]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
fe8ab488 | 2 | * Copyright (c) 1998-2014 Apple Inc. All rights reserved. |
5d5c5d0d | 3 | * |
2d21ac55 A |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
1c79356b A |
27 | */ |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1982, 1986, 1988, 1991, 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 | |
62 | */ | |
2d21ac55 A |
63 | /* |
64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce | |
65 | * support for mandatory and extensible security protections. This notice | |
66 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
67 | * Version 2.0. | |
1c79356b A |
68 | */ |
69 | ||
70 | #include <sys/param.h> | |
71 | #include <sys/systm.h> | |
72 | #include <sys/malloc.h> | |
73 | #include <sys/mbuf.h> | |
74 | #include <sys/kernel.h> | |
91447636 | 75 | #include <sys/sysctl.h> |
1c79356b A |
76 | #include <sys/syslog.h> |
77 | #include <sys/protosw.h> | |
78 | #include <sys/domain.h> | |
2d21ac55 | 79 | #include <sys/queue.h> |
b0d623f7 | 80 | #include <sys/proc.h> |
1c79356b | 81 | |
39236c6e A |
82 | #include <dev/random/randomdev.h> |
83 | ||
9bccf70c | 84 | #include <kern/kern_types.h> |
2d21ac55 A |
85 | #include <kern/simple_lock.h> |
86 | #include <kern/queue.h> | |
9bccf70c | 87 | #include <kern/sched_prim.h> |
2d21ac55 | 88 | #include <kern/cpu_number.h> |
6d2010ae | 89 | #include <kern/zalloc.h> |
2d21ac55 A |
90 | |
91 | #include <libkern/OSAtomic.h> | |
39236c6e | 92 | #include <libkern/OSDebug.h> |
2d21ac55 | 93 | #include <libkern/libkern.h> |
9bccf70c | 94 | |
55e303ae A |
95 | #include <IOKit/IOMapper.h> |
96 | ||
2d21ac55 A |
97 | #include <machine/limits.h> |
98 | #include <machine/machine_routines.h> | |
55e303ae | 99 | |
2d21ac55 A |
100 | #if CONFIG_MACF_NET |
101 | #include <security/mac_framework.h> | |
102 | #endif /* MAC_NET */ | |
103 | ||
104 | #include <sys/mcache.h> | |
fe8ab488 | 105 | #include <net/ntstat.h> |
1c79356b | 106 | |
2d21ac55 A |
107 | /* |
108 | * MBUF IMPLEMENTATION NOTES. | |
109 | * | |
110 | * There is a total of 5 per-CPU caches: | |
111 | * | |
112 | * MC_MBUF: | |
113 | * This is a cache of rudimentary objects of MSIZE in size; each | |
114 | * object represents an mbuf structure. This cache preserves only | |
115 | * the m_type field of the mbuf during its transactions. | |
116 | * | |
117 | * MC_CL: | |
118 | * This is a cache of rudimentary objects of MCLBYTES in size; each | |
119 | * object represents a mcluster structure. This cache does not | |
120 | * preserve the contents of the objects during its transactions. | |
121 | * | |
122 | * MC_BIGCL: | |
6d2010ae | 123 | * This is a cache of rudimentary objects of MBIGCLBYTES in size; each |
2d21ac55 A |
124 | * object represents a mbigcluster structure. This cache does not |
125 | * preserve the contents of the objects during its transaction. | |
126 | * | |
127 | * MC_MBUF_CL: | |
128 | * This is a cache of mbufs each having a cluster attached to it. | |
129 | * It is backed by MC_MBUF and MC_CL rudimentary caches. Several | |
130 | * fields of the mbuf related to the external cluster are preserved | |
131 | * during transactions. | |
132 | * | |
133 | * MC_MBUF_BIGCL: | |
134 | * This is a cache of mbufs each having a big cluster attached to it. | |
135 | * It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several | |
136 | * fields of the mbuf related to the external cluster are preserved | |
137 | * during transactions. | |
138 | * | |
139 | * OBJECT ALLOCATION: | |
140 | * | |
141 | * Allocation requests are handled first at the per-CPU (mcache) layer | |
142 | * before falling back to the slab layer. Performance is optimal when | |
143 | * the request is satisfied at the CPU layer because global data/lock | |
144 | * never gets accessed. When the slab layer is entered for allocation, | |
145 | * the slab freelist will be checked first for available objects before | |
146 | * the VM backing store is invoked. Slab layer operations are serialized | |
147 | * for all of the caches as the mbuf global lock is held most of the time. | |
148 | * Allocation paths are different depending on the class of objects: | |
149 | * | |
150 | * a. Rudimentary object: | |
151 | * | |
152 | * { m_get_common(), m_clattach(), m_mclget(), | |
153 | * m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(), | |
154 | * composite object allocation } | |
155 | * | ^ | |
156 | * | | | |
157 | * | +-----------------------+ | |
158 | * v | | |
159 | * mcache_alloc/mcache_alloc_ext() mbuf_slab_audit() | |
160 | * | ^ | |
161 | * v | | |
162 | * [CPU cache] -------> (found?) -------+ | |
163 | * | | | |
164 | * v | | |
165 | * mbuf_slab_alloc() | | |
166 | * | | | |
167 | * v | | |
168 | * +---------> [freelist] -------> (found?) -------+ | |
169 | * | | | |
170 | * | v | |
171 | * | m_clalloc() | |
172 | * | | | |
173 | * | v | |
174 | * +---<<---- kmem_mb_alloc() | |
175 | * | |
176 | * b. Composite object: | |
177 | * | |
178 | * { m_getpackets_internal(), m_allocpacket_internal() } | |
179 | * | ^ | |
180 | * | | | |
181 | * | +------ (done) ---------+ | |
182 | * v | | |
183 | * mcache_alloc/mcache_alloc_ext() mbuf_cslab_audit() | |
184 | * | ^ | |
185 | * v | | |
186 | * [CPU cache] -------> (found?) -------+ | |
187 | * | | | |
188 | * v | | |
189 | * mbuf_cslab_alloc() | | |
190 | * | | | |
191 | * v | | |
192 | * [freelist] -------> (found?) -------+ | |
193 | * | | | |
194 | * v | | |
195 | * (rudimentary object) | | |
196 | * mcache_alloc/mcache_alloc_ext() ------>>-----+ | |
197 | * | |
198 | * Auditing notes: If auditing is enabled, buffers will be subjected to | |
199 | * integrity checks by the audit routine. This is done by verifying their | |
200 | * contents against DEADBEEF (free) pattern before returning them to caller. | |
201 | * As part of this step, the routine will also record the transaction and | |
202 | * pattern-fill the buffers with BADDCAFE (uninitialized) pattern. It will | |
203 | * also restore any constructed data structure fields if necessary. | |
204 | * | |
205 | * OBJECT DEALLOCATION: | |
206 | * | |
207 | * Freeing an object simply involves placing it into the CPU cache; this | |
208 | * pollutes the cache to benefit subsequent allocations. The slab layer | |
209 | * will only be entered if the object is to be purged out of the cache. | |
210 | * During normal operations, this happens only when the CPU layer resizes | |
211 | * its bucket while it's adjusting to the allocation load. Deallocation | |
212 | * paths are different depending on the class of objects: | |
213 | * | |
214 | * a. Rudimentary object: | |
215 | * | |
216 | * { m_free(), m_freem_list(), composite object deallocation } | |
217 | * | ^ | |
218 | * | | | |
219 | * | +------ (done) ---------+ | |
220 | * v | | |
221 | * mcache_free/mcache_free_ext() | | |
222 | * | | | |
223 | * v | | |
224 | * mbuf_slab_audit() | | |
225 | * | | | |
226 | * v | | |
227 | * [CPU cache] ---> (not purging?) -----+ | |
228 | * | | | |
229 | * v | | |
230 | * mbuf_slab_free() | | |
231 | * | | | |
232 | * v | | |
233 | * [freelist] ----------->>------------+ | |
234 | * (objects never get purged to VM) | |
235 | * | |
236 | * b. Composite object: | |
237 | * | |
238 | * { m_free(), m_freem_list() } | |
239 | * | ^ | |
240 | * | | | |
241 | * | +------ (done) ---------+ | |
242 | * v | | |
243 | * mcache_free/mcache_free_ext() | | |
244 | * | | | |
245 | * v | | |
246 | * mbuf_cslab_audit() | | |
247 | * | | | |
248 | * v | | |
249 | * [CPU cache] ---> (not purging?) -----+ | |
250 | * | | | |
251 | * v | | |
252 | * mbuf_cslab_free() | | |
253 | * | | | |
254 | * v | | |
255 | * [freelist] ---> (not purging?) -----+ | |
256 | * | | | |
257 | * v | | |
258 | * (rudimentary object) | | |
259 | * mcache_free/mcache_free_ext() ------->>------+ | |
260 | * | |
261 | * Auditing notes: If auditing is enabled, the audit routine will save | |
262 | * any constructed data structure fields (if necessary) before filling the | |
263 | * contents of the buffers with DEADBEEF (free) pattern and recording the | |
264 | * transaction. Buffers that are freed (whether at CPU or slab layer) are | |
265 | * expected to contain the free pattern. | |
266 | * | |
267 | * DEBUGGING: | |
268 | * | |
269 | * Debugging can be enabled by adding "mbuf_debug=0x3" to boot-args; this | |
270 | * translates to the mcache flags (MCF_VERIFY | MCF_AUDIT). Additionally, | |
271 | * the CPU layer cache can be disabled by setting the MCF_NOCPUCACHE flag, | |
6d2010ae A |
272 | * i.e. modify the boot argument parameter to "mbuf_debug=0x13". Leak |
273 | * detection may also be disabled by setting the MCF_NOLEAKLOG flag, e.g. | |
274 | * "mbuf_debug=0x113". Note that debugging consumes more CPU and memory. | |
2d21ac55 A |
275 | * |
276 | * Each object is associated with exactly one mcache_audit_t structure that | |
277 | * contains the information related to its last buffer transaction. Given | |
278 | * an address of an object, the audit structure can be retrieved by finding | |
279 | * the position of the object relevant to the base address of the cluster: | |
280 | * | |
281 | * +------------+ +=============+ | |
282 | * | mbuf addr | | mclaudit[i] | | |
283 | * +------------+ +=============+ | |
284 | * | | cl_audit[0] | | |
6d2010ae | 285 | * i = MTOBG(addr) +-------------+ |
2d21ac55 | 286 | * | +-----> | cl_audit[1] | -----> mcache_audit_t |
6d2010ae | 287 | * b = BGTOM(i) | +-------------+ |
2d21ac55 A |
288 | * | | | ... | |
289 | * x = MCLIDX(b, addr) | +-------------+ | |
290 | * | | | cl_audit[7] | | |
291 | * +-----------------+ +-------------+ | |
292 | * (e.g. x == 1) | |
293 | * | |
294 | * The mclaudit[] array is allocated at initialization time, but its contents | |
6d2010ae A |
295 | * get populated when the corresponding cluster is created. Because a page |
296 | * can be turned into NMBPBG number of mbufs, we preserve enough space for the | |
297 | * mbufs so that there is a 1-to-1 mapping between them. A page that never | |
2d21ac55 | 298 | * gets (or has not yet) turned into mbufs will use only cl_audit[0] with the |
6d2010ae A |
299 | * remaining entries unused. For 16KB cluster, only one entry from the first |
300 | * page is allocated and used for the entire object. | |
2d21ac55 | 301 | */ |
91447636 | 302 | |
2d21ac55 A |
303 | /* TODO: should be in header file */ |
304 | /* kernel translater */ | |
b0d623f7 | 305 | extern vm_offset_t kmem_mb_alloc(vm_map_t, int, int); |
2d21ac55 | 306 | extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va); |
1c79356b | 307 | extern vm_map_t mb_map; /* special map */ |
2d21ac55 A |
308 | |
309 | /* Global lock */ | |
316670eb A |
310 | decl_lck_mtx_data(static, mbuf_mlock_data); |
311 | static lck_mtx_t *mbuf_mlock = &mbuf_mlock_data; | |
2d21ac55 A |
312 | static lck_attr_t *mbuf_mlock_attr; |
313 | static lck_grp_t *mbuf_mlock_grp; | |
314 | static lck_grp_attr_t *mbuf_mlock_grp_attr; | |
315 | ||
316 | /* Back-end (common) layer */ | |
317 | static void *mbuf_worker_run; /* wait channel for worker thread */ | |
318 | static int mbuf_worker_ready; /* worker thread is runnable */ | |
319 | static int mbuf_expand_mcl; /* number of cluster creation requets */ | |
320 | static int mbuf_expand_big; /* number of big cluster creation requests */ | |
6d2010ae | 321 | static int mbuf_expand_16k; /* number of 16KB cluster creation requests */ |
2d21ac55 | 322 | static int ncpu; /* number of CPUs */ |
b0d623f7 A |
323 | static ppnum_t *mcl_paddr; /* Array of cluster physical addresses */ |
324 | static ppnum_t mcl_pages; /* Size of array (# physical pages) */ | |
55e303ae | 325 | static ppnum_t mcl_paddr_base; /* Handle returned by IOMapper::iovmAlloc() */ |
2d21ac55 A |
326 | static mcache_t *ref_cache; /* Cache of cluster reference & flags */ |
327 | static mcache_t *mcl_audit_con_cache; /* Audit contents cache */ | |
328 | static unsigned int mbuf_debug; /* patchable mbuf mcache flags */ | |
329 | static unsigned int mb_normalized; /* number of packets "normalized" */ | |
b0d623f7 A |
330 | |
331 | #define MB_GROWTH_AGGRESSIVE 1 /* Threshold: 1/2 of total */ | |
6d2010ae | 332 | #define MB_GROWTH_NORMAL 2 /* Threshold: 3/4 of total */ |
2d21ac55 A |
333 | |
334 | typedef enum { | |
335 | MC_MBUF = 0, /* Regular mbuf */ | |
336 | MC_CL, /* Cluster */ | |
6d2010ae A |
337 | MC_BIGCL, /* Large (4KB) cluster */ |
338 | MC_16KCL, /* Jumbo (16KB) cluster */ | |
2d21ac55 | 339 | MC_MBUF_CL, /* mbuf + cluster */ |
6d2010ae A |
340 | MC_MBUF_BIGCL, /* mbuf + large (4KB) cluster */ |
341 | MC_MBUF_16KCL /* mbuf + jumbo (16KB) cluster */ | |
2d21ac55 A |
342 | } mbuf_class_t; |
343 | ||
344 | #define MBUF_CLASS_MIN MC_MBUF | |
345 | #define MBUF_CLASS_MAX MC_MBUF_16KCL | |
346 | #define MBUF_CLASS_LAST MC_16KCL | |
347 | #define MBUF_CLASS_VALID(c) \ | |
348 | ((int)(c) >= MBUF_CLASS_MIN && (int)(c) <= MBUF_CLASS_MAX) | |
349 | #define MBUF_CLASS_COMPOSITE(c) \ | |
350 | ((int)(c) > MBUF_CLASS_LAST) | |
91447636 | 351 | |
9bccf70c | 352 | |
2d21ac55 A |
353 | /* |
354 | * mbuf specific mcache allocation request flags. | |
355 | */ | |
356 | #define MCR_COMP MCR_USR1 /* for MC_MBUF_{CL,BIGCL,16KCL} caches */ | |
9bccf70c | 357 | |
2d21ac55 A |
358 | /* |
359 | * Per-cluster slab structure. | |
360 | * | |
361 | * A slab is a cluster control structure that contains one or more object | |
362 | * chunks; the available chunks are chained in the slab's freelist (sl_head). | |
363 | * Each time a chunk is taken out of the slab, the slab's reference count | |
364 | * gets incremented. When all chunks have been taken out, the empty slab | |
365 | * gets removed (SLF_DETACHED) from the class's slab list. A chunk that is | |
366 | * returned to a slab causes the slab's reference count to be decremented; | |
367 | * it also causes the slab to be reinserted back to class's slab list, if | |
368 | * it's not already done. | |
369 | * | |
370 | * Compartmentalizing of the object chunks into slabs allows us to easily | |
371 | * merge one or more slabs together when the adjacent slabs are idle, as | |
372 | * well as to convert or move a slab from one class to another; e.g. the | |
373 | * mbuf cluster slab can be converted to a regular cluster slab when all | |
374 | * mbufs in the slab have been freed. | |
375 | * | |
376 | * A slab may also span across multiple clusters for chunks larger than | |
377 | * a cluster's size. In this case, only the slab of the first cluster is | |
378 | * used. The rest of the slabs are marked with SLF_PARTIAL to indicate | |
379 | * that they are part of the larger slab. | |
6d2010ae A |
380 | * |
381 | * Each slab controls a page of memory. | |
2d21ac55 A |
382 | */ |
383 | typedef struct mcl_slab { | |
384 | struct mcl_slab *sl_next; /* neighboring slab */ | |
385 | u_int8_t sl_class; /* controlling mbuf class */ | |
386 | int8_t sl_refcnt; /* outstanding allocations */ | |
387 | int8_t sl_chunks; /* chunks (bufs) in this slab */ | |
388 | u_int16_t sl_flags; /* slab flags (see below) */ | |
389 | u_int16_t sl_len; /* slab length */ | |
390 | void *sl_base; /* base of allocated memory */ | |
391 | void *sl_head; /* first free buffer */ | |
392 | TAILQ_ENTRY(mcl_slab) sl_link; /* next/prev slab on freelist */ | |
393 | } mcl_slab_t; | |
394 | ||
395 | #define SLF_MAPPED 0x0001 /* backed by a mapped page */ | |
396 | #define SLF_PARTIAL 0x0002 /* part of another slab */ | |
397 | #define SLF_DETACHED 0x0004 /* not in slab freelist */ | |
1c79356b | 398 | |
2d21ac55 A |
399 | /* |
400 | * The array of slabs are broken into groups of arrays per 1MB of kernel | |
401 | * memory to reduce the footprint. Each group is allocated on demand | |
402 | * whenever a new piece of memory mapped in from the VM crosses the 1MB | |
403 | * boundary. | |
404 | */ | |
6d2010ae | 405 | #define NSLABSPMB ((1 << MBSHIFT) >> PGSHIFT) /* 256 slabs/grp */ |
91447636 | 406 | |
2d21ac55 A |
407 | typedef struct mcl_slabg { |
408 | mcl_slab_t slg_slab[NSLABSPMB]; /* group of slabs */ | |
409 | } mcl_slabg_t; | |
1c79356b | 410 | |
6d2010ae A |
411 | /* |
412 | * Number of slabs needed to control a 16KB cluster object. | |
413 | */ | |
414 | #define NSLABSP16KB (M16KCLBYTES >> PGSHIFT) | |
415 | ||
2d21ac55 A |
416 | /* |
417 | * Per-cluster audit structure. | |
418 | */ | |
419 | typedef struct { | |
6d2010ae | 420 | mcache_audit_t *cl_audit[NMBPBG]; /* array of audits */ |
2d21ac55 | 421 | } mcl_audit_t; |
91447636 | 422 | |
39236c6e A |
423 | typedef struct { |
424 | struct thread *msa_thread; /* thread doing transaction */ | |
425 | struct thread *msa_pthread; /* previous transaction thread */ | |
426 | uint32_t msa_tstamp; /* transaction timestamp (ms) */ | |
427 | uint32_t msa_ptstamp; /* prev transaction timestamp (ms) */ | |
428 | uint16_t msa_depth; /* pc stack depth */ | |
429 | uint16_t msa_pdepth; /* previous transaction pc stack */ | |
430 | void *msa_stack[MCACHE_STACK_DEPTH]; | |
431 | void *msa_pstack[MCACHE_STACK_DEPTH]; | |
432 | } mcl_scratch_audit_t; | |
433 | ||
434 | typedef struct { | |
435 | /* | |
436 | * Size of data from the beginning of an mbuf that covers m_hdr, | |
437 | * pkthdr and m_ext structures. If auditing is enabled, we allocate | |
438 | * a shadow mbuf structure of this size inside each audit structure, | |
439 | * and the contents of the real mbuf gets copied into it when the mbuf | |
440 | * is freed. This allows us to pattern-fill the mbuf for integrity | |
441 | * check, and to preserve any constructed mbuf fields (e.g. mbuf + | |
442 | * cluster cache case). Note that we don't save the contents of | |
443 | * clusters when they are freed; we simply pattern-fill them. | |
444 | */ | |
445 | u_int8_t sc_mbuf[(MSIZE - _MHLEN) + sizeof (_m_ext_t)]; | |
446 | mcl_scratch_audit_t sc_scratch __attribute__((aligned(8))); | |
447 | } mcl_saved_contents_t; | |
448 | ||
449 | #define AUDIT_CONTENTS_SIZE (sizeof (mcl_saved_contents_t)) | |
450 | ||
451 | #define MCA_SAVED_MBUF_PTR(_mca) \ | |
452 | ((struct mbuf *)(void *)((mcl_saved_contents_t *) \ | |
453 | (_mca)->mca_contents)->sc_mbuf) | |
454 | #define MCA_SAVED_MBUF_SIZE \ | |
455 | (sizeof (((mcl_saved_contents_t *)0)->sc_mbuf)) | |
456 | #define MCA_SAVED_SCRATCH_PTR(_mca) \ | |
457 | (&((mcl_saved_contents_t *)(_mca)->mca_contents)->sc_scratch) | |
fa4905b1 | 458 | |
2d21ac55 A |
459 | /* |
460 | * mbuf specific mcache audit flags | |
461 | */ | |
462 | #define MB_INUSE 0x01 /* object has not been returned to slab */ | |
463 | #define MB_COMP_INUSE 0x02 /* object has not been returned to cslab */ | |
464 | #define MB_SCVALID 0x04 /* object has valid saved contents */ | |
fa4905b1 | 465 | |
2d21ac55 A |
466 | /* |
467 | * Each of the following two arrays hold up to nmbclusters elements. | |
468 | */ | |
469 | static mcl_audit_t *mclaudit; /* array of cluster audit information */ | |
6d2010ae | 470 | static unsigned int maxclaudit; /* max # of entries in audit table */ |
2d21ac55 A |
471 | static mcl_slabg_t **slabstbl; /* cluster slabs table */ |
472 | static unsigned int maxslabgrp; /* max # of entries in slabs table */ | |
473 | static unsigned int slabgrp; /* # of entries in slabs table */ | |
474 | ||
475 | /* Globals */ | |
476 | int nclusters; /* # of clusters for non-jumbo (legacy) sizes */ | |
477 | int njcl; /* # of clusters for jumbo sizes */ | |
478 | int njclbytes; /* size of a jumbo cluster */ | |
6d2010ae A |
479 | union mbigcluster *mbutl; /* first mapped cluster address */ |
480 | union mbigcluster *embutl; /* ending virtual address of mclusters */ | |
316670eb A |
481 | int _max_linkhdr; /* largest link-level header */ |
482 | int _max_protohdr; /* largest protocol header */ | |
2d21ac55 A |
483 | int max_hdr; /* largest link+protocol header */ |
484 | int max_datalen; /* MHLEN - max_hdr */ | |
485 | ||
6d2010ae A |
486 | static boolean_t mclverify; /* debug: pattern-checking */ |
487 | static boolean_t mcltrace; /* debug: stack tracing */ | |
488 | static boolean_t mclfindleak; /* debug: leak detection */ | |
316670eb | 489 | static boolean_t mclexpleak; /* debug: expose leak info to user space */ |
6d2010ae | 490 | |
39236c6e A |
491 | static struct timeval mb_start; /* beginning of time */ |
492 | ||
6d2010ae A |
493 | /* mbuf leak detection variables */ |
494 | static struct mleak_table mleak_table; | |
495 | static mleak_stat_t *mleak_stat; | |
496 | ||
497 | #define MLEAK_STAT_SIZE(n) \ | |
498 | ((size_t)(&((mleak_stat_t *)0)->ml_trace[n])) | |
499 | ||
500 | struct mallocation { | |
501 | mcache_obj_t *element; /* the alloc'ed element, NULL if unused */ | |
502 | u_int32_t trace_index; /* mtrace index for corresponding backtrace */ | |
503 | u_int32_t count; /* How many objects were requested */ | |
504 | u_int64_t hitcount; /* for determining hash effectiveness */ | |
505 | }; | |
506 | ||
507 | struct mtrace { | |
508 | u_int64_t collisions; | |
509 | u_int64_t hitcount; | |
510 | u_int64_t allocs; | |
511 | u_int64_t depth; | |
512 | uintptr_t addr[MLEAK_STACK_DEPTH]; | |
513 | }; | |
514 | ||
515 | /* Size must be a power of two for the zhash to be able to just mask off bits */ | |
516 | #define MLEAK_ALLOCATION_MAP_NUM 512 | |
517 | #define MLEAK_TRACE_MAP_NUM 256 | |
518 | ||
519 | /* | |
520 | * Sample factor for how often to record a trace. This is overwritable | |
521 | * by the boot-arg mleak_sample_factor. | |
522 | */ | |
523 | #define MLEAK_SAMPLE_FACTOR 500 | |
524 | ||
525 | /* | |
526 | * Number of top leakers recorded. | |
527 | */ | |
528 | #define MLEAK_NUM_TRACES 5 | |
529 | ||
316670eb A |
530 | #define MB_LEAK_SPACING_64 " " |
531 | #define MB_LEAK_SPACING_32 " " | |
532 | ||
533 | ||
534 | #define MB_LEAK_HDR_32 "\n\ | |
535 | trace [1] trace [2] trace [3] trace [4] trace [5] \n\ | |
536 | ---------- ---------- ---------- ---------- ---------- \n\ | |
537 | " | |
538 | ||
539 | #define MB_LEAK_HDR_64 "\n\ | |
540 | trace [1] trace [2] trace [3] \ | |
541 | trace [4] trace [5] \n\ | |
542 | ------------------ ------------------ ------------------ \ | |
543 | ------------------ ------------------ \n\ | |
544 | " | |
545 | ||
6d2010ae A |
546 | static uint32_t mleak_alloc_buckets = MLEAK_ALLOCATION_MAP_NUM; |
547 | static uint32_t mleak_trace_buckets = MLEAK_TRACE_MAP_NUM; | |
548 | ||
549 | /* Hashmaps of allocations and their corresponding traces */ | |
550 | static struct mallocation *mleak_allocations; | |
551 | static struct mtrace *mleak_traces; | |
552 | static struct mtrace *mleak_top_trace[MLEAK_NUM_TRACES]; | |
553 | ||
554 | /* Lock to protect mleak tables from concurrent modification */ | |
316670eb A |
555 | decl_lck_mtx_data(static, mleak_lock_data); |
556 | static lck_mtx_t *mleak_lock = &mleak_lock_data; | |
6d2010ae A |
557 | static lck_attr_t *mleak_lock_attr; |
558 | static lck_grp_t *mleak_lock_grp; | |
559 | static lck_grp_attr_t *mleak_lock_grp_attr; | |
560 | ||
b0d623f7 A |
561 | extern u_int32_t high_sb_max; |
562 | ||
2d21ac55 A |
563 | /* The minimum number of objects that are allocated, to start. */ |
564 | #define MINCL 32 | |
565 | #define MINBIGCL (MINCL >> 1) | |
566 | #define MIN16KCL (MINCL >> 2) | |
567 | ||
568 | /* Low watermarks (only map in pages once free counts go below) */ | |
2d21ac55 A |
569 | #define MBIGCL_LOWAT MINBIGCL |
570 | #define M16KCL_LOWAT MIN16KCL | |
571 | ||
572 | typedef struct { | |
573 | mbuf_class_t mtbl_class; /* class type */ | |
574 | mcache_t *mtbl_cache; /* mcache for this buffer class */ | |
575 | TAILQ_HEAD(mcl_slhead, mcl_slab) mtbl_slablist; /* slab list */ | |
576 | mcache_obj_t *mtbl_cobjlist; /* composite objects freelist */ | |
577 | mb_class_stat_t *mtbl_stats; /* statistics fetchable via sysctl */ | |
578 | u_int32_t mtbl_maxsize; /* maximum buffer size */ | |
579 | int mtbl_minlimit; /* minimum allowed */ | |
580 | int mtbl_maxlimit; /* maximum allowed */ | |
581 | u_int32_t mtbl_wantpurge; /* purge during next reclaim */ | |
fe8ab488 | 582 | uint32_t mtbl_avgtotal; /* average total on iOS */ |
2d21ac55 A |
583 | } mbuf_table_t; |
584 | ||
585 | #define m_class(c) mbuf_table[c].mtbl_class | |
586 | #define m_cache(c) mbuf_table[c].mtbl_cache | |
587 | #define m_slablist(c) mbuf_table[c].mtbl_slablist | |
588 | #define m_cobjlist(c) mbuf_table[c].mtbl_cobjlist | |
589 | #define m_maxsize(c) mbuf_table[c].mtbl_maxsize | |
590 | #define m_minlimit(c) mbuf_table[c].mtbl_minlimit | |
591 | #define m_maxlimit(c) mbuf_table[c].mtbl_maxlimit | |
592 | #define m_wantpurge(c) mbuf_table[c].mtbl_wantpurge | |
fe8ab488 | 593 | #define m_avgtotal(c) mbuf_table[c].mtbl_avgtotal |
2d21ac55 A |
594 | #define m_cname(c) mbuf_table[c].mtbl_stats->mbcl_cname |
595 | #define m_size(c) mbuf_table[c].mtbl_stats->mbcl_size | |
596 | #define m_total(c) mbuf_table[c].mtbl_stats->mbcl_total | |
597 | #define m_active(c) mbuf_table[c].mtbl_stats->mbcl_active | |
598 | #define m_infree(c) mbuf_table[c].mtbl_stats->mbcl_infree | |
599 | #define m_slab_cnt(c) mbuf_table[c].mtbl_stats->mbcl_slab_cnt | |
600 | #define m_alloc_cnt(c) mbuf_table[c].mtbl_stats->mbcl_alloc_cnt | |
