]> git.saurik.com Git - apple/xnu.git/blame - bsd/kern/uipc_mbuf.c
xnu-7195.60.75.tar.gz
[apple/xnu.git] / bsd / kern / uipc_mbuf.c
CommitLineData
1c79356b 1/*
f427ee49 2 * Copyright (c) 1998-2020 Apple Inc. All rights reserved.
5d5c5d0d 3 *
2d21ac55
A
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29/*
30 * Copyright (c) 1982, 1986, 1988, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
62 */
2d21ac55
A
63/*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
1c79356b
A
68 */
69
f427ee49
A
70#include <ptrauth.h>
71
1c79356b
A
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/malloc.h>
75#include <sys/mbuf.h>
76#include <sys/kernel.h>
91447636 77#include <sys/sysctl.h>
1c79356b
A
78#include <sys/syslog.h>
79#include <sys/protosw.h>
80#include <sys/domain.h>
2d21ac55 81#include <sys/queue.h>
b0d623f7 82#include <sys/proc.h>
1c79356b 83
39236c6e
A
84#include <dev/random/randomdev.h>
85
9bccf70c 86#include <kern/kern_types.h>
2d21ac55
A
87#include <kern/simple_lock.h>
88#include <kern/queue.h>
9bccf70c 89#include <kern/sched_prim.h>
39037602 90#include <kern/backtrace.h>
2d21ac55 91#include <kern/cpu_number.h>
6d2010ae 92#include <kern/zalloc.h>
2d21ac55
A
93
94#include <libkern/OSAtomic.h>
39236c6e 95#include <libkern/OSDebug.h>
2d21ac55 96#include <libkern/libkern.h>
9bccf70c 97
a39ff7e2
A
98#include <os/log.h>
99
55e303ae
A
100#include <IOKit/IOMapper.h>
101
2d21ac55
A
102#include <machine/limits.h>
103#include <machine/machine_routines.h>
55e303ae 104
2d21ac55 105#include <sys/mcache.h>
fe8ab488 106#include <net/ntstat.h>
1c79356b 107
2d21ac55
A
108/*
109 * MBUF IMPLEMENTATION NOTES.
110 *
111 * There is a total of 5 per-CPU caches:
112 *
113 * MC_MBUF:
114 * This is a cache of rudimentary objects of MSIZE in size; each
115 * object represents an mbuf structure. This cache preserves only
116 * the m_type field of the mbuf during its transactions.
117 *
118 * MC_CL:
119 * This is a cache of rudimentary objects of MCLBYTES in size; each
120 * object represents a mcluster structure. This cache does not
121 * preserve the contents of the objects during its transactions.
122 *
123 * MC_BIGCL:
6d2010ae 124 * This is a cache of rudimentary objects of MBIGCLBYTES in size; each
2d21ac55
A
125 * object represents a mbigcluster structure. This cache does not
126 * preserve the contents of the objects during its transaction.
127 *
128 * MC_MBUF_CL:
129 * This is a cache of mbufs each having a cluster attached to it.
130 * It is backed by MC_MBUF and MC_CL rudimentary caches. Several
131 * fields of the mbuf related to the external cluster are preserved
132 * during transactions.
133 *
134 * MC_MBUF_BIGCL:
135 * This is a cache of mbufs each having a big cluster attached to it.
136 * It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several
137 * fields of the mbuf related to the external cluster are preserved
138 * during transactions.
139 *
140 * OBJECT ALLOCATION:
141 *
142 * Allocation requests are handled first at the per-CPU (mcache) layer
143 * before falling back to the slab layer. Performance is optimal when
144 * the request is satisfied at the CPU layer because global data/lock
145 * never gets accessed. When the slab layer is entered for allocation,
146 * the slab freelist will be checked first for available objects before
147 * the VM backing store is invoked. Slab layer operations are serialized
148 * for all of the caches as the mbuf global lock is held most of the time.
149 * Allocation paths are different depending on the class of objects:
150 *
151 * a. Rudimentary object:
152 *
153 * { m_get_common(), m_clattach(), m_mclget(),
154 * m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(),
155 * composite object allocation }
156 * | ^
157 * | |
158 * | +-----------------------+
159 * v |
160 * mcache_alloc/mcache_alloc_ext() mbuf_slab_audit()
161 * | ^
162 * v |
163 * [CPU cache] -------> (found?) -------+
164 * | |
165 * v |
166 * mbuf_slab_alloc() |
167 * | |
168 * v |
169 * +---------> [freelist] -------> (found?) -------+
170 * | |
171 * | v
172 * | m_clalloc()
173 * | |
174 * | v
175 * +---<<---- kmem_mb_alloc()
176 *
177 * b. Composite object:
178 *
179 * { m_getpackets_internal(), m_allocpacket_internal() }
180 * | ^
181 * | |
182 * | +------ (done) ---------+
183 * v |
184 * mcache_alloc/mcache_alloc_ext() mbuf_cslab_audit()
185 * | ^
186 * v |
187 * [CPU cache] -------> (found?) -------+
188 * | |
189 * v |
190 * mbuf_cslab_alloc() |
191 * | |
192 * v |
193 * [freelist] -------> (found?) -------+
194 * | |
195 * v |
196 * (rudimentary object) |
197 * mcache_alloc/mcache_alloc_ext() ------>>-----+
198 *
199 * Auditing notes: If auditing is enabled, buffers will be subjected to
200 * integrity checks by the audit routine. This is done by verifying their
201 * contents against DEADBEEF (free) pattern before returning them to caller.
202 * As part of this step, the routine will also record the transaction and
203 * pattern-fill the buffers with BADDCAFE (uninitialized) pattern. It will
204 * also restore any constructed data structure fields if necessary.
205 *
206 * OBJECT DEALLOCATION:
207 *
208 * Freeing an object simply involves placing it into the CPU cache; this
209 * pollutes the cache to benefit subsequent allocations. The slab layer
210 * will only be entered if the object is to be purged out of the cache.
211 * During normal operations, this happens only when the CPU layer resizes
212 * its bucket while it's adjusting to the allocation load. Deallocation
213 * paths are different depending on the class of objects:
214 *
215 * a. Rudimentary object:
216 *
217 * { m_free(), m_freem_list(), composite object deallocation }
218 * | ^
219 * | |
220 * | +------ (done) ---------+
221 * v |
222 * mcache_free/mcache_free_ext() |
223 * | |
224 * v |
225 * mbuf_slab_audit() |
226 * | |
227 * v |
228 * [CPU cache] ---> (not purging?) -----+
229 * | |
230 * v |
231 * mbuf_slab_free() |
232 * | |
233 * v |
234 * [freelist] ----------->>------------+
3e170ce0 235 * (objects get purged to VM only on demand)
2d21ac55
A
236 *
237 * b. Composite object:
238 *
239 * { m_free(), m_freem_list() }
240 * | ^
241 * | |
242 * | +------ (done) ---------+
243 * v |
244 * mcache_free/mcache_free_ext() |
245 * | |
246 * v |
247 * mbuf_cslab_audit() |
248 * | |
249 * v |
250 * [CPU cache] ---> (not purging?) -----+
251 * | |
252 * v |
253 * mbuf_cslab_free() |
254 * | |
255 * v |
256 * [freelist] ---> (not purging?) -----+
257 * | |
258 * v |
259 * (rudimentary object) |
260 * mcache_free/mcache_free_ext() ------->>------+
261 *
262 * Auditing notes: If auditing is enabled, the audit routine will save
263 * any constructed data structure fields (if necessary) before filling the
264 * contents of the buffers with DEADBEEF (free) pattern and recording the
265 * transaction. Buffers that are freed (whether at CPU or slab layer) are
266 * expected to contain the free pattern.
267 *
268 * DEBUGGING:
269 *
270 * Debugging can be enabled by adding "mbuf_debug=0x3" to boot-args; this
271 * translates to the mcache flags (MCF_VERIFY | MCF_AUDIT). Additionally,
272 * the CPU layer cache can be disabled by setting the MCF_NOCPUCACHE flag,
6d2010ae
A
273 * i.e. modify the boot argument parameter to "mbuf_debug=0x13". Leak
274 * detection may also be disabled by setting the MCF_NOLEAKLOG flag, e.g.
275 * "mbuf_debug=0x113". Note that debugging consumes more CPU and memory.
2d21ac55
A
276 *
277 * Each object is associated with exactly one mcache_audit_t structure that
278 * contains the information related to its last buffer transaction. Given
279 * an address of an object, the audit structure can be retrieved by finding
280 * the position of the object relevant to the base address of the cluster:
281 *
282 * +------------+ +=============+
283 * | mbuf addr | | mclaudit[i] |
284 * +------------+ +=============+
285 * | | cl_audit[0] |
6d2010ae 286 * i = MTOBG(addr) +-------------+
2d21ac55 287 * | +-----> | cl_audit[1] | -----> mcache_audit_t
6d2010ae 288 * b = BGTOM(i) | +-------------+
2d21ac55
A
289 * | | | ... |
290 * x = MCLIDX(b, addr) | +-------------+
291 * | | | cl_audit[7] |
292 * +-----------------+ +-------------+
293 * (e.g. x == 1)
294 *
295 * The mclaudit[] array is allocated at initialization time, but its contents
6d2010ae 296 * get populated when the corresponding cluster is created. Because a page
3e170ce0 297 * can be turned into NMBPG number of mbufs, we preserve enough space for the
6d2010ae 298 * mbufs so that there is a 1-to-1 mapping between them. A page that never
2d21ac55 299 * gets (or has not yet) turned into mbufs will use only cl_audit[0] with the
6d2010ae
A
300 * remaining entries unused. For 16KB cluster, only one entry from the first
301 * page is allocated and used for the entire object.
2d21ac55 302 */
91447636 303
2d21ac55
A
304/* TODO: should be in header file */
305/* kernel translater */
cc8bc92a 306extern vm_offset_t kmem_mb_alloc(vm_map_t, int, int, kern_return_t *);
2d21ac55 307extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va);
0a7de745 308extern vm_map_t mb_map; /* special map */
2d21ac55 309
cc8bc92a
A
310static uint32_t mb_kmem_contig_failed;
311static uint32_t mb_kmem_failed;
312static uint32_t mb_kmem_one_failed;
313/* Timestamp of allocation failures. */
314static uint64_t mb_kmem_contig_failed_ts;
315static uint64_t mb_kmem_failed_ts;
316static uint64_t mb_kmem_one_failed_ts;
317static uint64_t mb_kmem_contig_failed_size;
318static uint64_t mb_kmem_failed_size;
319static uint32_t mb_kmem_stats[6];
320static const char *mb_kmem_stats_labels[] = { "INVALID_ARGUMENT",
0a7de745
A
321 "INVALID_ADDRESS",
322 "RESOURCE_SHORTAGE",
323 "NO_SPACE",
324 "KERN_FAILURE",
325 "OTHERS" };
cc8bc92a 326
2d21ac55 327/* Global lock */
316670eb
A
328decl_lck_mtx_data(static, mbuf_mlock_data);
329static lck_mtx_t *mbuf_mlock = &mbuf_mlock_data;
2d21ac55
A
330static lck_attr_t *mbuf_mlock_attr;
331static lck_grp_t *mbuf_mlock_grp;
332static lck_grp_attr_t *mbuf_mlock_grp_attr;
333
334/* Back-end (common) layer */
cc8bc92a
A
335static uint64_t mb_expand_cnt;
336static uint64_t mb_expand_cl_cnt;
337static uint64_t mb_expand_cl_total;
338static uint64_t mb_expand_bigcl_cnt;
339static uint64_t mb_expand_bigcl_total;
340static uint64_t mb_expand_16kcl_cnt;
341static uint64_t mb_expand_16kcl_total;
39037602 342static boolean_t mbuf_worker_needs_wakeup; /* wait channel for mbuf worker */
cc8bc92a
A
343static uint32_t mbuf_worker_run_cnt;
344static uint64_t mbuf_worker_last_runtime;
d9a64523 345static uint64_t mbuf_drain_last_runtime;
0a7de745 346static int mbuf_worker_ready; /* worker thread is runnable */
f427ee49 347static unsigned int ncpu; /* number of CPUs */
0a7de745
A
348static ppnum_t *mcl_paddr; /* Array of cluster physical addresses */
349static ppnum_t mcl_pages; /* Size of array (# physical pages) */
350static ppnum_t mcl_paddr_base; /* Handle returned by IOMapper::iovmAlloc() */
351static mcache_t *ref_cache; /* Cache of cluster reference & flags */
2d21ac55 352static mcache_t *mcl_audit_con_cache; /* Audit contents cache */
0a7de745 353static unsigned int mbuf_debug; /* patchable mbuf mcache flags */
2d21ac55 354static unsigned int mb_normalized; /* number of packets "normalized" */
b0d623f7 355
0a7de745
A
356#define MB_GROWTH_AGGRESSIVE 1 /* Threshold: 1/2 of total */
357#define MB_GROWTH_NORMAL 2 /* Threshold: 3/4 of total */
2d21ac55
A
358
359typedef enum {
0a7de745
A
360 MC_MBUF = 0, /* Regular mbuf */
361 MC_CL, /* Cluster */
362 MC_BIGCL, /* Large (4KB) cluster */
363 MC_16KCL, /* Jumbo (16KB) cluster */
364 MC_MBUF_CL, /* mbuf + cluster */
365 MC_MBUF_BIGCL, /* mbuf + large (4KB) cluster */
366 MC_MBUF_16KCL /* mbuf + jumbo (16KB) cluster */
2d21ac55
A
367} mbuf_class_t;
368
0a7de745
A
369#define MBUF_CLASS_MIN MC_MBUF
370#define MBUF_CLASS_MAX MC_MBUF_16KCL
371#define MBUF_CLASS_LAST MC_16KCL
372#define MBUF_CLASS_VALID(c) \
2d21ac55 373 ((int)(c) >= MBUF_CLASS_MIN && (int)(c) <= MBUF_CLASS_MAX)
0a7de745 374#define MBUF_CLASS_COMPOSITE(c) \
2d21ac55 375 ((int)(c) > MBUF_CLASS_LAST)
91447636 376
9bccf70c 377
2d21ac55
A
378/*
379 * mbuf specific mcache allocation request flags.
380 */
0a7de745 381#define MCR_COMP MCR_USR1 /* for MC_MBUF_{CL,BIGCL,16KCL} caches */
9bccf70c 382
2d21ac55
A
383/*
384 * Per-cluster slab structure.
385 *
386 * A slab is a cluster control structure that contains one or more object
387 * chunks; the available chunks are chained in the slab's freelist (sl_head).
388 * Each time a chunk is taken out of the slab, the slab's reference count
389 * gets incremented. When all chunks have been taken out, the empty slab
390 * gets removed (SLF_DETACHED) from the class's slab list. A chunk that is
391 * returned to a slab causes the slab's reference count to be decremented;
392 * it also causes the slab to be reinserted back to class's slab list, if
393 * it's not already done.
394 *
395 * Compartmentalizing of the object chunks into slabs allows us to easily
396 * merge one or more slabs together when the adjacent slabs are idle, as
397 * well as to convert or move a slab from one class to another; e.g. the
398 * mbuf cluster slab can be converted to a regular cluster slab when all
399 * mbufs in the slab have been freed.
400 *
401 * A slab may also span across multiple clusters for chunks larger than
402 * a cluster's size. In this case, only the slab of the first cluster is
403 * used. The rest of the slabs are marked with SLF_PARTIAL to indicate
404 * that they are part of the larger slab.
6d2010ae
A
405 *
406 * Each slab controls a page of memory.
2d21ac55
A
407 */
408typedef struct mcl_slab {
0a7de745
A
409 struct mcl_slab *sl_next; /* neighboring slab */
410 u_int8_t sl_class; /* controlling mbuf class */
411 int8_t sl_refcnt; /* outstanding allocations */
412 int8_t sl_chunks; /* chunks (bufs) in this slab */
413 u_int16_t sl_flags; /* slab flags (see below) */
414 u_int16_t sl_len; /* slab length */
415 void *sl_base; /* base of allocated memory */
416 void *sl_head; /* first free buffer */
417 TAILQ_ENTRY(mcl_slab) sl_link; /* next/prev slab on freelist */
2d21ac55
A
418} mcl_slab_t;
419
0a7de745
A
420#define SLF_MAPPED 0x0001 /* backed by a mapped page */
421#define SLF_PARTIAL 0x0002 /* part of another slab */
422#define SLF_DETACHED 0x0004 /* not in slab freelist */
1c79356b 423
2d21ac55
A
424/*
425 * The array of slabs are broken into groups of arrays per 1MB of kernel
426 * memory to reduce the footprint. Each group is allocated on demand
427 * whenever a new piece of memory mapped in from the VM crosses the 1MB
428 * boundary.
429 */
0a7de745 430#define NSLABSPMB ((1 << MBSHIFT) >> PAGE_SHIFT)
91447636 431
2d21ac55 432typedef struct mcl_slabg {
0a7de745 433 mcl_slab_t *slg_slab; /* group of slabs */
2d21ac55 434} mcl_slabg_t;
1c79356b 435
6d2010ae
A
436/*
437 * Number of slabs needed to control a 16KB cluster object.
438 */
0a7de745 439#define NSLABSP16KB (M16KCLBYTES >> PAGE_SHIFT)
6d2010ae 440
2d21ac55
A
441/*
442 * Per-cluster audit structure.
443 */
444typedef struct {
0a7de745 445 mcache_audit_t **cl_audit; /* array of audits */
2d21ac55 446} mcl_audit_t;
91447636 447
39236c6e 448typedef struct {
0a7de745
A
449 struct thread *msa_thread; /* thread doing transaction */
450 struct thread *msa_pthread; /* previous transaction thread */
451 uint32_t msa_tstamp; /* transaction timestamp (ms) */
452 uint32_t msa_ptstamp; /* prev transaction timestamp (ms) */
453 uint16_t msa_depth; /* pc stack depth */
454 uint16_t msa_pdepth; /* previous transaction pc stack */
455 void *msa_stack[MCACHE_STACK_DEPTH];
456 void *msa_pstack[MCACHE_STACK_DEPTH];
39236c6e
A
457} mcl_scratch_audit_t;
458
459typedef struct {
460 /*
461 * Size of data from the beginning of an mbuf that covers m_hdr,
462 * pkthdr and m_ext structures. If auditing is enabled, we allocate
463 * a shadow mbuf structure of this size inside each audit structure,
464 * and the contents of the real mbuf gets copied into it when the mbuf
465 * is freed. This allows us to pattern-fill the mbuf for integrity
466 * check, and to preserve any constructed mbuf fields (e.g. mbuf +
467 * cluster cache case). Note that we don't save the contents of
468 * clusters when they are freed; we simply pattern-fill them.
469 */
0a7de745
A
470 u_int8_t sc_mbuf[(MSIZE - _MHLEN) + sizeof(_m_ext_t)];
471 mcl_scratch_audit_t sc_scratch __attribute__((aligned(8)));
39236c6e
A
472} mcl_saved_contents_t;
473
0a7de745 474#define AUDIT_CONTENTS_SIZE (sizeof (mcl_saved_contents_t))
39236c6e 475
0a7de745
A
476#define MCA_SAVED_MBUF_PTR(_mca) \
477 ((struct mbuf *)(void *)((mcl_saved_contents_t *) \
39236c6e 478 (_mca)->mca_contents)->sc_mbuf)
0a7de745 479#define MCA_SAVED_MBUF_SIZE \
39236c6e 480 (sizeof (((mcl_saved_contents_t *)0)->sc_mbuf))
0a7de745 481#define MCA_SAVED_SCRATCH_PTR(_mca) \
39236c6e 482 (&((mcl_saved_contents_t *)(_mca)->mca_contents)->sc_scratch)
fa4905b1 483
2d21ac55
A
484/*
485 * mbuf specific mcache audit flags
486 */
0a7de745
A
487#define MB_INUSE 0x01 /* object has not been returned to slab */
488#define MB_COMP_INUSE 0x02 /* object has not been returned to cslab */
489#define MB_SCVALID 0x04 /* object has valid saved contents */
fa4905b1 490
2d21ac55
A
491/*
492 * Each of the following two arrays hold up to nmbclusters elements.
493 */
0a7de745
A
494static mcl_audit_t *mclaudit; /* array of cluster audit information */
495static unsigned int maxclaudit; /* max # of entries in audit table */
496static mcl_slabg_t **slabstbl; /* cluster slabs table */
497static unsigned int maxslabgrp; /* max # of entries in slabs table */
498static unsigned int slabgrp; /* # of entries in slabs table */
2d21ac55
A
499
500/* Globals */
0a7de745
A
501int nclusters; /* # of clusters for non-jumbo (legacy) sizes */
502int njcl; /* # of clusters for jumbo sizes */
503int njclbytes; /* size of a jumbo cluster */
504unsigned char *mbutl; /* first mapped cluster address */
505unsigned char *embutl; /* ending virtual address of mclusters */
506int _max_linkhdr; /* largest link-level header */
507int _max_protohdr; /* largest protocol header */
508int max_hdr; /* largest link+protocol header */
509int max_datalen; /* MHLEN - max_hdr */
510
511static boolean_t mclverify; /* debug: pattern-checking */
512static boolean_t mcltrace; /* debug: stack tracing */
513static boolean_t mclfindleak; /* debug: leak detection */
514static boolean_t mclexpleak; /* debug: expose leak info to user space */
515
516static struct timeval mb_start; /* beginning of time */
39236c6e 517
6d2010ae
A
518/* mbuf leak detection variables */
519static struct mleak_table mleak_table;
520static mleak_stat_t *mleak_stat;
521
0a7de745 522#define MLEAK_STAT_SIZE(n) \
5ba3f43e 523 __builtin_offsetof(mleak_stat_t, ml_trace[n])
6d2010ae
A
524
525struct mallocation {
0a7de745
A
526 mcache_obj_t *element; /* the alloc'ed element, NULL if unused */
527 u_int32_t trace_index; /* mtrace index for corresponding backtrace */
528 u_int32_t count; /* How many objects were requested */
529 u_int64_t hitcount; /* for determining hash effectiveness */
6d2010ae
A
530};
531
532struct mtrace {
0a7de745
A
533 u_int64_t collisions;
534 u_int64_t hitcount;
535 u_int64_t allocs;
536 u_int64_t depth;
537 uintptr_t addr[MLEAK_STACK_DEPTH];
6d2010ae
A
538};
539
540/* Size must be a power of two for the zhash to be able to just mask off bits */
0a7de745
A
541#define MLEAK_ALLOCATION_MAP_NUM 512
542#define MLEAK_TRACE_MAP_NUM 256
6d2010ae
A
543
544/*
545 * Sample factor for how often to record a trace. This is overwritable
546 * by the boot-arg mleak_sample_factor.
547 */
0a7de745 548#define MLEAK_SAMPLE_FACTOR 500
6d2010ae
A
549
550/*
551 * Number of top leakers recorded.
552 */
0a7de745 553#define MLEAK_NUM_TRACES 5
6d2010ae 554
0a7de745 555#define MB_LEAK_SPACING_64 " "
316670eb
A
556#define MB_LEAK_SPACING_32 " "
557
558
0a7de745 559#define MB_LEAK_HDR_32 "\n\
316670eb
A
560 trace [1] trace [2] trace [3] trace [4] trace [5] \n\
561 ---------- ---------- ---------- ---------- ---------- \n\
562"
563
0a7de745 564#define MB_LEAK_HDR_64 "\n\
316670eb 565 trace [1] trace [2] trace [3] \
0a7de745 566 trace [4] trace [5] \n\
316670eb
A
567 ------------------ ------------------ ------------------ \
568 ------------------ ------------------ \n\
569"
570
6d2010ae
A
571static uint32_t mleak_alloc_buckets = MLEAK_ALLOCATION_MAP_NUM;
572static uint32_t mleak_trace_buckets = MLEAK_TRACE_MAP_NUM;
573
574/* Hashmaps of allocations and their corresponding traces */
575static struct mallocation *mleak_allocations;
576static struct mtrace *mleak_traces;
577static struct mtrace *mleak_top_trace[MLEAK_NUM_TRACES];
578
579/* Lock to protect mleak tables from concurrent modification */
316670eb
A
580decl_lck_mtx_data(static, mleak_lock_data);
581static lck_mtx_t *mleak_lock = &mleak_lock_data;
6d2010ae
A
582static lck_attr_t *mleak_lock_attr;
583static lck_grp_t *mleak_lock_grp;
584static lck_grp_attr_t *mleak_lock_grp_attr;
585
5c9f4661
A
586/* *Failed* large allocations. */
587struct mtracelarge {
0a7de745
A
588 uint64_t size;
589 uint64_t depth;
590 uintptr_t addr[MLEAK_STACK_DEPTH];
5c9f4661
A
591};
592
0a7de745 593#define MTRACELARGE_NUM_TRACES 5
5c9f4661
A
594static struct mtracelarge mtracelarge_table[MTRACELARGE_NUM_TRACES];
595
596static void mtracelarge_register(size_t size);
597
39037602
A
598/* Lock to protect the completion callback table */
599static lck_grp_attr_t *mbuf_tx_compl_tbl_lck_grp_attr = NULL;
600static lck_attr_t *mbuf_tx_compl_tbl_lck_attr = NULL;
601static lck_grp_t *mbuf_tx_compl_tbl_lck_grp = NULL;
602decl_lck_rw_data(, mbuf_tx_compl_tbl_lck_rw_data);
603lck_rw_t *mbuf_tx_compl_tbl_lock = &mbuf_tx_compl_tbl_lck_rw_data;
604
b0d623f7
A
605extern u_int32_t high_sb_max;
606
2d21ac55 607/* The minimum number of objects that are allocated, to start. */
0a7de745
A
608#define MINCL 32
609#define MINBIGCL (MINCL >> 1)
610#define MIN16KCL (MINCL >> 2)
2d21ac55
A
611
612/* Low watermarks (only map in pages once free counts go below) */
0a7de745
A
613#define MBIGCL_LOWAT MINBIGCL
614#define M16KCL_LOWAT MIN16KCL
2d21ac55
A
615
616typedef struct {
0a7de745
A
617 mbuf_class_t mtbl_class; /* class type */
618 mcache_t *mtbl_cache; /* mcache for this buffer class */
2d21ac55 619 TAILQ_HEAD(mcl_slhead, mcl_slab) mtbl_slablist; /* slab list */
0a7de745
A
620 mcache_obj_t *mtbl_cobjlist; /* composite objects freelist */
621 mb_class_stat_t *mtbl_stats; /* statistics fetchable via sysctl */
622 u_int32_t mtbl_maxsize; /* maximum buffer size */
623 int mtbl_minlimit; /* minimum allowed */
624 int mtbl_maxlimit; /* maximum allowed */
625 u_int32_t mtbl_wantpurge; /* purge during next reclaim */
626 uint32_t mtbl_avgtotal; /* average total on iOS */
627 u_int32_t mtbl_expand; /* worker should expand the class */
2d21ac55
A
628} mbuf_table_t;
629
0a7de745
A
630#define m_class(c) mbuf_table[c].mtbl_class
631#define m_cache(c) mbuf_table[c].mtbl_cache
632#define m_slablist(c) mbuf_table[c].mtbl_slablist
633#define m_cobjlist(c) mbuf_table[c].mtbl_cobjlist
634#define m_maxsize(c) mbuf_table[c].mtbl_maxsize
635#define m_minlimit(c) mbuf_table[c].mtbl_minlimit
636#define m_maxlimit(c) mbuf_table[c].mtbl_maxlimit
637#define m_wantpurge(c) mbuf_table[c].mtbl_wantpurge
638#define m_cname(c) mbuf_table[c].mtbl_stats->mbcl_cname
639#define m_size(c) mbuf_table[c].mtbl_stats->mbcl_size
640#define m_total(c) mbuf_table[c].mtbl_stats->mbcl_total
641#define m_active(c) mbuf_table[c].mtbl_stats->mbcl_active
642#define m_infree(c) mbuf_table[c].mtbl_stats->mbcl_infree
643#define m_slab_cnt(c) mbuf_table[c].mtbl_stats->mbcl_slab_cnt
644#define m_alloc_cnt(c) mbuf_table[c].mtbl_stats->mbcl_alloc_cnt
645#define m_free_cnt(c) mbuf_table[c].mtbl_stats->mbcl_free_cnt
646#define m_notified(c) mbuf_table[c].mtbl_stats->mbcl_notified
647#define m_purge_cnt(c) mbuf_table[c].mtbl_stats->mbcl_purge_cnt
648#define m_fail_cnt(c) mbuf_table[c].mtbl_stats->mbcl_fail_cnt
649#define m_ctotal(c) mbuf_table[c].mtbl_stats->mbcl_ctotal
650#define m_peak(c) mbuf_table[c].mtbl_stats->mbcl_peak_reported
651#define m_release_cnt(c) mbuf_table[c].mtbl_stats->mbcl_release_cnt
652#define m_region_expand(c) mbuf_table[c].mtbl_expand
2d21ac55
A
653
654static mbuf_table_t mbuf_table[] = {
655 /*
656 * The caches for mbufs, regular clusters and big clusters.
fe8ab488
A
657 * The average total values were based on data gathered by actual
658 * usage patterns on iOS.
2d21ac55
A
659 */
660 { MC_MBUF, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_MBUF)),
0a7de745 661 NULL, NULL, 0, 0, 0, 0, 3000, 0 },
2d21ac55 662 { MC_CL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_CL)),
0a7de745 663 NULL, NULL, 0, 0, 0, 0, 2000, 0 },
2d21ac55 664 { MC_BIGCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_BIGCL)),
0a7de745 665 NULL, NULL, 0, 0, 0, 0, 1000, 0 },
2d21ac55 666 { MC_16KCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_16KCL)),
0a7de745 667 NULL, NULL, 0, 0, 0, 0, 200, 0 },
2d21ac55
A
668 /*
669 * The following are special caches; they serve as intermediate
670 * caches backed by the above rudimentary caches. Each object
671 * in the cache is an mbuf with a cluster attached to it. Unlike
672 * the above caches, these intermediate caches do not directly
673 * deal with the slab structures; instead, the constructed
674 * cached elements are simply stored in the freelists.
675 */
5ba3f43e
A
676 { MC_MBUF_CL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 2000, 0 },
677 { MC_MBUF_BIGCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 1000, 0 },
678 { MC_MBUF_16KCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 200, 0 },
2d21ac55
A
679};
680
0a7de745 681#define NELEM(a) (sizeof (a) / sizeof ((a)[0]))
2d21ac55 682
a39ff7e2
A
683
684static uint32_t
685m_avgtotal(mbuf_class_t c)
686{
0a7de745 687 return mbuf_table[c].mtbl_avgtotal;
a39ff7e2
A
688}
689
0a7de745
A
690static void *mb_waitchan = &mbuf_table; /* wait channel for all caches */
691static int mb_waiters; /* number of waiters */
6d2010ae 692
fe8ab488
A
693boolean_t mb_peak_newreport = FALSE;
694boolean_t mb_peak_firstreport = FALSE;
695
696/* generate a report by default after 1 week of uptime */
0a7de745 697#define MBUF_PEAK_FIRST_REPORT_THRESHOLD 604800
fe8ab488 698
0a7de745
A
699#define MB_WDT_MAXTIME 10 /* # of secs before watchdog panic */
700static struct timeval mb_wdtstart; /* watchdog start timestamp */
316670eb
A
701static char *mbuf_dump_buf;
702
0a7de745 703#define MBUF_DUMP_BUF_SIZE 4096
6d2010ae
A
704
705/*
0a7de745
A
706 * mbuf watchdog is enabled by default. It is also toggeable via the
707 * kern.ipc.mb_watchdog sysctl.
708 * Garbage collection is enabled by default on embedded platforms.
fe8ab488 709 * mb_drain_maxint controls the amount of time to wait (in seconds) before
d9a64523 710 * consecutive calls to mbuf_drain().
6d2010ae 711 */
f427ee49 712#if !XNU_TARGET_OS_OSX || DEVELOPMENT || DEBUG
5ba3f43e 713static unsigned int mb_watchdog = 1;
f427ee49 714#else /* XNU_TARGET_OS_OSX && !DEVELOPMENT && !DEBUG */
6d2010ae 715static unsigned int mb_watchdog = 0;
f427ee49
A
716#endif /* XNU_TARGET_OS_OSX && !DEVELOPMENT && !DEBUG */
717#if !XNU_TARGET_OS_OSX
0a7de745 718static unsigned int mb_drain_maxint = 60;
f427ee49 719#else /* XNU_TARGET_OS_OSX */
fe8ab488 720static unsigned int mb_drain_maxint = 0;
f427ee49 721#endif /* XNU_TARGET_OS_OSX */
2a1bd2d3 722static unsigned int mb_memory_pressure_percentage = 80;
39236c6e 723
813fb2f6
A
724uintptr_t mb_obscure_extfree __attribute__((visibility("hidden")));
725uintptr_t mb_obscure_extref __attribute__((visibility("hidden")));
726
39236c6e
A
727/* Red zone */
728static u_int32_t mb_redzone_cookie;
729static void m_redzone_init(struct mbuf *);
730static void m_redzone_verify(struct mbuf *m);
2d21ac55
A
731
732/* The following are used to serialize m_clalloc() */
733static boolean_t mb_clalloc_busy;
734static void *mb_clalloc_waitchan = &mb_clalloc_busy;
735static int mb_clalloc_waiters;
736
6d2010ae 737static void mbuf_mtypes_sync(boolean_t);
2d21ac55 738static int mbstat_sysctl SYSCTL_HANDLER_ARGS;
6d2010ae 739static void mbuf_stat_sync(void);
2d21ac55 740static int mb_stat_sysctl SYSCTL_HANDLER_ARGS;
6d2010ae
A
741static int mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS;
742static int mleak_table_sysctl SYSCTL_HANDLER_ARGS;
743static char *mbuf_dump(void);
2d21ac55
A
744static void mbuf_table_init(void);
745static inline void m_incref(struct mbuf *);
39037602 746static inline u_int16_t m_decref(struct mbuf *);
2d21ac55
A
747static int m_clalloc(const u_int32_t, const int, const u_int32_t);
748static void mbuf_worker_thread_init(void);
749static mcache_obj_t *slab_alloc(mbuf_class_t, int);
750static void slab_free(mbuf_class_t, mcache_obj_t *);
751static unsigned int mbuf_slab_alloc(void *, mcache_obj_t ***,
752 unsigned int, int);
753static void mbuf_slab_free(void *, mcache_obj_t *, int);
754static void mbuf_slab_audit(void *, mcache_obj_t *, boolean_t);
755static void mbuf_slab_notify(void *, u_int32_t);
756static unsigned int cslab_alloc(mbuf_class_t, mcache_obj_t ***,
757 unsigned int);
758static unsigned int cslab_free(mbuf_class_t, mcache_obj_t *, int);
759static unsigned int mbuf_cslab_alloc(void *, mcache_obj_t ***,
760 unsigned int, int);
761static void mbuf_cslab_free(void *, mcache_obj_t *, int);
762static void mbuf_cslab_audit(void *, mcache_obj_t *, boolean_t);
763static int freelist_populate(mbuf_class_t, unsigned int, int);
6d2010ae 764static void freelist_init(mbuf_class_t);
2d21ac55
A
765static boolean_t mbuf_cached_above(mbuf_class_t, int);
766static boolean_t mbuf_steal(mbuf_class_t, unsigned int);
767static void m_reclaim(mbuf_class_t, unsigned int, boolean_t);
768static int m_howmany(int, size_t);
769static void mbuf_worker_thread(void);
6d2010ae 770static void mbuf_watchdog(void);
2d21ac55
A
771static boolean_t mbuf_sleep(mbuf_class_t, unsigned int, int);
772
773static void mcl_audit_init(void *, mcache_audit_t **, mcache_obj_t **,
774 size_t, unsigned int);
fe8ab488 775static void mcl_audit_free(void *, unsigned int);
2d21ac55
A
776static mcache_audit_t *mcl_audit_buf2mca(mbuf_class_t, mcache_obj_t *);
777static void mcl_audit_mbuf(mcache_audit_t *, void *, boolean_t, boolean_t);
778static void mcl_audit_cluster(mcache_audit_t *, void *, size_t, boolean_t,
779 boolean_t);
780static void mcl_audit_restore_mbuf(struct mbuf *, mcache_audit_t *, boolean_t);
781static void mcl_audit_save_mbuf(struct mbuf *, mcache_audit_t *);
39236c6e 782static void mcl_audit_scratch(mcache_audit_t *);
2d21ac55
A
783static void mcl_audit_mcheck_panic(struct mbuf *);
784static void mcl_audit_verify_nextptr(void *, mcache_audit_t *);
785
6d2010ae
A
786static void mleak_activate(void);
787static void mleak_logger(u_int32_t, mcache_obj_t *, boolean_t);
788static boolean_t mleak_log(uintptr_t *, mcache_obj_t *, uint32_t, int);
789static void mleak_free(mcache_obj_t *);
316670eb
A
790static void mleak_sort_traces(void);
791static void mleak_update_stats(void);
6d2010ae 792
2d21ac55
A
793static mcl_slab_t *slab_get(void *);
794static void slab_init(mcl_slab_t *, mbuf_class_t, u_int32_t,
795 void *, void *, unsigned int, int, int);
796static void slab_insert(mcl_slab_t *, mbuf_class_t);
797static void slab_remove(mcl_slab_t *, mbuf_class_t);
798static boolean_t slab_inrange(mcl_slab_t *, void *);
799static void slab_nextptr_panic(mcl_slab_t *, void *);
800static void slab_detach(mcl_slab_t *);
801static boolean_t slab_is_detached(mcl_slab_t *);
802
b0d623f7
A
803static int m_copyback0(struct mbuf **, int, int, const void *, int, int);
804static struct mbuf *m_split0(struct mbuf *, int, int, int);
fe8ab488
A
805__private_extern__ void mbuf_report_peak_usage(void);
806static boolean_t mbuf_report_usage(mbuf_class_t);
d9a64523
A
807#if DEBUG || DEVELOPMENT
808#define mbwdog_logger(fmt, ...) _mbwdog_logger(__func__, __LINE__, fmt, ## __VA_ARGS__)
809static void _mbwdog_logger(const char *func, const int line, const char *fmt, ...);
810static char *mbwdog_logging;
811const unsigned mbwdog_logging_size = 4096;
812static size_t mbwdog_logging_used;
813#else
814#define mbwdog_logger(fmt, ...) do { } while (0)
815#endif
816static void mbuf_drain_locked(boolean_t);
b0d623f7
A
817
818/* flags for m_copyback0 */
0a7de745
A
819#define M_COPYBACK0_COPYBACK 0x0001 /* copyback from cp */
820#define M_COPYBACK0_PRESERVE 0x0002 /* preserve original data */
821#define M_COPYBACK0_COW 0x0004 /* do copy-on-write */
822#define M_COPYBACK0_EXTEND 0x0008 /* extend chain */
b0d623f7 823
2d21ac55
A
824/*
825 * This flag is set for all mbufs that come out of and into the composite
826 * mbuf + cluster caches, i.e. MC_MBUF_CL and MC_MBUF_BIGCL. mbufs that
827 * are marked with such a flag have clusters attached to them, and will be
828 * treated differently when they are freed; instead of being placed back
829 * into the mbuf and cluster freelists, the composite mbuf + cluster objects
830 * are placed back into the appropriate composite cache's freelist, and the
831 * actual freeing is deferred until the composite objects are purged. At
832 * such a time, this flag will be cleared from the mbufs and the objects
833 * will be freed into their own separate freelists.
834 */
0a7de745 835#define EXTF_COMPOSITE 0x1
1c79356b 836
6d2010ae
A
837/*
838 * This flag indicates that the external cluster is read-only, i.e. it is
839 * or was referred to by more than one mbufs. Once set, this flag is never
840 * cleared.
841 */
0a7de745 842#define EXTF_READONLY 0x2
39037602
A
843/*
844 * This flag indicates that the external cluster is paired with the mbuf.
845 * Pairing implies an external free routine defined which will be invoked
846 * when the reference count drops to the minimum at m_free time. This
847 * flag is never cleared.
848 */
0a7de745 849#define EXTF_PAIRED 0x4
39037602 850
0a7de745 851#define EXTF_MASK \
39037602 852 (EXTF_COMPOSITE | EXTF_READONLY | EXTF_PAIRED)
6d2010ae 853
0a7de745
A
854#define MEXT_MINREF(m) ((m_get_rfa(m))->minref)
855#define MEXT_REF(m) ((m_get_rfa(m))->refcnt)
856#define MEXT_PREF(m) ((m_get_rfa(m))->prefcnt)
857#define MEXT_FLAGS(m) ((m_get_rfa(m))->flags)
858#define MEXT_PRIV(m) ((m_get_rfa(m))->priv)
859#define MEXT_PMBUF(m) ((m_get_rfa(m))->paired)
860#define MEXT_TOKEN(m) ((m_get_rfa(m))->ext_token)
861#define MBUF_IS_COMPOSITE(m) \
862 (MEXT_REF(m) == MEXT_MINREF(m) && \
39037602
A
863 (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_COMPOSITE)
864/*
865 * This macro can be used to test if the mbuf is paired to an external
866 * cluster. The test for MEXT_PMBUF being equal to the mbuf in subject
867 * is important, as EXTF_PAIRED alone is insufficient since it is immutable,
868 * and thus survives calls to m_free_paired.
869 */
0a7de745
A
870#define MBUF_IS_PAIRED(m) \
871 (((m)->m_flags & M_EXT) && \
872 (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_PAIRED && \
39037602 873 MEXT_PMBUF(m) == (m))
1c79356b 874
2d21ac55
A
875/*
876 * Macros used to verify the integrity of the mbuf.
877 */
0a7de745
A
878#define _MCHECK(m) { \
879 if ((m)->m_type != MT_FREE && !MBUF_IS_PAIRED(m)) { \
880 if (mclaudit == NULL) \
881 panic("MCHECK: m_type=%d m=%p", \
882 (u_int16_t)(m)->m_type, m); \
883 else \
884 mcl_audit_mcheck_panic(m); \
885 } \
886}
887
888#define MBUF_IN_MAP(addr) \
889 ((unsigned char *)(addr) >= mbutl && \
3e170ce0 890 (unsigned char *)(addr) < embutl)
55e303ae 891
0a7de745
A
892#define MRANGE(addr) { \
893 if (!MBUF_IN_MAP(addr)) \
894 panic("MRANGE: address out of range 0x%p", addr); \
1c79356b
A
895}
896
897/*
2d21ac55 898 * Macro version of mtod.
1c79356b 899 */
0a7de745 900#define MTOD(m, t) ((t)((m)->m_data))
1c79356b 901
2d21ac55 902/*
3e170ce0 903 * Macros to obtain page index given a base cluster address
6d2010ae 904 */
0a7de745
A
905#define MTOPG(x) (((unsigned char *)x - mbutl) >> PAGE_SHIFT)
906#define PGTOM(x) (mbutl + (x << PAGE_SHIFT))
6d2010ae
A
907
908/*
909 * Macro to find the mbuf index relative to a base.
2d21ac55 910 */
0a7de745 911#define MBPAGEIDX(c, m) \
3e170ce0 912 (((unsigned char *)(m) - (unsigned char *)(c)) >> MSIZESHIFT)
1c79356b 913
2d21ac55 914/*
6d2010ae 915 * Same thing for 2KB cluster index.
2d21ac55 916 */
0a7de745 917#define CLPAGEIDX(c, m) \
3e170ce0
A
918 (((unsigned char *)(m) - (unsigned char *)(c)) >> MCLSHIFT)
919
920/*
921 * Macro to find 4KB cluster index relative to a base
922 */
923#define BCLPAGEIDX(c, m) \
924 (((unsigned char *)(m) - (unsigned char *)(c)) >> MBIGCLSHIFT)
91447636 925
2d21ac55
A
926/*
927 * Macros used during mbuf and cluster initialization.
928 */
0a7de745
A
929#define MBUF_INIT_PKTHDR(m) { \
930 (m)->m_pkthdr.rcvif = NULL; \
931 (m)->m_pkthdr.pkt_hdr = NULL; \
932 (m)->m_pkthdr.len = 0; \
933 (m)->m_pkthdr.csum_flags = 0; \
934 (m)->m_pkthdr.csum_data = 0; \
935 (m)->m_pkthdr.vlan_tag = 0; \
f427ee49 936 (m)->m_pkthdr.comp_gencnt = 0; \
0a7de745
A
937 m_classifier_init(m, 0); \
938 m_tag_init(m, 1); \
939 m_scratch_init(m); \
940 m_redzone_init(m); \
941}
942
943#define MBUF_INIT(m, pkthdr, type) { \
944 _MCHECK(m); \
945 (m)->m_next = (m)->m_nextpkt = NULL; \
946 (m)->m_len = 0; \
947 (m)->m_type = type; \
948 if ((pkthdr) == 0) { \
949 (m)->m_data = (m)->m_dat; \
950 (m)->m_flags = 0; \
951 } else { \
952 (m)->m_data = (m)->m_pktdat; \
953 (m)->m_flags = M_PKTHDR; \
954 MBUF_INIT_PKTHDR(m); \
955 } \
956}
957
958#define MEXT_INIT(m, buf, size, free, arg, rfa, min, ref, pref, flag, \
959 priv, pm) { \
960 (m)->m_data = (m)->m_ext.ext_buf = (buf); \
961 (m)->m_flags |= M_EXT; \
962 m_set_ext((m), (rfa), (free), (arg)); \
963 (m)->m_ext.ext_size = (size); \
964 MEXT_MINREF(m) = (min); \
965 MEXT_REF(m) = (ref); \
966 MEXT_PREF(m) = (pref); \
967 MEXT_FLAGS(m) = (flag); \
968 MEXT_PRIV(m) = (priv); \
969 MEXT_PMBUF(m) = (pm); \
970}
971
972#define MBUF_CL_INIT(m, buf, rfa, ref, flag) \
973 MEXT_INIT(m, buf, m_maxsize(MC_CL), NULL, NULL, rfa, 0, \
39037602 974 ref, 0, flag, 0, NULL)
2d21ac55 975
0a7de745
A
976#define MBUF_BIGCL_INIT(m, buf, rfa, ref, flag) \
977 MEXT_INIT(m, buf, m_maxsize(MC_BIGCL), m_bigfree, NULL, rfa, 0, \
39037602 978 ref, 0, flag, 0, NULL)
2d21ac55 979
0a7de745
A
980#define MBUF_16KCL_INIT(m, buf, rfa, ref, flag) \
981 MEXT_INIT(m, buf, m_maxsize(MC_16KCL), m_16kfree, NULL, rfa, 0, \
39037602 982 ref, 0, flag, 0, NULL)
2d21ac55 983
1c79356b 984/*
2d21ac55 985 * Macro to convert BSD malloc sleep flag to mcache's
1c79356b 986 */
0a7de745 987#define MSLEEPF(f) ((!((f) & M_DONTWAIT)) ? MCR_SLEEP : MCR_NOSLEEP)
1c79356b 988
2d21ac55
A
989/*
990 * The structure that holds all mbuf class statistics exportable via sysctl.
991 * Similar to mbstat structure, the mb_stat structure is protected by the
992 * global mbuf lock. It contains additional information about the classes
993 * that allows for a more accurate view of the state of the allocator.
994 */
995struct mb_stat *mb_stat;
0a7de745 996struct omb_stat *omb_stat; /* For backwards compatibility */
1c79356b 997
0a7de745 998#define MB_STAT_SIZE(n) \
5ba3f43e 999 __builtin_offsetof(mb_stat_t, mbs_class[n])
0a7de745 1000#define OMB_STAT_SIZE(n) \
cb323159 1001 __builtin_offsetof(struct omb_stat, mbs_class[n])
1c79356b
A
1002
1003/*
2d21ac55
A
1004 * The legacy structure holding all of the mbuf allocation statistics.
1005 * The actual statistics used by the kernel are stored in the mbuf_table
1006 * instead, and are updated atomically while the global mbuf lock is held.
1007 * They are mirrored in mbstat to support legacy applications (e.g. netstat).
1008 * Unlike before, the kernel no longer relies on the contents of mbstat for
1009 * its operations (e.g. cluster expansion) because the structure is exposed
1010 * to outside and could possibly be modified, therefore making it unsafe.
1011 * With the exception of the mbstat.m_mtypes array (see below), all of the
1012 * statistics are updated as they change.
1c79356b 1013 */
2d21ac55 1014struct mbstat mbstat;
1c79356b 1015
0a7de745 1016#define MBSTAT_MTYPES_MAX \
2d21ac55 1017 (sizeof (mbstat.m_mtypes) / sizeof (mbstat.m_mtypes[0]))
1c79356b
A
1018
1019/*
2d21ac55
A
1020 * Allocation statistics related to mbuf types (up to MT_MAX-1) are updated
1021 * atomically and stored in a per-CPU structure which is lock-free; this is
1022 * done in order to avoid writing to the global mbstat data structure which
1023 * would cause false sharing. During sysctl request for kern.ipc.mbstat,
1024 * the statistics across all CPUs will be converged into the mbstat.m_mtypes
1025 * array and returned to the application. Any updates for types greater or
1026 * equal than MT_MAX would be done atomically to the mbstat; this slows down
1027 * performance but is okay since the kernel uses only up to MT_MAX-1 while
1028 * anything beyond that (up to type 255) is considered a corner case.
