqueid = proc_uniqueid(p); | |
694 | tsnap->user_time_in_terminated_threads = task->total_user_time; | |
695 | tsnap->system_time_in_terminated_threads = task->total_system_time; | |
696 | tsnap->suspend_count = task->suspend_count; | |
697 | tsnap->task_size = pmap_resident_count(task->map->pmap); | |
698 | tsnap->faults = task->faults; | |
699 | tsnap->pageins = task->pageins; | |
700 | tsnap->cow_faults = task->cow_faults; | |
701 | /* | |
702 | * The throttling counters are maintained as 64-bit counters in the proc | |
703 | * structure. However, we reserve 32-bits (each) for them in the task_snapshot | |
704 | * struct to save space and since we do not expect them to overflow 32-bits. If we | |
705 | * find these values overflowing in the future, the fix would be to simply | |
706 | * upgrade these counters to 64-bit in the task_snapshot struct | |
707 | */ | |
708 | tsnap->was_throttled = (uint32_t) proc_was_throttled(p); | |
709 | tsnap->did_throttle = (uint32_t) proc_did_throttle(p); | |
710 | ||
711 | if (task->t_flags & TF_TELEMETRY) { | |
712 | tsnap->ss_flags |= kTaskRsrcFlagged; | |
713 | } | |
714 | ||
15129b1c | 715 | if (task->effective_policy.darwinbg == 1) { |
39236c6e A |
716 | tsnap->ss_flags |= kTaskDarwinBG; |
717 | } | |
15129b1c A |
718 | |
719 | proc_get_darwinbgstate(task, &tmp); | |
39236c6e A |
720 | |
721 | if (task->requested_policy.t_role == TASK_FOREGROUND_APPLICATION) { | |
722 | tsnap->ss_flags |= kTaskIsForeground; | |
723 | } | |
724 | ||
725 | if (tmp & PROC_FLAG_ADAPTIVE_IMPORTANT) { | |
726 | tsnap->ss_flags |= kTaskIsBoosted; | |
727 | } | |
728 | ||
729 | if (tmp & PROC_FLAG_SUPPRESSED) { | |
730 | tsnap->ss_flags |= kTaskIsSuppressed; | |
731 | } | |
732 | ||
733 | tsnap->latency_qos = task_grab_latency_qos(task); | |
734 | ||
735 | strlcpy(tsnap->p_comm, proc_name_address(p), sizeof(tsnap->p_comm)); | |
736 | if (task_has_64BitAddr(thread->task)) { | |
737 | tsnap->ss_flags |= kUser64_p; | |
738 | } | |
739 | ||
740 | if (shared_cache_uuid_valid) { | |
741 | tsnap->shared_cache_slide = shared_cache_slide; | |
742 | bcopy(shared_cache_header.uuid, tsnap->shared_cache_identifier, sizeof (shared_cache_header.uuid)); | |
743 | } | |
744 | ||
fe8ab488 | 745 | current_buffer->current_position += sizeof(struct task_snapshot); |
39236c6e A |
746 | |
747 | /* | |
748 | * Directly after the task snapshot, place the array of UUID's corresponding to the binaries | |
749 | * used by this task. | |
750 | */ | |
fe8ab488 A |
751 | if ((current_buffer->size - current_buffer->current_position) < uuid_info_array_size) { |
752 | current_buffer->end_point = current_record_start; | |
753 | current_buffer->current_position = 0; | |
143464d5 A |
754 | if (current_record_start == 0) { |
755 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
756 | goto cancel_sample; | |
757 | } | |
39236c6e A |
758 | goto copytobuffer; |
759 | } | |
760 | ||
761 | /* | |
762 | * Copy the UUID info array into our sample. | |
763 | */ | |
764 | if (uuid_info_array_size > 0) { | |
fe8ab488 | 765 | bcopy(uuid_info_array, (char *)(current_buffer->buffer + current_buffer->current_position), uuid_info_array_size); |
39236c6e A |
766 | tsnap->nloadinfos = uuid_info_count; |
767 | } | |
768 | ||
fe8ab488 | 769 | current_buffer->current_position += uuid_info_array_size; |
39236c6e A |
770 | |
771 | /* | |
772 | * After the task snapshot & list of binary UUIDs, we place a thread snapshot. | |
773 | */ | |