601 | #define m_free_cnt(c) mbuf_table[c].mtbl_stats->mbcl_free_cnt | |
602 | #define m_notified(c) mbuf_table[c].mtbl_stats->mbcl_notified | |
603 | #define m_purge_cnt(c) mbuf_table[c].mtbl_stats->mbcl_purge_cnt | |
604 | #define m_fail_cnt(c) mbuf_table[c].mtbl_stats->mbcl_fail_cnt | |
605 | #define m_ctotal(c) mbuf_table[c].mtbl_stats->mbcl_ctotal | |
fe8ab488 A |
606 | #define m_peak(c) mbuf_table[c].mtbl_stats->mbcl_peak_reported |
607 | #define m_release_cnt(c) mbuf_table[c].mtbl_stats->mbcl_release_cnt | |
2d21ac55 A |
608 | |
609 | static mbuf_table_t mbuf_table[] = { | |
610 | /* | |
611 | * The caches for mbufs, regular clusters and big clusters. | |
fe8ab488 A |
612 | * The average total values were based on data gathered by actual |
613 | * usage patterns on iOS. | |
2d21ac55 A |
614 | */ |
615 | { MC_MBUF, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_MBUF)), | |
fe8ab488 | 616 | NULL, NULL, 0, 0, 0, 0, 3000 }, |
2d21ac55 | 617 | { MC_CL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_CL)), |
fe8ab488 | 618 | NULL, NULL, 0, 0, 0, 0, 2000 }, |
2d21ac55 | 619 | { MC_BIGCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_BIGCL)), |
fe8ab488 | 620 | NULL, NULL, 0, 0, 0, 0, 1000 }, |
2d21ac55 | 621 | { MC_16KCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_16KCL)), |
fe8ab488 | 622 | NULL, NULL, 0, 0, 0, 0, 1000 }, |
2d21ac55 A |
623 | /* |
624 | * The following are special caches; they serve as intermediate | |
625 | * caches backed by the above rudimentary caches. Each object | |
626 | * in the cache is an mbuf with a cluster attached to it. Unlike | |
627 | * the above caches, these intermediate caches do not directly | |
628 | * deal with the slab structures; instead, the constructed | |
629 | * cached elements are simply stored in the freelists. | |
630 | */ | |
fe8ab488 A |
631 | { MC_MBUF_CL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 2000 }, |
632 | { MC_MBUF_BIGCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 1000 }, | |
633 | { MC_MBUF_16KCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 1000 }, | |
2d21ac55 A |
634 | }; |
635 | ||
636 | #define NELEM(a) (sizeof (a) / sizeof ((a)[0])) | |
637 | ||
638 | static void *mb_waitchan = &mbuf_table; /* wait channel for all caches */ | |
6d2010ae A |
639 | static int mb_waiters; /* number of waiters */ |
640 | ||
fe8ab488 A |
641 | boolean_t mb_peak_newreport = FALSE; |
642 | boolean_t mb_peak_firstreport = FALSE; | |
643 | ||
644 | /* generate a report by default after 1 week of uptime */ | |
645 | #define MBUF_PEAK_FIRST_REPORT_THRESHOLD 604800 | |
646 | ||
6d2010ae A |
647 | #define MB_WDT_MAXTIME 10 /* # of secs before watchdog panic */ |
648 | static struct timeval mb_wdtstart; /* watchdog start timestamp */ | |
316670eb A |
649 | static char *mbuf_dump_buf; |
650 | ||
651 | #define MBUF_DUMP_BUF_SIZE 2048 | |
6d2010ae A |
652 | |
653 | /* | |
654 | * mbuf watchdog is enabled by default on embedded platforms. It is | |
655 | * also toggeable via the kern.ipc.mb_watchdog sysctl. | |
fe8ab488 A |
656 | * Garbage collection is also enabled by default on embedded platforms. |
657 | * mb_drain_maxint controls the amount of time to wait (in seconds) before | |
658 | * consecutive calls to m_drain(). | |
6d2010ae | 659 | */ |
6d2010ae | 660 | static unsigned int mb_watchdog = 0; |
fe8ab488 | 661 | static unsigned int mb_drain_maxint = 0; |
39236c6e A |
662 | |
663 | /* Red zone */ | |
664 | static u_int32_t mb_redzone_cookie; | |
665 | static void m_redzone_init(struct mbuf *); | |
666 | static void m_redzone_verify(struct mbuf *m); | |
2d21ac55 A |
667 | |
668 | /* The following are used to serialize m_clalloc() */ | |
669 | static boolean_t mb_clalloc_busy; | |
670 | static void *mb_clalloc_waitchan = &mb_clalloc_busy; | |
671 | static int mb_clalloc_waiters; | |
672 | ||
6d2010ae | 673 | static void mbuf_mtypes_sync(boolean_t); |
2d21ac55 | 674 | static int mbstat_sysctl SYSCTL_HANDLER_ARGS; |
6d2010ae | 675 | static void mbuf_stat_sync(void); |
2d21ac55 | 676 | static int mb_stat_sysctl SYSCTL_HANDLER_ARGS; |
6d2010ae A |
677 | static int mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS; |
678 | static int mleak_table_sysctl SYSCTL_HANDLER_ARGS; | |
679 | static char *mbuf_dump(void); | |
2d21ac55 A |
680 | static void mbuf_table_init(void); |
681 | static inline void m_incref(struct mbuf *); | |
682 | static inline u_int32_t m_decref(struct mbuf *); | |
683 | static int m_clalloc(const u_int32_t, const int, const u_int32_t); | |
684 | static void mbuf_worker_thread_init(void); | |
685 | static mcache_obj_t *slab_alloc(mbuf_class_t, int); | |
686 | static void slab_free(mbuf_class_t, mcache_obj_t *); | |
687 | static unsigned int mbuf_slab_alloc(void *, mcache_obj_t ***, | |
688 | unsigned int, int); | |
689 | static void mbuf_slab_free(void *, mcache_obj_t *, int); | |
690 | static void mbuf_slab_audit(void *, mcache_obj_t *, boolean_t); | |
691 | static void mbuf_slab_notify(void *, u_int32_t); | |
692 | static unsigned int cslab_alloc(mbuf_class_t, mcache_obj_t ***, | |
693 | unsigned int); | |
694 | static unsigned int cslab_free(mbuf_class_t, mcache_obj_t *, int); | |
695 | static unsigned int mbuf_cslab_alloc(void *, mcache_obj_t ***, | |
696 | unsigned int, int); | |
697 | static void mbuf_cslab_free(void *, mcache_obj_t *, int); | |
698 | static void mbuf_cslab_audit(void *, mcache_obj_t *, boolean_t); | |
699 | static int freelist_populate(mbuf_class_t, unsigned int, int); | |
6d2010ae | 700 | static void freelist_init(mbuf_class_t); |
2d21ac55 A |
701 | static boolean_t mbuf_cached_above(mbuf_class_t, int); |
702 | static boolean_t mbuf_steal(mbuf_class_t, unsigned int); | |
703 | static void m_reclaim(mbuf_class_t, unsigned int, boolean_t); | |
704 | static int m_howmany(int, size_t); | |
705 | static void mbuf_worker_thread(void); | |
6d2010ae | 706 | static void mbuf_watchdog(void); |
2d21ac55 A |
707 | static boolean_t mbuf_sleep(mbuf_class_t, unsigned int, int); |
708 | ||
709 | static void mcl_audit_init(void *, mcache_audit_t **, mcache_obj_t **, | |
710 | size_t, unsigned int); | |
fe8ab488 | 711 | static void mcl_audit_free(void *, unsigned int); |
2d21ac55 A |
712 | static mcache_audit_t *mcl_audit_buf2mca(mbuf_class_t, mcache_obj_t *); |
713 | static void mcl_audit_mbuf(mcache_audit_t *, void *, boolean_t, boolean_t); | |
714 | static void mcl_audit_cluster(mcache_audit_t *, void *, size_t, boolean_t, | |
715 | boolean_t); | |
716 | static void mcl_audit_restore_mbuf(struct mbuf *, mcache_audit_t *, boolean_t); | |
717 | static void mcl_audit_save_mbuf(struct mbuf *, mcache_audit_t *); | |
39236c6e | 718 | static void mcl_audit_scratch(mcache_audit_t *); |
2d21ac55 A |
719 | static void mcl_audit_mcheck_panic(struct mbuf *); |
720 | static void mcl_audit_verify_nextptr(void *, mcache_audit_t *); | |
721 | ||
6d2010ae A |
722 | static void mleak_activate(void); |
723 | static void mleak_logger(u_int32_t, mcache_obj_t *, boolean_t); | |
724 | static boolean_t mleak_log(uintptr_t *, mcache_obj_t *, uint32_t, int); | |
725 | static void mleak_free(mcache_obj_t *); | |
316670eb A |
726 | static void mleak_sort_traces(void); |
727 | static void mleak_update_stats(void); | |
6d2010ae | 728 | |
2d21ac55 A |
729 | static mcl_slab_t *slab_get(void *); |
730 | static void slab_init(mcl_slab_t *, mbuf_class_t, u_int32_t, | |
731 | void *, void *, unsigned int, int, int); | |
732 | static void slab_insert(mcl_slab_t *, mbuf_class_t); | |
733 | static void slab_remove(mcl_slab_t *, mbuf_class_t); | |
734 | static boolean_t slab_inrange(mcl_slab_t *, void *); | |
735 | static void slab_nextptr_panic(mcl_slab_t *, void *); | |
736 | static void slab_detach(mcl_slab_t *); | |
737 | static boolean_t slab_is_detached(mcl_slab_t *); | |
738 | ||
b0d623f7 A |
739 | static int m_copyback0(struct mbuf **, int, int, const void *, int, int); |
740 | static struct mbuf *m_split0(struct mbuf *, int, int, int); | |
fe8ab488 A |
741 | __private_extern__ void mbuf_report_peak_usage(void); |
742 | static boolean_t mbuf_report_usage(mbuf_class_t); | |
b0d623f7 A |
743 | |
744 | /* flags for m_copyback0 */ | |
745 | #define M_COPYBACK0_COPYBACK 0x0001 /* copyback from cp */ | |
746 | #define M_COPYBACK0_PRESERVE 0x0002 /* preserve original data */ | |
747 | #define M_COPYBACK0_COW 0x0004 /* do copy-on-write */ | |
748 | #define M_COPYBACK0_EXTEND 0x0008 /* extend chain */ | |
749 | ||
2d21ac55 A |
750 | /* |
751 | * This flag is set for all mbufs that come out of and into the composite | |
752 | * mbuf + cluster caches, i.e. MC_MBUF_CL and MC_MBUF_BIGCL. mbufs that | |
753 | * are marked with such a flag have clusters attached to them, and will be | |
754 | * treated differently when they are freed; instead of being placed back | |
755 | * into the mbuf and cluster freelists, the composite mbuf + cluster objects | |
756 | * are placed back into the appropriate composite cache's freelist, and the | |
757 | * actual freeing is deferred until the composite objects are purged. At | |
758 | * such a time, this flag will be cleared from the mbufs and the objects | |
759 | * will be freed into their own separate freelists. | |
760 | */ | |
761 | #define EXTF_COMPOSITE 0x1 | |
1c79356b | 762 | |
6d2010ae A |
763 | /* |
764 | * This flag indicates that the external cluster is read-only, i.e. it is | |
765 | * or was referred to by more than one mbufs. Once set, this flag is never | |
766 | * cleared. | |
767 | */ | |
768 | #define EXTF_READONLY 0x2 | |
769 | #define EXTF_MASK (EXTF_COMPOSITE | EXTF_READONLY) | |
770 | ||
2d21ac55 A |
771 | #define MEXT_RFA(m) ((m)->m_ext.ext_refflags) |
772 | #define MEXT_REF(m) (MEXT_RFA(m)->refcnt) | |
773 | #define MEXT_FLAGS(m) (MEXT_RFA(m)->flags) | |
774 | #define MBUF_IS_COMPOSITE(m) \ | |
6d2010ae | 775 | (MEXT_REF(m) == 0 && (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_COMPOSITE) |
1c79356b | 776 | |
2d21ac55 A |
777 | /* |
778 | * Macros used to verify the integrity of the mbuf. | |
779 | */ | |
780 | #define _MCHECK(m) { \ | |
781 | if ((m)->m_type != MT_FREE) { \ | |
782 | if (mclaudit == NULL) \ | |
783 | panic("MCHECK: m_type=%d m=%p", \ | |
784 | (u_int16_t)(m)->m_type, m); \ | |
785 | else \ | |
786 | mcl_audit_mcheck_panic(m); \ | |
787 | } \ | |
788 | } | |
55e303ae | 789 | |
2d21ac55 A |
790 | #define MBUF_IN_MAP(addr) \ |
791 | ((void *)(addr) >= (void *)mbutl && (void *)(addr) < (void *)embutl) | |
55e303ae | 792 | |
2d21ac55 A |
793 | #define MRANGE(addr) { \ |
794 | if (!MBUF_IN_MAP(addr)) \ | |
795 | panic("MRANGE: address out of range 0x%p", addr); \ | |
1c79356b A |
796 | } |
797 | ||
798 | /* | |
2d21ac55 | 799 | * Macro version of mtod. |
1c79356b | 800 | */ |
2d21ac55 | 801 | #define MTOD(m, t) ((t)((m)->m_data)) |
1c79356b | 802 | |
2d21ac55 | 803 | /* |
6d2010ae A |
804 | * Macros to obtain (4KB) cluster index and base cluster address. |
805 | */ | |
806 | ||
807 | #define MTOBG(x) (((char *)(x) - (char *)mbutl) >> MBIGCLSHIFT) | |
808 | #define BGTOM(x) ((union mbigcluster *)(mbutl + (x))) | |
809 | ||
810 | /* | |
811 | * Macro to find the mbuf index relative to a base. | |
2d21ac55 | 812 | */ |
6d2010ae | 813 | #define MCLIDX(c, m) (((char *)(m) - (char *)(c)) >> MSIZESHIFT) |
1c79356b | 814 | |
2d21ac55 | 815 | /* |
6d2010ae | 816 | * Same thing for 2KB cluster index. |
2d21ac55 | 817 | */ |
6d2010ae | 818 | #define CLBGIDX(c, m) (((char *)(m) - (char *)(c)) >> MCLSHIFT) |
91447636 | 819 | |
2d21ac55 A |
820 | /* |
821 | * Macros used during mbuf and cluster initialization. | |
822 | */ | |
39236c6e A |
823 | #define MBUF_INIT_PKTHDR(m) { \ |
824 | (m)->m_pkthdr.rcvif = NULL; \ | |
825 | (m)->m_pkthdr.pkt_hdr = NULL; \ | |
826 | (m)->m_pkthdr.len = 0; \ | |
827 | (m)->m_pkthdr.csum_flags = 0; \ | |
828 | (m)->m_pkthdr.csum_data = 0; \ | |
829 | (m)->m_pkthdr.vlan_tag = 0; \ | |
830 | m_classifier_init(m, 0); \ | |
831 | m_tag_init(m, 1); \ | |
832 | m_scratch_init(m); \ | |
833 | m_redzone_init(m); \ | |
834 | } | |
835 | ||
2d21ac55 A |
836 | #define MBUF_INIT(m, pkthdr, type) { \ |
837 | _MCHECK(m); \ | |
838 | (m)->m_next = (m)->m_nextpkt = NULL; \ | |
839 | (m)->m_len = 0; \ | |
840 | (m)->m_type = type; \ | |
841 | if ((pkthdr) == 0) { \ | |
842 | (m)->m_data = (m)->m_dat; \ | |
843 | (m)->m_flags = 0; \ | |
844 | } else { \ | |
845 | (m)->m_data = (m)->m_pktdat; \ | |
846 | (m)->m_flags = M_PKTHDR; \ | |
39236c6e | 847 | MBUF_INIT_PKTHDR(m); \ |
2d21ac55 A |
848 | } \ |
849 | } | |
91447636 | 850 | |
2d21ac55 A |
851 | #define MEXT_INIT(m, buf, size, free, arg, rfa, ref, flag) { \ |
852 | (m)->m_data = (m)->m_ext.ext_buf = (buf); \ | |
853 | (m)->m_flags |= M_EXT; \ | |
854 | (m)->m_ext.ext_size = (size); \ | |
855 | (m)->m_ext.ext_free = (free); \ | |
856 | (m)->m_ext.ext_arg = (arg); \ | |
857 | (m)->m_ext.ext_refs.forward = (m)->m_ext.ext_refs.backward = \ | |
858 | &(m)->m_ext.ext_refs; \ | |
859 | MEXT_RFA(m) = (rfa); \ | |
860 | MEXT_REF(m) = (ref); \ | |
861 | MEXT_FLAGS(m) = (flag); \ | |
1c79356b A |
862 | } |
863 | ||
2d21ac55 A |
864 | #define MBUF_CL_INIT(m, buf, rfa, ref, flag) \ |
865 | MEXT_INIT(m, buf, m_maxsize(MC_CL), NULL, NULL, rfa, ref, flag) | |
866 | ||
867 | #define MBUF_BIGCL_INIT(m, buf, rfa, ref, flag) \ | |
868 | MEXT_INIT(m, buf, m_maxsize(MC_BIGCL), m_bigfree, NULL, rfa, ref, flag) | |
869 | ||
870 | #define MBUF_16KCL_INIT(m, buf, rfa, ref, flag) \ | |
871 | MEXT_INIT(m, buf, m_maxsize(MC_16KCL), m_16kfree, NULL, rfa, ref, flag) | |
872 | ||
1c79356b | 873 | /* |
2d21ac55 | 874 | * Macro to convert BSD malloc sleep flag to mcache's |
1c79356b | 875 | */ |
2d21ac55 | 876 | #define MSLEEPF(f) ((!((f) & M_DONTWAIT)) ? MCR_SLEEP : MCR_NOSLEEP) |
1c79356b | 877 | |
2d21ac55 A |
878 | /* |
879 | * The structure that holds all mbuf class statistics exportable via sysctl. | |
880 | * Similar to mbstat structure, the mb_stat structure is protected by the | |
881 | * global mbuf lock. It contains additional information about the classes | |
882 | * that allows for a more accurate view of the state of the allocator. | |
883 | */ | |
884 | struct mb_stat *mb_stat; | |
b0d623f7 | 885 | struct omb_stat *omb_stat; /* For backwards compatibility */ |
1c79356b | 886 | |
2d21ac55 A |
887 | #define MB_STAT_SIZE(n) \ |
888 | ((size_t)(&((mb_stat_t *)0)->mbs_class[n])) | |
b0d623f7 A |
889 | #define OMB_STAT_SIZE(n) \ |
890 | ((size_t)(&((struct omb_stat *)0)->mbs_class[n])) | |
1c79356b A |
891 | |
892 | /* | |
2d21ac55 A |
893 | * The legacy structure holding all of the mbuf allocation statistics. |
894 | * The actual statistics used by the kernel are stored in the mbuf_table | |
895 | * instead, and are updated atomically while the global mbuf lock is held. | |
896 | * They are mirrored in mbstat to support legacy applications (e.g. netstat). | |
897 | * Unlike before, the kernel no longer relies on the contents of mbstat for | |
898 | * its operations (e.g. cluster expansion) because the structure is exposed | |
899 | * to outside and could possibly be modified, therefore making it unsafe. | |
900 | * With the exception of the mbstat.m_mtypes array (see below), all of the | |
901 | * statistics are updated as they change. | |
1c79356b | 902 | */ |
2d21ac55 | 903 | struct mbstat mbstat; |
1c79356b | 904 | |
2d21ac55 A |
905 | #define MBSTAT_MTYPES_MAX \ |
906 | (sizeof (mbstat.m_mtypes) / sizeof (mbstat.m_mtypes[0])) | |
1c79356b A |
907 | |
908 | /* | |
2d21ac55 A |
909 | * Allocation statistics related to mbuf types (up to MT_MAX-1) are updated |
910 | * atomically and stored in a per-CPU structure which is lock-free; this is | |
911 | * done in order to avoid writing to the global mbstat data structure which | |
912 | * would cause false sharing. During sysctl request for kern.ipc.mbstat, | |
913 | * the statistics across all CPUs will be converged into the mbstat.m_mtypes | |
914 | * array and returned to the application. Any updates for types greater or | |
915 | * equal than MT_MAX would be done atomically to the mbstat; this slows down | |
916 | * performance but is okay since the kernel uses only up to MT_MAX-1 while | |
917 | * anything beyond that (up to type 255) is considered a corner case. | |
1c79356b | 918 | */ |
2d21ac55 A |
919 | typedef struct { |
920 | unsigned int cpu_mtypes[MT_MAX]; | |
39236c6e | 921 | } __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE), packed)) mtypes_cpu_t; |
1c79356b | 922 | |
2d21ac55 A |
923 | typedef struct { |
924 | mtypes_cpu_t mbs_cpu[1]; | |
925 | } mbuf_mtypes_t; | |
1c79356b | 926 | |
2d21ac55 A |
927 | static mbuf_mtypes_t *mbuf_mtypes; /* per-CPU statistics */ |
928 | ||
929 | #define MBUF_MTYPES_SIZE(n) \ | |
930 | ((size_t)(&((mbuf_mtypes_t *)0)->mbs_cpu[n])) | |
931 | ||
932 | #define MTYPES_CPU(p) \ | |
316670eb | 933 | ((mtypes_cpu_t *)(void *)((char *)(p) + MBUF_MTYPES_SIZE(cpu_number()))) |
2d21ac55 | 934 | |
2d21ac55 A |
935 | #define mtype_stat_add(type, n) { \ |
936 | if ((unsigned)(type) < MT_MAX) { \ | |
937 | mtypes_cpu_t *mbs = MTYPES_CPU(mbuf_mtypes); \ | |
938 | atomic_add_32(&mbs->cpu_mtypes[type], n); \ | |
6d2010ae A |
939 | } else if ((unsigned)(type) < (unsigned)MBSTAT_MTYPES_MAX) { \ |
940 | atomic_add_16((int16_t *)&mbstat.m_mtypes[type], n); \ | |
2d21ac55 | 941 | } \ |
1c79356b A |
942 | } |
943 | ||
2d21ac55 A |
944 | #define mtype_stat_sub(t, n) mtype_stat_add(t, -(n)) |
945 | #define mtype_stat_inc(t) mtype_stat_add(t, 1) | |
946 | #define mtype_stat_dec(t) mtype_stat_sub(t, 1) | |
91447636 | 947 | |
6d2010ae A |
948 | static void |
949 | mbuf_mtypes_sync(boolean_t locked) | |
2d21ac55 | 950 | { |
2d21ac55 A |
951 | int m, n; |
952 | mtypes_cpu_t mtc; | |
1c79356b | 953 | |
6d2010ae A |
954 | if (locked) |
955 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
956 | ||
2d21ac55 A |
957 | bzero(&mtc, sizeof (mtc)); |
958 | for (m = 0; m < ncpu; m++) { | |
959 | mtypes_cpu_t *scp = &mbuf_mtypes->mbs_cpu[m]; | |
960 | mtypes_cpu_t temp; | |
9bccf70c | 961 | |
2d21ac55 A |
962 | bcopy(&scp->cpu_mtypes, &temp.cpu_mtypes, |
963 | sizeof (temp.cpu_mtypes)); | |
91447636 | 964 | |
2d21ac55 A |
965 | for (n = 0; n < MT_MAX; n++) |
966 | mtc.cpu_mtypes[n] += temp.cpu_mtypes[n]; | |
967 | } | |
6d2010ae A |
968 | if (!locked) |
969 | lck_mtx_lock(mbuf_mlock); | |
2d21ac55 A |
970 | for (n = 0; n < MT_MAX; n++) |
971 | mbstat.m_mtypes[n] = mtc.cpu_mtypes[n]; | |
6d2010ae A |
972 | if (!locked) |
973 | lck_mtx_unlock(mbuf_mlock); | |
1c79356b A |
974 | } |
975 | ||
2d21ac55 | 976 | static int |
6d2010ae | 977 | mbstat_sysctl SYSCTL_HANDLER_ARGS |
1c79356b | 978 | { |
2d21ac55 | 979 | #pragma unused(oidp, arg1, arg2) |
6d2010ae A |
980 | mbuf_mtypes_sync(FALSE); |
981 | ||
982 | return (SYSCTL_OUT(req, &mbstat, sizeof (mbstat))); | |
983 | } | |
984 | ||
985 | static void | |
986 | mbuf_stat_sync(void) | |
987 | { | |
2d21ac55 | 988 | mb_class_stat_t *sp; |
6d2010ae A |
989 | mcache_cpu_t *ccp; |
990 | mcache_t *cp; | |
991 | int k, m, bktsize; | |
992 | ||
993 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2d21ac55 | 994 | |
2d21ac55 A |
995 | for (k = 0; k < NELEM(mbuf_table); k++) { |
996 | cp = m_cache(k); | |
997 | ccp = &cp->mc_cpu[0]; | |
998 | bktsize = ccp->cc_bktsize; | |
999 | sp = mbuf_table[k].mtbl_stats; | |
1000 | ||
1001 | if (cp->mc_flags & MCF_NOCPUCACHE) | |
1002 | sp->mbcl_mc_state = MCS_DISABLED; | |
1003 | else if (cp->mc_purge_cnt > 0) | |
1004 | sp->mbcl_mc_state = MCS_PURGING; | |
1005 | else if (bktsize == 0) | |
1006 | sp->mbcl_mc_state = MCS_OFFLINE; | |
1007 | else | |
1008 | sp->mbcl_mc_state = MCS_ONLINE; | |
1009 | ||
1010 | sp->mbcl_mc_cached = 0; | |
1011 | for (m = 0; m < ncpu; m++) { | |
1012 | ccp = &cp->mc_cpu[m]; | |
1013 | if (ccp->cc_objs > 0) | |
1014 | sp->mbcl_mc_cached += ccp->cc_objs; | |
1015 | if (ccp->cc_pobjs > 0) | |
1016 | sp->mbcl_mc_cached += ccp->cc_pobjs; | |
1017 | } | |
1018 | sp->mbcl_mc_cached += (cp->mc_full.bl_total * bktsize); | |
1019 | sp->mbcl_active = sp->mbcl_total - sp->mbcl_mc_cached - | |
1020 | sp->mbcl_infree; | |
1021 | ||
1022 | sp->mbcl_mc_waiter_cnt = cp->mc_waiter_cnt; | |
1023 | sp->mbcl_mc_wretry_cnt = cp->mc_wretry_cnt; | |
1024 | sp->mbcl_mc_nwretry_cnt = cp->mc_nwretry_cnt; | |
1025 | ||
1026 | /* Calculate total count specific to each class */ | |
1027 | sp->mbcl_ctotal = sp->mbcl_total; | |
1028 | switch (m_class(k)) { | |
1029 | case MC_MBUF: | |
1030 | /* Deduct mbufs used in composite caches */ | |
1031 | sp->mbcl_ctotal -= (m_total(MC_MBUF_CL) + | |
1032 | m_total(MC_MBUF_BIGCL)); | |
1033 | break; | |
91447636 | 1034 | |
2d21ac55 | 1035 | case MC_CL: |
6d2010ae A |
1036 | /* Deduct clusters used in composite cache */ |
1037 | sp->mbcl_ctotal -= m_total(MC_MBUF_CL); | |
2d21ac55 | 1038 | break; |
91447636 | 1039 | |
2d21ac55 A |
1040 | case MC_BIGCL: |
1041 | /* Deduct clusters used in composite cache */ | |
1042 | sp->mbcl_ctotal -= m_total(MC_MBUF_BIGCL); | |
1043 | break; | |
1c79356b | 1044 | |
2d21ac55 A |
1045 | case MC_16KCL: |
1046 | /* Deduct clusters used in composite cache */ | |
1047 | sp->mbcl_ctotal -= m_total(MC_MBUF_16KCL); | |
1048 | break; | |
1049 | ||
1050 | default: | |
1051 | break; | |
1052 | } | |
1053 | } | |
6d2010ae A |
1054 | } |
1055 | ||
1056 | static int | |
1057 | mb_stat_sysctl SYSCTL_HANDLER_ARGS | |
1058 | { | |
1059 | #pragma unused(oidp, arg1, arg2) | |
1060 | void *statp; | |
1061 | int k, statsz, proc64 = proc_is64bit(req->p); | |
1062 | ||
1063 | lck_mtx_lock(mbuf_mlock); | |
1064 | mbuf_stat_sync(); | |
b0d623f7 A |
1065 | |
1066 | if (!proc64) { | |
1067 | struct omb_class_stat *oc; | |
1068 | struct mb_class_stat *c; | |
1069 | ||
1070 | omb_stat->mbs_cnt = mb_stat->mbs_cnt; | |
1071 | oc = &omb_stat->mbs_class[0]; | |
1072 | c = &mb_stat->mbs_class[0]; | |
1073 | for (k = 0; k < omb_stat->mbs_cnt; k++, oc++, c++) { | |
1074 | (void) snprintf(oc->mbcl_cname, sizeof (oc->mbcl_cname), | |
1075 | "%s", c->mbcl_cname); | |
1076 | oc->mbcl_size = c->mbcl_size; | |
1077 | oc->mbcl_total = c->mbcl_total; | |
1078 | oc->mbcl_active = c->mbcl_active; | |
1079 | oc->mbcl_infree = c->mbcl_infree; | |
1080 | oc->mbcl_slab_cnt = c->mbcl_slab_cnt; | |
1081 | oc->mbcl_alloc_cnt = c->mbcl_alloc_cnt; | |
1082 | oc->mbcl_free_cnt = c->mbcl_free_cnt; | |
1083 | oc->mbcl_notified = c->mbcl_notified; | |
1084 | oc->mbcl_purge_cnt = c->mbcl_purge_cnt; | |
1085 | oc->mbcl_fail_cnt = c->mbcl_fail_cnt; | |
1086 | oc->mbcl_ctotal = c->mbcl_ctotal; | |
fe8ab488 | 1087 | oc->mbcl_release_cnt = c->mbcl_release_cnt; |
b0d623f7 A |
1088 | oc->mbcl_mc_state = c->mbcl_mc_state; |
1089 | oc->mbcl_mc_cached = c->mbcl_mc_cached; | |
1090 | oc->mbcl_mc_waiter_cnt = c->mbcl_mc_waiter_cnt; | |
1091 | oc->mbcl_mc_wretry_cnt = c->mbcl_mc_wretry_cnt; | |
1092 | oc->mbcl_mc_nwretry_cnt = c->mbcl_mc_nwretry_cnt; | |
1093 | } | |
1094 | statp = omb_stat; | |
1095 | statsz = OMB_STAT_SIZE(NELEM(mbuf_table)); | |
1096 | } else { | |
1097 | statp = mb_stat; | |
1098 | statsz = MB_STAT_SIZE(NELEM(mbuf_table)); | |
1099 | } | |
1100 | ||
2d21ac55 | 1101 | lck_mtx_unlock(mbuf_mlock); |
9bccf70c | 1102 | |
b0d623f7 | 1103 | return (SYSCTL_OUT(req, statp, statsz)); |
2d21ac55 | 1104 | } |
91447636 | 1105 | |
6d2010ae A |
1106 | static int |
1107 | mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS | |
1108 | { | |
1109 | #pragma unused(oidp, arg1, arg2) | |
6d2010ae A |
1110 | int i; |
1111 | ||
1112 | /* Ensure leak tracing turned on */ | |
316670eb | 1113 | if (!mclfindleak || !mclexpleak) |
6d2010ae A |
1114 | return (ENXIO); |
1115 | ||
6d2010ae | 1116 | lck_mtx_lock(mleak_lock); |
316670eb | 1117 | mleak_update_stats(); |
6d2010ae A |
1118 | i = SYSCTL_OUT(req, mleak_stat, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES)); |
1119 | lck_mtx_unlock(mleak_lock); | |
1120 | ||
1121 | return (i); | |
1122 | } | |
1123 | ||
1124 | static int | |
1125 | mleak_table_sysctl SYSCTL_HANDLER_ARGS | |
1126 | { | |
1127 | #pragma unused(oidp, arg1, arg2) | |
1128 | int i = 0; | |
1129 | ||
1130 | /* Ensure leak tracing turned on */ | |
316670eb | 1131 | if (!mclfindleak || !mclexpleak) |
6d2010ae A |
1132 | return (ENXIO); |
1133 | ||
1134 | lck_mtx_lock(mleak_lock); | |
1135 | i = SYSCTL_OUT(req, &mleak_table, sizeof (mleak_table)); | |
1136 | lck_mtx_unlock(mleak_lock); | |
1137 | ||
1138 | return (i); | |
1139 | } | |
1140 | ||
2d21ac55 A |
1141 | static inline void |
1142 | m_incref(struct mbuf *m) | |
1143 | { | |
1144 | UInt32 old, new; | |
1145 | volatile UInt32 *addr = (volatile UInt32 *)&MEXT_REF(m); | |
91447636 | 1146 | |
2d21ac55 A |
1147 | do { |
1148 | old = *addr; | |
1149 | new = old + 1; | |
1150 | ASSERT(new != 0); | |
1151 | } while (!OSCompareAndSwap(old, new, addr)); | |
6d2010ae A |
1152 | |
1153 | /* | |
1154 | * If cluster is shared, mark it with (sticky) EXTF_READONLY; | |
1155 | * we don't clear the flag when the refcount goes back to 1 | |
1156 | * to simplify code calling m_mclhasreference(). | |
1157 | */ | |
1158 | if (new > 1 && !(MEXT_FLAGS(m) & EXTF_READONLY)) | |
1159 | (void) OSBitOrAtomic(EXTF_READONLY, &MEXT_FLAGS(m)); | |