1c79356b 1029 */
2d21ac55 1030typedef struct {
0a7de745 1031 unsigned int cpu_mtypes[MT_MAX];
39236c6e 1032} __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE), packed)) mtypes_cpu_t;
1c79356b 1033
2d21ac55 1034typedef struct {
0a7de745 1035 mtypes_cpu_t mbs_cpu[1];
2d21ac55 1036} mbuf_mtypes_t;
1c79356b 1037
0a7de745 1038static mbuf_mtypes_t *mbuf_mtypes; /* per-CPU statistics */
2d21ac55 1039
0a7de745 1040#define MBUF_MTYPES_SIZE(n) \
cb323159 1041 __builtin_offsetof(mbuf_mtypes_t, mbs_cpu[n])
2d21ac55 1042
0a7de745 1043#define MTYPES_CPU(p) \
316670eb 1044 ((mtypes_cpu_t *)(void *)((char *)(p) + MBUF_MTYPES_SIZE(cpu_number())))
2d21ac55 1045
0a7de745
A
1046#define mtype_stat_add(type, n) { \
1047 if ((unsigned)(type) < MT_MAX) { \
1048 mtypes_cpu_t *mbs = MTYPES_CPU(mbuf_mtypes); \
1049 atomic_add_32(&mbs->cpu_mtypes[type], n); \
1050 } else if ((unsigned)(type) < (unsigned)MBSTAT_MTYPES_MAX) { \
1051 atomic_add_16((int16_t *)&mbstat.m_mtypes[type], n); \
1052 } \
1c79356b
A
1053}
1054
0a7de745
A
1055#define mtype_stat_sub(t, n) mtype_stat_add(t, -(n))
1056#define mtype_stat_inc(t) mtype_stat_add(t, 1)
1057#define mtype_stat_dec(t) mtype_stat_sub(t, 1)
91447636 1058
6d2010ae
A
1059static void
1060mbuf_mtypes_sync(boolean_t locked)
2d21ac55 1061{
2d21ac55
A
1062 int m, n;
1063 mtypes_cpu_t mtc;
1c79356b 1064
0a7de745 1065 if (locked) {
5ba3f43e 1066 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
0a7de745 1067 }
6d2010ae 1068
0a7de745 1069 bzero(&mtc, sizeof(mtc));
2d21ac55
A
1070 for (m = 0; m < ncpu; m++) {
1071 mtypes_cpu_t *scp = &mbuf_mtypes->mbs_cpu[m];
1072 mtypes_cpu_t temp;
9bccf70c 1073
2d21ac55 1074 bcopy(&scp->cpu_mtypes, &temp.cpu_mtypes,
0a7de745 1075 sizeof(temp.cpu_mtypes));
91447636 1076
0a7de745 1077 for (n = 0; n < MT_MAX; n++) {
2d21ac55 1078 mtc.cpu_mtypes[n] += temp.cpu_mtypes[n];
0a7de745 1079 }
2d21ac55 1080 }
0a7de745 1081 if (!locked) {
6d2010ae 1082 lck_mtx_lock(mbuf_mlock);
0a7de745
A
1083 }
1084 for (n = 0; n < MT_MAX; n++) {
2d21ac55 1085 mbstat.m_mtypes[n] = mtc.cpu_mtypes[n];
0a7de745
A
1086 }
1087 if (!locked) {
6d2010ae 1088 lck_mtx_unlock(mbuf_mlock);
0a7de745 1089 }
1c79356b
A
1090}
1091
2d21ac55 1092static int
6d2010ae 1093mbstat_sysctl SYSCTL_HANDLER_ARGS
1c79356b 1094{
2d21ac55 1095#pragma unused(oidp, arg1, arg2)
6d2010ae
A
1096 mbuf_mtypes_sync(FALSE);
1097
0a7de745 1098 return SYSCTL_OUT(req, &mbstat, sizeof(mbstat));
6d2010ae
A
1099}
1100
1101static void
1102mbuf_stat_sync(void)
1103{
2d21ac55 1104 mb_class_stat_t *sp;
6d2010ae
A
1105 mcache_cpu_t *ccp;
1106 mcache_t *cp;
1107 int k, m, bktsize;
1108
5ba3f43e 1109 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55 1110
2d21ac55
A
1111 for (k = 0; k < NELEM(mbuf_table); k++) {
1112 cp = m_cache(k);
1113 ccp = &cp->mc_cpu[0];
1114 bktsize = ccp->cc_bktsize;
1115 sp = mbuf_table[k].mtbl_stats;
1116
0a7de745 1117 if (cp->mc_flags & MCF_NOCPUCACHE) {
2d21ac55 1118 sp->mbcl_mc_state = MCS_DISABLED;
0a7de745 1119 } else if (cp->mc_purge_cnt > 0) {
2d21ac55 1120 sp->mbcl_mc_state = MCS_PURGING;
0a7de745 1121 } else if (bktsize == 0) {
2d21ac55 1122 sp->mbcl_mc_state = MCS_OFFLINE;
0a7de745 1123 } else {
2d21ac55 1124 sp->mbcl_mc_state = MCS_ONLINE;
0a7de745 1125 }
2d21ac55
A
1126
1127 sp->mbcl_mc_cached = 0;
1128 for (m = 0; m < ncpu; m++) {
1129 ccp = &cp->mc_cpu[m];
0a7de745 1130 if (ccp->cc_objs > 0) {
2d21ac55 1131 sp->mbcl_mc_cached += ccp->cc_objs;
0a7de745
A
1132 }
1133 if (ccp->cc_pobjs > 0) {
2d21ac55 1134 sp->mbcl_mc_cached += ccp->cc_pobjs;
0a7de745 1135 }
2d21ac55
A
1136 }
1137 sp->mbcl_mc_cached += (cp->mc_full.bl_total * bktsize);
1138 sp->mbcl_active = sp->mbcl_total - sp->mbcl_mc_cached -
1139 sp->mbcl_infree;
1140
1141 sp->mbcl_mc_waiter_cnt = cp->mc_waiter_cnt;
1142 sp->mbcl_mc_wretry_cnt = cp->mc_wretry_cnt;
1143 sp->mbcl_mc_nwretry_cnt = cp->mc_nwretry_cnt;
1144
1145 /* Calculate total count specific to each class */
1146 sp->mbcl_ctotal = sp->mbcl_total;
1147 switch (m_class(k)) {
1148 case MC_MBUF:
1149 /* Deduct mbufs used in composite caches */
1150 sp->mbcl_ctotal -= (m_total(MC_MBUF_CL) +
1151 m_total(MC_MBUF_BIGCL));
1152 break;
91447636 1153
2d21ac55 1154 case MC_CL:
6d2010ae
A
1155 /* Deduct clusters used in composite cache */
1156 sp->mbcl_ctotal -= m_total(MC_MBUF_CL);
2d21ac55 1157 break;
91447636 1158
2d21ac55
A
1159 case MC_BIGCL:
1160 /* Deduct clusters used in composite cache */
1161 sp->mbcl_ctotal -= m_total(MC_MBUF_BIGCL);
1162 break;
1c79356b 1163
2d21ac55
A
1164 case MC_16KCL:
1165 /* Deduct clusters used in composite cache */
1166 sp->mbcl_ctotal -= m_total(MC_MBUF_16KCL);
1167 break;
1168
1169 default:
1170 break;
1171 }
1172 }
6d2010ae
A
1173}
1174
1175static int
1176mb_stat_sysctl SYSCTL_HANDLER_ARGS
1177{
1178#pragma unused(oidp, arg1, arg2)
1179 void *statp;
1180 int k, statsz, proc64 = proc_is64bit(req->p);
1181
1182 lck_mtx_lock(mbuf_mlock);
1183 mbuf_stat_sync();
b0d623f7
A
1184
1185 if (!proc64) {
1186 struct omb_class_stat *oc;
1187 struct mb_class_stat *c;
1188
1189 omb_stat->mbs_cnt = mb_stat->mbs_cnt;
1190 oc = &omb_stat->mbs_class[0];
1191 c = &mb_stat->mbs_class[0];
1192 for (k = 0; k < omb_stat->mbs_cnt; k++, oc++, c++) {
0a7de745 1193 (void) snprintf(oc->mbcl_cname, sizeof(oc->mbcl_cname),
b0d623f7
A
1194 "%s", c->mbcl_cname);
1195 oc->mbcl_size = c->mbcl_size;
1196 oc->mbcl_total = c->mbcl_total;
1197 oc->mbcl_active = c->mbcl_active;
1198 oc->mbcl_infree = c->mbcl_infree;
1199 oc->mbcl_slab_cnt = c->mbcl_slab_cnt;
1200 oc->mbcl_alloc_cnt = c->mbcl_alloc_cnt;
1201 oc->mbcl_free_cnt = c->mbcl_free_cnt;
1202 oc->mbcl_notified = c->mbcl_notified;
1203 oc->mbcl_purge_cnt = c->mbcl_purge_cnt;
1204 oc->mbcl_fail_cnt = c->mbcl_fail_cnt;
1205 oc->mbcl_ctotal = c->mbcl_ctotal;
fe8ab488 1206 oc->mbcl_release_cnt = c->mbcl_release_cnt;
b0d623f7
A
1207 oc->mbcl_mc_state = c->mbcl_mc_state;
1208 oc->mbcl_mc_cached = c->mbcl_mc_cached;
1209 oc->mbcl_mc_waiter_cnt = c->mbcl_mc_waiter_cnt;
1210 oc->mbcl_mc_wretry_cnt = c->mbcl_mc_wretry_cnt;
1211 oc->mbcl_mc_nwretry_cnt = c->mbcl_mc_nwretry_cnt;
1212 }
1213 statp = omb_stat;
1214 statsz = OMB_STAT_SIZE(NELEM(mbuf_table));
1215 } else {
1216 statp = mb_stat;
1217 statsz = MB_STAT_SIZE(NELEM(mbuf_table));
1218 }
1219
2d21ac55 1220 lck_mtx_unlock(mbuf_mlock);
9bccf70c 1221
0a7de745 1222 return SYSCTL_OUT(req, statp, statsz);
2d21ac55 1223}
91447636 1224
6d2010ae
A
1225static int
1226mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS
1227{
1228#pragma unused(oidp, arg1, arg2)
6d2010ae
A
1229 int i;
1230
1231 /* Ensure leak tracing turned on */
0a7de745
A
1232 if (!mclfindleak || !mclexpleak) {
1233 return ENXIO;
1234 }
6d2010ae 1235
6d2010ae 1236 lck_mtx_lock(mleak_lock);
316670eb 1237 mleak_update_stats();
6d2010ae
A
1238 i = SYSCTL_OUT(req, mleak_stat, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES));
1239 lck_mtx_unlock(mleak_lock);
1240
0a7de745 1241 return i;
6d2010ae
A
1242}
1243
1244static int
1245mleak_table_sysctl SYSCTL_HANDLER_ARGS
1246{
1247#pragma unused(oidp, arg1, arg2)
1248 int i = 0;
1249
1250 /* Ensure leak tracing turned on */
0a7de745
A
1251 if (!mclfindleak || !mclexpleak) {
1252 return ENXIO;
1253 }
6d2010ae
A
1254
1255 lck_mtx_lock(mleak_lock);
0a7de745 1256 i = SYSCTL_OUT(req, &mleak_table, sizeof(mleak_table));
6d2010ae
A
1257 lck_mtx_unlock(mleak_lock);
1258
0a7de745 1259 return i;
6d2010ae
A
1260}
1261
2d21ac55
A
1262static inline void
1263m_incref(struct mbuf *m)
1264{
39037602
A
1265 UInt16 old, new;
1266 volatile UInt16 *addr = (volatile UInt16 *)&MEXT_REF(m);
91447636 1267
2d21ac55
A
1268 do {
1269 old = *addr;
1270 new = old + 1;
cb323159 1271 VERIFY(new != 0);
39037602 1272 } while (!OSCompareAndSwap16(old, new, addr));
6d2010ae
A
1273
1274 /*
1275 * If cluster is shared, mark it with (sticky) EXTF_READONLY;
39037602
A
1276 * we don't clear the flag when the refcount goes back to the
1277 * minimum, to simplify code calling m_mclhasreference().
6d2010ae 1278 */
0a7de745 1279 if (new > (MEXT_MINREF(m) + 1) && !(MEXT_FLAGS(m) & EXTF_READONLY)) {
39037602 1280 (void) OSBitOrAtomic16(EXTF_READONLY, &MEXT_FLAGS(m));
0a7de745 1281 }
1c79356b
A
1282}
1283
39037602 1284static inline u_int16_t
2d21ac55 1285m_decref(struct mbuf *m)
1c79356b 1286{
39037602
A
1287 UInt16 old, new;
1288 volatile UInt16 *addr = (volatile UInt16 *)&MEXT_REF(m);
1c79356b 1289
2d21ac55
A
1290 do {
1291 old = *addr;
1292 new = old - 1;
cb323159 1293 VERIFY(old != 0);
39037602 1294 } while (!OSCompareAndSwap16(old, new, addr));
2d21ac55 1295
0a7de745 1296 return new;
1c79356b
A
1297}
1298
2d21ac55
A
1299static void
1300mbuf_table_init(void)
1c79356b 1301{
6d2010ae 1302 unsigned int b, c, s;
3e170ce0 1303 int m, config_mbuf_jumbo = 0;
91447636 1304
b0d623f7
A
1305 MALLOC(omb_stat, struct omb_stat *, OMB_STAT_SIZE(NELEM(mbuf_table)),
1306 M_TEMP, M_WAITOK | M_ZERO);
1307 VERIFY(omb_stat != NULL);
1308
2d21ac55
A
1309 MALLOC(mb_stat, mb_stat_t *, MB_STAT_SIZE(NELEM(mbuf_table)),
1310 M_TEMP, M_WAITOK | M_ZERO);
1311 VERIFY(mb_stat != NULL);
1c79356b 1312
2d21ac55 1313 mb_stat->mbs_cnt = NELEM(mbuf_table);
0a7de745 1314 for (m = 0; m < NELEM(mbuf_table); m++) {
2d21ac55 1315 mbuf_table[m].mtbl_stats = &mb_stat->mbs_class[m];
0a7de745 1316 }
1c79356b 1317
2d21ac55 1318#if CONFIG_MBUF_JUMBO
3e170ce0 1319 config_mbuf_jumbo = 1;
2d21ac55 1320#endif /* CONFIG_MBUF_JUMBO */
9bccf70c 1321
3e170ce0
A
1322 if (config_mbuf_jumbo == 1 || PAGE_SIZE == M16KCLBYTES) {
1323 /*
1324 * Set aside 1/3 of the mbuf cluster map for jumbo
1325 * clusters; we do this only on platforms where jumbo
1326 * cluster pool is enabled.
1327 */
1328 njcl = nmbclusters / 3;
1329 njclbytes = M16KCLBYTES;
1330 }
1331
2d21ac55 1332 /*
6d2010ae
A
1333 * nclusters holds both the 2KB and 4KB pools, so ensure it's
1334 * a multiple of 4KB clusters.
2d21ac55 1335 */
3e170ce0 1336 nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG);
2d21ac55
A
1337 if (njcl > 0) {
1338 /*
6d2010ae
A
1339 * Each jumbo cluster takes 8 2KB clusters, so make
1340 * sure that the pool size is evenly divisible by 8;
1341 * njcl is in 2KB unit, hence treated as such.
2d21ac55 1342 */
3e170ce0 1343 njcl = P2ROUNDDOWN(nmbclusters - nclusters, NCLPJCL);
1c79356b 1344
6d2010ae 1345 /* Update nclusters with rounded down value of njcl */
3e170ce0 1346 nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG);
9bccf70c 1347 }
2d21ac55
A
1348
1349 /*
3e170ce0
A
1350 * njcl is valid only on platforms with 16KB jumbo clusters or
1351 * with 16KB pages, where it is configured to 1/3 of the pool
1352 * size. On these platforms, the remaining is used for 2KB
1353 * and 4KB clusters. On platforms without 16KB jumbo clusters,
1354 * the entire pool is used for both 2KB and 4KB clusters. A 4KB
1355 * cluster can either be splitted into 16 mbufs, or into 2 2KB
1356 * clusters.
6d2010ae
A
1357 *
1358 * +---+---+------------ ... -----------+------- ... -------+
1359 * | c | b | s | njcl |
1360 * +---+---+------------ ... -----------+------- ... -------+
1361 *
1362 * 1/32th of the shared region is reserved for pure 2KB and 4KB
1363 * clusters (1/64th each.)
1364 */
0a7de745 1365 c = P2ROUNDDOWN((nclusters >> 6), NCLPG); /* in 2KB unit */
3e170ce0 1366 b = P2ROUNDDOWN((nclusters >> (6 + NCLPBGSHIFT)), NBCLPG); /* in 4KB unit */
0a7de745 1367 s = nclusters - (c + (b << NCLPBGSHIFT)); /* in 2KB unit */
6d2010ae
A
1368
1369 /*
1370 * 1/64th (c) is reserved for 2KB clusters.
2d21ac55 1371 */
6d2010ae 1372 m_minlimit(MC_CL) = c;
0a7de745 1373 m_maxlimit(MC_CL) = s + c; /* in 2KB unit */
2d21ac55
A
1374 m_maxsize(MC_CL) = m_size(MC_CL) = MCLBYTES;
1375 (void) snprintf(m_cname(MC_CL), MAX_MBUF_CNAME, "cl");
1376
1377 /*
6d2010ae
A
1378 * Another 1/64th (b) of the map is reserved for 4KB clusters.
1379 * It cannot be turned into 2KB clusters or mbufs.
2d21ac55 1380 */
6d2010ae 1381 m_minlimit(MC_BIGCL) = b;
0a7de745 1382 m_maxlimit(MC_BIGCL) = (s >> NCLPBGSHIFT) + b; /* in 4KB unit */
6d2010ae
A
1383 m_maxsize(MC_BIGCL) = m_size(MC_BIGCL) = MBIGCLBYTES;
1384 (void) snprintf(m_cname(MC_BIGCL), MAX_MBUF_CNAME, "bigcl");
2d21ac55
A
1385
1386 /*
6d2010ae 1387 * The remaining 31/32ths (s) are all-purpose (mbufs, 2KB, or 4KB)
2d21ac55 1388 */
6d2010ae 1389 m_minlimit(MC_MBUF) = 0;
0a7de745 1390 m_maxlimit(MC_MBUF) = (s << NMBPCLSHIFT); /* in mbuf unit */
6d2010ae
A
1391 m_maxsize(MC_MBUF) = m_size(MC_MBUF) = MSIZE;
1392 (void) snprintf(m_cname(MC_MBUF), MAX_MBUF_CNAME, "mbuf");
2d21ac55
A
1393
1394 /*
1395 * Set limits for the composite classes.
1396 */
1397 m_minlimit(MC_MBUF_CL) = 0;
6d2010ae 1398 m_maxlimit(MC_MBUF_CL) = m_maxlimit(MC_CL);
2d21ac55
A
1399 m_maxsize(MC_MBUF_CL) = MCLBYTES;
1400 m_size(MC_MBUF_CL) = m_size(MC_MBUF) + m_size(MC_CL);
1401 (void) snprintf(m_cname(MC_MBUF_CL), MAX_MBUF_CNAME, "mbuf_cl");
1402
1403 m_minlimit(MC_MBUF_BIGCL) = 0;
1404 m_maxlimit(MC_MBUF_BIGCL) = m_maxlimit(MC_BIGCL);
6d2010ae 1405 m_maxsize(MC_MBUF_BIGCL) = MBIGCLBYTES;
2d21ac55
A
1406 m_size(MC_MBUF_BIGCL) = m_size(MC_MBUF) + m_size(MC_BIGCL);
1407 (void) snprintf(m_cname(MC_MBUF_BIGCL), MAX_MBUF_CNAME, "mbuf_bigcl");
1408
1409 /*
1410 * And for jumbo classes.
1411 */
1412 m_minlimit(MC_16KCL) = 0;
0a7de745 1413 m_maxlimit(MC_16KCL) = (njcl >> NCLPJCLSHIFT); /* in 16KB unit */
2d21ac55
A
1414 m_maxsize(MC_16KCL) = m_size(MC_16KCL) = M16KCLBYTES;
1415 (void) snprintf(m_cname(MC_16KCL), MAX_MBUF_CNAME, "16kcl");
1416
1417 m_minlimit(MC_MBUF_16KCL) = 0;
1418 m_maxlimit(MC_MBUF_16KCL) = m_maxlimit(MC_16KCL);
1419 m_maxsize(MC_MBUF_16KCL) = M16KCLBYTES;
1420 m_size(MC_MBUF_16KCL) = m_size(MC_MBUF) + m_size(MC_16KCL);
1421 (void) snprintf(m_cname(MC_MBUF_16KCL), MAX_MBUF_CNAME, "mbuf_16kcl");
1422
1423 /*
1424 * Initialize the legacy mbstat structure.
1425 */
0a7de745 1426 bzero(&mbstat, sizeof(mbstat));
2d21ac55
A
1427 mbstat.m_msize = m_maxsize(MC_MBUF);
1428 mbstat.m_mclbytes = m_maxsize(MC_CL);
1429 mbstat.m_minclsize = MINCLSIZE;
1430 mbstat.m_mlen = MLEN;
1431 mbstat.m_mhlen = MHLEN;
1432 mbstat.m_bigmclbytes = m_maxsize(MC_BIGCL);
1433}
1434
2a1bd2d3
A
1435int
1436mbuf_get_class(struct mbuf *m)
1437{
1438 if (m->m_flags & M_EXT) {
1439 uint32_t composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
1440 m_ext_free_func_t m_free_func = m_get_ext_free(m);
1441
1442 if (m_free_func == NULL) {
1443 if (composite) {
1444 return MC_MBUF_CL;
1445 } else {
1446 return MC_CL;
1447 }
1448 } else if (m_free_func == m_bigfree) {
1449 if (composite) {
1450 return MC_MBUF_BIGCL;
1451 } else {
1452 return MC_BIGCL;
1453 }
1454 } else if (m_free_func == m_16kfree) {
1455 if (composite) {
1456 return MC_MBUF_16KCL;
1457 } else {
1458 return MC_16KCL;
1459 }
1460 }
1461 }
1462
1463 return MC_MBUF;
1464}
1465
1466bool
1467mbuf_class_under_pressure(struct mbuf *m)
1468{
1469 int mclass = mbuf_get_class(m); // TODO - how can we get the class easily???
1470
1471 if (m_total(mclass) >= (m_maxlimit(mclass) * mb_memory_pressure_percentage) / 100) {
1472 os_log(OS_LOG_DEFAULT,
1473 "%s memory-pressure on mbuf due to class %u, total %u max %u",
1474 __func__, mclass, m_total(mclass), m_maxlimit(mclass));
1475 return true;
1476 }
1477
1478 return false;
1479}
1480
b0d623f7
A
1481#if defined(__LP64__)
1482typedef struct ncl_tbl {
0a7de745
A
1483 uint64_t nt_maxmem; /* memory (sane) size */
1484 uint32_t nt_mbpool; /* mbuf pool size */
b0d623f7
A
1485} ncl_tbl_t;
1486
f427ee49 1487static const ncl_tbl_t ncl_table[] = {
0a7de745 1488 { (1ULL << GBSHIFT) /* 1 GB */, (64 << MBSHIFT) /* 64 MB */ },
f427ee49
A
1489 { (1ULL << (GBSHIFT + 2)) /* 4 GB */, (96 << MBSHIFT) /* 96 MB */ },
1490 { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (128 << MBSHIFT) /* 128 MB */ },
1491 { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (256 << MBSHIFT) /* 256 MB */ },
1492 { (1ULL << (GBSHIFT + 5)) /* 32 GB */, (512 << MBSHIFT) /* 512 MB */ },
b0d623f7
A
1493 { 0, 0 }
1494};
1495#endif /* __LP64__ */
1496
1497__private_extern__ unsigned int
f427ee49 1498mbuf_default_ncl(uint64_t mem)
b0d623f7
A
1499{
1500#if !defined(__LP64__)
b0d623f7
A
1501 unsigned int n;
1502 /*
1503 * 32-bit kernel (default to 64MB of mbuf pool for >= 1GB RAM).
1504 */
0a7de745 1505 if ((n = ((mem / 16) / MCLBYTES)) > 32768) {
6d2010ae 1506 n = 32768;
0a7de745 1507 }
b0d623f7
A
1508#else
1509 unsigned int n, i;
b0d623f7
A
1510 /*
1511 * 64-bit kernel (mbuf pool size based on table).
1512 */
f427ee49
A
1513 n = ncl_table[0].nt_mbpool;
1514 for (i = 0; ncl_table[i].nt_mbpool != 0; i++) {
1515 if (mem < ncl_table[i].nt_maxmem) {
b0d623f7 1516 break;
0a7de745 1517 }
f427ee49 1518 n = ncl_table[i].nt_mbpool;
b0d623f7
A
1519 }
1520 n >>= MCLSHIFT;
1521#endif /* !__LP64__ */
0a7de745 1522 return n;
b0d623f7
A
1523}
1524
2d21ac55
A
1525__private_extern__ void
1526mbinit(void)
1527{
1528 unsigned int m;
6d2010ae 1529 unsigned int initmcl = 0;
2d21ac55 1530 void *buf;
b0d623f7 1531 thread_t thread = THREAD_NULL;
2d21ac55 1532
39236c6e
A
1533 microuptime(&mb_start);
1534
316670eb
A
1535 /*
1536 * These MBUF_ values must be equal to their private counterparts.
1537 */
1538 _CASSERT(MBUF_EXT == M_EXT);
1539 _CASSERT(MBUF_PKTHDR == M_PKTHDR);
1540 _CASSERT(MBUF_EOR == M_EOR);
1541 _CASSERT(MBUF_LOOP == M_LOOP);
1542 _CASSERT(MBUF_BCAST == M_BCAST);
1543 _CASSERT(MBUF_MCAST == M_MCAST);
1544 _CASSERT(MBUF_FRAG == M_FRAG);
1545 _CASSERT(MBUF_FIRSTFRAG == M_FIRSTFRAG);
1546 _CASSERT(MBUF_LASTFRAG == M_LASTFRAG);
1547 _CASSERT(MBUF_PROMISC == M_PROMISC);
1548 _CASSERT(MBUF_HASFCS == M_HASFCS);
1549
1550 _CASSERT(MBUF_TYPE_FREE == MT_FREE);
1551 _CASSERT(MBUF_TYPE_DATA == MT_DATA);
1552 _CASSERT(MBUF_TYPE_HEADER == MT_HEADER);
1553 _CASSERT(MBUF_TYPE_SOCKET == MT_SOCKET);
1554 _CASSERT(MBUF_TYPE_PCB == MT_PCB);
1555 _CASSERT(MBUF_TYPE_RTABLE == MT_RTABLE);
1556 _CASSERT(MBUF_TYPE_HTABLE == MT_HTABLE);
1557 _CASSERT(MBUF_TYPE_ATABLE == MT_ATABLE);
1558 _CASSERT(MBUF_TYPE_SONAME == MT_SONAME);
1559 _CASSERT(MBUF_TYPE_SOOPTS == MT_SOOPTS);
1560 _CASSERT(MBUF_TYPE_FTABLE == MT_FTABLE);
1561 _CASSERT(MBUF_TYPE_RIGHTS == MT_RIGHTS);
1562 _CASSERT(MBUF_TYPE_IFADDR == MT_IFADDR);
1563 _CASSERT(MBUF_TYPE_CONTROL == MT_CONTROL);
1564 _CASSERT(MBUF_TYPE_OOBDATA == MT_OOBDATA);
1565
1566 _CASSERT(MBUF_TSO_IPV4 == CSUM_TSO_IPV4);
1567 _CASSERT(MBUF_TSO_IPV6 == CSUM_TSO_IPV6);
39236c6e 1568 _CASSERT(MBUF_CSUM_REQ_SUM16 == CSUM_PARTIAL);
316670eb 1569 _CASSERT(MBUF_CSUM_TCP_SUM16 == MBUF_CSUM_REQ_SUM16);
5ba3f43e 1570 _CASSERT(MBUF_CSUM_REQ_ZERO_INVERT == CSUM_ZERO_INVERT);
316670eb
A
1571 _CASSERT(MBUF_CSUM_REQ_IP == CSUM_IP);
1572 _CASSERT(MBUF_CSUM_REQ_TCP == CSUM_TCP);
1573 _CASSERT(MBUF_CSUM_REQ_UDP == CSUM_UDP);
1574 _CASSERT(MBUF_CSUM_REQ_TCPIPV6 == CSUM_TCPIPV6);
1575 _CASSERT(MBUF_CSUM_REQ_UDPIPV6 == CSUM_UDPIPV6);
1576 _CASSERT(MBUF_CSUM_DID_IP == CSUM_IP_CHECKED);
1577 _CASSERT(MBUF_CSUM_IP_GOOD == CSUM_IP_VALID);
1578 _CASSERT(MBUF_CSUM_DID_DATA == CSUM_DATA_VALID);
1579 _CASSERT(MBUF_CSUM_PSEUDO_HDR == CSUM_PSEUDO_HDR);
1580
1581 _CASSERT(MBUF_WAITOK == M_WAIT);
1582 _CASSERT(MBUF_DONTWAIT == M_DONTWAIT);
1583 _CASSERT(MBUF_COPYALL == M_COPYALL);
1584
316670eb
A
1585 _CASSERT(MBUF_SC2TC(MBUF_SC_BK_SYS) == MBUF_TC_BK);
1586 _CASSERT(MBUF_SC2TC(MBUF_SC_BK) == MBUF_TC_BK);
1587 _CASSERT(MBUF_SC2TC(MBUF_SC_BE) == MBUF_TC_BE);
1588 _CASSERT(MBUF_SC2TC(MBUF_SC_RD) == MBUF_TC_BE);
1589 _CASSERT(MBUF_SC2TC(MBUF_SC_OAM) == MBUF_TC_BE);
1590 _CASSERT(MBUF_SC2TC(MBUF_SC_AV) == MBUF_TC_VI);
1591 _CASSERT(MBUF_SC2TC(MBUF_SC_RV) == MBUF_TC_VI);
1592 _CASSERT(MBUF_SC2TC(MBUF_SC_VI) == MBUF_TC_VI);
d9a64523 1593 _CASSERT(MBUF_SC2TC(MBUF_SC_SIG) == MBUF_TC_VI);
316670eb
A
1594 _CASSERT(MBUF_SC2TC(MBUF_SC_VO) == MBUF_TC_VO);
1595 _CASSERT(MBUF_SC2TC(MBUF_SC_CTL) == MBUF_TC_VO);
1596
1597 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BK) == SCVAL_BK);
1598 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BE) == SCVAL_BE);
1599 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VI) == SCVAL_VI);
1600 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VO) == SCVAL_VO);
1601
39236c6e
A
1602 /* Module specific scratch space (32-bit alignment requirement) */
1603 _CASSERT(!(offsetof(struct mbuf, m_pkthdr.pkt_mpriv) %
0a7de745 1604 sizeof(uint32_t)));
39236c6e 1605
f427ee49
A
1606 /* pktdata needs to start at 128-bit offset! */
1607 _CASSERT((offsetof(struct mbuf, m_pktdat) % 16) == 0);
1608
39236c6e 1609 /* Initialize random red zone cookie value */
0a7de745
A
1610 _CASSERT(sizeof(mb_redzone_cookie) ==
1611 sizeof(((struct pkthdr *)0)->redzone));
1612 read_random(&mb_redzone_cookie, sizeof(mb_redzone_cookie));
1613 read_random(&mb_obscure_extref, sizeof(mb_obscure_extref));
1614 read_random(&mb_obscure_extfree, sizeof(mb_obscure_extfree));
813fb2f6
A
1615 mb_obscure_extref |= 0x3;
1616 mb_obscure_extfree |= 0x3;
39236c6e
A
1617
1618 /* Make sure we don't save more than we should */
0a7de745 1619 _CASSERT(MCA_SAVED_MBUF_SIZE <= sizeof(struct mbuf));
39236c6e 1620
0a7de745 1621 if (nmbclusters == 0) {
2d21ac55 1622 nmbclusters = NMBCLUSTERS;
0a7de745 1623 }
2d21ac55 1624
6d2010ae
A
1625 /* This should be a sane (at least even) value by now */
1626 VERIFY(nmbclusters != 0 && !(nmbclusters & 0x1));
1627
2d21ac55
A
1628 /* Setup the mbuf table */
1629 mbuf_table_init();
1630
1631 /* Global lock for common layer */
1632 mbuf_mlock_grp_attr = lck_grp_attr_alloc_init();
1633 mbuf_mlock_grp = lck_grp_alloc_init("mbuf", mbuf_mlock_grp_attr);
1634 mbuf_mlock_attr = lck_attr_alloc_init();
316670eb 1635 lck_mtx_init(mbuf_mlock, mbuf_mlock_grp, mbuf_mlock_attr);
2d21ac55 1636
6d2010ae
A
1637 /*
1638 * Allocate cluster slabs table:
1639 *
1640 * maxslabgrp = (N * 2048) / (1024 * 1024)
1641 *
1642 * Where N is nmbclusters rounded up to the nearest 512. This yields
1643 * mcl_slab_g_t units, each one representing a MB of memory.
1644 */
1645 maxslabgrp =
3e170ce0 1646 (P2ROUNDUP(nmbclusters, (MBSIZE >> MCLSHIFT)) << MCLSHIFT) >> MBSHIFT;
0a7de745 1647 MALLOC(slabstbl, mcl_slabg_t * *, maxslabgrp * sizeof(mcl_slabg_t *),
2d21ac55
A
1648 M_TEMP, M_WAITOK | M_ZERO);
1649 VERIFY(slabstbl != NULL);
1650
6d2010ae
A
1651 /*
1652 * Allocate audit structures, if needed:
1653 *
3e170ce0 1654 * maxclaudit = (maxslabgrp * 1024 * 1024) / PAGE_SIZE
6d2010ae
A
1655 *
1656 * This yields mcl_audit_t units, each one representing a page.
1657 */
0a7de745 1658 PE_parse_boot_argn("mbuf_debug", &mbuf_debug, sizeof(mbuf_debug));
2d21ac55 1659 mbuf_debug |= mcache_getflags();
6d2010ae 1660 if (mbuf_debug & MCF_DEBUG) {
3e170ce0
A
1661 int l;
1662 mcl_audit_t *mclad;
1663 maxclaudit = ((maxslabgrp << MBSHIFT) >> PAGE_SHIFT);
0a7de745 1664 MALLOC(mclaudit, mcl_audit_t *, maxclaudit * sizeof(*mclaudit),
6d2010ae 1665 M_TEMP, M_WAITOK | M_ZERO);
2d21ac55 1666 VERIFY(mclaudit != NULL);
3e170ce0 1667 for (l = 0, mclad = mclaudit; l < maxclaudit; l++) {
0a7de745 1668 MALLOC(mclad[l].cl_audit, mcache_audit_t * *,
3e170ce0
A
1669 NMBPG * sizeof(mcache_audit_t *),
1670 M_TEMP, M_WAITOK | M_ZERO);
1671 VERIFY(mclad[l].cl_audit != NULL);
1672 }
2d21ac55
A
1673
1674 mcl_audit_con_cache = mcache_create("mcl_audit_contents",
0a7de745 1675 AUDIT_CONTENTS_SIZE, sizeof(u_int64_t), 0, MCR_SLEEP);
2d21ac55
A
1676 VERIFY(mcl_audit_con_cache != NULL);
1677 }
6d2010ae
A
1678 mclverify = (mbuf_debug & MCF_VERIFY);
1679 mcltrace = (mbuf_debug & MCF_TRACE);
1680 mclfindleak = !(mbuf_debug & MCF_NOLEAKLOG);
316670eb 1681 mclexpleak = mclfindleak && (mbuf_debug & MCF_EXPLEAKLOG);
6d2010ae
A
1682
1683 /* Enable mbuf leak logging, with a lock to protect the tables */
1684
1685 mleak_lock_grp_attr = lck_grp_attr_alloc_init();
1686 mleak_lock_grp = lck_grp_alloc_init("mleak_lock", mleak_lock_grp_attr);
1687 mleak_lock_attr = lck_attr_alloc_init();
316670eb 1688 lck_mtx_init(mleak_lock, mleak_lock_grp, mleak_lock_attr);
6d2010ae
A
1689
1690 mleak_activate();
2d21ac55 1691
5ba3f43e
A
1692 /*
1693 * Allocate structure for per-CPU statistics that's aligned
1694 * on the CPU cache boundary; this code assumes that we never
1695 * uninitialize this framework, since the original address
1696 * before alignment is not saved.
1697 */
f427ee49 1698 ncpu = ml_wait_max_cpus();
5ba3f43e
A
1699 MALLOC(buf, void *, MBUF_MTYPES_SIZE(ncpu) + CPU_CACHE_LINE_SIZE,
1700 M_TEMP, M_WAITOK);
1701 VERIFY(buf != NULL);
1702
1703 mbuf_mtypes = (mbuf_mtypes_t *)P2ROUNDUP((intptr_t)buf,
1704 CPU_CACHE_LINE_SIZE);
1705 bzero(mbuf_mtypes, MBUF_MTYPES_SIZE(ncpu));
1706
2d21ac55 1707 /* Calculate the number of pages assigned to the cluster pool */
3e170ce0 1708 mcl_pages = (nmbclusters << MCLSHIFT) / PAGE_SIZE;
0a7de745 1709 MALLOC(mcl_paddr, ppnum_t *, mcl_pages * sizeof(ppnum_t),
b0d623f7 1710 M_TEMP, M_WAITOK);
2d21ac55
A
1711 VERIFY(mcl_paddr != NULL);
1712
1713 /* Register with the I/O Bus mapper */
1714 mcl_paddr_base = IOMapperIOVMAlloc(mcl_pages);
0a7de745 1715 bzero((char *)mcl_paddr, mcl_pages * sizeof(ppnum_t));
2d21ac55 1716
3e170ce0
A
1717 embutl = (mbutl + (nmbclusters * MCLBYTES));
1718 VERIFY(((embutl - mbutl) % MBIGCLBYTES) == 0);
2d21ac55 1719
6d2010ae 1720 /* Prime up the freelist */
0a7de745 1721 PE_parse_boot_argn("initmcl", &initmcl, sizeof(initmcl));
6d2010ae 1722 if (initmcl != 0) {
0a7de745
A
1723 initmcl >>= NCLPBGSHIFT; /* become a 4K unit */
1724 if (initmcl > m_maxlimit(MC_BIGCL)) {
6d2010ae 1725 initmcl = m_maxlimit(MC_BIGCL);
0a7de745 1726 }
6d2010ae 1727 }
0a7de745 1728 if (initmcl < m_minlimit(MC_BIGCL)) {
6d2010ae 1729 initmcl = m_minlimit(MC_BIGCL);
0a7de745 1730 }
2d21ac55
A
1731
1732 lck_mtx_lock(mbuf_mlock);
1733
6d2010ae
A
1734 /*
1735 * For classes with non-zero minimum limits, populate their freelists
1736 * so that m_total(class) is at least m_minlimit(class).
1737 */
1738 VERIFY(m_total(MC_BIGCL) == 0 && m_minlimit(MC_BIGCL) != 0);
1739 freelist_populate(m_class(MC_BIGCL), initmcl, M_WAIT);
1740 VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL));
1741 freelist_init(m_class(MC_CL));
1742
1743 for (m = 0; m < NELEM(mbuf_table); m++) {
1744 /* Make sure we didn't miss any */
1745 VERIFY(m_minlimit(m_class(m)) == 0 ||
1746 m_total(m_class(m)) >= m_minlimit(m_class(m)));
fe8ab488
A
1747
1748 /* populate the initial sizes and report from there on */
1749 m_peak(m_class(m)) = m_total(m_class(m));
6d2010ae 1750 }
fe8ab488 1751 mb_peak_newreport = FALSE;
2d21ac55
A
1752
1753 lck_mtx_unlock(mbuf_mlock);
1754
6d2010ae
A
1755 (void) kernel_thread_start((thread_continue_t)mbuf_worker_thread_init,
1756 NULL, &thread);
b0d623f7 1757 thread_deallocate(thread);
2d21ac55 1758
0a7de745 1759 ref_cache = mcache_create("mext_ref", sizeof(struct ext_ref),
2d21ac55
A
1760 0, 0, MCR_SLEEP);
1761
1762 /* Create the cache for each class */
1763 for (m = 0; m < NELEM(mbuf_table); m++) {
6d2010ae 1764 void *allocfunc, *freefunc, *auditfunc, *logfunc;
2d21ac55
A
1765 u_int32_t flags;
1766
1767 flags = mbuf_debug;
1768 if (m_class(m) == MC_MBUF_CL || m_class(m) == MC_MBUF_BIGCL ||
1769 m_class(m) == MC_MBUF_16KCL) {
1770 allocfunc = mbuf_cslab_alloc;
1771 freefunc = mbuf_cslab_free;
1772 auditfunc = mbuf_cslab_audit;
6d2010ae 1773 logfunc = mleak_logger;
2d21ac55
A
1774 } else {
1775 allocfunc = mbuf_slab_alloc;
1776 freefunc = mbuf_slab_free;
1777 auditfunc = mbuf_slab_audit;
6d2010ae 1778 logfunc = mleak_logger;
2d21ac55
A
1779 }
1780
1781 /*
1782 * Disable per-CPU caches for jumbo classes if there
1783 * is no jumbo cluster pool available in the system.
1784 * The cache itself is still created (but will never
1785 * be populated) since it simplifies the code.
1786 */
1787 if ((m_class(m) == MC_MBUF_16KCL || m_class(m) == MC_16KCL) &&
0a7de745 1788 njcl == 0) {
2d21ac55 1789 flags |= MCF_NOCPUCACHE;
0a7de745 1790 }
2d21ac55 1791
0a7de745 1792 if (!mclfindleak) {
6d2010ae 1793 flags |= MCF_NOLEAKLOG;
0a7de745 1794 }
6d2010ae 1795
2d21ac55 1796 m_cache(m) = mcache_create_ext(m_cname(m), m_maxsize(m),
6d2010ae 1797 allocfunc, freefunc, auditfunc, logfunc, mbuf_slab_notify,
b0d623f7 1798 (void *)(uintptr_t)m, flags, MCR_SLEEP);
2d21ac55
A
1799 }
1800
6d2010ae
A
1801 /*
1802 * Set the max limit on sb_max to be 1/16 th of the size of
b0d623f7
A
1803 * memory allocated for mbuf clusters.
1804 */
6d2010ae 1805 high_sb_max = (nmbclusters << (MCLSHIFT - 4));
b0d623f7
A
1806 if (high_sb_max < sb_max) {
1807 /* sb_max is too large for this configuration, scale it down */
6d2010ae 1808 if (high_sb_max > (1 << MBSHIFT)) {
b0d623f7
A
1809 /* We have atleast 16 M of mbuf pool */
1810 sb_max = high_sb_max;
1811 } else if ((nmbclusters << MCLSHIFT) > (1 << MBSHIFT)) {
6d2010ae
A
1812 /*
1813 * If we have more than 1M of mbufpool, cap the size of
b0d623f7 1814 * max sock buf at 1M
6d2010ae 1815 */
b0d623f7
A
1816 sb_max = high_sb_max = (1 << MBSHIFT);
1817 } else {
1818 sb_max = high_sb_max;
1819 }
1820 }
1821
316670eb
A
1822 /* allocate space for mbuf_dump_buf */
1823 MALLOC(mbuf_dump_buf, char *, MBUF_DUMP_BUF_SIZE, M_TEMP, M_WAITOK);
1824 VERIFY(mbuf_dump_buf != NULL);
1825
39236c6e
A
1826 if (mbuf_debug & MCF_DEBUG) {
1827 printf("%s: MLEN %d, MHLEN %d\n", __func__,
1828 (int)_MLEN, (int)_MHLEN);
1829 }
1830
1831 printf("%s: done [%d MB total pool size, (%d/%d) split]\n", __func__,
6d2010ae
A
1832 (nmbclusters << MCLSHIFT) >> MBSHIFT,
1833 (nclusters << MCLSHIFT) >> MBSHIFT,
1834 (njcl << MCLSHIFT) >> MBSHIFT);
39037602
A
1835
1836 /* initialize lock form tx completion callback table */
1837 mbuf_tx_compl_tbl_lck_grp_attr = lck_grp_attr_alloc_init();
1838 if (mbuf_tx_compl_tbl_lck_grp_attr == NULL) {
1839 panic("%s: lck_grp_attr_alloc_init failed", __func__);
1840 /* NOTREACHED */
1841 }
1842 mbuf_tx_compl_tbl_lck_grp = lck_grp_alloc_init("mbuf_tx_compl_tbl",
1843 mbuf_tx_compl_tbl_lck_grp_attr);
1844 if (mbuf_tx_compl_tbl_lck_grp == NULL) {
1845 panic("%s: lck_grp_alloc_init failed", __func__);
1846 /* NOTREACHED */
1847 }
1848 mbuf_tx_compl_tbl_lck_attr = lck_attr_alloc_init();
1849 if (mbuf_tx_compl_tbl_lck_attr == NULL) {
1850 panic("%s: lck_attr_alloc_init failed", __func__);
1851 /* NOTREACHED */
1852 }
1853 lck_rw_init(mbuf_tx_compl_tbl_lock, mbuf_tx_compl_tbl_lck_grp,
1854 mbuf_tx_compl_tbl_lck_attr);
2d21ac55
A
1855}
1856
1857/*
1858 * Obtain a slab of object(s) from the class's freelist.
1859 */
1860static mcache_obj_t *
1861slab_alloc(mbuf_class_t class, int wait)
1862{
1863 mcl_slab_t *sp;
1864 mcache_obj_t *buf;
1865
5ba3f43e 1866 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55 1867
2d21ac55
A
1868 /* This should always be NULL for us */
1869 VERIFY(m_cobjlist(class) == NULL);
1870
1871 /*
1872 * Treat composite objects as having longer lifespan by using
1873 * a slab from the reverse direction, in hoping that this could
1874 * reduce the probability of fragmentation for slabs that hold
1875 * more than one buffer chunks (e.g. mbuf slabs). For other
1876 * slabs, this probably doesn't make much of a difference.
1877 */
3e170ce0 1878 if ((class == MC_MBUF || class == MC_CL || class == MC_BIGCL)
0a7de745 1879 && (wait & MCR_COMP)) {
2d21ac55 1880 sp = (mcl_slab_t *)TAILQ_LAST(&m_slablist(class), mcl_slhead);
0a7de745 1881 } else {
2d21ac55 1882 sp = (mcl_slab_t *)TAILQ_FIRST(&m_slablist(class));
0a7de745 1883 }
2d21ac55
A
1884
1885 if (sp == NULL) {
1886 VERIFY(m_infree(class) == 0 && m_slab_cnt(class) == 0);
1887 /* The slab list for this class is empty */
0a7de745 1888 return NULL;
2d21ac55
A
1889 }
1890
1891 VERIFY(m_infree(class) > 0);
1892 VERIFY(!slab_is_detached(sp));
1893 VERIFY(sp->sl_class == class &&
1894 (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
1895 buf = sp->sl_head;
1896 VERIFY(slab_inrange(sp, buf) && sp == slab_get(buf));
3e170ce0
A
1897 sp->sl_head = buf->obj_next;
1898 /* Increment slab reference */
1899 sp->sl_refcnt++;
1900
1901 VERIFY(sp->sl_head != NULL || sp->sl_refcnt == sp->sl_chunks);
2d21ac55 1902
2d21ac55
A
1903 if (sp->sl_head != NULL && !slab_inrange(sp, sp->sl_head)) {
1904 slab_nextptr_panic(sp, sp->sl_head);
1905 /* In case sl_head is in the map but not in the slab */
1906 VERIFY(slab_inrange(sp, sp->sl_head));
1907 /* NOTREACHED */
1908 }
1909
2d21ac55
A
1910 if (mclaudit != NULL) {
1911 mcache_audit_t *mca = mcl_audit_buf2mca(class, buf);
1912 mca->mca_uflags = 0;
1913 /* Save contents on mbuf objects only */
0a7de745 1914 if (class == MC_MBUF) {
2d21ac55 1915 mca->mca_uflags |= MB_SCVALID;
0a7de745 1916 }
2d21ac55
A
1917 }
1918
1919 if (class == MC_CL) {
1920 mbstat.m_clfree = (--m_infree(MC_CL)) + m_infree(MC_MBUF_CL);
1921 /*
3e170ce0 1922 * A 2K cluster slab can have at most NCLPG references.
2d21ac55 1923 */
3e170ce0
A
1924 VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NCLPG &&
1925 sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE);
1926 VERIFY(sp->sl_refcnt < NCLPG || sp->sl_head == NULL);
2d21ac55 1927 } else if (class == MC_BIGCL) {
2d21ac55
A
1928 mbstat.m_bigclfree = (--m_infree(MC_BIGCL)) +
1929 m_infree(MC_MBUF_BIGCL);
1930 /*
3e170ce0 1931 * A 4K cluster slab can have NBCLPG references.
2d21ac55 1932 */
3e170ce0 1933 VERIFY(sp->sl_refcnt >= 1 && sp->sl_chunks == NBCLPG &&
39037602 1934 sp->sl_len == PAGE_SIZE &&
3e170ce0 1935 (sp->sl_refcnt < NBCLPG || sp->sl_head == NULL));
2d21ac55
A
1936 } else if (class == MC_16KCL) {
1937 mcl_slab_t *nsp;
1938 int k;
1939
1940 --m_infree(MC_16KCL);
1941 VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 &&
6d2010ae 1942 sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
2d21ac55 1943 /*
6d2010ae
A
1944 * Increment 2nd-Nth slab reference, where N is NSLABSP16KB.