774 | ||
fe8ab488 | 775 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct thread_snapshot)) { |
39236c6e | 776 | /* wrap and overwrite */ |
fe8ab488 A |
777 | current_buffer->end_point = current_record_start; |
778 | current_buffer->current_position = 0; | |
143464d5 A |
779 | if (current_record_start == 0) { |
780 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
781 | goto cancel_sample; | |
782 | } | |
39236c6e A |
783 | goto copytobuffer; |
784 | } | |
785 | ||
fe8ab488 | 786 | thsnap = (struct thread_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
39236c6e A |
787 | bzero(thsnap, sizeof(*thsnap)); |
788 | ||
789 | thsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC; | |
790 | thsnap->thread_id = thread_tid(thread); | |
791 | thsnap->state = thread->state; | |
3e170ce0 | 792 | thsnap->priority = thread->base_pri; |
39236c6e A |
793 | thsnap->sched_pri = thread->sched_pri; |
794 | thsnap->sched_flags = thread->sched_flags; | |
795 | thsnap->ss_flags |= kStacksPCOnly; | |
fe8ab488 | 796 | thsnap->ts_qos = thread->effective_policy.thep_qos; |
3e170ce0 A |
797 | thsnap->ts_rqos = thread->requested_policy.thrp_qos; |
798 | thsnap->ts_rqos_override = thread->requested_policy.thrp_qos_override; | |
39236c6e A |
799 | |
800 | if (thread->effective_policy.darwinbg) { | |
801 | thsnap->ss_flags |= kThreadDarwinBG; | |
802 | } | |
803 | ||
804 | thsnap->user_time = timer_grab(&thread->user_timer); | |
805 | ||
806 | uint64_t tval = timer_grab(&thread->system_timer); | |
807 | ||
808 | if (thread->precise_user_kernel_time) { | |
809 | thsnap->system_time = tval; | |
810 | } else { | |
811 | thsnap->user_time += tval; | |
812 | thsnap->system_time = 0; | |
813 | } | |
814 | ||
fe8ab488 | 815 | current_buffer->current_position += sizeof(struct thread_snapshot); |
39236c6e A |
816 | |
817 | /* | |
818 | * If this thread has a dispatch queue serial number, include it here. | |
819 | */ | |
820 | if (dqserialnum_valid) { | |
fe8ab488 | 821 | if ((current_buffer->size - current_buffer->current_position) < sizeof(dqserialnum)) { |
39236c6e | 822 | /* wrap and overwrite */ |
fe8ab488 A |
823 | current_buffer->end_point = current_record_start; |
824 | current_buffer->current_position = 0; | |
143464d5 A |
825 | if (current_record_start == 0) { |
826 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
827 | goto cancel_sample; | |
828 | } | |
39236c6e A |
829 | goto copytobuffer; |
830 | } | |
831 | ||
832 | thsnap->ss_flags |= kHasDispatchSerial; | |
fe8ab488 A |
833 | bcopy(&dqserialnum, (char *)current_buffer->buffer + current_buffer->current_position, sizeof (dqserialnum)); |
834 | current_buffer->current_position += sizeof (dqserialnum); | |
39236c6e A |
835 | } |
836 | ||
837 | if (task_has_64BitAddr(task)) { | |
838 | framesize = 8; | |
839 | thsnap->ss_flags |= kUser64_p; | |
840 | } else { | |
841 | framesize = 4; | |
842 | } | |
843 | ||
844 | btcount = cs.nframes; | |
845 | ||
846 | /* | |
847 | * If we can't fit this entire stacktrace then cancel this record, wrap to the beginning, | |
848 | * and start again there so that we always store a full record. | |
849 | */ | |
fe8ab488 A |
850 | if ((current_buffer->size - current_buffer->current_position)/framesize < btcount) { |
851 | current_buffer->end_point = current_record_start; | |
852 | current_buffer->current_position = 0; | |
143464d5 A |
853 | if (current_record_start == 0) { |
854 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