1c79356b A |
1160 | } |
1161 | ||
2d21ac55 A |
1162 | static inline u_int32_t |
1163 | m_decref(struct mbuf *m) | |
1c79356b | 1164 | { |
2d21ac55 A |
1165 | UInt32 old, new; |
1166 | volatile UInt32 *addr = (volatile UInt32 *)&MEXT_REF(m); | |
1c79356b | 1167 | |
2d21ac55 A |
1168 | do { |
1169 | old = *addr; | |
1170 | new = old - 1; | |
1171 | ASSERT(old != 0); | |
1172 | } while (!OSCompareAndSwap(old, new, addr)); | |
1173 | ||
1174 | return (new); | |
1c79356b A |
1175 | } |
1176 | ||
2d21ac55 A |
1177 | static void |
1178 | mbuf_table_init(void) | |
1c79356b | 1179 | { |
6d2010ae | 1180 | unsigned int b, c, s; |
2d21ac55 | 1181 | int m; |
91447636 | 1182 | |
b0d623f7 A |
1183 | MALLOC(omb_stat, struct omb_stat *, OMB_STAT_SIZE(NELEM(mbuf_table)), |
1184 | M_TEMP, M_WAITOK | M_ZERO); | |
1185 | VERIFY(omb_stat != NULL); | |
1186 | ||
2d21ac55 A |
1187 | MALLOC(mb_stat, mb_stat_t *, MB_STAT_SIZE(NELEM(mbuf_table)), |
1188 | M_TEMP, M_WAITOK | M_ZERO); | |
1189 | VERIFY(mb_stat != NULL); | |
1c79356b | 1190 | |
2d21ac55 A |
1191 | mb_stat->mbs_cnt = NELEM(mbuf_table); |
1192 | for (m = 0; m < NELEM(mbuf_table); m++) | |
1193 | mbuf_table[m].mtbl_stats = &mb_stat->mbs_class[m]; | |
1c79356b | 1194 | |
2d21ac55 A |
1195 | #if CONFIG_MBUF_JUMBO |
1196 | /* | |
1197 | * Set aside 1/3 of the mbuf cluster map for jumbo clusters; we do | |
1198 | * this only on platforms where jumbo cluster pool is enabled. | |
1199 | */ | |
1200 | njcl = nmbclusters / 3; | |
1201 | njclbytes = M16KCLBYTES; | |
1202 | #endif /* CONFIG_MBUF_JUMBO */ | |
9bccf70c | 1203 | |
2d21ac55 | 1204 | /* |
6d2010ae A |
1205 | * nclusters holds both the 2KB and 4KB pools, so ensure it's |
1206 | * a multiple of 4KB clusters. | |
2d21ac55 | 1207 | */ |
6d2010ae | 1208 | nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPBG); |
2d21ac55 A |
1209 | if (njcl > 0) { |
1210 | /* | |
6d2010ae A |
1211 | * Each jumbo cluster takes 8 2KB clusters, so make |
1212 | * sure that the pool size is evenly divisible by 8; | |
1213 | * njcl is in 2KB unit, hence treated as such. | |
2d21ac55 A |
1214 | */ |
1215 | njcl = P2ROUNDDOWN(nmbclusters - nclusters, 8); | |
1c79356b | 1216 | |
6d2010ae A |
1217 | /* Update nclusters with rounded down value of njcl */ |
1218 | nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPBG); | |
9bccf70c | 1219 | } |
2d21ac55 A |
1220 | |
1221 | /* | |
6d2010ae A |
1222 | * njcl is valid only on platforms with 16KB jumbo clusters, where |
1223 | * it is configured to 1/3 of the pool size. On these platforms, | |
1224 | * the remaining is used for 2KB and 4KB clusters. On platforms | |
1225 | * without 16KB jumbo clusters, the entire pool is used for both | |
1226 | * 2KB and 4KB clusters. A 4KB cluster can either be splitted into | |
1227 | * 16 mbufs, or into 2 2KB clusters. | |
1228 | * | |
1229 | * +---+---+------------ ... -----------+------- ... -------+ | |
1230 | * | c | b | s | njcl | | |
1231 | * +---+---+------------ ... -----------+------- ... -------+ | |
1232 | * | |
1233 | * 1/32th of the shared region is reserved for pure 2KB and 4KB | |
1234 | * clusters (1/64th each.) | |
1235 | */ | |
1236 | c = P2ROUNDDOWN((nclusters >> 6), 2); /* in 2KB unit */ | |
1237 | b = P2ROUNDDOWN((nclusters >> (6 + NCLPBGSHIFT)), 2); /* in 4KB unit */ | |
1238 | s = nclusters - (c + (b << NCLPBGSHIFT)); /* in 2KB unit */ | |
1239 | ||
1240 | /* | |
1241 | * 1/64th (c) is reserved for 2KB clusters. | |
2d21ac55 | 1242 | */ |
6d2010ae A |
1243 | m_minlimit(MC_CL) = c; |
1244 | m_maxlimit(MC_CL) = s + c; /* in 2KB unit */ | |
2d21ac55 A |
1245 | m_maxsize(MC_CL) = m_size(MC_CL) = MCLBYTES; |
1246 | (void) snprintf(m_cname(MC_CL), MAX_MBUF_CNAME, "cl"); | |
1247 | ||
1248 | /* | |
6d2010ae A |
1249 | * Another 1/64th (b) of the map is reserved for 4KB clusters. |
1250 | * It cannot be turned into 2KB clusters or mbufs. | |
2d21ac55 | 1251 | */ |
6d2010ae A |
1252 | m_minlimit(MC_BIGCL) = b; |
1253 | m_maxlimit(MC_BIGCL) = (s >> NCLPBGSHIFT) + b; /* in 4KB unit */ | |
1254 | m_maxsize(MC_BIGCL) = m_size(MC_BIGCL) = MBIGCLBYTES; | |
1255 | (void) snprintf(m_cname(MC_BIGCL), MAX_MBUF_CNAME, "bigcl"); | |
2d21ac55 A |
1256 | |
1257 | /* | |
6d2010ae | 1258 | * The remaining 31/32ths (s) are all-purpose (mbufs, 2KB, or 4KB) |
2d21ac55 | 1259 | */ |
6d2010ae A |
1260 | m_minlimit(MC_MBUF) = 0; |
1261 | m_maxlimit(MC_MBUF) = (s << NMBPCLSHIFT); /* in mbuf unit */ | |
1262 | m_maxsize(MC_MBUF) = m_size(MC_MBUF) = MSIZE; | |
1263 | (void) snprintf(m_cname(MC_MBUF), MAX_MBUF_CNAME, "mbuf"); | |
2d21ac55 A |
1264 | |
1265 | /* | |
1266 | * Set limits for the composite classes. | |
1267 | */ | |
1268 | m_minlimit(MC_MBUF_CL) = 0; | |
6d2010ae | 1269 | m_maxlimit(MC_MBUF_CL) = m_maxlimit(MC_CL); |
2d21ac55 A |
1270 | m_maxsize(MC_MBUF_CL) = MCLBYTES; |
1271 | m_size(MC_MBUF_CL) = m_size(MC_MBUF) + m_size(MC_CL); | |
1272 | (void) snprintf(m_cname(MC_MBUF_CL), MAX_MBUF_CNAME, "mbuf_cl"); | |
1273 | ||
1274 | m_minlimit(MC_MBUF_BIGCL) = 0; | |
1275 | m_maxlimit(MC_MBUF_BIGCL) = m_maxlimit(MC_BIGCL); | |
6d2010ae | 1276 | m_maxsize(MC_MBUF_BIGCL) = MBIGCLBYTES; |
2d21ac55 A |
1277 | m_size(MC_MBUF_BIGCL) = m_size(MC_MBUF) + m_size(MC_BIGCL); |
1278 | (void) snprintf(m_cname(MC_MBUF_BIGCL), MAX_MBUF_CNAME, "mbuf_bigcl"); | |
1279 | ||
1280 | /* | |
1281 | * And for jumbo classes. | |
1282 | */ | |
1283 | m_minlimit(MC_16KCL) = 0; | |
6d2010ae | 1284 | m_maxlimit(MC_16KCL) = (njcl >> NCLPJCLSHIFT); /* in 16KB unit */ |
2d21ac55 A |
1285 | m_maxsize(MC_16KCL) = m_size(MC_16KCL) = M16KCLBYTES; |
1286 | (void) snprintf(m_cname(MC_16KCL), MAX_MBUF_CNAME, "16kcl"); | |
1287 | ||
1288 | m_minlimit(MC_MBUF_16KCL) = 0; | |
1289 | m_maxlimit(MC_MBUF_16KCL) = m_maxlimit(MC_16KCL); | |
1290 | m_maxsize(MC_MBUF_16KCL) = M16KCLBYTES; | |
1291 | m_size(MC_MBUF_16KCL) = m_size(MC_MBUF) + m_size(MC_16KCL); | |
1292 | (void) snprintf(m_cname(MC_MBUF_16KCL), MAX_MBUF_CNAME, "mbuf_16kcl"); | |
1293 | ||
1294 | /* | |
1295 | * Initialize the legacy mbstat structure. | |
1296 | */ | |
1297 | bzero(&mbstat, sizeof (mbstat)); | |
1298 | mbstat.m_msize = m_maxsize(MC_MBUF); | |
1299 | mbstat.m_mclbytes = m_maxsize(MC_CL); | |
1300 | mbstat.m_minclsize = MINCLSIZE; | |
1301 | mbstat.m_mlen = MLEN; | |
1302 | mbstat.m_mhlen = MHLEN; | |
1303 | mbstat.m_bigmclbytes = m_maxsize(MC_BIGCL); | |
1304 | } | |
1305 | ||
b0d623f7 A |
1306 | #if defined(__LP64__) |
1307 | typedef struct ncl_tbl { | |
1308 | uint64_t nt_maxmem; /* memory (sane) size */ | |
1309 | uint32_t nt_mbpool; /* mbuf pool size */ | |
1310 | } ncl_tbl_t; | |
1311 | ||
1312 | /* Non-server */ | |
1313 | static ncl_tbl_t ncl_table[] = { | |
316670eb | 1314 | { (1ULL << GBSHIFT) /* 1 GB */, (64 << MBSHIFT) /* 64 MB */ }, |
b0d623f7 A |
1315 | { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (96 << MBSHIFT) /* 96 MB */ }, |
1316 | { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (128 << MBSHIFT) /* 128 MB */ }, | |
1317 | { 0, 0 } | |
1318 | }; | |
1319 | ||
1320 | /* Server */ | |
1321 | static ncl_tbl_t ncl_table_srv[] = { | |
316670eb | 1322 | { (1ULL << GBSHIFT) /* 1 GB */, (96 << MBSHIFT) /* 96 MB */ }, |
b0d623f7 A |
1323 | { (1ULL << (GBSHIFT + 2)) /* 4 GB */, (128 << MBSHIFT) /* 128 MB */ }, |
1324 | { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (160 << MBSHIFT) /* 160 MB */ }, | |
1325 | { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (192 << MBSHIFT) /* 192 MB */ }, | |
1326 | { (1ULL << (GBSHIFT + 5)) /* 32 GB */, (256 << MBSHIFT) /* 256 MB */ }, | |
1327 | { (1ULL << (GBSHIFT + 6)) /* 64 GB */, (384 << MBSHIFT) /* 384 MB */ }, | |
1328 | { 0, 0 } | |
1329 | }; | |
1330 | #endif /* __LP64__ */ | |
1331 | ||
1332 | __private_extern__ unsigned int | |
6d2010ae | 1333 | mbuf_default_ncl(int server, uint64_t mem) |
b0d623f7 A |
1334 | { |
1335 | #if !defined(__LP64__) | |
6d2010ae | 1336 | #pragma unused(server) |
b0d623f7 A |
1337 | unsigned int n; |
1338 | /* | |
1339 | * 32-bit kernel (default to 64MB of mbuf pool for >= 1GB RAM). | |
1340 | */ | |
6d2010ae A |
1341 | if ((n = ((mem / 16) / MCLBYTES)) > 32768) |
1342 | n = 32768; | |
b0d623f7 A |
1343 | #else |
1344 | unsigned int n, i; | |
6d2010ae | 1345 | ncl_tbl_t *tbl = (server ? ncl_table_srv : ncl_table); |
b0d623f7 A |
1346 | /* |
1347 | * 64-bit kernel (mbuf pool size based on table). | |
1348 | */ | |
1349 | n = tbl[0].nt_mbpool; | |
1350 | for (i = 0; tbl[i].nt_mbpool != 0; i++) { | |
1351 | if (mem < tbl[i].nt_maxmem) | |
1352 | break; | |
1353 | n = tbl[i].nt_mbpool; | |
1354 | } | |
1355 | n >>= MCLSHIFT; | |
1356 | #endif /* !__LP64__ */ | |
1357 | return (n); | |
1358 | } | |
1359 | ||
2d21ac55 A |
1360 | __private_extern__ void |
1361 | mbinit(void) | |
1362 | { | |
1363 | unsigned int m; | |
6d2010ae | 1364 | unsigned int initmcl = 0; |
2d21ac55 | 1365 | void *buf; |
b0d623f7 | 1366 | thread_t thread = THREAD_NULL; |
2d21ac55 | 1367 | |
39236c6e A |
1368 | microuptime(&mb_start); |
1369 | ||
316670eb A |
1370 | /* |
1371 | * These MBUF_ values must be equal to their private counterparts. | |
1372 | */ | |
1373 | _CASSERT(MBUF_EXT == M_EXT); | |
1374 | _CASSERT(MBUF_PKTHDR == M_PKTHDR); | |
1375 | _CASSERT(MBUF_EOR == M_EOR); | |
1376 | _CASSERT(MBUF_LOOP == M_LOOP); | |
1377 | _CASSERT(MBUF_BCAST == M_BCAST); | |
1378 | _CASSERT(MBUF_MCAST == M_MCAST); | |
1379 | _CASSERT(MBUF_FRAG == M_FRAG); | |
1380 | _CASSERT(MBUF_FIRSTFRAG == M_FIRSTFRAG); | |
1381 | _CASSERT(MBUF_LASTFRAG == M_LASTFRAG); | |
1382 | _CASSERT(MBUF_PROMISC == M_PROMISC); | |
1383 | _CASSERT(MBUF_HASFCS == M_HASFCS); | |
1384 | ||
1385 | _CASSERT(MBUF_TYPE_FREE == MT_FREE); | |
1386 | _CASSERT(MBUF_TYPE_DATA == MT_DATA); | |
1387 | _CASSERT(MBUF_TYPE_HEADER == MT_HEADER); | |
1388 | _CASSERT(MBUF_TYPE_SOCKET == MT_SOCKET); | |
1389 | _CASSERT(MBUF_TYPE_PCB == MT_PCB); | |
1390 | _CASSERT(MBUF_TYPE_RTABLE == MT_RTABLE); | |
1391 | _CASSERT(MBUF_TYPE_HTABLE == MT_HTABLE); | |
1392 | _CASSERT(MBUF_TYPE_ATABLE == MT_ATABLE); | |
1393 | _CASSERT(MBUF_TYPE_SONAME == MT_SONAME); | |
1394 | _CASSERT(MBUF_TYPE_SOOPTS == MT_SOOPTS); | |
1395 | _CASSERT(MBUF_TYPE_FTABLE == MT_FTABLE); | |
1396 | _CASSERT(MBUF_TYPE_RIGHTS == MT_RIGHTS); | |
1397 | _CASSERT(MBUF_TYPE_IFADDR == MT_IFADDR); | |
1398 | _CASSERT(MBUF_TYPE_CONTROL == MT_CONTROL); | |
1399 | _CASSERT(MBUF_TYPE_OOBDATA == MT_OOBDATA); | |
1400 | ||
1401 | _CASSERT(MBUF_TSO_IPV4 == CSUM_TSO_IPV4); | |
1402 | _CASSERT(MBUF_TSO_IPV6 == CSUM_TSO_IPV6); | |
39236c6e | 1403 | _CASSERT(MBUF_CSUM_REQ_SUM16 == CSUM_PARTIAL); |
316670eb A |
1404 | _CASSERT(MBUF_CSUM_TCP_SUM16 == MBUF_CSUM_REQ_SUM16); |
1405 | _CASSERT(MBUF_CSUM_REQ_IP == CSUM_IP); | |
1406 | _CASSERT(MBUF_CSUM_REQ_TCP == CSUM_TCP); | |
1407 | _CASSERT(MBUF_CSUM_REQ_UDP == CSUM_UDP); | |
1408 | _CASSERT(MBUF_CSUM_REQ_TCPIPV6 == CSUM_TCPIPV6); | |
1409 | _CASSERT(MBUF_CSUM_REQ_UDPIPV6 == CSUM_UDPIPV6); | |
1410 | _CASSERT(MBUF_CSUM_DID_IP == CSUM_IP_CHECKED); | |
1411 | _CASSERT(MBUF_CSUM_IP_GOOD == CSUM_IP_VALID); | |
1412 | _CASSERT(MBUF_CSUM_DID_DATA == CSUM_DATA_VALID); | |
1413 | _CASSERT(MBUF_CSUM_PSEUDO_HDR == CSUM_PSEUDO_HDR); | |
1414 | ||
1415 | _CASSERT(MBUF_WAITOK == M_WAIT); | |
1416 | _CASSERT(MBUF_DONTWAIT == M_DONTWAIT); | |
1417 | _CASSERT(MBUF_COPYALL == M_COPYALL); | |
1418 | ||
316670eb A |
1419 | _CASSERT(MBUF_SC2TC(MBUF_SC_BK_SYS) == MBUF_TC_BK); |
1420 | _CASSERT(MBUF_SC2TC(MBUF_SC_BK) == MBUF_TC_BK); | |
1421 | _CASSERT(MBUF_SC2TC(MBUF_SC_BE) == MBUF_TC_BE); | |
1422 | _CASSERT(MBUF_SC2TC(MBUF_SC_RD) == MBUF_TC_BE); | |
1423 | _CASSERT(MBUF_SC2TC(MBUF_SC_OAM) == MBUF_TC_BE); | |
1424 | _CASSERT(MBUF_SC2TC(MBUF_SC_AV) == MBUF_TC_VI); | |
1425 | _CASSERT(MBUF_SC2TC(MBUF_SC_RV) == MBUF_TC_VI); | |
1426 | _CASSERT(MBUF_SC2TC(MBUF_SC_VI) == MBUF_TC_VI); | |
1427 | _CASSERT(MBUF_SC2TC(MBUF_SC_VO) == MBUF_TC_VO); | |
1428 | _CASSERT(MBUF_SC2TC(MBUF_SC_CTL) == MBUF_TC_VO); | |
1429 | ||
1430 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BK) == SCVAL_BK); | |
1431 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BE) == SCVAL_BE); | |
1432 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VI) == SCVAL_VI); | |
1433 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VO) == SCVAL_VO); | |
1434 | ||
39236c6e A |
1435 | /* Module specific scratch space (32-bit alignment requirement) */ |
1436 | _CASSERT(!(offsetof(struct mbuf, m_pkthdr.pkt_mpriv) % | |
1437 | sizeof (uint32_t))); | |
1438 | ||
1439 | /* Initialize random red zone cookie value */ | |
1440 | _CASSERT(sizeof (mb_redzone_cookie) == | |
1441 | sizeof (((struct pkthdr *)0)->redzone)); | |
1442 | read_random(&mb_redzone_cookie, sizeof (mb_redzone_cookie)); | |
1443 | ||
1444 | /* Make sure we don't save more than we should */ | |
1445 | _CASSERT(MCA_SAVED_MBUF_SIZE <= sizeof (struct mbuf)); | |
1446 | ||
2d21ac55 A |
1447 | if (nmbclusters == 0) |
1448 | nmbclusters = NMBCLUSTERS; | |
1449 | ||
6d2010ae A |
1450 | /* This should be a sane (at least even) value by now */ |
1451 | VERIFY(nmbclusters != 0 && !(nmbclusters & 0x1)); | |
1452 | ||
2d21ac55 A |
1453 | /* Setup the mbuf table */ |
1454 | mbuf_table_init(); | |
1455 | ||
1456 | /* Global lock for common layer */ | |
1457 | mbuf_mlock_grp_attr = lck_grp_attr_alloc_init(); | |
1458 | mbuf_mlock_grp = lck_grp_alloc_init("mbuf", mbuf_mlock_grp_attr); | |
1459 | mbuf_mlock_attr = lck_attr_alloc_init(); | |
316670eb | 1460 | lck_mtx_init(mbuf_mlock, mbuf_mlock_grp, mbuf_mlock_attr); |
2d21ac55 | 1461 | |
6d2010ae A |
1462 | /* |
1463 | * Allocate cluster slabs table: | |
1464 | * | |
1465 | * maxslabgrp = (N * 2048) / (1024 * 1024) | |
1466 | * | |
1467 | * Where N is nmbclusters rounded up to the nearest 512. This yields | |
1468 | * mcl_slab_g_t units, each one representing a MB of memory. | |
1469 | */ | |
1470 | maxslabgrp = | |
1471 | (P2ROUNDUP(nmbclusters, (MBSIZE >> 11)) << MCLSHIFT) >> MBSHIFT; | |
2d21ac55 A |
1472 | MALLOC(slabstbl, mcl_slabg_t **, maxslabgrp * sizeof (mcl_slabg_t *), |
1473 | M_TEMP, M_WAITOK | M_ZERO); | |
1474 | VERIFY(slabstbl != NULL); | |
1475 | ||
6d2010ae A |
1476 | /* |
1477 | * Allocate audit structures, if needed: | |
1478 | * | |
1479 | * maxclaudit = (maxslabgrp * 1024 * 1024) / 4096 | |
1480 | * | |
1481 | * This yields mcl_audit_t units, each one representing a page. | |
1482 | */ | |
593a1d5f | 1483 | PE_parse_boot_argn("mbuf_debug", &mbuf_debug, sizeof (mbuf_debug)); |
2d21ac55 | 1484 | mbuf_debug |= mcache_getflags(); |
6d2010ae A |
1485 | if (mbuf_debug & MCF_DEBUG) { |
1486 | maxclaudit = ((maxslabgrp << MBSHIFT) >> PGSHIFT); | |
1487 | MALLOC(mclaudit, mcl_audit_t *, maxclaudit * sizeof (*mclaudit), | |
1488 | M_TEMP, M_WAITOK | M_ZERO); | |
2d21ac55 A |
1489 | VERIFY(mclaudit != NULL); |
1490 | ||
1491 | mcl_audit_con_cache = mcache_create("mcl_audit_contents", | |
39236c6e | 1492 | AUDIT_CONTENTS_SIZE, sizeof (u_int64_t), 0, MCR_SLEEP); |
2d21ac55 A |
1493 | VERIFY(mcl_audit_con_cache != NULL); |
1494 | } | |
6d2010ae A |
1495 | mclverify = (mbuf_debug & MCF_VERIFY); |
1496 | mcltrace = (mbuf_debug & MCF_TRACE); | |
1497 | mclfindleak = !(mbuf_debug & MCF_NOLEAKLOG); | |
316670eb | 1498 | mclexpleak = mclfindleak && (mbuf_debug & MCF_EXPLEAKLOG); |
6d2010ae A |
1499 | |
1500 | /* Enable mbuf leak logging, with a lock to protect the tables */ | |
1501 | ||
1502 | mleak_lock_grp_attr = lck_grp_attr_alloc_init(); | |
1503 | mleak_lock_grp = lck_grp_alloc_init("mleak_lock", mleak_lock_grp_attr); | |
1504 | mleak_lock_attr = lck_attr_alloc_init(); | |
316670eb | 1505 | lck_mtx_init(mleak_lock, mleak_lock_grp, mleak_lock_attr); |
6d2010ae A |
1506 | |
1507 | mleak_activate(); | |
2d21ac55 A |
1508 | |
1509 | /* Calculate the number of pages assigned to the cluster pool */ | |
b0d623f7 A |
1510 | mcl_pages = (nmbclusters * MCLBYTES) / CLBYTES; |
1511 | MALLOC(mcl_paddr, ppnum_t *, mcl_pages * sizeof (ppnum_t), | |
1512 | M_TEMP, M_WAITOK); | |
2d21ac55 A |
1513 | VERIFY(mcl_paddr != NULL); |
1514 | ||
1515 | /* Register with the I/O Bus mapper */ | |
1516 | mcl_paddr_base = IOMapperIOVMAlloc(mcl_pages); | |
b0d623f7 | 1517 | bzero((char *)mcl_paddr, mcl_pages * sizeof (ppnum_t)); |
2d21ac55 | 1518 | |
6d2010ae | 1519 | embutl = (union mbigcluster *) |
316670eb | 1520 | ((void *)((unsigned char *)mbutl + (nmbclusters * MCLBYTES))); |
6d2010ae | 1521 | VERIFY((((char *)embutl - (char *)mbutl) % MBIGCLBYTES) == 0); |
2d21ac55 | 1522 | |
6d2010ae | 1523 | /* Prime up the freelist */ |
593a1d5f | 1524 | PE_parse_boot_argn("initmcl", &initmcl, sizeof (initmcl)); |
6d2010ae A |
1525 | if (initmcl != 0) { |
1526 | initmcl >>= NCLPBGSHIFT; /* become a 4K unit */ | |
1527 | if (initmcl > m_maxlimit(MC_BIGCL)) | |
1528 | initmcl = m_maxlimit(MC_BIGCL); | |
1529 | } | |
1530 | if (initmcl < m_minlimit(MC_BIGCL)) | |
1531 | initmcl = m_minlimit(MC_BIGCL); | |
2d21ac55 A |
1532 | |
1533 | lck_mtx_lock(mbuf_mlock); | |
1534 | ||
6d2010ae A |
1535 | /* |
1536 | * For classes with non-zero minimum limits, populate their freelists | |
1537 | * so that m_total(class) is at least m_minlimit(class). | |
1538 | */ | |
1539 | VERIFY(m_total(MC_BIGCL) == 0 && m_minlimit(MC_BIGCL) != 0); | |
1540 | freelist_populate(m_class(MC_BIGCL), initmcl, M_WAIT); | |
1541 | VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL)); | |
1542 | freelist_init(m_class(MC_CL)); | |
1543 | ||
1544 | for (m = 0; m < NELEM(mbuf_table); m++) { | |
1545 | /* Make sure we didn't miss any */ | |
1546 | VERIFY(m_minlimit(m_class(m)) == 0 || | |
1547 | m_total(m_class(m)) >= m_minlimit(m_class(m))); | |
fe8ab488 A |
1548 | |
1549 | /* populate the initial sizes and report from there on */ | |
1550 | m_peak(m_class(m)) = m_total(m_class(m)); | |
6d2010ae | 1551 | } |
fe8ab488 | 1552 | mb_peak_newreport = FALSE; |
2d21ac55 A |
1553 | |
1554 | lck_mtx_unlock(mbuf_mlock); | |
1555 | ||
6d2010ae A |
1556 | (void) kernel_thread_start((thread_continue_t)mbuf_worker_thread_init, |
1557 | NULL, &thread); | |
b0d623f7 | 1558 | thread_deallocate(thread); |
2d21ac55 A |
1559 | |
1560 | ref_cache = mcache_create("mext_ref", sizeof (struct ext_ref), | |
1561 | 0, 0, MCR_SLEEP); | |
1562 | ||
1563 | /* Create the cache for each class */ | |
1564 | for (m = 0; m < NELEM(mbuf_table); m++) { | |
6d2010ae | 1565 | void *allocfunc, *freefunc, *auditfunc, *logfunc; |
2d21ac55 A |
1566 | u_int32_t flags; |
1567 | ||
1568 | flags = mbuf_debug; | |
1569 | if (m_class(m) == MC_MBUF_CL || m_class(m) == MC_MBUF_BIGCL || | |
1570 | m_class(m) == MC_MBUF_16KCL) { | |
1571 | allocfunc = mbuf_cslab_alloc; | |
1572 | freefunc = mbuf_cslab_free; | |
1573 | auditfunc = mbuf_cslab_audit; | |
6d2010ae | 1574 | logfunc = mleak_logger; |
2d21ac55 A |
1575 | } else { |
1576 | allocfunc = mbuf_slab_alloc; | |
1577 | freefunc = mbuf_slab_free; | |
1578 | auditfunc = mbuf_slab_audit; | |
6d2010ae | 1579 | logfunc = mleak_logger; |
2d21ac55 A |
1580 | } |
1581 | ||
1582 | /* | |
1583 | * Disable per-CPU caches for jumbo classes if there | |
1584 | * is no jumbo cluster pool available in the system. | |
1585 | * The cache itself is still created (but will never | |
1586 | * be populated) since it simplifies the code. | |
1587 | */ | |
1588 | if ((m_class(m) == MC_MBUF_16KCL || m_class(m) == MC_16KCL) && | |
1589 | njcl == 0) | |
1590 | flags |= MCF_NOCPUCACHE; | |
1591 | ||
6d2010ae A |
1592 | if (!mclfindleak) |
1593 | flags |= MCF_NOLEAKLOG; | |
1594 | ||
2d21ac55 | 1595 | m_cache(m) = mcache_create_ext(m_cname(m), m_maxsize(m), |
6d2010ae | 1596 | allocfunc, freefunc, auditfunc, logfunc, mbuf_slab_notify, |
b0d623f7 | 1597 | (void *)(uintptr_t)m, flags, MCR_SLEEP); |
2d21ac55 A |
1598 | } |
1599 | ||
1600 | /* | |
1601 | * Allocate structure for per-CPU statistics that's aligned | |
1602 | * on the CPU cache boundary; this code assumes that we never | |
1603 | * uninitialize this framework, since the original address | |
1604 | * before alignment is not saved. | |
1605 | */ | |
1606 | ncpu = ml_get_max_cpus(); | |
39236c6e | 1607 | MALLOC(buf, void *, MBUF_MTYPES_SIZE(ncpu) + CPU_CACHE_LINE_SIZE, |
2d21ac55 A |
1608 | M_TEMP, M_WAITOK); |
1609 | VERIFY(buf != NULL); | |
1610 | ||
39236c6e A |
1611 | mbuf_mtypes = (mbuf_mtypes_t *)P2ROUNDUP((intptr_t)buf, |
1612 | CPU_CACHE_LINE_SIZE); | |
2d21ac55 A |
1613 | bzero(mbuf_mtypes, MBUF_MTYPES_SIZE(ncpu)); |
1614 | ||
6d2010ae A |
1615 | /* |
1616 | * Set the max limit on sb_max to be 1/16 th of the size of | |
b0d623f7 A |
1617 | * memory allocated for mbuf clusters. |
1618 | */ | |
6d2010ae | 1619 | high_sb_max = (nmbclusters << (MCLSHIFT - 4)); |
b0d623f7 A |
1620 | if (high_sb_max < sb_max) { |
1621 | /* sb_max is too large for this configuration, scale it down */ | |
6d2010ae | 1622 | if (high_sb_max > (1 << MBSHIFT)) { |
b0d623f7 A |
1623 | /* We have atleast 16 M of mbuf pool */ |
1624 | sb_max = high_sb_max; | |
1625 | } else if ((nmbclusters << MCLSHIFT) > (1 << MBSHIFT)) { | |
6d2010ae A |
1626 | /* |
1627 | * If we have more than 1M of mbufpool, cap the size of | |
b0d623f7 | 1628 | * max sock buf at 1M |
6d2010ae | 1629 | */ |
b0d623f7 A |
1630 | sb_max = high_sb_max = (1 << MBSHIFT); |
1631 | } else { | |
1632 | sb_max = high_sb_max; | |
1633 | } | |
1634 | } | |
1635 | ||
316670eb A |
1636 | /* allocate space for mbuf_dump_buf */ |
1637 | MALLOC(mbuf_dump_buf, char *, MBUF_DUMP_BUF_SIZE, M_TEMP, M_WAITOK); | |
1638 | VERIFY(mbuf_dump_buf != NULL); | |
1639 | ||
39236c6e A |
1640 | if (mbuf_debug & MCF_DEBUG) { |
1641 | printf("%s: MLEN %d, MHLEN %d\n", __func__, | |
1642 | (int)_MLEN, (int)_MHLEN); | |
1643 | } | |
1644 | ||
1645 | printf("%s: done [%d MB total pool size, (%d/%d) split]\n", __func__, | |
6d2010ae A |
1646 | (nmbclusters << MCLSHIFT) >> MBSHIFT, |
1647 | (nclusters << MCLSHIFT) >> MBSHIFT, | |
1648 | (njcl << MCLSHIFT) >> MBSHIFT); | |
2d21ac55 A |
1649 | } |
1650 | ||
1651 | /* | |
1652 | * Obtain a slab of object(s) from the class's freelist. | |
1653 | */ | |
1654 | static mcache_obj_t * | |
1655 | slab_alloc(mbuf_class_t class, int wait) | |
1656 | { | |
1657 | mcl_slab_t *sp; | |
1658 | mcache_obj_t *buf; | |
1659 | ||
1660 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
1661 | ||
1662 | VERIFY(class != MC_16KCL || njcl > 0); | |
1663 | ||
1664 | /* This should always be NULL for us */ | |
1665 | VERIFY(m_cobjlist(class) == NULL); | |
1666 | ||
1667 | /* | |
1668 | * Treat composite objects as having longer lifespan by using | |
1669 | * a slab from the reverse direction, in hoping that this could | |
1670 | * reduce the probability of fragmentation for slabs that hold | |
1671 | * more than one buffer chunks (e.g. mbuf slabs). For other | |
1672 | * slabs, this probably doesn't make much of a difference. | |
1673 | */ | |
6d2010ae | 1674 | if ((class == MC_MBUF || class == MC_CL) && (wait & MCR_COMP)) |
2d21ac55 A |
1675 | sp = (mcl_slab_t *)TAILQ_LAST(&m_slablist(class), mcl_slhead); |
1676 | else | |
1677 | sp = (mcl_slab_t *)TAILQ_FIRST(&m_slablist(class)); | |
1678 | ||
1679 | if (sp == NULL) { | |
1680 | VERIFY(m_infree(class) == 0 && m_slab_cnt(class) == 0); | |
1681 | /* The slab list for this class is empty */ | |
1682 | return (NULL); | |
1683 | } | |
1684 | ||
1685 | VERIFY(m_infree(class) > 0); | |
1686 | VERIFY(!slab_is_detached(sp)); | |
1687 | VERIFY(sp->sl_class == class && | |
1688 | (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); | |
1689 | buf = sp->sl_head; | |
1690 | VERIFY(slab_inrange(sp, buf) && sp == slab_get(buf)); | |
1691 | ||
1692 | if (class == MC_MBUF) { | |
1693 | sp->sl_head = buf->obj_next; | |
6d2010ae A |
1694 | VERIFY(sp->sl_head != NULL || sp->sl_refcnt == (NMBPBG - 1)); |
1695 | } else if (class == MC_CL) { | |
1696 | sp->sl_head = buf->obj_next; | |
1697 | VERIFY(sp->sl_head != NULL || sp->sl_refcnt == (NCLPBG - 1)); | |
2d21ac55 A |
1698 | } else { |
1699 | sp->sl_head = NULL; | |
1700 | } | |
1701 | if (sp->sl_head != NULL && !slab_inrange(sp, sp->sl_head)) { | |
1702 | slab_nextptr_panic(sp, sp->sl_head); | |
1703 | /* In case sl_head is in the map but not in the slab */ | |
1704 | VERIFY(slab_inrange(sp, sp->sl_head)); | |
1705 | /* NOTREACHED */ | |
1706 | } | |
1707 | ||
1708 | /* Increment slab reference */ | |
1709 | sp->sl_refcnt++; | |
1710 | ||
1711 | if (mclaudit != NULL) { | |
1712 | mcache_audit_t *mca = mcl_audit_buf2mca(class, buf); | |
1713 | mca->mca_uflags = 0; | |
1714 | /* Save contents on mbuf objects only */ | |
1715 | if (class == MC_MBUF) | |
1716 | mca->mca_uflags |= MB_SCVALID; | |
1717 | } | |
1718 | ||
1719 | if (class == MC_CL) { | |
1720 | mbstat.m_clfree = (--m_infree(MC_CL)) + m_infree(MC_MBUF_CL); | |
1721 | /* | |
6d2010ae | 1722 | * A 2K cluster slab can have at most NCLPBG references. |
2d21ac55 | 1723 | */ |
6d2010ae A |
1724 | VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NCLPBG && |
1725 | sp->sl_chunks == NCLPBG && | |
1726 | sp->sl_len == m_maxsize(MC_BIGCL)); | |
1727 | VERIFY(sp->sl_refcnt < NCLPBG || sp->sl_head == NULL); | |
2d21ac55 | 1728 | } else if (class == MC_BIGCL) { |
2d21ac55 A |
1729 | mbstat.m_bigclfree = (--m_infree(MC_BIGCL)) + |