1945 * A 16KB big cluster takes NSLABSP16KB slabs, each having at
1946 * most 1 reference.
2d21ac55 1947 */
6d2010ae 1948 for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
2d21ac55
A
1949 nsp = nsp->sl_next;
1950 /* Next slab must already be present */
1951 VERIFY(nsp != NULL);
1952 nsp->sl_refcnt++;
1953 VERIFY(!slab_is_detached(nsp));
1954 VERIFY(nsp->sl_class == MC_16KCL &&
1955 nsp->sl_flags == (SLF_MAPPED | SLF_PARTIAL) &&
1956 nsp->sl_refcnt == 1 && nsp->sl_chunks == 0 &&
1957 nsp->sl_len == 0 && nsp->sl_base == sp->sl_base &&
1958 nsp->sl_head == NULL);
1959 }
1960 } else {
6d2010ae 1961 VERIFY(class == MC_MBUF);
2d21ac55
A
1962 --m_infree(MC_MBUF);
1963 /*
1964 * If auditing is turned on, this check is
1965 * deferred until later in mbuf_slab_audit().
1966 */
0a7de745 1967 if (mclaudit == NULL) {
2d21ac55 1968 _MCHECK((struct mbuf *)buf);
0a7de745 1969 }
2d21ac55
A
1970 /*
1971 * Since we have incremented the reference count above,
6d2010ae 1972 * an mbuf slab (formerly a 4KB cluster slab that was cut
2d21ac55 1973 * up into mbufs) must have a reference count between 1
3e170ce0 1974 * and NMBPG at this point.
2d21ac55 1975 */
3e170ce0
A
1976 VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NMBPG &&
1977 sp->sl_chunks == NMBPG &&
1978 sp->sl_len == PAGE_SIZE);
1979 VERIFY(sp->sl_refcnt < NMBPG || sp->sl_head == NULL);
2d21ac55
A
1980 }
1981
1982 /* If empty, remove this slab from the class's freelist */
1983 if (sp->sl_head == NULL) {
3e170ce0
A
1984 VERIFY(class != MC_MBUF || sp->sl_refcnt == NMBPG);
1985 VERIFY(class != MC_CL || sp->sl_refcnt == NCLPG);
1986 VERIFY(class != MC_BIGCL || sp->sl_refcnt == NBCLPG);
2d21ac55
A
1987 slab_remove(sp, class);
1988 }
1989
0a7de745 1990 return buf;
2d21ac55
A
1991}
1992
1993/*
1994 * Place a slab of object(s) back into a class's slab list.
1995 */
1996static void
1997slab_free(mbuf_class_t class, mcache_obj_t *buf)
1998{
1999 mcl_slab_t *sp;
3e170ce0
A
2000 boolean_t reinit_supercl = false;
2001 mbuf_class_t super_class;
2d21ac55 2002
5ba3f43e 2003 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55
A
2004
2005 VERIFY(class != MC_16KCL || njcl > 0);
2006 VERIFY(buf->obj_next == NULL);
3e170ce0 2007
cc8bc92a
A
2008 /*
2009 * Synchronizing with m_clalloc, as it reads m_total, while we here
2010 * are modifying m_total.
2011 */
2012 while (mb_clalloc_busy) {
2013 mb_clalloc_waiters++;
2014 (void) msleep(mb_clalloc_waitchan, mbuf_mlock,
0a7de745 2015 (PZERO - 1), "m_clalloc", NULL);
cc8bc92a
A
2016 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2017 }
2018
2019 /* We are busy now; tell everyone else to go away */
2020 mb_clalloc_busy = TRUE;
2021
2d21ac55
A
2022 sp = slab_get(buf);
2023 VERIFY(sp->sl_class == class && slab_inrange(sp, buf) &&
2024 (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
2025
2026 /* Decrement slab reference */
2027 sp->sl_refcnt--;
2028
6d2010ae 2029 if (class == MC_CL) {
2d21ac55
A
2030 VERIFY(IS_P2ALIGNED(buf, MCLBYTES));
2031 /*
6d2010ae
A
2032 * A slab that has been splitted for 2KB clusters can have
2033 * at most 1 outstanding reference at this point.
2034 */
3e170ce0
A
2035 VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NCLPG - 1) &&
2036 sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE);
2037 VERIFY(sp->sl_refcnt < (NCLPG - 1) ||
6d2010ae
A
2038 (slab_is_detached(sp) && sp->sl_head == NULL));
2039 } else if (class == MC_BIGCL) {
3e170ce0
A
2040 VERIFY(IS_P2ALIGNED(buf, MBIGCLBYTES));
2041
2042 /* A 4KB cluster slab can have NBCLPG references at most */
2043 VERIFY(sp->sl_refcnt >= 0 && sp->sl_chunks == NBCLPG);
2044 VERIFY(sp->sl_refcnt < (NBCLPG - 1) ||
2045 (slab_is_detached(sp) && sp->sl_head == NULL));
2d21ac55
A
2046 } else if (class == MC_16KCL) {
2047 mcl_slab_t *nsp;
2048 int k;
2049 /*
6d2010ae 2050 * A 16KB cluster takes NSLABSP16KB slabs, all must
2d21ac55
A
2051 * now have 0 reference.
2052 */
3e170ce0 2053 VERIFY(IS_P2ALIGNED(buf, PAGE_SIZE));
2d21ac55 2054 VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 &&
6d2010ae 2055 sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
2d21ac55 2056 VERIFY(slab_is_detached(sp));
6d2010ae 2057 for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
2d21ac55
A
2058 nsp = nsp->sl_next;
2059 /* Next slab must already be present */
2060 VERIFY(nsp != NULL);
2061 nsp->sl_refcnt--;
2062 VERIFY(slab_is_detached(nsp));
2063 VERIFY(nsp->sl_class == MC_16KCL &&
2064 (nsp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) &&
2065 nsp->sl_refcnt == 0 && nsp->sl_chunks == 0 &&
2066 nsp->sl_len == 0 && nsp->sl_base == sp->sl_base &&
2067 nsp->sl_head == NULL);
2068 }
2069 } else {
2070 /*
3e170ce0
A
2071 * A slab that has been splitted for mbufs has at most
2072 * NMBPG reference counts. Since we have decremented
2073 * one reference above, it must now be between 0 and
2074 * NMBPG-1.
2d21ac55 2075 */
6d2010ae 2076 VERIFY(class == MC_MBUF);
3e170ce0
A
2077 VERIFY(sp->sl_refcnt >= 0 &&
2078 sp->sl_refcnt <= (NMBPG - 1) &&
2079 sp->sl_chunks == NMBPG &&
2080 sp->sl_len == PAGE_SIZE);
2081 VERIFY(sp->sl_refcnt < (NMBPG - 1) ||
2d21ac55
A
2082 (slab_is_detached(sp) && sp->sl_head == NULL));
2083 }
2084
2085 /*
2086 * When auditing is enabled, ensure that the buffer still
2087 * contains the free pattern. Otherwise it got corrupted
2088 * while at the CPU cache layer.
2089 */
2090 if (mclaudit != NULL) {
2091 mcache_audit_t *mca = mcl_audit_buf2mca(class, buf);
6d2010ae 2092 if (mclverify) {
3e170ce0
A
2093 mcache_audit_free_verify(mca, buf, 0,
2094 m_maxsize(class));
6d2010ae 2095 }
2d21ac55
A
2096 mca->mca_uflags &= ~MB_SCVALID;
2097 }
2098
2099 if (class == MC_CL) {
2100 mbstat.m_clfree = (++m_infree(MC_CL)) + m_infree(MC_MBUF_CL);
6d2010ae 2101 buf->obj_next = sp->sl_head;
2d21ac55
A
2102 } else if (class == MC_BIGCL) {
2103 mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) +
2104 m_infree(MC_MBUF_BIGCL);
3e170ce0 2105 buf->obj_next = sp->sl_head;
2d21ac55
A
2106 } else if (class == MC_16KCL) {
2107 ++m_infree(MC_16KCL);
2108 } else {
2109 ++m_infree(MC_MBUF);
2110 buf->obj_next = sp->sl_head;
2111 }
2112 sp->sl_head = buf;
2113
6d2010ae 2114 /*
3e170ce0
A
2115 * If a slab has been split to either one which holds 2KB clusters,
2116 * or one which holds mbufs, turn it back to one which holds a
2117 * 4 or 16 KB cluster depending on the page size.
6d2010ae 2118 */
3e170ce0
A
2119 if (m_maxsize(MC_BIGCL) == PAGE_SIZE) {
2120 super_class = MC_BIGCL;
2121 } else {
2122 VERIFY(PAGE_SIZE == m_maxsize(MC_16KCL));
2123 super_class = MC_16KCL;
2124 }
6d2010ae 2125 if (class == MC_MBUF && sp->sl_refcnt == 0 &&
3e170ce0
A
2126 m_total(class) >= (m_minlimit(class) + NMBPG) &&
2127 m_total(super_class) < m_maxlimit(super_class)) {
2128 int i = NMBPG;
6d2010ae 2129
3e170ce0 2130 m_total(MC_MBUF) -= NMBPG;
2d21ac55 2131 mbstat.m_mbufs = m_total(MC_MBUF);
3e170ce0
A
2132 m_infree(MC_MBUF) -= NMBPG;
2133 mtype_stat_add(MT_FREE, -((unsigned)NMBPG));
2d21ac55
A
2134
2135 while (i--) {
2136 struct mbuf *m = sp->sl_head;
2137 VERIFY(m != NULL);
2138 sp->sl_head = m->m_next;
2139 m->m_next = NULL;
2140 }
3e170ce0 2141 reinit_supercl = true;
6d2010ae 2142 } else if (class == MC_CL && sp->sl_refcnt == 0 &&
0a7de745 2143 m_total(class) >= (m_minlimit(class) + NCLPG) &&
3e170ce0
A
2144 m_total(super_class) < m_maxlimit(super_class)) {
2145 int i = NCLPG;
6d2010ae 2146
3e170ce0 2147 m_total(MC_CL) -= NCLPG;
6d2010ae 2148 mbstat.m_clusters = m_total(MC_CL);
3e170ce0 2149 m_infree(MC_CL) -= NCLPG;
6d2010ae
A
2150
2151 while (i--) {
2152 union mcluster *c = sp->sl_head;
2153 VERIFY(c != NULL);
2154 sp->sl_head = c->mcl_next;
2155 c->mcl_next = NULL;
2156 }
3e170ce0
A
2157 reinit_supercl = true;
2158 } else if (class == MC_BIGCL && super_class != MC_BIGCL &&
2159 sp->sl_refcnt == 0 &&
2160 m_total(class) >= (m_minlimit(class) + NBCLPG) &&
2161 m_total(super_class) < m_maxlimit(super_class)) {
2162 int i = NBCLPG;
2163
2164 VERIFY(super_class == MC_16KCL);
2165 m_total(MC_BIGCL) -= NBCLPG;
2166 mbstat.m_bigclusters = m_total(MC_BIGCL);
2167 m_infree(MC_BIGCL) -= NBCLPG;
6d2010ae 2168
3e170ce0
A
2169 while (i--) {
2170 union mbigcluster *bc = sp->sl_head;
2171 VERIFY(bc != NULL);
2172 sp->sl_head = bc->mbc_next;
2173 bc->mbc_next = NULL;
2174 }
2175 reinit_supercl = true;
2176 }
2177
2178 if (reinit_supercl) {
2179 VERIFY(sp->sl_head == NULL);
2180 VERIFY(m_total(class) >= m_minlimit(class));
6d2010ae
A
2181 slab_remove(sp, class);
2182
3e170ce0
A
2183 /* Reinitialize it as a cluster for the super class */
2184 m_total(super_class)++;
2185 m_infree(super_class)++;
2186 VERIFY(sp->sl_flags == (SLF_MAPPED | SLF_DETACHED) &&
2187 sp->sl_len == PAGE_SIZE && sp->sl_refcnt == 0);
6d2010ae 2188
3e170ce0
A
2189 slab_init(sp, super_class, SLF_MAPPED, sp->sl_base,
2190 sp->sl_base, PAGE_SIZE, 0, 1);
0a7de745 2191 if (mclverify) {
6d2010ae 2192 mcache_set_pattern(MCACHE_FREE_PATTERN,
3e170ce0 2193 (caddr_t)sp->sl_base, sp->sl_len);
0a7de745 2194 }
3e170ce0
A
2195 ((mcache_obj_t *)(sp->sl_base))->obj_next = NULL;
2196
2197 if (super_class == MC_BIGCL) {
2198 mbstat.m_bigclusters = m_total(MC_BIGCL);
2199 mbstat.m_bigclfree = m_infree(MC_BIGCL) +
2200 m_infree(MC_MBUF_BIGCL);
6d2010ae 2201 }
2d21ac55
A
2202
2203 VERIFY(slab_is_detached(sp));
3e170ce0
A
2204 VERIFY(m_total(super_class) <= m_maxlimit(super_class));
2205
2d21ac55 2206 /* And finally switch class */
3e170ce0 2207 class = super_class;
2d21ac55
A
2208 }
2209
2210 /* Reinsert the slab to the class's slab list */
0a7de745 2211 if (slab_is_detached(sp)) {
2d21ac55 2212 slab_insert(sp, class);
0a7de745 2213 }
cc8bc92a
A
2214
2215 /* We're done; let others enter */
2216 mb_clalloc_busy = FALSE;
2217 if (mb_clalloc_waiters > 0) {
2218 mb_clalloc_waiters = 0;
2219 wakeup(mb_clalloc_waitchan);
2220 }
2d21ac55
A
2221}
2222
2223/*
2224 * Common allocator for rudimentary objects called by the CPU cache layer
2225 * during an allocation request whenever there is no available element in the
2226 * bucket layer. It returns one or more elements from the appropriate global
2227 * freelist. If the freelist is empty, it will attempt to populate it and
2228 * retry the allocation.
2229 */
2230static unsigned int
2231mbuf_slab_alloc(void *arg, mcache_obj_t ***plist, unsigned int num, int wait)
2232{
2233 mbuf_class_t class = (mbuf_class_t)arg;
2234 unsigned int need = num;
2235 mcache_obj_t **list = *plist;
2236
2237 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2238 ASSERT(need > 0);
2239
2240 lck_mtx_lock(mbuf_mlock);
2241
2242 for (;;) {
2243 if ((*list = slab_alloc(class, wait)) != NULL) {
2244 (*list)->obj_next = NULL;
2245 list = *plist = &(*list)->obj_next;
2246
2247 if (--need == 0) {
2248 /*
2249 * If the number of elements in freelist has
2250 * dropped below low watermark, asynchronously
2251 * populate the freelist now rather than doing
2252 * it later when we run out of elements.
2253 */
2254 if (!mbuf_cached_above(class, wait) &&
3e170ce0 2255 m_infree(class) < (m_total(class) >> 5)) {
2d21ac55
A
2256 (void) freelist_populate(class, 1,
2257 M_DONTWAIT);
2258 }
2259 break;
2260 }
2261 } else {
2262 VERIFY(m_infree(class) == 0 || class == MC_CL);
2263
2264 (void) freelist_populate(class, 1,
2265 (wait & MCR_NOSLEEP) ? M_DONTWAIT : M_WAIT);
2266
0a7de745 2267 if (m_infree(class) > 0) {
2d21ac55 2268 continue;
0a7de745 2269 }
2d21ac55
A
2270
2271 /* Check if there's anything at the cache layer */
0a7de745 2272 if (mbuf_cached_above(class, wait)) {
2d21ac55 2273 break;
0a7de745 2274 }
2d21ac55 2275
6d2010ae
A
2276 /* watchdog checkpoint */
2277 mbuf_watchdog();
2278
2d21ac55
A
2279 /* We have nothing and cannot block; give up */
2280 if (wait & MCR_NOSLEEP) {
2281 if (!(wait & MCR_TRYHARD)) {
2282 m_fail_cnt(class)++;
2283 mbstat.m_drops++;
2284 break;
2285 }
2286 }
2287
2288 /*
2289 * If the freelist is still empty and the caller is
2290 * willing to be blocked, sleep on the wait channel
2291 * until an element is available. Otherwise, if
2292 * MCR_TRYHARD is set, do our best to satisfy the
2293 * request without having to go to sleep.
2294 */
2295 if (mbuf_worker_ready &&
0a7de745 2296 mbuf_sleep(class, need, wait)) {
2d21ac55 2297 break;
0a7de745 2298 }
2d21ac55 2299
5ba3f43e 2300 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55
A
2301 }
2302 }
2303
2304 m_alloc_cnt(class) += num - need;
2305 lck_mtx_unlock(mbuf_mlock);
2306
0a7de745 2307 return num - need;
2d21ac55
A
2308}
2309
2310/*
2311 * Common de-allocator for rudimentary objects called by the CPU cache
2312 * layer when one or more elements need to be returned to the appropriate
2313 * global freelist.
2314 */
2315static void
2316mbuf_slab_free(void *arg, mcache_obj_t *list, __unused int purged)
2317{
2318 mbuf_class_t class = (mbuf_class_t)arg;
2319 mcache_obj_t *nlist;
2320 unsigned int num = 0;
2321 int w;
2322
2323 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2324
2325 lck_mtx_lock(mbuf_mlock);
2326
2327 for (;;) {
2328 nlist = list->obj_next;
2329 list->obj_next = NULL;
2330 slab_free(class, list);
2331 ++num;
0a7de745 2332 if ((list = nlist) == NULL) {
2d21ac55 2333 break;
0a7de745 2334 }
2d21ac55
A
2335 }
2336 m_free_cnt(class) += num;
2337
0a7de745 2338 if ((w = mb_waiters) > 0) {
2d21ac55 2339 mb_waiters = 0;
0a7de745 2340 }
d9a64523
A
2341 if (w) {
2342 mbwdog_logger("waking up all threads");
2343 }
2d21ac55
A
2344 lck_mtx_unlock(mbuf_mlock);
2345
0a7de745 2346 if (w != 0) {
2d21ac55 2347 wakeup(mb_waitchan);
0a7de745 2348 }
2d21ac55
A
2349}
2350
2351/*
2352 * Common auditor for rudimentary objects called by the CPU cache layer
2353 * during an allocation or free request. For the former, this is called
2354 * after the objects are obtained from either the bucket or slab layer
2355 * and before they are returned to the caller. For the latter, this is
2356 * called immediately during free and before placing the objects into
2357 * the bucket or slab layer.
2358 */
2359static void
2360mbuf_slab_audit(void *arg, mcache_obj_t *list, boolean_t alloc)
2361{
2362 mbuf_class_t class = (mbuf_class_t)arg;
2363 mcache_audit_t *mca;
2364
2365 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2366
2367 while (list != NULL) {
2368 lck_mtx_lock(mbuf_mlock);
2369 mca = mcl_audit_buf2mca(class, list);
2370
2371 /* Do the sanity checks */
2372 if (class == MC_MBUF) {
2373 mcl_audit_mbuf(mca, list, FALSE, alloc);
2374 ASSERT(mca->mca_uflags & MB_SCVALID);
2375 } else {
2376 mcl_audit_cluster(mca, list, m_maxsize(class),
2377 alloc, TRUE);
2378 ASSERT(!(mca->mca_uflags & MB_SCVALID));
2379 }
2380 /* Record this transaction */
0a7de745 2381 if (mcltrace) {
39236c6e 2382 mcache_buffer_log(mca, list, m_cache(class), &mb_start);
0a7de745 2383 }
6d2010ae 2384
0a7de745 2385 if (alloc) {
2d21ac55 2386 mca->mca_uflags |= MB_INUSE;
0a7de745 2387 } else {
2d21ac55 2388 mca->mca_uflags &= ~MB_INUSE;
0a7de745 2389 }
2d21ac55
A
2390 /* Unpair the object (unconditionally) */
2391 mca->mca_uptr = NULL;
2392 lck_mtx_unlock(mbuf_mlock);
2393
2394 list = list->obj_next;
2395 }
2396}
2397
2398/*
2399 * Common notify routine for all caches. It is called by mcache when
2400 * one or more objects get freed. We use this indication to trigger
2401 * the wakeup of any sleeping threads so that they can retry their
2402 * allocation requests.
2403 */
2404static void
2405mbuf_slab_notify(void *arg, u_int32_t reason)
2406{
2407 mbuf_class_t class = (mbuf_class_t)arg;
2408 int w;
2409
2410 ASSERT(MBUF_CLASS_VALID(class));
2411
0a7de745 2412 if (reason != MCN_RETRYALLOC) {
2d21ac55 2413 return;
0a7de745 2414 }
2d21ac55
A
2415
2416 lck_mtx_lock(mbuf_mlock);
2417 if ((w = mb_waiters) > 0) {
2418 m_notified(class)++;
2419 mb_waiters = 0;
2420 }
d9a64523
A
2421 if (w) {
2422 mbwdog_logger("waking up all threads");
2423 }
2d21ac55
A
2424 lck_mtx_unlock(mbuf_mlock);
2425
0a7de745 2426 if (w != 0) {
2d21ac55 2427 wakeup(mb_waitchan);
0a7de745 2428 }
2d21ac55
A
2429}
2430
2431/*
2432 * Obtain object(s) from the composite class's freelist.
2433 */
2434static unsigned int
2435cslab_alloc(mbuf_class_t class, mcache_obj_t ***plist, unsigned int num)
2436{
2437 unsigned int need = num;
2438 mcl_slab_t *sp, *clsp, *nsp;
2439 struct mbuf *m;
2440 mcache_obj_t **list = *plist;
2441 void *cl;
2442
2443 VERIFY(need > 0);
2444 VERIFY(class != MC_MBUF_16KCL || njcl > 0);
5ba3f43e 2445 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55
A
2446
2447 /* Get what we can from the freelist */
2448 while ((*list = m_cobjlist(class)) != NULL) {
2449 MRANGE(*list);
2450
2451 m = (struct mbuf *)*list;
2452 sp = slab_get(m);
2453 cl = m->m_ext.ext_buf;
2454 clsp = slab_get(cl);
2455 VERIFY(m->m_flags == M_EXT && cl != NULL);
813fb2f6 2456 VERIFY(m_get_rfa(m) != NULL && MBUF_IS_COMPOSITE(m));
6d2010ae
A
2457
2458 if (class == MC_MBUF_CL) {
2459 VERIFY(clsp->sl_refcnt >= 1 &&
3e170ce0 2460 clsp->sl_refcnt <= NCLPG);
6d2010ae 2461 } else {
3e170ce0
A
2462 VERIFY(clsp->sl_refcnt >= 1 &&
2463 clsp->sl_refcnt <= NBCLPG);
6d2010ae
A
2464 }
2465
2466 if (class == MC_MBUF_16KCL) {
2d21ac55 2467 int k;
6d2010ae 2468 for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
2d21ac55
A
2469 nsp = nsp->sl_next;
2470 /* Next slab must already be present */
2471 VERIFY(nsp != NULL);
2472 VERIFY(nsp->sl_refcnt == 1);
2473 }
2474 }
2475
2476 if ((m_cobjlist(class) = (*list)->obj_next) != NULL &&
2477 !MBUF_IN_MAP(m_cobjlist(class))) {
2478 slab_nextptr_panic(sp, m_cobjlist(class));
2479 /* NOTREACHED */
2480 }
2481 (*list)->obj_next = NULL;
2482 list = *plist = &(*list)->obj_next;
2483
0a7de745 2484 if (--need == 0) {
2d21ac55 2485 break;
0a7de745 2486 }
2d21ac55
A
2487 }
2488 m_infree(class) -= (num - need);
2489
0a7de745 2490 return num - need;
2d21ac55
A
2491}
2492
2493/*
2494 * Place object(s) back into a composite class's freelist.
2495 */
2496static unsigned int
2497cslab_free(mbuf_class_t class, mcache_obj_t *list, int purged)
2498{
2499 mcache_obj_t *o, *tail;
2500 unsigned int num = 0;
2501 struct mbuf *m, *ms;
2502 mcache_audit_t *mca = NULL;
2503 mcache_obj_t *ref_list = NULL;
2504 mcl_slab_t *clsp, *nsp;
2505 void *cl;
6d2010ae 2506 mbuf_class_t cl_class;
2d21ac55
A
2507
2508 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2509 VERIFY(class != MC_MBUF_16KCL || njcl > 0);
5ba3f43e 2510 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55 2511
6d2010ae
A
2512 if (class == MC_MBUF_CL) {
2513 cl_class = MC_CL;
2514 } else if (class == MC_MBUF_BIGCL) {
2515 cl_class = MC_BIGCL;
2516 } else {
2517 VERIFY(class == MC_MBUF_16KCL);
2518 cl_class = MC_16KCL;
2519 }
2520
2d21ac55
A
2521 o = tail = list;
2522
2523 while ((m = ms = (struct mbuf *)o) != NULL) {
2524 mcache_obj_t *rfa, *nexto = o->obj_next;
2525
2526 /* Do the mbuf sanity checks */
2527 if (mclaudit != NULL) {
2528 mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
6d2010ae
A
2529 if (mclverify) {
2530 mcache_audit_free_verify(mca, m, 0,
2531 m_maxsize(MC_MBUF));
2532 }
39236c6e 2533 ms = MCA_SAVED_MBUF_PTR(mca);
2d21ac55
A
2534 }
2535
2536 /* Do the cluster sanity checks */
2537 cl = ms->m_ext.ext_buf;
2538 clsp = slab_get(cl);
6d2010ae
A
2539 if (mclverify) {
2540 size_t size = m_maxsize(cl_class);
2541 mcache_audit_free_verify(mcl_audit_buf2mca(cl_class,
2d21ac55
A
2542 (mcache_obj_t *)cl), cl, 0, size);
2543 }
2544 VERIFY(ms->m_type == MT_FREE);
2545 VERIFY(ms->m_flags == M_EXT);
813fb2f6 2546 VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms));
6d2010ae
A
2547 if (cl_class == MC_CL) {
2548 VERIFY(clsp->sl_refcnt >= 1 &&
3e170ce0 2549 clsp->sl_refcnt <= NCLPG);
6d2010ae 2550 } else {
39037602 2551 VERIFY(clsp->sl_refcnt >= 1 &&
3e170ce0 2552 clsp->sl_refcnt <= NBCLPG);
6d2010ae
A
2553 }
2554 if (cl_class == MC_16KCL) {
2d21ac55 2555 int k;
6d2010ae 2556 for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
2d21ac55
A
2557 nsp = nsp->sl_next;
2558 /* Next slab must already be present */
2559 VERIFY(nsp != NULL);
2560 VERIFY(nsp->sl_refcnt == 1);
2561 }
2562 }
2563
2564 /*
2565 * If we're asked to purge, restore the actual mbuf using
2566 * contents of the shadow structure (if auditing is enabled)
2567 * and clear EXTF_COMPOSITE flag from the mbuf, as we are
2568 * about to free it and the attached cluster into their caches.
2569 */
2570 if (purged) {
2571 /* Restore constructed mbuf fields */
0a7de745 2572 if (mclaudit != NULL) {
2d21ac55 2573 mcl_audit_restore_mbuf(m, mca, TRUE);
0a7de745 2574 }
2d21ac55 2575
39037602 2576 MEXT_MINREF(m) = 0;
2d21ac55 2577 MEXT_REF(m) = 0;
39037602 2578 MEXT_PREF(m) = 0;
2d21ac55 2579 MEXT_FLAGS(m) = 0;
39037602
A
2580 MEXT_PRIV(m) = 0;
2581 MEXT_PMBUF(m) = NULL;
813fb2f6 2582 MEXT_TOKEN(m) = 0;
2d21ac55 2583
813fb2f6
A
2584 rfa = (mcache_obj_t *)(void *)m_get_rfa(m);
2585 m_set_ext(m, NULL, NULL, NULL);
2d21ac55
A
2586 rfa->obj_next = ref_list;
2587 ref_list = rfa;
2d21ac55
A
2588
2589 m->m_type = MT_FREE;
2590 m->m_flags = m->m_len = 0;
2591 m->m_next = m->m_nextpkt = NULL;
2592
2593 /* Save mbuf fields and make auditing happy */
0a7de745 2594 if (mclaudit != NULL) {
2d21ac55 2595 mcl_audit_mbuf(mca, o, FALSE, FALSE);
0a7de745 2596 }
2d21ac55
A
2597
2598 VERIFY(m_total(class) > 0);
2599 m_total(class)--;
2600
2601 /* Free the mbuf */
2602 o->obj_next = NULL;
2603 slab_free(MC_MBUF, o);
2604
2605 /* And free the cluster */
2606 ((mcache_obj_t *)cl)->obj_next = NULL;
0a7de745 2607 if (class == MC_MBUF_CL) {
2d21ac55 2608 slab_free(MC_CL, cl);
0a7de745 2609 } else if (class == MC_MBUF_BIGCL) {
2d21ac55 2610 slab_free(MC_BIGCL, cl);
0a7de745 2611 } else {
2d21ac55 2612 slab_free(MC_16KCL, cl);
0a7de745 2613 }
2d21ac55
A
2614 }
2615
2616 ++num;
2617 tail = o;
2618 o = nexto;
2619 }
2620
2621 if (!purged) {
2622 tail->obj_next = m_cobjlist(class);
2623 m_cobjlist(class) = list;
2624 m_infree(class) += num;
2625 } else if (ref_list != NULL) {
2626 mcache_free_ext(ref_cache, ref_list);
2627 }
2628
0a7de745 2629 return num;
2d21ac55
A
2630}
2631
2632/*
2633 * Common allocator for composite objects called by the CPU cache layer
2634 * during an allocation request whenever there is no available element in
2635 * the bucket layer. It returns one or more composite elements from the
2636 * appropriate global freelist. If the freelist is empty, it will attempt
2637 * to obtain the rudimentary objects from their caches and construct them
2638 * into composite mbuf + cluster objects.
2639 */
2640static unsigned int
2641mbuf_cslab_alloc(void *arg, mcache_obj_t ***plist, unsigned int needed,
2642 int wait)
2643{
2644 mbuf_class_t class = (mbuf_class_t)arg;
6d2010ae 2645 mbuf_class_t cl_class = 0;
2d21ac55
A
2646 unsigned int num = 0, cnum = 0, want = needed;
2647 mcache_obj_t *ref_list = NULL;
2648 mcache_obj_t *mp_list = NULL;
2649 mcache_obj_t *clp_list = NULL;
2650 mcache_obj_t **list;
2651 struct ext_ref *rfa;
2652 struct mbuf *m;
2653 void *cl;
2654
2655 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2656 ASSERT(needed > 0);
2657
2658 VERIFY(class != MC_MBUF_16KCL || njcl > 0);
2659
2660 /* There should not be any slab for this class */
2661 VERIFY(m_slab_cnt(class) == 0 &&
2662 m_slablist(class).tqh_first == NULL &&
2663 m_slablist(class).tqh_last == NULL);
2664
2665 lck_mtx_lock(mbuf_mlock);
2666
2667 /* Try using the freelist first */
2668 num = cslab_alloc(class, plist, needed);
2669 list = *plist;
2670 if (num == needed) {
2671 m_alloc_cnt(class) += num;
2672 lck_mtx_unlock(mbuf_mlock);
0a7de745 2673 return needed;
2d21ac55
A
2674 }
2675
2676 lck_mtx_unlock(mbuf_mlock);
2677
2678 /*
2679 * We could not satisfy the request using the freelist alone;
2680 * allocate from the appropriate rudimentary caches and use
2681 * whatever we can get to construct the composite objects.
2682 */
2683 needed -= num;
2684
2685 /*
2686 * Mark these allocation requests as coming from a composite cache.
2687 * Also, if the caller is willing to be blocked, mark the request
2688 * with MCR_FAILOK such that we don't end up sleeping at the mbuf
2689 * slab layer waiting for the individual object when one or more
2690 * of the already-constructed composite objects are available.
2691 */
2692 wait |= MCR_COMP;
0a7de745 2693 if (!(wait & MCR_NOSLEEP)) {
2d21ac55 2694 wait |= MCR_FAILOK;
0a7de745 2695 }
2d21ac55 2696
6d2010ae 2697 /* allocate mbufs */
2d21ac55
A
2698 needed = mcache_alloc_ext(m_cache(MC_MBUF), &mp_list, needed, wait);
2699 if (needed == 0) {
2700 ASSERT(mp_list == NULL);
2701 goto fail;
2702 }
6d2010ae
A
2703
2704 /* allocate clusters */
2705 if (class == MC_MBUF_CL) {
2706 cl_class = MC_CL;
2707 } else if (class == MC_MBUF_BIGCL) {
2708 cl_class = MC_BIGCL;
2709 } else {
2710 VERIFY(class == MC_MBUF_16KCL);
2711 cl_class = MC_16KCL;
2712 }
2713 needed = mcache_alloc_ext(m_cache(cl_class), &clp_list, needed, wait);
2d21ac55
A
2714 if (needed == 0) {
2715 ASSERT(clp_list == NULL);
2716 goto fail;
2717 }
6d2010ae 2718
2d21ac55
A
2719 needed = mcache_alloc_ext(ref_cache, &ref_list, needed, wait);
2720 if (needed == 0) {
2721 ASSERT(ref_list == NULL);
2722 goto fail;
2723 }
2724
2725 /*
2726 * By this time "needed" is MIN(mbuf, cluster, ref). Any left
2727 * overs will get freed accordingly before we return to caller.
2728 */
2729 for (cnum = 0; cnum < needed; cnum++) {
2730 struct mbuf *ms;
2731
2732 m = ms = (struct mbuf *)mp_list;
2733 mp_list = mp_list->obj_next;
2734
2735 cl = clp_list;
2736 clp_list = clp_list->obj_next;
2737 ((mcache_obj_t *)cl)->obj_next = NULL;
2738
2739 rfa = (struct ext_ref *)ref_list;
2740 ref_list = ref_list->obj_next;
316670eb 2741 ((mcache_obj_t *)(void *)rfa)->obj_next = NULL;
2d21ac55
A
2742
2743 /*
2744 * If auditing is enabled, construct the shadow mbuf
2745 * in the audit structure instead of in the actual one.
2746 * mbuf_cslab_audit() will take care of restoring the
2747 * contents after the integrity check.
2748 */
2749 if (mclaudit != NULL) {
2750 mcache_audit_t *mca, *cl_mca;
2d21ac55
A
2751
2752 lck_mtx_lock(mbuf_mlock);
2753 mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
39236c6e 2754 ms = MCA_SAVED_MBUF_PTR(mca);
3e170ce0
A
2755 cl_mca = mcl_audit_buf2mca(cl_class,
2756 (mcache_obj_t *)cl);
2d21ac55
A
2757
2758 /*
2759 * Pair them up. Note that this is done at the time
2760 * the mbuf+cluster objects are constructed. This
2761 * information should be treated as "best effort"
2762 * debugging hint since more than one mbufs can refer
2763 * to a cluster. In that case, the cluster might not
2764 * be freed along with the mbuf it was paired with.
2765 */
2766 mca->mca_uptr = cl_mca;
2767 cl_mca->mca_uptr = mca;
2768
2769 ASSERT(mca->mca_uflags & MB_SCVALID);
2770 ASSERT(!(cl_mca->mca_uflags & MB_SCVALID));
2771 lck_mtx_unlock(mbuf_mlock);
2772
2773 /* Technically, they are in the freelist */
6d2010ae
A
2774 if (mclverify) {
2775 size_t size;
2776
2777 mcache_set_pattern(MCACHE_FREE_PATTERN, m,
2778 m_maxsize(MC_MBUF));
2779
0a7de745 2780 if (class == MC_MBUF_CL) {
6d2010ae 2781 size = m_maxsize(MC_CL);
0a7de745 2782 } else if (class == MC_MBUF_BIGCL) {
6d2010ae 2783 size = m_maxsize(MC_BIGCL);
0a7de745 2784 } else {
6d2010ae 2785 size = m_maxsize(MC_16KCL);
0a7de745 2786 }
6d2010ae
A
2787
2788 mcache_set_pattern(MCACHE_FREE_PATTERN, cl,
2789 size);
2790 }
2d21ac55
A
2791 }
2792
2793 MBUF_INIT(ms, 0, MT_FREE);
2794 if (class == MC_MBUF_16KCL) {
2795 MBUF_16KCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
2796 } else if (class == MC_MBUF_BIGCL) {
2797 MBUF_BIGCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
2798 } else {
2799 MBUF_CL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
2800 }
2801 VERIFY(ms->m_flags == M_EXT);
813fb2f6 2802 VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms));
2d21ac55
A
2803
2804 *list = (mcache_obj_t *)m;
2805 (*list)->obj_next = NULL;
2806 list = *plist = &(*list)->obj_next;
2807 }
2808
2809fail:
2810 /*
2811 * Free up what's left of the above.
2812 */
0a7de745 2813 if (mp_list != NULL) {
2d21ac55 2814 mcache_free_ext(m_cache(MC_MBUF), mp_list);
0a7de745
A
2815 }
2816 if (clp_list != NULL) {
6d2010ae 2817 mcache_free_ext(m_cache(cl_class), clp_list);
0a7de745
A
2818 }
2819 if (ref_list != NULL) {
2d21ac55 2820 mcache_free_ext(ref_cache, ref_list);
0a7de745 2821 }
2d21ac55
A
2822
2823 lck_mtx_lock(mbuf_mlock);
2824 if (num > 0 || cnum > 0) {
2825 m_total(class) += cnum;
2826 VERIFY(m_total(class) <= m_maxlimit(class));
2827 m_alloc_cnt(class) += num + cnum;
2828 }
0a7de745 2829 if ((num + cnum) < want) {
2d21ac55 2830 m_fail_cnt(class) += (want - (num + cnum));
0a7de745 2831 }
2d21ac55
A
2832 lck_mtx_unlock(mbuf_mlock);
2833
0a7de745 2834 return num + cnum;
2d21ac55
A
2835}
2836
2837/*
2838 * Common de-allocator for composite objects called by the CPU cache
2839 * layer when one or more elements need to be returned to the appropriate
2840 * global freelist.
2841 */
2842static void
2843mbuf_cslab_free(void *arg, mcache_obj_t *list, int purged)
2844{
2845 mbuf_class_t class = (mbuf_class_t)arg;
2846 unsigned int num;
2847 int w;
2848
2849 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2850
2851 lck_mtx_lock(mbuf_mlock);
2852
2853 num = cslab_free(class, list, purged);
2854 m_free_cnt(class) += num;
2855
0a7de745 2856 if ((w = mb_waiters) > 0) {
2d21ac55 2857 mb_waiters = 0;
0a7de745 2858 }
d9a64523
A
2859 if (w) {
2860 mbwdog_logger("waking up all threads");
2861 }
2d21ac55
A
2862
2863 lck_mtx_unlock(mbuf_mlock);
2864
0a7de745 2865 if (w != 0) {
2d21ac55 2866 wakeup(mb_waitchan);
0a7de745 2867 }
2d21ac55
A
2868}
2869
2870/*
2871 * Common auditor for composite objects called by the CPU cache layer
2872 * during an allocation or free request. For the former, this is called
2873 * after the objects are obtained from either the bucket or slab layer
2874 * and before they are returned to the caller. For the latter, this is
2875 * called immediately during free and before placing the objects into
2876 * the bucket or slab layer.
2877 */
2878static void
2879mbuf_cslab_audit(void *arg, mcache_obj_t *list, boolean_t alloc)
2880{
3e170ce0 2881 mbuf_class_t class = (mbuf_class_t)arg, cl_class;
2d21ac55
A
2882 mcache_audit_t *mca;
2883 struct mbuf *m, *ms;
2884 mcl_slab_t *clsp, *nsp;
3e170ce0 2885 size_t cl_size;
2d21ac55
A
2886 void *cl;
2887
2888 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
0a7de745 2889 if (class == MC_MBUF_CL) {
3e170ce0 2890 cl_class = MC_CL;
0a7de745 2891 } else if (class == MC_MBUF_BIGCL) {
3e170ce0 2892 cl_class = MC_BIGCL;
0a7de745 2893 } else {
3e170ce0 2894 cl_class = MC_16KCL;
0a7de745 2895 }
3e170ce0 2896 cl_size = m_maxsize(cl_class);
2d21ac55
A
2897
2898 while ((m = ms = (struct mbuf *)list) != NULL) {
2899 lck_mtx_lock(mbuf_mlock);
2900 /* Do the mbuf sanity checks and record its transaction */
2901 mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
2902 mcl_audit_mbuf(mca, m, TRUE, alloc);
0a7de745 2903 if (mcltrace) {
39236c6e 2904 mcache_buffer_log(mca, m, m_cache(class), &mb_start);
0a7de745 2905 }
6d2010ae 2906
0a7de745 2907 if (alloc) {
2d21ac55 2908 mca->mca_uflags |= MB_COMP_INUSE;
0a7de745 2909 } else {
2d21ac55 2910 mca->mca_uflags &= ~MB_COMP_INUSE;
0a7de745 2911 }
2d21ac55
A
2912
2913 /*
2914 * Use the shadow mbuf in the audit structure if we are
2915 * freeing, since the contents of the actual mbuf has been
2916 * pattern-filled by the above call to mcl_audit_mbuf().
2917 */
0a7de745 2918 if (!alloc && mclverify) {
39236c6e 2919 ms = MCA_SAVED_MBUF_PTR(mca);
0a7de745 2920 }
2d21ac55
A
2921
2922 /* Do the cluster sanity checks and record its transaction */
2923 cl = ms->m_ext.ext_buf;
2924 clsp = slab_get(cl);
2925 VERIFY(ms->m_flags == M_EXT && cl != NULL);
813fb2f6 2926 VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms));
0a7de745 2927 if (class == MC_MBUF_CL) {
6d2010ae 2928 VERIFY(clsp->sl_refcnt >= 1 &&
3e170ce0 2929 clsp->sl_refcnt <= NCLPG);
0a7de745 2930 } else {
3e170ce0
A
2931 VERIFY(clsp->sl_refcnt >= 1 &&
2932 clsp->sl_refcnt <= NBCLPG);
0a7de745 2933 }
6d2010ae
A
2934
2935 if (class == MC_MBUF_16KCL) {
2d21ac55 2936 int k;
6d2010ae 2937 for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
2d21ac55
A
2938 nsp = nsp->sl_next;
2939 /* Next slab must already be present */
2940 VERIFY(nsp != NULL);
2941 VERIFY(nsp->sl_refcnt == 1);
2942 }
2943 }
2944
3e170ce0
A
2945
2946 mca = mcl_audit_buf2mca(cl_class, cl);
2947 mcl_audit_cluster(mca, cl, cl_size, alloc, FALSE);
0a7de745 2948 if (mcltrace) {
39236c6e 2949 mcache_buffer_log(mca, cl, m_cache(class), &mb_start);
0a7de745 2950 }
6d2010ae 2951
0a7de745 2952 if (alloc) {
2d21ac55 2953 mca->mca_uflags |= MB_COMP_INUSE;
0a7de745 2954 } else {
2d21ac55 2955 mca->mca_uflags &= ~MB_COMP_INUSE;
0a7de745 2956 }
2d21ac55
A
2957 lck_mtx_unlock(mbuf_mlock);
2958
2959 list = list->obj_next;
2960 }
2961}
2962
cc8bc92a
A
2963static void
2964m_vm_error_stats(uint32_t *cnt, uint64_t *ts, uint64_t *size,
0a7de745 2965 uint64_t alloc_size, kern_return_t error)
cc8bc92a 2966{
cc8bc92a
A
2967 *cnt = *cnt + 1;
2968 *ts = net_uptime();
2969 if (size) {
2970 *size = alloc_size;
2971 }
2972 _CASSERT(sizeof(mb_kmem_stats) / sizeof(mb_kmem_stats[0]) ==
2973 sizeof(mb_kmem_stats_labels) / sizeof(mb_kmem_stats_labels[0]));
2974 switch (error) {
2975 case KERN_SUCCESS:
2976 break;
2977 case KERN_INVALID_ARGUMENT:
2978 mb_kmem_stats[0]++;
2979 break;
2980 case KERN_INVALID_ADDRESS:
2981 mb_kmem_stats[1]++;
2982 break;
2983 case KERN_RESOURCE_SHORTAGE:
2984 mb_kmem_stats[2]++;
2985 break;
2986 case KERN_NO_SPACE:
2987 mb_kmem_stats[3]++;
2988 break;
2989 case KERN_FAILURE:
2990 mb_kmem_stats[4]++;
2991 break;
2992 default:
2993 mb_kmem_stats[5]++;
2994 break;
2995 }
2996}
2997
2d21ac55
A
2998/*
2999 * Allocate some number of mbuf clusters and place on cluster freelist.
3000 */
3001static int
3002m_clalloc(const u_int32_t num, const int wait, const u_int32_t bufsize)
3003{
3e170ce0 3004 int i, count = 0;
2d21ac55 3005 vm_size_t size = 0;
3e170ce0 3006 int numpages = 0, large_buffer;
2d21ac55
A
3007 vm_offset_t page = 0;
3008 mcache_audit_t *mca_list = NULL;
3009 mcache_obj_t *con_list = NULL;
3010 mcl_slab_t *sp;
3e170ce0 3011 mbuf_class_t class;
cc8bc92a 3012 kern_return_t error;
2d21ac55 3013
3e170ce0
A
3014 /* Set if a buffer allocation needs allocation of multiple pages */
3015 large_buffer = ((bufsize == m_maxsize(MC_16KCL)) &&
0a7de745 3016 PAGE_SIZE < M16KCLBYTES);
6d2010ae
A
3017 VERIFY(bufsize == m_maxsize(MC_BIGCL) ||
3018 bufsize == m_maxsize(MC_16KCL));
2d21ac55 3019
3e170ce0
A
3020 VERIFY((bufsize == PAGE_SIZE) ||
3021 (bufsize > PAGE_SIZE && bufsize == m_maxsize(MC_16KCL)));
3022
0a7de745 3023 if (bufsize == m_size(MC_BIGCL)) {
3e170ce0 3024 class = MC_BIGCL;
0a7de745 3025 } else {
3e170ce0 3026 class = MC_16KCL;
0a7de745 3027 }
3e170ce0 3028
5ba3f43e 3029 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55
A
3030
3031 /*
3032 * Multiple threads may attempt to populate the cluster map one
3033 * after another. Since we drop the lock below prior to acquiring
3034 * the physical page(s), our view of the cluster map may no longer
3035 * be accurate, and we could end up over-committing the pages beyond
3036 * the maximum allowed for each class. To prevent it, this entire
3037 * operation (including the page mapping) is serialized.
3038 */
3039 while (mb_clalloc_busy) {
3040 mb_clalloc_waiters++;
3041 (void) msleep(mb_clalloc_waitchan, mbuf_mlock,
0a7de745 3042 (PZERO - 1), "m_clalloc", NULL);
5ba3f43e 3043 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55
A
3044 }
3045
3046 /* We are busy now; tell everyone else to go away */
3047 mb_clalloc_busy = TRUE;
3048
3049 /*
3050 * Honor the caller's wish to block or not block. We have a way
3051 * to grow the pool asynchronously using the mbuf worker thread.
3052 */
3053 i = m_howmany(num, bufsize);
0a7de745 3054 if (i <= 0 || (wait & M_DONTWAIT)) {
2d21ac55 3055 goto out;
0a7de745 3056 }
2d21ac55
A
3057
3058 lck_mtx_unlock(mbuf_mlock);
3059
b0d623f7 3060 size = round_page(i * bufsize);
cc8bc92a 3061 page = kmem_mb_alloc(mb_map, size, large_buffer, &error);
b0d623f7
A
3062
3063 /*
6d2010ae 3064 * If we did ask for "n" 16KB physically contiguous chunks
b0d623f7
A
3065 * and didn't get them, then please try again without this
3066 * restriction.
3067 */
cc8bc92a
A
3068 net_update_uptime();
3069 if (large_buffer && page == 0) {
3070 m_vm_error_stats(&mb_kmem_contig_failed,
3071 &mb_kmem_contig_failed_ts,
3072 &mb_kmem_contig_failed_size,
3073 size, error);
3074 page = kmem_mb_alloc(mb_map, size, 0, &error);
3075 }
2d21ac55
A
3076
3077 if (page == 0) {
cc8bc92a
A
3078 m_vm_error_stats(&mb_kmem_failed,
3079 &mb_kmem_failed_ts,
3080 &mb_kmem_failed_size,
3081 size, error);
3082#if PAGE_SIZE == 4096
6d2010ae 3083 if (bufsize == m_maxsize(MC_BIGCL)) {
cc8bc92a
A
3084#else
3085 if (bufsize >= m_maxsize(MC_BIGCL)) {
3086#endif
3e170ce0
A
3087 /* Try for 1 page if failed */
3088 size = PAGE_SIZE;
cc8bc92a 3089 page = kmem_mb_alloc(mb_map, size, 0, &error);
5c9f4661
A
3090 if (page == 0) {
3091 m_vm_error_stats(&mb_kmem_one_failed,
3092 &mb_kmem_one_failed_ts,
3093 NULL, size, error);
3094 }
2d21ac55
A
3095 }
3096
3097 if (page == 0) {
3098 lck_mtx_lock(mbuf_mlock);
3099 goto out;
3100 }
3101 }
3102
3e170ce0
A
3103 VERIFY(IS_P2ALIGNED(page, PAGE_SIZE));
3104 numpages = size / PAGE_SIZE;
2d21ac55
A
3105
3106 /* If auditing is enabled, allocate the audit structures now */
3107 if (mclaudit != NULL) {
3108 int needed;
3109
3110 /*
3111 * Yes, I realize this is a waste of memory for clusters
3112 * that never get transformed into mbufs, as we may end
3e170ce0 3113 * up with NMBPG-1 unused audit structures per cluster.