855 | goto cancel_sample; | |
856 | } | |
39236c6e A |
857 | goto copytobuffer; |
858 | } | |
859 | ||
fe8ab488 | 860 | for (bti=0; bti < btcount; bti++, current_buffer->current_position += framesize) { |
39236c6e | 861 | if (framesize == 8) { |
fe8ab488 | 862 | *(uint64_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = cs.frames[bti]; |
39236c6e | 863 | } else { |
fe8ab488 | 864 | *(uint32_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = (uint32_t)cs.frames[bti]; |
39236c6e A |
865 | } |
866 | } | |
867 | ||
fe8ab488 | 868 | if (current_buffer->end_point < current_buffer->current_position) { |
39236c6e A |
869 | /* |
870 | * Each time the cursor wraps around to the beginning, we leave a | |
871 | * differing amount of unused space at the end of the buffer. Make | |
872 | * sure the cursor pushes the end point in case we're making use of | |
873 | * more of the buffer than we did the last time we wrapped. | |
874 | */ | |
fe8ab488 | 875 | current_buffer->end_point = current_buffer->current_position; |
39236c6e A |
876 | } |
877 | ||
878 | thsnap->nuser_frames = btcount; | |
879 | ||
fe8ab488 A |
880 | /* |
881 | * Now THIS is a hack. | |
882 | */ | |
883 | if (current_buffer == &telemetry_buffer) { | |
884 | telemetry_bytes_since_last_mark += (current_buffer->current_position - current_record_start); | |
885 | if (telemetry_bytes_since_last_mark > telemetry_buffer_notify_at) { | |
886 | notify = TRUE; | |
887 | } | |
39236c6e A |
888 | } |
889 | ||
143464d5 A |
890 | cancel_sample: |
891 | ||
39236c6e A |
892 | TELEMETRY_UNLOCK(); |
893 | ||
fe8ab488 A |
894 | /* TODO */ |
895 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_END, notify, telemetry_bytes_since_last_mark, current_buffer->current_position, current_buffer->end_point, (&telemetry_buffer != current_buffer)); | |
39236c6e A |
896 | |
897 | if (notify) { | |
898 | telemetry_notify_user(); | |
899 | } | |
900 | ||
901 | if (uuid_info_array != NULL) { | |
902 | kfree(uuid_info_array, uuid_info_array_size); | |
903 | } | |
904 | } | |
905 | ||
906 | #if TELEMETRY_DEBUG | |
907 | static void | |
908 | log_telemetry_output(vm_offset_t buf, uint32_t pos, uint32_t sz) | |
909 | { | |
910 | struct micro_snapshot *p; | |
911 | uint32_t offset; | |
912 | ||
913 | printf("Copying out %d bytes of telemetry at offset %d\n", sz, pos); | |
914 | ||
915 | buf += pos; | |
916 | ||
917 | /* | |
918 | * Find and log each timestamp in this chunk of buffer. | |
919 | */ | |
920 | for (offset = 0; offset < sz; offset++) { | |
921 | p = (struct micro_snapshot *)(buf + offset); | |
922 | if (p->snapshot_magic == STACKSHOT_MICRO_SNAPSHOT_MAGIC) { | |
923 | printf("telemetry timestamp: %lld\n", p->ms_time); | |
924 | } | |
925 | } | |
926 | } | |
927 | #endif | |
928 | ||
929 | int telemetry_gather(user_addr_t buffer, uint32_t *length, boolean_t mark) | |
fe8ab488 A |
930 | { |
931 | return telemetry_buffer_gather(buffer, length, mark, &telemetry_buffer); | |
932 | } | |
933 | ||
934 | int telemetry_gather_windowed(user_addr_t buffer, uint32_t *length) | |
935 | { | |
936 | return telemetry_buffer_gather(buffer, length, 0, &window_buffer); | |
937 | } | |
938 | ||
939 | int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer) | |
39236c6e A |
940 | { |
941 | int result = 0; | |
942 | uint32_t oldest_record_offset; | |
943 | ||
fe8ab488 A |
944 | /* TODO */ |
945 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_START, mark, telemetry_bytes_since_last_mark, 0, 0, (&telemetry_buffer != current_buffer)); | |