1730 | m_infree(MC_MBUF_BIGCL); | |
1731 | /* | |
6d2010ae | 1732 | * A 4K cluster slab can have at most 1 reference. |
2d21ac55 A |
1733 | */ |
1734 | VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 && | |
6d2010ae | 1735 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); |
2d21ac55 A |
1736 | } else if (class == MC_16KCL) { |
1737 | mcl_slab_t *nsp; | |
1738 | int k; | |
1739 | ||
1740 | --m_infree(MC_16KCL); | |
1741 | VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 && | |
6d2010ae | 1742 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); |
2d21ac55 | 1743 | /* |
6d2010ae A |
1744 | * Increment 2nd-Nth slab reference, where N is NSLABSP16KB. |
1745 | * A 16KB big cluster takes NSLABSP16KB slabs, each having at | |
1746 | * most 1 reference. | |
2d21ac55 | 1747 | */ |
6d2010ae | 1748 | for (nsp = sp, k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
1749 | nsp = nsp->sl_next; |
1750 | /* Next slab must already be present */ | |
1751 | VERIFY(nsp != NULL); | |
1752 | nsp->sl_refcnt++; | |
1753 | VERIFY(!slab_is_detached(nsp)); | |
1754 | VERIFY(nsp->sl_class == MC_16KCL && | |
1755 | nsp->sl_flags == (SLF_MAPPED | SLF_PARTIAL) && | |
1756 | nsp->sl_refcnt == 1 && nsp->sl_chunks == 0 && | |
1757 | nsp->sl_len == 0 && nsp->sl_base == sp->sl_base && | |
1758 | nsp->sl_head == NULL); | |
1759 | } | |
1760 | } else { | |
6d2010ae | 1761 | VERIFY(class == MC_MBUF); |
2d21ac55 A |
1762 | --m_infree(MC_MBUF); |
1763 | /* | |
1764 | * If auditing is turned on, this check is | |
1765 | * deferred until later in mbuf_slab_audit(). | |
1766 | */ | |
1767 | if (mclaudit == NULL) | |
1768 | _MCHECK((struct mbuf *)buf); | |
1769 | /* | |
1770 | * Since we have incremented the reference count above, | |
6d2010ae | 1771 | * an mbuf slab (formerly a 4KB cluster slab that was cut |
2d21ac55 | 1772 | * up into mbufs) must have a reference count between 1 |
6d2010ae | 1773 | * and NMBPBG at this point. |
2d21ac55 | 1774 | */ |
6d2010ae A |
1775 | VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NMBPBG && |
1776 | sp->sl_chunks == NMBPBG && | |
1777 | sp->sl_len == m_maxsize(MC_BIGCL)); | |
1778 | VERIFY(sp->sl_refcnt < NMBPBG || sp->sl_head == NULL); | |
2d21ac55 A |
1779 | } |
1780 | ||
1781 | /* If empty, remove this slab from the class's freelist */ | |
1782 | if (sp->sl_head == NULL) { | |
6d2010ae A |
1783 | VERIFY(class != MC_MBUF || sp->sl_refcnt == NMBPBG); |
1784 | VERIFY(class != MC_CL || sp->sl_refcnt == NCLPBG); | |
2d21ac55 A |
1785 | slab_remove(sp, class); |
1786 | } | |
1787 | ||
1788 | return (buf); | |
1789 | } | |
1790 | ||
1791 | /* | |
1792 | * Place a slab of object(s) back into a class's slab list. | |
1793 | */ | |
1794 | static void | |
1795 | slab_free(mbuf_class_t class, mcache_obj_t *buf) | |
1796 | { | |
1797 | mcl_slab_t *sp; | |
1798 | ||
1799 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
1800 | ||
1801 | VERIFY(class != MC_16KCL || njcl > 0); | |
1802 | VERIFY(buf->obj_next == NULL); | |
1803 | sp = slab_get(buf); | |
1804 | VERIFY(sp->sl_class == class && slab_inrange(sp, buf) && | |
1805 | (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); | |
1806 | ||
1807 | /* Decrement slab reference */ | |
1808 | sp->sl_refcnt--; | |
1809 | ||
6d2010ae | 1810 | if (class == MC_CL) { |
2d21ac55 A |
1811 | VERIFY(IS_P2ALIGNED(buf, MCLBYTES)); |
1812 | /* | |
6d2010ae A |
1813 | * A slab that has been splitted for 2KB clusters can have |
1814 | * at most 1 outstanding reference at this point. | |
1815 | */ | |
1816 | VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NCLPBG - 1) && | |
1817 | sp->sl_chunks == NCLPBG && | |
1818 | sp->sl_len == m_maxsize(MC_BIGCL)); | |
1819 | VERIFY(sp->sl_refcnt < (NCLPBG - 1) || | |
1820 | (slab_is_detached(sp) && sp->sl_head == NULL)); | |
1821 | } else if (class == MC_BIGCL) { | |
1822 | VERIFY(IS_P2ALIGNED(buf, MCLBYTES)); | |
1823 | /* | |
1824 | * A 4KB cluster slab can have at most 1 reference | |
2d21ac55 A |
1825 | * which must be 0 at this point. |
1826 | */ | |
1827 | VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 && | |
1828 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); | |
1829 | VERIFY(slab_is_detached(sp)); | |
2d21ac55 A |
1830 | } else if (class == MC_16KCL) { |
1831 | mcl_slab_t *nsp; | |
1832 | int k; | |
1833 | /* | |
6d2010ae | 1834 | * A 16KB cluster takes NSLABSP16KB slabs, all must |
2d21ac55 A |
1835 | * now have 0 reference. |
1836 | */ | |
6d2010ae | 1837 | VERIFY(IS_P2ALIGNED(buf, MBIGCLBYTES)); |
2d21ac55 | 1838 | VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 && |
6d2010ae | 1839 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); |
2d21ac55 | 1840 | VERIFY(slab_is_detached(sp)); |
6d2010ae | 1841 | for (nsp = sp, k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
1842 | nsp = nsp->sl_next; |
1843 | /* Next slab must already be present */ | |
1844 | VERIFY(nsp != NULL); | |
1845 | nsp->sl_refcnt--; | |
1846 | VERIFY(slab_is_detached(nsp)); | |
1847 | VERIFY(nsp->sl_class == MC_16KCL && | |
1848 | (nsp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) && | |
1849 | nsp->sl_refcnt == 0 && nsp->sl_chunks == 0 && | |
1850 | nsp->sl_len == 0 && nsp->sl_base == sp->sl_base && | |
1851 | nsp->sl_head == NULL); | |
1852 | } | |
1853 | } else { | |
1854 | /* | |
6d2010ae A |
1855 | * A slab that has been splitted for mbufs has at most NMBPBG |
1856 | * reference counts. Since we have decremented one reference | |
1857 | * above, it must now be between 0 and NMBPBG-1. | |
2d21ac55 | 1858 | */ |
6d2010ae A |
1859 | VERIFY(class == MC_MBUF); |
1860 | VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NMBPBG - 1) && | |
1861 | sp->sl_chunks == NMBPBG && | |
1862 | sp->sl_len == m_maxsize(MC_BIGCL)); | |
1863 | VERIFY(sp->sl_refcnt < (NMBPBG - 1) || | |
2d21ac55 A |
1864 | (slab_is_detached(sp) && sp->sl_head == NULL)); |
1865 | } | |
1866 | ||
1867 | /* | |
1868 | * When auditing is enabled, ensure that the buffer still | |
1869 | * contains the free pattern. Otherwise it got corrupted | |
1870 | * while at the CPU cache layer. | |
1871 | */ | |
1872 | if (mclaudit != NULL) { | |
1873 | mcache_audit_t *mca = mcl_audit_buf2mca(class, buf); | |
6d2010ae A |
1874 | if (mclverify) { |
1875 | mcache_audit_free_verify(mca, buf, 0, m_maxsize(class)); | |
1876 | } | |
2d21ac55 A |
1877 | mca->mca_uflags &= ~MB_SCVALID; |
1878 | } | |
1879 | ||
1880 | if (class == MC_CL) { | |
1881 | mbstat.m_clfree = (++m_infree(MC_CL)) + m_infree(MC_MBUF_CL); | |
6d2010ae | 1882 | buf->obj_next = sp->sl_head; |
2d21ac55 A |
1883 | } else if (class == MC_BIGCL) { |
1884 | mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) + | |
1885 | m_infree(MC_MBUF_BIGCL); | |
1886 | } else if (class == MC_16KCL) { | |
1887 | ++m_infree(MC_16KCL); | |
1888 | } else { | |
1889 | ++m_infree(MC_MBUF); | |
1890 | buf->obj_next = sp->sl_head; | |
1891 | } | |
1892 | sp->sl_head = buf; | |
1893 | ||
6d2010ae A |
1894 | /* |
1895 | * If a slab has been splitted to either one which holds 2KB clusters, | |
1896 | * or one which holds mbufs, turn it back to one which holds a 4KB | |
1897 | * cluster. | |
1898 | */ | |
1899 | if (class == MC_MBUF && sp->sl_refcnt == 0 && | |
1900 | m_total(class) > m_minlimit(class) && | |
1901 | m_total(MC_BIGCL) < m_maxlimit(MC_BIGCL)) { | |
1902 | int i = NMBPBG; | |
1903 | ||
1904 | m_total(MC_BIGCL)++; | |
1905 | mbstat.m_bigclusters = m_total(MC_BIGCL); | |
1906 | m_total(MC_MBUF) -= NMBPBG; | |
2d21ac55 | 1907 | mbstat.m_mbufs = m_total(MC_MBUF); |
6d2010ae A |
1908 | m_infree(MC_MBUF) -= NMBPBG; |
1909 | mtype_stat_add(MT_FREE, -((unsigned)NMBPBG)); | |
1910 | ||
1911 | VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL)); | |
1912 | VERIFY(m_total(MC_MBUF) >= m_minlimit(MC_MBUF)); | |
2d21ac55 A |
1913 | |
1914 | while (i--) { | |
1915 | struct mbuf *m = sp->sl_head; | |
1916 | VERIFY(m != NULL); | |
1917 | sp->sl_head = m->m_next; | |
1918 | m->m_next = NULL; | |
1919 | } | |
1920 | VERIFY(sp->sl_head == NULL); | |
1921 | ||
1922 | /* Remove the slab from the mbuf class's slab list */ | |
1923 | slab_remove(sp, class); | |
1924 | ||
6d2010ae A |
1925 | /* Reinitialize it as a 4KB cluster slab */ |
1926 | slab_init(sp, MC_BIGCL, sp->sl_flags, sp->sl_base, sp->sl_base, | |
2d21ac55 A |
1927 | sp->sl_len, 0, 1); |
1928 | ||
6d2010ae | 1929 | if (mclverify) { |
2d21ac55 | 1930 | mcache_set_pattern(MCACHE_FREE_PATTERN, |
6d2010ae A |
1931 | (caddr_t)sp->sl_head, m_maxsize(MC_BIGCL)); |
1932 | } | |
1933 | mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) + | |
1934 | m_infree(MC_MBUF_BIGCL); | |
2d21ac55 | 1935 | |
6d2010ae A |
1936 | VERIFY(slab_is_detached(sp)); |
1937 | /* And finally switch class */ | |
1938 | class = MC_BIGCL; | |
1939 | } else if (class == MC_CL && sp->sl_refcnt == 0 && | |
1940 | m_total(class) > m_minlimit(class) && | |
1941 | m_total(MC_BIGCL) < m_maxlimit(MC_BIGCL)) { | |
1942 | int i = NCLPBG; | |
1943 | ||
1944 | m_total(MC_BIGCL)++; | |
1945 | mbstat.m_bigclusters = m_total(MC_BIGCL); | |
1946 | m_total(MC_CL) -= NCLPBG; | |
1947 | mbstat.m_clusters = m_total(MC_CL); | |
1948 | m_infree(MC_CL) -= NCLPBG; | |
1949 | VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL)); | |
1950 | VERIFY(m_total(MC_CL) >= m_minlimit(MC_CL)); | |
1951 | ||
1952 | while (i--) { | |
1953 | union mcluster *c = sp->sl_head; | |
1954 | VERIFY(c != NULL); | |
1955 | sp->sl_head = c->mcl_next; | |
1956 | c->mcl_next = NULL; | |
1957 | } | |
1958 | VERIFY(sp->sl_head == NULL); | |
1959 | ||
1960 | /* Remove the slab from the 2KB cluster class's slab list */ | |
1961 | slab_remove(sp, class); | |
1962 | ||
1963 | /* Reinitialize it as a 4KB cluster slab */ | |
1964 | slab_init(sp, MC_BIGCL, sp->sl_flags, sp->sl_base, sp->sl_base, | |
1965 | sp->sl_len, 0, 1); | |
1966 | ||
1967 | if (mclverify) { | |
1968 | mcache_set_pattern(MCACHE_FREE_PATTERN, | |
1969 | (caddr_t)sp->sl_head, m_maxsize(MC_BIGCL)); | |
1970 | } | |
1971 | mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) + | |
1972 | m_infree(MC_MBUF_BIGCL); | |
2d21ac55 A |
1973 | |
1974 | VERIFY(slab_is_detached(sp)); | |
1975 | /* And finally switch class */ | |
6d2010ae | 1976 | class = MC_BIGCL; |
2d21ac55 A |
1977 | } |
1978 | ||
1979 | /* Reinsert the slab to the class's slab list */ | |
1980 | if (slab_is_detached(sp)) | |
1981 | slab_insert(sp, class); | |
1982 | } | |
1983 | ||
1984 | /* | |
1985 | * Common allocator for rudimentary objects called by the CPU cache layer | |
1986 | * during an allocation request whenever there is no available element in the | |
1987 | * bucket layer. It returns one or more elements from the appropriate global | |
1988 | * freelist. If the freelist is empty, it will attempt to populate it and | |
1989 | * retry the allocation. | |
1990 | */ | |
1991 | static unsigned int | |
1992 | mbuf_slab_alloc(void *arg, mcache_obj_t ***plist, unsigned int num, int wait) | |
1993 | { | |
1994 | mbuf_class_t class = (mbuf_class_t)arg; | |
1995 | unsigned int need = num; | |
1996 | mcache_obj_t **list = *plist; | |
1997 | ||
1998 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); | |
1999 | ASSERT(need > 0); | |
2000 | ||
2001 | lck_mtx_lock(mbuf_mlock); | |
2002 | ||
2003 | for (;;) { | |
2004 | if ((*list = slab_alloc(class, wait)) != NULL) { | |
2005 | (*list)->obj_next = NULL; | |
2006 | list = *plist = &(*list)->obj_next; | |
2007 | ||
2008 | if (--need == 0) { | |
2009 | /* | |
2010 | * If the number of elements in freelist has | |
2011 | * dropped below low watermark, asynchronously | |
2012 | * populate the freelist now rather than doing | |
2013 | * it later when we run out of elements. | |
2014 | */ | |
2015 | if (!mbuf_cached_above(class, wait) && | |
2016 | m_infree(class) < m_total(class) >> 5) { | |
2017 | (void) freelist_populate(class, 1, | |
2018 | M_DONTWAIT); | |
2019 | } | |
2020 | break; | |
2021 | } | |
2022 | } else { | |
2023 | VERIFY(m_infree(class) == 0 || class == MC_CL); | |
2024 | ||
2025 | (void) freelist_populate(class, 1, | |
2026 | (wait & MCR_NOSLEEP) ? M_DONTWAIT : M_WAIT); | |
2027 | ||
2028 | if (m_infree(class) > 0) | |
2029 | continue; | |
2030 | ||
2031 | /* Check if there's anything at the cache layer */ | |
2032 | if (mbuf_cached_above(class, wait)) | |
2033 | break; | |
2034 | ||
6d2010ae A |
2035 | /* watchdog checkpoint */ |
2036 | mbuf_watchdog(); | |
2037 | ||
2d21ac55 A |
2038 | /* We have nothing and cannot block; give up */ |
2039 | if (wait & MCR_NOSLEEP) { | |
2040 | if (!(wait & MCR_TRYHARD)) { | |
2041 | m_fail_cnt(class)++; | |
2042 | mbstat.m_drops++; | |
2043 | break; | |
2044 | } | |
2045 | } | |
2046 | ||
2047 | /* | |
2048 | * If the freelist is still empty and the caller is | |
2049 | * willing to be blocked, sleep on the wait channel | |
2050 | * until an element is available. Otherwise, if | |
2051 | * MCR_TRYHARD is set, do our best to satisfy the | |
2052 | * request without having to go to sleep. | |
2053 | */ | |
2054 | if (mbuf_worker_ready && | |
2055 | mbuf_sleep(class, need, wait)) | |
2056 | break; | |
2057 | ||
2058 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2059 | } | |
2060 | } | |
2061 | ||
2062 | m_alloc_cnt(class) += num - need; | |
2063 | lck_mtx_unlock(mbuf_mlock); | |
2064 | ||
2065 | return (num - need); | |
2066 | } | |
2067 | ||
2068 | /* | |
2069 | * Common de-allocator for rudimentary objects called by the CPU cache | |
2070 | * layer when one or more elements need to be returned to the appropriate | |
2071 | * global freelist. | |
2072 | */ | |
2073 | static void | |
2074 | mbuf_slab_free(void *arg, mcache_obj_t *list, __unused int purged) | |
2075 | { | |
2076 | mbuf_class_t class = (mbuf_class_t)arg; | |
2077 | mcache_obj_t *nlist; | |
2078 | unsigned int num = 0; | |
2079 | int w; | |
2080 | ||
2081 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); | |
2082 | ||
2083 | lck_mtx_lock(mbuf_mlock); | |
2084 | ||
2085 | for (;;) { | |
2086 | nlist = list->obj_next; | |
2087 | list->obj_next = NULL; | |
2088 | slab_free(class, list); | |
2089 | ++num; | |
2090 | if ((list = nlist) == NULL) | |
2091 | break; | |
2092 | } | |
2093 | m_free_cnt(class) += num; | |
2094 | ||
2095 | if ((w = mb_waiters) > 0) | |
2096 | mb_waiters = 0; | |
2097 | ||
2098 | lck_mtx_unlock(mbuf_mlock); | |
2099 | ||
2100 | if (w != 0) | |
2101 | wakeup(mb_waitchan); | |
2102 | } | |
2103 | ||
2104 | /* | |
2105 | * Common auditor for rudimentary objects called by the CPU cache layer | |
2106 | * during an allocation or free request. For the former, this is called | |
2107 | * after the objects are obtained from either the bucket or slab layer | |
2108 | * and before they are returned to the caller. For the latter, this is | |
2109 | * called immediately during free and before placing the objects into | |
2110 | * the bucket or slab layer. | |
2111 | */ | |
2112 | static void | |
2113 | mbuf_slab_audit(void *arg, mcache_obj_t *list, boolean_t alloc) | |
2114 | { | |
2115 | mbuf_class_t class = (mbuf_class_t)arg; | |
2116 | mcache_audit_t *mca; | |
2117 | ||
2118 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); | |
2119 | ||
2120 | while (list != NULL) { | |
2121 | lck_mtx_lock(mbuf_mlock); | |
2122 | mca = mcl_audit_buf2mca(class, list); | |
2123 | ||
2124 | /* Do the sanity checks */ | |
2125 | if (class == MC_MBUF) { | |
2126 | mcl_audit_mbuf(mca, list, FALSE, alloc); | |
2127 | ASSERT(mca->mca_uflags & MB_SCVALID); | |
2128 | } else { | |
2129 | mcl_audit_cluster(mca, list, m_maxsize(class), | |
2130 | alloc, TRUE); | |
2131 | ASSERT(!(mca->mca_uflags & MB_SCVALID)); | |
2132 | } | |
2133 | /* Record this transaction */ | |
6d2010ae | 2134 | if (mcltrace) |
39236c6e | 2135 | mcache_buffer_log(mca, list, m_cache(class), &mb_start); |
6d2010ae | 2136 | |
2d21ac55 A |
2137 | if (alloc) |
2138 | mca->mca_uflags |= MB_INUSE; | |
2139 | else | |
2140 | mca->mca_uflags &= ~MB_INUSE; | |
2141 | /* Unpair the object (unconditionally) */ | |
2142 | mca->mca_uptr = NULL; | |
2143 | lck_mtx_unlock(mbuf_mlock); | |
2144 | ||
2145 | list = list->obj_next; | |
2146 | } | |
2147 | } | |
2148 | ||
2149 | /* | |
2150 | * Common notify routine for all caches. It is called by mcache when | |
2151 | * one or more objects get freed. We use this indication to trigger | |
2152 | * the wakeup of any sleeping threads so that they can retry their | |
2153 | * allocation requests. | |
2154 | */ | |
2155 | static void | |
2156 | mbuf_slab_notify(void *arg, u_int32_t reason) | |
2157 | { | |
2158 | mbuf_class_t class = (mbuf_class_t)arg; | |
2159 | int w; | |
2160 | ||
2161 | ASSERT(MBUF_CLASS_VALID(class)); | |
2162 | ||
2163 | if (reason != MCN_RETRYALLOC) | |
2164 | return; | |
2165 | ||
2166 | lck_mtx_lock(mbuf_mlock); | |
2167 | if ((w = mb_waiters) > 0) { | |
2168 | m_notified(class)++; | |
2169 | mb_waiters = 0; | |
2170 | } | |
2171 | lck_mtx_unlock(mbuf_mlock); | |
2172 | ||
2173 | if (w != 0) | |
2174 | wakeup(mb_waitchan); | |
2175 | } | |
2176 | ||
2177 | /* | |
2178 | * Obtain object(s) from the composite class's freelist. | |
2179 | */ | |
2180 | static unsigned int | |
2181 | cslab_alloc(mbuf_class_t class, mcache_obj_t ***plist, unsigned int num) | |
2182 | { | |
2183 | unsigned int need = num; | |
2184 | mcl_slab_t *sp, *clsp, *nsp; | |
2185 | struct mbuf *m; | |
2186 | mcache_obj_t **list = *plist; | |
2187 | void *cl; | |
2188 | ||
2189 | VERIFY(need > 0); | |
2190 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); | |
2191 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2192 | ||
2193 | /* Get what we can from the freelist */ | |
2194 | while ((*list = m_cobjlist(class)) != NULL) { | |
2195 | MRANGE(*list); | |
2196 | ||
2197 | m = (struct mbuf *)*list; | |
2198 | sp = slab_get(m); | |
2199 | cl = m->m_ext.ext_buf; | |
2200 | clsp = slab_get(cl); | |
2201 | VERIFY(m->m_flags == M_EXT && cl != NULL); | |
2202 | VERIFY(MEXT_RFA(m) != NULL && MBUF_IS_COMPOSITE(m)); | |
6d2010ae A |
2203 | |
2204 | if (class == MC_MBUF_CL) { | |
2205 | VERIFY(clsp->sl_refcnt >= 1 && | |
2206 | clsp->sl_refcnt <= NCLPBG); | |
2207 | } else { | |
2208 | VERIFY(clsp->sl_refcnt == 1); | |
2209 | } | |
2210 | ||
2211 | if (class == MC_MBUF_16KCL) { | |
2d21ac55 | 2212 | int k; |
6d2010ae | 2213 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
2214 | nsp = nsp->sl_next; |
2215 | /* Next slab must already be present */ | |
2216 | VERIFY(nsp != NULL); | |
2217 | VERIFY(nsp->sl_refcnt == 1); | |
2218 | } | |
2219 | } | |
2220 | ||
2221 | if ((m_cobjlist(class) = (*list)->obj_next) != NULL && | |
2222 | !MBUF_IN_MAP(m_cobjlist(class))) { | |
2223 | slab_nextptr_panic(sp, m_cobjlist(class)); | |
2224 | /* NOTREACHED */ | |
2225 | } | |
2226 | (*list)->obj_next = NULL; | |
2227 | list = *plist = &(*list)->obj_next; | |
2228 | ||
2229 | if (--need == 0) | |
2230 | break; | |
2231 | } | |
2232 | m_infree(class) -= (num - need); | |
2233 | ||
2234 | return (num - need); | |
2235 | } | |
2236 | ||
2237 | /* | |
2238 | * Place object(s) back into a composite class's freelist. | |
2239 | */ | |
2240 | static unsigned int | |
2241 | cslab_free(mbuf_class_t class, mcache_obj_t *list, int purged) | |
2242 | { | |
2243 | mcache_obj_t *o, *tail; | |
2244 | unsigned int num = 0; | |
2245 | struct mbuf *m, *ms; | |
2246 | mcache_audit_t *mca = NULL; | |
2247 | mcache_obj_t *ref_list = NULL; | |
2248 | mcl_slab_t *clsp, *nsp; | |
2249 | void *cl; | |
6d2010ae | 2250 | mbuf_class_t cl_class; |
2d21ac55 A |
2251 | |
2252 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); | |
2253 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); | |
2254 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2255 | ||
6d2010ae A |
2256 | if (class == MC_MBUF_CL) { |
2257 | cl_class = MC_CL; | |
2258 | } else if (class == MC_MBUF_BIGCL) { | |
2259 | cl_class = MC_BIGCL; | |
2260 | } else { | |
2261 | VERIFY(class == MC_MBUF_16KCL); | |
2262 | cl_class = MC_16KCL; | |
2263 | } | |
2264 | ||
2d21ac55 A |
2265 | o = tail = list; |
2266 | ||
2267 | while ((m = ms = (struct mbuf *)o) != NULL) { | |
2268 | mcache_obj_t *rfa, *nexto = o->obj_next; | |
2269 | ||
2270 | /* Do the mbuf sanity checks */ | |
2271 | if (mclaudit != NULL) { | |
2272 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); | |
6d2010ae A |
2273 | if (mclverify) { |
2274 | mcache_audit_free_verify(mca, m, 0, | |
2275 | m_maxsize(MC_MBUF)); | |
2276 | } | |
39236c6e | 2277 | ms = MCA_SAVED_MBUF_PTR(mca); |
2d21ac55 A |
2278 | } |
2279 | ||
2280 | /* Do the cluster sanity checks */ | |
2281 | cl = ms->m_ext.ext_buf; | |
2282 | clsp = slab_get(cl); | |
6d2010ae A |
2283 | if (mclverify) { |
2284 | size_t size = m_maxsize(cl_class); | |
2285 | mcache_audit_free_verify(mcl_audit_buf2mca(cl_class, | |
2d21ac55 A |
2286 | (mcache_obj_t *)cl), cl, 0, size); |
2287 | } | |
2288 | VERIFY(ms->m_type == MT_FREE); | |
2289 | VERIFY(ms->m_flags == M_EXT); | |
2290 | VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms)); | |
6d2010ae A |
2291 | if (cl_class == MC_CL) { |
2292 | VERIFY(clsp->sl_refcnt >= 1 && | |
2293 | clsp->sl_refcnt <= NCLPBG); | |
2294 | } else { | |
2295 | VERIFY(clsp->sl_refcnt == 1); | |
2296 | } | |
2297 | if (cl_class == MC_16KCL) { | |
2d21ac55 | 2298 | int k; |
6d2010ae | 2299 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
2300 | nsp = nsp->sl_next; |
2301 | /* Next slab must already be present */ | |
2302 | VERIFY(nsp != NULL); | |
2303 | VERIFY(nsp->sl_refcnt == 1); | |
2304 | } | |
2305 | } | |
2306 | ||
2307 | /* | |
2308 | * If we're asked to purge, restore the actual mbuf using | |
2309 | * contents of the shadow structure (if auditing is enabled) | |
2310 | * and clear EXTF_COMPOSITE flag from the mbuf, as we are | |
2311 | * about to free it and the attached cluster into their caches. | |
2312 | */ | |
2313 | if (purged) { | |
2314 | /* Restore constructed mbuf fields */ | |
2315 | if (mclaudit != NULL) | |
2316 | mcl_audit_restore_mbuf(m, mca, TRUE); | |
2317 | ||
2318 | MEXT_REF(m) = 0; | |
2319 | MEXT_FLAGS(m) = 0; | |
2320 | ||
316670eb | 2321 | rfa = (mcache_obj_t *)(void *)MEXT_RFA(m); |
2d21ac55 A |
2322 | rfa->obj_next = ref_list; |
2323 | ref_list = rfa; | |
2324 | MEXT_RFA(m) = NULL; | |
2325 | ||
2326 | m->m_type = MT_FREE; | |
2327 | m->m_flags = m->m_len = 0; | |
2328 | m->m_next = m->m_nextpkt = NULL; | |
2329 | ||
2330 | /* Save mbuf fields and make auditing happy */ | |
2331 | if (mclaudit != NULL) | |
2332 | mcl_audit_mbuf(mca, o, FALSE, FALSE); | |
2333 | ||
2334 | VERIFY(m_total(class) > 0); | |
2335 | m_total(class)--; | |
2336 | ||
2337 | /* Free the mbuf */ | |
2338 | o->obj_next = NULL; | |
2339 | slab_free(MC_MBUF, o); | |
2340 | ||
2341 | /* And free the cluster */ | |
2342 | ((mcache_obj_t *)cl)->obj_next = NULL; | |
2343 | if (class == MC_MBUF_CL) | |
2344 | slab_free(MC_CL, cl); | |
2345 | else if (class == MC_MBUF_BIGCL) | |
2346 | slab_free(MC_BIGCL, cl); | |
2347 | else | |
2348 | slab_free(MC_16KCL, cl); | |
2349 | } | |
2350 | ||
2351 | ++num; | |
2352 | tail = o; | |
2353 | o = nexto; | |
2354 | } | |
2355 | ||
2356 | if (!purged) { | |
2357 | tail->obj_next = m_cobjlist(class); | |
2358 | m_cobjlist(class) = list; | |
2359 | m_infree(class) += num; | |
2360 | } else if (ref_list != NULL) { | |
2361 | mcache_free_ext(ref_cache, ref_list); | |
2362 | } | |
2363 | ||
2364 | return (num); | |
2365 | } | |
2366 | ||
2367 | /* | |
2368 | * Common allocator for composite objects called by the CPU cache layer | |
2369 | * during an allocation request whenever there is no available element in | |
2370 | * the bucket layer. It returns one or more composite elements from the | |
2371 | * appropriate global freelist. If the freelist is empty, it will attempt | |
2372 | * to obtain the rudimentary objects from their caches and construct them | |
2373 | * into composite mbuf + cluster objects. | |
2374 | */ | |
2375 | static unsigned int | |
2376 | mbuf_cslab_alloc(void *arg, mcache_obj_t ***plist, unsigned int needed, | |
2377 | int wait) | |
2378 | { | |
2379 | mbuf_class_t class = (mbuf_class_t)arg; | |
6d2010ae | 2380 | mbuf_class_t cl_class = 0; |
2d21ac55 A |
2381 | unsigned int num = 0, cnum = 0, want = needed; |
2382 | mcache_obj_t *ref_list = NULL; | |
2383 | mcache_obj_t *mp_list = NULL; | |
2384 | mcache_obj_t *clp_list = NULL; | |
2385 | mcache_obj_t **list; | |
2386 | struct ext_ref *rfa; | |
2387 | struct mbuf *m; | |
2388 | void *cl; | |
2389 | ||
2390 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); | |
2391 | ASSERT(needed > 0); | |
2392 | ||
2393 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); | |
2394 | ||
2395 | /* There should not be any slab for this class */ | |
2396 | VERIFY(m_slab_cnt(class) == 0 && | |
2397 | m_slablist(class).tqh_first == NULL && | |
2398 | m_slablist(class).tqh_last == NULL); | |
2399 | ||
2400 | lck_mtx_lock(mbuf_mlock); | |
2401 | ||
2402 | /* Try using the freelist first */ | |
2403 | num = cslab_alloc(class, plist, needed); | |
2404 | list = *plist; | |
2405 | if (num == needed) { | |
2406 | m_alloc_cnt(class) += num; | |
2407 | lck_mtx_unlock(mbuf_mlock); | |