2d21ac55
A
3114 * But doing so tremendously simplifies the allocation
3115 * strategy, since at this point we are not holding the
6d2010ae 3116 * mbuf lock and the caller is okay to be blocked.
2d21ac55 3117 */
3e170ce0
A
3118 if (bufsize == PAGE_SIZE) {
3119 needed = numpages * NMBPG;
2d21ac55
A
3120
3121 i = mcache_alloc_ext(mcl_audit_con_cache,
3122 &con_list, needed, MCR_SLEEP);
3123
3124 VERIFY(con_list != NULL && i == needed);
2d21ac55 3125 } else {
3e170ce0
A
3126 /*
3127 * if multiple 4K pages are being used for a
39037602
A
3128 * 16K cluster
3129 */
6d2010ae 3130 needed = numpages / NSLABSP16KB;
2d21ac55
A
3131 }
3132
3133 i = mcache_alloc_ext(mcache_audit_cache,
3134 (mcache_obj_t **)&mca_list, needed, MCR_SLEEP);
3135
3136 VERIFY(mca_list != NULL && i == needed);
3137 }
3138
3139 lck_mtx_lock(mbuf_mlock);
3140
3e170ce0
A
3141 for (i = 0; i < numpages; i++, page += PAGE_SIZE) {
3142 ppnum_t offset =
3143 ((unsigned char *)page - mbutl) >> PAGE_SHIFT;
99c3a104 3144 ppnum_t new_page = pmap_find_phys(kernel_pmap, page);
2d21ac55
A
3145
3146 /*
3e170ce0
A
3147 * If there is a mapper the appropriate I/O page is
3148 * returned; zero out the page to discard its past
3149 * contents to prevent exposing leftover kernel memory.
2d21ac55 3150 */
b0d623f7 3151 VERIFY(offset < mcl_pages);
39236c6e 3152 if (mcl_paddr_base != 0) {
3e170ce0 3153 bzero((void *)(uintptr_t) page, PAGE_SIZE);
39236c6e
A
3154 new_page = IOMapperInsertPage(mcl_paddr_base,
3155 offset, new_page);
99c3a104 3156 }
39236c6e 3157 mcl_paddr[offset] = new_page;
2d21ac55
A
3158
3159 /* Pattern-fill this fresh page */
6d2010ae 3160 if (mclverify) {
2d21ac55 3161 mcache_set_pattern(MCACHE_FREE_PATTERN,
3e170ce0 3162 (caddr_t)page, PAGE_SIZE);
6d2010ae 3163 }
3e170ce0
A
3164 if (bufsize == PAGE_SIZE) {
3165 mcache_obj_t *buf;
2d21ac55 3166 /* One for the entire page */
3e170ce0 3167 sp = slab_get((void *)page);
6d2010ae 3168 if (mclaudit != NULL) {
3e170ce0
A
3169 mcl_audit_init((void *)page,
3170 &mca_list, &con_list,
3171 AUDIT_CONTENTS_SIZE, NMBPG);
6d2010ae 3172 }
2d21ac55 3173 VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
3e170ce0
A
3174 slab_init(sp, class, SLF_MAPPED, (void *)page,
3175 (void *)page, PAGE_SIZE, 0, 1);
3176 buf = (mcache_obj_t *)page;
3177 buf->obj_next = NULL;
2d21ac55 3178
2d21ac55 3179 /* Insert this slab */
3e170ce0
A
3180 slab_insert(sp, class);
3181
3182 /* Update stats now since slab_get drops the lock */
3183 ++m_infree(class);
3184 ++m_total(class);
3185 VERIFY(m_total(class) <= m_maxlimit(class));
3186 if (class == MC_BIGCL) {
3187 mbstat.m_bigclfree = m_infree(MC_BIGCL) +
3188 m_infree(MC_MBUF_BIGCL);
3189 mbstat.m_bigclusters = m_total(MC_BIGCL);
3190 }
3191 ++count;
3192 } else if ((bufsize > PAGE_SIZE) &&
3193 (i % NSLABSP16KB) == 0) {
2d21ac55
A
3194 union m16kcluster *m16kcl = (union m16kcluster *)page;
3195 mcl_slab_t *nsp;
3196 int k;
39037602 3197
2d21ac55
A
3198 /* One for the entire 16KB */
3199 sp = slab_get(m16kcl);
0a7de745 3200 if (mclaudit != NULL) {
2d21ac55 3201 mcl_audit_init(m16kcl, &mca_list, NULL, 0, 1);
0a7de745 3202 }
2d21ac55
A
3203
3204 VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
3205 slab_init(sp, MC_16KCL, SLF_MAPPED,
3206 m16kcl, m16kcl, bufsize, 0, 1);
3e170ce0 3207 m16kcl->m16kcl_next = NULL;
2d21ac55 3208
6d2010ae
A
3209 /*
3210 * 2nd-Nth page's slab is part of the first one,
3211 * where N is NSLABSP16KB.
3212 */
3213 for (k = 1; k < NSLABSP16KB; k++) {
3214 nsp = slab_get(((union mbigcluster *)page) + k);
2d21ac55
A
3215 VERIFY(nsp->sl_refcnt == 0 &&
3216 nsp->sl_flags == 0);
3217 slab_init(nsp, MC_16KCL,
3218 SLF_MAPPED | SLF_PARTIAL,
3219 m16kcl, NULL, 0, 0, 0);
3220 }
2d21ac55
A
3221 /* Insert this slab */
3222 slab_insert(sp, MC_16KCL);
3223
3e170ce0
A
3224 /* Update stats now since slab_get drops the lock */
3225 ++m_infree(MC_16KCL);
3226 ++m_total(MC_16KCL);
2d21ac55 3227 VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL));
3e170ce0 3228 ++count;
2d21ac55
A
3229 }
3230 }
3231 VERIFY(mca_list == NULL && con_list == NULL);
3232
0a7de745 3233 if (!mb_peak_newreport && mbuf_report_usage(class)) {
3e170ce0 3234 mb_peak_newreport = TRUE;
0a7de745 3235 }
3e170ce0 3236
2d21ac55
A
3237 /* We're done; let others enter */
3238 mb_clalloc_busy = FALSE;
3239 if (mb_clalloc_waiters > 0) {
3240 mb_clalloc_waiters = 0;
3241 wakeup(mb_clalloc_waitchan);
3242 }
3243
0a7de745 3244 return count;
2d21ac55 3245out:
5ba3f43e 3246 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55 3247
5c9f4661
A
3248 mtracelarge_register(size);
3249
2d21ac55
A
3250 /* We're done; let others enter */
3251 mb_clalloc_busy = FALSE;
3252 if (mb_clalloc_waiters > 0) {
3253 mb_clalloc_waiters = 0;
3254 wakeup(mb_clalloc_waitchan);
3255 }
3256
3257 /*
3258 * When non-blocking we kick a thread if we have to grow the
3259 * pool or if the number of free clusters is less than requested.
3260 */
39037602 3261 if (i > 0 && mbuf_worker_ready && mbuf_worker_needs_wakeup) {
d9a64523
A
3262 mbwdog_logger("waking up the worker thread to to grow %s by %d",
3263 m_cname(class), i);
39037602
A
3264 wakeup((caddr_t)&mbuf_worker_needs_wakeup);
3265 mbuf_worker_needs_wakeup = FALSE;
3266 }
3e170ce0 3267 if (class == MC_BIGCL) {
2d21ac55
A
3268 if (i > 0) {
3269 /*
3270 * Remember total number of 4KB clusters needed
3271 * at this time.
3272 */
3273 i += m_total(MC_BIGCL);
5ba3f43e
A
3274 if (i > m_region_expand(MC_BIGCL)) {
3275 m_region_expand(MC_BIGCL) = i;
2d21ac55
A
3276 }
3277 }
0a7de745
A
3278 if (m_infree(MC_BIGCL) >= num) {
3279 return 1;
3280 }
2d21ac55
A
3281 } else {
3282 if (i > 0) {
3283 /*
3284 * Remember total number of 16KB clusters needed
3285 * at this time.
3286 */
3287 i += m_total(MC_16KCL);
5ba3f43e
A
3288 if (i > m_region_expand(MC_16KCL)) {
3289 m_region_expand(MC_16KCL) = i;
2d21ac55
A
3290 }
3291 }
0a7de745
A
3292 if (m_infree(MC_16KCL) >= num) {
3293 return 1;
3294 }
2d21ac55 3295 }
0a7de745 3296 return 0;
2d21ac55
A
3297}
3298
3299/*
3300 * Populate the global freelist of the corresponding buffer class.
3301 */
3302static int
3303freelist_populate(mbuf_class_t class, unsigned int num, int wait)
3304{
3305 mcache_obj_t *o = NULL;
6d2010ae 3306 int i, numpages = 0, count;
3e170ce0 3307 mbuf_class_t super_class;
2d21ac55
A
3308
3309 VERIFY(class == MC_MBUF || class == MC_CL || class == MC_BIGCL ||
3310 class == MC_16KCL);
3311
5ba3f43e 3312 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55 3313
3e170ce0
A
3314 VERIFY(PAGE_SIZE == m_maxsize(MC_BIGCL) ||
3315 PAGE_SIZE == m_maxsize(MC_16KCL));
2d21ac55 3316
0a7de745
A
3317 if (m_maxsize(class) >= PAGE_SIZE) {
3318 return m_clalloc(num, wait, m_maxsize(class)) != 0;
3319 }
2d21ac55 3320
3e170ce0
A
3321 /*
3322 * The rest of the function will allocate pages and will slice
3323 * them up into the right size
3324 */
2d21ac55 3325
3e170ce0
A
3326 numpages = (num * m_size(class) + PAGE_SIZE - 1) / PAGE_SIZE;
3327
3328 /* Currently assume that pages are 4K or 16K */
0a7de745 3329 if (PAGE_SIZE == m_maxsize(MC_BIGCL)) {
3e170ce0 3330 super_class = MC_BIGCL;
0a7de745 3331 } else {
3e170ce0 3332 super_class = MC_16KCL;
0a7de745 3333 }
2d21ac55 3334
3e170ce0
A
3335 i = m_clalloc(numpages, wait, m_maxsize(super_class));
3336
6d2010ae 3337 /* how many objects will we cut the page into? */
3e170ce0 3338 int numobj = PAGE_SIZE / m_maxsize(class);
6d2010ae
A
3339
3340 for (count = 0; count < numpages; count++) {
6d2010ae 3341 /* respect totals, minlimit, maxlimit */
3e170ce0 3342 if (m_total(super_class) <= m_minlimit(super_class) ||
0a7de745 3343 m_total(class) >= m_maxlimit(class)) {
6d2010ae 3344 break;
0a7de745 3345 }
6d2010ae 3346
0a7de745 3347 if ((o = slab_alloc(super_class, wait)) == NULL) {
6d2010ae 3348 break;
0a7de745 3349 }
6d2010ae 3350
2d21ac55 3351 struct mbuf *m = (struct mbuf *)o;
6d2010ae 3352 union mcluster *c = (union mcluster *)o;
3e170ce0 3353 union mbigcluster *mbc = (union mbigcluster *)o;
2d21ac55 3354 mcl_slab_t *sp = slab_get(o);
6d2010ae 3355 mcache_audit_t *mca = NULL;
2d21ac55 3356
3e170ce0
A
3357 /*
3358 * since one full page will be converted to MC_MBUF or
3359 * MC_CL, verify that the reference count will match that
3360 * assumption
3361 */
39037602 3362 VERIFY(sp->sl_refcnt == 1 && slab_is_detached(sp));
3e170ce0 3363 VERIFY((sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
6d2010ae
A
3364 /*
3365 * Make sure that the cluster is unmolested
3366 * while in freelist
3367 */
3368 if (mclverify) {
3e170ce0
A
3369 mca = mcl_audit_buf2mca(super_class,
3370 (mcache_obj_t *)o);
3371 mcache_audit_free_verify(mca,
3372 (mcache_obj_t *)o, 0, m_maxsize(super_class));
2d21ac55
A
3373 }
3374
3e170ce0 3375 /* Reinitialize it as an mbuf or 2K or 4K slab */
6d2010ae 3376 slab_init(sp, class, sp->sl_flags,
3e170ce0 3377 sp->sl_base, NULL, PAGE_SIZE, 0, numobj);
2d21ac55 3378
2d21ac55
A
3379 VERIFY(sp->sl_head == NULL);
3380
3e170ce0
A
3381 VERIFY(m_total(super_class) >= 1);
3382 m_total(super_class)--;
3383
0a7de745 3384 if (super_class == MC_BIGCL) {
3e170ce0 3385 mbstat.m_bigclusters = m_total(MC_BIGCL);
0a7de745 3386 }
2d21ac55 3387
6d2010ae 3388 m_total(class) += numobj;
5ba3f43e 3389 VERIFY(m_total(class) <= m_maxlimit(class));
6d2010ae
A
3390 m_infree(class) += numobj;
3391
0a7de745 3392 if (!mb_peak_newreport && mbuf_report_usage(class)) {
fe8ab488 3393 mb_peak_newreport = TRUE;
0a7de745 3394 }
6d2010ae
A
3395
3396 i = numobj;
3397 if (class == MC_MBUF) {
3398 mbstat.m_mbufs = m_total(MC_MBUF);
3e170ce0 3399 mtype_stat_add(MT_FREE, NMBPG);
6d2010ae
A
3400 while (i--) {
3401 /*
3402 * If auditing is enabled, construct the
3403 * shadow mbuf in the audit structure
3404 * instead of the actual one.
3405 * mbuf_slab_audit() will take care of
3406 * restoring the contents after the
3407 * integrity check.
3408 */
3409 if (mclaudit != NULL) {
3410 struct mbuf *ms;
3411 mca = mcl_audit_buf2mca(MC_MBUF,
3412 (mcache_obj_t *)m);
39236c6e 3413 ms = MCA_SAVED_MBUF_PTR(mca);
6d2010ae
A
3414 ms->m_type = MT_FREE;
3415 } else {
3416 m->m_type = MT_FREE;
3417 }
3418 m->m_next = sp->sl_head;
3419 sp->sl_head = (void *)m++;
3420 }
3e170ce0 3421 } else if (class == MC_CL) { /* MC_CL */
6d2010ae
A
3422 mbstat.m_clfree =
3423 m_infree(MC_CL) + m_infree(MC_MBUF_CL);
3424 mbstat.m_clusters = m_total(MC_CL);
3425 while (i--) {
3426 c->mcl_next = sp->sl_head;
3427 sp->sl_head = (void *)c++;
2d21ac55 3428 }
3e170ce0
A
3429 } else {
3430 VERIFY(class == MC_BIGCL);
3431 mbstat.m_bigclusters = m_total(MC_BIGCL);
3432 mbstat.m_bigclfree = m_infree(MC_BIGCL) +
3433 m_infree(MC_MBUF_BIGCL);
3434 while (i--) {
3435 mbc->mbc_next = sp->sl_head;
3436 sp->sl_head = (void *)mbc++;
3437 }
2d21ac55
A
3438 }
3439
3e170ce0 3440 /* Insert into the mbuf or 2k or 4k slab list */
6d2010ae 3441 slab_insert(sp, class);
2d21ac55 3442
0a7de745 3443 if ((i = mb_waiters) > 0) {
2d21ac55 3444 mb_waiters = 0;
0a7de745 3445 }
d9a64523
A
3446 if (i != 0) {
3447 mbwdog_logger("waking up all threads");
2d21ac55 3448 wakeup(mb_waitchan);
d9a64523 3449 }
2d21ac55 3450 }
0a7de745 3451 return count != 0;
6d2010ae 3452}
2d21ac55 3453
6d2010ae
A
3454/*
3455 * For each class, initialize the freelist to hold m_minlimit() objects.
3456 */
3457static void
3458freelist_init(mbuf_class_t class)
3459{
5ba3f43e 3460 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
6d2010ae
A
3461
3462 VERIFY(class == MC_CL || class == MC_BIGCL);
3463 VERIFY(m_total(class) == 0);
3464 VERIFY(m_minlimit(class) > 0);
3465
0a7de745 3466 while (m_total(class) < m_minlimit(class)) {
6d2010ae 3467 (void) freelist_populate(class, m_minlimit(class), M_WAIT);
0a7de745 3468 }
6d2010ae
A
3469
3470 VERIFY(m_total(class) >= m_minlimit(class));
2d21ac55
A
3471}
3472
3473/*
3474 * (Inaccurately) check if it might be worth a trip back to the
3475 * mcache layer due the availability of objects there. We'll
3476 * end up back here if there's nothing up there.
3477 */
3478static boolean_t
3479mbuf_cached_above(mbuf_class_t class, int wait)
3480{
3481 switch (class) {
3482 case MC_MBUF:
0a7de745
A
3483 if (wait & MCR_COMP) {
3484 return !mcache_bkt_isempty(m_cache(MC_MBUF_CL)) ||
3485 !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL));
3486 }
2d21ac55
A
3487 break;
3488
3489 case MC_CL:
0a7de745
A
3490 if (wait & MCR_COMP) {
3491 return !mcache_bkt_isempty(m_cache(MC_MBUF_CL));
3492 }
2d21ac55
A
3493 break;
3494
3495 case MC_BIGCL:
0a7de745
A
3496 if (wait & MCR_COMP) {
3497 return !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL));
3498 }
2d21ac55
A
3499 break;
3500
3501 case MC_16KCL:
0a7de745
A
3502 if (wait & MCR_COMP) {
3503 return !mcache_bkt_isempty(m_cache(MC_MBUF_16KCL));
3504 }
2d21ac55
A
3505 break;
3506
3507 case MC_MBUF_CL:
3508 case MC_MBUF_BIGCL:
3509 case MC_MBUF_16KCL:
3510 break;
3511
3512 default:
3513 VERIFY(0);
3514 /* NOTREACHED */
3515 }
3516
0a7de745 3517 return !mcache_bkt_isempty(m_cache(class));
2d21ac55
A
3518}
3519
3520/*
3521 * If possible, convert constructed objects to raw ones.
3522 */
3523static boolean_t
3524mbuf_steal(mbuf_class_t class, unsigned int num)
3525{
3526 mcache_obj_t *top = NULL;
3527 mcache_obj_t **list = &top;
3528 unsigned int tot = 0;
3529
5ba3f43e 3530 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55
A
3531
3532 switch (class) {
3533 case MC_MBUF:
3534 case MC_CL:
3535 case MC_BIGCL:
3536 case MC_16KCL:
0a7de745 3537 return FALSE;
2d21ac55
A
3538
3539 case MC_MBUF_CL:
3540 case MC_MBUF_BIGCL:
3541 case MC_MBUF_16KCL:
3542 /* Get the required number of constructed objects if possible */
3543 if (m_infree(class) > m_minlimit(class)) {
3544 tot = cslab_alloc(class, &list,
3545 MIN(num, m_infree(class)));
3546 }
3547
3548 /* And destroy them to get back the raw objects */
0a7de745 3549 if (top != NULL) {
2d21ac55 3550 (void) cslab_free(class, top, 1);
0a7de745 3551 }
2d21ac55
A
3552 break;
3553
3554 default:
3555 VERIFY(0);
3556 /* NOTREACHED */
3557 }
3558
0a7de745 3559 return tot == num;
2d21ac55
A
3560}
3561
3562static void
3563m_reclaim(mbuf_class_t class, unsigned int num, boolean_t comp)
3564{
3565 int m, bmap = 0;
3566
5ba3f43e 3567 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55
A
3568
3569 VERIFY(m_total(MC_CL) <= m_maxlimit(MC_CL));
3570 VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL));
3571 VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL));
3572
3573 /*
3574 * This logic can be made smarter; for now, simply mark
3575 * all other related classes as potential victims.
3576 */
3577 switch (class) {
3578 case MC_MBUF:
3579 m_wantpurge(MC_CL)++;
6d2010ae 3580 m_wantpurge(MC_BIGCL)++;
2d21ac55
A
3581 m_wantpurge(MC_MBUF_CL)++;
3582 m_wantpurge(MC_MBUF_BIGCL)++;
3583 break;
3584
3585 case MC_CL:
3586 m_wantpurge(MC_MBUF)++;
6d2010ae
A
3587 m_wantpurge(MC_BIGCL)++;
3588 m_wantpurge(MC_MBUF_BIGCL)++;
0a7de745 3589 if (!comp) {
2d21ac55 3590 m_wantpurge(MC_MBUF_CL)++;
0a7de745 3591 }
2d21ac55
A
3592 break;
3593
3594 case MC_BIGCL:
6d2010ae
A
3595 m_wantpurge(MC_MBUF)++;
3596 m_wantpurge(MC_CL)++;
3597 m_wantpurge(MC_MBUF_CL)++;
0a7de745 3598 if (!comp) {
2d21ac55 3599 m_wantpurge(MC_MBUF_BIGCL)++;
0a7de745 3600 }
2d21ac55
A
3601 break;
3602
3603 case MC_16KCL:
0a7de745 3604 if (!comp) {
2d21ac55 3605 m_wantpurge(MC_MBUF_16KCL)++;
0a7de745 3606 }
2d21ac55
A
3607 break;
3608
3609 default:
3610 VERIFY(0);
3611 /* NOTREACHED */
3612 }
3613
3614 /*
3615 * Run through each marked class and check if we really need to
3616 * purge (and therefore temporarily disable) the per-CPU caches
3617 * layer used by the class. If so, remember the classes since
3618 * we are going to drop the lock below prior to purging.
3619 */
3620 for (m = 0; m < NELEM(mbuf_table); m++) {
3621 if (m_wantpurge(m) > 0) {
3622 m_wantpurge(m) = 0;
3623 /*
3624 * Try hard to steal the required number of objects
3625 * from the freelist of other mbuf classes. Only
3626 * purge and disable the per-CPU caches layer when
3627 * we don't have enough; it's the last resort.
3628 */
0a7de745 3629 if (!mbuf_steal(m, num)) {
2d21ac55 3630 bmap |= (1 << m);
0a7de745 3631 }
2d21ac55
A
3632 }
3633 }
3634
3635 lck_mtx_unlock(mbuf_mlock);
3636
3637 if (bmap != 0) {
39236c6e
A
3638 /* signal the domains to drain */
3639 net_drain_domains();
2d21ac55
A
3640
3641 /* Sigh; we have no other choices but to ask mcache to purge */
3642 for (m = 0; m < NELEM(mbuf_table); m++) {
3643 if ((bmap & (1 << m)) &&
fe8ab488 3644 mcache_purge_cache(m_cache(m), TRUE)) {
2d21ac55
A
3645 lck_mtx_lock(mbuf_mlock);
3646 m_purge_cnt(m)++;
3647 mbstat.m_drain++;
3648 lck_mtx_unlock(mbuf_mlock);
3649 }
3650 }
3651 } else {
3652 /*
3653 * Request mcache to reap extra elements from all of its caches;
3654 * note that all reaps are serialized and happen only at a fixed
3655 * interval.
3656 */
3657 mcache_reap();
3658 }
3659 lck_mtx_lock(mbuf_mlock);
3660}
3661
3662static inline struct mbuf *
3663m_get_common(int wait, short type, int hdr)
3664{
3665 struct mbuf *m;
3666 int mcflags = MSLEEPF(wait);
3667
3668 /* Is this due to a non-blocking retry? If so, then try harder */
0a7de745 3669 if (mcflags & MCR_NOSLEEP) {
2d21ac55 3670 mcflags |= MCR_TRYHARD;
0a7de745 3671 }
2d21ac55
A
3672
3673 m = mcache_alloc(m_cache(MC_MBUF), mcflags);
3674 if (m != NULL) {
3675 MBUF_INIT(m, hdr, type);
3676 mtype_stat_inc(type);
3677 mtype_stat_dec(MT_FREE);
2d21ac55 3678 }
0a7de745 3679 return m;
2d21ac55
A
3680}
3681
3682/*
3683 * Space allocation routines; these are also available as macros
3684 * for critical paths.
3685 */
0a7de745
A
3686#define _M_GET(wait, type) m_get_common(wait, type, 0)
3687#define _M_GETHDR(wait, type) m_get_common(wait, type, 1)
3688#define _M_RETRY(wait, type) _M_GET(wait, type)
3689#define _M_RETRYHDR(wait, type) _M_GETHDR(wait, type)
3690#define _MGET(m, how, type) ((m) = _M_GET(how, type))
3691#define _MGETHDR(m, how, type) ((m) = _M_GETHDR(how, type))
2d21ac55
A
3692
3693struct mbuf *
3694m_get(int wait, int type)
3695{
0a7de745 3696 return _M_GET(wait, type);
2d21ac55
A
3697}
3698
3699struct mbuf *
3700m_gethdr(int wait, int type)
3701{
0a7de745 3702 return _M_GETHDR(wait, type);
2d21ac55
A
3703}
3704
3705struct mbuf *
3706m_retry(int wait, int type)
3707{
0a7de745 3708 return _M_RETRY(wait, type);
2d21ac55
A
3709}
3710
3711struct mbuf *
3712m_retryhdr(int wait, int type)
3713{
0a7de745 3714 return _M_RETRYHDR(wait, type);
2d21ac55
A
3715}
3716
3717struct mbuf *
3718m_getclr(int wait, int type)
3719{
3720 struct mbuf *m;
3721
3722 _MGET(m, wait, type);
0a7de745 3723 if (m != NULL) {
2d21ac55 3724 bzero(MTOD(m, caddr_t), MLEN);
0a7de745
A
3725 }
3726 return m;
2d21ac55
A
3727}
3728
39037602
A
3729static int
3730m_free_paired(struct mbuf *m)
3731{
3732 VERIFY((m->m_flags & M_EXT) && (MEXT_FLAGS(m) & EXTF_PAIRED));
3733
3734 membar_sync();
3735 if (MEXT_PMBUF(m) == m) {
3736 volatile UInt16 *addr = (volatile UInt16 *)&MEXT_PREF(m);
3737 int16_t oprefcnt, prefcnt;
3738
3739 /*
3740 * Paired ref count might be negative in case we lose
3741 * against another thread clearing MEXT_PMBUF, in the
3742 * event it occurs after the above memory barrier sync.
3743 * In that case just ignore as things have been unpaired.
3744 */
3745 do {
3746 oprefcnt = *addr;
3747 prefcnt = oprefcnt - 1;
3748 } while (!OSCompareAndSwap16(oprefcnt, prefcnt, addr));
3749
3750 if (prefcnt > 1) {
0a7de745 3751 return 1;
39037602 3752 } else if (prefcnt == 1) {
813fb2f6
A
3753 (*(m_get_ext_free(m)))(m->m_ext.ext_buf,
3754 m->m_ext.ext_size, m_get_ext_arg(m));
0a7de745 3755 return 1;
39037602
A
3756 } else if (prefcnt == 0) {
3757 VERIFY(MBUF_IS_PAIRED(m));
3758
3759 /*
3760 * Restore minref to its natural value, so that
3761 * the caller will be able to free the cluster
3762 * as appropriate.
3763 */
3764 MEXT_MINREF(m) = 0;
3765
3766 /*
3767 * Clear MEXT_PMBUF, but leave EXTF_PAIRED intact
3768 * as it is immutable. atomic_set_ptr also causes
3769 * memory barrier sync.
3770 */
3771 atomic_set_ptr(&MEXT_PMBUF(m), NULL);
3772
3773 switch (m->m_ext.ext_size) {
3774 case MCLBYTES:
813fb2f6 3775 m_set_ext(m, m_get_rfa(m), NULL, NULL);
39037602
A
3776 break;
3777
3778 case MBIGCLBYTES:
813fb2f6 3779 m_set_ext(m, m_get_rfa(m), m_bigfree, NULL);
39037602
A
3780 break;
3781
3782 case M16KCLBYTES:
813fb2f6 3783 m_set_ext(m, m_get_rfa(m), m_16kfree, NULL);
39037602
A
3784 break;
3785
3786 default:
3787 VERIFY(0);
3788 /* NOTREACHED */
3789 }
3790 }
3791 }
3792
3793 /*
3794 * Tell caller the unpair has occurred, and that the reference
3795 * count on the external cluster held for the paired mbuf should
3796 * now be dropped.
3797 */
0a7de745 3798 return 0;
39037602
A
3799}
3800
2d21ac55
A
3801struct mbuf *
3802m_free(struct mbuf *m)
3803{
3804 struct mbuf *n = m->m_next;
3805
0a7de745 3806 if (m->m_type == MT_FREE) {
2d21ac55 3807 panic("m_free: freeing an already freed mbuf");
0a7de745 3808 }
2d21ac55 3809
2d21ac55 3810 if (m->m_flags & M_PKTHDR) {
39236c6e
A
3811 /* Check for scratch area overflow */
3812 m_redzone_verify(m);
3813 /* Free the aux data and tags if there is any */
2d21ac55 3814 m_tag_delete_chain(m, NULL);
39037602
A
3815
3816 m_do_tx_compl_callback(m, NULL);
2d21ac55
A
3817 }
3818
3819 if (m->m_flags & M_EXT) {
2a1bd2d3
A
3820 uint16_t refcnt;
3821 uint32_t composite;
813fb2f6 3822 m_ext_free_func_t m_free_func;
2d21ac55 3823
0a7de745
A
3824 if (MBUF_IS_PAIRED(m) && m_free_paired(m)) {
3825 return n;
3826 }
39037602 3827
2d21ac55 3828 refcnt = m_decref(m);
6d2010ae 3829 composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
813fb2f6 3830 m_free_func = m_get_ext_free(m);
39037602
A
3831
3832 if (refcnt == MEXT_MINREF(m) && !composite) {
813fb2f6 3833 if (m_free_func == NULL) {
2d21ac55 3834 mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
813fb2f6 3835 } else if (m_free_func == m_bigfree) {
2d21ac55
A
3836 mcache_free(m_cache(MC_BIGCL),
3837 m->m_ext.ext_buf);
813fb2f6 3838 } else if (m_free_func == m_16kfree) {
2d21ac55
A
3839 mcache_free(m_cache(MC_16KCL),
3840 m->m_ext.ext_buf);
3841 } else {
813fb2f6
A
3842 (*m_free_func)(m->m_ext.ext_buf,
3843 m->m_ext.ext_size, m_get_ext_arg(m));
2d21ac55 3844 }
813fb2f6
A
3845 mcache_free(ref_cache, m_get_rfa(m));
3846 m_set_ext(m, NULL, NULL, NULL);
39037602
A
3847 } else if (refcnt == MEXT_MINREF(m) && composite) {
3848 VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED));
2d21ac55
A
3849 VERIFY(m->m_type != MT_FREE);
3850
3851 mtype_stat_dec(m->m_type);
3852 mtype_stat_inc(MT_FREE);
3853
3854 m->m_type = MT_FREE;
3855 m->m_flags = M_EXT;
3856 m->m_len = 0;
3857 m->m_next = m->m_nextpkt = NULL;
3858
6d2010ae
A
3859 MEXT_FLAGS(m) &= ~EXTF_READONLY;
3860
2d21ac55 3861 /* "Free" into the intermediate cache */
813fb2f6 3862 if (m_free_func == NULL) {
2d21ac55 3863 mcache_free(m_cache(MC_MBUF_CL), m);
813fb2f6 3864 } else if (m_free_func == m_bigfree) {
2d21ac55
A
3865 mcache_free(m_cache(MC_MBUF_BIGCL), m);
3866 } else {
813fb2f6 3867 VERIFY(m_free_func == m_16kfree);
2d21ac55
A
3868 mcache_free(m_cache(MC_MBUF_16KCL), m);
3869 }
0a7de745 3870 return n;
2d21ac55
A
3871 }
3872 }
3873
3874 if (m->m_type != MT_FREE) {
3875 mtype_stat_dec(m->m_type);
3876 mtype_stat_inc(MT_FREE);
3877 }
3878
3879 m->m_type = MT_FREE;
3880 m->m_flags = m->m_len = 0;
3881 m->m_next = m->m_nextpkt = NULL;
3882
3883 mcache_free(m_cache(MC_MBUF), m);
3884
0a7de745 3885 return n;
2d21ac55
A
3886}
3887
3888__private_extern__ struct mbuf *
3889m_clattach(struct mbuf *m, int type, caddr_t extbuf,
3890 void (*extfree)(caddr_t, u_int, caddr_t), u_int extsize, caddr_t extarg,
39037602 3891 int wait, int pair)
2d21ac55
A
3892{
3893 struct ext_ref *rfa = NULL;
3894
39037602
A
3895 /*
3896 * If pairing is requested and an existing mbuf is provided, reject
3897 * it if it's already been paired to another cluster. Otherwise,
3898 * allocate a new one or free any existing below.
3899 */
3900 if ((m != NULL && MBUF_IS_PAIRED(m)) ||
0a7de745
A
3901 (m == NULL && (m = _M_GETHDR(wait, type)) == NULL)) {
3902 return NULL;
3903 }
2d21ac55
A
3904
3905 if (m->m_flags & M_EXT) {
39037602 3906 u_int16_t refcnt;
6d2010ae 3907 u_int32_t composite;
813fb2f6 3908 m_ext_free_func_t m_free_func;
2d21ac55
A
3909
3910 refcnt = m_decref(m);
6d2010ae 3911 composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
39037602 3912 VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED) && MEXT_PMBUF(m) == NULL);
813fb2f6 3913 m_free_func = m_get_ext_free(m);
39037602 3914 if (refcnt == MEXT_MINREF(m) && !composite) {
813fb2f6 3915 if (m_free_func == NULL) {
2d21ac55 3916 mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
813fb2f6 3917 } else if (m_free_func == m_bigfree) {
2d21ac55
A
3918 mcache_free(m_cache(MC_BIGCL),
3919 m->m_ext.ext_buf);
813fb2f6 3920 } else if (m_free_func == m_16kfree) {
2d21ac55
A
3921 mcache_free(m_cache(MC_16KCL),
3922 m->m_ext.ext_buf);
3923 } else {
813fb2f6
A
3924 (*m_free_func)(m->m_ext.ext_buf,
3925 m->m_ext.ext_size, m_get_ext_arg(m));
2d21ac55
A
3926 }
3927 /* Re-use the reference structure */
813fb2f6 3928 rfa = m_get_rfa(m);
39037602 3929 } else if (refcnt == MEXT_MINREF(m) && composite) {
2d21ac55
A
3930 VERIFY(m->m_type != MT_FREE);
3931
3932 mtype_stat_dec(m->m_type);
3933 mtype_stat_inc(MT_FREE);
3934
3935 m->m_type = MT_FREE;
3936 m->m_flags = M_EXT;
3937 m->m_len = 0;
3938 m->m_next = m->m_nextpkt = NULL;
6d2010ae
A
3939
3940 MEXT_FLAGS(m) &= ~EXTF_READONLY;
3941
2d21ac55 3942 /* "Free" into the intermediate cache */
813fb2f6 3943 if (m_free_func == NULL) {
2d21ac55 3944 mcache_free(m_cache(MC_MBUF_CL), m);
813fb2f6 3945 } else if (m_free_func == m_bigfree) {
2d21ac55
A
3946 mcache_free(m_cache(MC_MBUF_BIGCL), m);
3947 } else {
813fb2f6 3948 VERIFY(m_free_func == m_16kfree);
2d21ac55
A
3949 mcache_free(m_cache(MC_MBUF_16KCL), m);
3950 }
3951 /*
3952 * Allocate a new mbuf, since we didn't divorce
3953 * the composite mbuf + cluster pair above.
3954 */
0a7de745
A
3955 if ((m = _M_GETHDR(wait, type)) == NULL) {
3956 return NULL;
3957 }
2d21ac55
A
3958 }
3959 }
3960
3961 if (rfa == NULL &&
3962 (rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
3963 m_free(m);
0a7de745 3964 return NULL;
2d21ac55
A
3965 }
3966
39037602
A
3967 if (!pair) {
3968 MEXT_INIT(m, extbuf, extsize, extfree, extarg, rfa,
3969 0, 1, 0, 0, 0, NULL);
3970 } else {
3971 MEXT_INIT(m, extbuf, extsize, extfree, (caddr_t)m, rfa,
3972 1, 1, 1, EXTF_PAIRED, 0, m);
3973 }
2d21ac55 3974
0a7de745 3975 return m;
2d21ac55
A
3976}
3977
b0d623f7
A
3978/*
3979 * Perform `fast' allocation mbuf clusters from a cache of recently-freed
3980 * clusters. (If the cache is empty, new clusters are allocated en-masse.)
3981 */
3982struct mbuf *
3983m_getcl(int wait, int type, int flags)
3984{
3985 struct mbuf *m;
3986 int mcflags = MSLEEPF(wait);
3987 int hdr = (flags & M_PKTHDR);
3988
3989 /* Is this due to a non-blocking retry? If so, then try harder */
0a7de745 3990 if (mcflags & MCR_NOSLEEP) {
b0d623f7 3991 mcflags |= MCR_TRYHARD;
0a7de745 3992 }
b0d623f7 3993
6d2010ae
A
3994 m = mcache_alloc(m_cache(MC_MBUF_CL), mcflags);
3995 if (m != NULL) {
39037602 3996 u_int16_t flag;
6d2010ae
A
3997 struct ext_ref *rfa;
3998 void *cl;
3999
4000 VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
4001 cl = m->m_ext.ext_buf;
813fb2f6 4002 rfa = m_get_rfa(m);
6d2010ae
A
4003
4004 ASSERT(cl != NULL && rfa != NULL);
813fb2f6 4005 VERIFY(MBUF_IS_COMPOSITE(m) && m_get_ext_free(m) == NULL);
6d2010ae
A
4006
4007 flag = MEXT_FLAGS(m);
4008
b0d623f7 4009 MBUF_INIT(m, hdr, type);
6d2010ae
A
4010 MBUF_CL_INIT(m, cl, rfa, 1, flag);
4011
b0d623f7
A
4012 mtype_stat_inc(type);
4013 mtype_stat_dec(MT_FREE);
b0d623f7 4014 }
0a7de745 4015 return m;
b0d623f7
A
4016}
4017
2d21ac55
A
4018/* m_mclget() add an mbuf cluster to a normal mbuf */
4019struct mbuf *
4020m_mclget(struct mbuf *m, int wait)
4021{
4022 struct ext_ref *rfa;
4023
0a7de745
A
4024 if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
4025 return m;
4026 }
2d21ac55
A
4027
4028 m->m_ext.ext_buf = m_mclalloc(wait);
4029 if (m->m_ext.ext_buf != NULL) {
4030 MBUF_CL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
4031 } else {
4032 mcache_free(ref_cache, rfa);
4033 }
0a7de745 4034 return m;
2d21ac55
A
4035}
4036
4037/* Allocate an mbuf cluster */
4038caddr_t
4039m_mclalloc(int wait)
4040{
4041 int mcflags = MSLEEPF(wait);
4042
4043 /* Is this due to a non-blocking retry? If so, then try harder */
0a7de745 4044 if (mcflags & MCR_NOSLEEP) {
2d21ac55 4045 mcflags |= MCR_TRYHARD;
0a7de745 4046 }
2d21ac55 4047
0a7de745 4048 return mcache_alloc(m_cache(MC_CL), mcflags);
2d21ac55
A
4049}
4050
4051/* Free an mbuf cluster */
4052void
4053m_mclfree(caddr_t p)
4054{
4055 mcache_free(m_cache(MC_CL), p);
4056}
4057
4058/*
4059 * mcl_hasreference() checks if a cluster of an mbuf is referenced by
6d2010ae 4060 * another mbuf; see comments in m_incref() regarding EXTF_READONLY.
2d21ac55
A
4061 */
4062int
4063m_mclhasreference(struct mbuf *m)
4064{
0a7de745
A
4065 if (!(m->m_flags & M_EXT)) {
4066 return 0;
4067 }
9bccf70c 4068
813fb2f6 4069 ASSERT(m_get_rfa(m) != NULL);
2d21ac55 4070
0a7de745 4071 return (MEXT_FLAGS(m) & EXTF_READONLY) ? 1 : 0;
9bccf70c
A
4072}
4073
2d21ac55
A
4074__private_extern__ caddr_t
4075m_bigalloc(int wait)
9bccf70c 4076{
2d21ac55 4077 int mcflags = MSLEEPF(wait);
91447636 4078
2d21ac55 4079 /* Is this due to a non-blocking retry? If so, then try harder */
0a7de745 4080 if (mcflags & MCR_NOSLEEP) {
2d21ac55 4081 mcflags |= MCR_TRYHARD;
0a7de745 4082 }
91447636 4083
0a7de745 4084 return mcache_alloc(m_cache(MC_BIGCL), mcflags);
9bccf70c
A
4085}
4086
2d21ac55
A
4087__private_extern__ void
4088m_bigfree(caddr_t p, __unused u_int size, __unused caddr_t arg)
9bccf70c 4089{
2d21ac55 4090 mcache_free(m_cache(MC_BIGCL), p);
9bccf70c
A
4091}
4092
2d21ac55
A
4093/* m_mbigget() add an 4KB mbuf cluster to a normal mbuf */
4094__private_extern__ struct mbuf *
4095m_mbigget(struct mbuf *m, int wait)
4096{
4097 struct ext_ref *rfa;
4098
0a7de745
A
4099 if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
4100 return m;
4101 }
2d21ac55
A
4102
4103 m->m_ext.ext_buf = m_bigalloc(wait);
4104 if (m->m_ext.ext_buf != NULL) {
4105 MBUF_BIGCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
91447636 4106 } else {
2d21ac55 4107 mcache_free(ref_cache, rfa);
91447636 4108 }
0a7de745 4109 return m;
2d21ac55
A
4110}
4111
4112__private_extern__ caddr_t
4113m_16kalloc(int wait)
4114{
4115 int mcflags = MSLEEPF(wait);
4116
4117 /* Is this due to a non-blocking retry? If so, then try harder */
0a7de745 4118 if (mcflags & MCR_NOSLEEP) {
2d21ac55 4119 mcflags |= MCR_TRYHARD;
0a7de745 4120 }
2d21ac55 4121
0a7de745 4122 return mcache_alloc(m_cache(MC_16KCL), mcflags);
91447636
A
4123}
4124
4125__private_extern__ void
2d21ac55 4126m_16kfree(caddr_t p, __unused u_int size, __unused caddr_t arg)
91447636 4127{
2d21ac55 4128 mcache_free(m_cache(MC_16KCL), p);
91447636
A
4129}
4130
2d21ac55 4131/* m_m16kget() add a 16KB mbuf cluster to a normal mbuf */
91447636 4132__private_extern__ struct mbuf *
2d21ac55 4133m_m16kget(struct mbuf *m, int wait)
91447636 4134{
2d21ac55
A
4135 struct ext_ref *rfa;
4136
0a7de745
A
4137 if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
4138 return m;
4139 }
2d21ac55
A
4140
4141 m->m_ext.ext_buf = m_16kalloc(wait);
4142 if (m->m_ext.ext_buf != NULL) {
4143 MBUF_16KCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
4144 } else {
4145 mcache_free(ref_cache, rfa);
91447636 4146 }
0a7de745 4147 return m;
91447636
A
4148}
4149
b0d623f7
A
4150/*
4151 * "Move" mbuf pkthdr from "from" to "to".
4152 * "from" must have M_PKTHDR set, and "to" must be empty.
4153 */
9bccf70c 4154void
2d21ac55 4155m_copy_pkthdr(struct mbuf *to, struct mbuf *from)
9bccf70c 4156{
39236c6e
A
4157 VERIFY(from->m_flags & M_PKTHDR);
4158
4159 /* Check for scratch area overflow */
4160 m_redzone_verify(from);
4161
4162 if (to->m_flags & M_PKTHDR) {
4163 /* Check for scratch area overflow */
4164 m_redzone_verify(to);
4165 /* We will be taking over the tags of 'to' */
2d21ac55 4166 m_tag_delete_chain(to, NULL);
39236c6e 4167 }
0a7de745
A
4168 to->m_pkthdr = from->m_pkthdr; /* especially tags */
4169 m_classifier_init(from, 0); /* purge classifier info */
4170 m_tag_init(from, 1); /* purge all tags from src */
4171 m_scratch_init(from); /* clear src scratch area */
935ed37a 4172 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
0a7de745 4173 if ((to->m_flags & M_EXT) == 0) {
935ed37a 4174 to->m_data = to->m_pktdat;
0a7de745
A
4175 }
4176 m_redzone_init(to); /* setup red zone on dst */
9bccf70c
A
4177}
4178
91447636
A
4179/*
4180 * Duplicate "from"'s mbuf pkthdr in "to".
4181 * "from" must have M_PKTHDR set, and "to" must be empty.
4182 * In particular, this does a deep copy of the packet tags.
4183 */
3a60a9f5 4184static int
91447636
A
4185m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
4186{
39236c6e
A
4187 VERIFY(from->m_flags & M_PKTHDR);
4188
4189 /* Check for scratch area overflow */
4190 m_redzone_verify(from);
4191
4192 if (to->m_flags & M_PKTHDR) {
4193 /* Check for scratch area overflow */
4194 m_redzone_verify(to);
4195 /* We will be taking over the tags of 'to' */
2d21ac55 4196 m_tag_delete_chain(to, NULL);
39236c6e 4197 }
2d21ac55 4198 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
0a7de745 4199 if ((to->m_flags & M_EXT) == 0) {
2d21ac55 4200 to->m_data = to->m_pktdat;
0a7de745 4201 }
2d21ac55 4202 to->m_pkthdr = from->m_pkthdr;
0a7de745
A
4203 m_redzone_init(to); /* setup red zone on dst */
4204 m_tag_init(to, 0); /* preserve dst static tags */
4205 return m_tag_copy_chain(to, from, how);
91447636 4206}
fa4905b1 4207
316670eb
A
4208void
4209m_copy_pftag(struct mbuf *to, struct mbuf *from)
4210{
39037602 4211 memcpy(m_pftag(to), m_pftag(from), sizeof(struct pf_mtag));
39236c6e 4212#if PF_ECN
39037602 4213 m_pftag(to)->pftag_hdr = NULL;
0a7de745 4214 m_pftag(to)->pftag_flags &= ~(PF_TAG_HDR_INET | PF_TAG_HDR_INET6);
39236c6e
A
4215#endif /* PF_ECN */
4216}
4217
2a1bd2d3
A
4218void
4219m_copy_necptag(struct mbuf *to, struct mbuf *from)
4220{
4221 memcpy(m_necptag(to), m_necptag(from), sizeof(struct necp_mtag_));
4222}
4223
39236c6e
A
4224void
4225m_classifier_init(struct mbuf *m, uint32_t pktf_mask)
4226{
4227 VERIFY(m->m_flags & M_PKTHDR);
4228
4229 m->m_pkthdr.pkt_proto = 0;
4230 m->m_pkthdr.pkt_flowsrc = 0;
4231 m->m_pkthdr.pkt_flowid = 0;
0a7de745 4232 m->m_pkthdr.pkt_flags &= pktf_mask; /* caller-defined mask */
39236c6e 4233 /* preserve service class and interface info for loopback packets */
0a7de745 4234 if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
39236c6e 4235 (void) m_set_service_class(m, MBUF_SC_BE);
0a7de745
A
4236 }
4237 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) {
39236c6e 4238 m->m_pkthdr.pkt_ifainfo = 0;
0a7de745 4239 }
5ba3f43e
A
4240 /*
4241 * Preserve timestamp if requested
4242 */
0a7de745 4243 if (!(m->m_pkthdr.pkt_flags & PKTF_TS_VALID)) {
5ba3f43e 4244 m->m_pkthdr.pkt_timestamp = 0;
0a7de745 4245 }
39236c6e
A
4246}
4247
4248void
4249m_copy_classifier(struct mbuf *to, struct mbuf *from)
4250{
4251 VERIFY(to->m_flags & M_PKTHDR);
4252 VERIFY(from->m_flags & M_PKTHDR);
4253
4254 to->m_pkthdr.pkt_proto = from->m_pkthdr.pkt_proto;
4255 to->m_pkthdr.pkt_flowsrc = from->m_pkthdr.pkt_flowsrc;
4256 to->m_pkthdr.pkt_flowid = from->m_pkthdr.pkt_flowid;
4257 to->m_pkthdr.pkt_flags = from->m_pkthdr.pkt_flags;
4258 (void) m_set_service_class(to, from->m_pkthdr.pkt_svc);
4259 to->m_pkthdr.pkt_ifainfo = from->m_pkthdr.pkt_ifainfo;
316670eb
A
4260}
4261
9bccf70c 4262/*
2d21ac55
A
4263 * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
4264 * if wantall is not set, return whatever number were available. Set up the
4265 * first num_with_pkthdrs with mbuf hdrs configured as packet headers; these
4266 * are chained on the m_nextpkt field. Any packets requested beyond this
4267 * are chained onto the last packet header's m_next field. The size of
4268 * the cluster is controlled by the parameter bufsize.
9bccf70c 4269 */
91447636 4270__private_extern__ struct mbuf *
2d21ac55
A
4271m_getpackets_internal(unsigned int *num_needed, int num_with_pkthdrs,
4272 int wait, int wantall, size_t bufsize)
fa4905b1
A
4273{
4274 struct mbuf *m;
4275 struct mbuf **np, *top;
2d21ac55
A
4276 unsigned int pnum, needed = *num_needed;
4277 mcache_obj_t *mp_list = NULL;
4278 int mcflags = MSLEEPF(wait);
39037602 4279 u_int16_t flag;
2d21ac55
A
4280 struct ext_ref *rfa;
4281 mcache_t *cp;
4282 void *cl;
4283
4284 ASSERT(bufsize == m_maxsize(MC_CL) ||
4285 bufsize == m_maxsize(MC_BIGCL) ||
4286 bufsize == m_maxsize(MC_16KCL));
4287
4288 /*
4289 * Caller must first check for njcl because this
4290 * routine is internal and not exposed/used via KPI.