39236c6e A |
946 | |
947 | TELEMETRY_LOCK(); | |
948 | ||
fe8ab488 | 949 | if (current_buffer->buffer == 0) { |
39236c6e A |
950 | *length = 0; |
951 | goto out; | |
952 | } | |
953 | ||
fe8ab488 | 954 | if (*length < current_buffer->size) { |
39236c6e A |
955 | result = KERN_NO_SPACE; |
956 | goto out; | |
957 | } | |
958 | ||
959 | /* | |
960 | * Copy the ring buffer out to userland in order sorted by time: least recent to most recent. | |
961 | * First, we need to search forward from the cursor to find the oldest record in our buffer. | |
962 | */ | |
fe8ab488 | 963 | oldest_record_offset = current_buffer->current_position; |
39236c6e | 964 | do { |
fe8ab488 A |
965 | if (((oldest_record_offset + sizeof(uint32_t)) > current_buffer->size) || |
966 | ((oldest_record_offset + sizeof(uint32_t)) > current_buffer->end_point)) { | |
39236c6e | 967 | |
fe8ab488 | 968 | if (*(uint32_t *)(uintptr_t)(current_buffer->buffer) == 0) { |
39236c6e A |
969 | /* |
970 | * There is no magic number at the start of the buffer, which means | |
971 | * it's empty; nothing to see here yet. | |
972 | */ | |
973 | *length = 0; | |
974 | goto out; | |
975 | } | |
976 | /* | |
977 | * We've looked through the end of the active buffer without finding a valid | |
978 | * record; that means all valid records are in a single chunk, beginning at | |
979 | * the very start of the buffer. | |
980 | */ | |
981 | ||
982 | oldest_record_offset = 0; | |
fe8ab488 | 983 | assert(*(uint32_t *)(uintptr_t)(current_buffer->buffer) == STACKSHOT_MICRO_SNAPSHOT_MAGIC); |
39236c6e A |
984 | break; |
985 | } | |
986 | ||
fe8ab488 | 987 | if (*(uint32_t *)(uintptr_t)(current_buffer->buffer + oldest_record_offset) == STACKSHOT_MICRO_SNAPSHOT_MAGIC) |
39236c6e A |
988 | break; |
989 | ||
990 | /* | |
991 | * There are no alignment guarantees for micro-stackshot records, so we must search at each | |
992 | * byte offset. | |
993 | */ | |
994 | oldest_record_offset++; | |
fe8ab488 | 995 | } while (oldest_record_offset != current_buffer->current_position); |
39236c6e A |
996 | |
997 | /* | |
998 | * If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then | |
999 | * from the beginning of the buffer up to the current position. | |
1000 | */ | |
1001 | if (oldest_record_offset != 0) { | |
1002 | #if TELEMETRY_DEBUG | |
fe8ab488 A |
1003 | log_telemetry_output(current_buffer->buffer, oldest_record_offset, |
1004 | current_buffer->end_point - oldest_record_offset); | |
39236c6e | 1005 | #endif |
fe8ab488 A |
1006 | if ((result = copyout((void *)(current_buffer->buffer + oldest_record_offset), buffer, |
1007 | current_buffer->end_point - oldest_record_offset)) != 0) { | |
39236c6e A |
1008 | *length = 0; |
1009 | goto out; | |
1010 | } | |
fe8ab488 | 1011 | *length = current_buffer->end_point - oldest_record_offset; |
39236c6e A |
1012 | } else { |
1013 | *length = 0; | |
1014 | } | |
1015 | ||
1016 | #if TELEMETRY_DEBUG | |
fe8ab488 | 1017 | log_telemetry_output(current_buffer->buffer, 0, current_buffer->current_position); |
39236c6e | 1018 | #endif |
fe8ab488 A |
1019 | if ((result = copyout((void *)current_buffer->buffer, buffer + *length, |
1020 | current_buffer->current_position)) != 0) { | |
39236c6e A |
1021 | *length = 0; |
1022 | goto out; | |
1023 | } | |
fe8ab488 | 1024 | *length += (uint32_t)current_buffer->current_position; |
39236c6e A |
1025 | |
1026 | out: | |