2408 | return (needed); | |
2409 | } | |
2410 | ||
2411 | lck_mtx_unlock(mbuf_mlock); | |
2412 | ||
2413 | /* | |
2414 | * We could not satisfy the request using the freelist alone; | |
2415 | * allocate from the appropriate rudimentary caches and use | |
2416 | * whatever we can get to construct the composite objects. | |
2417 | */ | |
2418 | needed -= num; | |
2419 | ||
2420 | /* | |
2421 | * Mark these allocation requests as coming from a composite cache. | |
2422 | * Also, if the caller is willing to be blocked, mark the request | |
2423 | * with MCR_FAILOK such that we don't end up sleeping at the mbuf | |
2424 | * slab layer waiting for the individual object when one or more | |
2425 | * of the already-constructed composite objects are available. | |
2426 | */ | |
2427 | wait |= MCR_COMP; | |
2428 | if (!(wait & MCR_NOSLEEP)) | |
2429 | wait |= MCR_FAILOK; | |
2430 | ||
6d2010ae | 2431 | /* allocate mbufs */ |
2d21ac55 A |
2432 | needed = mcache_alloc_ext(m_cache(MC_MBUF), &mp_list, needed, wait); |
2433 | if (needed == 0) { | |
2434 | ASSERT(mp_list == NULL); | |
2435 | goto fail; | |
2436 | } | |
6d2010ae A |
2437 | |
2438 | /* allocate clusters */ | |
2439 | if (class == MC_MBUF_CL) { | |
2440 | cl_class = MC_CL; | |
2441 | } else if (class == MC_MBUF_BIGCL) { | |
2442 | cl_class = MC_BIGCL; | |
2443 | } else { | |
2444 | VERIFY(class == MC_MBUF_16KCL); | |
2445 | cl_class = MC_16KCL; | |
2446 | } | |
2447 | needed = mcache_alloc_ext(m_cache(cl_class), &clp_list, needed, wait); | |
2d21ac55 A |
2448 | if (needed == 0) { |
2449 | ASSERT(clp_list == NULL); | |
2450 | goto fail; | |
2451 | } | |
6d2010ae | 2452 | |
2d21ac55 A |
2453 | needed = mcache_alloc_ext(ref_cache, &ref_list, needed, wait); |
2454 | if (needed == 0) { | |
2455 | ASSERT(ref_list == NULL); | |
2456 | goto fail; | |
2457 | } | |
2458 | ||
2459 | /* | |
2460 | * By this time "needed" is MIN(mbuf, cluster, ref). Any left | |
2461 | * overs will get freed accordingly before we return to caller. | |
2462 | */ | |
2463 | for (cnum = 0; cnum < needed; cnum++) { | |
2464 | struct mbuf *ms; | |
2465 | ||
2466 | m = ms = (struct mbuf *)mp_list; | |
2467 | mp_list = mp_list->obj_next; | |
2468 | ||
2469 | cl = clp_list; | |
2470 | clp_list = clp_list->obj_next; | |
2471 | ((mcache_obj_t *)cl)->obj_next = NULL; | |
2472 | ||
2473 | rfa = (struct ext_ref *)ref_list; | |
2474 | ref_list = ref_list->obj_next; | |
316670eb | 2475 | ((mcache_obj_t *)(void *)rfa)->obj_next = NULL; |
2d21ac55 A |
2476 | |
2477 | /* | |
2478 | * If auditing is enabled, construct the shadow mbuf | |
2479 | * in the audit structure instead of in the actual one. | |
2480 | * mbuf_cslab_audit() will take care of restoring the | |
2481 | * contents after the integrity check. | |
2482 | */ | |
2483 | if (mclaudit != NULL) { | |
2484 | mcache_audit_t *mca, *cl_mca; | |
2d21ac55 A |
2485 | |
2486 | lck_mtx_lock(mbuf_mlock); | |
2487 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); | |
39236c6e | 2488 | ms = MCA_SAVED_MBUF_PTR(mca); |
2d21ac55 A |
2489 | cl_mca = mcl_audit_buf2mca(MC_CL, (mcache_obj_t *)cl); |
2490 | ||
2491 | /* | |
2492 | * Pair them up. Note that this is done at the time | |
2493 | * the mbuf+cluster objects are constructed. This | |
2494 | * information should be treated as "best effort" | |
2495 | * debugging hint since more than one mbufs can refer | |
2496 | * to a cluster. In that case, the cluster might not | |
2497 | * be freed along with the mbuf it was paired with. | |
2498 | */ | |
2499 | mca->mca_uptr = cl_mca; | |
2500 | cl_mca->mca_uptr = mca; | |
2501 | ||
2502 | ASSERT(mca->mca_uflags & MB_SCVALID); | |
2503 | ASSERT(!(cl_mca->mca_uflags & MB_SCVALID)); | |
2504 | lck_mtx_unlock(mbuf_mlock); | |
2505 | ||
2506 | /* Technically, they are in the freelist */ | |
6d2010ae A |
2507 | if (mclverify) { |
2508 | size_t size; | |
2509 | ||
2510 | mcache_set_pattern(MCACHE_FREE_PATTERN, m, | |
2511 | m_maxsize(MC_MBUF)); | |
2512 | ||
2513 | if (class == MC_MBUF_CL) | |
2514 | size = m_maxsize(MC_CL); | |
2515 | else if (class == MC_MBUF_BIGCL) | |
2516 | size = m_maxsize(MC_BIGCL); | |
2517 | else | |
2518 | size = m_maxsize(MC_16KCL); | |
2519 | ||
2520 | mcache_set_pattern(MCACHE_FREE_PATTERN, cl, | |
2521 | size); | |
2522 | } | |
2d21ac55 A |
2523 | } |
2524 | ||
2525 | MBUF_INIT(ms, 0, MT_FREE); | |
2526 | if (class == MC_MBUF_16KCL) { | |
2527 | MBUF_16KCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); | |
2528 | } else if (class == MC_MBUF_BIGCL) { | |
2529 | MBUF_BIGCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); | |
2530 | } else { | |
2531 | MBUF_CL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); | |
2532 | } | |
2533 | VERIFY(ms->m_flags == M_EXT); | |
2534 | VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms)); | |
2535 | ||
2536 | *list = (mcache_obj_t *)m; | |
2537 | (*list)->obj_next = NULL; | |
2538 | list = *plist = &(*list)->obj_next; | |
2539 | } | |
2540 | ||
2541 | fail: | |
2542 | /* | |
2543 | * Free up what's left of the above. | |
2544 | */ | |
2545 | if (mp_list != NULL) | |
2546 | mcache_free_ext(m_cache(MC_MBUF), mp_list); | |
2547 | if (clp_list != NULL) | |
6d2010ae | 2548 | mcache_free_ext(m_cache(cl_class), clp_list); |
2d21ac55 A |
2549 | if (ref_list != NULL) |
2550 | mcache_free_ext(ref_cache, ref_list); | |
2551 | ||
2552 | lck_mtx_lock(mbuf_mlock); | |
2553 | if (num > 0 || cnum > 0) { | |
2554 | m_total(class) += cnum; | |
2555 | VERIFY(m_total(class) <= m_maxlimit(class)); | |
2556 | m_alloc_cnt(class) += num + cnum; | |
2557 | } | |
2558 | if ((num + cnum) < want) | |
2559 | m_fail_cnt(class) += (want - (num + cnum)); | |
2560 | lck_mtx_unlock(mbuf_mlock); | |
2561 | ||
2562 | return (num + cnum); | |
2563 | } | |
2564 | ||
2565 | /* | |
2566 | * Common de-allocator for composite objects called by the CPU cache | |
2567 | * layer when one or more elements need to be returned to the appropriate | |
2568 | * global freelist. | |
2569 | */ | |
2570 | static void | |
2571 | mbuf_cslab_free(void *arg, mcache_obj_t *list, int purged) | |
2572 | { | |
2573 | mbuf_class_t class = (mbuf_class_t)arg; | |
2574 | unsigned int num; | |
2575 | int w; | |
2576 | ||
2577 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); | |
2578 | ||
2579 | lck_mtx_lock(mbuf_mlock); | |
2580 | ||
2581 | num = cslab_free(class, list, purged); | |
2582 | m_free_cnt(class) += num; | |
2583 | ||
2584 | if ((w = mb_waiters) > 0) | |
2585 | mb_waiters = 0; | |
2586 | ||
2587 | lck_mtx_unlock(mbuf_mlock); | |
2588 | ||
2589 | if (w != 0) | |
2590 | wakeup(mb_waitchan); | |
2591 | } | |
2592 | ||
2593 | /* | |
2594 | * Common auditor for composite objects called by the CPU cache layer | |
2595 | * during an allocation or free request. For the former, this is called | |
2596 | * after the objects are obtained from either the bucket or slab layer | |
2597 | * and before they are returned to the caller. For the latter, this is | |
2598 | * called immediately during free and before placing the objects into | |
2599 | * the bucket or slab layer. | |
2600 | */ | |
2601 | static void | |
2602 | mbuf_cslab_audit(void *arg, mcache_obj_t *list, boolean_t alloc) | |
2603 | { | |
2604 | mbuf_class_t class = (mbuf_class_t)arg; | |
2605 | mcache_audit_t *mca; | |
2606 | struct mbuf *m, *ms; | |
2607 | mcl_slab_t *clsp, *nsp; | |
2608 | size_t size; | |
2609 | void *cl; | |
2610 | ||
2611 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); | |
2612 | ||
2613 | while ((m = ms = (struct mbuf *)list) != NULL) { | |
2614 | lck_mtx_lock(mbuf_mlock); | |
2615 | /* Do the mbuf sanity checks and record its transaction */ | |
2616 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); | |
2617 | mcl_audit_mbuf(mca, m, TRUE, alloc); | |
6d2010ae | 2618 | if (mcltrace) |
39236c6e | 2619 | mcache_buffer_log(mca, m, m_cache(class), &mb_start); |
6d2010ae | 2620 | |
2d21ac55 A |
2621 | if (alloc) |
2622 | mca->mca_uflags |= MB_COMP_INUSE; | |
2623 | else | |
2624 | mca->mca_uflags &= ~MB_COMP_INUSE; | |
2625 | ||
2626 | /* | |
2627 | * Use the shadow mbuf in the audit structure if we are | |
2628 | * freeing, since the contents of the actual mbuf has been | |
2629 | * pattern-filled by the above call to mcl_audit_mbuf(). | |
2630 | */ | |
6d2010ae | 2631 | if (!alloc && mclverify) |
39236c6e | 2632 | ms = MCA_SAVED_MBUF_PTR(mca); |
2d21ac55 A |
2633 | |
2634 | /* Do the cluster sanity checks and record its transaction */ | |
2635 | cl = ms->m_ext.ext_buf; | |
2636 | clsp = slab_get(cl); | |
2637 | VERIFY(ms->m_flags == M_EXT && cl != NULL); | |
2638 | VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms)); | |
6d2010ae A |
2639 | if (class == MC_MBUF_CL) |
2640 | VERIFY(clsp->sl_refcnt >= 1 && | |
2641 | clsp->sl_refcnt <= NCLPBG); | |
2642 | else | |
2643 | VERIFY(clsp->sl_refcnt == 1); | |
2644 | ||
2645 | if (class == MC_MBUF_16KCL) { | |
2d21ac55 | 2646 | int k; |
6d2010ae | 2647 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
2648 | nsp = nsp->sl_next; |
2649 | /* Next slab must already be present */ | |
2650 | VERIFY(nsp != NULL); | |
2651 | VERIFY(nsp->sl_refcnt == 1); | |
2652 | } | |
2653 | } | |
2654 | ||
2655 | mca = mcl_audit_buf2mca(MC_CL, cl); | |
2656 | if (class == MC_MBUF_CL) | |
2657 | size = m_maxsize(MC_CL); | |
2658 | else if (class == MC_MBUF_BIGCL) | |
2659 | size = m_maxsize(MC_BIGCL); | |
2660 | else | |
2661 | size = m_maxsize(MC_16KCL); | |
2662 | mcl_audit_cluster(mca, cl, size, alloc, FALSE); | |
6d2010ae | 2663 | if (mcltrace) |
39236c6e | 2664 | mcache_buffer_log(mca, cl, m_cache(class), &mb_start); |
6d2010ae | 2665 | |
2d21ac55 A |
2666 | if (alloc) |
2667 | mca->mca_uflags |= MB_COMP_INUSE; | |
2668 | else | |
2669 | mca->mca_uflags &= ~MB_COMP_INUSE; | |
2670 | lck_mtx_unlock(mbuf_mlock); | |
2671 | ||
2672 | list = list->obj_next; | |
2673 | } | |
2674 | } | |
2675 | ||
2676 | /* | |
2677 | * Allocate some number of mbuf clusters and place on cluster freelist. | |
2678 | */ | |
2679 | static int | |
2680 | m_clalloc(const u_int32_t num, const int wait, const u_int32_t bufsize) | |
2681 | { | |
2682 | int i; | |
2683 | vm_size_t size = 0; | |
b0d623f7 | 2684 | int numpages = 0, large_buffer = (bufsize == m_maxsize(MC_16KCL)); |
2d21ac55 A |
2685 | vm_offset_t page = 0; |
2686 | mcache_audit_t *mca_list = NULL; | |
2687 | mcache_obj_t *con_list = NULL; | |
2688 | mcl_slab_t *sp; | |
2689 | ||
6d2010ae A |
2690 | VERIFY(bufsize == m_maxsize(MC_BIGCL) || |
2691 | bufsize == m_maxsize(MC_16KCL)); | |
2d21ac55 A |
2692 | |
2693 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2694 | ||
2695 | /* | |
2696 | * Multiple threads may attempt to populate the cluster map one | |
2697 | * after another. Since we drop the lock below prior to acquiring | |
2698 | * the physical page(s), our view of the cluster map may no longer | |
2699 | * be accurate, and we could end up over-committing the pages beyond | |
2700 | * the maximum allowed for each class. To prevent it, this entire | |
2701 | * operation (including the page mapping) is serialized. | |
2702 | */ | |
2703 | while (mb_clalloc_busy) { | |
2704 | mb_clalloc_waiters++; | |
2705 | (void) msleep(mb_clalloc_waitchan, mbuf_mlock, | |
2706 | (PZERO-1), "m_clalloc", NULL); | |
2707 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2708 | } | |
2709 | ||
2710 | /* We are busy now; tell everyone else to go away */ | |
2711 | mb_clalloc_busy = TRUE; | |
2712 | ||
2713 | /* | |
2714 | * Honor the caller's wish to block or not block. We have a way | |
2715 | * to grow the pool asynchronously using the mbuf worker thread. | |
2716 | */ | |
2717 | i = m_howmany(num, bufsize); | |
2718 | if (i == 0 || (wait & M_DONTWAIT)) | |
2719 | goto out; | |
2720 | ||
2721 | lck_mtx_unlock(mbuf_mlock); | |
2722 | ||
b0d623f7 A |
2723 | size = round_page(i * bufsize); |
2724 | page = kmem_mb_alloc(mb_map, size, large_buffer); | |
2725 | ||
2726 | /* | |
6d2010ae | 2727 | * If we did ask for "n" 16KB physically contiguous chunks |
b0d623f7 A |
2728 | * and didn't get them, then please try again without this |
2729 | * restriction. | |
2730 | */ | |
2731 | if (large_buffer && page == 0) | |
2732 | page = kmem_mb_alloc(mb_map, size, 0); | |
2d21ac55 A |
2733 | |
2734 | if (page == 0) { | |
6d2010ae A |
2735 | if (bufsize == m_maxsize(MC_BIGCL)) { |
2736 | /* Try for 1 page if failed, only 4KB request */ | |
2d21ac55 | 2737 | size = NBPG; |
b0d623f7 | 2738 | page = kmem_mb_alloc(mb_map, size, 0); |
2d21ac55 A |
2739 | } |
2740 | ||
2741 | if (page == 0) { | |
2742 | lck_mtx_lock(mbuf_mlock); | |
2743 | goto out; | |
2744 | } | |
2745 | } | |
2746 | ||
2747 | VERIFY(IS_P2ALIGNED(page, NBPG)); | |
2748 | numpages = size / NBPG; | |
2749 | ||
2750 | /* If auditing is enabled, allocate the audit structures now */ | |
2751 | if (mclaudit != NULL) { | |
2752 | int needed; | |
2753 | ||
2754 | /* | |
2755 | * Yes, I realize this is a waste of memory for clusters | |
2756 | * that never get transformed into mbufs, as we may end | |
6d2010ae | 2757 | * up with NMBPBG-1 unused audit structures per cluster. |
2d21ac55 A |
2758 | * But doing so tremendously simplifies the allocation |
2759 | * strategy, since at this point we are not holding the | |
6d2010ae | 2760 | * mbuf lock and the caller is okay to be blocked. |
2d21ac55 | 2761 | */ |
6d2010ae A |
2762 | if (bufsize == m_maxsize(MC_BIGCL)) { |
2763 | needed = numpages * NMBPBG; | |
2d21ac55 A |
2764 | |
2765 | i = mcache_alloc_ext(mcl_audit_con_cache, | |
2766 | &con_list, needed, MCR_SLEEP); | |
2767 | ||
2768 | VERIFY(con_list != NULL && i == needed); | |
2d21ac55 | 2769 | } else { |
6d2010ae | 2770 | needed = numpages / NSLABSP16KB; |
2d21ac55 A |
2771 | } |
2772 | ||
2773 | i = mcache_alloc_ext(mcache_audit_cache, | |
2774 | (mcache_obj_t **)&mca_list, needed, MCR_SLEEP); | |
2775 | ||
2776 | VERIFY(mca_list != NULL && i == needed); | |
2777 | } | |
2778 | ||
2779 | lck_mtx_lock(mbuf_mlock); | |
2780 | ||
2781 | for (i = 0; i < numpages; i++, page += NBPG) { | |
2782 | ppnum_t offset = ((char *)page - (char *)mbutl) / NBPG; | |
99c3a104 | 2783 | ppnum_t new_page = pmap_find_phys(kernel_pmap, page); |
fe8ab488 | 2784 | mbuf_class_t class = MC_BIGCL; |
2d21ac55 A |
2785 | |
2786 | /* | |
39236c6e A |
2787 | * If there is a mapper the appropriate I/O page is returned; |
2788 | * zero out the page to discard its past contents to prevent | |
2789 | * exposing leftover kernel memory. | |
2d21ac55 | 2790 | */ |
b0d623f7 | 2791 | VERIFY(offset < mcl_pages); |
39236c6e A |
2792 | if (mcl_paddr_base != 0) { |
2793 | bzero((void *)(uintptr_t) page, page_size); | |
2794 | new_page = IOMapperInsertPage(mcl_paddr_base, | |
2795 | offset, new_page); | |
99c3a104 | 2796 | } |
39236c6e | 2797 | mcl_paddr[offset] = new_page; |
2d21ac55 A |
2798 | |
2799 | /* Pattern-fill this fresh page */ | |
6d2010ae | 2800 | if (mclverify) { |
2d21ac55 A |
2801 | mcache_set_pattern(MCACHE_FREE_PATTERN, |
2802 | (caddr_t)page, NBPG); | |
6d2010ae A |
2803 | } |
2804 | if (bufsize == m_maxsize(MC_BIGCL)) { | |
2d21ac55 | 2805 | union mbigcluster *mbc = (union mbigcluster *)page; |
2d21ac55 A |
2806 | |
2807 | /* One for the entire page */ | |
2808 | sp = slab_get(mbc); | |
6d2010ae A |
2809 | if (mclaudit != NULL) { |
2810 | mcl_audit_init(mbc, &mca_list, &con_list, | |
2811 | AUDIT_CONTENTS_SIZE, NMBPBG); | |
2812 | } | |
2d21ac55 A |
2813 | VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0); |
2814 | slab_init(sp, MC_BIGCL, SLF_MAPPED, | |
2815 | mbc, mbc, bufsize, 0, 1); | |
2816 | ||
2d21ac55 A |
2817 | /* Insert this slab */ |
2818 | slab_insert(sp, MC_BIGCL); | |
2819 | ||
2820 | /* Update stats now since slab_get() drops the lock */ | |
2821 | mbstat.m_bigclfree = ++m_infree(MC_BIGCL) + | |
2822 | m_infree(MC_MBUF_BIGCL); | |
2823 | mbstat.m_bigclusters = ++m_total(MC_BIGCL); | |
2824 | VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL)); | |
fe8ab488 | 2825 | class = MC_BIGCL; |
6d2010ae | 2826 | } else if ((i % NSLABSP16KB) == 0) { |
2d21ac55 A |
2827 | union m16kcluster *m16kcl = (union m16kcluster *)page; |
2828 | mcl_slab_t *nsp; | |
2829 | int k; | |
2830 | ||
2831 | VERIFY(njcl > 0); | |
2832 | /* One for the entire 16KB */ | |
2833 | sp = slab_get(m16kcl); | |
2834 | if (mclaudit != NULL) | |
2835 | mcl_audit_init(m16kcl, &mca_list, NULL, 0, 1); | |
2836 | ||
2837 | VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0); | |
2838 | slab_init(sp, MC_16KCL, SLF_MAPPED, | |
2839 | m16kcl, m16kcl, bufsize, 0, 1); | |
2840 | ||
6d2010ae A |
2841 | /* |
2842 | * 2nd-Nth page's slab is part of the first one, | |
2843 | * where N is NSLABSP16KB. | |
2844 | */ | |
2845 | for (k = 1; k < NSLABSP16KB; k++) { | |
2846 | nsp = slab_get(((union mbigcluster *)page) + k); | |
2d21ac55 A |
2847 | VERIFY(nsp->sl_refcnt == 0 && |
2848 | nsp->sl_flags == 0); | |
2849 | slab_init(nsp, MC_16KCL, | |
2850 | SLF_MAPPED | SLF_PARTIAL, | |
2851 | m16kcl, NULL, 0, 0, 0); | |
2852 | } | |
2853 | ||
2854 | /* Insert this slab */ | |
2855 | slab_insert(sp, MC_16KCL); | |
2856 | ||
2857 | /* Update stats now since slab_get() drops the lock */ | |
2858 | m_infree(MC_16KCL)++; | |
2859 | m_total(MC_16KCL)++; | |
2860 | VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL)); | |
fe8ab488 | 2861 | class = MC_16KCL; |
2d21ac55 | 2862 | } |
fe8ab488 A |
2863 | if (!mb_peak_newreport && mbuf_report_usage(class)) |
2864 | mb_peak_newreport = TRUE; | |
2d21ac55 A |
2865 | } |
2866 | VERIFY(mca_list == NULL && con_list == NULL); | |
2867 | ||
2868 | /* We're done; let others enter */ | |
2869 | mb_clalloc_busy = FALSE; | |
2870 | if (mb_clalloc_waiters > 0) { | |
2871 | mb_clalloc_waiters = 0; | |
2872 | wakeup(mb_clalloc_waitchan); | |
2873 | } | |
2874 | ||
6d2010ae | 2875 | if (bufsize == m_maxsize(MC_BIGCL)) |
2d21ac55 A |
2876 | return (numpages); |
2877 | ||
2878 | VERIFY(bufsize == m_maxsize(MC_16KCL)); | |
6d2010ae | 2879 | return (numpages / NSLABSP16KB); |
2d21ac55 A |
2880 | |
2881 | out: | |
2882 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2883 | ||
2884 | /* We're done; let others enter */ | |
2885 | mb_clalloc_busy = FALSE; | |
2886 | if (mb_clalloc_waiters > 0) { | |
2887 | mb_clalloc_waiters = 0; | |
2888 | wakeup(mb_clalloc_waitchan); | |
2889 | } | |
2890 | ||
2891 | /* | |
2892 | * When non-blocking we kick a thread if we have to grow the | |
2893 | * pool or if the number of free clusters is less than requested. | |
2894 | */ | |
6d2010ae | 2895 | if (bufsize == m_maxsize(MC_BIGCL)) { |
2d21ac55 A |
2896 | if (i > 0) { |
2897 | /* | |
2898 | * Remember total number of 4KB clusters needed | |
2899 | * at this time. | |
2900 | */ | |
2901 | i += m_total(MC_BIGCL); | |
2902 | if (i > mbuf_expand_big) { | |
2903 | mbuf_expand_big = i; | |
2904 | if (mbuf_worker_ready) | |
2905 | wakeup((caddr_t)&mbuf_worker_run); | |
2906 | } | |
2907 | } | |
2908 | ||
2909 | if (m_infree(MC_BIGCL) >= num) | |
2910 | return (1); | |
2911 | } else { | |
2912 | if (i > 0) { | |
2913 | /* | |
2914 | * Remember total number of 16KB clusters needed | |
2915 | * at this time. | |
2916 | */ | |
2917 | i += m_total(MC_16KCL); | |
2918 | if (i > mbuf_expand_16k) { | |
2919 | mbuf_expand_16k = i; | |
2920 | if (mbuf_worker_ready) | |
2921 | wakeup((caddr_t)&mbuf_worker_run); | |
2922 | } | |
2923 | } | |
2924 | ||
2925 | if (m_infree(MC_16KCL) >= num) | |
2926 | return (1); | |
2927 | } | |
2928 | return (0); | |
2929 | } | |
2930 | ||
2931 | /* | |
2932 | * Populate the global freelist of the corresponding buffer class. | |
2933 | */ | |
2934 | static int | |
2935 | freelist_populate(mbuf_class_t class, unsigned int num, int wait) | |
2936 | { | |
2937 | mcache_obj_t *o = NULL; | |
6d2010ae | 2938 | int i, numpages = 0, count; |
2d21ac55 A |
2939 | |
2940 | VERIFY(class == MC_MBUF || class == MC_CL || class == MC_BIGCL || | |
2941 | class == MC_16KCL); | |
2942 | ||
2d21ac55 A |
2943 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
2944 | ||
2945 | switch (class) { | |
2946 | case MC_MBUF: | |
2947 | case MC_CL: | |
6d2010ae A |
2948 | case MC_BIGCL: |
2949 | numpages = (num * m_size(class) + NBPG - 1) / NBPG; | |
2950 | i = m_clalloc(numpages, wait, m_maxsize(MC_BIGCL)); | |
2d21ac55 | 2951 | |
6d2010ae A |
2952 | /* Respect the 4KB clusters minimum limit */ |
2953 | if (m_total(MC_BIGCL) == m_maxlimit(MC_BIGCL) && | |
2954 | m_infree(MC_BIGCL) <= m_minlimit(MC_BIGCL)) { | |
2955 | if (class != MC_BIGCL || (wait & MCR_COMP)) | |
2d21ac55 A |
2956 | return (0); |
2957 | } | |
6d2010ae | 2958 | if (class == MC_BIGCL) |
2d21ac55 A |
2959 | return (i != 0); |
2960 | break; | |
2961 | ||
2d21ac55 A |
2962 | case MC_16KCL: |
2963 | return (m_clalloc(num, wait, m_maxsize(class)) != 0); | |
2964 | /* NOTREACHED */ | |
2965 | ||
2966 | default: | |
2967 | VERIFY(0); | |
2968 | /* NOTREACHED */ | |
2969 | } | |
2970 | ||
6d2010ae A |
2971 | VERIFY(class == MC_MBUF || class == MC_CL); |
2972 | ||
2973 | /* how many objects will we cut the page into? */ | |
2974 | int numobj = (class == MC_MBUF ? NMBPBG : NCLPBG); | |
2975 | ||
2976 | for (count = 0; count < numpages; count++) { | |
2977 | ||
2978 | /* respect totals, minlimit, maxlimit */ | |
2979 | if (m_total(MC_BIGCL) <= m_minlimit(MC_BIGCL) || | |
2980 | m_total(class) >= m_maxlimit(class)) | |
2981 | break; | |
2982 | ||
2983 | if ((o = slab_alloc(MC_BIGCL, wait)) == NULL) | |
2984 | break; | |
2985 | ||
2d21ac55 | 2986 | struct mbuf *m = (struct mbuf *)o; |
6d2010ae | 2987 | union mcluster *c = (union mcluster *)o; |
2d21ac55 | 2988 | mcl_slab_t *sp = slab_get(o); |
6d2010ae | 2989 | mcache_audit_t *mca = NULL; |
2d21ac55 A |
2990 | |
2991 | VERIFY(slab_is_detached(sp) && | |
2992 | (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); | |
2993 | ||
6d2010ae A |
2994 | /* |
2995 | * Make sure that the cluster is unmolested | |
2996 | * while in freelist | |
2997 | */ | |
2998 | if (mclverify) { | |
2999 | mca = mcl_audit_buf2mca(MC_BIGCL, o); | |
3000 | mcache_audit_free_verify(mca, o, 0, | |
3001 | m_maxsize(MC_BIGCL)); | |
2d21ac55 A |
3002 | } |
3003 | ||
6d2010ae A |
3004 | /* Reinitialize it as an mbuf or 2K slab */ |
3005 | slab_init(sp, class, sp->sl_flags, | |
3006 | sp->sl_base, NULL, sp->sl_len, 0, numobj); | |
2d21ac55 | 3007 | |
6d2010ae | 3008 | VERIFY(o == (mcache_obj_t *)sp->sl_base); |
2d21ac55 A |
3009 | VERIFY(sp->sl_head == NULL); |
3010 | ||
6d2010ae A |
3011 | VERIFY(m_total(MC_BIGCL) > 0); |
3012 | m_total(MC_BIGCL)--; | |
3013 | mbstat.m_bigclusters = m_total(MC_BIGCL); | |
2d21ac55 | 3014 | |
6d2010ae A |
3015 | m_total(class) += numobj; |
3016 | m_infree(class) += numobj; | |
3017 | ||
3018 | VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL)); | |
3019 | VERIFY(m_total(class) <= m_maxlimit(class)); | |
fe8ab488 A |
3020 | if (!mb_peak_newreport && mbuf_report_usage(class)) |
3021 | mb_peak_newreport = TRUE; | |
6d2010ae A |
3022 | |
3023 | i = numobj; | |
3024 | if (class == MC_MBUF) { | |
3025 | mbstat.m_mbufs = m_total(MC_MBUF); | |
3026 | mtype_stat_add(MT_FREE, NMBPBG); | |
3027 | while (i--) { | |
3028 | /* | |
3029 | * If auditing is enabled, construct the | |
3030 | * shadow mbuf in the audit structure | |
3031 | * instead of the actual one. | |
3032 | * mbuf_slab_audit() will take care of | |
3033 | * restoring the contents after the | |
3034 | * integrity check. | |
3035 | */ | |
3036 | if (mclaudit != NULL) { | |
3037 | struct mbuf *ms; | |
3038 | mca = mcl_audit_buf2mca(MC_MBUF, | |
3039 | (mcache_obj_t *)m); | |
39236c6e | 3040 | ms = MCA_SAVED_MBUF_PTR(mca); |
6d2010ae A |
3041 | ms->m_type = MT_FREE; |
3042 | } else { | |
3043 | m->m_type = MT_FREE; | |
3044 | } | |
3045 | m->m_next = sp->sl_head; | |
3046 | sp->sl_head = (void *)m++; | |
3047 | } | |
3048 | } else { /* MC_CL */ | |
3049 | mbstat.m_clfree = | |
3050 | m_infree(MC_CL) + m_infree(MC_MBUF_CL); | |
3051 | mbstat.m_clusters = m_total(MC_CL); | |
3052 | while (i--) { | |
3053 | c->mcl_next = sp->sl_head; | |
3054 | sp->sl_head = (void *)c++; | |
2d21ac55 | 3055 | } |
2d21ac55 A |
3056 | } |
3057 | ||
6d2010ae A |
3058 | /* Insert into the mbuf or 2k slab list */ |
3059 | slab_insert(sp, class); | |
2d21ac55 A |
3060 | |
3061 | if ((i = mb_waiters) > 0) | |
3062 | mb_waiters = 0; | |
3063 | if (i != 0) | |
3064 | wakeup(mb_waitchan); | |
2d21ac55 | 3065 | } |
6d2010ae A |
3066 | return (count != 0); |
3067 | } | |
2d21ac55 | 3068 | |
6d2010ae A |
3069 | /* |
3070 | * For each class, initialize the freelist to hold m_minlimit() objects. | |
3071 | */ | |
3072 | static void | |
3073 | freelist_init(mbuf_class_t class) | |
3074 | { | |
3075 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
3076 | ||
3077 | VERIFY(class == MC_CL || class == MC_BIGCL); | |
3078 | VERIFY(m_total(class) == 0); | |
3079 | VERIFY(m_minlimit(class) > 0); | |
3080 | ||
3081 | while (m_total(class) < m_minlimit(class)) | |
3082 | (void) freelist_populate(class, m_minlimit(class), M_WAIT); | |
3083 | ||
3084 | VERIFY(m_total(class) >= m_minlimit(class)); | |
2d21ac55 A |
3085 | } |
3086 | ||
3087 | /* | |