4291 */
4292 VERIFY(bufsize != m_maxsize(MC_16KCL) || njcl > 0);
4293
fa4905b1
A
4294 top = NULL;
4295 np = &top;
2d21ac55 4296 pnum = 0;
fa4905b1 4297
2d21ac55
A
4298 /*
4299 * The caller doesn't want all the requested buffers; only some.
4300 * Try hard to get what we can, but don't block. This effectively
4301 * overrides MCR_SLEEP, since this thread will not go to sleep
4302 * if we can't get all the buffers.
4303 */
0a7de745 4304 if (!wantall || (mcflags & MCR_NOSLEEP)) {
2d21ac55 4305 mcflags |= MCR_TRYHARD;
0a7de745 4306 }
2d21ac55
A
4307
4308 /* Allocate the composite mbuf + cluster elements from the cache */
0a7de745 4309 if (bufsize == m_maxsize(MC_CL)) {
2d21ac55 4310 cp = m_cache(MC_MBUF_CL);
0a7de745 4311 } else if (bufsize == m_maxsize(MC_BIGCL)) {
2d21ac55 4312 cp = m_cache(MC_MBUF_BIGCL);
0a7de745 4313 } else {
2d21ac55 4314 cp = m_cache(MC_MBUF_16KCL);
0a7de745 4315 }
2d21ac55
A
4316 needed = mcache_alloc_ext(cp, &mp_list, needed, mcflags);
4317
4318 for (pnum = 0; pnum < needed; pnum++) {
4319 m = (struct mbuf *)mp_list;
4320 mp_list = mp_list->obj_next;
4321
4322 VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
4323 cl = m->m_ext.ext_buf;
813fb2f6 4324 rfa = m_get_rfa(m);
2d21ac55
A
4325
4326 ASSERT(cl != NULL && rfa != NULL);
4327 VERIFY(MBUF_IS_COMPOSITE(m));
4328
4329 flag = MEXT_FLAGS(m);
4330
4331 MBUF_INIT(m, num_with_pkthdrs, MT_DATA);
4332 if (bufsize == m_maxsize(MC_16KCL)) {
4333 MBUF_16KCL_INIT(m, cl, rfa, 1, flag);
4334 } else if (bufsize == m_maxsize(MC_BIGCL)) {
4335 MBUF_BIGCL_INIT(m, cl, rfa, 1, flag);
91447636 4336 } else {
2d21ac55
A
4337 MBUF_CL_INIT(m, cl, rfa, 1, flag);
4338 }
4339
4340 if (num_with_pkthdrs > 0) {
4341 --num_with_pkthdrs;
91447636 4342 }
2d21ac55
A
4343
4344 *np = m;
0a7de745 4345 if (num_with_pkthdrs > 0) {
91447636 4346 np = &m->m_nextpkt;
0a7de745 4347 } else {
91447636 4348 np = &m->m_next;
0a7de745 4349 }
91447636 4350 }
2d21ac55 4351 ASSERT(pnum != *num_needed || mp_list == NULL);
0a7de745 4352 if (mp_list != NULL) {
2d21ac55 4353 mcache_free_ext(cp, mp_list);
0a7de745 4354 }
2d21ac55
A
4355
4356 if (pnum > 0) {
4357 mtype_stat_add(MT_DATA, pnum);
4358 mtype_stat_sub(MT_FREE, pnum);
4359 }
4360
4361 if (wantall && (pnum != *num_needed)) {
0a7de745 4362 if (top != NULL) {
2d21ac55 4363 m_freem_list(top);
0a7de745
A
4364 }
4365 return NULL;
91447636 4366 }
fa4905b1 4367
316670eb
A
4368 if (pnum > *num_needed) {
4369 printf("%s: File a radar related to <rdar://10146739>. \
4370 needed = %u, pnum = %u, num_needed = %u \n",
0a7de745 4371 __func__, needed, pnum, *num_needed);
39037602 4372 }
316670eb 4373
2d21ac55 4374 *num_needed = pnum;
0a7de745 4375 return top;
2d21ac55 4376}
fa4905b1 4377
91447636 4378/*
2d21ac55
A
4379 * Return list of mbuf linked by m_nextpkt. Try for numlist, and if
4380 * wantall is not set, return whatever number were available. The size of
4381 * each mbuf in the list is controlled by the parameter packetlen. Each
4382 * mbuf of the list may have a chain of mbufs linked by m_next. Each mbuf
4383 * in the chain is called a segment. If maxsegments is not null and the
4384 * value pointed to is not null, this specify the maximum number of segments
4385 * for a chain of mbufs. If maxsegments is zero or the value pointed to
4386 * is zero the caller does not have any restriction on the number of segments.
4387 * The actual number of segments of a mbuf chain is return in the value
4388 * pointed to by maxsegments.
91447636 4389 */
91447636 4390__private_extern__ struct mbuf *
2d21ac55
A
4391m_allocpacket_internal(unsigned int *numlist, size_t packetlen,
4392 unsigned int *maxsegments, int wait, int wantall, size_t wantsize)
91447636 4393{
2d21ac55
A
4394 struct mbuf **np, *top, *first = NULL;
4395 size_t bufsize, r_bufsize;
4396 unsigned int num = 0;
4397 unsigned int nsegs = 0;
4398 unsigned int needed, resid;
4399 int mcflags = MSLEEPF(wait);
4400 mcache_obj_t *mp_list = NULL, *rmp_list = NULL;
4401 mcache_t *cp = NULL, *rcp = NULL;
4402
0a7de745
A
4403 if (*numlist == 0) {
4404 return NULL;
4405 }
fa4905b1 4406
91447636
A
4407 top = NULL;
4408 np = &top;
2d21ac55 4409
91447636 4410 if (wantsize == 0) {
2d21ac55 4411 if (packetlen <= MINCLSIZE) {
91447636 4412 bufsize = packetlen;
2d21ac55
A
4413 } else if (packetlen > m_maxsize(MC_CL)) {
4414 /* Use 4KB if jumbo cluster pool isn't available */
0a7de745 4415 if (packetlen <= m_maxsize(MC_BIGCL) || njcl == 0) {
2d21ac55 4416 bufsize = m_maxsize(MC_BIGCL);
0a7de745 4417 } else {
2d21ac55 4418 bufsize = m_maxsize(MC_16KCL);
0a7de745 4419 }
2d21ac55
A
4420 } else {
4421 bufsize = m_maxsize(MC_CL);
4422 }
4423 } else if (wantsize == m_maxsize(MC_CL) ||
4424 wantsize == m_maxsize(MC_BIGCL) ||
4425 (wantsize == m_maxsize(MC_16KCL) && njcl > 0)) {
91447636 4426 bufsize = wantsize;
2d21ac55 4427 } else {
f427ee49 4428 *numlist = 0;
0a7de745 4429 return NULL;
2d21ac55 4430 }
91447636
A
4431
4432 if (bufsize <= MHLEN) {
2d21ac55 4433 nsegs = 1;
91447636
A
4434 } else if (bufsize <= MINCLSIZE) {
4435 if (maxsegments != NULL && *maxsegments == 1) {
2d21ac55
A
4436 bufsize = m_maxsize(MC_CL);
4437 nsegs = 1;
91447636 4438 } else {
2d21ac55 4439 nsegs = 2;
fa4905b1 4440 }
2d21ac55
A
4441 } else if (bufsize == m_maxsize(MC_16KCL)) {
4442 VERIFY(njcl > 0);
3e170ce0 4443 nsegs = ((packetlen - 1) >> M16KCLSHIFT) + 1;
2d21ac55 4444 } else if (bufsize == m_maxsize(MC_BIGCL)) {
3e170ce0 4445 nsegs = ((packetlen - 1) >> MBIGCLSHIFT) + 1;
91447636 4446 } else {
2d21ac55 4447 nsegs = ((packetlen - 1) >> MCLSHIFT) + 1;
91447636
A
4448 }
4449 if (maxsegments != NULL) {
2d21ac55
A
4450 if (*maxsegments && nsegs > *maxsegments) {
4451 *maxsegments = nsegs;
f427ee49 4452 *numlist = 0;
0a7de745 4453 return NULL;
91447636 4454 }
2d21ac55 4455 *maxsegments = nsegs;
91447636 4456 }
91447636 4457
2d21ac55
A
4458 /*
4459 * The caller doesn't want all the requested buffers; only some.
4460 * Try hard to get what we can, but don't block. This effectively
4461 * overrides MCR_SLEEP, since this thread will not go to sleep
4462 * if we can't get all the buffers.
4463 */
0a7de745 4464 if (!wantall || (mcflags & MCR_NOSLEEP)) {
2d21ac55 4465 mcflags |= MCR_TRYHARD;
0a7de745 4466 }
2d21ac55
A
4467
4468 /*
4469 * Simple case where all elements in the lists/chains are mbufs.
4470 * Unless bufsize is greater than MHLEN, each segment chain is made
4471 * up of exactly 1 mbuf. Otherwise, each segment chain is made up
4472 * of 2 mbufs; the second one is used for the residual data, i.e.
4473 * the remaining data that cannot fit into the first mbuf.
4474 */
4475 if (bufsize <= MINCLSIZE) {
4476 /* Allocate the elements in one shot from the mbuf cache */
4477 ASSERT(bufsize <= MHLEN || nsegs == 2);
4478 cp = m_cache(MC_MBUF);
4479 needed = mcache_alloc_ext(cp, &mp_list,
4480 (*numlist) * nsegs, mcflags);
4481
4482 /*
4483 * The number of elements must be even if we are to use an
4484 * mbuf (instead of a cluster) to store the residual data.
4485 * If we couldn't allocate the requested number of mbufs,
4486 * trim the number down (if it's odd) in order to avoid
4487 * creating a partial segment chain.
4488 */
0a7de745 4489 if (bufsize > MHLEN && (needed & 0x1)) {
2d21ac55 4490 needed--;
0a7de745 4491 }
91447636 4492
2d21ac55
A
4493 while (num < needed) {
4494 struct mbuf *m;
91447636 4495
2d21ac55
A
4496 m = (struct mbuf *)mp_list;
4497 mp_list = mp_list->obj_next;
4498 ASSERT(m != NULL);
91447636 4499
2d21ac55 4500 MBUF_INIT(m, 1, MT_DATA);
2d21ac55
A
4501 num++;
4502 if (bufsize > MHLEN) {
4503 /* A second mbuf for this segment chain */
4504 m->m_next = (struct mbuf *)mp_list;
4505 mp_list = mp_list->obj_next;
4506 ASSERT(m->m_next != NULL);
4507
4508 MBUF_INIT(m->m_next, 0, MT_DATA);
4509 num++;
91447636 4510 }
2d21ac55
A
4511 *np = m;
4512 np = &m->m_nextpkt;
4513 }
4514 ASSERT(num != *numlist || mp_list == NULL);
4515
4516 if (num > 0) {
4517 mtype_stat_add(MT_DATA, num);
4518 mtype_stat_sub(MT_FREE, num);
4519 }
4520 num /= nsegs;
4521
4522 /* We've got them all; return to caller */
0a7de745
A
4523 if (num == *numlist) {
4524 return top;
4525 }
2d21ac55
A
4526
4527 goto fail;
4528 }
4529
4530 /*
4531 * Complex cases where elements are made up of one or more composite
4532 * mbufs + cluster, depending on packetlen. Each N-segment chain can
4533 * be illustrated as follows:
4534 *
4535 * [mbuf + cluster 1] [mbuf + cluster 2] ... [mbuf + cluster N]
4536 *
4537 * Every composite mbuf + cluster element comes from the intermediate
4538 * cache (either MC_MBUF_CL or MC_MBUF_BIGCL). For space efficiency,
4539 * the last composite element will come from the MC_MBUF_CL cache,
4540 * unless the residual data is larger than 2KB where we use the
4541 * big cluster composite cache (MC_MBUF_BIGCL) instead. Residual
4542 * data is defined as extra data beyond the first element that cannot
4543 * fit into the previous element, i.e. there is no residual data if
4544 * the chain only has 1 segment.
4545 */
4546 r_bufsize = bufsize;
4547 resid = packetlen > bufsize ? packetlen % bufsize : 0;
4548 if (resid > 0) {
4549 /* There is residual data; figure out the cluster size */
4550 if (wantsize == 0 && packetlen > MINCLSIZE) {
4551 /*
4552 * Caller didn't request that all of the segments
4553 * in the chain use the same cluster size; use the
4554 * smaller of the cluster sizes.
4555 */
0a7de745 4556 if (njcl > 0 && resid > m_maxsize(MC_BIGCL)) {
2d21ac55 4557 r_bufsize = m_maxsize(MC_16KCL);
0a7de745 4558 } else if (resid > m_maxsize(MC_CL)) {
2d21ac55 4559 r_bufsize = m_maxsize(MC_BIGCL);
0a7de745 4560 } else {
2d21ac55 4561 r_bufsize = m_maxsize(MC_CL);
0a7de745 4562 }
2d21ac55
A
4563 } else {
4564 /* Use the same cluster size as the other segments */
4565 resid = 0;
4566 }
4567 }
4568
4569 needed = *numlist;
4570 if (resid > 0) {
4571 /*
4572 * Attempt to allocate composite mbuf + cluster elements for
4573 * the residual data in each chain; record the number of such
4574 * elements that can be allocated so that we know how many
4575 * segment chains we can afford to create.
4576 */
0a7de745 4577 if (r_bufsize <= m_maxsize(MC_CL)) {
2d21ac55 4578 rcp = m_cache(MC_MBUF_CL);
0a7de745 4579 } else if (r_bufsize <= m_maxsize(MC_BIGCL)) {
2d21ac55 4580 rcp = m_cache(MC_MBUF_BIGCL);
0a7de745 4581 } else {
2d21ac55 4582 rcp = m_cache(MC_MBUF_16KCL);
0a7de745 4583 }
2d21ac55
A
4584 needed = mcache_alloc_ext(rcp, &rmp_list, *numlist, mcflags);
4585
0a7de745 4586 if (needed == 0) {
2d21ac55 4587 goto fail;
0a7de745 4588 }
2d21ac55
A
4589
4590 /* This is temporarily reduced for calculation */
4591 ASSERT(nsegs > 1);
4592 nsegs--;
4593 }
4594
4595 /*
4596 * Attempt to allocate the rest of the composite mbuf + cluster
4597 * elements for the number of segment chains that we need.
4598 */
0a7de745 4599 if (bufsize <= m_maxsize(MC_CL)) {
2d21ac55 4600 cp = m_cache(MC_MBUF_CL);
0a7de745 4601 } else if (bufsize <= m_maxsize(MC_BIGCL)) {
2d21ac55 4602 cp = m_cache(MC_MBUF_BIGCL);
0a7de745 4603 } else {
2d21ac55 4604 cp = m_cache(MC_MBUF_16KCL);
0a7de745 4605 }
2d21ac55
A
4606 needed = mcache_alloc_ext(cp, &mp_list, needed * nsegs, mcflags);
4607
4608 /* Round it down to avoid creating a partial segment chain */
4609 needed = (needed / nsegs) * nsegs;
0a7de745 4610 if (needed == 0) {
2d21ac55 4611 goto fail;
0a7de745 4612 }
2d21ac55
A
4613
4614 if (resid > 0) {
4615 /*
4616 * We're about to construct the chain(s); take into account
4617 * the number of segments we have created above to hold the
4618 * residual data for each chain, as well as restore the
4619 * original count of segments per chain.
4620 */
4621 ASSERT(nsegs > 0);
4622 needed += needed / nsegs;
4623 nsegs++;
4624 }
4625
4626 for (;;) {
4627 struct mbuf *m;
39037602 4628 u_int16_t flag;
2d21ac55
A
4629 struct ext_ref *rfa;
4630 void *cl;
4631 int pkthdr;
813fb2f6 4632 m_ext_free_func_t m_free_func;
2d21ac55
A
4633
4634 ++num;
4635 if (nsegs == 1 || (num % nsegs) != 0 || resid == 0) {
4636 m = (struct mbuf *)mp_list;
4637 mp_list = mp_list->obj_next;
4638 } else {
4639 m = (struct mbuf *)rmp_list;
4640 rmp_list = rmp_list->obj_next;
4641 }
813fb2f6 4642 m_free_func = m_get_ext_free(m);
2d21ac55
A
4643 ASSERT(m != NULL);
4644 VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
813fb2f6
A
4645 VERIFY(m_free_func == NULL || m_free_func == m_bigfree ||
4646 m_free_func == m_16kfree);
2d21ac55
A
4647
4648 cl = m->m_ext.ext_buf;
813fb2f6 4649 rfa = m_get_rfa(m);
2d21ac55
A
4650
4651 ASSERT(cl != NULL && rfa != NULL);
4652 VERIFY(MBUF_IS_COMPOSITE(m));
4653
4654 flag = MEXT_FLAGS(m);
4655
4656 pkthdr = (nsegs == 1 || (num % nsegs) == 1);
0a7de745 4657 if (pkthdr) {
2d21ac55 4658 first = m;
0a7de745 4659 }
2d21ac55 4660 MBUF_INIT(m, pkthdr, MT_DATA);
813fb2f6 4661 if (m_free_func == m_16kfree) {
2d21ac55 4662 MBUF_16KCL_INIT(m, cl, rfa, 1, flag);
813fb2f6 4663 } else if (m_free_func == m_bigfree) {
2d21ac55
A
4664 MBUF_BIGCL_INIT(m, cl, rfa, 1, flag);
4665 } else {
4666 MBUF_CL_INIT(m, cl, rfa, 1, flag);
4667 }
2d21ac55
A
4668
4669 *np = m;
0a7de745 4670 if ((num % nsegs) == 0) {
2d21ac55 4671 np = &first->m_nextpkt;
0a7de745 4672 } else {
2d21ac55 4673 np = &m->m_next;
0a7de745 4674 }
2d21ac55 4675
0a7de745 4676 if (num == needed) {
2d21ac55 4677 break;
0a7de745 4678 }
2d21ac55
A
4679 }
4680
4681 if (num > 0) {
4682 mtype_stat_add(MT_DATA, num);
4683 mtype_stat_sub(MT_FREE, num);
91447636 4684 }
2d21ac55
A
4685
4686 num /= nsegs;
4687
4688 /* We've got them all; return to caller */
4689 if (num == *numlist) {
4690 ASSERT(mp_list == NULL && rmp_list == NULL);
0a7de745 4691 return top;
2d21ac55
A
4692 }
4693
91447636 4694fail:
2d21ac55 4695 /* Free up what's left of the above */
0a7de745 4696 if (mp_list != NULL) {
2d21ac55 4697 mcache_free_ext(cp, mp_list);
0a7de745
A
4698 }
4699 if (rmp_list != NULL) {
2d21ac55 4700 mcache_free_ext(rcp, rmp_list);
0a7de745 4701 }
2d21ac55 4702 if (wantall && top != NULL) {
cb323159 4703 m_freem_list(top);
f427ee49 4704 *numlist = 0;
0a7de745 4705 return NULL;
91447636 4706 }
2d21ac55 4707 *numlist = num;
0a7de745 4708 return top;
91447636 4709}
fa4905b1 4710
2d21ac55
A
4711/*
4712 * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
4713 * packets on receive ring.
91447636
A
4714 */
4715__private_extern__ struct mbuf *
2d21ac55 4716m_getpacket_how(int wait)
91447636
A
4717{
4718 unsigned int num_needed = 1;
2d21ac55 4719
0a7de745
A
4720 return m_getpackets_internal(&num_needed, 1, wait, 1,
4721 m_maxsize(MC_CL));
91447636 4722}
fa4905b1 4723
2d21ac55
A
4724/*
4725 * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
4726 * packets on receive ring.
91447636
A
4727 */
4728struct mbuf *
4729m_getpacket(void)
4730{
4731 unsigned int num_needed = 1;
9bccf70c 4732
0a7de745
A
4733 return m_getpackets_internal(&num_needed, 1, M_WAIT, 1,
4734 m_maxsize(MC_CL));
91447636 4735}
fa4905b1 4736
91447636 4737/*
2d21ac55
A
4738 * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
4739 * if this can't be met, return whatever number were available. Set up the
4740 * first num_with_pkthdrs with mbuf hdrs configured as packet headers. These
4741 * are chained on the m_nextpkt field. Any packets requested beyond this are
4742 * chained onto the last packet header's m_next field.
91447636
A
4743 */
4744struct mbuf *
4745m_getpackets(int num_needed, int num_with_pkthdrs, int how)
4746{
4747 unsigned int n = num_needed;
fa4905b1 4748
0a7de745
A
4749 return m_getpackets_internal(&n, num_with_pkthdrs, how, 0,
4750 m_maxsize(MC_CL));
2d21ac55 4751}
fa4905b1 4752
9bccf70c 4753/*
2d21ac55
A
4754 * Return a list of mbuf hdrs set up as packet hdrs chained together
4755 * on the m_nextpkt field
9bccf70c 4756 */
fa4905b1
A
4757struct mbuf *
4758m_getpackethdrs(int num_needed, int how)
4759{
4760 struct mbuf *m;
4761 struct mbuf **np, *top;
4762
4763 top = NULL;
4764 np = &top;
4765
fa4905b1 4766 while (num_needed--) {
2d21ac55 4767 m = _M_RETRYHDR(how, MT_DATA);
0a7de745 4768 if (m == NULL) {
2d21ac55 4769 break;
0a7de745 4770 }
2d21ac55
A
4771
4772 *np = m;
4773 np = &m->m_nextpkt;
4774 }
fa4905b1 4775
0a7de745 4776 return top;
fa4905b1
A
4777}
4778
2d21ac55
A
4779/*
4780 * Free an mbuf list (m_nextpkt) while following m_next. Returns the count
4781 * for mbufs packets freed. Used by the drivers.
1c79356b 4782 */
2d21ac55
A
4783int
4784m_freem_list(struct mbuf *m)
1c79356b
A
4785{
4786 struct mbuf *nextpkt;
2d21ac55
A
4787 mcache_obj_t *mp_list = NULL;
4788 mcache_obj_t *mcl_list = NULL;
4789 mcache_obj_t *mbc_list = NULL;
4790 mcache_obj_t *m16k_list = NULL;
4791 mcache_obj_t *m_mcl_list = NULL;
4792 mcache_obj_t *m_mbc_list = NULL;
4793 mcache_obj_t *m_m16k_list = NULL;
4794 mcache_obj_t *ref_list = NULL;
4795 int pktcount = 0;
4796 int mt_free = 0, mt_data = 0, mt_header = 0, mt_soname = 0, mt_tag = 0;
4797
4798 while (m != NULL) {
4799 pktcount++;
4800
4801 nextpkt = m->m_nextpkt;
4802 m->m_nextpkt = NULL;
4803
4804 while (m != NULL) {
4805 struct mbuf *next = m->m_next;
4806 mcache_obj_t *o, *rfa;
39037602
A
4807 u_int32_t composite;
4808 u_int16_t refcnt;
813fb2f6 4809 m_ext_free_func_t m_free_func;
fa4905b1 4810
0a7de745 4811 if (m->m_type == MT_FREE) {
2d21ac55 4812 panic("m_free: freeing an already freed mbuf");
0a7de745 4813 }
9bccf70c 4814
2d21ac55 4815 if (m->m_flags & M_PKTHDR) {
39236c6e
A
4816 /* Check for scratch area overflow */
4817 m_redzone_verify(m);
4818 /* Free the aux data and tags if there is any */
91447636 4819 m_tag_delete_chain(m, NULL);
91447636 4820 }
9bccf70c 4821
39037602
A
4822 if (!(m->m_flags & M_EXT)) {
4823 mt_free++;
2d21ac55 4824 goto simple_free;
39037602
A
4825 }
4826
4827 if (MBUF_IS_PAIRED(m) && m_free_paired(m)) {
4828 m = next;
4829 continue;
4830 }
4831
4832 mt_free++;
2d21ac55 4833
316670eb 4834 o = (mcache_obj_t *)(void *)m->m_ext.ext_buf;
2d21ac55 4835 refcnt = m_decref(m);
6d2010ae 4836 composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
813fb2f6 4837 m_free_func = m_get_ext_free(m);
39037602 4838 if (refcnt == MEXT_MINREF(m) && !composite) {
813fb2f6 4839 if (m_free_func == NULL) {
2d21ac55
A
4840 o->obj_next = mcl_list;
4841 mcl_list = o;
813fb2f6 4842 } else if (m_free_func == m_bigfree) {
2d21ac55
A
4843 o->obj_next = mbc_list;
4844 mbc_list = o;
813fb2f6 4845 } else if (m_free_func == m_16kfree) {
2d21ac55
A
4846 o->obj_next = m16k_list;
4847 m16k_list = o;
4848 } else {
813fb2f6 4849 (*(m_free_func))((caddr_t)o,
2d21ac55 4850 m->m_ext.ext_size,
813fb2f6 4851 m_get_ext_arg(m));
2d21ac55 4852 }
813fb2f6 4853 rfa = (mcache_obj_t *)(void *)m_get_rfa(m);
2d21ac55
A
4854 rfa->obj_next = ref_list;
4855 ref_list = rfa;
813fb2f6 4856 m_set_ext(m, NULL, NULL, NULL);
39037602
A
4857 } else if (refcnt == MEXT_MINREF(m) && composite) {
4858 VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED));
2d21ac55
A
4859 VERIFY(m->m_type != MT_FREE);
4860 /*
4861 * Amortize the costs of atomic operations
4862 * by doing them at the end, if possible.
4863 */
0a7de745 4864 if (m->m_type == MT_DATA) {
2d21ac55 4865 mt_data++;
0a7de745 4866 } else if (m->m_type == MT_HEADER) {
2d21ac55 4867 mt_header++;
0a7de745 4868 } else if (m->m_type == MT_SONAME) {
2d21ac55 4869 mt_soname++;
0a7de745 4870 } else if (m->m_type == MT_TAG) {
2d21ac55 4871 mt_tag++;
0a7de745 4872 } else {
2d21ac55 4873 mtype_stat_dec(m->m_type);
0a7de745 4874 }
fa4905b1 4875
2d21ac55
A
4876 m->m_type = MT_FREE;
4877 m->m_flags = M_EXT;
4878 m->m_len = 0;
4879 m->m_next = m->m_nextpkt = NULL;
4880
6d2010ae
A
4881 MEXT_FLAGS(m) &= ~EXTF_READONLY;
4882
2d21ac55
A
4883 /* "Free" into the intermediate cache */
4884 o = (mcache_obj_t *)m;
813fb2f6 4885 if (m_free_func == NULL) {
2d21ac55
A
4886 o->obj_next = m_mcl_list;
4887 m_mcl_list = o;
813fb2f6 4888 } else if (m_free_func == m_bigfree) {
2d21ac55
A
4889 o->obj_next = m_mbc_list;
4890 m_mbc_list = o;
1c79356b 4891 } else {
813fb2f6 4892 VERIFY(m_free_func == m_16kfree);
2d21ac55
A
4893 o->obj_next = m_m16k_list;
4894 m_m16k_list = o;
1c79356b 4895 }
2d21ac55
A
4896 m = next;
4897 continue;
1c79356b 4898 }
2d21ac55
A
4899simple_free:
4900 /*
4901 * Amortize the costs of atomic operations
4902 * by doing them at the end, if possible.
4903 */
0a7de745 4904 if (m->m_type == MT_DATA) {
2d21ac55 4905 mt_data++;
0a7de745 4906 } else if (m->m_type == MT_HEADER) {
2d21ac55 4907 mt_header++;
0a7de745 4908 } else if (m->m_type == MT_SONAME) {
2d21ac55 4909 mt_soname++;
0a7de745 4910 } else if (m->m_type == MT_TAG) {
2d21ac55 4911 mt_tag++;
0a7de745 4912 } else if (m->m_type != MT_FREE) {
2d21ac55 4913 mtype_stat_dec(m->m_type);
0a7de745 4914 }
2d21ac55 4915
1c79356b 4916 m->m_type = MT_FREE;
2d21ac55
A
4917 m->m_flags = m->m_len = 0;
4918 m->m_next = m->m_nextpkt = NULL;
fa4905b1 4919
2d21ac55
A
4920 ((mcache_obj_t *)m)->obj_next = mp_list;
4921 mp_list = (mcache_obj_t *)m;
4922
4923 m = next;
4924 }
fa4905b1 4925
2d21ac55
A
4926 m = nextpkt;
4927 }
fa4905b1 4928
0a7de745 4929 if (mt_free > 0) {
2d21ac55 4930 mtype_stat_add(MT_FREE, mt_free);
0a7de745
A
4931 }
4932 if (mt_data > 0) {
2d21ac55 4933 mtype_stat_sub(MT_DATA, mt_data);
0a7de745
A
4934 }
4935 if (mt_header > 0) {
2d21ac55 4936 mtype_stat_sub(MT_HEADER, mt_header);
0a7de745
A
4937 }
4938 if (mt_soname > 0) {
2d21ac55 4939 mtype_stat_sub(MT_SONAME, mt_soname);
0a7de745
A
4940 }
4941 if (mt_tag > 0) {
2d21ac55 4942 mtype_stat_sub(MT_TAG, mt_tag);
0a7de745 4943 }
2d21ac55 4944
0a7de745 4945 if (mp_list != NULL) {
2d21ac55 4946 mcache_free_ext(m_cache(MC_MBUF), mp_list);
0a7de745
A
4947 }
4948 if (mcl_list != NULL) {
2d21ac55 4949 mcache_free_ext(m_cache(MC_CL), mcl_list);
0a7de745
A
4950 }
4951 if (mbc_list != NULL) {
2d21ac55 4952 mcache_free_ext(m_cache(MC_BIGCL), mbc_list);
0a7de745
A
4953 }
4954 if (m16k_list != NULL) {
2d21ac55 4955 mcache_free_ext(m_cache(MC_16KCL), m16k_list);
0a7de745
A
4956 }
4957 if (m_mcl_list != NULL) {
2d21ac55 4958 mcache_free_ext(m_cache(MC_MBUF_CL), m_mcl_list);
0a7de745
A
4959 }
4960 if (m_mbc_list != NULL) {
2d21ac55 4961 mcache_free_ext(m_cache(MC_MBUF_BIGCL), m_mbc_list);
0a7de745
A
4962 }
4963 if (m_m16k_list != NULL) {
2d21ac55 4964 mcache_free_ext(m_cache(MC_MBUF_16KCL), m_m16k_list);
0a7de745
A
4965 }
4966 if (ref_list != NULL) {
2d21ac55 4967 mcache_free_ext(ref_cache, ref_list);
0a7de745 4968 }
2d21ac55 4969
0a7de745 4970 return pktcount;
1c79356b
A
4971}
4972
4973void
2d21ac55 4974m_freem(struct mbuf *m)
1c79356b 4975{
0a7de745 4976 while (m != NULL) {
1c79356b 4977 m = m_free(m);
0a7de745 4978 }
1c79356b
A
4979}
4980
4981/*
4982 * Mbuffer utility routines.
4983 */
4984/*
d9a64523
A
4985 * Set the m_data pointer of a newly allocated mbuf to place an object of the
4986 * specified size at the end of the mbuf, longword aligned.
4987 *
4988 * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as
4989 * separate macros, each asserting that it was called at the proper moment.
4990 * This required callers to themselves test the storage type and call the
4991 * right one. Rather than require callers to be aware of those layout
4992 * decisions, we centralize here.
1c79356b 4993 */
d9a64523
A
4994void
4995m_align(struct mbuf *m, int len)
1c79356b 4996{
d9a64523 4997 int adjust = 0;
1c79356b 4998
d9a64523
A
4999 /* At this point data must point to start */
5000 VERIFY(m->m_data == M_START(m));
5001 VERIFY(len >= 0);
5002 VERIFY(len <= M_SIZE(m));
5003 adjust = M_SIZE(m) - len;
0a7de745 5004 m->m_data += adjust & ~(sizeof(long) - 1);
1c79356b
A
5005}
5006
5007/*
2d21ac55
A
5008 * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain,
5009 * copy junk along. Does not adjust packet header length.
1c79356b
A
5010 */
5011struct mbuf *
2d21ac55 5012m_prepend(struct mbuf *m, int len, int how)
1c79356b
A
5013{
5014 struct mbuf *mn;
5015
2d21ac55
A
5016 _MGET(mn, how, m->m_type);
5017 if (mn == NULL) {
1c79356b 5018 m_freem(m);
0a7de745 5019 return NULL;
1c79356b
A
5020 }
5021 if (m->m_flags & M_PKTHDR) {
5022 M_COPY_PKTHDR(mn, m);
5023 m->m_flags &= ~M_PKTHDR;
5024 }
5025 mn->m_next = m;
5026 m = mn;
3e170ce0
A
5027 if (m->m_flags & M_PKTHDR) {
5028 VERIFY(len <= MHLEN);
1c79356b 5029 MH_ALIGN(m, len);
3e170ce0
A
5030 } else {
5031 VERIFY(len <= MLEN);
5032 M_ALIGN(m, len);
5033 }
1c79356b 5034 m->m_len = len;
0a7de745 5035 return m;
1c79356b
A
5036}
5037
9bccf70c 5038/*
2d21ac55
A
5039 * Replacement for old M_PREPEND macro: allocate new mbuf to prepend to
5040 * chain, copy junk along, and adjust length.
9bccf70c
A
5041 */
5042struct mbuf *
3e170ce0 5043m_prepend_2(struct mbuf *m, int len, int how, int align)
2d21ac55 5044{
3e170ce0
A
5045 if (M_LEADINGSPACE(m) >= len &&
5046 (!align || IS_P2ALIGNED((m->m_data - len), sizeof(u_int32_t)))) {
2d21ac55
A
5047 m->m_data -= len;
5048 m->m_len += len;
5049 } else {
9bccf70c 5050 m = m_prepend(m, len, how);
2d21ac55 5051 }
0a7de745 5052 if ((m) && (m->m_flags & M_PKTHDR)) {
2d21ac55 5053 m->m_pkthdr.len += len;
0a7de745
A
5054 }
5055 return m;
9bccf70c
A
5056}
5057
1c79356b
A
5058/*
5059 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
5060 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
5061 * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
5062 */
5063int MCFail;
5064
5065struct mbuf *
39236c6e 5066m_copym_mode(struct mbuf *m, int off0, int len, int wait, uint32_t mode)
1c79356b 5067{
2d21ac55 5068 struct mbuf *n, *mhdr = NULL, **np;
91447636 5069 int off = off0;
1c79356b
A
5070 struct mbuf *top;
5071 int copyhdr = 0;
5072
0a7de745 5073 if (off < 0 || len < 0) {
2d21ac55 5074 panic("m_copym: invalid offset %d or len %d", off, len);
0a7de745 5075 }
2d21ac55 5076
fe8ab488
A
5077 VERIFY((mode != M_COPYM_MUST_COPY_HDR &&
5078 mode != M_COPYM_MUST_MOVE_HDR) || (m->m_flags & M_PKTHDR));
5079
5080 if ((off == 0 && (m->m_flags & M_PKTHDR)) ||
5081 mode == M_COPYM_MUST_COPY_HDR || mode == M_COPYM_MUST_MOVE_HDR) {
2d21ac55 5082 mhdr = m;
1c79356b 5083 copyhdr = 1;
2d21ac55 5084 }
fa4905b1
A
5085
5086 while (off >= m->m_len) {
0a7de745 5087 if (m->m_next == NULL) {
2d21ac55 5088 panic("m_copym: invalid mbuf chain");
0a7de745 5089 }
1c79356b
A
5090 off -= m->m_len;
5091 m = m->m_next;
5092 }
5093 np = &top;
2d21ac55 5094 top = NULL;
fa4905b1 5095
1c79356b 5096 while (len > 0) {
2d21ac55 5097 if (m == NULL) {
0a7de745 5098 if (len != M_COPYALL) {
2d21ac55 5099 panic("m_copym: len != M_COPYALL");
0a7de745 5100 }
1c79356b
A
5101 break;
5102 }
2d21ac55 5103
0a7de745 5104 if (copyhdr) {
fe8ab488 5105 n = _M_RETRYHDR(wait, m->m_type);
0a7de745 5106 } else {
fe8ab488 5107 n = _M_RETRY(wait, m->m_type);
0a7de745 5108 }
1c79356b 5109 *np = n;
fa4905b1 5110
0a7de745 5111 if (n == NULL) {
1c79356b 5112 goto nospace;
0a7de745 5113 }
2d21ac55
A
5114
5115 if (copyhdr != 0) {
fe8ab488
A
5116 if ((mode == M_COPYM_MOVE_HDR) ||
5117 (mode == M_COPYM_MUST_MOVE_HDR)) {
39236c6e 5118 M_COPY_PKTHDR(n, mhdr);
fe8ab488
A
5119 } else if ((mode == M_COPYM_COPY_HDR) ||
5120 (mode == M_COPYM_MUST_COPY_HDR)) {
0a7de745 5121 if (m_dup_pkthdr(n, mhdr, wait) == 0) {
39236c6e 5122 goto nospace;
0a7de745 5123 }
39236c6e 5124 }
0a7de745 5125 if (len == M_COPYALL) {
1c79356b 5126 n->m_pkthdr.len -= off0;
0a7de745 5127 } else {
1c79356b 5128 n->m_pkthdr.len = len;
0a7de745 5129 }
1c79356b 5130 copyhdr = 0;
fe8ab488
A
5131 /*
5132 * There is data to copy from the packet header mbuf
5133 * if it is empty or it is before the starting offset
5134 */
5135 if (mhdr != m) {
5136 np = &n->m_next;
5137 continue;
2d21ac55 5138 }
1c79356b 5139 }
2d21ac55 5140 n->m_len = MIN(len, (m->m_len - off));
1c79356b 5141 if (m->m_flags & M_EXT) {
1c79356b 5142 n->m_ext = m->m_ext;
2d21ac55 5143 m_incref(m);
1c79356b
A
5144 n->m_data = m->m_data + off;
5145 n->m_flags |= M_EXT;
fa4905b1 5146 } else {
fe8ab488
A
5147 /*
5148 * Limit to the capacity of the destination
5149 */
0a7de745 5150 if (n->m_flags & M_PKTHDR) {
fe8ab488 5151 n->m_len = MIN(n->m_len, MHLEN);
0a7de745 5152 } else {
fe8ab488 5153 n->m_len = MIN(n->m_len, MLEN);
0a7de745 5154 }
fe8ab488 5155
0a7de745 5156 if (MTOD(n, char *) + n->m_len > ((char *)n) + MSIZE) {
39037602 5157 panic("%s n %p copy overflow",
0a7de745
A
5158 __func__, n);
5159 }
fe8ab488 5160
0a7de745 5161 bcopy(MTOD(m, caddr_t) + off, MTOD(n, caddr_t),
1c79356b 5162 (unsigned)n->m_len);
fa4905b1 5163 }
0a7de745 5164 if (len != M_COPYALL) {
1c79356b 5165 len -= n->m_len;
0a7de745 5166 }
1c79356b
A
5167 off = 0;
5168 m = m->m_next;
5169 np = &n->m_next;
5170 }
fa4905b1 5171
0a7de745 5172 if (top == NULL) {
1c79356b 5173 MCFail++;
0a7de745 5174 }
fa4905b1 5175
0a7de745 5176 return top;
1c79356b 5177nospace:
fa4905b1 5178
1c79356b
A
5179 m_freem(top);
5180 MCFail++;
0a7de745 5181 return NULL;
1c79356b
A
5182}
5183
39236c6e
A
5184
5185struct mbuf *
5186m_copym(struct mbuf *m, int off0, int len, int wait)
5187{
0a7de745 5188 return m_copym_mode(m, off0, len, wait, M_COPYM_MOVE_HDR);
39236c6e
A
5189}
5190
9bccf70c 5191/*
2d21ac55
A
5192 * Equivalent to m_copym except that all necessary mbuf hdrs are allocated
5193 * within this routine also, the last mbuf and offset accessed are passed
5194 * out and can be passed back in to avoid having to rescan the entire mbuf
5195 * list (normally hung off of the socket)
9bccf70c 5196 */
fa4905b1 5197struct mbuf *
fe8ab488 5198m_copym_with_hdrs(struct mbuf *m0, int off0, int len0, int wait,
39236c6e 5199 struct mbuf **m_lastm, int *m_off, uint32_t mode)
2d21ac55 5200{
fe8ab488 5201 struct mbuf *m = m0, *n, **np = NULL;
2d21ac55
A
5202 int off = off0, len = len0;
5203 struct mbuf *top = NULL;
5204 int mcflags = MSLEEPF(wait);
fa4905b1 5205 int copyhdr = 0;
2d21ac55
A
5206 int type = 0;
5207 mcache_obj_t *list = NULL;
5208 int needed = 0;
fa4905b1 5209
0a7de745 5210 if (off == 0 && (m->m_flags & M_PKTHDR)) {
fa4905b1 5211 copyhdr = 1;
0a7de745 5212 }
39037602 5213
fe8ab488 5214 if (m_lastm != NULL && *m_lastm != NULL) {
6d2010ae 5215 m = *m_lastm;
fa4905b1
A
5216 off = *m_off;
5217 } else {
2d21ac55
A
5218 while (off >= m->m_len) {
5219 off -= m->m_len;
fa4905b1
A
5220 m = m->m_next;
5221 }
5222 }
91447636 5223
2d21ac55
A
5224 n = m;
5225 while (len > 0) {
5226 needed++;
5227 ASSERT(n != NULL);
5228 len -= MIN(len, (n->m_len - ((needed == 1) ? off : 0)));
5229 n = n->m_next;
5230 }
5231 needed++;
5232 len = len0;
5233
5234 /*
5235 * If the caller doesn't want to be put to sleep, mark it with
5236 * MCR_TRYHARD so that we may reclaim buffers from other places
5237 * before giving up.
5238 */
0a7de745 5239 if (mcflags & MCR_NOSLEEP) {
2d21ac55 5240 mcflags |= MCR_TRYHARD;
0a7de745 5241 }
2d21ac55
A
5242
5243 if (mcache_alloc_ext(m_cache(MC_MBUF), &list, needed,
0a7de745 5244 mcflags) != needed) {
2d21ac55 5245 goto nospace;
0a7de745 5246 }
fa4905b1 5247
2d21ac55 5248 needed = 0;
fa4905b1 5249 while (len > 0) {
2d21ac55
A
5250 n = (struct mbuf *)list;
5251 list = list->obj_next;
5252 ASSERT(n != NULL && m != NULL);
5253
5254 type = (top == NULL) ? MT_HEADER : m->m_type;
5255 MBUF_INIT(n, (top == NULL), type);
2d21ac55
A
5256
5257 if (top == NULL) {
5258 top = n;
fa4905b1
A
5259 np = &top->m_next;
5260 continue;
2d21ac55
A
5261 } else {
5262 needed++;
5263 *np = n;
5264 }
fa4905b1
A
5265
5266 if (copyhdr) {
fe8ab488
A
5267 if ((mode == M_COPYM_MOVE_HDR) ||
5268 (mode == M_COPYM_MUST_MOVE_HDR)) {
39236c6e 5269 M_COPY_PKTHDR(n, m);
fe8ab488
A
5270 } else if ((mode == M_COPYM_COPY_HDR) ||
5271 (mode == M_COPYM_MUST_COPY_HDR)) {
0a7de745 5272 if (m_dup_pkthdr(n, m, wait) == 0) {
39236c6e 5273 goto nospace;
0a7de745 5274 }
39236c6e 5275 }
fa4905b1
A
5276 n->m_pkthdr.len = len;
5277 copyhdr = 0;
5278 }
2d21ac55 5279 n->m_len = MIN(len, (m->m_len - off));
fa4905b1
A
5280
5281 if (m->m_flags & M_EXT) {
5282 n->m_ext = m->m_ext;
2d21ac55 5283 m_incref(m);
fa4905b1
A
5284 n->m_data = m->m_data + off;
5285 n->m_flags |= M_EXT;
5286 } else {
0a7de745 5287 if (MTOD(n, char *) + n->m_len > ((char *)n) + MSIZE) {
39037602 5288 panic("%s n %p copy overflow",
0a7de745
A
5289 __func__, n);
5290 }
fe8ab488 5291
0a7de745 5292 bcopy(MTOD(m, caddr_t) + off, MTOD(n, caddr_t),
fa4905b1
A
5293 (unsigned)n->m_len);
5294 }
5295 len -= n->m_len;
2d21ac55 5296
fa4905b1 5297 if (len == 0) {
fe8ab488
A
5298 if (m_lastm != NULL && m_off != NULL) {
5299 if ((off + n->m_len) == m->m_len) {
5300 *m_lastm = m->m_next;
5301 *m_off = 0;
5302 } else {
5303 *m_lastm = m;
5304 *m_off = off + n->m_len;
5305 }
fa4905b1 5306 }
2d21ac55 5307 break;
fa4905b1
A
5308 }
5309 off = 0;
5310 m = m->m_next;
5311 np = &n->m_next;
5312 }
fa4905b1 5313
2d21ac55
A
5314 mtype_stat_inc(MT_HEADER);
5315 mtype_stat_add(type, needed);
5316 mtype_stat_sub(MT_FREE, needed + 1);
5317
5318 ASSERT(list == NULL);
0a7de745 5319 return top;
fa4905b1 5320
2d21ac55 5321nospace:
0a7de745 5322 if (list != NULL) {
2d21ac55 5323 mcache_free_ext(m_cache(MC_MBUF), list);
0a7de745
A
5324 }
5325 if (top != NULL) {
2d21ac55 5326 m_freem(top);
0a7de745 5327 }
fa4905b1 5328 MCFail++;
0a7de745 5329 return NULL;
fa4905b1
A
5330}
5331
1c79356b
A
5332/*
5333 * Copy data from an mbuf chain starting "off" bytes from the beginning,
5334 * continuing for "len" bytes, into the indicated buffer.
5335 */
2d21ac55 5336void
b0d623f7 5337m_copydata(struct mbuf *m, int off, int len, void *vp)
1c79356b 5338{
5ba3f43e
A
5339 int off0 = off, len0 = len;
5340 struct mbuf *m0 = m;
91447636 5341 unsigned count;
b0d623f7 5342 char *cp = vp;
1c79356b 5343
5ba3f43e
A
5344 if (__improbable(off < 0 || len < 0)) {
5345 panic("%s: invalid offset %d or len %d", __func__, off, len);
5346 /* NOTREACHED */
5347 }
2d21ac55 5348
1c79356b 5349 while (off > 0) {
5ba3f43e
A
5350 if (__improbable(m == NULL)) {
5351 panic("%s: invalid mbuf chain %p [off %d, len %d]",
5352 __func__, m0, off0, len0);
5353 /* NOTREACHED */
5354 }
0a7de745 5355 if (off < m->m_len) {
1c79356b 5356 break;
0a7de745 5357 }
1c79356b
A
5358 off -= m->m_len;
5359 m = m->m_next;
5360 }
5361 while (len > 0) {
5ba3f43e
A
5362 if (__improbable(m == NULL)) {
5363 panic("%s: invalid mbuf chain %p [off %d, len %d]",
5364 __func__, m0, off0, len0);
5365 /* NOTREACHED */
5366 }
2d21ac55
A
5367 count = MIN(m->m_len - off, len);
5368 bcopy(MTOD(m, caddr_t) + off, cp, count);
1c79356b
A
5369 len -= count;
5370 cp += count;
5371 off = 0;
5372 m = m->m_next;
5373 }
5374}
5375
5376/*
2d21ac55
A
5377 * Concatenate mbuf chain n to m. Both chains must be of the same type
5378 * (e.g. MT_DATA). Any m_pkthdr is not updated.
1c79356b 5379 */
2d21ac55
A
5380void
5381m_cat(struct mbuf *m, struct mbuf *n)
1c79356b 5382{
0a7de745 5383 while (m->m_next) {
1c79356b 5384 m = m->m_next;
0a7de745 5385 }
1c79356b 5386 while (n) {
2d21ac55 5387 if ((m->m_flags & M_EXT) ||
1c79356b
A
5388 m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
5389 /* just join the two chains */
5390 m->m_next = n;
5391 return;
5392 }
5393 /* splat the data from one into the other */
2d21ac55 5394 bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len,
1c79356b
A
5395 (u_int)n->m_len);
5396 m->m_len += n->m_len;
5397 n = m_free(n);
5398 }
5399}
5400
5401void
2d21ac55 5402m_adj(struct mbuf *mp, int req_len)
1c79356b 5403{
91447636
A
5404 int len = req_len;
5405 struct mbuf *m;
5406 int count;
1c79356b 5407
0a7de745 5408 if ((m = mp) == NULL) {
1c79356b 5409 return;
0a7de745 5410 }
1c79356b
A
5411 if (len >= 0) {
5412 /*
5413 * Trim from head.
5414 */
5415 while (m != NULL && len > 0) {
5416 if (m->m_len <= len) {
5417 len -= m->m_len;
5418 m->m_len = 0;
5419 m = m->m_next;
5420 } else {
5421 m->m_len -= len;
5422 m->m_data += len;
5423 len = 0;
5424 }
5425 }
5426 m = mp;
0a7de745 5427 if (m->m_flags & M_PKTHDR) {
1c79356b 5428 m->m_pkthdr.len -= (req_len - len);
0a7de745 5429 }
1c79356b
A
5430 } else {
5431 /*
5432 * Trim from tail. Scan the mbuf chain,
5433 * calculating its length and finding the last mbuf.