1027 | ||
1028 | if (mark && (*length > 0)) { | |
1029 | telemetry_bytes_since_last_mark = 0; | |
1030 | } | |
1031 | ||
1032 | TELEMETRY_UNLOCK(); | |
1033 | ||
fe8ab488 | 1034 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_END, current_buffer->current_position, *length, current_buffer->end_point, 0, (&telemetry_buffer != current_buffer)); |
39236c6e A |
1035 | |
1036 | return (result); | |
1037 | } | |
1038 | ||
1039 | /************************/ | |
1040 | /* BOOT PROFILE SUPPORT */ | |
1041 | /************************/ | |
1042 | /* | |
1043 | * Boot Profiling | |
1044 | * | |
1045 | * The boot-profiling support is a mechanism to sample activity happening on the | |
1046 | * system during boot. This mechanism sets up a periodic timer and on every timer fire, | |
1047 | * captures a full backtrace into the boot profiling buffer. This buffer can be pulled | |
1048 | * out and analyzed from user-space. It is turned on using the following boot-args: | |
1049 | * "bootprofile_buffer_size" specifies the size of the boot profile buffer | |
1050 | * "bootprofile_interval_ms" specifies the interval for the profiling timer | |
1051 | * | |
1052 | * Process Specific Boot Profiling | |
1053 | * | |
1054 | * The boot-arg "bootprofile_proc_name" can be used to specify a certain | |
1055 | * process that needs to profiled during boot. Setting this boot-arg changes | |
1056 | * the way stackshots are captured. At every timer fire, the code looks at the | |
1057 | * currently running process and takes a stackshot only if the requested process | |
1058 | * is on-core (which makes it unsuitable for MP systems). | |
1059 | * | |
fe8ab488 A |
1060 | * Trigger Events |
1061 | * | |
1062 | * The boot-arg "bootprofile_type=boot" starts the timer during early boot. Using | |
1063 | * "wake" starts the timer at AP wake from suspend-to-RAM. | |
39236c6e A |
1064 | */ |
1065 | ||
1066 | #define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */ | |
1067 | ||
1068 | vm_offset_t bootprofile_buffer = 0; | |
1069 | uint32_t bootprofile_buffer_size = 0; | |
1070 | uint32_t bootprofile_buffer_current_position = 0; | |
1071 | uint32_t bootprofile_interval_ms = 0; | |
1072 | uint64_t bootprofile_interval_abs = 0; | |
1073 | uint64_t bootprofile_next_deadline = 0; | |
1074 | uint32_t bootprofile_all_procs = 0; | |
1075 | char bootprofile_proc_name[17]; | |
1076 | ||
1077 | lck_grp_t bootprofile_lck_grp; | |
1078 | lck_mtx_t bootprofile_mtx; | |
1079 | ||
fe8ab488 A |
1080 | enum { |
1081 | kBootProfileDisabled = 0, | |
1082 | kBootProfileStartTimerAtBoot, | |
1083 | kBootProfileStartTimerAtWake | |
1084 | } bootprofile_type = kBootProfileDisabled; | |
1085 | ||
1086 | ||
39236c6e A |
1087 | static timer_call_data_t bootprofile_timer_call_entry; |
1088 | ||
1089 | #define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0) | |
1090 | #define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx) | |
1091 | #define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0) | |
1092 | ||
1093 | static void bootprofile_timer_call( | |
1094 | timer_call_param_t param0, | |
1095 | timer_call_param_t param1); | |
1096 | ||
1097 | extern int | |
1098 | stack_snapshot_from_kernel(int pid, void *buf, uint32_t size, uint32_t flags, unsigned *retbytes); | |
1099 | ||
1100 | void bootprofile_init(void) | |
1101 | { | |
1102 | kern_return_t ret; | |
fe8ab488 | 1103 | char type[32]; |
39236c6e A |
1104 | |