3088 | * (Inaccurately) check if it might be worth a trip back to the | |
3089 | * mcache layer due the availability of objects there. We'll | |
3090 | * end up back here if there's nothing up there. | |
3091 | */ | |
3092 | static boolean_t | |
3093 | mbuf_cached_above(mbuf_class_t class, int wait) | |
3094 | { | |
3095 | switch (class) { | |
3096 | case MC_MBUF: | |
3097 | if (wait & MCR_COMP) | |
3098 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL)) || | |
3099 | !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL))); | |
3100 | break; | |
3101 | ||
3102 | case MC_CL: | |
3103 | if (wait & MCR_COMP) | |
3104 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL))); | |
3105 | break; | |
3106 | ||
3107 | case MC_BIGCL: | |
3108 | if (wait & MCR_COMP) | |
3109 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL))); | |
3110 | break; | |
3111 | ||
3112 | case MC_16KCL: | |
3113 | if (wait & MCR_COMP) | |
3114 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_16KCL))); | |
3115 | break; | |
3116 | ||
3117 | case MC_MBUF_CL: | |
3118 | case MC_MBUF_BIGCL: | |
3119 | case MC_MBUF_16KCL: | |
3120 | break; | |
3121 | ||
3122 | default: | |
3123 | VERIFY(0); | |
3124 | /* NOTREACHED */ | |
3125 | } | |
3126 | ||
3127 | return (!mcache_bkt_isempty(m_cache(class))); | |
3128 | } | |
3129 | ||
3130 | /* | |
3131 | * If possible, convert constructed objects to raw ones. | |
3132 | */ | |
3133 | static boolean_t | |
3134 | mbuf_steal(mbuf_class_t class, unsigned int num) | |
3135 | { | |
3136 | mcache_obj_t *top = NULL; | |
3137 | mcache_obj_t **list = ⊤ | |
3138 | unsigned int tot = 0; | |
3139 | ||
3140 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
3141 | ||
3142 | switch (class) { | |
3143 | case MC_MBUF: | |
3144 | case MC_CL: | |
3145 | case MC_BIGCL: | |
3146 | case MC_16KCL: | |
3147 | return (FALSE); | |
3148 | ||
3149 | case MC_MBUF_CL: | |
3150 | case MC_MBUF_BIGCL: | |
3151 | case MC_MBUF_16KCL: | |
3152 | /* Get the required number of constructed objects if possible */ | |
3153 | if (m_infree(class) > m_minlimit(class)) { | |
3154 | tot = cslab_alloc(class, &list, | |
3155 | MIN(num, m_infree(class))); | |
3156 | } | |
3157 | ||
3158 | /* And destroy them to get back the raw objects */ | |
3159 | if (top != NULL) | |
3160 | (void) cslab_free(class, top, 1); | |
3161 | break; | |
3162 | ||
3163 | default: | |
3164 | VERIFY(0); | |
3165 | /* NOTREACHED */ | |
3166 | } | |
3167 | ||
3168 | return (tot == num); | |
3169 | } | |
3170 | ||
3171 | static void | |
3172 | m_reclaim(mbuf_class_t class, unsigned int num, boolean_t comp) | |
3173 | { | |
3174 | int m, bmap = 0; | |
3175 | ||
3176 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
3177 | ||
3178 | VERIFY(m_total(MC_CL) <= m_maxlimit(MC_CL)); | |
3179 | VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL)); | |
3180 | VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL)); | |
3181 | ||
3182 | /* | |
3183 | * This logic can be made smarter; for now, simply mark | |
3184 | * all other related classes as potential victims. | |
3185 | */ | |
3186 | switch (class) { | |
3187 | case MC_MBUF: | |
3188 | m_wantpurge(MC_CL)++; | |
6d2010ae | 3189 | m_wantpurge(MC_BIGCL)++; |
2d21ac55 A |
3190 | m_wantpurge(MC_MBUF_CL)++; |
3191 | m_wantpurge(MC_MBUF_BIGCL)++; | |
3192 | break; | |
3193 | ||
3194 | case MC_CL: | |
3195 | m_wantpurge(MC_MBUF)++; | |
6d2010ae A |
3196 | m_wantpurge(MC_BIGCL)++; |
3197 | m_wantpurge(MC_MBUF_BIGCL)++; | |
2d21ac55 A |
3198 | if (!comp) |
3199 | m_wantpurge(MC_MBUF_CL)++; | |
3200 | break; | |
3201 | ||
3202 | case MC_BIGCL: | |
6d2010ae A |
3203 | m_wantpurge(MC_MBUF)++; |
3204 | m_wantpurge(MC_CL)++; | |
3205 | m_wantpurge(MC_MBUF_CL)++; | |
2d21ac55 A |
3206 | if (!comp) |
3207 | m_wantpurge(MC_MBUF_BIGCL)++; | |
3208 | break; | |
3209 | ||
3210 | case MC_16KCL: | |
3211 | if (!comp) | |
3212 | m_wantpurge(MC_MBUF_16KCL)++; | |
3213 | break; | |
3214 | ||
3215 | default: | |
3216 | VERIFY(0); | |
3217 | /* NOTREACHED */ | |
3218 | } | |
3219 | ||
3220 | /* | |
3221 | * Run through each marked class and check if we really need to | |
3222 | * purge (and therefore temporarily disable) the per-CPU caches | |
3223 | * layer used by the class. If so, remember the classes since | |
3224 | * we are going to drop the lock below prior to purging. | |
3225 | */ | |
3226 | for (m = 0; m < NELEM(mbuf_table); m++) { | |
3227 | if (m_wantpurge(m) > 0) { | |
3228 | m_wantpurge(m) = 0; | |
3229 | /* | |
3230 | * Try hard to steal the required number of objects | |
3231 | * from the freelist of other mbuf classes. Only | |
3232 | * purge and disable the per-CPU caches layer when | |
3233 | * we don't have enough; it's the last resort. | |
3234 | */ | |
3235 | if (!mbuf_steal(m, num)) | |
3236 | bmap |= (1 << m); | |
3237 | } | |
3238 | } | |
3239 | ||
3240 | lck_mtx_unlock(mbuf_mlock); | |
3241 | ||
3242 | if (bmap != 0) { | |
39236c6e A |
3243 | /* signal the domains to drain */ |
3244 | net_drain_domains(); | |
2d21ac55 A |
3245 | |
3246 | /* Sigh; we have no other choices but to ask mcache to purge */ | |
3247 | for (m = 0; m < NELEM(mbuf_table); m++) { | |
3248 | if ((bmap & (1 << m)) && | |
fe8ab488 | 3249 | mcache_purge_cache(m_cache(m), TRUE)) { |
2d21ac55 A |
3250 | lck_mtx_lock(mbuf_mlock); |
3251 | m_purge_cnt(m)++; | |
3252 | mbstat.m_drain++; | |
3253 | lck_mtx_unlock(mbuf_mlock); | |
3254 | } | |
3255 | } | |
3256 | } else { | |
3257 | /* | |
3258 | * Request mcache to reap extra elements from all of its caches; | |
3259 | * note that all reaps are serialized and happen only at a fixed | |
3260 | * interval. | |
3261 | */ | |
3262 | mcache_reap(); | |
3263 | } | |
3264 | lck_mtx_lock(mbuf_mlock); | |
3265 | } | |
3266 | ||
3267 | static inline struct mbuf * | |
3268 | m_get_common(int wait, short type, int hdr) | |
3269 | { | |
3270 | struct mbuf *m; | |
3271 | int mcflags = MSLEEPF(wait); | |
3272 | ||
3273 | /* Is this due to a non-blocking retry? If so, then try harder */ | |
3274 | if (mcflags & MCR_NOSLEEP) | |
3275 | mcflags |= MCR_TRYHARD; | |
3276 | ||
3277 | m = mcache_alloc(m_cache(MC_MBUF), mcflags); | |
3278 | if (m != NULL) { | |
3279 | MBUF_INIT(m, hdr, type); | |
3280 | mtype_stat_inc(type); | |
3281 | mtype_stat_dec(MT_FREE); | |
3282 | #if CONFIG_MACF_NET | |
3283 | if (hdr && mac_init_mbuf(m, wait) != 0) { | |
3284 | m_free(m); | |
3285 | return (NULL); | |
3286 | } | |
3287 | #endif /* MAC_NET */ | |
3288 | } | |
3289 | return (m); | |
3290 | } | |
3291 | ||
3292 | /* | |
3293 | * Space allocation routines; these are also available as macros | |
3294 | * for critical paths. | |
3295 | */ | |
3296 | #define _M_GET(wait, type) m_get_common(wait, type, 0) | |
3297 | #define _M_GETHDR(wait, type) m_get_common(wait, type, 1) | |
3298 | #define _M_RETRY(wait, type) _M_GET(wait, type) | |
3299 | #define _M_RETRYHDR(wait, type) _M_GETHDR(wait, type) | |
3300 | #define _MGET(m, how, type) ((m) = _M_GET(how, type)) | |
3301 | #define _MGETHDR(m, how, type) ((m) = _M_GETHDR(how, type)) | |
3302 | ||
3303 | struct mbuf * | |
3304 | m_get(int wait, int type) | |
3305 | { | |
3306 | return (_M_GET(wait, type)); | |
3307 | } | |
3308 | ||
3309 | struct mbuf * | |
3310 | m_gethdr(int wait, int type) | |
3311 | { | |
3312 | return (_M_GETHDR(wait, type)); | |
3313 | } | |
3314 | ||
3315 | struct mbuf * | |
3316 | m_retry(int wait, int type) | |
3317 | { | |
3318 | return (_M_RETRY(wait, type)); | |
3319 | } | |
3320 | ||
3321 | struct mbuf * | |
3322 | m_retryhdr(int wait, int type) | |
3323 | { | |
3324 | return (_M_RETRYHDR(wait, type)); | |
3325 | } | |
3326 | ||
3327 | struct mbuf * | |
3328 | m_getclr(int wait, int type) | |
3329 | { | |
3330 | struct mbuf *m; | |
3331 | ||
3332 | _MGET(m, wait, type); | |
3333 | if (m != NULL) | |
3334 | bzero(MTOD(m, caddr_t), MLEN); | |
3335 | return (m); | |
3336 | } | |
3337 | ||
3338 | struct mbuf * | |
3339 | m_free(struct mbuf *m) | |
3340 | { | |
3341 | struct mbuf *n = m->m_next; | |
3342 | ||
3343 | if (m->m_type == MT_FREE) | |
3344 | panic("m_free: freeing an already freed mbuf"); | |
3345 | ||
2d21ac55 | 3346 | if (m->m_flags & M_PKTHDR) { |
39236c6e A |
3347 | /* Check for scratch area overflow */ |
3348 | m_redzone_verify(m); | |
3349 | /* Free the aux data and tags if there is any */ | |
2d21ac55 A |
3350 | m_tag_delete_chain(m, NULL); |
3351 | } | |
3352 | ||
3353 | if (m->m_flags & M_EXT) { | |
3354 | u_int32_t refcnt; | |
6d2010ae | 3355 | u_int32_t composite; |
2d21ac55 A |
3356 | |
3357 | refcnt = m_decref(m); | |
6d2010ae A |
3358 | composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE); |
3359 | if (refcnt == 0 && !composite) { | |
2d21ac55 A |
3360 | if (m->m_ext.ext_free == NULL) { |
3361 | mcache_free(m_cache(MC_CL), m->m_ext.ext_buf); | |
3362 | } else if (m->m_ext.ext_free == m_bigfree) { | |
3363 | mcache_free(m_cache(MC_BIGCL), | |
3364 | m->m_ext.ext_buf); | |
3365 | } else if (m->m_ext.ext_free == m_16kfree) { | |
3366 | mcache_free(m_cache(MC_16KCL), | |
3367 | m->m_ext.ext_buf); | |
3368 | } else { | |
3369 | (*(m->m_ext.ext_free))(m->m_ext.ext_buf, | |
3370 | m->m_ext.ext_size, m->m_ext.ext_arg); | |
3371 | } | |
3372 | mcache_free(ref_cache, MEXT_RFA(m)); | |
3373 | MEXT_RFA(m) = NULL; | |
6d2010ae | 3374 | } else if (refcnt == 0 && composite) { |
2d21ac55 A |
3375 | VERIFY(m->m_type != MT_FREE); |
3376 | ||
3377 | mtype_stat_dec(m->m_type); | |
3378 | mtype_stat_inc(MT_FREE); | |
3379 | ||
3380 | m->m_type = MT_FREE; | |
3381 | m->m_flags = M_EXT; | |
3382 | m->m_len = 0; | |
3383 | m->m_next = m->m_nextpkt = NULL; | |
3384 | ||
6d2010ae A |
3385 | MEXT_FLAGS(m) &= ~EXTF_READONLY; |
3386 | ||
2d21ac55 A |
3387 | /* "Free" into the intermediate cache */ |
3388 | if (m->m_ext.ext_free == NULL) { | |
3389 | mcache_free(m_cache(MC_MBUF_CL), m); | |
3390 | } else if (m->m_ext.ext_free == m_bigfree) { | |
3391 | mcache_free(m_cache(MC_MBUF_BIGCL), m); | |
3392 | } else { | |
3393 | VERIFY(m->m_ext.ext_free == m_16kfree); | |
3394 | mcache_free(m_cache(MC_MBUF_16KCL), m); | |
3395 | } | |
3396 | return (n); | |
3397 | } | |
3398 | } | |
3399 | ||
3400 | if (m->m_type != MT_FREE) { | |
3401 | mtype_stat_dec(m->m_type); | |
3402 | mtype_stat_inc(MT_FREE); | |
3403 | } | |
3404 | ||
3405 | m->m_type = MT_FREE; | |
3406 | m->m_flags = m->m_len = 0; | |
3407 | m->m_next = m->m_nextpkt = NULL; | |
3408 | ||
3409 | mcache_free(m_cache(MC_MBUF), m); | |
3410 | ||
3411 | return (n); | |
3412 | } | |
3413 | ||
3414 | __private_extern__ struct mbuf * | |
3415 | m_clattach(struct mbuf *m, int type, caddr_t extbuf, | |
3416 | void (*extfree)(caddr_t, u_int, caddr_t), u_int extsize, caddr_t extarg, | |
3417 | int wait) | |
3418 | { | |
3419 | struct ext_ref *rfa = NULL; | |
3420 | ||
3421 | if (m == NULL && (m = _M_GETHDR(wait, type)) == NULL) | |
3422 | return (NULL); | |
3423 | ||
3424 | if (m->m_flags & M_EXT) { | |
3425 | u_int32_t refcnt; | |
6d2010ae | 3426 | u_int32_t composite; |
2d21ac55 A |
3427 | |
3428 | refcnt = m_decref(m); | |
6d2010ae A |
3429 | composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE); |
3430 | if (refcnt == 0 && !composite) { | |
2d21ac55 A |
3431 | if (m->m_ext.ext_free == NULL) { |
3432 | mcache_free(m_cache(MC_CL), m->m_ext.ext_buf); | |
3433 | } else if (m->m_ext.ext_free == m_bigfree) { | |
3434 | mcache_free(m_cache(MC_BIGCL), | |
3435 | m->m_ext.ext_buf); | |
3436 | } else if (m->m_ext.ext_free == m_16kfree) { | |
3437 | mcache_free(m_cache(MC_16KCL), | |
3438 | m->m_ext.ext_buf); | |
3439 | } else { | |
3440 | (*(m->m_ext.ext_free))(m->m_ext.ext_buf, | |
3441 | m->m_ext.ext_size, m->m_ext.ext_arg); | |
3442 | } | |
3443 | /* Re-use the reference structure */ | |
3444 | rfa = MEXT_RFA(m); | |
6d2010ae | 3445 | } else if (refcnt == 0 && composite) { |
2d21ac55 A |
3446 | VERIFY(m->m_type != MT_FREE); |
3447 | ||
3448 | mtype_stat_dec(m->m_type); | |
3449 | mtype_stat_inc(MT_FREE); | |
3450 | ||
3451 | m->m_type = MT_FREE; | |
3452 | m->m_flags = M_EXT; | |
3453 | m->m_len = 0; | |
3454 | m->m_next = m->m_nextpkt = NULL; | |
6d2010ae A |
3455 | |
3456 | MEXT_FLAGS(m) &= ~EXTF_READONLY; | |
3457 | ||
2d21ac55 A |
3458 | /* "Free" into the intermediate cache */ |
3459 | if (m->m_ext.ext_free == NULL) { | |
3460 | mcache_free(m_cache(MC_MBUF_CL), m); | |
3461 | } else if (m->m_ext.ext_free == m_bigfree) { | |
3462 | mcache_free(m_cache(MC_MBUF_BIGCL), m); | |
3463 | } else { | |
3464 | VERIFY(m->m_ext.ext_free == m_16kfree); | |
3465 | mcache_free(m_cache(MC_MBUF_16KCL), m); | |
3466 | } | |
3467 | /* | |
3468 | * Allocate a new mbuf, since we didn't divorce | |
3469 | * the composite mbuf + cluster pair above. | |
3470 | */ | |
3471 | if ((m = _M_GETHDR(wait, type)) == NULL) | |
3472 | return (NULL); | |
3473 | } | |
3474 | } | |
3475 | ||
3476 | if (rfa == NULL && | |
3477 | (rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) { | |
3478 | m_free(m); | |
3479 | return (NULL); | |
3480 | } | |
3481 | ||
3482 | MEXT_INIT(m, extbuf, extsize, extfree, extarg, rfa, 1, 0); | |
3483 | ||
3484 | return (m); | |
3485 | } | |
3486 | ||
b0d623f7 A |
3487 | /* |
3488 | * Perform `fast' allocation mbuf clusters from a cache of recently-freed | |
3489 | * clusters. (If the cache is empty, new clusters are allocated en-masse.) | |
3490 | */ | |
3491 | struct mbuf * | |
3492 | m_getcl(int wait, int type, int flags) | |
3493 | { | |
3494 | struct mbuf *m; | |
3495 | int mcflags = MSLEEPF(wait); | |
3496 | int hdr = (flags & M_PKTHDR); | |
3497 | ||
3498 | /* Is this due to a non-blocking retry? If so, then try harder */ | |
3499 | if (mcflags & MCR_NOSLEEP) | |
3500 | mcflags |= MCR_TRYHARD; | |
3501 | ||
6d2010ae A |
3502 | m = mcache_alloc(m_cache(MC_MBUF_CL), mcflags); |
3503 | if (m != NULL) { | |
3504 | u_int32_t flag; | |
3505 | struct ext_ref *rfa; | |
3506 | void *cl; | |
3507 | ||
3508 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); | |
3509 | cl = m->m_ext.ext_buf; | |
3510 | rfa = MEXT_RFA(m); | |
3511 | ||
3512 | ASSERT(cl != NULL && rfa != NULL); | |
3513 | VERIFY(MBUF_IS_COMPOSITE(m) && m->m_ext.ext_free == NULL); | |
3514 | ||
3515 | flag = MEXT_FLAGS(m); | |
3516 | ||
b0d623f7 | 3517 | MBUF_INIT(m, hdr, type); |
6d2010ae A |
3518 | MBUF_CL_INIT(m, cl, rfa, 1, flag); |
3519 | ||
b0d623f7 A |
3520 | mtype_stat_inc(type); |
3521 | mtype_stat_dec(MT_FREE); | |
3522 | #if CONFIG_MACF_NET | |
3523 | if (hdr && mac_init_mbuf(m, wait) != 0) { | |
6d2010ae | 3524 | m_freem(m); |
b0d623f7 A |
3525 | return (NULL); |
3526 | } | |
3527 | #endif /* MAC_NET */ | |
3528 | } | |
3529 | return (m); | |
3530 | } | |
3531 | ||
2d21ac55 A |
3532 | /* m_mclget() add an mbuf cluster to a normal mbuf */ |
3533 | struct mbuf * | |
3534 | m_mclget(struct mbuf *m, int wait) | |
3535 | { | |
3536 | struct ext_ref *rfa; | |
3537 | ||
3538 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) | |
3539 | return (m); | |
3540 | ||
3541 | m->m_ext.ext_buf = m_mclalloc(wait); | |
3542 | if (m->m_ext.ext_buf != NULL) { | |
3543 | MBUF_CL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); | |
3544 | } else { | |
3545 | mcache_free(ref_cache, rfa); | |
3546 | } | |
3547 | return (m); | |
3548 | } | |
3549 | ||
3550 | /* Allocate an mbuf cluster */ | |
3551 | caddr_t | |
3552 | m_mclalloc(int wait) | |
3553 | { | |
3554 | int mcflags = MSLEEPF(wait); | |
3555 | ||
3556 | /* Is this due to a non-blocking retry? If so, then try harder */ | |
3557 | if (mcflags & MCR_NOSLEEP) | |
3558 | mcflags |= MCR_TRYHARD; | |
3559 | ||
3560 | return (mcache_alloc(m_cache(MC_CL), mcflags)); | |
3561 | } | |
3562 | ||
3563 | /* Free an mbuf cluster */ | |
3564 | void | |
3565 | m_mclfree(caddr_t p) | |
3566 | { | |
3567 | mcache_free(m_cache(MC_CL), p); | |
3568 | } | |
3569 | ||
3570 | /* | |
3571 | * mcl_hasreference() checks if a cluster of an mbuf is referenced by | |
6d2010ae | 3572 | * another mbuf; see comments in m_incref() regarding EXTF_READONLY. |
2d21ac55 A |
3573 | */ |
3574 | int | |
3575 | m_mclhasreference(struct mbuf *m) | |
3576 | { | |
3577 | if (!(m->m_flags & M_EXT)) | |
3578 | return (0); | |
9bccf70c | 3579 | |
2d21ac55 A |
3580 | ASSERT(MEXT_RFA(m) != NULL); |
3581 | ||
6d2010ae | 3582 | return ((MEXT_FLAGS(m) & EXTF_READONLY) ? 1 : 0); |
9bccf70c A |
3583 | } |
3584 | ||
2d21ac55 A |
3585 | __private_extern__ caddr_t |
3586 | m_bigalloc(int wait) | |
9bccf70c | 3587 | { |
2d21ac55 | 3588 | int mcflags = MSLEEPF(wait); |
91447636 | 3589 | |
2d21ac55 A |
3590 | /* Is this due to a non-blocking retry? If so, then try harder */ |
3591 | if (mcflags & MCR_NOSLEEP) | |
3592 | mcflags |= MCR_TRYHARD; | |
91447636 | 3593 | |
2d21ac55 | 3594 | return (mcache_alloc(m_cache(MC_BIGCL), mcflags)); |
9bccf70c A |
3595 | } |
3596 | ||
2d21ac55 A |
3597 | __private_extern__ void |
3598 | m_bigfree(caddr_t p, __unused u_int size, __unused caddr_t arg) | |
9bccf70c | 3599 | { |
2d21ac55 | 3600 | mcache_free(m_cache(MC_BIGCL), p); |
9bccf70c A |
3601 | } |
3602 | ||
2d21ac55 A |
3603 | /* m_mbigget() add an 4KB mbuf cluster to a normal mbuf */ |
3604 | __private_extern__ struct mbuf * | |
3605 | m_mbigget(struct mbuf *m, int wait) | |
3606 | { | |
3607 | struct ext_ref *rfa; | |
3608 | ||
3609 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) | |
3610 | return (m); | |
3611 | ||
3612 | m->m_ext.ext_buf = m_bigalloc(wait); | |
3613 | if (m->m_ext.ext_buf != NULL) { | |
3614 | MBUF_BIGCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); | |
91447636 | 3615 | } else { |
2d21ac55 | 3616 | mcache_free(ref_cache, rfa); |
91447636 | 3617 | } |
2d21ac55 A |
3618 | return (m); |
3619 | } | |
3620 | ||
3621 | __private_extern__ caddr_t | |
3622 | m_16kalloc(int wait) | |
3623 | { | |
3624 | int mcflags = MSLEEPF(wait); | |
3625 | ||
3626 | /* Is this due to a non-blocking retry? If so, then try harder */ | |
3627 | if (mcflags & MCR_NOSLEEP) | |
3628 | mcflags |= MCR_TRYHARD; | |
3629 | ||
3630 | return (mcache_alloc(m_cache(MC_16KCL), mcflags)); | |
91447636 A |
3631 | } |
3632 | ||
3633 | __private_extern__ void | |
2d21ac55 | 3634 | m_16kfree(caddr_t p, __unused u_int size, __unused caddr_t arg) |
91447636 | 3635 | { |
2d21ac55 | 3636 | mcache_free(m_cache(MC_16KCL), p); |
91447636 A |
3637 | } |
3638 | ||
2d21ac55 | 3639 | /* m_m16kget() add a 16KB mbuf cluster to a normal mbuf */ |
91447636 | 3640 | __private_extern__ struct mbuf * |
2d21ac55 | 3641 | m_m16kget(struct mbuf *m, int wait) |
91447636 | 3642 | { |
2d21ac55 A |
3643 | struct ext_ref *rfa; |
3644 | ||
3645 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) | |
3646 | return (m); | |
3647 | ||
3648 | m->m_ext.ext_buf = m_16kalloc(wait); | |
3649 | if (m->m_ext.ext_buf != NULL) { | |
3650 | MBUF_16KCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); | |
3651 | } else { | |
3652 | mcache_free(ref_cache, rfa); | |
91447636 | 3653 | } |
2d21ac55 | 3654 | return (m); |
91447636 A |
3655 | } |
3656 | ||
b0d623f7 A |
3657 | /* |
3658 | * "Move" mbuf pkthdr from "from" to "to". | |
3659 | * "from" must have M_PKTHDR set, and "to" must be empty. | |
3660 | */ | |
9bccf70c | 3661 | void |
2d21ac55 | 3662 | m_copy_pkthdr(struct mbuf *to, struct mbuf *from) |
9bccf70c | 3663 | { |
39236c6e A |
3664 | VERIFY(from->m_flags & M_PKTHDR); |
3665 | ||
3666 | /* Check for scratch area overflow */ | |
3667 | m_redzone_verify(from); | |
3668 | ||
3669 | if (to->m_flags & M_PKTHDR) { | |
3670 | /* Check for scratch area overflow */ | |
3671 | m_redzone_verify(to); | |
3672 | /* We will be taking over the tags of 'to' */ | |
2d21ac55 | 3673 | m_tag_delete_chain(to, NULL); |
39236c6e | 3674 | } |
2d21ac55 | 3675 | to->m_pkthdr = from->m_pkthdr; /* especially tags */ |
39236c6e A |
3676 | m_classifier_init(from, 0); /* purge classifier info */ |
3677 | m_tag_init(from, 1); /* purge all tags from src */ | |
3678 | m_scratch_init(from); /* clear src scratch area */ | |
935ed37a A |
3679 | to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); |
3680 | if ((to->m_flags & M_EXT) == 0) | |
3681 | to->m_data = to->m_pktdat; | |
39236c6e | 3682 | m_redzone_init(to); /* setup red zone on dst */ |
9bccf70c A |
3683 | } |
3684 | ||
91447636 A |
3685 | /* |
3686 | * Duplicate "from"'s mbuf pkthdr in "to". | |
3687 | * "from" must have M_PKTHDR set, and "to" must be empty. | |
3688 | * In particular, this does a deep copy of the packet tags. | |
3689 | */ | |
3a60a9f5 | 3690 | static int |
91447636 A |
3691 | m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how) |
3692 | { | |
39236c6e A |
3693 | VERIFY(from->m_flags & M_PKTHDR); |
3694 | ||
3695 | /* Check for scratch area overflow */ | |
3696 | m_redzone_verify(from); | |
3697 | ||
3698 | if (to->m_flags & M_PKTHDR) { | |
3699 | /* Check for scratch area overflow */ | |
3700 | m_redzone_verify(to); | |
3701 | /* We will be taking over the tags of 'to' */ | |
2d21ac55 | 3702 | m_tag_delete_chain(to, NULL); |
39236c6e | 3703 | } |
2d21ac55 A |
3704 | to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); |
3705 | if ((to->m_flags & M_EXT) == 0) | |
3706 | to->m_data = to->m_pktdat; | |
3707 | to->m_pkthdr = from->m_pkthdr; | |
39236c6e A |
3708 | m_redzone_init(to); /* setup red zone on dst */ |
3709 | m_tag_init(to, 0); /* preserve dst static tags */ | |
2d21ac55 | 3710 | return (m_tag_copy_chain(to, from, how)); |
91447636 | 3711 | } |
fa4905b1 | 3712 | |
316670eb A |
3713 | void |
3714 | m_copy_pftag(struct mbuf *to, struct mbuf *from) | |
3715 | { | |
3716 | to->m_pkthdr.pf_mtag = from->m_pkthdr.pf_mtag; | |
39236c6e | 3717 | #if PF_ECN |
316670eb A |
3718 | to->m_pkthdr.pf_mtag.pftag_hdr = NULL; |
3719 | to->m_pkthdr.pf_mtag.pftag_flags &= ~(PF_TAG_HDR_INET|PF_TAG_HDR_INET6); | |
39236c6e A |
3720 | #endif /* PF_ECN */ |
3721 | } | |
3722 | ||
3723 | void | |
3724 | m_classifier_init(struct mbuf *m, uint32_t pktf_mask) | |
3725 | { | |
3726 | VERIFY(m->m_flags & M_PKTHDR); | |
3727 | ||
3728 | m->m_pkthdr.pkt_proto = 0; | |
3729 | m->m_pkthdr.pkt_flowsrc = 0; | |
3730 | m->m_pkthdr.pkt_flowid = 0; | |
3731 | m->m_pkthdr.pkt_flags &= pktf_mask; /* caller-defined mask */ | |
3732 | /* preserve service class and interface info for loopback packets */ | |
3733 | if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) | |
3734 | (void) m_set_service_class(m, MBUF_SC_BE); | |
3735 | if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) | |
3736 | m->m_pkthdr.pkt_ifainfo = 0; | |
3737 | #if MEASURE_BW | |
3738 | m->m_pkthdr.pkt_bwseq = 0; | |
3739 | #endif /* MEASURE_BW */ | |
3740 | } | |
3741 | ||
3742 | void | |
3743 | m_copy_classifier(struct mbuf *to, struct mbuf *from) | |
3744 | { | |
3745 | VERIFY(to->m_flags & M_PKTHDR); | |
3746 | VERIFY(from->m_flags & M_PKTHDR); | |
3747 | ||
3748 | to->m_pkthdr.pkt_proto = from->m_pkthdr.pkt_proto; | |
3749 | to->m_pkthdr.pkt_flowsrc = from->m_pkthdr.pkt_flowsrc; | |
3750 | to->m_pkthdr.pkt_flowid = from->m_pkthdr.pkt_flowid; | |
3751 | to->m_pkthdr.pkt_flags = from->m_pkthdr.pkt_flags; | |
3752 | (void) m_set_service_class(to, from->m_pkthdr.pkt_svc); | |
3753 | to->m_pkthdr.pkt_ifainfo = from->m_pkthdr.pkt_ifainfo; | |
39236c6e A |
3754 | #if MEASURE_BW |
3755 | to->m_pkthdr.pkt_bwseq = from->m_pkthdr.pkt_bwseq; | |
3756 | #endif /* MEASURE_BW */ | |
316670eb A |
3757 | } |
3758 | ||
9bccf70c | 3759 | /* |
2d21ac55 A |
3760 | * Return a list of mbuf hdrs that point to clusters. Try for num_needed; |
3761 | * if wantall is not set, return whatever number were available. Set up the | |
3762 | * first num_with_pkthdrs with mbuf hdrs configured as packet headers; these | |
3763 | * are chained on the m_nextpkt field. Any packets requested beyond this | |
3764 | * are chained onto the last packet header's m_next field. The size of | |
3765 | * the cluster is controlled by the parameter bufsize. | |
9bccf70c | 3766 | */ |
91447636 | 3767 | __private_extern__ struct mbuf * |
2d21ac55 A |
3768 | m_getpackets_internal(unsigned int *num_needed, int num_with_pkthdrs, |
3769 | int wait, int wantall, size_t bufsize) | |
fa4905b1 A |
3770 | { |
3771 | struct mbuf *m; | |
3772 | struct mbuf **np, *top; | |
2d21ac55 A |
3773 | unsigned int pnum, needed = *num_needed; |
3774 | mcache_obj_t *mp_list = NULL; | |
3775 | int mcflags = MSLEEPF(wait); | |
3776 | u_int32_t flag; | |
3777 | struct ext_ref *rfa; | |
3778 | mcache_t *cp; | |
3779 | void *cl; | |
3780 | ||
3781 | ASSERT(bufsize == m_maxsize(MC_CL) || | |
3782 | bufsize == m_maxsize(MC_BIGCL) || | |
3783 | bufsize == m_maxsize(MC_16KCL)); | |
3784 | ||
3785 | /* | |
3786 | * Caller must first check for njcl because this | |
3787 | * routine is internal and not exposed/used via KPI. | |
3788 | */ | |
3789 | VERIFY(bufsize != m_maxsize(MC_16KCL) || njcl > 0); | |
3790 | ||
fa4905b1 A |
3791 | top = NULL; |
3792 | np = ⊤ | |
2d21ac55 | 3793 | pnum = 0; |
fa4905b1 | 3794 | |
2d21ac55 A |
3795 | /* |
3796 | * The caller doesn't want all the requested buffers; only some. | |
3797 | * Try hard to get what we can, but don't block. This effectively | |
3798 | * overrides MCR_SLEEP, since this thread will not go to sleep | |
3799 | * if we can't get all the buffers. | |