5434 * If the adjustment only affects this mbuf, then just
5435 * adjust and return. Otherwise, rescan and truncate
5436 * after the remaining size.
5437 */
5438 len = -len;
5439 count = 0;
5440 for (;;) {
5441 count += m->m_len;
0a7de745 5442 if (m->m_next == (struct mbuf *)0) {
1c79356b 5443 break;
0a7de745 5444 }
1c79356b
A
5445 m = m->m_next;
5446 }
5447 if (m->m_len >= len) {
5448 m->m_len -= len;
5449 m = mp;
0a7de745 5450 if (m->m_flags & M_PKTHDR) {
1c79356b 5451 m->m_pkthdr.len -= len;
0a7de745 5452 }
1c79356b
A
5453 return;
5454 }
5455 count -= len;
0a7de745 5456 if (count < 0) {
1c79356b 5457 count = 0;
0a7de745 5458 }
1c79356b
A
5459 /*
5460 * Correct length for chain is "count".
5461 * Find the mbuf with last data, adjust its length,
5462 * and toss data from remaining mbufs on chain.
5463 */
5464 m = mp;
0a7de745 5465 if (m->m_flags & M_PKTHDR) {
1c79356b 5466 m->m_pkthdr.len = count;
0a7de745 5467 }
1c79356b
A
5468 for (; m; m = m->m_next) {
5469 if (m->m_len >= count) {
5470 m->m_len = count;
5471 break;
5472 }
5473 count -= m->m_len;
5474 }
0a7de745 5475 while ((m = m->m_next)) {
1c79356b 5476 m->m_len = 0;
0a7de745 5477 }
1c79356b
A
5478 }
5479}
5480
5481/*
5482 * Rearange an mbuf chain so that len bytes are contiguous
5483 * and in the data area of an mbuf (so that mtod and dtom
5484 * will work for a structure of size len). Returns the resulting
5485 * mbuf chain on success, frees it and returns null on failure.
5486 * If there is room, it will add up to max_protohdr-len extra bytes to the
5487 * contiguous region in an attempt to avoid being called next time.
5488 */
5489int MPFail;
5490
5491struct mbuf *
2d21ac55 5492m_pullup(struct mbuf *n, int len)
1c79356b 5493{
91447636
A
5494 struct mbuf *m;
5495 int count;
1c79356b
A
5496 int space;
5497
a39ff7e2
A
5498 /* check invalid arguments */
5499 if (n == NULL) {
0a7de745 5500 panic("%s: n == NULL", __func__);
a39ff7e2
A
5501 }
5502 if (len < 0) {
5503 os_log_info(OS_LOG_DEFAULT, "%s: failed negative len %d",
5504 __func__, len);
5505 goto bad;
5506 }
d9a64523
A
5507 if (len > MLEN) {
5508 os_log_info(OS_LOG_DEFAULT, "%s: failed len %d too big",
5509 __func__, len);
5510 goto bad;
5511 }
5512 if ((n->m_flags & M_EXT) == 0 &&
5513 n->m_data >= &n->m_dat[MLEN]) {
5514 os_log_info(OS_LOG_DEFAULT, "%s: m_data out of bounds",
5515 __func__);
5516 goto bad;
5517 }
a39ff7e2 5518
1c79356b
A
5519 /*
5520 * If first mbuf has no cluster, and has room for len bytes
5521 * without shifting current data, pullup into it,
5522 * otherwise allocate a new mbuf to prepend to the chain.
5523 */
5524 if ((n->m_flags & M_EXT) == 0 &&
d9a64523 5525 len < &n->m_dat[MLEN] - n->m_data && n->m_next != NULL) {
0a7de745
A
5526 if (n->m_len >= len) {
5527 return n;
5528 }
1c79356b
A
5529 m = n;
5530 n = n->m_next;
5531 len -= m->m_len;
5532 } else {
0a7de745 5533 if (len > MHLEN) {
1c79356b 5534 goto bad;
0a7de745 5535 }
2d21ac55 5536 _MGET(m, M_DONTWAIT, n->m_type);
0a7de745 5537 if (m == 0) {
1c79356b 5538 goto bad;
0a7de745 5539 }
1c79356b
A
5540 m->m_len = 0;
5541 if (n->m_flags & M_PKTHDR) {
5542 M_COPY_PKTHDR(m, n);
5543 n->m_flags &= ~M_PKTHDR;
5544 }
5545 }
5546 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
5547 do {
2d21ac55
A
5548 count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len);
5549 bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len,
5550 (unsigned)count);
1c79356b
A
5551 len -= count;
5552 m->m_len += count;
5553 n->m_len -= count;
5554 space -= count;
0a7de745 5555 if (n->m_len != 0) {
1c79356b 5556 n->m_data += count;
0a7de745 5557 } else {
1c79356b 5558 n = m_free(n);
0a7de745 5559 }
d9a64523 5560 } while (len > 0 && n != NULL);
1c79356b
A
5561 if (len > 0) {
5562 (void) m_free(m);
5563 goto bad;
5564 }
5565 m->m_next = n;
0a7de745 5566 return m;
1c79356b
A
5567bad:
5568 m_freem(n);
5569 MPFail++;
0a7de745 5570 return 0;
1c79356b
A
5571}
5572
6d2010ae
A
5573/*
5574 * Like m_pullup(), except a new mbuf is always allocated, and we allow
5575 * the amount of empty space before the data in the new mbuf to be specified
5576 * (in the event that the caller expects to prepend later).
5577 */
5578__private_extern__ int MSFail = 0;
5579
5580__private_extern__ struct mbuf *
5581m_copyup(struct mbuf *n, int len, int dstoff)
5582{
5583 struct mbuf *m;
5584 int count, space;
5585
cb323159
A
5586 VERIFY(len >= 0 && dstoff >= 0);
5587
0a7de745 5588 if (len > (MHLEN - dstoff)) {
6d2010ae 5589 goto bad;
0a7de745 5590 }
6d2010ae 5591 MGET(m, M_DONTWAIT, n->m_type);
0a7de745 5592 if (m == NULL) {
6d2010ae 5593 goto bad;
0a7de745 5594 }
6d2010ae
A
5595 m->m_len = 0;
5596 if (n->m_flags & M_PKTHDR) {
5597 m_copy_pkthdr(m, n);
5598 n->m_flags &= ~M_PKTHDR;
5599 }
5600 m->m_data += dstoff;
5601 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
5602 do {
5603 count = min(min(max(len, max_protohdr), space), n->m_len);
5604 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
5605 (unsigned)count);
5606 len -= count;
5607 m->m_len += count;
5608 n->m_len -= count;
5609 space -= count;
0a7de745 5610 if (n->m_len) {
6d2010ae 5611 n->m_data += count;
0a7de745 5612 } else {
6d2010ae 5613 n = m_free(n);
0a7de745 5614 }
6d2010ae
A
5615 } while (len > 0 && n);
5616 if (len > 0) {
5617 (void) m_free(m);
5618 goto bad;
5619 }
5620 m->m_next = n;
0a7de745 5621 return m;
6d2010ae
A
5622bad:
5623 m_freem(n);
5624 MSFail++;
0a7de745 5625 return NULL;
6d2010ae
A
5626}
5627
1c79356b
A
5628/*
5629 * Partition an mbuf chain in two pieces, returning the tail --
5630 * all but the first len0 bytes. In case of failure, it returns NULL and
5631 * attempts to restore the chain to its original state.
5632 */
5633struct mbuf *
2d21ac55 5634m_split(struct mbuf *m0, int len0, int wait)
b0d623f7 5635{
0a7de745 5636 return m_split0(m0, len0, wait, 1);
b0d623f7
A
5637}
5638
5639static struct mbuf *
5640m_split0(struct mbuf *m0, int len0, int wait, int copyhdr)
1c79356b 5641{
91447636 5642 struct mbuf *m, *n;
1c79356b
A
5643 unsigned len = len0, remain;
5644
d9a64523
A
5645 /*
5646 * First iterate to the mbuf which contains the first byte of
5647 * data at offset len0
5648 */
0a7de745 5649 for (m = m0; m && len > m->m_len; m = m->m_next) {
1c79356b 5650 len -= m->m_len;
0a7de745
A
5651 }
5652 if (m == NULL) {
5653 return NULL;
5654 }
d9a64523
A
5655 /*
5656 * len effectively is now the offset in the current
5657 * mbuf where we have to perform split.
5658 *
5659 * remain becomes the tail length.
5660 * Note that len can also be == m->m_len
5661 */
1c79356b 5662 remain = m->m_len - len;
d9a64523
A
5663
5664 /*
5665 * If current mbuf len contains the entire remaining offset len,
5666 * just make the second mbuf chain pointing to next mbuf onwards
5667 * and return after making necessary adjustments
5668 */
5669 if (copyhdr && (m0->m_flags & M_PKTHDR) && remain == 0) {
5670 _MGETHDR(n, wait, m0->m_type);
0a7de745
A
5671 if (n == NULL) {
5672 return NULL;
5673 }
d9a64523
A
5674 n->m_next = m->m_next;
5675 m->m_next = NULL;
5676 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
5677 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
5678 m0->m_pkthdr.len = len0;
0a7de745
A
5679 return n;
5680 }
5681 if (copyhdr && (m0->m_flags & M_PKTHDR)) {
2d21ac55 5682 _MGETHDR(n, wait, m0->m_type);
0a7de745
A
5683 if (n == NULL) {
5684 return NULL;
5685 }
1c79356b
A
5686 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
5687 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
5688 m0->m_pkthdr.len = len0;
d9a64523
A
5689
5690 /*
5691 * If current points to external storage
5692 * then it can be shared by making last mbuf
5693 * of head chain and first mbuf of current chain
5694 * pointing to different data offsets
5695 */
0a7de745 5696 if (m->m_flags & M_EXT) {
1c79356b 5697 goto extpacket;
0a7de745 5698 }
1c79356b
A
5699 if (remain > MHLEN) {
5700 /* m can't be the lead packet */
5701 MH_ALIGN(n, 0);
5702 n->m_next = m_split(m, len, wait);
2d21ac55 5703 if (n->m_next == NULL) {
1c79356b 5704 (void) m_free(n);
0a7de745
A
5705 return NULL;
5706 } else {
5707 return n;
5708 }
5709 } else {
1c79356b 5710 MH_ALIGN(n, remain);
0a7de745 5711 }
1c79356b
A
5712 } else if (remain == 0) {
5713 n = m->m_next;
2d21ac55 5714 m->m_next = NULL;
0a7de745 5715 return n;
1c79356b 5716 } else {
2d21ac55 5717 _MGET(n, wait, m->m_type);
0a7de745
A
5718 if (n == NULL) {
5719 return NULL;
5720 }
d9a64523
A
5721
5722 if ((m->m_flags & M_EXT) == 0) {
5723 VERIFY(remain <= MLEN);
5724 M_ALIGN(n, remain);
5725 }
1c79356b
A
5726 }
5727extpacket:
5728 if (m->m_flags & M_EXT) {
5729 n->m_flags |= M_EXT;
0b4e3aa0 5730 n->m_ext = m->m_ext;
2d21ac55 5731 m_incref(m);
1c79356b
A
5732 n->m_data = m->m_data + len;
5733 } else {
2d21ac55 5734 bcopy(MTOD(m, caddr_t) + len, MTOD(n, caddr_t), remain);
1c79356b
A
5735 }
5736 n->m_len = remain;
5737 m->m_len = len;
5738 n->m_next = m->m_next;
2d21ac55 5739 m->m_next = NULL;
0a7de745 5740 return n;
1c79356b 5741}
2d21ac55 5742
1c79356b
A
5743/*
5744 * Routine to copy from device local memory into mbufs.
5745 */
5746struct mbuf *
2d21ac55
A
5747m_devget(char *buf, int totlen, int off0, struct ifnet *ifp,
5748 void (*copy)(const void *, void *, size_t))
1c79356b 5749{
91447636 5750 struct mbuf *m;
2d21ac55 5751 struct mbuf *top = NULL, **mp = &top;
91447636
A
5752 int off = off0, len;
5753 char *cp;
1c79356b
A
5754 char *epkt;
5755
5756 cp = buf;
5757 epkt = cp + totlen;
5758 if (off) {
5759 /*
5760 * If 'off' is non-zero, packet is trailer-encapsulated,
5761 * so we have to skip the type and length fields.
5762 */
0a7de745
A
5763 cp += off + 2 * sizeof(u_int16_t);
5764 totlen -= 2 * sizeof(u_int16_t);
1c79356b 5765 }
2d21ac55 5766 _MGETHDR(m, M_DONTWAIT, MT_DATA);
0a7de745
A
5767 if (m == NULL) {
5768 return NULL;
5769 }
1c79356b
A
5770 m->m_pkthdr.rcvif = ifp;
5771 m->m_pkthdr.len = totlen;
5772 m->m_len = MHLEN;
5773
5774 while (totlen > 0) {
2d21ac55
A
5775 if (top != NULL) {
5776 _MGET(m, M_DONTWAIT, MT_DATA);
5777 if (m == NULL) {
1c79356b 5778 m_freem(top);
0a7de745 5779 return NULL;
1c79356b
A
5780 }
5781 m->m_len = MLEN;
5782 }
2d21ac55 5783 len = MIN(totlen, epkt - cp);
1c79356b
A
5784 if (len >= MINCLSIZE) {
5785 MCLGET(m, M_DONTWAIT);
2d21ac55
A
5786 if (m->m_flags & M_EXT) {
5787 m->m_len = len = MIN(len, m_maxsize(MC_CL));
5788 } else {
5789 /* give up when it's out of cluster mbufs */
0a7de745 5790 if (top != NULL) {
2d21ac55 5791 m_freem(top);
0a7de745 5792 }
1c79356b 5793 m_freem(m);
0a7de745 5794 return NULL;
1c79356b
A
5795 }
5796 } else {
5797 /*
5798 * Place initial small packet/header at end of mbuf.
5799 */
5800 if (len < m->m_len) {
2d21ac55 5801 if (top == NULL &&
0a7de745 5802 len + max_linkhdr <= m->m_len) {
1c79356b 5803 m->m_data += max_linkhdr;
0a7de745 5804 }
1c79356b 5805 m->m_len = len;
2d21ac55 5806 } else {
1c79356b 5807 len = m->m_len;
2d21ac55 5808 }
1c79356b 5809 }
0a7de745 5810 if (copy) {
2d21ac55 5811 copy(cp, MTOD(m, caddr_t), (unsigned)len);
0a7de745 5812 } else {
2d21ac55 5813 bcopy(cp, MTOD(m, caddr_t), (unsigned)len);
0a7de745 5814 }
1c79356b
A
5815 cp += len;
5816 *mp = m;
5817 mp = &m->m_next;
5818 totlen -= len;
0a7de745 5819 if (cp == epkt) {
1c79356b 5820 cp = buf;
0a7de745 5821 }
1c79356b 5822 }
0a7de745 5823 return top;
1c79356b
A
5824}
5825
6d2010ae 5826#ifndef MBUF_GROWTH_NORMAL_THRESH
0a7de745 5827#define MBUF_GROWTH_NORMAL_THRESH 25
6d2010ae 5828#endif
b0d623f7 5829
1c79356b 5830/*
2d21ac55 5831 * Cluster freelist allocation check.
1c79356b
A
5832 */
5833static int
91447636 5834m_howmany(int num, size_t bufsize)
1c79356b 5835{
2d21ac55 5836 int i = 0, j = 0;
6d2010ae
A
5837 u_int32_t m_mbclusters, m_clusters, m_bigclusters, m_16kclusters;
5838 u_int32_t m_mbfree, m_clfree, m_bigclfree, m_16kclfree;
5839 u_int32_t sumclusters, freeclusters;
5840 u_int32_t percent_pool, percent_kmem;
5841 u_int32_t mb_growth, mb_growth_thresh;
5842
5843 VERIFY(bufsize == m_maxsize(MC_BIGCL) ||
5844 bufsize == m_maxsize(MC_16KCL));
2d21ac55 5845
5ba3f43e 5846 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55 5847
6d2010ae
A
5848 /* Numbers in 2K cluster units */
5849 m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT;
2d21ac55 5850 m_clusters = m_total(MC_CL);
6d2010ae 5851 m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT;
2d21ac55 5852 m_16kclusters = m_total(MC_16KCL);
6d2010ae
A
5853 sumclusters = m_mbclusters + m_clusters + m_bigclusters;
5854
5855 m_mbfree = m_infree(MC_MBUF) >> NMBPCLSHIFT;
2d21ac55 5856 m_clfree = m_infree(MC_CL);
6d2010ae 5857 m_bigclfree = m_infree(MC_BIGCL) << NCLPBGSHIFT;
2d21ac55 5858 m_16kclfree = m_infree(MC_16KCL);
6d2010ae 5859 freeclusters = m_mbfree + m_clfree + m_bigclfree;
2d21ac55 5860
91447636 5861 /* Bail if we've maxed out the mbuf memory map */
6d2010ae 5862 if ((bufsize == m_maxsize(MC_BIGCL) && sumclusters >= nclusters) ||
2d21ac55 5863 (njcl > 0 && bufsize == m_maxsize(MC_16KCL) &&
6d2010ae 5864 (m_16kclusters << NCLPJCLSHIFT) >= njcl)) {
d9a64523
A
5865 mbwdog_logger("maxed out nclusters (%u >= %u) or njcl (%u >= %u)",
5866 sumclusters, nclusters,
5867 (m_16kclusters << NCLPJCLSHIFT), njcl);
0a7de745 5868 return 0;
2d21ac55
A
5869 }
5870
6d2010ae 5871 if (bufsize == m_maxsize(MC_BIGCL)) {
2d21ac55 5872 /* Under minimum */
0a7de745
A
5873 if (m_bigclusters < m_minlimit(MC_BIGCL)) {
5874 return m_minlimit(MC_BIGCL) - m_bigclusters;
5875 }
6d2010ae
A
5876
5877 percent_pool =
5878 ((sumclusters - freeclusters) * 100) / sumclusters;
5879 percent_kmem = (sumclusters * 100) / nclusters;
5880
5881 /*
5882 * If a light/normal user, grow conservatively (75%)
5883 * If a heavy user, grow aggressively (50%)
5884 */
0a7de745 5885 if (percent_kmem < MBUF_GROWTH_NORMAL_THRESH) {
6d2010ae 5886 mb_growth = MB_GROWTH_NORMAL;
0a7de745 5887 } else {
6d2010ae 5888 mb_growth = MB_GROWTH_AGGRESSIVE;
0a7de745 5889 }
6d2010ae
A
5890
5891 if (percent_kmem < 5) {
5892 /* For initial allocations */
5893 i = num;
5894 } else {
5895 /* Return if >= MBIGCL_LOWAT clusters available */
5896 if (m_infree(MC_BIGCL) >= MBIGCL_LOWAT &&
5897 m_total(MC_BIGCL) >=
0a7de745
A
5898 MBIGCL_LOWAT + m_minlimit(MC_BIGCL)) {
5899 return 0;
5900 }
6d2010ae
A
5901
5902 /* Ensure at least num clusters are accessible */
0a7de745 5903 if (num >= m_infree(MC_BIGCL)) {
6d2010ae 5904 i = num - m_infree(MC_BIGCL);
0a7de745
A
5905 }
5906 if (num > m_total(MC_BIGCL) - m_minlimit(MC_BIGCL)) {
6d2010ae
A
5907 j = num - (m_total(MC_BIGCL) -
5908 m_minlimit(MC_BIGCL));
0a7de745 5909 }
6d2010ae 5910
2d21ac55 5911 i = MAX(i, j);
6d2010ae
A
5912
5913 /*
5914 * Grow pool if percent_pool > 75 (normal growth)
5915 * or percent_pool > 50 (aggressive growth).
5916 */
5917 mb_growth_thresh = 100 - (100 / (1 << mb_growth));
0a7de745 5918 if (percent_pool > mb_growth_thresh) {
6d2010ae
A
5919 j = ((sumclusters + num) >> mb_growth) -
5920 freeclusters;
0a7de745 5921 }
2d21ac55 5922 i = MAX(i, j);
2d21ac55 5923 }
6d2010ae
A
5924
5925 /* Check to ensure we didn't go over limits */
0a7de745 5926 if (i + m_bigclusters >= m_maxlimit(MC_BIGCL)) {
6d2010ae 5927 i = m_maxlimit(MC_BIGCL) - m_bigclusters;
0a7de745
A
5928 }
5929 if ((i << 1) + sumclusters >= nclusters) {
6d2010ae 5930 i = (nclusters - sumclusters) >> 1;
0a7de745 5931 }
2d21ac55 5932 VERIFY((m_total(MC_BIGCL) + i) <= m_maxlimit(MC_BIGCL));
6d2010ae 5933 VERIFY(sumclusters + (i << 1) <= nclusters);
6d2010ae 5934 } else { /* 16K CL */
2d21ac55 5935 VERIFY(njcl > 0);
6d2010ae 5936 /* Ensure at least num clusters are available */
0a7de745 5937 if (num >= m_16kclfree) {
6d2010ae 5938 i = num - m_16kclfree;
0a7de745 5939 }
6d2010ae
A
5940
5941 /* Always grow 16KCL pool aggressively */
0a7de745 5942 if (((m_16kclusters + num) >> 1) > m_16kclfree) {
6d2010ae 5943 j = ((m_16kclusters + num) >> 1) - m_16kclfree;
0a7de745 5944 }
6d2010ae
A
5945 i = MAX(i, j);
5946
5947 /* Check to ensure we don't go over limit */
0a7de745 5948 if ((i + m_total(MC_16KCL)) >= m_maxlimit(MC_16KCL)) {
5ba3f43e 5949 i = m_maxlimit(MC_16KCL) - m_total(MC_16KCL);
0a7de745 5950 }
91447636 5951 }
0a7de745 5952 return i;
1c79356b 5953}
b0d623f7
A
5954/*
5955 * Return the number of bytes in the mbuf chain, m.
6d2010ae
A
5956 */
5957unsigned int
b0d623f7
A
5958m_length(struct mbuf *m)
5959{
5960 struct mbuf *m0;
5961 unsigned int pktlen;
5962
0a7de745
A
5963 if (m->m_flags & M_PKTHDR) {
5964 return m->m_pkthdr.len;
5965 }
b0d623f7
A
5966
5967 pktlen = 0;
0a7de745 5968 for (m0 = m; m0 != NULL; m0 = m0->m_next) {
b0d623f7 5969 pktlen += m0->m_len;
0a7de745
A
5970 }
5971 return pktlen;
b0d623f7
A
5972}
5973
1c79356b
A
5974/*
5975 * Copy data from a buffer back into the indicated mbuf chain,
5976 * starting "off" bytes from the beginning, extending the mbuf
5977 * chain if necessary.
5978 */
5979void
b0d623f7 5980m_copyback(struct mbuf *m0, int off, int len, const void *cp)
1c79356b 5981{
b0d623f7
A
5982#if DEBUG
5983 struct mbuf *origm = m0;
5984 int error;
5985#endif /* DEBUG */
1c79356b 5986
0a7de745 5987 if (m0 == NULL) {
1c79356b 5988 return;
0a7de745 5989 }
b0d623f7
A
5990
5991#if DEBUG
5992 error =
5993#endif /* DEBUG */
5994 m_copyback0(&m0, off, len, cp,
5995 M_COPYBACK0_COPYBACK | M_COPYBACK0_EXTEND, M_DONTWAIT);
5996
5997#if DEBUG
0a7de745 5998 if (error != 0 || (m0 != NULL && origm != m0)) {
b0d623f7 5999 panic("m_copyback");
0a7de745 6000 }
b0d623f7
A
6001#endif /* DEBUG */
6002}
6003
6004struct mbuf *
6005m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how)
6006{
6007 int error;
6008
6009 /* don't support chain expansion */
6010 VERIFY(off + len <= m_length(m0));
6011
6012 error = m_copyback0(&m0, off, len, cp,
6013 M_COPYBACK0_COPYBACK | M_COPYBACK0_COW, how);
6014 if (error) {
6015 /*
6016 * no way to recover from partial success.
6017 * just free the chain.
6018 */
6019 m_freem(m0);
0a7de745 6020 return NULL;
b0d623f7 6021 }
0a7de745 6022 return m0;
b0d623f7
A
6023}
6024
6025/*
6026 * m_makewritable: ensure the specified range writable.
6027 */
6028int
6029m_makewritable(struct mbuf **mp, int off, int len, int how)
6030{
6031 int error;
6032#if DEBUG
6033 struct mbuf *n;
6034 int origlen, reslen;
6035
6036 origlen = m_length(*mp);
6037#endif /* DEBUG */
6038
6039#if 0 /* M_COPYALL is large enough */
0a7de745 6040 if (len == M_COPYALL) {
b0d623f7 6041 len = m_length(*mp) - off; /* XXX */
0a7de745 6042 }
b0d623f7
A
6043#endif
6044
6045 error = m_copyback0(mp, off, len, NULL,
6046 M_COPYBACK0_PRESERVE | M_COPYBACK0_COW, how);
6047
6048#if DEBUG
6049 reslen = 0;
0a7de745 6050 for (n = *mp; n; n = n->m_next) {
b0d623f7 6051 reslen += n->m_len;
0a7de745
A
6052 }
6053 if (origlen != reslen) {
b0d623f7 6054 panic("m_makewritable: length changed");
0a7de745
A
6055 }
6056 if (((*mp)->m_flags & M_PKTHDR) && reslen != (*mp)->m_pkthdr.len) {
b0d623f7 6057 panic("m_makewritable: inconsist");
0a7de745 6058 }
b0d623f7
A
6059#endif /* DEBUG */
6060
0a7de745 6061 return error;
b0d623f7
A
6062}
6063
6064static int
6065m_copyback0(struct mbuf **mp0, int off, int len, const void *vp, int flags,
6066 int how)
6067{
6068 int mlen;
6069 struct mbuf *m, *n;
6070 struct mbuf **mp;
6071 int totlen = 0;
6072 const char *cp = vp;
6073
6074 VERIFY(mp0 != NULL);
6075 VERIFY(*mp0 != NULL);
6076 VERIFY((flags & M_COPYBACK0_PRESERVE) == 0 || cp == NULL);
6077 VERIFY((flags & M_COPYBACK0_COPYBACK) == 0 || cp != NULL);
6078
6079 /*
6080 * we don't bother to update "totlen" in the case of M_COPYBACK0_COW,
6081 * assuming that M_COPYBACK0_EXTEND and M_COPYBACK0_COW are exclusive.
6082 */
6083
0a7de745 6084 VERIFY((~flags & (M_COPYBACK0_EXTEND | M_COPYBACK0_COW)) != 0);
b0d623f7
A
6085
6086 mp = mp0;
6087 m = *mp;
1c79356b
A
6088 while (off > (mlen = m->m_len)) {
6089 off -= mlen;
6090 totlen += mlen;
2d21ac55 6091 if (m->m_next == NULL) {
b0d623f7
A
6092 int tspace;
6093extend:
0a7de745 6094 if (!(flags & M_COPYBACK0_EXTEND)) {
1c79356b 6095 goto out;
0a7de745 6096 }
b0d623f7
A
6097
6098 /*
6099 * try to make some space at the end of "m".
6100 */
6101
6102 mlen = m->m_len;
6103 if (off + len >= MINCLSIZE &&
6104 !(m->m_flags & M_EXT) && m->m_len == 0) {
6105 MCLGET(m, how);
6106 }
6107 tspace = M_TRAILINGSPACE(m);
6108 if (tspace > 0) {
6109 tspace = MIN(tspace, off + len);
6110 VERIFY(tspace > 0);
6111 bzero(mtod(m, char *) + m->m_len,
6112 MIN(off, tspace));
6113 m->m_len += tspace;
6114 off += mlen;
6115 totlen -= mlen;
6116 continue;
6117 }
6118
6119 /*
6120 * need to allocate an mbuf.
6121 */
6122
6123 if (off + len >= MINCLSIZE) {
6124 n = m_getcl(how, m->m_type, 0);
6125 } else {
6126 n = _M_GET(how, m->m_type);
6127 }
6128 if (n == NULL) {
6129 goto out;
6130 }
6131 n->m_len = 0;
6132 n->m_len = MIN(M_TRAILINGSPACE(n), off + len);
6133 bzero(mtod(n, char *), MIN(n->m_len, off));
1c79356b
A
6134 m->m_next = n;
6135 }
b0d623f7 6136 mp = &m->m_next;
1c79356b
A
6137 m = m->m_next;
6138 }
6139 while (len > 0) {
b0d623f7
A
6140 mlen = m->m_len - off;
6141 if (mlen != 0 && m_mclhasreference(m)) {
6142 char *datap;
6143 int eatlen;
6144
6145 /*
6146 * this mbuf is read-only.
6147 * allocate a new writable mbuf and try again.
6148 */
6149
39236c6e 6150#if DIAGNOSTIC
0a7de745 6151 if (!(flags & M_COPYBACK0_COW)) {
b0d623f7 6152 panic("m_copyback0: read-only");
0a7de745 6153 }
39236c6e 6154#endif /* DIAGNOSTIC */
b0d623f7
A
6155
6156 /*
6157 * if we're going to write into the middle of
6158 * a mbuf, split it first.
6159 */
6160 if (off > 0 && len < mlen) {
6161 n = m_split0(m, off, how, 0);
0a7de745 6162 if (n == NULL) {
b0d623f7 6163 goto enobufs;
0a7de745 6164 }
b0d623f7
A
6165 m->m_next = n;
6166 mp = &m->m_next;
6167 m = n;
6168 off = 0;
6169 continue;
6170 }
6171
6172 /*
6173 * XXX TODO coalesce into the trailingspace of
6174 * the previous mbuf when possible.
6175 */
6176
6177 /*
6178 * allocate a new mbuf. copy packet header if needed.
6179 */
6180 n = _M_GET(how, m->m_type);
0a7de745 6181 if (n == NULL) {
b0d623f7 6182 goto enobufs;
0a7de745 6183 }
b0d623f7
A
6184 if (off == 0 && (m->m_flags & M_PKTHDR)) {
6185 M_COPY_PKTHDR(n, m);
6186 n->m_len = MHLEN;
6187 } else {
0a7de745 6188 if (len >= MINCLSIZE) {
b0d623f7 6189 MCLGET(n, M_DONTWAIT);
0a7de745 6190 }
b0d623f7
A
6191 n->m_len =
6192 (n->m_flags & M_EXT) ? MCLBYTES : MLEN;
6193 }
0a7de745 6194 if (n->m_len > len) {
b0d623f7 6195 n->m_len = len;
0a7de745 6196 }
b0d623f7
A
6197
6198 /*
6199 * free the region which has been overwritten.
6200 * copying data from old mbufs if requested.
6201 */
0a7de745 6202 if (flags & M_COPYBACK0_PRESERVE) {
b0d623f7 6203 datap = mtod(n, char *);
0a7de745 6204 } else {
b0d623f7 6205 datap = NULL;
0a7de745 6206 }
b0d623f7
A
6207 eatlen = n->m_len;
6208 VERIFY(off == 0 || eatlen >= mlen);
6209 if (off > 0) {
6210 VERIFY(len >= mlen);
6211 m->m_len = off;
6212 m->m_next = n;
6213 if (datap) {
6214 m_copydata(m, off, mlen, datap);
6215 datap += mlen;
6216 }
6217 eatlen -= mlen;
6218 mp = &m->m_next;
6219 m = m->m_next;
6220 }
6221 while (m != NULL && m_mclhasreference(m) &&
6222 n->m_type == m->m_type && eatlen > 0) {
6223 mlen = MIN(eatlen, m->m_len);
6224 if (datap) {
6225 m_copydata(m, 0, mlen, datap);
6226 datap += mlen;
6227 }
6228 m->m_data += mlen;
6229 m->m_len -= mlen;
6230 eatlen -= mlen;
0a7de745 6231 if (m->m_len == 0) {
b0d623f7 6232 *mp = m = m_free(m);
0a7de745 6233 }
b0d623f7 6234 }
0a7de745 6235 if (eatlen > 0) {
b0d623f7 6236 n->m_len -= eatlen;
0a7de745 6237 }
b0d623f7
A
6238 n->m_next = m;
6239 *mp = m = n;
6240 continue;
6241 }
6242 mlen = MIN(mlen, len);
6243 if (flags & M_COPYBACK0_COPYBACK) {
6244 bcopy(cp, mtod(m, caddr_t) + off, (unsigned)mlen);
6245 cp += mlen;
6246 }
1c79356b
A
6247 len -= mlen;
6248 mlen += off;
6249 off = 0;
6250 totlen += mlen;
0a7de745 6251 if (len == 0) {
1c79356b 6252 break;
0a7de745 6253 }
2d21ac55 6254 if (m->m_next == NULL) {
b0d623f7 6255 goto extend;
1c79356b 6256 }
b0d623f7 6257 mp = &m->m_next;
1c79356b
A
6258 m = m->m_next;
6259 }
2d21ac55 6260out:
b0d623f7
A
6261 if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) {
6262 VERIFY(flags & M_COPYBACK0_EXTEND);
1c79356b 6263 m->m_pkthdr.len = totlen;
b0d623f7
A
6264 }
6265
0a7de745 6266 return 0;
b0d623f7
A
6267
6268enobufs:
0a7de745 6269 return ENOBUFS;
1c79356b
A
6270}
6271
39236c6e 6272uint64_t
2d21ac55
A
6273mcl_to_paddr(char *addr)
6274{
b0d623f7 6275 vm_offset_t base_phys;
1c79356b 6276
0a7de745
A
6277 if (!MBUF_IN_MAP(addr)) {
6278 return 0;
6279 }
39236c6e 6280 base_phys = mcl_paddr[atop_64(addr - (char *)mbutl)];
1c79356b 6281
0a7de745
A
6282 if (base_phys == 0) {
6283 return 0;
6284 }
6285 return (uint64_t)(ptoa_64(base_phys) | ((uint64_t)addr & PAGE_MASK));
1c79356b
A
6286}
6287
6288/*
6289 * Dup the mbuf chain passed in. The whole thing. No cute additional cruft.
6290 * And really copy the thing. That way, we don't "precompute" checksums
2d21ac55
A
6291 * for unsuspecting consumers. Assumption: m->m_nextpkt == 0. Trick: for
6292 * small packets, don't dup into a cluster. That way received packets
6293 * don't take up too much room in the sockbuf (cf. sbspace()).
1c79356b
A
6294 */
6295int MDFail;
6296
6297struct mbuf *
91447636 6298m_dup(struct mbuf *m, int how)
2d21ac55 6299{
91447636 6300 struct mbuf *n, **np;
1c79356b
A
6301 struct mbuf *top;
6302 int copyhdr = 0;
6303
6304 np = &top;
2d21ac55 6305 top = NULL;
0a7de745 6306 if (m->m_flags & M_PKTHDR) {
1c79356b 6307 copyhdr = 1;
0a7de745 6308 }
1c79356b
A
6309
6310 /*
6311 * Quick check: if we have one mbuf and its data fits in an
6312 * mbuf with packet header, just copy and go.
6313 */
2d21ac55
A
6314 if (m->m_next == NULL) {
6315 /* Then just move the data into an mbuf and be done... */
6316 if (copyhdr) {
6317 if (m->m_pkthdr.len <= MHLEN && m->m_len <= MHLEN) {
0a7de745
A
6318 if ((n = _M_GETHDR(how, m->m_type)) == NULL) {
6319 return NULL;
6320 }
1c79356b 6321 n->m_len = m->m_len;
3a60a9f5
A
6322 m_dup_pkthdr(n, m, how);
6323 bcopy(m->m_data, n->m_data, m->m_len);
0a7de745 6324 return n;
1c79356b 6325 }
2d21ac55 6326 } else if (m->m_len <= MLEN) {
0a7de745
A
6327 if ((n = _M_GET(how, m->m_type)) == NULL) {
6328 return NULL;
6329 }
1c79356b
A
6330 bcopy(m->m_data, n->m_data, m->m_len);
6331 n->m_len = m->m_len;
0a7de745 6332 return n;
1c79356b
A
6333 }
6334 }
2d21ac55 6335 while (m != NULL) {
1c79356b 6336#if BLUE_DEBUG
39037602 6337 printf("<%x: %x, %x, %x\n", m, m->m_flags, m->m_len,
2d21ac55 6338 m->m_data);
1c79356b 6339#endif
0a7de745 6340 if (copyhdr) {
2d21ac55 6341 n = _M_GETHDR(how, m->m_type);
0a7de745 6342 } else {
2d21ac55 6343 n = _M_GET(how, m->m_type);
0a7de745
A
6344 }
6345 if (n == NULL) {
1c79356b 6346 goto nospace;
0a7de745 6347 }
2d21ac55 6348 if (m->m_flags & M_EXT) {
0a7de745 6349 if (m->m_len <= m_maxsize(MC_CL)) {
2d21ac55 6350 MCLGET(n, how);
0a7de745 6351 } else if (m->m_len <= m_maxsize(MC_BIGCL)) {
2d21ac55 6352 n = m_mbigget(n, how);
0a7de745 6353 } else if (m->m_len <= m_maxsize(MC_16KCL) && njcl > 0) {
2d21ac55 6354 n = m_m16kget(n, how);
0a7de745 6355 }
2d21ac55
A
6356 if (!(n->m_flags & M_EXT)) {
6357 (void) m_free(n);
1c79356b 6358 goto nospace;
2d21ac55 6359 }
cb323159
A
6360 } else {
6361 VERIFY((copyhdr == 1 && m->m_len <= MHLEN) ||
6362 (copyhdr == 0 && m->m_len <= MLEN));
1c79356b
A
6363 }
6364 *np = n;
2d21ac55
A
6365 if (copyhdr) {
6366 /* Don't use M_COPY_PKTHDR: preserve m_data */
3a60a9f5 6367 m_dup_pkthdr(n, m, how);
1c79356b 6368 copyhdr = 0;
0a7de745 6369 if (!(n->m_flags & M_EXT)) {
1c79356b 6370 n->m_data = n->m_pktdat;
0a7de745 6371 }
1c79356b
A
6372 }
6373 n->m_len = m->m_len;
6374 /*
6375 * Get the dup on the same bdry as the original
6376 * Assume that the two mbufs have the same offset to data area
2d21ac55 6377 * (up to word boundaries)
1c79356b 6378 */
2d21ac55 6379 bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), (unsigned)n->m_len);
1c79356b
A
6380 m = m->m_next;
6381 np = &n->m_next;
6382#if BLUE_DEBUG
39037602 6383 printf(">%x: %x, %x, %x\n", n, n->m_flags, n->m_len,
2d21ac55 6384 n->m_data);
1c79356b
A
6385#endif
6386 }
6387
0a7de745 6388 if (top == NULL) {
1c79356b 6389 MDFail++;
0a7de745
A
6390 }
6391 return top;
2d21ac55
A
6392
6393nospace:
1c79356b
A
6394 m_freem(top);
6395 MDFail++;
0a7de745 6396 return NULL;
1c79356b
A
6397}
6398
0a7de745
A
6399#define MBUF_MULTIPAGES(m) \
6400 (((m)->m_flags & M_EXT) && \
6401 ((IS_P2ALIGNED((m)->m_data, PAGE_SIZE) \
6402 && (m)->m_len > PAGE_SIZE) || \
6403 (!IS_P2ALIGNED((m)->m_data, PAGE_SIZE) && \
3e170ce0 6404 P2ROUNDUP((m)->m_data, PAGE_SIZE) < ((uintptr_t)(m)->m_data + (m)->m_len))))
2d21ac55
A
6405
6406static struct mbuf *
6407m_expand(struct mbuf *m, struct mbuf **last)
9bccf70c 6408{
2d21ac55
A
6409 struct mbuf *top = NULL;
6410 struct mbuf **nm = &top;
6411 uintptr_t data0, data;
6412 unsigned int len0, len;
6413
6414 VERIFY(MBUF_MULTIPAGES(m));
6415 VERIFY(m->m_next == NULL);
6416 data0 = (uintptr_t)m->m_data;
6417 len0 = m->m_len;
6418 *last = top;
6419
6420 for (;;) {
6421 struct mbuf *n;
6422
6423 data = data0;
0a7de745 6424 if (IS_P2ALIGNED(data, PAGE_SIZE) && len0 > PAGE_SIZE) {
3e170ce0 6425 len = PAGE_SIZE;
0a7de745
A
6426 } else if (!IS_P2ALIGNED(data, PAGE_SIZE) &&
6427 P2ROUNDUP(data, PAGE_SIZE) < (data + len0)) {
3e170ce0 6428 len = P2ROUNDUP(data, PAGE_SIZE) - data;
0a7de745 6429 } else {
2d21ac55 6430 len = len0;
0a7de745 6431 }
2d21ac55
A
6432
6433 VERIFY(len > 0);
6434 VERIFY(m->m_flags & M_EXT);
6435 m->m_data = (void *)data;
6436 m->m_len = len;
6437
6438 *nm = *last = m;
6439 nm = &m->m_next;
6440 m->m_next = NULL;
6441
6442 data0 += len;
6443 len0 -= len;
0a7de745 6444 if (len0 == 0) {
2d21ac55 6445 break;
0a7de745 6446 }
2d21ac55
A
6447
6448 n = _M_RETRY(M_DONTWAIT, MT_DATA);
6449 if (n == NULL) {
6450 m_freem(top);
6451 top = *last = NULL;
6452 break;
6453 }
6454
6455 n->m_ext = m->m_ext;
6456 m_incref(m);
6457 n->m_flags |= M_EXT;
6458 m = n;
6459 }
0a7de745 6460 return top;
9bccf70c
A
6461}
6462
2d21ac55
A
6463struct mbuf *
6464m_normalize(struct mbuf *m)
9bccf70c 6465{
2d21ac55
A
6466 struct mbuf *top = NULL;
6467 struct mbuf **nm = &top;
6468 boolean_t expanded = FALSE;
6469
6470 while (m != NULL) {
6471 struct mbuf *n;
6472
6473 n = m->m_next;
6474 m->m_next = NULL;
6475
6476 /* Does the data cross one or more page boundaries? */
6477 if (MBUF_MULTIPAGES(m)) {
6478 struct mbuf *last;
6479 if ((m = m_expand(m, &last)) == NULL) {
6480 m_freem(n);
6481 m_freem(top);
6482 top = NULL;
6483 break;
6484 }
6485 *nm = m;
6486 nm = &last->m_next;
6487 expanded = TRUE;
6488 } else {
6489 *nm = m;
6490 nm = &m->m_next;
6491 }
6492 m = n;
6493 }
0a7de745 6494 if (expanded) {
2d21ac55 6495 atomic_add_32(&mb_normalized, 1);
0a7de745
A
6496 }
6497 return top;
9bccf70c
A
6498}
6499
6d2010ae
A
6500/*
6501 * Append the specified data to the indicated mbuf chain,
6502 * Extend the mbuf chain if the new data does not fit in
6503 * existing space.
6504 *
6505 * Return 1 if able to complete the job; otherwise 0.
6506 */
6507int
6508m_append(struct mbuf *m0, int len, caddr_t cp)
6509{
6510 struct mbuf *m, *n;
6511 int remainder, space;
6512
0a7de745 6513 for (m = m0; m->m_next != NULL; m = m->m_next) {
6d2010ae 6514 ;
0a7de745 6515 }
6d2010ae
A
6516 remainder = len;
6517 space = M_TRAILINGSPACE(m);
6518 if (space > 0) {
6519 /*
6520 * Copy into available space.
6521 */
0a7de745 6522 if (space > remainder) {
6d2010ae 6523 space = remainder;
0a7de745 6524 }
6d2010ae
A
6525 bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
6526 m->m_len += space;
39037602
A
6527 cp += space;
6528 remainder -= space;
6d2010ae
A
6529 }
6530 while (remainder > 0) {
6531 /*
6532 * Allocate a new mbuf; could check space
6533 * and allocate a cluster instead.
6534 */
6535 n = m_get(M_WAITOK, m->m_type);
0a7de745 6536 if (n == NULL) {
6d2010ae 6537 break;
0a7de745 6538 }
6d2010ae
A
6539 n->m_len = min(MLEN, remainder);
6540 bcopy(cp, mtod(n, caddr_t), n->m_len);
6541 cp += n->m_len;
6542 remainder -= n->m_len;
6543 m->m_next = n;
6544 m = n;
6545 }
0a7de745 6546 if (m0->m_flags & M_PKTHDR) {
6d2010ae 6547 m0->m_pkthdr.len += len - remainder;
0a7de745
A
6548 }
6549 return remainder == 0;
6d2010ae
A
6550}
6551
6552struct mbuf *
6553m_last(struct mbuf *m)
6554{
0a7de745 6555 while (m->m_next != NULL) {
6d2010ae 6556 m = m->m_next;
0a7de745
A
6557 }
6558 return m;
6d2010ae
A
6559}
6560
316670eb
A
6561unsigned int
6562m_fixhdr(struct mbuf *m0)
6563{
6564 u_int len;
6565
39236c6e
A
6566 VERIFY(m0->m_flags & M_PKTHDR);
6567
316670eb
A
6568 len = m_length2(m0, NULL);
6569 m0->m_pkthdr.len = len;
0a7de745 6570 return len;
316670eb
A
6571}
6572
6573unsigned int
6574m_length2(struct mbuf *m0, struct mbuf **last)
6575{
6576 struct mbuf *m;
6577 u_int len;
6578
6579 len = 0;
6580 for (m = m0; m != NULL; m = m->m_next) {
6581 len += m->m_len;
0a7de745 6582 if (m->m_next == NULL) {
316670eb 6583 break;
0a7de745 6584 }
316670eb 6585 }
0a7de745 6586 if (last != NULL) {
316670eb 6587 *last = m;
0a7de745
A
6588 }
6589 return len;
316670eb
A
6590}
6591
6592/*
6593 * Defragment a mbuf chain, returning the shortest possible chain of mbufs
6594 * and clusters. If allocation fails and this cannot be completed, NULL will
6595 * be returned, but the passed in chain will be unchanged. Upon success,
6596 * the original chain will be freed, and the new chain will be returned.
6597 *
6598 * If a non-packet header is passed in, the original mbuf (chain?) will
6599 * be returned unharmed.
6600 *
6601 * If offset is specfied, the first mbuf in the chain will have a leading
6602 * space of the amount stated by the "off" parameter.
6603 *
6604 * This routine requires that the m_pkthdr.header field of the original
6605 * mbuf chain is cleared by the caller.
6606 */
6607struct mbuf *
6608m_defrag_offset(struct mbuf *m0, u_int32_t off, int how)
6609{
6610 struct mbuf *m_new = NULL, *m_final = NULL;
6611 int progress = 0, length, pktlen;
6612
0a7de745
A
6613 if (!(m0->m_flags & M_PKTHDR)) {
6614 return m0;
6615 }
316670eb
A
6616
6617 VERIFY(off < MHLEN);
6618 m_fixhdr(m0); /* Needed sanity check */
6619
6620 pktlen = m0->m_pkthdr.len + off;
0a7de745 6621 if (pktlen > MHLEN) {
316670eb 6622 m_final = m_getcl(how, MT_DATA, M_PKTHDR);
0a7de745 6623 } else {
316670eb 6624 m_final = m_gethdr(how, MT_DATA);
0a7de745 6625 }
316670eb 6626
0a7de745 6627 if (m_final == NULL) {
316670eb 6628 goto nospace;
0a7de745 6629 }
316670eb
A
6630
6631 if (off > 0) {
6632 pktlen -= off;
316670eb
A
6633 m_final->m_data += off;
6634 }
6635
6636 /*
6637 * Caller must have handled the contents pointed to by this
6638 * pointer before coming here, as otherwise it will point to
6639 * the original mbuf which will get freed upon success.
6640 */
39236c6e 6641 VERIFY(m0->m_pkthdr.pkt_hdr == NULL);
316670eb 6642
0a7de745 6643 if (m_dup_pkthdr(m_final, m0, how) == 0) {
316670eb 6644 goto nospace;
0a7de745 6645 }
316670eb
A
6646
6647 m_new = m_final;
6648
6649 while (progress < pktlen) {
6650 length = pktlen - progress;
0a7de745 6651 if (length > MCLBYTES) {
316670eb 6652 length = MCLBYTES;
0a7de745 6653 }
39236c6e 6654 length -= ((m_new == m_final) ? off : 0);
0a7de745 6655 if (length < 0) {
5ba3f43e 6656 goto nospace;
0a7de745 6657 }
316670eb
A
6658
6659 if (m_new == NULL) {
0a7de745 6660 if (length > MLEN) {
316670eb 6661 m_new = m_getcl(how, MT_DATA, 0);
0a7de745 6662 } else {
316670eb 6663 m_new = m_get(how, MT_DATA);
0a7de745
A
6664 }
6665 if (m_new == NULL) {
316670eb 6666 goto nospace;
0a7de745 6667 }
316670eb
A
6668 }
6669
6670 m_copydata(m0, progress, length, mtod(m_new, caddr_t));
6671 progress += length;
6672 m_new->m_len = length;
0a7de745 6673 if (m_new != m_final) {
316670eb 6674 m_cat(m_final, m_new);
0a7de745 6675 }
316670eb
A
6676 m_new = NULL;
6677 }
6678 m_freem(m0);
6679 m0 = m_final;
0a7de745 6680 return m0;
316670eb 6681nospace:
0a7de745 6682 if (m_final) {
316670eb 6683 m_freem(m_final);
0a7de745
A
6684 }
6685 return NULL;
316670eb
A
6686}
6687
6688struct mbuf *
6689m_defrag(struct mbuf *m0, int how)
6690{
0a7de745 6691 return m_defrag_offset(m0, 0, how);
316670eb
A
6692}
6693
9bccf70c
A
6694void
6695m_mchtype(struct mbuf *m, int t)
6696{
2d21ac55
A
6697 mtype_stat_inc(t);
6698 mtype_stat_dec(m->m_type);
6699 (m)->m_type = t;
9bccf70c
A
6700}
6701
2d21ac55
A
6702void *
6703m_mtod(struct mbuf *m)
9bccf70c 6704{
0a7de745 6705 return MTOD(m, void *);
9bccf70c
A
6706}
6707
2d21ac55
A
6708struct mbuf *
6709m_dtom(void *x)
9bccf70c 6710{
0a7de745 6711 return (struct mbuf *)((uintptr_t)(x) & ~(MSIZE - 1));
9bccf70c
A
6712}
6713
2d21ac55
A
6714void
6715m_mcheck(struct mbuf *m)
9bccf70c 6716{
2d21ac55 6717 _MCHECK(m);
9bccf70c
A
6718}
6719
6d2010ae
A
6720/*
6721 * Return a pointer to mbuf/offset of location in mbuf chain.