1105 | lck_grp_init(&bootprofile_lck_grp, "bootprofile group", LCK_GRP_ATTR_NULL); | |
1106 | lck_mtx_init(&bootprofile_mtx, &bootprofile_lck_grp, LCK_ATTR_NULL); | |
1107 | ||
1108 | if (!PE_parse_boot_argn("bootprofile_buffer_size", &bootprofile_buffer_size, sizeof(bootprofile_buffer_size))) { | |
1109 | bootprofile_buffer_size = 0; | |
1110 | } | |
1111 | ||
1112 | if (bootprofile_buffer_size > BOOTPROFILE_MAX_BUFFER_SIZE) | |
1113 | bootprofile_buffer_size = BOOTPROFILE_MAX_BUFFER_SIZE; | |
1114 | ||
1115 | if (!PE_parse_boot_argn("bootprofile_interval_ms", &bootprofile_interval_ms, sizeof(bootprofile_interval_ms))) { | |
1116 | bootprofile_interval_ms = 0; | |
1117 | } | |
1118 | ||
1119 | if (!PE_parse_boot_argn("bootprofile_proc_name", &bootprofile_proc_name, sizeof(bootprofile_proc_name))) { | |
1120 | bootprofile_all_procs = 1; | |
1121 | bootprofile_proc_name[0] = '\0'; | |
1122 | } | |
1123 | ||
fe8ab488 A |
1124 | if (PE_parse_boot_argn("bootprofile_type", type, sizeof(type))) { |
1125 | if (0 == strcmp(type, "boot")) { | |
1126 | bootprofile_type = kBootProfileStartTimerAtBoot; | |
1127 | } else if (0 == strcmp(type, "wake")) { | |
1128 | bootprofile_type = kBootProfileStartTimerAtWake; | |
1129 | } else { | |
1130 | bootprofile_type = kBootProfileDisabled; | |
1131 | } | |
1132 | } else { | |
1133 | bootprofile_type = kBootProfileDisabled; | |
1134 | } | |
1135 | ||
39236c6e A |
1136 | clock_interval_to_absolutetime_interval(bootprofile_interval_ms, NSEC_PER_MSEC, &bootprofile_interval_abs); |
1137 | ||
1138 | /* Both boot args must be set to enable */ | |
fe8ab488 | 1139 | if ((bootprofile_type == kBootProfileDisabled) || (bootprofile_buffer_size == 0) || (bootprofile_interval_abs == 0)) { |
39236c6e A |
1140 | return; |
1141 | } | |
1142 | ||
3e170ce0 | 1143 | ret = kmem_alloc(kernel_map, &bootprofile_buffer, bootprofile_buffer_size, VM_KERN_MEMORY_DIAG); |
39236c6e A |
1144 | if (ret != KERN_SUCCESS) { |
1145 | kprintf("Boot profile: Allocation failed: %d\n", ret); | |
1146 | return; | |
1147 | } | |
fe8ab488 | 1148 | bzero((void *) bootprofile_buffer, bootprofile_buffer_size); |
39236c6e | 1149 | |
fe8ab488 A |
1150 | kprintf("Boot profile: Sampling %s once per %u ms at %s\n", bootprofile_all_procs ? "all procs" : bootprofile_proc_name, bootprofile_interval_ms, |
1151 | bootprofile_type == kBootProfileStartTimerAtBoot ? "boot" : (bootprofile_type == kBootProfileStartTimerAtWake ? "wake" : "unknown")); | |
39236c6e A |
1152 | |
1153 | timer_call_setup(&bootprofile_timer_call_entry, | |
1154 | bootprofile_timer_call, | |
1155 | NULL); | |
1156 | ||
fe8ab488 A |
1157 | if (bootprofile_type == kBootProfileStartTimerAtBoot) { |
1158 | bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs; | |
1159 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, | |
1160 | NULL, | |
1161 | bootprofile_next_deadline, | |
1162 | 0, | |
1163 | TIMER_CALL_SYS_NORMAL, | |
1164 | FALSE); | |
1165 | } | |
39236c6e A |
1166 | } |
1167 | ||
fe8ab488 A |
1168 | void |
1169 | bootprofile_wake_from_sleep(void) | |
1170 | { | |
1171 | if (bootprofile_type == kBootProfileStartTimerAtWake) { | |
1172 | bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs; | |
1173 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, | |
1174 | NULL, | |
1175 | bootprofile_next_deadline, | |
1176 | 0, | |
1177 | TIMER_CALL_SYS_NORMAL, | |
1178 | FALSE); | |
1179 | } | |
1180 | } | |
1181 | ||
1182 | ||
39236c6e A |
1183 | static void bootprofile_timer_call( |