3800 | */ | |
3801 | if (!wantall || (mcflags & MCR_NOSLEEP)) | |
3802 | mcflags |= MCR_TRYHARD; | |
3803 | ||
3804 | /* Allocate the composite mbuf + cluster elements from the cache */ | |
3805 | if (bufsize == m_maxsize(MC_CL)) | |
3806 | cp = m_cache(MC_MBUF_CL); | |
3807 | else if (bufsize == m_maxsize(MC_BIGCL)) | |
3808 | cp = m_cache(MC_MBUF_BIGCL); | |
3809 | else | |
3810 | cp = m_cache(MC_MBUF_16KCL); | |
3811 | needed = mcache_alloc_ext(cp, &mp_list, needed, mcflags); | |
3812 | ||
3813 | for (pnum = 0; pnum < needed; pnum++) { | |
3814 | m = (struct mbuf *)mp_list; | |
3815 | mp_list = mp_list->obj_next; | |
3816 | ||
3817 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); | |
3818 | cl = m->m_ext.ext_buf; | |
3819 | rfa = MEXT_RFA(m); | |
3820 | ||
3821 | ASSERT(cl != NULL && rfa != NULL); | |
3822 | VERIFY(MBUF_IS_COMPOSITE(m)); | |
3823 | ||
3824 | flag = MEXT_FLAGS(m); | |
3825 | ||
3826 | MBUF_INIT(m, num_with_pkthdrs, MT_DATA); | |
3827 | if (bufsize == m_maxsize(MC_16KCL)) { | |
3828 | MBUF_16KCL_INIT(m, cl, rfa, 1, flag); | |
3829 | } else if (bufsize == m_maxsize(MC_BIGCL)) { | |
3830 | MBUF_BIGCL_INIT(m, cl, rfa, 1, flag); | |
91447636 | 3831 | } else { |
2d21ac55 A |
3832 | MBUF_CL_INIT(m, cl, rfa, 1, flag); |
3833 | } | |
3834 | ||
3835 | if (num_with_pkthdrs > 0) { | |
3836 | --num_with_pkthdrs; | |
3837 | #if CONFIG_MACF_NET | |
3838 | if (mac_mbuf_label_init(m, wait) != 0) { | |
6d2010ae | 3839 | m_freem(m); |
2d21ac55 | 3840 | break; |
91447636 | 3841 | } |
2d21ac55 | 3842 | #endif /* MAC_NET */ |
91447636 | 3843 | } |
2d21ac55 A |
3844 | |
3845 | *np = m; | |
3846 | if (num_with_pkthdrs > 0) | |
91447636 A |
3847 | np = &m->m_nextpkt; |
3848 | else | |
3849 | np = &m->m_next; | |
3850 | } | |
2d21ac55 A |
3851 | ASSERT(pnum != *num_needed || mp_list == NULL); |
3852 | if (mp_list != NULL) | |
3853 | mcache_free_ext(cp, mp_list); | |
3854 | ||
3855 | if (pnum > 0) { | |
3856 | mtype_stat_add(MT_DATA, pnum); | |
3857 | mtype_stat_sub(MT_FREE, pnum); | |
3858 | } | |
3859 | ||
3860 | if (wantall && (pnum != *num_needed)) { | |
3861 | if (top != NULL) | |
3862 | m_freem_list(top); | |
3863 | return (NULL); | |
91447636 | 3864 | } |
fa4905b1 | 3865 | |
316670eb A |
3866 | if (pnum > *num_needed) { |
3867 | printf("%s: File a radar related to <rdar://10146739>. \ | |
3868 | needed = %u, pnum = %u, num_needed = %u \n", | |
3869 | __func__, needed, pnum, *num_needed); | |
3870 | } | |
3871 | ||
2d21ac55 A |
3872 | *num_needed = pnum; |
3873 | return (top); | |
3874 | } | |
fa4905b1 | 3875 | |
91447636 | 3876 | /* |
2d21ac55 A |
3877 | * Return list of mbuf linked by m_nextpkt. Try for numlist, and if |
3878 | * wantall is not set, return whatever number were available. The size of | |
3879 | * each mbuf in the list is controlled by the parameter packetlen. Each | |
3880 | * mbuf of the list may have a chain of mbufs linked by m_next. Each mbuf | |
3881 | * in the chain is called a segment. If maxsegments is not null and the | |
3882 | * value pointed to is not null, this specify the maximum number of segments | |
3883 | * for a chain of mbufs. If maxsegments is zero or the value pointed to | |
3884 | * is zero the caller does not have any restriction on the number of segments. | |
3885 | * The actual number of segments of a mbuf chain is return in the value | |
3886 | * pointed to by maxsegments. | |
91447636 | 3887 | */ |
91447636 | 3888 | __private_extern__ struct mbuf * |
2d21ac55 A |
3889 | m_allocpacket_internal(unsigned int *numlist, size_t packetlen, |
3890 | unsigned int *maxsegments, int wait, int wantall, size_t wantsize) | |
91447636 | 3891 | { |
2d21ac55 A |
3892 | struct mbuf **np, *top, *first = NULL; |
3893 | size_t bufsize, r_bufsize; | |
3894 | unsigned int num = 0; | |
3895 | unsigned int nsegs = 0; | |
3896 | unsigned int needed, resid; | |
3897 | int mcflags = MSLEEPF(wait); | |
3898 | mcache_obj_t *mp_list = NULL, *rmp_list = NULL; | |
3899 | mcache_t *cp = NULL, *rcp = NULL; | |
3900 | ||
3901 | if (*numlist == 0) | |
3902 | return (NULL); | |
fa4905b1 | 3903 | |
91447636 A |
3904 | top = NULL; |
3905 | np = ⊤ | |
2d21ac55 | 3906 | |
91447636 | 3907 | if (wantsize == 0) { |
2d21ac55 | 3908 | if (packetlen <= MINCLSIZE) { |
91447636 | 3909 | bufsize = packetlen; |
2d21ac55 A |
3910 | } else if (packetlen > m_maxsize(MC_CL)) { |
3911 | /* Use 4KB if jumbo cluster pool isn't available */ | |
3912 | if (packetlen <= m_maxsize(MC_BIGCL) || njcl == 0) | |
3913 | bufsize = m_maxsize(MC_BIGCL); | |
3914 | else | |
3915 | bufsize = m_maxsize(MC_16KCL); | |
3916 | } else { | |
3917 | bufsize = m_maxsize(MC_CL); | |
3918 | } | |
3919 | } else if (wantsize == m_maxsize(MC_CL) || | |
3920 | wantsize == m_maxsize(MC_BIGCL) || | |
3921 | (wantsize == m_maxsize(MC_16KCL) && njcl > 0)) { | |
91447636 | 3922 | bufsize = wantsize; |
2d21ac55 A |
3923 | } else { |
3924 | return (NULL); | |
3925 | } | |
91447636 A |
3926 | |
3927 | if (bufsize <= MHLEN) { | |
2d21ac55 | 3928 | nsegs = 1; |
91447636 A |
3929 | } else if (bufsize <= MINCLSIZE) { |
3930 | if (maxsegments != NULL && *maxsegments == 1) { | |
2d21ac55 A |
3931 | bufsize = m_maxsize(MC_CL); |
3932 | nsegs = 1; | |
91447636 | 3933 | } else { |
2d21ac55 | 3934 | nsegs = 2; |
fa4905b1 | 3935 | } |
2d21ac55 A |
3936 | } else if (bufsize == m_maxsize(MC_16KCL)) { |
3937 | VERIFY(njcl > 0); | |
3938 | nsegs = ((packetlen - 1) >> (PGSHIFT + 2)) + 1; | |
3939 | } else if (bufsize == m_maxsize(MC_BIGCL)) { | |
3940 | nsegs = ((packetlen - 1) >> PGSHIFT) + 1; | |
91447636 | 3941 | } else { |
2d21ac55 | 3942 | nsegs = ((packetlen - 1) >> MCLSHIFT) + 1; |
91447636 A |
3943 | } |
3944 | if (maxsegments != NULL) { | |
2d21ac55 A |
3945 | if (*maxsegments && nsegs > *maxsegments) { |
3946 | *maxsegments = nsegs; | |
3947 | return (NULL); | |
91447636 | 3948 | } |
2d21ac55 | 3949 | *maxsegments = nsegs; |
91447636 | 3950 | } |
91447636 | 3951 | |
2d21ac55 A |
3952 | /* |
3953 | * The caller doesn't want all the requested buffers; only some. | |
3954 | * Try hard to get what we can, but don't block. This effectively | |
3955 | * overrides MCR_SLEEP, since this thread will not go to sleep | |
3956 | * if we can't get all the buffers. | |
3957 | */ | |
3958 | if (!wantall || (mcflags & MCR_NOSLEEP)) | |
3959 | mcflags |= MCR_TRYHARD; | |
3960 | ||
3961 | /* | |
3962 | * Simple case where all elements in the lists/chains are mbufs. | |
3963 | * Unless bufsize is greater than MHLEN, each segment chain is made | |
3964 | * up of exactly 1 mbuf. Otherwise, each segment chain is made up | |
3965 | * of 2 mbufs; the second one is used for the residual data, i.e. | |
3966 | * the remaining data that cannot fit into the first mbuf. | |
3967 | */ | |
3968 | if (bufsize <= MINCLSIZE) { | |
3969 | /* Allocate the elements in one shot from the mbuf cache */ | |
3970 | ASSERT(bufsize <= MHLEN || nsegs == 2); | |
3971 | cp = m_cache(MC_MBUF); | |
3972 | needed = mcache_alloc_ext(cp, &mp_list, | |
3973 | (*numlist) * nsegs, mcflags); | |
3974 | ||
3975 | /* | |
3976 | * The number of elements must be even if we are to use an | |
3977 | * mbuf (instead of a cluster) to store the residual data. | |
3978 | * If we couldn't allocate the requested number of mbufs, | |
3979 | * trim the number down (if it's odd) in order to avoid | |
3980 | * creating a partial segment chain. | |
3981 | */ | |
3982 | if (bufsize > MHLEN && (needed & 0x1)) | |
3983 | needed--; | |
91447636 | 3984 | |
2d21ac55 A |
3985 | while (num < needed) { |
3986 | struct mbuf *m; | |
91447636 | 3987 | |
2d21ac55 A |
3988 | m = (struct mbuf *)mp_list; |
3989 | mp_list = mp_list->obj_next; | |
3990 | ASSERT(m != NULL); | |
91447636 | 3991 | |
2d21ac55 A |
3992 | MBUF_INIT(m, 1, MT_DATA); |
3993 | #if CONFIG_MACF_NET | |
3994 | if (mac_init_mbuf(m, wait) != 0) { | |
3995 | m_free(m); | |
3996 | break; | |
91447636 | 3997 | } |
2d21ac55 A |
3998 | #endif /* MAC_NET */ |
3999 | num++; | |
4000 | if (bufsize > MHLEN) { | |
4001 | /* A second mbuf for this segment chain */ | |
4002 | m->m_next = (struct mbuf *)mp_list; | |
4003 | mp_list = mp_list->obj_next; | |
4004 | ASSERT(m->m_next != NULL); | |
4005 | ||
4006 | MBUF_INIT(m->m_next, 0, MT_DATA); | |
4007 | num++; | |
91447636 | 4008 | } |
2d21ac55 A |
4009 | *np = m; |
4010 | np = &m->m_nextpkt; | |
4011 | } | |
4012 | ASSERT(num != *numlist || mp_list == NULL); | |
4013 | ||
4014 | if (num > 0) { | |
4015 | mtype_stat_add(MT_DATA, num); | |
4016 | mtype_stat_sub(MT_FREE, num); | |
4017 | } | |
4018 | num /= nsegs; | |
4019 | ||
4020 | /* We've got them all; return to caller */ | |
4021 | if (num == *numlist) | |
4022 | return (top); | |
4023 | ||
4024 | goto fail; | |
4025 | } | |
4026 | ||
4027 | /* | |
4028 | * Complex cases where elements are made up of one or more composite | |
4029 | * mbufs + cluster, depending on packetlen. Each N-segment chain can | |
4030 | * be illustrated as follows: | |
4031 | * | |
4032 | * [mbuf + cluster 1] [mbuf + cluster 2] ... [mbuf + cluster N] | |
4033 | * | |
4034 | * Every composite mbuf + cluster element comes from the intermediate | |
4035 | * cache (either MC_MBUF_CL or MC_MBUF_BIGCL). For space efficiency, | |
4036 | * the last composite element will come from the MC_MBUF_CL cache, | |
4037 | * unless the residual data is larger than 2KB where we use the | |
4038 | * big cluster composite cache (MC_MBUF_BIGCL) instead. Residual | |
4039 | * data is defined as extra data beyond the first element that cannot | |
4040 | * fit into the previous element, i.e. there is no residual data if | |
4041 | * the chain only has 1 segment. | |
4042 | */ | |
4043 | r_bufsize = bufsize; | |
4044 | resid = packetlen > bufsize ? packetlen % bufsize : 0; | |
4045 | if (resid > 0) { | |
4046 | /* There is residual data; figure out the cluster size */ | |
4047 | if (wantsize == 0 && packetlen > MINCLSIZE) { | |
4048 | /* | |
4049 | * Caller didn't request that all of the segments | |
4050 | * in the chain use the same cluster size; use the | |
4051 | * smaller of the cluster sizes. | |
4052 | */ | |
4053 | if (njcl > 0 && resid > m_maxsize(MC_BIGCL)) | |
4054 | r_bufsize = m_maxsize(MC_16KCL); | |
4055 | else if (resid > m_maxsize(MC_CL)) | |
4056 | r_bufsize = m_maxsize(MC_BIGCL); | |
4057 | else | |
4058 | r_bufsize = m_maxsize(MC_CL); | |
4059 | } else { | |
4060 | /* Use the same cluster size as the other segments */ | |
4061 | resid = 0; | |
4062 | } | |
4063 | } | |
4064 | ||
4065 | needed = *numlist; | |
4066 | if (resid > 0) { | |
4067 | /* | |
4068 | * Attempt to allocate composite mbuf + cluster elements for | |
4069 | * the residual data in each chain; record the number of such | |
4070 | * elements that can be allocated so that we know how many | |
4071 | * segment chains we can afford to create. | |
4072 | */ | |
4073 | if (r_bufsize <= m_maxsize(MC_CL)) | |
4074 | rcp = m_cache(MC_MBUF_CL); | |
4075 | else if (r_bufsize <= m_maxsize(MC_BIGCL)) | |
4076 | rcp = m_cache(MC_MBUF_BIGCL); | |
4077 | else | |
4078 | rcp = m_cache(MC_MBUF_16KCL); | |
4079 | needed = mcache_alloc_ext(rcp, &rmp_list, *numlist, mcflags); | |
4080 | ||
4081 | if (needed == 0) | |
4082 | goto fail; | |
4083 | ||
4084 | /* This is temporarily reduced for calculation */ | |
4085 | ASSERT(nsegs > 1); | |
4086 | nsegs--; | |
4087 | } | |
4088 | ||
4089 | /* | |
4090 | * Attempt to allocate the rest of the composite mbuf + cluster | |
4091 | * elements for the number of segment chains that we need. | |
4092 | */ | |
4093 | if (bufsize <= m_maxsize(MC_CL)) | |
4094 | cp = m_cache(MC_MBUF_CL); | |
4095 | else if (bufsize <= m_maxsize(MC_BIGCL)) | |
4096 | cp = m_cache(MC_MBUF_BIGCL); | |
4097 | else | |
4098 | cp = m_cache(MC_MBUF_16KCL); | |
4099 | needed = mcache_alloc_ext(cp, &mp_list, needed * nsegs, mcflags); | |
4100 | ||
4101 | /* Round it down to avoid creating a partial segment chain */ | |
4102 | needed = (needed / nsegs) * nsegs; | |
4103 | if (needed == 0) | |
4104 | goto fail; | |
4105 | ||
4106 | if (resid > 0) { | |
4107 | /* | |
4108 | * We're about to construct the chain(s); take into account | |
4109 | * the number of segments we have created above to hold the | |
4110 | * residual data for each chain, as well as restore the | |
4111 | * original count of segments per chain. | |
4112 | */ | |
4113 | ASSERT(nsegs > 0); | |
4114 | needed += needed / nsegs; | |
4115 | nsegs++; | |
4116 | } | |
4117 | ||
4118 | for (;;) { | |
4119 | struct mbuf *m; | |
4120 | u_int32_t flag; | |
4121 | struct ext_ref *rfa; | |
4122 | void *cl; | |
4123 | int pkthdr; | |
4124 | ||
4125 | ++num; | |
4126 | if (nsegs == 1 || (num % nsegs) != 0 || resid == 0) { | |
4127 | m = (struct mbuf *)mp_list; | |
4128 | mp_list = mp_list->obj_next; | |
4129 | } else { | |
4130 | m = (struct mbuf *)rmp_list; | |
4131 | rmp_list = rmp_list->obj_next; | |
4132 | } | |
4133 | ASSERT(m != NULL); | |
4134 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); | |
4135 | VERIFY(m->m_ext.ext_free == NULL || | |
4136 | m->m_ext.ext_free == m_bigfree || | |
4137 | m->m_ext.ext_free == m_16kfree); | |
4138 | ||
4139 | cl = m->m_ext.ext_buf; | |
4140 | rfa = MEXT_RFA(m); | |
4141 | ||
4142 | ASSERT(cl != NULL && rfa != NULL); | |
4143 | VERIFY(MBUF_IS_COMPOSITE(m)); | |
4144 | ||
4145 | flag = MEXT_FLAGS(m); | |
4146 | ||
4147 | pkthdr = (nsegs == 1 || (num % nsegs) == 1); | |
4148 | if (pkthdr) | |
4149 | first = m; | |
4150 | MBUF_INIT(m, pkthdr, MT_DATA); | |
4151 | if (m->m_ext.ext_free == m_16kfree) { | |
4152 | MBUF_16KCL_INIT(m, cl, rfa, 1, flag); | |
4153 | } else if (m->m_ext.ext_free == m_bigfree) { | |
4154 | MBUF_BIGCL_INIT(m, cl, rfa, 1, flag); | |
4155 | } else { | |
4156 | MBUF_CL_INIT(m, cl, rfa, 1, flag); | |
4157 | } | |
4158 | #if CONFIG_MACF_NET | |
4159 | if (pkthdr && mac_init_mbuf(m, wait) != 0) { | |
4160 | --num; | |
6d2010ae | 4161 | m_freem(m); |
2d21ac55 | 4162 | break; |
91447636 | 4163 | } |
2d21ac55 A |
4164 | #endif /* MAC_NET */ |
4165 | ||
4166 | *np = m; | |
4167 | if ((num % nsegs) == 0) | |
4168 | np = &first->m_nextpkt; | |
4169 | else | |
4170 | np = &m->m_next; | |
4171 | ||
4172 | if (num == needed) | |
4173 | break; | |
4174 | } | |
4175 | ||
4176 | if (num > 0) { | |
4177 | mtype_stat_add(MT_DATA, num); | |
4178 | mtype_stat_sub(MT_FREE, num); | |
91447636 | 4179 | } |
2d21ac55 A |
4180 | |
4181 | num /= nsegs; | |
4182 | ||
4183 | /* We've got them all; return to caller */ | |
4184 | if (num == *numlist) { | |
4185 | ASSERT(mp_list == NULL && rmp_list == NULL); | |
4186 | return (top); | |
4187 | } | |
4188 | ||
91447636 | 4189 | fail: |
2d21ac55 A |
4190 | /* Free up what's left of the above */ |
4191 | if (mp_list != NULL) | |
4192 | mcache_free_ext(cp, mp_list); | |
4193 | if (rmp_list != NULL) | |
4194 | mcache_free_ext(rcp, rmp_list); | |
4195 | if (wantall && top != NULL) { | |
91447636 | 4196 | m_freem(top); |
2d21ac55 | 4197 | return (NULL); |
91447636 | 4198 | } |
2d21ac55 A |
4199 | *numlist = num; |
4200 | return (top); | |
91447636 | 4201 | } |
fa4905b1 | 4202 | |
2d21ac55 A |
4203 | /* |
4204 | * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated | |
4205 | * packets on receive ring. | |
91447636 A |
4206 | */ |
4207 | __private_extern__ struct mbuf * | |
2d21ac55 | 4208 | m_getpacket_how(int wait) |
91447636 A |
4209 | { |
4210 | unsigned int num_needed = 1; | |
2d21ac55 A |
4211 | |
4212 | return (m_getpackets_internal(&num_needed, 1, wait, 1, | |
4213 | m_maxsize(MC_CL))); | |
91447636 | 4214 | } |
fa4905b1 | 4215 | |
2d21ac55 A |
4216 | /* |
4217 | * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated | |
4218 | * packets on receive ring. | |
91447636 A |
4219 | */ |
4220 | struct mbuf * | |
4221 | m_getpacket(void) | |
4222 | { | |
4223 | unsigned int num_needed = 1; | |
9bccf70c | 4224 | |
2d21ac55 A |
4225 | return (m_getpackets_internal(&num_needed, 1, M_WAIT, 1, |
4226 | m_maxsize(MC_CL))); | |
91447636 | 4227 | } |
fa4905b1 | 4228 | |
91447636 | 4229 | /* |
2d21ac55 A |
4230 | * Return a list of mbuf hdrs that point to clusters. Try for num_needed; |
4231 | * if this can't be met, return whatever number were available. Set up the | |
4232 | * first num_with_pkthdrs with mbuf hdrs configured as packet headers. These | |
4233 | * are chained on the m_nextpkt field. Any packets requested beyond this are | |
4234 | * chained onto the last packet header's m_next field. | |
91447636 A |
4235 | */ |
4236 | struct mbuf * | |
4237 | m_getpackets(int num_needed, int num_with_pkthdrs, int how) | |
4238 | { | |
4239 | unsigned int n = num_needed; | |
fa4905b1 | 4240 | |
2d21ac55 A |
4241 | return (m_getpackets_internal(&n, num_with_pkthdrs, how, 0, |
4242 | m_maxsize(MC_CL))); | |
4243 | } | |
fa4905b1 | 4244 | |
9bccf70c | 4245 | /* |
2d21ac55 A |
4246 | * Return a list of mbuf hdrs set up as packet hdrs chained together |
4247 | * on the m_nextpkt field | |
9bccf70c | 4248 | */ |
fa4905b1 A |
4249 | struct mbuf * |
4250 | m_getpackethdrs(int num_needed, int how) | |
4251 | { | |
4252 | struct mbuf *m; | |
4253 | struct mbuf **np, *top; | |
4254 | ||
4255 | top = NULL; | |
4256 | np = ⊤ | |
4257 | ||
fa4905b1 | 4258 | while (num_needed--) { |
2d21ac55 A |
4259 | m = _M_RETRYHDR(how, MT_DATA); |
4260 | if (m == NULL) | |
4261 | break; | |
4262 | ||
4263 | *np = m; | |
4264 | np = &m->m_nextpkt; | |
4265 | } | |
fa4905b1 A |
4266 | |
4267 | return (top); | |
4268 | } | |
4269 | ||
2d21ac55 A |
4270 | /* |
4271 | * Free an mbuf list (m_nextpkt) while following m_next. Returns the count | |
4272 | * for mbufs packets freed. Used by the drivers. | |
1c79356b | 4273 | */ |
2d21ac55 A |
4274 | int |
4275 | m_freem_list(struct mbuf *m) | |
1c79356b A |
4276 | { |
4277 | struct mbuf *nextpkt; | |
2d21ac55 A |
4278 | mcache_obj_t *mp_list = NULL; |
4279 | mcache_obj_t *mcl_list = NULL; | |
4280 | mcache_obj_t *mbc_list = NULL; | |
4281 | mcache_obj_t *m16k_list = NULL; | |
4282 | mcache_obj_t *m_mcl_list = NULL; | |
4283 | mcache_obj_t *m_mbc_list = NULL; | |
4284 | mcache_obj_t *m_m16k_list = NULL; | |
4285 | mcache_obj_t *ref_list = NULL; | |
4286 | int pktcount = 0; | |
4287 | int mt_free = 0, mt_data = 0, mt_header = 0, mt_soname = 0, mt_tag = 0; | |
4288 | ||
4289 | while (m != NULL) { | |
4290 | pktcount++; | |
4291 | ||
4292 | nextpkt = m->m_nextpkt; | |
4293 | m->m_nextpkt = NULL; | |
4294 | ||
4295 | while (m != NULL) { | |
4296 | struct mbuf *next = m->m_next; | |
4297 | mcache_obj_t *o, *rfa; | |
6d2010ae | 4298 | u_int32_t refcnt, composite; |
fa4905b1 | 4299 | |
2d21ac55 A |
4300 | if (m->m_type == MT_FREE) |
4301 | panic("m_free: freeing an already freed mbuf"); | |
9bccf70c | 4302 | |
2d21ac55 A |
4303 | if (m->m_type != MT_FREE) |
4304 | mt_free++; | |
91447636 | 4305 | |
2d21ac55 | 4306 | if (m->m_flags & M_PKTHDR) { |
39236c6e A |
4307 | /* Check for scratch area overflow */ |
4308 | m_redzone_verify(m); | |
4309 | /* Free the aux data and tags if there is any */ | |
91447636 | 4310 | m_tag_delete_chain(m, NULL); |
91447636 | 4311 | } |
9bccf70c | 4312 | |
2d21ac55 A |
4313 | if (!(m->m_flags & M_EXT)) |
4314 | goto simple_free; | |
4315 | ||
316670eb | 4316 | o = (mcache_obj_t *)(void *)m->m_ext.ext_buf; |
2d21ac55 | 4317 | refcnt = m_decref(m); |
6d2010ae A |
4318 | composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE); |
4319 | if (refcnt == 0 && !composite) { | |
2d21ac55 A |
4320 | if (m->m_ext.ext_free == NULL) { |
4321 | o->obj_next = mcl_list; | |
4322 | mcl_list = o; | |
4323 | } else if (m->m_ext.ext_free == m_bigfree) { | |
4324 | o->obj_next = mbc_list; | |
4325 | mbc_list = o; | |
4326 | } else if (m->m_ext.ext_free == m_16kfree) { | |
4327 | o->obj_next = m16k_list; | |
4328 | m16k_list = o; | |
4329 | } else { | |
4330 | (*(m->m_ext.ext_free))((caddr_t)o, | |
4331 | m->m_ext.ext_size, | |
4332 | m->m_ext.ext_arg); | |
4333 | } | |
316670eb | 4334 | rfa = (mcache_obj_t *)(void *)MEXT_RFA(m); |
2d21ac55 A |
4335 | rfa->obj_next = ref_list; |
4336 | ref_list = rfa; | |
4337 | MEXT_RFA(m) = NULL; | |
6d2010ae | 4338 | } else if (refcnt == 0 && composite) { |
2d21ac55 A |
4339 | VERIFY(m->m_type != MT_FREE); |
4340 | /* | |
4341 | * Amortize the costs of atomic operations | |
4342 | * by doing them at the end, if possible. | |
4343 | */ | |
4344 | if (m->m_type == MT_DATA) | |
4345 | mt_data++; | |
4346 | else if (m->m_type == MT_HEADER) | |
4347 | mt_header++; | |
4348 | else if (m->m_type == MT_SONAME) | |
4349 | mt_soname++; | |
4350 | else if (m->m_type == MT_TAG) | |
4351 | mt_tag++; | |
4352 | else | |
4353 | mtype_stat_dec(m->m_type); | |
fa4905b1 | 4354 | |
2d21ac55 A |
4355 | m->m_type = MT_FREE; |
4356 | m->m_flags = M_EXT; | |
4357 | m->m_len = 0; | |
4358 | m->m_next = m->m_nextpkt = NULL; | |
4359 | ||
6d2010ae A |
4360 | MEXT_FLAGS(m) &= ~EXTF_READONLY; |
4361 | ||
2d21ac55 A |
4362 | /* "Free" into the intermediate cache */ |
4363 | o = (mcache_obj_t *)m; | |
4364 | if (m->m_ext.ext_free == NULL) { | |
4365 | o->obj_next = m_mcl_list; | |
4366 | m_mcl_list = o; | |
4367 | } else if (m->m_ext.ext_free == m_bigfree) { | |
4368 | o->obj_next = m_mbc_list; | |
4369 | m_mbc_list = o; | |
1c79356b | 4370 | } else { |
2d21ac55 A |
4371 | VERIFY(m->m_ext.ext_free == m_16kfree); |
4372 | o->obj_next = m_m16k_list; | |
4373 | m_m16k_list = o; | |
1c79356b | 4374 | } |
2d21ac55 A |
4375 | m = next; |
4376 | continue; | |
1c79356b | 4377 | } |
2d21ac55 A |
4378 | simple_free: |
4379 | /* | |
4380 | * Amortize the costs of atomic operations | |
4381 | * by doing them at the end, if possible. | |
4382 | */ | |
4383 | if (m->m_type == MT_DATA) | |
4384 | mt_data++; | |
4385 | else if (m->m_type == MT_HEADER) | |
4386 | mt_header++; | |
4387 | else if (m->m_type == MT_SONAME) | |
4388 | mt_soname++; | |
4389 | else if (m->m_type == MT_TAG) | |
4390 | mt_tag++; | |
4391 | else if (m->m_type != MT_FREE) | |
4392 | mtype_stat_dec(m->m_type); | |
4393 | ||
1c79356b | 4394 | m->m_type = MT_FREE; |
2d21ac55 A |
4395 | m->m_flags = m->m_len = 0; |
4396 | m->m_next = m->m_nextpkt = NULL; | |
fa4905b1 | 4397 | |
2d21ac55 A |
4398 | ((mcache_obj_t *)m)->obj_next = mp_list; |
4399 | mp_list = (mcache_obj_t *)m; | |
4400 | ||
4401 | m = next; | |
4402 | } | |
fa4905b1 | 4403 | |
2d21ac55 A |
4404 | m = nextpkt; |
4405 | } | |
fa4905b1 | 4406 | |
2d21ac55 A |
4407 | if (mt_free > 0) |
4408 | mtype_stat_add(MT_FREE, mt_free); | |
4409 | if (mt_data > 0) | |
4410 | mtype_stat_sub(MT_DATA, mt_data); | |
4411 | if (mt_header > 0) | |
4412 | mtype_stat_sub(MT_HEADER, mt_header); | |
4413 | if (mt_soname > 0) | |
4414 | mtype_stat_sub(MT_SONAME, mt_soname); | |
4415 | if (mt_tag > 0) | |
4416 | mtype_stat_sub(MT_TAG, mt_tag); | |
4417 | ||
4418 | if (mp_list != NULL) | |
4419 | mcache_free_ext(m_cache(MC_MBUF), mp_list); | |
4420 | if (mcl_list != NULL) | |
4421 | mcache_free_ext(m_cache(MC_CL), mcl_list); | |
4422 | if (mbc_list != NULL) | |
4423 | mcache_free_ext(m_cache(MC_BIGCL), mbc_list); | |
4424 | if (m16k_list != NULL) | |
4425 | mcache_free_ext(m_cache(MC_16KCL), m16k_list); | |
4426 | if (m_mcl_list != NULL) | |
4427 | mcache_free_ext(m_cache(MC_MBUF_CL), m_mcl_list); | |
4428 | if (m_mbc_list != NULL) | |
4429 | mcache_free_ext(m_cache(MC_MBUF_BIGCL), m_mbc_list); | |
4430 | if (m_m16k_list != NULL) | |
4431 | mcache_free_ext(m_cache(MC_MBUF_16KCL), m_m16k_list); | |
4432 | if (ref_list != NULL) | |
4433 | mcache_free_ext(ref_cache, ref_list); | |
4434 | ||
4435 | return (pktcount); | |
1c79356b A |
4436 | } |
4437 | ||
4438 | void | |
2d21ac55 | 4439 | m_freem(struct mbuf *m) |
1c79356b | 4440 | { |
2d21ac55 | 4441 | while (m != NULL) |
1c79356b A |
4442 | m = m_free(m); |
4443 | } | |
4444 | ||
4445 | /* | |
4446 | * Mbuffer utility routines. | |
4447 | */ | |
2d21ac55 | 4448 | |
1c79356b | 4449 | /* |
2d21ac55 A |
4450 | * Compute the amount of space available before the current start |
4451 | * of data in an mbuf. | |
1c79356b | 4452 | */ |
91447636 | 4453 | int |
2d21ac55 | 4454 | m_leadingspace(struct mbuf *m) |
1c79356b A |
4455 | { |
4456 | if (m->m_flags & M_EXT) { | |
4457 | if (MCLHASREFERENCE(m)) | |
2d21ac55 | 4458 | return (0); |
1c79356b A |
4459 | return (m->m_data - m->m_ext.ext_buf); |
4460 | } | |
4461 | if (m->m_flags & M_PKTHDR) | |
4462 | return (m->m_data - m->m_pktdat); | |
4463 | return (m->m_data - m->m_dat); | |
4464 | } | |
4465 | ||
4466 | /* | |
2d21ac55 | 4467 | * Compute the amount of space available after the end of data in an mbuf. |
1c79356b | 4468 | */ |
91447636 | 4469 | int |
2d21ac55 | 4470 | m_trailingspace(struct mbuf *m) |
1c79356b A |
4471 | { |
4472 | if (m->m_flags & M_EXT) { | |
4473 | if (MCLHASREFERENCE(m)) | |
2d21ac55 | 4474 | return (0); |
1c79356b | 4475 | return (m->m_ext.ext_buf + m->m_ext.ext_size - |
2d21ac55 | 4476 | (m->m_data + m->m_len)); |
1c79356b A |
4477 | } |
4478 | return (&m->m_dat[MLEN] - (m->m_data + m->m_len)); | |
4479 | } | |
4480 | ||
4481 | /* | |
2d21ac55 A |
4482 | * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain, |
4483 | * copy junk along. Does not adjust packet header length. | |
1c79356b A |