6722 */
6723struct mbuf *
6724m_getptr(struct mbuf *m, int loc, int *off)
6725{
6d2010ae
A
6726 while (loc >= 0) {
6727 /* Normal end of search. */
6728 if (m->m_len > loc) {
6729 *off = loc;
0a7de745 6730 return m;
6d2010ae
A
6731 } else {
6732 loc -= m->m_len;
6733 if (m->m_next == NULL) {
6734 if (loc == 0) {
6735 /* Point at the end of valid data. */
6736 *off = m->m_len;
0a7de745 6737 return m;
6d2010ae 6738 }
0a7de745 6739 return NULL;
6d2010ae
A
6740 }
6741 m = m->m_next;
6742 }
6743 }
0a7de745 6744 return NULL;
6d2010ae
A
6745}
6746
2d21ac55
A
6747/*
6748 * Inform the corresponding mcache(s) that there's a waiter below.
6749 */
6750static void
6751mbuf_waiter_inc(mbuf_class_t class, boolean_t comp)
9bccf70c 6752{
2d21ac55
A
6753 mcache_waiter_inc(m_cache(class));
6754 if (comp) {
6755 if (class == MC_CL) {
6756 mcache_waiter_inc(m_cache(MC_MBUF_CL));
6757 } else if (class == MC_BIGCL) {
6758 mcache_waiter_inc(m_cache(MC_MBUF_BIGCL));
6759 } else if (class == MC_16KCL) {
6760 mcache_waiter_inc(m_cache(MC_MBUF_16KCL));
6761 } else {
6762 mcache_waiter_inc(m_cache(MC_MBUF_CL));
6763 mcache_waiter_inc(m_cache(MC_MBUF_BIGCL));
6764 }
6765 }
9bccf70c
A
6766}
6767
2d21ac55
A
6768/*
6769 * Inform the corresponding mcache(s) that there's no more waiter below.
6770 */
6771static void
6772mbuf_waiter_dec(mbuf_class_t class, boolean_t comp)
6773{
6774 mcache_waiter_dec(m_cache(class));
6775 if (comp) {
6776 if (class == MC_CL) {
6777 mcache_waiter_dec(m_cache(MC_MBUF_CL));
6778 } else if (class == MC_BIGCL) {
6779 mcache_waiter_dec(m_cache(MC_MBUF_BIGCL));
6780 } else if (class == MC_16KCL) {
6781 mcache_waiter_dec(m_cache(MC_MBUF_16KCL));
6782 } else {
6783 mcache_waiter_dec(m_cache(MC_MBUF_CL));
6784 mcache_waiter_dec(m_cache(MC_MBUF_BIGCL));
6785 }
6786 }
6787}
9bccf70c 6788
6d2010ae
A
6789/*
6790 * Called during slab (blocking and non-blocking) allocation. If there
6791 * is at least one waiter, and the time since the first waiter is blocked
6792 * is greater than the watchdog timeout, panic the system.
6793 */
6794static void
6795mbuf_watchdog(void)
6796{
6797 struct timeval now;
6798 unsigned int since;
6799
0a7de745 6800 if (mb_waiters == 0 || !mb_watchdog) {
6d2010ae 6801 return;
0a7de745 6802 }
6d2010ae
A
6803
6804 microuptime(&now);
6805 since = now.tv_sec - mb_wdtstart.tv_sec;
6806 if (since >= MB_WDT_MAXTIME) {
6807 panic_plain("%s: %d waiters stuck for %u secs\n%s", __func__,
6808 mb_waiters, since, mbuf_dump());
6809 /* NOTREACHED */
6810 }
6811}
6812
2d21ac55
A
6813/*
6814 * Called during blocking allocation. Returns TRUE if one or more objects
6815 * are available at the per-CPU caches layer and that allocation should be
6816 * retried at that level.
6817 */
6818static boolean_t
6819mbuf_sleep(mbuf_class_t class, unsigned int num, int wait)
9bccf70c 6820{
2d21ac55
A
6821 boolean_t mcache_retry = FALSE;
6822
5ba3f43e 6823 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55
A
6824
6825 /* Check if there's anything at the cache layer */
6826 if (mbuf_cached_above(class, wait)) {
6827 mcache_retry = TRUE;
6828 goto done;
6829 }
6830
6831 /* Nothing? Then try hard to get it from somewhere */
6832 m_reclaim(class, num, (wait & MCR_COMP));
6833
6834 /* We tried hard and got something? */
6835 if (m_infree(class) > 0) {
6836 mbstat.m_wait++;
6837 goto done;
6838 } else if (mbuf_cached_above(class, wait)) {
6839 mbstat.m_wait++;
6840 mcache_retry = TRUE;
6841 goto done;
6842 } else if (wait & MCR_TRYHARD) {
6843 mcache_retry = TRUE;
6844 goto done;
6845 }
6846
6847 /*
6848 * There's really nothing for us right now; inform the
6849 * cache(s) that there is a waiter below and go to sleep.
6850 */
6851 mbuf_waiter_inc(class, (wait & MCR_COMP));
6852
6853 VERIFY(!(wait & MCR_NOSLEEP));
6d2010ae
A
6854
6855 /*
6856 * If this is the first waiter, arm the watchdog timer. Otherwise
6857 * check if we need to panic the system due to watchdog timeout.
6858 */
0a7de745 6859 if (mb_waiters == 0) {
6d2010ae 6860 microuptime(&mb_wdtstart);
0a7de745 6861 } else {
6d2010ae 6862 mbuf_watchdog();
0a7de745 6863 }
6d2010ae 6864
2d21ac55 6865 mb_waiters++;
cc8bc92a 6866 m_region_expand(class) += m_total(class) + num;
5ba3f43e 6867 /* wake up the worker thread */
a39ff7e2 6868 if (mbuf_worker_ready &&
5ba3f43e
A
6869 mbuf_worker_needs_wakeup) {
6870 wakeup((caddr_t)&mbuf_worker_needs_wakeup);
6871 mbuf_worker_needs_wakeup = FALSE;
6872 }
d9a64523 6873 mbwdog_logger("waiting (%d mbufs in class %s)", num, m_cname(class));
0a7de745 6874 (void) msleep(mb_waitchan, mbuf_mlock, (PZERO - 1), m_cname(class), NULL);
d9a64523 6875 mbwdog_logger("woke up (%d mbufs in class %s) ", num, m_cname(class));
2d21ac55
A
6876
6877 /* We are now up; stop getting notified until next round */
6878 mbuf_waiter_dec(class, (wait & MCR_COMP));
6879
6880 /* We waited and got something */
6881 if (m_infree(class) > 0) {
6882 mbstat.m_wait++;
6883 goto done;
6884 } else if (mbuf_cached_above(class, wait)) {
6885 mbstat.m_wait++;
6886 mcache_retry = TRUE;
6887 }
6888done:
0a7de745 6889 return mcache_retry;
9bccf70c
A
6890}
6891
39037602 6892__attribute__((noreturn))
91447636 6893static void
2d21ac55 6894mbuf_worker_thread(void)
1c79356b 6895{
2d21ac55
A
6896 int mbuf_expand;
6897
91447636 6898 while (1) {
2d21ac55 6899 lck_mtx_lock(mbuf_mlock);
d9a64523 6900 mbwdog_logger("worker thread running");
cc8bc92a 6901 mbuf_worker_run_cnt++;
2d21ac55 6902 mbuf_expand = 0;
d9a64523
A
6903 /*
6904 * Allocations are based on page size, so if we have depleted
6905 * the reserved spaces, try to free mbufs from the major classes.
6906 */
6907#if PAGE_SIZE == 4096
6908 uint32_t m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT;
6909 uint32_t m_clusters = m_total(MC_CL);
6910 uint32_t m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT;
6911 uint32_t sumclusters = m_mbclusters + m_clusters + m_bigclusters;
6912 if (sumclusters >= nclusters) {
6913 mbwdog_logger("reclaiming bigcl");
6914 mbuf_drain_locked(TRUE);
6915 m_reclaim(MC_BIGCL, 4, FALSE);
6916 }
6917#else
6918 uint32_t m_16kclusters = m_total(MC_16KCL);
6919 if (njcl > 0 && (m_16kclusters << NCLPJCLSHIFT) >= njcl) {
6920 mbwdog_logger("reclaiming 16kcl");
6921 mbuf_drain_locked(TRUE);
6922 m_reclaim(MC_16KCL, 4, FALSE);
6923 }
6924#endif
5ba3f43e 6925 if (m_region_expand(MC_CL) > 0) {
91447636 6926 int n;
cc8bc92a 6927 mb_expand_cl_cnt++;
2d21ac55 6928 /* Adjust to current number of cluster in use */
5ba3f43e 6929 n = m_region_expand(MC_CL) -
2d21ac55 6930 (m_total(MC_CL) - m_infree(MC_CL));
0a7de745 6931 if ((n + m_total(MC_CL)) > m_maxlimit(MC_CL)) {
2d21ac55 6932 n = m_maxlimit(MC_CL) - m_total(MC_CL);
0a7de745 6933 }
cc8bc92a
A
6934 if (n > 0) {
6935 mb_expand_cl_total += n;
6936 }
5ba3f43e 6937 m_region_expand(MC_CL) = 0;
2d21ac55 6938
d9a64523
A
6939 if (n > 0) {
6940 mbwdog_logger("expanding MC_CL by %d", n);
a39ff7e2 6941 freelist_populate(MC_CL, n, M_WAIT);
d9a64523 6942 }
91447636 6943 }
5ba3f43e 6944 if (m_region_expand(MC_BIGCL) > 0) {
91447636 6945 int n;
cc8bc92a 6946 mb_expand_bigcl_cnt++;
2d21ac55 6947 /* Adjust to current number of 4 KB cluster in use */
5ba3f43e 6948 n = m_region_expand(MC_BIGCL) -
2d21ac55 6949 (m_total(MC_BIGCL) - m_infree(MC_BIGCL));
0a7de745 6950 if ((n + m_total(MC_BIGCL)) > m_maxlimit(MC_BIGCL)) {
2d21ac55 6951 n = m_maxlimit(MC_BIGCL) - m_total(MC_BIGCL);
0a7de745 6952 }
cc8bc92a
A
6953 if (n > 0) {
6954 mb_expand_bigcl_total += n;
6955 }
5ba3f43e 6956 m_region_expand(MC_BIGCL) = 0;
2d21ac55 6957
d9a64523
A
6958 if (n > 0) {
6959 mbwdog_logger("expanding MC_BIGCL by %d", n);
a39ff7e2 6960 freelist_populate(MC_BIGCL, n, M_WAIT);
d9a64523 6961 }
2d21ac55 6962 }
5ba3f43e 6963 if (m_region_expand(MC_16KCL) > 0) {
2d21ac55 6964 int n;
cc8bc92a 6965 mb_expand_16kcl_cnt++;
2d21ac55 6966 /* Adjust to current number of 16 KB cluster in use */
5ba3f43e 6967 n = m_region_expand(MC_16KCL) -
2d21ac55 6968 (m_total(MC_16KCL) - m_infree(MC_16KCL));
0a7de745 6969 if ((n + m_total(MC_16KCL)) > m_maxlimit(MC_16KCL)) {
2d21ac55 6970 n = m_maxlimit(MC_16KCL) - m_total(MC_16KCL);
0a7de745 6971 }
cc8bc92a
A
6972 if (n > 0) {
6973 mb_expand_16kcl_total += n;
6974 }
5ba3f43e 6975 m_region_expand(MC_16KCL) = 0;
2d21ac55 6976
d9a64523
A
6977 if (n > 0) {
6978 mbwdog_logger("expanding MC_16KCL by %d", n);
2d21ac55 6979 (void) freelist_populate(MC_16KCL, n, M_WAIT);
d9a64523 6980 }
2d21ac55
A
6981 }
6982
6983 /*
6984 * Because we can run out of memory before filling the mbuf
6985 * map, we should not allocate more clusters than they are
6986 * mbufs -- otherwise we could have a large number of useless
6987 * clusters allocated.
91447636 6988 */
d9a64523
A
6989 mbwdog_logger("totals: MC_MBUF %d MC_BIGCL %d MC_CL %d MC_16KCL %d",
6990 m_total(MC_MBUF), m_total(MC_BIGCL), m_total(MC_CL),
6991 m_total(MC_16KCL));
6992 uint32_t total_mbufs = m_total(MC_MBUF);
6993 uint32_t total_clusters = m_total(MC_BIGCL) + m_total(MC_CL) +
6994 m_total(MC_16KCL);
6995 if (total_mbufs < total_clusters) {
6996 mbwdog_logger("expanding MC_MBUF by %d",
0a7de745 6997 total_clusters - total_mbufs);
d9a64523
A
6998 }
6999 while (total_mbufs < total_clusters) {
a39ff7e2 7000 mb_expand_cnt++;
0a7de745 7001 if (freelist_populate(MC_MBUF, 1, M_WAIT) == 0) {
a39ff7e2 7002 break;
0a7de745 7003 }
d9a64523
A
7004 total_mbufs = m_total(MC_MBUF);
7005 total_clusters = m_total(MC_BIGCL) + m_total(MC_CL) +
7006 m_total(MC_16KCL);
91447636 7007 }
2d21ac55 7008
39037602 7009 mbuf_worker_needs_wakeup = TRUE;
cc8bc92a
A
7010 /*
7011 * If there's a deadlock and we're not sending / receiving
7012 * packets, net_uptime() won't be updated. Update it here
7013 * so we are sure it's correct.
7014 */
7015 net_update_uptime();
7016 mbuf_worker_last_runtime = net_uptime();
39037602
A
7017 assert_wait((caddr_t)&mbuf_worker_needs_wakeup,
7018 THREAD_UNINT);
d9a64523 7019 mbwdog_logger("worker thread sleeping");
2d21ac55 7020 lck_mtx_unlock(mbuf_mlock);
2d21ac55 7021 (void) thread_block((thread_continue_t)mbuf_worker_thread);
91447636 7022 }
1c79356b
A
7023}
7024
39037602 7025__attribute__((noreturn))
91447636 7026static void
2d21ac55 7027mbuf_worker_thread_init(void)
55e303ae 7028{
2d21ac55
A
7029 mbuf_worker_ready++;
7030 mbuf_worker_thread();
55e303ae 7031}
1c79356b 7032
2d21ac55
A
7033static mcl_slab_t *
7034slab_get(void *buf)
7035{
7036 mcl_slabg_t *slg;
7037 unsigned int ix, k;
7038
5ba3f43e 7039 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2d21ac55
A
7040
7041 VERIFY(MBUF_IN_MAP(buf));
3e170ce0 7042 ix = ((unsigned char *)buf - mbutl) >> MBSHIFT;
2d21ac55
A
7043 VERIFY(ix < maxslabgrp);
7044
7045 if ((slg = slabstbl[ix]) == NULL) {
7046 /*
39037602 7047 * In the current implementation, we never shrink the slabs
fe8ab488
A
7048 * table; if we attempt to reallocate a cluster group when
7049 * it's already allocated, panic since this is a sign of a
7050 * memory corruption (slabstbl[ix] got nullified).
2d21ac55
A
7051 */
7052 ++slabgrp;
7053 VERIFY(ix < slabgrp);
7054 /*
7055 * Slabs expansion can only be done single threaded; when
7056 * we get here, it must be as a result of m_clalloc() which
7057 * is serialized and therefore mb_clalloc_busy must be set.
7058 */
7059 VERIFY(mb_clalloc_busy);
7060 lck_mtx_unlock(mbuf_mlock);
7061
7062 /* This is a new buffer; create the slabs group for it */
0a7de745 7063 MALLOC(slg, mcl_slabg_t *, sizeof(*slg), M_TEMP,
2d21ac55 7064 M_WAITOK | M_ZERO);
3e170ce0
A
7065 MALLOC(slg->slg_slab, mcl_slab_t *, sizeof(mcl_slab_t) * NSLABSPMB,
7066 M_TEMP, M_WAITOK | M_ZERO);
7067 VERIFY(slg != NULL && slg->slg_slab != NULL);
2d21ac55
A
7068
7069 lck_mtx_lock(mbuf_mlock);
7070 /*
7071 * No other thread could have gone into m_clalloc() after
7072 * we dropped the lock above, so verify that it's true.
7073 */
7074 VERIFY(mb_clalloc_busy);
7075
7076 slabstbl[ix] = slg;
7077
7078 /* Chain each slab in the group to its forward neighbor */
0a7de745 7079 for (k = 1; k < NSLABSPMB; k++) {
2d21ac55 7080 slg->slg_slab[k - 1].sl_next = &slg->slg_slab[k];
0a7de745 7081 }
2d21ac55
A
7082 VERIFY(slg->slg_slab[NSLABSPMB - 1].sl_next == NULL);
7083
7084 /* And chain the last slab in the previous group to this */
7085 if (ix > 0) {
7086 VERIFY(slabstbl[ix - 1]->
7087 slg_slab[NSLABSPMB - 1].sl_next == NULL);
7088 slabstbl[ix - 1]->slg_slab[NSLABSPMB - 1].sl_next =
7089 &slg->slg_slab[0];
7090 }
7091 }
7092
3e170ce0 7093 ix = MTOPG(buf) % NSLABSPMB;
2d21ac55
A
7094 VERIFY(ix < NSLABSPMB);
7095
0a7de745 7096 return &slg->slg_slab[ix];
2d21ac55
A
7097}
7098
7099static void
7100slab_init(mcl_slab_t *sp, mbuf_class_t class, u_int32_t flags,
7101 void *base, void *head, unsigned int len, int refcnt, int chunks)
7102{
7103 sp->sl_class = class;
7104 sp->sl_flags = flags;
7105 sp->sl_base = base;
7106 sp->sl_head = head;
7107 sp->sl_len = len;
7108 sp->sl_refcnt = refcnt;
7109 sp->sl_chunks = chunks;
7110 slab_detach(sp);
7111}
7112
7113static void
7114slab_insert(mcl_slab_t *sp, mbuf_class_t class)
7115{
7116 VERIFY(slab_is_detached(sp));
7117 m_slab_cnt(class)++;
7118 TAILQ_INSERT_TAIL(&m_slablist(class), sp, sl_link);
7119 sp->sl_flags &= ~SLF_DETACHED;
3e170ce0
A
7120
7121 /*
7122 * If a buffer spans multiple contiguous pages then mark them as
7123 * detached too
7124 */
6d2010ae 7125 if (class == MC_16KCL) {
2d21ac55 7126 int k;
6d2010ae 7127 for (k = 1; k < NSLABSP16KB; k++) {
2d21ac55
A
7128 sp = sp->sl_next;
7129 /* Next slab must already be present */
3e170ce0 7130 VERIFY(sp != NULL && slab_is_detached(sp));
2d21ac55
A
7131 sp->sl_flags &= ~SLF_DETACHED;
7132 }
7133 }
7134}
7135
7136static void
7137slab_remove(mcl_slab_t *sp, mbuf_class_t class)
7138{
3e170ce0 7139 int k;
2d21ac55
A
7140 VERIFY(!slab_is_detached(sp));
7141 VERIFY(m_slab_cnt(class) > 0);
7142 m_slab_cnt(class)--;
7143 TAILQ_REMOVE(&m_slablist(class), sp, sl_link);
7144 slab_detach(sp);
6d2010ae 7145 if (class == MC_16KCL) {
6d2010ae 7146 for (k = 1; k < NSLABSP16KB; k++) {
2d21ac55
A
7147 sp = sp->sl_next;
7148 /* Next slab must already be present */
7149 VERIFY(sp != NULL);
7150 VERIFY(!slab_is_detached(sp));
7151 slab_detach(sp);
7152 }
7153 }
7154}
7155
7156static boolean_t
7157slab_inrange(mcl_slab_t *sp, void *buf)
7158{
0a7de745
A
7159 return (uintptr_t)buf >= (uintptr_t)sp->sl_base &&
7160 (uintptr_t)buf < ((uintptr_t)sp->sl_base + sp->sl_len);
2d21ac55
A
7161}
7162
b0d623f7 7163#undef panic
2d21ac55
A
7164
7165static void
7166slab_nextptr_panic(mcl_slab_t *sp, void *addr)
7167{
7168 int i;
7169 unsigned int chunk_len = sp->sl_len / sp->sl_chunks;
7170 uintptr_t buf = (uintptr_t)sp->sl_base;
7171
7172 for (i = 0; i < sp->sl_chunks; i++, buf += chunk_len) {
7173 void *next = ((mcache_obj_t *)buf)->obj_next;
0a7de745 7174 if (next != addr) {
2d21ac55 7175 continue;
0a7de745 7176 }
6d2010ae 7177 if (!mclverify) {
2d21ac55
A
7178 if (next != NULL && !MBUF_IN_MAP(next)) {
7179 mcache_t *cp = m_cache(sp->sl_class);
7180 panic("%s: %s buffer %p in slab %p modified "
7181 "after free at offset 0: %p out of range "
7182 "[%p-%p)\n", __func__, cp->mc_name,
7183 (void *)buf, sp, next, mbutl, embutl);
7184 /* NOTREACHED */
7185 }
7186 } else {
7187 mcache_audit_t *mca = mcl_audit_buf2mca(sp->sl_class,
7188 (mcache_obj_t *)buf);
7189 mcl_audit_verify_nextptr(next, mca);
7190 }
7191 }
7192}
7193
7194static void
7195slab_detach(mcl_slab_t *sp)
7196{
7197 sp->sl_link.tqe_next = (mcl_slab_t *)-1;
7198 sp->sl_link.tqe_prev = (mcl_slab_t **)-1;
7199 sp->sl_flags |= SLF_DETACHED;
7200}
7201
7202static boolean_t
7203slab_is_detached(mcl_slab_t *sp)
7204{
0a7de745
A
7205 return (intptr_t)sp->sl_link.tqe_next == -1 &&
7206 (intptr_t)sp->sl_link.tqe_prev == -1 &&
7207 (sp->sl_flags & SLF_DETACHED);
2d21ac55
A
7208}
7209
7210static void
7211mcl_audit_init(void *buf, mcache_audit_t **mca_list,
7212 mcache_obj_t **con_list, size_t con_size, unsigned int num)
7213{
7214 mcache_audit_t *mca, *mca_tail;
7215 mcache_obj_t *con = NULL;
7216 boolean_t save_contents = (con_list != NULL);
7217 unsigned int i, ix;
7218
3e170ce0 7219 ASSERT(num <= NMBPG);
2d21ac55
A
7220 ASSERT(con_list == NULL || con_size != 0);
7221
3e170ce0 7222 ix = MTOPG(buf);
6d2010ae
A
7223 VERIFY(ix < maxclaudit);
7224
2d21ac55 7225 /* Make sure we haven't been here before */
0a7de745 7226 for (i = 0; i < num; i++) {
2d21ac55 7227 VERIFY(mclaudit[ix].cl_audit[i] == NULL);
0a7de745 7228 }
2d21ac55
A
7229
7230 mca = mca_tail = *mca_list;
0a7de745 7231 if (save_contents) {
2d21ac55 7232 con = *con_list;
0a7de745 7233 }
2d21ac55
A
7234
7235 for (i = 0; i < num; i++) {
7236 mcache_audit_t *next;
7237
7238 next = mca->mca_next;
0a7de745 7239 bzero(mca, sizeof(*mca));
2d21ac55
A
7240 mca->mca_next = next;
7241 mclaudit[ix].cl_audit[i] = mca;
7242
7243 /* Attach the contents buffer if requested */
7244 if (save_contents) {
39236c6e
A
7245 mcl_saved_contents_t *msc =
7246 (mcl_saved_contents_t *)(void *)con;
7247
7248 VERIFY(msc != NULL);
0a7de745
A
7249 VERIFY(IS_P2ALIGNED(msc, sizeof(u_int64_t)));
7250 VERIFY(con_size == sizeof(*msc));
2d21ac55 7251 mca->mca_contents_size = con_size;
39236c6e 7252 mca->mca_contents = msc;
2d21ac55
A
7253 con = con->obj_next;
7254 bzero(mca->mca_contents, mca->mca_contents_size);
7255 }
7256
7257 mca_tail = mca;
7258 mca = mca->mca_next;
7259 }
91447636 7260
0a7de745 7261 if (save_contents) {
2d21ac55 7262 *con_list = con;
0a7de745 7263 }
2d21ac55
A
7264
7265 *mca_list = mca_tail->mca_next;
7266 mca_tail->mca_next = NULL;
7267}
7268
fe8ab488
A
7269static void
7270mcl_audit_free(void *buf, unsigned int num)
7271{
7272 unsigned int i, ix;
7273 mcache_audit_t *mca, *mca_list;
7274
3e170ce0 7275 ix = MTOPG(buf);
fe8ab488 7276 VERIFY(ix < maxclaudit);
39037602 7277
fe8ab488
A
7278 if (mclaudit[ix].cl_audit[0] != NULL) {
7279 mca_list = mclaudit[ix].cl_audit[0];
7280 for (i = 0; i < num; i++) {
7281 mca = mclaudit[ix].cl_audit[i];
7282 mclaudit[ix].cl_audit[i] = NULL;
0a7de745 7283 if (mca->mca_contents) {
fe8ab488
A
7284 mcache_free(mcl_audit_con_cache,
7285 mca->mca_contents);
0a7de745 7286 }
fe8ab488
A
7287 }
7288 mcache_free_ext(mcache_audit_cache,
7289 (mcache_obj_t *)mca_list);
7290 }
7291}
7292
2d21ac55 7293/*
6d2010ae 7294 * Given an address of a buffer (mbuf/2KB/4KB/16KB), return
2d21ac55
A
7295 * the corresponding audit structure for that buffer.
7296 */
7297static mcache_audit_t *
3e170ce0 7298mcl_audit_buf2mca(mbuf_class_t class, mcache_obj_t *mobj)
2d21ac55
A
7299{
7300 mcache_audit_t *mca = NULL;
3e170ce0
A
7301 int ix = MTOPG(mobj), m_idx = 0;
7302 unsigned char *page_addr;
2d21ac55 7303
6d2010ae 7304 VERIFY(ix < maxclaudit);
3e170ce0
A
7305 VERIFY(IS_P2ALIGNED(mobj, MIN(m_maxsize(class), PAGE_SIZE)));
7306
7307 page_addr = PGTOM(ix);
2d21ac55
A
7308
7309 switch (class) {
7310 case MC_MBUF:
7311 /*
6d2010ae 7312 * For the mbuf case, find the index of the page
2d21ac55 7313 * used by the mbuf and use that index to locate the
6d2010ae
A
7314 * base address of the page. Then find out the
7315 * mbuf index relative to the page base and use
2d21ac55
A
7316 * it to locate the audit structure.
7317 */
3e170ce0
A
7318 m_idx = MBPAGEIDX(page_addr, mobj);
7319 VERIFY(m_idx < (int)NMBPG);
7320 mca = mclaudit[ix].cl_audit[m_idx];
2d21ac55
A
7321 break;
7322
7323 case MC_CL:
6d2010ae
A
7324 /*
7325 * Same thing as above, but for 2KB clusters in a page.
7326 */
3e170ce0
A
7327 m_idx = CLPAGEIDX(page_addr, mobj);
7328 VERIFY(m_idx < (int)NCLPG);
7329 mca = mclaudit[ix].cl_audit[m_idx];
6d2010ae
A
7330 break;
7331
2d21ac55 7332 case MC_BIGCL:
3e170ce0
A
7333 m_idx = BCLPAGEIDX(page_addr, mobj);
7334 VERIFY(m_idx < (int)NBCLPG);
7335 mca = mclaudit[ix].cl_audit[m_idx];
7336 break;
2d21ac55
A
7337 case MC_16KCL:
7338 /*
7339 * Same as above, but only return the first element.
7340 */
7341 mca = mclaudit[ix].cl_audit[0];
7342 break;
7343
7344 default:
7345 VERIFY(0);
7346 /* NOTREACHED */
7347 }
7348
0a7de745 7349 return mca;
2d21ac55
A
7350}
7351
7352static void
7353mcl_audit_mbuf(mcache_audit_t *mca, void *addr, boolean_t composite,
7354 boolean_t alloc)
7355{
7356 struct mbuf *m = addr;
7357 mcache_obj_t *next = ((mcache_obj_t *)m)->obj_next;
7358
7359 VERIFY(mca->mca_contents != NULL &&
7360 mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
7361
0a7de745 7362 if (mclverify) {
6d2010ae 7363 mcl_audit_verify_nextptr(next, mca);
0a7de745 7364 }
2d21ac55
A
7365
7366 if (!alloc) {
7367 /* Save constructed mbuf fields */
7368 mcl_audit_save_mbuf(m, mca);
6d2010ae
A
7369 if (mclverify) {
7370 mcache_set_pattern(MCACHE_FREE_PATTERN, m,
7371 m_maxsize(MC_MBUF));
7372 }
2d21ac55
A
7373 ((mcache_obj_t *)m)->obj_next = next;
7374 return;
7375 }
7376
7377 /* Check if the buffer has been corrupted while in freelist */
6d2010ae
A
7378 if (mclverify) {
7379 mcache_audit_free_verify_set(mca, addr, 0, m_maxsize(MC_MBUF));
7380 }
2d21ac55
A
7381 /* Restore constructed mbuf fields */
7382 mcl_audit_restore_mbuf(m, mca, composite);
7383}
7384
7385static void
7386mcl_audit_restore_mbuf(struct mbuf *m, mcache_audit_t *mca, boolean_t composite)
7387{
39236c6e 7388 struct mbuf *ms = MCA_SAVED_MBUF_PTR(mca);
2d21ac55
A
7389
7390 if (composite) {
7391 struct mbuf *next = m->m_next;
813fb2f6 7392 VERIFY(ms->m_flags == M_EXT && m_get_rfa(ms) != NULL &&
2d21ac55 7393 MBUF_IS_COMPOSITE(ms));
39236c6e 7394 VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
2d21ac55
A
7395 /*
7396 * We could have hand-picked the mbuf fields and restore
7397 * them individually, but that will be a maintenance
7398 * headache. Instead, restore everything that was saved;
7399 * the mbuf layer will recheck and reinitialize anyway.
7400 */
39236c6e 7401 bcopy(ms, m, MCA_SAVED_MBUF_SIZE);
2d21ac55
A
7402 m->m_next = next;
7403 } else {
7404 /*
7405 * For a regular mbuf (no cluster attached) there's nothing
7406 * to restore other than the type field, which is expected
7407 * to be MT_FREE.
7408 */
7409 m->m_type = ms->m_type;
7410 }
7411 _MCHECK(m);
7412}
7413
7414static void
7415mcl_audit_save_mbuf(struct mbuf *m, mcache_audit_t *mca)
7416{
39236c6e 7417 VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
2d21ac55 7418 _MCHECK(m);
39236c6e 7419 bcopy(m, MCA_SAVED_MBUF_PTR(mca), MCA_SAVED_MBUF_SIZE);
2d21ac55
A
7420}
7421
7422static void
7423mcl_audit_cluster(mcache_audit_t *mca, void *addr, size_t size, boolean_t alloc,
7424 boolean_t save_next)
7425{
7426 mcache_obj_t *next = ((mcache_obj_t *)addr)->obj_next;
7427
7428 if (!alloc) {
6d2010ae
A
7429 if (mclverify) {
7430 mcache_set_pattern(MCACHE_FREE_PATTERN, addr, size);
7431 }
2d21ac55
A
7432 if (save_next) {
7433 mcl_audit_verify_nextptr(next, mca);
7434 ((mcache_obj_t *)addr)->obj_next = next;
7435 }
6d2010ae 7436 } else if (mclverify) {
2d21ac55
A
7437 /* Check if the buffer has been corrupted while in freelist */
7438 mcl_audit_verify_nextptr(next, mca);
7439 mcache_audit_free_verify_set(mca, addr, 0, size);
7440 }
7441}
7442
39236c6e
A
7443static void
7444mcl_audit_scratch(mcache_audit_t *mca)
7445{
7446 void *stack[MCACHE_STACK_DEPTH + 1];
7447 mcl_scratch_audit_t *msa;
7448 struct timeval now;
7449
7450 VERIFY(mca->mca_contents != NULL);
7451 msa = MCA_SAVED_SCRATCH_PTR(mca);
7452
7453 msa->msa_pthread = msa->msa_thread;
7454 msa->msa_thread = current_thread();
0a7de745 7455 bcopy(msa->msa_stack, msa->msa_pstack, sizeof(msa->msa_pstack));
39236c6e 7456 msa->msa_pdepth = msa->msa_depth;
0a7de745 7457 bzero(stack, sizeof(stack));
39236c6e 7458 msa->msa_depth = OSBacktrace(stack, MCACHE_STACK_DEPTH + 1) - 1;
0a7de745 7459 bcopy(&stack[1], msa->msa_stack, sizeof(msa->msa_stack));
39236c6e
A
7460
7461 msa->msa_ptstamp = msa->msa_tstamp;
7462 microuptime(&now);
7463 /* tstamp is in ms relative to base_ts */
7464 msa->msa_tstamp = ((now.tv_usec - mb_start.tv_usec) / 1000);
0a7de745 7465 if ((now.tv_sec - mb_start.tv_sec) > 0) {
39236c6e 7466 msa->msa_tstamp += ((now.tv_sec - mb_start.tv_sec) * 1000);
0a7de745 7467 }
39236c6e
A
7468}
7469
cb323159 7470__abortlike
2d21ac55
A
7471static void
7472mcl_audit_mcheck_panic(struct mbuf *m)
7473{
7474 mcache_audit_t *mca;
7475
7476 MRANGE(m);
7477 mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
7478
7479 panic("mcl_audit: freed mbuf %p with type 0x%x (instead of 0x%x)\n%s\n",
7480 m, (u_int16_t)m->m_type, MT_FREE, mcache_dump_mca(mca));
7481 /* NOTREACHED */
7482}
7483
7484static void
7485mcl_audit_verify_nextptr(void *next, mcache_audit_t *mca)
7486{
6d2010ae
A
7487 if (next != NULL && !MBUF_IN_MAP(next) &&
7488 (next != (void *)MCACHE_FREE_PATTERN || !mclverify)) {
2d21ac55
A
7489 panic("mcl_audit: buffer %p modified after free at offset 0: "
7490 "%p out of range [%p-%p)\n%s\n",
7491 mca->mca_addr, next, mbutl, embutl, mcache_dump_mca(mca));
7492 /* NOTREACHED */
7493 }
7494}
7495
6d2010ae
A
7496/* This function turns on mbuf leak detection */
7497static void
7498mleak_activate(void)
7499{
7500 mleak_table.mleak_sample_factor = MLEAK_SAMPLE_FACTOR;
7501 PE_parse_boot_argn("mleak_sample_factor",
7502 &mleak_table.mleak_sample_factor,
0a7de745 7503 sizeof(mleak_table.mleak_sample_factor));
6d2010ae 7504
0a7de745 7505 if (mleak_table.mleak_sample_factor == 0) {
6d2010ae 7506 mclfindleak = 0;
0a7de745 7507 }
6d2010ae 7508
0a7de745 7509 if (mclfindleak == 0) {
6d2010ae 7510 return;
0a7de745 7511 }
6d2010ae
A
7512
7513 vm_size_t alloc_size =
0a7de745
A
7514 mleak_alloc_buckets * sizeof(struct mallocation);
7515 vm_size_t trace_size = mleak_trace_buckets * sizeof(struct mtrace);
6d2010ae
A
7516
7517 MALLOC(mleak_allocations, struct mallocation *, alloc_size,
7518 M_TEMP, M_WAITOK | M_ZERO);
7519 VERIFY(mleak_allocations != NULL);
7520
7521 MALLOC(mleak_traces, struct mtrace *, trace_size,
7522 M_TEMP, M_WAITOK | M_ZERO);
7523 VERIFY(mleak_traces != NULL);
7524
7525 MALLOC(mleak_stat, mleak_stat_t *, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES),
7526 M_TEMP, M_WAITOK | M_ZERO);
7527 VERIFY(mleak_stat != NULL);
7528 mleak_stat->ml_cnt = MLEAK_NUM_TRACES;
7529#ifdef __LP64__
7530 mleak_stat->ml_isaddr64 = 1;
7531#endif /* __LP64__ */
7532}
7533
7534static void
7535mleak_logger(u_int32_t num, mcache_obj_t *addr, boolean_t alloc)
7536{
7537 int temp;
7538
0a7de745 7539 if (mclfindleak == 0) {
6d2010ae 7540 return;
0a7de745 7541 }
6d2010ae 7542
0a7de745
A
7543 if (!alloc) {
7544 return mleak_free(addr);
7545 }
6d2010ae
A
7546
7547 temp = atomic_add_32_ov(&mleak_table.mleak_capture, 1);
7548
7549 if ((temp % mleak_table.mleak_sample_factor) == 0 && addr != NULL) {
7550 uintptr_t bt[MLEAK_STACK_DEPTH];
cb323159 7551 int logged = backtrace(bt, MLEAK_STACK_DEPTH, NULL);
6d2010ae
A
7552 mleak_log(bt, addr, logged, num);
7553 }
7554}
7555
7556/*
7557 * This function records the allocation in the mleak_allocations table
7558 * and the backtrace in the mleak_traces table; if allocation slot is in use,
7559 * replace old allocation with new one if the trace slot is in use, return
7560 * (or increment refcount if same trace).
7561 */
7562static boolean_t
7563mleak_log(uintptr_t *bt, mcache_obj_t *addr, uint32_t depth, int num)
7564{
7565 struct mallocation *allocation;
7566 struct mtrace *trace;
7567 uint32_t trace_index;
6d2010ae
A
7568
7569 /* Quit if someone else modifying the tables */
7570 if (!lck_mtx_try_lock_spin(mleak_lock)) {
7571 mleak_table.total_conflicts++;
0a7de745 7572 return FALSE;
6d2010ae
A
7573 }
7574
7575 allocation = &mleak_allocations[hashaddr((uintptr_t)addr,
7576 mleak_alloc_buckets)];
7577 trace_index = hashbacktrace(bt, depth, mleak_trace_buckets);
7578 trace = &mleak_traces[trace_index];
7579
7580 VERIFY(allocation <= &mleak_allocations[mleak_alloc_buckets - 1]);
7581 VERIFY(trace <= &mleak_traces[mleak_trace_buckets - 1]);
7582
7583 allocation->hitcount++;
7584 trace->hitcount++;
7585
7586 /*
7587 * If the allocation bucket we want is occupied
7588 * and the occupier has the same trace, just bail.
7589 */
7590 if (allocation->element != NULL &&
7591 trace_index == allocation->trace_index) {
7592 mleak_table.alloc_collisions++;
7593 lck_mtx_unlock(mleak_lock);
0a7de745 7594 return TRUE;
6d2010ae
A
7595 }
7596
7597 /*
7598 * Store the backtrace in the traces array;
7599 * Size of zero = trace bucket is free.
7600 */
7601 if (trace->allocs > 0 &&
0a7de745 7602 bcmp(trace->addr, bt, (depth * sizeof(uintptr_t))) != 0) {
6d2010ae
A
7603 /* Different, unique trace, but the same hash! Bail out. */
7604 trace->collisions++;
7605 mleak_table.trace_collisions++;
7606 lck_mtx_unlock(mleak_lock);
0a7de745 7607 return TRUE;
6d2010ae
A
7608 } else if (trace->allocs > 0) {
7609 /* Same trace, already added, so increment refcount */
7610 trace->allocs++;
7611 } else {
7612 /* Found an unused trace bucket, so record the trace here */
7613 if (trace->depth != 0) {
7614 /* this slot previously used but not currently in use */
7615 mleak_table.trace_overwrites++;
7616 }
7617 mleak_table.trace_recorded++;
7618 trace->allocs = 1;
0a7de745 7619 memcpy(trace->addr, bt, (depth * sizeof(uintptr_t)));
6d2010ae
A
7620 trace->depth = depth;
7621 trace->collisions = 0;
7622 }
7623
7624 /* Step 2: Store the allocation record in the allocations array */
7625 if (allocation->element != NULL) {
7626 /*
7627 * Replace an existing allocation. No need to preserve
7628 * because only a subset of the allocations are being
7629 * recorded anyway.