1184 | timer_call_param_t param0 __unused, | |
1185 | timer_call_param_t param1 __unused) | |
1186 | { | |
1187 | unsigned retbytes = 0; | |
1188 | int pid_to_profile = -1; | |
1189 | ||
1190 | if (!BOOTPROFILE_TRY_SPIN_LOCK()) { | |
1191 | goto reprogram; | |
1192 | } | |
1193 | ||
1194 | /* Check if process-specific boot profiling is turned on */ | |
1195 | if (!bootprofile_all_procs) { | |
1196 | /* | |
1197 | * Since boot profiling initializes really early in boot, it is | |
1198 | * possible that at this point, the task/proc is not initialized. | |
1199 | * Nothing to do in that case. | |
1200 | */ | |
1201 | ||
1202 | if ((current_task() != NULL) && (current_task()->bsd_info != NULL) && | |
1203 | (0 == strncmp(bootprofile_proc_name, proc_name_address(current_task()->bsd_info), 17))) { | |
1204 | pid_to_profile = proc_selfpid(); | |
1205 | } | |
1206 | else { | |
1207 | /* | |
1208 | * Process-specific boot profiling requested but the on-core process is | |
1209 | * something else. Nothing to do here. | |
1210 | */ | |
1211 | BOOTPROFILE_UNLOCK(); | |
1212 | goto reprogram; | |
1213 | } | |
1214 | } | |
1215 | ||
1216 | /* initiate a stackshot with whatever portion of the buffer is left */ | |
1217 | if (bootprofile_buffer_current_position < bootprofile_buffer_size) { | |
1218 | stack_snapshot_from_kernel( | |
1219 | pid_to_profile, | |
1220 | (void *)(bootprofile_buffer + bootprofile_buffer_current_position), | |
1221 | bootprofile_buffer_size - bootprofile_buffer_current_position, | |
1222 | STACKSHOT_SAVE_LOADINFO | STACKSHOT_SAVE_KEXT_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS, | |
1223 | &retbytes | |
1224 | ); | |
1225 | ||
1226 | bootprofile_buffer_current_position += retbytes; | |
1227 | } | |
1228 | ||
1229 | BOOTPROFILE_UNLOCK(); | |
1230 | ||
1231 | /* If we didn't get any data or have run out of buffer space, stop profiling */ | |
1232 | if ((retbytes == 0) || (bootprofile_buffer_current_position == bootprofile_buffer_size)) { | |
1233 | return; | |
1234 | } | |
1235 | ||
1236 | ||
1237 | reprogram: | |
1238 | /* If the user gathered the buffer, no need to keep profiling */ | |
1239 | if (bootprofile_interval_abs == 0) { | |
1240 | return; | |
1241 | } | |
1242 | ||
1243 | clock_deadline_for_periodic_event(bootprofile_interval_abs, | |
1244 | mach_absolute_time(), | |
1245 | &bootprofile_next_deadline); | |
1246 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, | |
1247 | NULL, | |
1248 | bootprofile_next_deadline, | |
1249 | 0, | |
1250 | TIMER_CALL_SYS_NORMAL, | |
1251 | FALSE); | |
1252 | } | |
1253 | ||
1254 | int bootprofile_gather(user_addr_t buffer, uint32_t *length) | |
1255 | { | |
1256 | int result = 0; | |
1257 | ||
1258 | BOOTPROFILE_LOCK(); | |
1259 | ||
1260 | if (bootprofile_buffer == 0) { | |
1261 | *length = 0; | |
1262 | goto out; | |
1263 | } | |
1264 | ||
1265 | if (*length < bootprofile_buffer_current_position) { | |
1266 | result = KERN_NO_SPACE; | |
1267 | goto out; | |
1268 | } | |
1269 | ||
1270 | if ((result = copyout((void *)bootprofile_buffer, buffer, | |
1271 | bootprofile_buffer_current_position)) != 0) { | |
1272 | *length = 0; | |
1273 | goto out; | |
1274 | } | |
1275 | *length = bootprofile_buffer_current_position; | |
1276 | ||
1277 | /* cancel future timers */ | |
1278 | bootprofile_interval_abs = 0; | |
1279 | ||
1280 | out: | |
1281 | ||
1282 | BOOTPROFILE_UNLOCK(); | |
1283 | ||
1284 | return (result); | |
1285 | } |