7630 */
7631 mleak_table.alloc_collisions++;
7632 } else if (allocation->trace_index != 0) {
7633 mleak_table.alloc_overwrites++;
7634 }
7635 allocation->element = addr;
7636 allocation->trace_index = trace_index;
7637 allocation->count = num;
7638 mleak_table.alloc_recorded++;
7639 mleak_table.outstanding_allocs++;
7640
6d2010ae 7641 lck_mtx_unlock(mleak_lock);
0a7de745 7642 return TRUE;
6d2010ae
A
7643}
7644
7645static void
7646mleak_free(mcache_obj_t *addr)
7647{
7648 while (addr != NULL) {
7649 struct mallocation *allocation = &mleak_allocations
7650 [hashaddr((uintptr_t)addr, mleak_alloc_buckets)];
7651
7652 if (allocation->element == addr &&
7653 allocation->trace_index < mleak_trace_buckets) {
7654 lck_mtx_lock_spin(mleak_lock);
7655 if (allocation->element == addr &&
7656 allocation->trace_index < mleak_trace_buckets) {
7657 struct mtrace *trace;
7658 trace = &mleak_traces[allocation->trace_index];
7659 /* allocs = 0 means trace bucket is unused */
0a7de745 7660 if (trace->allocs > 0) {
6d2010ae 7661 trace->allocs--;
0a7de745
A
7662 }
7663 if (trace->allocs == 0) {
6d2010ae 7664 trace->depth = 0;
0a7de745 7665 }
6d2010ae
A
7666 /* NULL element means alloc bucket is unused */
7667 allocation->element = NULL;
7668 mleak_table.outstanding_allocs--;
7669 }
7670 lck_mtx_unlock(mleak_lock);
7671 }
7672 addr = addr->obj_next;
7673 }
7674}
7675
316670eb
A
7676static void
7677mleak_sort_traces()
7678{
7679 int i, j, k;
7680 struct mtrace *swap;
7681
0a7de745 7682 for (i = 0; i < MLEAK_NUM_TRACES; i++) {
316670eb 7683 mleak_top_trace[i] = NULL;
0a7de745 7684 }
316670eb 7685
0a7de745
A
7686 for (i = 0, j = 0; j < MLEAK_NUM_TRACES && i < mleak_trace_buckets; i++) {
7687 if (mleak_traces[i].allocs <= 0) {
316670eb 7688 continue;
0a7de745 7689 }
316670eb
A
7690
7691 mleak_top_trace[j] = &mleak_traces[i];
7692 for (k = j; k > 0; k--) {
7693 if (mleak_top_trace[k]->allocs <=
0a7de745 7694 mleak_top_trace[k - 1]->allocs) {
316670eb 7695 break;
0a7de745 7696 }
316670eb 7697
0a7de745
A
7698 swap = mleak_top_trace[k - 1];
7699 mleak_top_trace[k - 1] = mleak_top_trace[k];
316670eb
A
7700 mleak_top_trace[k] = swap;
7701 }
7702 j++;
7703 }
7704
7705 j--;
0a7de745
A
7706 for (; i < mleak_trace_buckets; i++) {
7707 if (mleak_traces[i].allocs <= mleak_top_trace[j]->allocs) {
316670eb 7708 continue;
0a7de745 7709 }
316670eb
A
7710
7711 mleak_top_trace[j] = &mleak_traces[i];
7712
7713 for (k = j; k > 0; k--) {
7714 if (mleak_top_trace[k]->allocs <=
0a7de745 7715 mleak_top_trace[k - 1]->allocs) {
316670eb 7716 break;
0a7de745 7717 }
316670eb 7718
0a7de745
A
7719 swap = mleak_top_trace[k - 1];
7720 mleak_top_trace[k - 1] = mleak_top_trace[k];
316670eb
A
7721 mleak_top_trace[k] = swap;
7722 }
7723 }
7724}
7725
7726static void
7727mleak_update_stats()
7728{
7729 mleak_trace_stat_t *mltr;
7730 int i;
7731
7732 VERIFY(mleak_stat != NULL);
7733#ifdef __LP64__
7734 VERIFY(mleak_stat->ml_isaddr64);
7735#else
7736 VERIFY(!mleak_stat->ml_isaddr64);
7737#endif /* !__LP64__ */
7738 VERIFY(mleak_stat->ml_cnt == MLEAK_NUM_TRACES);
7739
7740 mleak_sort_traces();
7741
7742 mltr = &mleak_stat->ml_trace[0];
0a7de745 7743 bzero(mltr, sizeof(*mltr) * MLEAK_NUM_TRACES);
316670eb 7744 for (i = 0; i < MLEAK_NUM_TRACES; i++) {
5c9f4661 7745 int j;
316670eb
A
7746
7747 if (mleak_top_trace[i] == NULL ||
0a7de745 7748 mleak_top_trace[i]->allocs == 0) {
316670eb 7749 continue;
0a7de745 7750 }
316670eb 7751
0a7de745
A
7752 mltr->mltr_collisions = mleak_top_trace[i]->collisions;
7753 mltr->mltr_hitcount = mleak_top_trace[i]->hitcount;
7754 mltr->mltr_allocs = mleak_top_trace[i]->allocs;
7755 mltr->mltr_depth = mleak_top_trace[i]->depth;
316670eb
A
7756
7757 VERIFY(mltr->mltr_depth <= MLEAK_STACK_DEPTH);
0a7de745 7758 for (j = 0; j < mltr->mltr_depth; j++) {
316670eb 7759 mltr->mltr_addr[j] = mleak_top_trace[i]->addr[j];
0a7de745 7760 }
316670eb
A
7761
7762 mltr++;
7763 }
7764}
7765
6d2010ae 7766static struct mbtypes {
0a7de745
A
7767 int mt_type;
7768 const char *mt_name;
6d2010ae 7769} mbtypes[] = {
0a7de745
A
7770 { MT_DATA, "data" },
7771 { MT_OOBDATA, "oob data" },
7772 { MT_CONTROL, "ancillary data" },
7773 { MT_HEADER, "packet headers" },
7774 { MT_SOCKET, "socket structures" },
7775 { MT_PCB, "protocol control blocks" },
7776 { MT_RTABLE, "routing table entries" },
7777 { MT_HTABLE, "IMP host table entries" },
7778 { MT_ATABLE, "address resolution tables" },
7779 { MT_FTABLE, "fragment reassembly queue headers" },
7780 { MT_SONAME, "socket names and addresses" },
7781 { MT_SOOPTS, "socket options" },
7782 { MT_RIGHTS, "access rights" },
7783 { MT_IFADDR, "interface addresses" },
7784 { MT_TAG, "packet tags" },
7785 { 0, NULL }
6d2010ae
A
7786};
7787
0a7de745
A
7788#define MBUF_DUMP_BUF_CHK() { \
7789 clen -= k; \
7790 if (clen < 1) \
7791 goto done; \
7792 c += k; \
6d2010ae
A
7793}
7794
7795static char *
7796mbuf_dump(void)
7797{
cc8bc92a
A
7798 unsigned long totmem = 0, totfree = 0, totmbufs, totused, totpct,
7799 totreturned = 0;
6d2010ae
A
7800 u_int32_t m_mbufs = 0, m_clfree = 0, m_bigclfree = 0;
7801 u_int32_t m_mbufclfree = 0, m_mbufbigclfree = 0;
7802 u_int32_t m_16kclusters = 0, m_16kclfree = 0, m_mbuf16kclfree = 0;
0a7de745 7803 int nmbtypes = sizeof(mbstat.m_mtypes) / sizeof(short);
6d2010ae
A
7804 uint8_t seen[256];
7805 struct mbtypes *mp;
7806 mb_class_stat_t *sp;
316670eb 7807 mleak_trace_stat_t *mltr;
6d2010ae 7808 char *c = mbuf_dump_buf;
5c9f4661 7809 int i, j, k, clen = MBUF_DUMP_BUF_SIZE;
d9a64523 7810 bool printed_banner = false;
6d2010ae
A
7811
7812 mbuf_dump_buf[0] = '\0';
7813
7814 /* synchronize all statistics in the mbuf table */
7815 mbuf_stat_sync();
7816 mbuf_mtypes_sync(TRUE);
7817
7818 sp = &mb_stat->mbs_class[0];
7819 for (i = 0; i < mb_stat->mbs_cnt; i++, sp++) {
7820 u_int32_t mem;
7821
7822 if (m_class(i) == MC_MBUF) {
7823 m_mbufs = sp->mbcl_active;
7824 } else if (m_class(i) == MC_CL) {
7825 m_clfree = sp->mbcl_total - sp->mbcl_active;
7826 } else if (m_class(i) == MC_BIGCL) {
7827 m_bigclfree = sp->mbcl_total - sp->mbcl_active;
7828 } else if (njcl > 0 && m_class(i) == MC_16KCL) {
7829 m_16kclfree = sp->mbcl_total - sp->mbcl_active;
7830 m_16kclusters = sp->mbcl_total;
7831 } else if (m_class(i) == MC_MBUF_CL) {
7832 m_mbufclfree = sp->mbcl_total - sp->mbcl_active;
7833 } else if (m_class(i) == MC_MBUF_BIGCL) {
7834 m_mbufbigclfree = sp->mbcl_total - sp->mbcl_active;
7835 } else if (njcl > 0 && m_class(i) == MC_MBUF_16KCL) {
7836 m_mbuf16kclfree = sp->mbcl_total - sp->mbcl_active;
7837 }
7838
7839 mem = sp->mbcl_ctotal * sp->mbcl_size;
7840 totmem += mem;
7841 totfree += (sp->mbcl_mc_cached + sp->mbcl_infree) *
7842 sp->mbcl_size;
cc8bc92a 7843 totreturned += sp->mbcl_release_cnt;
6d2010ae
A
7844 }
7845
7846 /* adjust free counts to include composite caches */
7847 m_clfree += m_mbufclfree;
7848 m_bigclfree += m_mbufbigclfree;
7849 m_16kclfree += m_mbuf16kclfree;
7850
7851 totmbufs = 0;
0a7de745 7852 for (mp = mbtypes; mp->mt_name != NULL; mp++) {
6d2010ae 7853 totmbufs += mbstat.m_mtypes[mp->mt_type];
0a7de745
A
7854 }
7855 if (totmbufs > m_mbufs) {
6d2010ae 7856 totmbufs = m_mbufs;
0a7de745 7857 }
4ba76501 7858 k = scnprintf(c, clen, "%lu/%u mbufs in use:\n", totmbufs, m_mbufs);
6d2010ae
A
7859 MBUF_DUMP_BUF_CHK();
7860
0a7de745 7861 bzero(&seen, sizeof(seen));
6d2010ae
A
7862 for (mp = mbtypes; mp->mt_name != NULL; mp++) {
7863 if (mbstat.m_mtypes[mp->mt_type] != 0) {
7864 seen[mp->mt_type] = 1;
4ba76501 7865 k = scnprintf(c, clen, "\t%u mbufs allocated to %s\n",
6d2010ae
A
7866 mbstat.m_mtypes[mp->mt_type], mp->mt_name);
7867 MBUF_DUMP_BUF_CHK();
7868 }
7869 }
7870 seen[MT_FREE] = 1;
0a7de745 7871 for (i = 0; i < nmbtypes; i++) {
6d2010ae 7872 if (!seen[i] && mbstat.m_mtypes[i] != 0) {
4ba76501 7873 k = scnprintf(c, clen, "\t%u mbufs allocated to "
6d2010ae
A
7874 "<mbuf type %d>\n", mbstat.m_mtypes[i], i);
7875 MBUF_DUMP_BUF_CHK();
7876 }
0a7de745 7877 }
6d2010ae 7878 if ((m_mbufs - totmbufs) > 0) {
4ba76501 7879 k = scnprintf(c, clen, "\t%lu mbufs allocated to caches\n",
6d2010ae
A
7880 m_mbufs - totmbufs);
7881 MBUF_DUMP_BUF_CHK();
7882 }
4ba76501 7883 k = scnprintf(c, clen, "%u/%u mbuf 2KB clusters in use\n"
6d2010ae
A
7884 "%u/%u mbuf 4KB clusters in use\n",
7885 (unsigned int)(mbstat.m_clusters - m_clfree),
7886 (unsigned int)mbstat.m_clusters,
7887 (unsigned int)(mbstat.m_bigclusters - m_bigclfree),
7888 (unsigned int)mbstat.m_bigclusters);
7889 MBUF_DUMP_BUF_CHK();
7890
7891 if (njcl > 0) {
4ba76501 7892 k = scnprintf(c, clen, "%u/%u mbuf %uKB clusters in use\n",
6d2010ae
A
7893 m_16kclusters - m_16kclfree, m_16kclusters,
7894 njclbytes / 1024);
7895 MBUF_DUMP_BUF_CHK();
7896 }
7897 totused = totmem - totfree;
7898 if (totmem == 0) {
7899 totpct = 0;
7900 } else if (totused < (ULONG_MAX / 100)) {
7901 totpct = (totused * 100) / totmem;
7902 } else {
7903 u_long totmem1 = totmem / 100;
7904 u_long totused1 = totused / 100;
7905 totpct = (totused1 * 100) / totmem1;
7906 }
4ba76501 7907 k = scnprintf(c, clen, "%lu KB allocated to network (approx. %lu%% "
6d2010ae
A
7908 "in use)\n", totmem / 1024, totpct);
7909 MBUF_DUMP_BUF_CHK();
4ba76501 7910 k = scnprintf(c, clen, "%lu KB returned to the system\n",
cc8bc92a
A
7911 totreturned / 1024);
7912 MBUF_DUMP_BUF_CHK();
7913
7914 net_update_uptime();
4ba76501 7915 k = scnprintf(c, clen,
cc8bc92a
A
7916 "VM allocation failures: contiguous %u, normal %u, one page %u\n",
7917 mb_kmem_contig_failed, mb_kmem_failed, mb_kmem_one_failed);
7918 MBUF_DUMP_BUF_CHK();
7919 if (mb_kmem_contig_failed_ts || mb_kmem_failed_ts ||
7920 mb_kmem_one_failed_ts) {
4ba76501 7921 k = scnprintf(c, clen,
cc8bc92a
A
7922 "VM allocation failure timestamps: contiguous %llu "
7923 "(size %llu), normal %llu (size %llu), one page %llu "
7924 "(now %llu)\n",
7925 mb_kmem_contig_failed_ts, mb_kmem_contig_failed_size,
7926 mb_kmem_failed_ts, mb_kmem_failed_size,
7927 mb_kmem_one_failed_ts, net_uptime());
7928 MBUF_DUMP_BUF_CHK();
4ba76501 7929 k = scnprintf(c, clen,
cc8bc92a
A
7930 "VM return codes: ");
7931 MBUF_DUMP_BUF_CHK();
7932 for (i = 0;
0a7de745
A
7933 i < sizeof(mb_kmem_stats) / sizeof(mb_kmem_stats[0]);
7934 i++) {
4ba76501 7935 k = scnprintf(c, clen, "%s: %u ", mb_kmem_stats_labels[i],
cc8bc92a
A
7936 mb_kmem_stats[i]);
7937 MBUF_DUMP_BUF_CHK();
7938 }
4ba76501 7939 k = scnprintf(c, clen, "\n");
cc8bc92a
A
7940 MBUF_DUMP_BUF_CHK();
7941 }
4ba76501 7942 k = scnprintf(c, clen,
cc8bc92a
A
7943 "worker thread runs: %u, expansions: %llu, cl %llu/%llu, "
7944 "bigcl %llu/%llu, 16k %llu/%llu\n", mbuf_worker_run_cnt,
7945 mb_expand_cnt, mb_expand_cl_cnt, mb_expand_cl_total,
7946 mb_expand_bigcl_cnt, mb_expand_bigcl_total, mb_expand_16kcl_cnt,
7947 mb_expand_16kcl_total);
7948 MBUF_DUMP_BUF_CHK();
7949 if (mbuf_worker_last_runtime != 0) {
4ba76501 7950 k = scnprintf(c, clen, "worker thread last run time: "
cc8bc92a
A
7951 "%llu (%llu seconds ago)\n",
7952 mbuf_worker_last_runtime,
7953 net_uptime() - mbuf_worker_last_runtime);
7954 MBUF_DUMP_BUF_CHK();
7955 }
d9a64523 7956 if (mbuf_drain_last_runtime != 0) {
4ba76501 7957 k = scnprintf(c, clen, "drain routine last run time: "
d9a64523
A
7958 "%llu (%llu seconds ago)\n",
7959 mbuf_drain_last_runtime,
7960 net_uptime() - mbuf_drain_last_runtime);
7961 MBUF_DUMP_BUF_CHK();
7962 }
6d2010ae 7963
d9a64523 7964#if DEBUG || DEVELOPMENT
4ba76501 7965 k = scnprintf(c, clen, "\nworker thread log:\n%s\n", mbwdog_logging);
5c9f4661 7966 MBUF_DUMP_BUF_CHK();
d9a64523 7967#endif
5c9f4661
A
7968
7969 for (j = 0; j < MTRACELARGE_NUM_TRACES; j++) {
7970 struct mtracelarge *trace = &mtracelarge_table[j];
0a7de745 7971 if (trace->size == 0 || trace->depth == 0) {
5c9f4661 7972 continue;
0a7de745 7973 }
d9a64523 7974 if (printed_banner == false) {
4ba76501 7975 k = scnprintf(c, clen,
d9a64523
A
7976 "\nlargest allocation failure backtraces:\n");
7977 MBUF_DUMP_BUF_CHK();
7978 printed_banner = true;
7979 }
4ba76501 7980 k = scnprintf(c, clen, "size %llu: < ", trace->size);
5c9f4661
A
7981 MBUF_DUMP_BUF_CHK();
7982 for (i = 0; i < trace->depth; i++) {
7983 if (mleak_stat->ml_isaddr64) {
4ba76501 7984 k = scnprintf(c, clen, "0x%0llx ",
5c9f4661
A
7985 (uint64_t)VM_KERNEL_UNSLIDE(
7986 trace->addr[i]));
7987 } else {
4ba76501 7988 k = scnprintf(c, clen,
5c9f4661
A
7989 "0x%08x ",
7990 (uint32_t)VM_KERNEL_UNSLIDE(
7991 trace->addr[i]));
7992 }
7993 MBUF_DUMP_BUF_CHK();
7994 }
4ba76501 7995 k = scnprintf(c, clen, ">\n");
5c9f4661
A
7996 MBUF_DUMP_BUF_CHK();
7997 }
7998
316670eb
A
7999 /* mbuf leak detection statistics */
8000 mleak_update_stats();
8001
4ba76501 8002 k = scnprintf(c, clen, "\nmbuf leak detection table:\n");
316670eb 8003 MBUF_DUMP_BUF_CHK();
4ba76501 8004 k = scnprintf(c, clen, "\ttotal captured: %u (one per %u)\n",
316670eb
A
8005 mleak_table.mleak_capture / mleak_table.mleak_sample_factor,
8006 mleak_table.mleak_sample_factor);
8007 MBUF_DUMP_BUF_CHK();
4ba76501 8008 k = scnprintf(c, clen, "\ttotal allocs outstanding: %llu\n",
316670eb
A
8009 mleak_table.outstanding_allocs);
8010 MBUF_DUMP_BUF_CHK();
4ba76501 8011 k = scnprintf(c, clen, "\tnew hash recorded: %llu allocs, %llu traces\n",
316670eb
A
8012 mleak_table.alloc_recorded, mleak_table.trace_recorded);
8013 MBUF_DUMP_BUF_CHK();
4ba76501 8014 k = scnprintf(c, clen, "\thash collisions: %llu allocs, %llu traces\n",
316670eb
A
8015 mleak_table.alloc_collisions, mleak_table.trace_collisions);
8016 MBUF_DUMP_BUF_CHK();
4ba76501 8017 k = scnprintf(c, clen, "\toverwrites: %llu allocs, %llu traces\n",
316670eb
A
8018 mleak_table.alloc_overwrites, mleak_table.trace_overwrites);
8019 MBUF_DUMP_BUF_CHK();
4ba76501 8020 k = scnprintf(c, clen, "\tlock conflicts: %llu\n\n",
316670eb
A
8021 mleak_table.total_conflicts);
8022 MBUF_DUMP_BUF_CHK();
8023
4ba76501 8024 k = scnprintf(c, clen, "top %d outstanding traces:\n",
316670eb
A
8025 mleak_stat->ml_cnt);
8026 MBUF_DUMP_BUF_CHK();
8027 for (i = 0; i < mleak_stat->ml_cnt; i++) {
8028 mltr = &mleak_stat->ml_trace[i];
4ba76501 8029 k = scnprintf(c, clen, "[%d] %llu outstanding alloc(s), "
316670eb
A
8030 "%llu hit(s), %llu collision(s)\n", (i + 1),
8031 mltr->mltr_allocs, mltr->mltr_hitcount,
8032 mltr->mltr_collisions);
8033 MBUF_DUMP_BUF_CHK();
8034 }
8035
0a7de745 8036 if (mleak_stat->ml_isaddr64) {
4ba76501 8037 k = scnprintf(c, clen, MB_LEAK_HDR_64);
0a7de745 8038 } else {
4ba76501 8039 k = scnprintf(c, clen, MB_LEAK_HDR_32);
0a7de745 8040 }
316670eb
A
8041 MBUF_DUMP_BUF_CHK();
8042
8043 for (i = 0; i < MLEAK_STACK_DEPTH; i++) {
4ba76501 8044 k = scnprintf(c, clen, "%2d: ", (i + 1));
316670eb
A
8045 MBUF_DUMP_BUF_CHK();
8046 for (j = 0; j < mleak_stat->ml_cnt; j++) {
8047 mltr = &mleak_stat->ml_trace[j];
8048 if (i < mltr->mltr_depth) {
8049 if (mleak_stat->ml_isaddr64) {
4ba76501 8050 k = scnprintf(c, clen, "0x%0llx ",
fe8ab488 8051 (uint64_t)VM_KERNEL_UNSLIDE(
0a7de745 8052 mltr->mltr_addr[i]));
316670eb 8053 } else {
4ba76501 8054 k = scnprintf(c, clen,
316670eb 8055 "0x%08x ",
fe8ab488 8056 (uint32_t)VM_KERNEL_UNSLIDE(
0a7de745 8057 mltr->mltr_addr[i]));
316670eb
A
8058 }
8059 } else {
0a7de745 8060 if (mleak_stat->ml_isaddr64) {
4ba76501 8061 k = scnprintf(c, clen,
316670eb 8062 MB_LEAK_SPACING_64);
0a7de745 8063 } else {
4ba76501 8064 k = scnprintf(c, clen,
316670eb 8065 MB_LEAK_SPACING_32);
0a7de745 8066 }
316670eb
A
8067 }
8068 MBUF_DUMP_BUF_CHK();
8069 }
4ba76501 8070 k = scnprintf(c, clen, "\n");
316670eb
A
8071 MBUF_DUMP_BUF_CHK();
8072 }
6d2010ae 8073done:
0a7de745 8074 return mbuf_dump_buf;
6d2010ae
A
8075}
8076
8077#undef MBUF_DUMP_BUF_CHK
8078
39236c6e
A
8079/*
8080 * Convert between a regular and a packet header mbuf. Caller is responsible
8081 * for setting or clearing M_PKTHDR; this routine does the rest of the work.
8082 */
8083int
8084m_reinit(struct mbuf *m, int hdr)
8085{
8086 int ret = 0;
8087
8088 if (hdr) {
8089 VERIFY(!(m->m_flags & M_PKTHDR));
8090 if (!(m->m_flags & M_EXT) &&
8091 (m->m_data != m->m_dat || m->m_len > 0)) {
8092 /*
8093 * If there's no external cluster attached and the
8094 * mbuf appears to contain user data, we cannot
8095 * safely convert this to a packet header mbuf,
8096 * as the packet header structure might overlap
8097 * with the data.
8098 */
fe8ab488
A
8099 printf("%s: cannot set M_PKTHDR on altered mbuf %llx, "
8100 "m_data %llx (expected %llx), "
8101 "m_len %d (expected 0)\n",
8102 __func__,
8103 (uint64_t)VM_KERNEL_ADDRPERM(m),
8104 (uint64_t)VM_KERNEL_ADDRPERM(m->m_data),
8105 (uint64_t)VM_KERNEL_ADDRPERM(m->m_dat), m->m_len);
39236c6e
A
8106 ret = EBUSY;
8107 } else {
8108 VERIFY((m->m_flags & M_EXT) || m->m_data == m->m_dat);
8109 m->m_flags |= M_PKTHDR;
8110 MBUF_INIT_PKTHDR(m);
8111 }
8112 } else {
8113 /* Check for scratch area overflow */
8114 m_redzone_verify(m);
8115 /* Free the aux data and tags if there is any */
8116 m_tag_delete_chain(m, NULL);
8117 m->m_flags &= ~M_PKTHDR;
8118 }
8119
0a7de745 8120 return ret;
39236c6e
A
8121}
8122
39037602
A
8123int
8124m_ext_set_prop(struct mbuf *m, uint32_t o, uint32_t n)
8125{
8126 ASSERT(m->m_flags & M_EXT);
0a7de745 8127 return atomic_test_set_32(&MEXT_PRIV(m), o, n);
39037602
A
8128}
8129
8130uint32_t
8131m_ext_get_prop(struct mbuf *m)
8132{
8133 ASSERT(m->m_flags & M_EXT);
0a7de745 8134 return MEXT_PRIV(m);
39037602
A
8135}
8136
8137int
8138m_ext_paired_is_active(struct mbuf *m)
8139{
0a7de745 8140 return MBUF_IS_PAIRED(m) ? (MEXT_PREF(m) > MEXT_MINREF(m)) : 1;
39037602
A
8141}
8142
8143void
8144m_ext_paired_activate(struct mbuf *m)
8145{
8146 struct ext_ref *rfa;
8147 int hdr, type;
8148 caddr_t extbuf;
813fb2f6 8149 m_ext_free_func_t extfree;
39037602
A
8150 u_int extsize;
8151
8152 VERIFY(MBUF_IS_PAIRED(m));
8153 VERIFY(MEXT_REF(m) == MEXT_MINREF(m));
8154 VERIFY(MEXT_PREF(m) == MEXT_MINREF(m));
8155
8156 hdr = (m->m_flags & M_PKTHDR);
8157 type = m->m_type;
8158 extbuf = m->m_ext.ext_buf;
813fb2f6 8159 extfree = m_get_ext_free(m);
39037602 8160 extsize = m->m_ext.ext_size;
813fb2f6 8161 rfa = m_get_rfa(m);
39037602
A
8162
8163 VERIFY(extbuf != NULL && rfa != NULL);
8164
8165 /*
8166 * Safe to reinitialize packet header tags, since it's
8167 * already taken care of at m_free() time. Similar to
8168 * what's done in m_clattach() for the cluster. Bump
8169 * up MEXT_PREF to indicate activation.
8170 */
8171 MBUF_INIT(m, hdr, type);
8172 MEXT_INIT(m, extbuf, extsize, extfree, (caddr_t)m, rfa,
8173 1, 1, 2, EXTF_PAIRED, MEXT_PRIV(m), m);
8174}
8175
39236c6e
A
8176void
8177m_scratch_init(struct mbuf *m)
8178{
fe8ab488
A
8179 struct pkthdr *pkt = &m->m_pkthdr;
8180
39236c6e
A
8181 VERIFY(m->m_flags & M_PKTHDR);
8182
fe8ab488
A
8183 /* See comments in <rdar://problem/14040693> */
8184 if (pkt->pkt_flags & PKTF_PRIV_GUARDED) {
8185 panic_plain("Invalid attempt to modify guarded module-private "
8186 "area: mbuf %p, pkt_flags 0x%x\n", m, pkt->pkt_flags);
8187 /* NOTREACHED */
8188 }
8189
0a7de745 8190 bzero(&pkt->pkt_mpriv, sizeof(pkt->pkt_mpriv));
39236c6e
A
8191}
8192
fe8ab488
A
8193/*
8194 * This routine is reserved for mbuf_get_driver_scratch(); clients inside
8195 * xnu that intend on utilizing the module-private area should directly
8196 * refer to the pkt_mpriv structure in the pkthdr. They are also expected
8197 * to set and clear PKTF_PRIV_GUARDED, while owning the packet and prior
8198 * to handing it off to another module, respectively.
8199 */
39236c6e
A
8200u_int32_t
8201m_scratch_get(struct mbuf *m, u_int8_t **p)
8202{
fe8ab488
A
8203 struct pkthdr *pkt = &m->m_pkthdr;
8204
39236c6e
A
8205 VERIFY(m->m_flags & M_PKTHDR);
8206
fe8ab488
A
8207 /* See comments in <rdar://problem/14040693> */
8208 if (pkt->pkt_flags & PKTF_PRIV_GUARDED) {
8209 panic_plain("Invalid attempt to access guarded module-private "
8210 "area: mbuf %p, pkt_flags 0x%x\n", m, pkt->pkt_flags);
8211 /* NOTREACHED */
8212 }
8213
39236c6e
A
8214 if (mcltrace) {
8215 mcache_audit_t *mca;
8216
8217 lck_mtx_lock(mbuf_mlock);
8218 mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
0a7de745 8219 if (mca->mca_uflags & MB_SCVALID) {
39236c6e 8220 mcl_audit_scratch(mca);
0a7de745 8221 }
39236c6e
A
8222 lck_mtx_unlock(mbuf_mlock);
8223 }
8224
fe8ab488 8225 *p = (u_int8_t *)&pkt->pkt_mpriv;
0a7de745 8226 return sizeof(pkt->pkt_mpriv);
39236c6e
A
8227}
8228
8229static void
8230m_redzone_init(struct mbuf *m)
8231{
8232 VERIFY(m->m_flags & M_PKTHDR);
8233 /*
8234 * Each mbuf has a unique red zone pattern, which is a XOR
8235 * of the red zone cookie and the address of the mbuf.
8236 */
8237 m->m_pkthdr.redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie;
8238}
8239
8240static void
8241m_redzone_verify(struct mbuf *m)
8242{
8243 u_int32_t mb_redzone;
8244
8245 VERIFY(m->m_flags & M_PKTHDR);
8246
8247 mb_redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie;
8248 if (m->m_pkthdr.redzone != mb_redzone) {
8249 panic("mbuf %p redzone violation with value 0x%x "
8250 "(instead of 0x%x, using cookie 0x%x)\n",
8251 m, m->m_pkthdr.redzone, mb_redzone, mb_redzone_cookie);
8252 /* NOTREACHED */
8253 }
8254}
8255
813fb2f6
A
8256__private_extern__ inline void
8257m_set_ext(struct mbuf *m, struct ext_ref *rfa, m_ext_free_func_t ext_free,
8258 caddr_t ext_arg)
8259{
8260 VERIFY(m->m_flags & M_EXT);
8261 if (rfa != NULL) {
8262 m->m_ext.ext_refflags =
8263 (struct ext_ref *)(((uintptr_t)rfa) ^ mb_obscure_extref);
8264 if (ext_free != NULL) {
8265 rfa->ext_token = ((uintptr_t)&rfa->ext_token) ^
8266 mb_obscure_extfree;
f427ee49
A
8267 uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, ext_free) ^ rfa->ext_token;
8268 m->m_ext.ext_free = ptrauth_nop_cast(m_ext_free_func_t, ext_free_val);
813fb2f6 8269 if (ext_arg != NULL) {
5ba3f43e
A
8270 m->m_ext.ext_arg =
8271 (caddr_t)(((uintptr_t)ext_arg) ^ rfa->ext_token);
813fb2f6
A
8272 } else {
8273 m->m_ext.ext_arg = NULL;
8274 }
8275 } else {
8276 rfa->ext_token = 0;
8277 m->m_ext.ext_free = NULL;
8278 m->m_ext.ext_arg = NULL;
8279 }
8280 } else {
8281 /*
8282 * If we are going to loose the cookie in ext_token by
8283 * resetting the rfa, we should use the global cookie
8284 * to obscure the ext_free and ext_arg pointers.
8285 */
8286 if (ext_free != NULL) {
f427ee49
A
8287 uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, ext_free) ^ mb_obscure_extfree;
8288 m->m_ext.ext_free = ptrauth_nop_cast(m_ext_free_func_t, ext_free_val);
813fb2f6 8289 if (ext_arg != NULL) {
5ba3f43e
A
8290 m->m_ext.ext_arg =
8291 (caddr_t)((uintptr_t)ext_arg ^
813fb2f6
A
8292 mb_obscure_extfree);
8293 } else {
8294 m->m_ext.ext_arg = NULL;
8295 }
8296 } else {
8297 m->m_ext.ext_free = NULL;
8298 m->m_ext.ext_arg = NULL;
8299 }
8300 m->m_ext.ext_refflags = NULL;
8301 }
8302}
8303
8304__private_extern__ inline struct ext_ref *
8305m_get_rfa(struct mbuf *m)
8306{
0a7de745
A
8307 if (m->m_ext.ext_refflags == NULL) {
8308 return NULL;
8309 } else {
8310 return (struct ext_ref *)(((uintptr_t)m->m_ext.ext_refflags) ^ mb_obscure_extref);
8311 }
813fb2f6
A
8312}
8313
8314__private_extern__ inline m_ext_free_func_t
8315m_get_ext_free(struct mbuf *m)
8316{
8317 struct ext_ref *rfa;
0a7de745
A
8318 if (m->m_ext.ext_free == NULL) {
8319 return NULL;
8320 }
813fb2f6
A
8321
8322 rfa = m_get_rfa(m);
0a7de745 8323 if (rfa == NULL) {
f427ee49
A
8324 uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, m->m_ext.ext_free) ^ mb_obscure_extfree;
8325 return ptrauth_nop_cast(m_ext_free_func_t, ext_free_val);
0a7de745 8326 } else {
f427ee49
A
8327 uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, m->m_ext.ext_free) ^ rfa->ext_token;
8328 return ptrauth_nop_cast(m_ext_free_func_t, ext_free_val);
0a7de745 8329 }
813fb2f6
A
8330}
8331
8332__private_extern__ inline caddr_t
8333m_get_ext_arg(struct mbuf *m)
8334{
8335 struct ext_ref *rfa;
0a7de745
A
8336 if (m->m_ext.ext_arg == NULL) {
8337 return NULL;
8338 }
813fb2f6
A
8339
8340 rfa = m_get_rfa(m);
8341 if (rfa == NULL) {
0a7de745 8342 return (caddr_t)((uintptr_t)m->m_ext.ext_arg ^ mb_obscure_extfree);
813fb2f6 8343 } else {
0a7de745
A
8344 return (caddr_t)(((uintptr_t)m->m_ext.ext_arg) ^
8345 rfa->ext_token);
813fb2f6
A
8346 }
8347}
8348
fe8ab488
A
8349/*
8350 * Send a report of mbuf usage if the usage is at least 6% of max limit
8351 * or if there has been at least 3% increase since the last report.
8352 *
8353 * The values 6% and 3% are chosen so that we can do simple arithmetic
8354 * with shift operations.
39037602 8355 */
fe8ab488
A
8356static boolean_t
8357mbuf_report_usage(mbuf_class_t cl)
8358{
8359 /* if a report is already in progress, nothing to do */
0a7de745
A
8360 if (mb_peak_newreport) {
8361 return TRUE;
8362 }
fe8ab488
A
8363
8364 if (m_total(cl) > m_peak(cl) &&
8365 m_total(cl) >= (m_maxlimit(cl) >> 4) &&
0a7de745
A
8366 (m_total(cl) - m_peak(cl)) >= (m_peak(cl) >> 5)) {
8367 return TRUE;
8368 }
8369 return FALSE;
fe8ab488
A
8370}
8371
8372__private_extern__ void
8373mbuf_report_peak_usage(void)
8374{
39037602 8375 int i = 0;
fe8ab488
A
8376 u_int64_t uptime;
8377 struct nstat_sysinfo_data ns_data;
8378 uint32_t memreleased = 0;
cc8bc92a 8379 static uint32_t prevmemreleased;
fe8ab488
A
8380
8381 uptime = net_uptime();
8382 lck_mtx_lock(mbuf_mlock);
8383
8384 /* Generate an initial report after 1 week of uptime */
39037602 8385 if (!mb_peak_firstreport &&
fe8ab488
A
8386 uptime > MBUF_PEAK_FIRST_REPORT_THRESHOLD) {
8387 mb_peak_newreport = TRUE;
8388 mb_peak_firstreport = TRUE;
8389 }
8390
8391 if (!mb_peak_newreport) {
8392 lck_mtx_unlock(mbuf_mlock);
8393 return;
8394 }
8395
8396 /*
39037602 8397 * Since a report is being generated before 1 week,
fe8ab488
A
8398 * we do not need to force another one later
8399 */
0a7de745 8400 if (uptime < MBUF_PEAK_FIRST_REPORT_THRESHOLD) {
fe8ab488 8401 mb_peak_firstreport = TRUE;
0a7de745 8402 }
fe8ab488
A
8403
8404 for (i = 0; i < NELEM(mbuf_table); i++) {
8405 m_peak(m_class(i)) = m_total(m_class(i));
8406 memreleased += m_release_cnt(i);
8407 }
cc8bc92a
A
8408 memreleased = memreleased - prevmemreleased;
8409 prevmemreleased = memreleased;
fe8ab488
A
8410 mb_peak_newreport = FALSE;
8411 lck_mtx_unlock(mbuf_mlock);
8412
8413 bzero(&ns_data, sizeof(ns_data));
8414 ns_data.flags = NSTAT_SYSINFO_MBUF_STATS;
8415 ns_data.u.mb_stats.total_256b = m_peak(MC_MBUF);
8416 ns_data.u.mb_stats.total_2kb = m_peak(MC_CL);
8417 ns_data.u.mb_stats.total_4kb = m_peak(MC_BIGCL);
3e170ce0 8418 ns_data.u.mb_stats.total_16kb = m_peak(MC_16KCL);
fe8ab488
A
8419 ns_data.u.mb_stats.sbmb_total = total_sbmb_cnt_peak;
8420 ns_data.u.mb_stats.sb_atmbuflimit = sbmb_limreached;
8421 ns_data.u.mb_stats.draincnt = mbstat.m_drain;
8422 ns_data.u.mb_stats.memreleased = memreleased;
39037602 8423 ns_data.u.mb_stats.sbmb_floor = total_sbmb_cnt_floor;
fe8ab488
A
8424
8425 nstat_sysinfo_send_data(&ns_data);
39037602
A
8426
8427 /*
8428 * Reset the floor whenever we report a new
8429 * peak to track the trend (increase peek usage
8430 * is not a leak if mbufs get released
8431 * between reports and the floor stays low)
8432 */
8433 total_sbmb_cnt_floor = total_sbmb_cnt_peak;
fe8ab488
A
8434}
8435
8436/*
d9a64523
A
8437 * Simple routine to avoid taking the lock when we can't run the
8438 * mbuf drain.
fe8ab488 8439 */
d9a64523
A
8440static int
8441mbuf_drain_checks(boolean_t ignore_waiters)
8442{
0a7de745 8443 if (mb_drain_maxint == 0) {
d9a64523 8444 return 0;
0a7de745
A
8445 }
8446 if (!ignore_waiters && mb_waiters != 0) {
d9a64523 8447 return 0;
0a7de745 8448 }
d9a64523
A
8449
8450 return 1;
8451}
8452
8453/*
8454 * Called by the VM when there's memory pressure or when we exhausted
8455 * the 4k/16k reserved space.
8456 */
8457static void
8458mbuf_drain_locked(boolean_t ignore_waiters)
fe8ab488
A
8459{
8460 mbuf_class_t mc;
8461 mcl_slab_t *sp, *sp_tmp, *nsp;
8462 unsigned int num, k, interval, released = 0;
39037602 8463 unsigned long total_mem = 0, use_mem = 0;
fe8ab488
A
8464 boolean_t ret, purge_caches = FALSE;
8465 ppnum_t offset;
8466 mcache_obj_t *obj;
39037602 8467 unsigned long per;
fe8ab488
A
8468 static unsigned char scratch[32];
8469 static ppnum_t scratch_pa = 0;
8470
d9a64523 8471 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
0a7de745 8472 if (!mbuf_drain_checks(ignore_waiters)) {
fe8ab488 8473 return;
0a7de745 8474 }
fe8ab488
A
8475 if (scratch_pa == 0) {
8476 bzero(scratch, sizeof(scratch));
8477 scratch_pa = pmap_find_phys(kernel_pmap, (addr64_t)scratch);
8478 VERIFY(scratch_pa);
8479 } else if (mclverify) {
8480 /*
8481 * Panic if a driver wrote to our scratch memory.
8482 */
0a7de745
A
8483 for (k = 0; k < sizeof(scratch); k++) {
8484 if (scratch[k]) {
fe8ab488 8485 panic("suspect DMA to freed address");
0a7de745
A
8486 }
8487 }
fe8ab488
A
8488 }
8489 /*
8490 * Don't free memory too often as that could cause excessive
8491 * waiting times for mbufs. Purge caches if we were asked to drain
8492 * in the last 5 minutes.
8493 */
d9a64523
A
8494 if (mbuf_drain_last_runtime != 0) {
8495 interval = net_uptime() - mbuf_drain_last_runtime;
8496 if (interval <= mb_drain_maxint) {
8497 return;
8498 }
0a7de745 8499 if (interval <= mb_drain_maxint * 5) {
d9a64523 8500 purge_caches = TRUE;
0a7de745 8501 }
39037602 8502 }
d9a64523 8503 mbuf_drain_last_runtime = net_uptime();
fe8ab488
A
8504 /*
8505 * Don't free any memory if we're using 60% or more.
8506 */
8507 for (mc = 0; mc < NELEM(mbuf_table); mc++) {
8508 total_mem += m_total(mc) * m_maxsize(mc);
8509 use_mem += m_active(mc) * m_maxsize(mc);
8510 }
39037602
A
8511 per = (use_mem * 100) / total_mem;
8512 if (per >= 60) {
fe8ab488
A
8513 return;
8514 }
8515 /*
8516 * Purge all the caches. This effectively disables
8517 * caching for a few seconds, but the mbuf worker thread will
8518 * re-enable them again.
8519 */
0a7de745 8520 if (purge_caches == TRUE) {
fe8ab488 8521 for (mc = 0; mc < NELEM(mbuf_table); mc++) {
0a7de745 8522 if (m_total(mc) < m_avgtotal(mc)) {
fe8ab488 8523 continue;
0a7de745 8524 }
fe8ab488
A
8525 lck_mtx_unlock(mbuf_mlock);
8526 ret = mcache_purge_cache(m_cache(mc), FALSE);
8527 lck_mtx_lock(mbuf_mlock);
0a7de745 8528 if (ret == TRUE) {
fe8ab488 8529 m_purge_cnt(mc)++;
0a7de745 8530 }
fe8ab488 8531 }
0a7de745 8532 }
fe8ab488
A
8533 /*
8534 * Move the objects from the composite class freelist to
8535 * the rudimentary slabs list, but keep at least 10% of the average
8536 * total in the freelist.
8537 */
8538 for (mc = 0; mc < NELEM(mbuf_table); mc++) {
39037602 8539 while (m_cobjlist(mc) &&
fe8ab488
A
8540 m_total(mc) < m_avgtotal(mc) &&
8541 m_infree(mc) > 0.1 * m_avgtotal(mc) + m_minlimit(mc)) {
8542 obj = m_cobjlist(mc);
8543 m_cobjlist(mc) = obj->obj_next;
8544 obj->obj_next = NULL;
8545 num = cslab_free(mc, obj, 1);
8546 VERIFY(num == 1);
8547 m_free_cnt(mc)++;
8548 m_infree(mc)--;
8549 /* cslab_free() handles m_total */
8550 }
8551 }
8552 /*
8553 * Free the buffers present in the slab list up to 10% of the total
8554 * average per class.
8555 *
8556 * We walk the list backwards in an attempt to reduce fragmentation.
8557 */
8558 for (mc = NELEM(mbuf_table) - 1; (int)mc >= 0; mc--) {
8559 TAILQ_FOREACH_SAFE(sp, &m_slablist(mc), sl_link, sp_tmp) {
8560 /*
8561 * Process only unused slabs occupying memory.
8562 */
8563 if (sp->sl_refcnt != 0 || sp->sl_len == 0 ||
0a7de745 8564 sp->sl_base == NULL) {
fe8ab488 8565 continue;
0a7de745 8566 }
fe8ab488 8567 if (m_total(mc) < m_avgtotal(mc) ||
0a7de745 8568 m_infree(mc) < 0.1 * m_avgtotal(mc) + m_minlimit(mc)) {
fe8ab488 8569 break;
0a7de745 8570 }
fe8ab488
A
8571 slab_remove(sp, mc);
8572 switch (mc) {
8573 case MC_MBUF:
3e170ce0
A
8574 m_infree(mc) -= NMBPG;
8575 m_total(mc) -= NMBPG;
0a7de745 8576 if (mclaudit != NULL) {
3e170ce0 8577 mcl_audit_free(sp->sl_base, NMBPG);
0a7de745 8578 }
fe8ab488
A
8579 break;
8580 case MC_CL:
3e170ce0
A
8581 m_infree(mc) -= NCLPG;
8582 m_total(mc) -= NCLPG;
0a7de745 8583 if (mclaudit != NULL) {
3e170ce0 8584 mcl_audit_free(sp->sl_base, NMBPG);
0a7de745 8585 }
fe8ab488
A
8586 break;
8587 case MC_BIGCL:
3e170ce0
A
8588 {
8589 m_infree(mc) -= NBCLPG;
8590 m_total(mc) -= NBCLPG;
0a7de745 8591 if (mclaudit != NULL) {
3e170ce0 8592 mcl_audit_free(sp->sl_base, NMBPG);
0a7de745 8593 }
fe8ab488 8594 break;
3e170ce0 8595 }
fe8ab488
A
8596 case MC_16KCL:
8597 m_infree(mc)--;
8598 m_total(mc)--;
8599 for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
8600 nsp = nsp->sl_next;
39037602 8601 VERIFY(nsp->sl_refcnt == 0 &&
fe8ab488
A
8602 nsp->sl_base != NULL &&
8603 nsp->sl_len == 0);
8604 slab_init(nsp, 0, 0, NULL, NULL, 0, 0,
8605 0);
8606 nsp->sl_flags = 0;
8607 }
5ba3f43e
A
8608 if (mclaudit != NULL) {
8609 if (sp->sl_len == PAGE_SIZE) {
8610 mcl_audit_free(sp->sl_base,
8611 NMBPG);
8612 } else {
8613 mcl_audit_free(sp->sl_base, 1);
8614 }
8615 }
fe8ab488
A
8616 break;
8617 default:
8618 /*
8619 * The composite classes have their own
8620 * freelist (m_cobjlist), so we only
8621 * process rudimentary classes here.
8622 */
8623 VERIFY(0);
8624 }
8625 m_release_cnt(mc) += m_size(mc);
8626 released += m_size(mc);
3e170ce0
A
8627 VERIFY(sp->sl_base != NULL &&
8628 sp->sl_len >= PAGE_SIZE);
8629 offset = MTOPG(sp->sl_base);
fe8ab488
A
8630 /*
8631 * Make sure the IOMapper points to a valid, but
8632 * bogus, address. This should prevent further DMA
8633 * accesses to freed memory.
8634 */
8635 IOMapperInsertPage(mcl_paddr_base, offset, scratch_pa);
8636 mcl_paddr[offset] = 0;
39037602 8637 kmem_free(mb_map, (vm_offset_t)sp->sl_base,
fe8ab488
A
8638 sp->sl_len);
8639 slab_init(sp, 0, 0, NULL, NULL, 0, 0, 0);
8640 sp->sl_flags = 0;
8641 }
8642 }
8643 mbstat.m_drain++;
8644 mbstat.m_bigclusters = m_total(MC_BIGCL);
8645 mbstat.m_clusters = m_total(MC_CL);
8646 mbstat.m_mbufs = m_total(MC_MBUF);
8647 mbuf_stat_sync();
8648 mbuf_mtypes_sync(TRUE);
d9a64523
A
8649}
8650
8651__private_extern__ void
8652mbuf_drain(boolean_t ignore_waiters)
8653{
8654 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_NOTOWNED);
0a7de745 8655 if (!mbuf_drain_checks(ignore_waiters)) {
d9a64523 8656 return;
0a7de745 8657 }
d9a64523
A
8658 lck_mtx_lock(mbuf_mlock);
8659 mbuf_drain_locked(ignore_waiters);
fe8ab488
A
8660 lck_mtx_unlock(mbuf_mlock);
8661}
8662
d9a64523 8663
fe8ab488
A
8664static int
8665m_drain_force_sysctl SYSCTL_HANDLER_ARGS
8666{
8667#pragma unused(arg1, arg2)
8668 int val = 0, err;
39037602 8669
fe8ab488 8670 err = sysctl_handle_int(oidp, &val, 0, req);
0a7de745
A
8671 if (err != 0 || req->newptr == USER_ADDR_NULL) {
8672 return err;
8673 }
5c9f4661 8674 if (val) {
d9a64523 8675 mbuf_drain(TRUE);
5c9f4661 8676 }
fe8ab488 8677
0a7de745 8678 return err;
fe8ab488
A
8679}
8680
cc8bc92a 8681#if DEBUG || DEVELOPMENT
d9a64523
A
8682static void
8683_mbwdog_logger(const char *func, const int line, const char *fmt, ...)
8684{
8685 va_list ap;
8686 struct timeval now;
8687 char str[384], p[256];
8688 int len;
8689
8690 LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
8691 if (mbwdog_logging == NULL) {
8692 mbwdog_logging = _MALLOC(mbwdog_logging_size,
0a7de745
A
8693 M_TEMP, M_ZERO | M_NOWAIT);
8694 if (mbwdog_logging == NULL) {
d9a64523 8695 return;
0a7de745 8696 }
d9a64523
A
8697 }
8698 va_start(ap, fmt);
8699 vsnprintf(p, sizeof(p), fmt, ap);
8700 va_end(ap);
8701 microuptime(&now);
4ba76501 8702 len = scnprintf(str, sizeof(str),
d9a64523
A
8703 "\n%ld.%d (%d/%llx) %s:%d %s",
8704 now.tv_sec, now.tv_usec,
8705 current_proc()->p_pid,
8706 (uint64_t)VM_KERNEL_ADDRPERM(current_thread()),
8707 func, line, p);
0a7de745 8708 if (len < 0) {
d9a64523 8709 return;
0a7de745 8710 }
d9a64523
A
8711 if (mbwdog_logging_used + len > mbwdog_logging_size) {
8712 mbwdog_logging_used = mbwdog_logging_used / 2;
8713 memmove(mbwdog_logging, mbwdog_logging + mbwdog_logging_used,
8714 mbwdog_logging_size - mbwdog_logging_used);
8715 mbwdog_logging[mbwdog_logging_used] = 0;
8716 }
8717 strlcat(mbwdog_logging, str, mbwdog_logging_size);
8718 mbwdog_logging_used += len;
8719}
8720
8721static int
8722sysctl_mbwdog_log SYSCTL_HANDLER_ARGS
8723{
8724#pragma unused(oidp, arg1, arg2)
0a7de745 8725 return SYSCTL_OUT(req, mbwdog_logging, mbwdog_logging_used);
d9a64523
A
8726}
8727SYSCTL_DECL(_kern_ipc);
8728SYSCTL_PROC(_kern_ipc, OID_AUTO, mbwdog_log,
8729 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_LOCKED,
8730 0, 0, sysctl_mbwdog_log, "A", "");
cc8bc92a
A
8731
8732static int mbtest_val;
8733static int mbtest_running;
8734
0a7de745
A
8735static void
8736mbtest_thread(__unused void *arg)
cc8bc92a
A
8737{
8738 int i;
a39ff7e2
A
8739 int scale_down = 1;
8740 int iterations = 250;
8741 int allocations = nmbclusters;
8742 iterations = iterations / scale_down;
8743 allocations = allocations / scale_down;
cc8bc92a 8744 printf("%s thread starting\n", __func__);
a39ff7e2
A
8745 for (i = 0; i < iterations; i++) {
8746 unsigned int needed = allocations;
cc8bc92a
A
8747 struct mbuf *m1, *m2, *m3;
8748
8749 if (njcl > 0) {
a39ff7e2 8750 needed = allocations;
cc8bc92a
A
8751 m3 = m_getpackets_internal(&needed, 0, M_DONTWAIT, 0, M16KCLBYTES);
8752 m_freem_list(m3);
8753 }
8754
a39ff7e2 8755 needed = allocations;
cc8bc92a
A
8756 m2 = m_getpackets_internal(&needed, 0, M_DONTWAIT, 0, MBIGCLBYTES);
8757 m_freem_list(m2);
8758
8759 m1 = m_getpackets_internal(&needed, 0, M_DONTWAIT, 0, MCLBYTES);
8760 m_freem_list(m1);
8761 }
8762
8763 printf("%s thread ending\n", __func__);
8764
8765 OSDecrementAtomic(&mbtest_running);
8766 wakeup_one((caddr_t)&mbtest_running);
8767}
8768
0a7de745
A
8769static void
8770sysctl_mbtest(void)
cc8bc92a
A
8771{
8772 /* We launch three threads - wait for all of them */
8773 OSIncrementAtomic(&mbtest_running);
8774 OSIncrementAtomic(&mbtest_running);
8775 OSIncrementAtomic(&mbtest_running);
8776
8777 thread_call_func_delayed((thread_call_func_t)mbtest_thread, NULL, 10);
8778 thread_call_func_delayed((thread_call_func_t)mbtest_thread, NULL, 10);
8779 thread_call_func_delayed((thread_call_func_t)mbtest_thread, NULL, 10);
8780
8781 while (mbtest_running) {
8782 msleep((caddr_t)&mbtest_running, NULL, PUSER, "mbtest_running", NULL);
8783 }
8784}
8785
8786static int
8787mbtest SYSCTL_HANDLER_ARGS
8788{
8789#pragma unused(arg1, arg2)
8790 int error = 0, val, oldval = mbtest_val;
8791
8792 val = oldval;
8793 error = sysctl_handle_int(oidp, &val, 0, req);
0a7de745
A
8794 if (error || !req->newptr) {
8795 return error;
8796 }
cc8bc92a 8797
0a7de745 8798 if (val != oldval) {
cc8bc92a 8799 sysctl_mbtest();
0a7de745 8800 }
cc8bc92a
A
8801
8802 mbtest_val = val;
8803
0a7de745 8804 return error;
cc8bc92a 8805}
d9a64523 8806#endif // DEBUG || DEVELOPMENT
5c9f4661
A
8807
8808static void
8809mtracelarge_register(size_t size)
8810{
8811 int i;
8812 struct mtracelarge *trace;
8813 uintptr_t bt[MLEAK_STACK_DEPTH];
8814 unsigned int depth;
8815
cb323159 8816 depth = backtrace(bt, MLEAK_STACK_DEPTH, NULL);
5c9f4661
A
8817 /* Check if this entry is already on the list. */
8818 for (i = 0; i < MTRACELARGE_NUM_TRACES; i++) {
8819 trace = &mtracelarge_table[i];
8820 if (trace->size == size && trace->depth == depth &&
8821 memcmp(bt, trace->addr, depth * sizeof(uintptr_t)) == 0) {
8822 return;
8823 }
5c9f4661
A
8824 }
8825 for (i = 0; i < MTRACELARGE_NUM_TRACES; i++) {
8826 trace = &mtracelarge_table[i];
8827 if (size > trace->size) {
8828 trace->depth = depth;
8829 memcpy(trace->addr, bt, depth * sizeof(uintptr_t));
8830 trace->size = size;
8831 break;
8832 }
8833 }
8834}
8835
2d21ac55 8836SYSCTL_DECL(_kern_ipc);
cc8bc92a
A
8837#if DEBUG || DEVELOPMENT
8838SYSCTL_PROC(_kern_ipc, OID_AUTO, mbtest,
8839 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &mbtest_val, 0, &mbtest, "I",
8840 "Toggle to test mbufs");
8841#endif
6d2010ae 8842SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat,
fe8ab488 8843 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
2d21ac55 8844 0, 0, mbstat_sysctl, "S,mbstat", "");
6d2010ae 8845SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_stat,
fe8ab488 8846 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
2d21ac55 8847 0, 0, mb_stat_sysctl, "S,mb_stat", "");
6d2010ae 8848SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_top_trace,
fe8ab488 8849 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
6d2010ae
A
8850 0, 0, mleak_top_trace_sysctl, "S,mb_top_trace", "");
8851SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_table,
fe8ab488 8852 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
6d2010ae
A
8853 0, 0, mleak_table_sysctl, "S,mleak_table", "");
8854SYSCTL_INT(_kern_ipc, OID_AUTO, mleak_sample_factor,
8855 CTLFLAG_RW | CTLFLAG_LOCKED, &mleak_table.mleak_sample_factor, 0, "");
8856SYSCTL_INT(_kern_ipc, OID_AUTO, mb_normalized,
8857 CTLFLAG_RD | CTLFLAG_LOCKED, &mb_normalized, 0, "");
8858SYSCTL_INT(_kern_ipc, OID_AUTO, mb_watchdog,
8859 CTLFLAG_RW | CTLFLAG_LOCKED, &mb_watchdog, 0, "");
fe8ab488 8860SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_drain_force,
39037602 8861 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, 0,
fe8ab488
A
8862 m_drain_force_sysctl, "I",
8863 "Forces the mbuf garbage collection to run");
8864SYSCTL_INT(_kern_ipc, OID_AUTO, mb_drain_maxint,
8865 CTLFLAG_RW | CTLFLAG_LOCKED, &mb_drain_maxint, 0,
8866 "Minimum time interval between garbage collection");
2a1bd2d3
A
8867SYSCTL_INT(_kern_ipc, OID_AUTO, mb_memory_pressure_percentage,
8868 CTLFLAG_RW | CTLFLAG_LOCKED, &mb_memory_pressure_percentage, 0,
8869 "Percentage of when we trigger memory-pressure for an mbuf-class");