4484 | */ |
4485 | struct mbuf * | |
2d21ac55 | 4486 | m_prepend(struct mbuf *m, int len, int how) |
1c79356b A |
4487 | { |
4488 | struct mbuf *mn; | |
4489 | ||
2d21ac55 A |
4490 | _MGET(mn, how, m->m_type); |
4491 | if (mn == NULL) { | |
1c79356b | 4492 | m_freem(m); |
2d21ac55 | 4493 | return (NULL); |
1c79356b A |
4494 | } |
4495 | if (m->m_flags & M_PKTHDR) { | |
4496 | M_COPY_PKTHDR(mn, m); | |
4497 | m->m_flags &= ~M_PKTHDR; | |
4498 | } | |
4499 | mn->m_next = m; | |
4500 | m = mn; | |
4501 | if (len < MHLEN) | |
4502 | MH_ALIGN(m, len); | |
4503 | m->m_len = len; | |
4504 | return (m); | |
4505 | } | |
4506 | ||
9bccf70c | 4507 | /* |
2d21ac55 A |
4508 | * Replacement for old M_PREPEND macro: allocate new mbuf to prepend to |
4509 | * chain, copy junk along, and adjust length. | |
9bccf70c A |
4510 | */ |
4511 | struct mbuf * | |
2d21ac55 A |
4512 | m_prepend_2(struct mbuf *m, int len, int how) |
4513 | { | |
4514 | if (M_LEADINGSPACE(m) >= len) { | |
4515 | m->m_data -= len; | |
4516 | m->m_len += len; | |
4517 | } else { | |
9bccf70c | 4518 | m = m_prepend(m, len, how); |
2d21ac55 A |
4519 | } |
4520 | if ((m) && (m->m_flags & M_PKTHDR)) | |
4521 | m->m_pkthdr.len += len; | |
4522 | return (m); | |
9bccf70c A |
4523 | } |
4524 | ||
1c79356b A |
4525 | /* |
4526 | * Make a copy of an mbuf chain starting "off0" bytes from the beginning, | |
4527 | * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. | |
4528 | * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller. | |
4529 | */ | |
4530 | int MCFail; | |
4531 | ||
4532 | struct mbuf * | |
39236c6e | 4533 | m_copym_mode(struct mbuf *m, int off0, int len, int wait, uint32_t mode) |
1c79356b | 4534 | { |
2d21ac55 | 4535 | struct mbuf *n, *mhdr = NULL, **np; |
91447636 | 4536 | int off = off0; |
1c79356b A |
4537 | struct mbuf *top; |
4538 | int copyhdr = 0; | |
4539 | ||
4540 | if (off < 0 || len < 0) | |
2d21ac55 A |
4541 | panic("m_copym: invalid offset %d or len %d", off, len); |
4542 | ||
fe8ab488 A |
4543 | VERIFY((mode != M_COPYM_MUST_COPY_HDR && |
4544 | mode != M_COPYM_MUST_MOVE_HDR) || (m->m_flags & M_PKTHDR)); | |
4545 | ||
4546 | if ((off == 0 && (m->m_flags & M_PKTHDR)) || | |
4547 | mode == M_COPYM_MUST_COPY_HDR || mode == M_COPYM_MUST_MOVE_HDR) { | |
2d21ac55 | 4548 | mhdr = m; |
1c79356b | 4549 | copyhdr = 1; |
2d21ac55 | 4550 | } |
fa4905b1 A |
4551 | |
4552 | while (off >= m->m_len) { | |
2d21ac55 A |
4553 | if (m->m_next == NULL) |
4554 | panic("m_copym: invalid mbuf chain"); | |
1c79356b A |
4555 | off -= m->m_len; |
4556 | m = m->m_next; | |
4557 | } | |
4558 | np = ⊤ | |
2d21ac55 | 4559 | top = NULL; |
fa4905b1 | 4560 | |
1c79356b | 4561 | while (len > 0) { |
2d21ac55 | 4562 | if (m == NULL) { |
1c79356b | 4563 | if (len != M_COPYALL) |
2d21ac55 | 4564 | panic("m_copym: len != M_COPYALL"); |
1c79356b A |
4565 | break; |
4566 | } | |
2d21ac55 | 4567 | |
fe8ab488 A |
4568 | if (copyhdr) |
4569 | n = _M_RETRYHDR(wait, m->m_type); | |
4570 | else | |
4571 | n = _M_RETRY(wait, m->m_type); | |
1c79356b | 4572 | *np = n; |
fa4905b1 | 4573 | |
2d21ac55 | 4574 | if (n == NULL) |
1c79356b | 4575 | goto nospace; |
2d21ac55 A |
4576 | |
4577 | if (copyhdr != 0) { | |
fe8ab488 A |
4578 | if ((mode == M_COPYM_MOVE_HDR) || |
4579 | (mode == M_COPYM_MUST_MOVE_HDR)) { | |
39236c6e | 4580 | M_COPY_PKTHDR(n, mhdr); |
fe8ab488 A |
4581 | } else if ((mode == M_COPYM_COPY_HDR) || |
4582 | (mode == M_COPYM_MUST_COPY_HDR)) { | |
39236c6e A |
4583 | if (m_dup_pkthdr(n, mhdr, wait) == 0) |
4584 | goto nospace; | |
4585 | } | |
1c79356b A |
4586 | if (len == M_COPYALL) |
4587 | n->m_pkthdr.len -= off0; | |
4588 | else | |
4589 | n->m_pkthdr.len = len; | |
4590 | copyhdr = 0; | |
fe8ab488 A |
4591 | /* |
4592 | * There is data to copy from the packet header mbuf | |
4593 | * if it is empty or it is before the starting offset | |
4594 | */ | |
4595 | if (mhdr != m) { | |
4596 | np = &n->m_next; | |
4597 | continue; | |
2d21ac55 | 4598 | } |
1c79356b | 4599 | } |
2d21ac55 | 4600 | n->m_len = MIN(len, (m->m_len - off)); |
1c79356b | 4601 | if (m->m_flags & M_EXT) { |
1c79356b | 4602 | n->m_ext = m->m_ext; |
2d21ac55 | 4603 | m_incref(m); |
1c79356b A |
4604 | n->m_data = m->m_data + off; |
4605 | n->m_flags |= M_EXT; | |
fa4905b1 | 4606 | } else { |
fe8ab488 A |
4607 | /* |
4608 | * Limit to the capacity of the destination | |
4609 | */ | |
4610 | if (n->m_flags & M_PKTHDR) | |
4611 | n->m_len = MIN(n->m_len, MHLEN); | |
4612 | else | |
4613 | n->m_len = MIN(n->m_len, MLEN); | |
4614 | ||
4615 | if (MTOD(n, char *) + n->m_len > ((char *)n) + MSIZE) | |
4616 | panic("%s n %p copy overflow", | |
4617 | __func__, n); | |
4618 | ||
2d21ac55 | 4619 | bcopy(MTOD(m, caddr_t)+off, MTOD(n, caddr_t), |
1c79356b | 4620 | (unsigned)n->m_len); |
fa4905b1 | 4621 | } |
1c79356b A |
4622 | if (len != M_COPYALL) |
4623 | len -= n->m_len; | |
4624 | off = 0; | |
4625 | m = m->m_next; | |
4626 | np = &n->m_next; | |
4627 | } | |
fa4905b1 | 4628 | |
2d21ac55 | 4629 | if (top == NULL) |
1c79356b | 4630 | MCFail++; |
fa4905b1 | 4631 | |
1c79356b A |
4632 | return (top); |
4633 | nospace: | |
fa4905b1 | 4634 | |
1c79356b A |
4635 | m_freem(top); |
4636 | MCFail++; | |
2d21ac55 | 4637 | return (NULL); |
1c79356b A |
4638 | } |
4639 | ||
39236c6e A |
4640 | |
4641 | struct mbuf * | |
4642 | m_copym(struct mbuf *m, int off0, int len, int wait) | |
4643 | { | |
4644 | return (m_copym_mode(m, off0, len, wait, M_COPYM_MOVE_HDR)); | |
4645 | } | |
4646 | ||
9bccf70c | 4647 | /* |
2d21ac55 A |
4648 | * Equivalent to m_copym except that all necessary mbuf hdrs are allocated |
4649 | * within this routine also, the last mbuf and offset accessed are passed | |
4650 | * out and can be passed back in to avoid having to rescan the entire mbuf | |
4651 | * list (normally hung off of the socket) | |
9bccf70c | 4652 | */ |
fa4905b1 | 4653 | struct mbuf * |
fe8ab488 | 4654 | m_copym_with_hdrs(struct mbuf *m0, int off0, int len0, int wait, |
39236c6e | 4655 | struct mbuf **m_lastm, int *m_off, uint32_t mode) |
2d21ac55 | 4656 | { |
fe8ab488 | 4657 | struct mbuf *m = m0, *n, **np = NULL; |
2d21ac55 A |
4658 | int off = off0, len = len0; |
4659 | struct mbuf *top = NULL; | |
4660 | int mcflags = MSLEEPF(wait); | |
fa4905b1 | 4661 | int copyhdr = 0; |
2d21ac55 A |
4662 | int type = 0; |
4663 | mcache_obj_t *list = NULL; | |
4664 | int needed = 0; | |
fa4905b1 | 4665 | |
2d21ac55 | 4666 | if (off == 0 && (m->m_flags & M_PKTHDR)) |
fa4905b1 | 4667 | copyhdr = 1; |
fe8ab488 A |
4668 | |
4669 | if (m_lastm != NULL && *m_lastm != NULL) { | |
6d2010ae | 4670 | m = *m_lastm; |
fa4905b1 A |
4671 | off = *m_off; |
4672 | } else { | |
2d21ac55 A |
4673 | while (off >= m->m_len) { |
4674 | off -= m->m_len; | |
fa4905b1 A |
4675 | m = m->m_next; |
4676 | } | |
4677 | } | |
91447636 | 4678 | |
2d21ac55 A |
4679 | n = m; |
4680 | while (len > 0) { | |
4681 | needed++; | |
4682 | ASSERT(n != NULL); | |
4683 | len -= MIN(len, (n->m_len - ((needed == 1) ? off : 0))); | |
4684 | n = n->m_next; | |
4685 | } | |
4686 | needed++; | |
4687 | len = len0; | |
4688 | ||
4689 | /* | |
4690 | * If the caller doesn't want to be put to sleep, mark it with | |
4691 | * MCR_TRYHARD so that we may reclaim buffers from other places | |
4692 | * before giving up. | |
4693 | */ | |
4694 | if (mcflags & MCR_NOSLEEP) | |
4695 | mcflags |= MCR_TRYHARD; | |
4696 | ||
4697 | if (mcache_alloc_ext(m_cache(MC_MBUF), &list, needed, | |
4698 | mcflags) != needed) | |
4699 | goto nospace; | |
fa4905b1 | 4700 | |
2d21ac55 | 4701 | needed = 0; |
fa4905b1 | 4702 | while (len > 0) { |
2d21ac55 A |
4703 | n = (struct mbuf *)list; |
4704 | list = list->obj_next; | |
4705 | ASSERT(n != NULL && m != NULL); | |
4706 | ||
4707 | type = (top == NULL) ? MT_HEADER : m->m_type; | |
4708 | MBUF_INIT(n, (top == NULL), type); | |
4709 | #if CONFIG_MACF_NET | |
4710 | if (top == NULL && mac_mbuf_label_init(n, wait) != 0) { | |
4711 | mtype_stat_inc(MT_HEADER); | |
4712 | mtype_stat_dec(MT_FREE); | |
4713 | m_free(n); | |
fa4905b1 | 4714 | goto nospace; |
2d21ac55 A |
4715 | } |
4716 | #endif /* MAC_NET */ | |
4717 | ||
4718 | if (top == NULL) { | |
4719 | top = n; | |
fa4905b1 A |
4720 | np = &top->m_next; |
4721 | continue; | |
2d21ac55 A |
4722 | } else { |
4723 | needed++; | |
4724 | *np = n; | |
4725 | } | |
fa4905b1 A |
4726 | |
4727 | if (copyhdr) { | |
fe8ab488 A |
4728 | if ((mode == M_COPYM_MOVE_HDR) || |
4729 | (mode == M_COPYM_MUST_MOVE_HDR)) { | |
39236c6e | 4730 | M_COPY_PKTHDR(n, m); |
fe8ab488 A |
4731 | } else if ((mode == M_COPYM_COPY_HDR) || |
4732 | (mode == M_COPYM_MUST_COPY_HDR)) { | |
39236c6e A |
4733 | if (m_dup_pkthdr(n, m, wait) == 0) |
4734 | goto nospace; | |
4735 | } | |
fa4905b1 A |
4736 | n->m_pkthdr.len = len; |
4737 | copyhdr = 0; | |
4738 | } | |
2d21ac55 | 4739 | n->m_len = MIN(len, (m->m_len - off)); |
fa4905b1 A |
4740 | |
4741 | if (m->m_flags & M_EXT) { | |
4742 | n->m_ext = m->m_ext; | |
2d21ac55 | 4743 | m_incref(m); |
fa4905b1 A |
4744 | n->m_data = m->m_data + off; |
4745 | n->m_flags |= M_EXT; | |
4746 | } else { | |
fe8ab488 A |
4747 | if (MTOD(n, char *) + n->m_len > ((char *)n) + MSIZE) |
4748 | panic("%s n %p copy overflow", | |
4749 | __func__, n); | |
4750 | ||
2d21ac55 | 4751 | bcopy(MTOD(m, caddr_t)+off, MTOD(n, caddr_t), |
fa4905b1 A |
4752 | (unsigned)n->m_len); |
4753 | } | |
4754 | len -= n->m_len; | |
2d21ac55 | 4755 | |
fa4905b1 | 4756 | if (len == 0) { |
fe8ab488 A |
4757 | if (m_lastm != NULL && m_off != NULL) { |
4758 | if ((off + n->m_len) == m->m_len) { | |
4759 | *m_lastm = m->m_next; | |
4760 | *m_off = 0; | |
4761 | } else { | |
4762 | *m_lastm = m; | |
4763 | *m_off = off + n->m_len; | |
4764 | } | |
fa4905b1 | 4765 | } |
2d21ac55 | 4766 | break; |
fa4905b1 A |
4767 | } |
4768 | off = 0; | |
4769 | m = m->m_next; | |
4770 | np = &n->m_next; | |
4771 | } | |
fa4905b1 | 4772 | |
2d21ac55 A |
4773 | mtype_stat_inc(MT_HEADER); |
4774 | mtype_stat_add(type, needed); | |
4775 | mtype_stat_sub(MT_FREE, needed + 1); | |
4776 | ||
4777 | ASSERT(list == NULL); | |
fa4905b1 | 4778 | return (top); |
fa4905b1 | 4779 | |
2d21ac55 A |
4780 | nospace: |
4781 | if (list != NULL) | |
4782 | mcache_free_ext(m_cache(MC_MBUF), list); | |
4783 | if (top != NULL) | |
4784 | m_freem(top); | |
fa4905b1 | 4785 | MCFail++; |
2d21ac55 | 4786 | return (NULL); |
fa4905b1 A |
4787 | } |
4788 | ||
1c79356b A |
4789 | /* |
4790 | * Copy data from an mbuf chain starting "off" bytes from the beginning, | |
4791 | * continuing for "len" bytes, into the indicated buffer. | |
4792 | */ | |
2d21ac55 | 4793 | void |
b0d623f7 | 4794 | m_copydata(struct mbuf *m, int off, int len, void *vp) |
1c79356b | 4795 | { |
91447636 | 4796 | unsigned count; |
b0d623f7 | 4797 | char *cp = vp; |
1c79356b A |
4798 | |
4799 | if (off < 0 || len < 0) | |
2d21ac55 A |
4800 | panic("m_copydata: invalid offset %d or len %d", off, len); |
4801 | ||
1c79356b | 4802 | while (off > 0) { |
2d21ac55 A |
4803 | if (m == NULL) |
4804 | panic("m_copydata: invalid mbuf chain"); | |
1c79356b A |
4805 | if (off < m->m_len) |
4806 | break; | |
4807 | off -= m->m_len; | |
4808 | m = m->m_next; | |
4809 | } | |
4810 | while (len > 0) { | |
2d21ac55 A |
4811 | if (m == NULL) |
4812 | panic("m_copydata: invalid mbuf chain"); | |
4813 | count = MIN(m->m_len - off, len); | |
4814 | bcopy(MTOD(m, caddr_t) + off, cp, count); | |
1c79356b A |
4815 | len -= count; |
4816 | cp += count; | |
4817 | off = 0; | |
4818 | m = m->m_next; | |
4819 | } | |
4820 | } | |
4821 | ||
4822 | /* | |
2d21ac55 A |
4823 | * Concatenate mbuf chain n to m. Both chains must be of the same type |
4824 | * (e.g. MT_DATA). Any m_pkthdr is not updated. | |
1c79356b | 4825 | */ |
2d21ac55 A |
4826 | void |
4827 | m_cat(struct mbuf *m, struct mbuf *n) | |
1c79356b A |
4828 | { |
4829 | while (m->m_next) | |
4830 | m = m->m_next; | |
4831 | while (n) { | |
2d21ac55 | 4832 | if ((m->m_flags & M_EXT) || |
1c79356b A |
4833 | m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) { |
4834 | /* just join the two chains */ | |
4835 | m->m_next = n; | |
4836 | return; | |
4837 | } | |
4838 | /* splat the data from one into the other */ | |
2d21ac55 | 4839 | bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len, |
1c79356b A |
4840 | (u_int)n->m_len); |
4841 | m->m_len += n->m_len; | |
4842 | n = m_free(n); | |
4843 | } | |
4844 | } | |
4845 | ||
4846 | void | |
2d21ac55 | 4847 | m_adj(struct mbuf *mp, int req_len) |
1c79356b | 4848 | { |
91447636 A |
4849 | int len = req_len; |
4850 | struct mbuf *m; | |
4851 | int count; | |
1c79356b A |
4852 | |
4853 | if ((m = mp) == NULL) | |
4854 | return; | |
4855 | if (len >= 0) { | |
4856 | /* | |
4857 | * Trim from head. | |
4858 | */ | |
4859 | while (m != NULL && len > 0) { | |
4860 | if (m->m_len <= len) { | |
4861 | len -= m->m_len; | |
4862 | m->m_len = 0; | |
4863 | m = m->m_next; | |
4864 | } else { | |
4865 | m->m_len -= len; | |
4866 | m->m_data += len; | |
4867 | len = 0; | |
4868 | } | |
4869 | } | |
4870 | m = mp; | |
4871 | if (m->m_flags & M_PKTHDR) | |
4872 | m->m_pkthdr.len -= (req_len - len); | |
4873 | } else { | |
4874 | /* | |
4875 | * Trim from tail. Scan the mbuf chain, | |
4876 | * calculating its length and finding the last mbuf. | |
4877 | * If the adjustment only affects this mbuf, then just | |
4878 | * adjust and return. Otherwise, rescan and truncate | |
4879 | * after the remaining size. | |
4880 | */ | |
4881 | len = -len; | |
4882 | count = 0; | |
4883 | for (;;) { | |
4884 | count += m->m_len; | |
4885 | if (m->m_next == (struct mbuf *)0) | |
4886 | break; | |
4887 | m = m->m_next; | |
4888 | } | |
4889 | if (m->m_len >= len) { | |
4890 | m->m_len -= len; | |
4891 | m = mp; | |
4892 | if (m->m_flags & M_PKTHDR) | |
4893 | m->m_pkthdr.len -= len; | |
4894 | return; | |
4895 | } | |
4896 | count -= len; | |
4897 | if (count < 0) | |
4898 | count = 0; | |
4899 | /* | |
4900 | * Correct length for chain is "count". | |
4901 | * Find the mbuf with last data, adjust its length, | |
4902 | * and toss data from remaining mbufs on chain. | |
4903 | */ | |
4904 | m = mp; | |
4905 | if (m->m_flags & M_PKTHDR) | |
4906 | m->m_pkthdr.len = count; | |
4907 | for (; m; m = m->m_next) { | |
4908 | if (m->m_len >= count) { | |
4909 | m->m_len = count; | |
4910 | break; | |
4911 | } | |
4912 | count -= m->m_len; | |
4913 | } | |
91447636 | 4914 | while ((m = m->m_next)) |
1c79356b A |
4915 | m->m_len = 0; |
4916 | } | |
4917 | } | |
4918 | ||
4919 | /* | |
4920 | * Rearange an mbuf chain so that len bytes are contiguous | |
4921 | * and in the data area of an mbuf (so that mtod and dtom | |
4922 | * will work for a structure of size len). Returns the resulting | |
4923 | * mbuf chain on success, frees it and returns null on failure. | |
4924 | * If there is room, it will add up to max_protohdr-len extra bytes to the | |
4925 | * contiguous region in an attempt to avoid being called next time. | |
4926 | */ | |
4927 | int MPFail; | |
4928 | ||
4929 | struct mbuf * | |
2d21ac55 | 4930 | m_pullup(struct mbuf *n, int len) |
1c79356b | 4931 | { |
91447636 A |
4932 | struct mbuf *m; |
4933 | int count; | |
1c79356b A |
4934 | int space; |
4935 | ||
4936 | /* | |
4937 | * If first mbuf has no cluster, and has room for len bytes | |
4938 | * without shifting current data, pullup into it, | |
4939 | * otherwise allocate a new mbuf to prepend to the chain. | |
4940 | */ | |
4941 | if ((n->m_flags & M_EXT) == 0 && | |
4942 | n->m_data + len < &n->m_dat[MLEN] && n->m_next) { | |
4943 | if (n->m_len >= len) | |
4944 | return (n); | |
4945 | m = n; | |
4946 | n = n->m_next; | |
4947 | len -= m->m_len; | |
4948 | } else { | |
4949 | if (len > MHLEN) | |
4950 | goto bad; | |
2d21ac55 | 4951 | _MGET(m, M_DONTWAIT, n->m_type); |
1c79356b A |
4952 | if (m == 0) |
4953 | goto bad; | |
4954 | m->m_len = 0; | |
4955 | if (n->m_flags & M_PKTHDR) { | |
4956 | M_COPY_PKTHDR(m, n); | |
4957 | n->m_flags &= ~M_PKTHDR; | |
4958 | } | |
4959 | } | |
4960 | space = &m->m_dat[MLEN] - (m->m_data + m->m_len); | |
4961 | do { | |
2d21ac55 A |
4962 | count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len); |
4963 | bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len, | |
4964 | (unsigned)count); | |
1c79356b A |
4965 | len -= count; |
4966 | m->m_len += count; | |
4967 | n->m_len -= count; | |
4968 | space -= count; | |
4969 | if (n->m_len) | |
4970 | n->m_data += count; | |
4971 | else | |
4972 | n = m_free(n); | |
4973 | } while (len > 0 && n); | |
4974 | if (len > 0) { | |
4975 | (void) m_free(m); | |
4976 | goto bad; | |
4977 | } | |
4978 | m->m_next = n; | |
4979 | return (m); | |
4980 | bad: | |
4981 | m_freem(n); | |
4982 | MPFail++; | |
4983 | return (0); | |
4984 | } | |
4985 | ||
6d2010ae A |
4986 | /* |
4987 | * Like m_pullup(), except a new mbuf is always allocated, and we allow | |
4988 | * the amount of empty space before the data in the new mbuf to be specified | |
4989 | * (in the event that the caller expects to prepend later). | |
4990 | */ | |
4991 | __private_extern__ int MSFail = 0; | |
4992 | ||
4993 | __private_extern__ struct mbuf * | |
4994 | m_copyup(struct mbuf *n, int len, int dstoff) | |
4995 | { | |
4996 | struct mbuf *m; | |
4997 | int count, space; | |
4998 | ||
4999 | if (len > (MHLEN - dstoff)) | |
5000 | goto bad; | |
5001 | MGET(m, M_DONTWAIT, n->m_type); | |
5002 | if (m == NULL) | |
5003 | goto bad; | |
5004 | m->m_len = 0; | |
5005 | if (n->m_flags & M_PKTHDR) { | |
5006 | m_copy_pkthdr(m, n); | |
5007 | n->m_flags &= ~M_PKTHDR; | |
5008 | } | |
5009 | m->m_data += dstoff; | |
5010 | space = &m->m_dat[MLEN] - (m->m_data + m->m_len); | |
5011 | do { | |
5012 | count = min(min(max(len, max_protohdr), space), n->m_len); | |
5013 | memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), | |
5014 | (unsigned)count); | |
5015 | len -= count; | |
5016 | m->m_len += count; | |
5017 | n->m_len -= count; | |
5018 | space -= count; | |
5019 | if (n->m_len) | |
5020 | n->m_data += count; | |
5021 | else | |
5022 | n = m_free(n); | |
5023 | } while (len > 0 && n); | |
5024 | if (len > 0) { | |
5025 | (void) m_free(m); | |
5026 | goto bad; | |
5027 | } | |
5028 | m->m_next = n; | |
5029 | return (m); | |
5030 | bad: | |
5031 | m_freem(n); | |
5032 | MSFail++; | |
5033 | return (NULL); | |
5034 | } | |
5035 | ||
1c79356b A |
5036 | /* |
5037 | * Partition an mbuf chain in two pieces, returning the tail -- | |
5038 | * all but the first len0 bytes. In case of failure, it returns NULL and | |
5039 | * attempts to restore the chain to its original state. | |
5040 | */ | |
5041 | struct mbuf * | |
2d21ac55 | 5042 | m_split(struct mbuf *m0, int len0, int wait) |
b0d623f7 A |
5043 | { |
5044 | return (m_split0(m0, len0, wait, 1)); | |
5045 | } | |
5046 | ||
5047 | static struct mbuf * | |
5048 | m_split0(struct mbuf *m0, int len0, int wait, int copyhdr) | |
1c79356b | 5049 | { |
91447636 | 5050 | struct mbuf *m, *n; |
1c79356b A |
5051 | unsigned len = len0, remain; |
5052 | ||
5053 | for (m = m0; m && len > m->m_len; m = m->m_next) | |
5054 | len -= m->m_len; | |
2d21ac55 A |
5055 | if (m == NULL) |
5056 | return (NULL); | |
1c79356b | 5057 | remain = m->m_len - len; |
b0d623f7 | 5058 | if (copyhdr && (m0->m_flags & M_PKTHDR)) { |
2d21ac55 A |
5059 | _MGETHDR(n, wait, m0->m_type); |
5060 | if (n == NULL) | |
5061 | return (NULL); | |
1c79356b A |
5062 | n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; |
5063 | n->m_pkthdr.len = m0->m_pkthdr.len - len0; | |
5064 | m0->m_pkthdr.len = len0; | |
5065 | if (m->m_flags & M_EXT) | |
5066 | goto extpacket; | |
5067 | if (remain > MHLEN) { | |
5068 | /* m can't be the lead packet */ | |
5069 | MH_ALIGN(n, 0); | |
5070 | n->m_next = m_split(m, len, wait); | |
2d21ac55 | 5071 | if (n->m_next == NULL) { |
1c79356b | 5072 | (void) m_free(n); |
2d21ac55 | 5073 | return (NULL); |
1c79356b A |
5074 | } else |
5075 | return (n); | |
5076 | } else | |
5077 | MH_ALIGN(n, remain); | |
5078 | } else if (remain == 0) { | |
5079 | n = m->m_next; | |
2d21ac55 | 5080 | m->m_next = NULL; |
1c79356b A |
5081 | return (n); |
5082 | } else { | |
2d21ac55 A |
5083 | _MGET(n, wait, m->m_type); |
5084 | if (n == NULL) | |
5085 | return (NULL); | |
1c79356b A |
5086 | M_ALIGN(n, remain); |
5087 | } | |
5088 | extpacket: | |
5089 | if (m->m_flags & M_EXT) { | |
5090 | n->m_flags |= M_EXT; | |
0b4e3aa0 | 5091 | n->m_ext = m->m_ext; |
2d21ac55 | 5092 | m_incref(m); |
1c79356b A |
5093 | n->m_data = m->m_data + len; |
5094 | } else { | |
2d21ac55 | 5095 | bcopy(MTOD(m, caddr_t) + len, MTOD(n, caddr_t), remain); |
1c79356b A |
5096 | } |
5097 | n->m_len = remain; | |
5098 | m->m_len = len; | |
5099 | n->m_next = m->m_next; | |
2d21ac55 | 5100 | m->m_next = NULL; |
1c79356b A |
5101 | return (n); |
5102 | } | |
2d21ac55 | 5103 | |
1c79356b A |
5104 | /* |
5105 | * Routine to copy from device local memory into mbufs. | |
5106 | */ | |
5107 | struct mbuf * | |
2d21ac55 A |
5108 | m_devget(char *buf, int totlen, int off0, struct ifnet *ifp, |
5109 | void (*copy)(const void *, void *, size_t)) | |
1c79356b | 5110 | { |
91447636 | 5111 | struct mbuf *m; |
2d21ac55 | 5112 | struct mbuf *top = NULL, **mp = ⊤ |
91447636 A |
5113 | int off = off0, len; |
5114 | char *cp; | |
1c79356b A |
5115 | char *epkt; |
5116 | ||
5117 | cp = buf; | |
5118 | epkt = cp + totlen; | |
5119 | if (off) { | |
5120 | /* | |
5121 | * If 'off' is non-zero, packet is trailer-encapsulated, | |
5122 | * so we have to skip the type and length fields. | |
5123 | */ | |
2d21ac55 A |
5124 | cp += off + 2 * sizeof (u_int16_t); |
5125 | totlen -= 2 * sizeof (u_int16_t); | |
1c79356b | 5126 | } |
2d21ac55 A |
5127 | _MGETHDR(m, M_DONTWAIT, MT_DATA); |
5128 | if (m == NULL) | |
5129 | return (NULL); | |
1c79356b A |
5130 | m->m_pkthdr.rcvif = ifp; |
5131 | m->m_pkthdr.len = totlen; | |
5132 | m->m_len = MHLEN; | |
5133 | ||
5134 | while (totlen > 0) { | |
2d21ac55 A |
5135 | if (top != NULL) { |
5136 | _MGET(m, M_DONTWAIT, MT_DATA); | |
5137 | if (m == NULL) { | |
1c79356b | 5138 | m_freem(top); |
2d21ac55 | 5139 | return (NULL); |
1c79356b A |
5140 | } |
5141 | m->m_len = MLEN; | |
5142 | } | |
2d21ac55 | 5143 | len = MIN(totlen, epkt - cp); |
1c79356b A |
5144 | if (len >= MINCLSIZE) { |
5145 | MCLGET(m, M_DONTWAIT); | |
2d21ac55 A |
5146 | if (m->m_flags & M_EXT) { |
5147 | m->m_len = len = MIN(len, m_maxsize(MC_CL)); | |
5148 | } else { | |
5149 | /* give up when it's out of cluster mbufs */ | |
5150 | if (top != NULL) | |
5151 | m_freem(top); | |
1c79356b | 5152 | m_freem(m); |
2d21ac55 | 5153 | return (NULL); |
1c79356b A |
5154 | } |
5155 | } else { | |
5156 | /* | |
5157 | * Place initial small packet/header at end of mbuf. | |
5158 | */ | |
5159 | if (len < m->m_len) { | |
2d21ac55 A |
5160 | if (top == NULL && |
5161 | len + max_linkhdr <= m->m_len) | |
1c79356b A |
5162 | m->m_data += max_linkhdr; |
5163 | m->m_len = len; | |
2d21ac55 | 5164 | } else { |
1c79356b | 5165 | len = m->m_len; |
2d21ac55 | 5166 | } |
1c79356b A |
5167 | } |
5168 | if (copy) | |
2d21ac55 | 5169 | copy(cp, MTOD(m, caddr_t), (unsigned)len); |
1c79356b | 5170 | else |
2d21ac55 | 5171 | bcopy(cp, MTOD(m, caddr_t), (unsigned)len); |
1c79356b A |
5172 | cp += len; |
5173 | *mp = m; | |
5174 | mp = &m->m_next; | |
5175 | totlen -= len; | |
5176 | if (cp == epkt) | |
5177 | cp = buf; | |
5178 | } | |
5179 | return (top); | |
5180 | } | |
5181 | ||
6d2010ae A |
5182 | #ifndef MBUF_GROWTH_NORMAL_THRESH |
5183 | #define MBUF_GROWTH_NORMAL_THRESH 25 | |
5184 | #endif | |
b0d623f7 | 5185 | |
1c79356b | 5186 | /* |
2d21ac55 | 5187 | * Cluster freelist allocation check. |
1c79356b A |
5188 | */ |
5189 | static int | |
91447636 | 5190 | m_howmany(int num, size_t bufsize) |
1c79356b | 5191 | { |
2d21ac55 | 5192 | int i = 0, j = 0; |
6d2010ae A |
5193 | u_int32_t m_mbclusters, m_clusters, m_bigclusters, m_16kclusters; |
5194 | u_int32_t m_mbfree, m_clfree, m_bigclfree, m_16kclfree; | |
5195 | u_int32_t sumclusters, freeclusters; | |
5196 | u_int32_t percent_pool, percent_kmem; | |
5197 | u_int32_t mb_growth, mb_growth_thresh; | |
5198 | ||
5199 | VERIFY(bufsize == m_maxsize(MC_BIGCL) || | |
5200 | bufsize == m_maxsize(MC_16KCL)); | |
2d21ac55 A |
5201 | |
5202 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
5203 | ||
6d2010ae A |
5204 | /* Numbers in 2K cluster units */ |
5205 | m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT; | |
2d21ac55 | 5206 | m_clusters = m_total(MC_CL); |
6d2010ae | 5207 | m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT; |
2d21ac55 | 5208 | m_16kclusters = m_total(MC_16KCL); |
6d2010ae A |
5209 | sumclusters = m_mbclusters + m_clusters + m_bigclusters; |
5210 | ||
5211 | m_mbfree = m_infree(MC_MBUF) >> NMBPCLSHIFT; | |
2d21ac55 | 5212 | m_clfree = m_infree(MC_CL); |
6d2010ae | 5213 | m_bigclfree = m_infree(MC_BIGCL) << NCLPBGSHIFT; |
2d21ac55 | 5214 | m_16kclfree = m_infree(MC_16KCL); |
6d2010ae | 5215 | freeclusters = m_mbfree + m_clfree + m_bigclfree; |
2d21ac55 | 5216 | |
91447636 | 5217 | /* Bail if we've maxed out the mbuf memory map */ |
6d2010ae | 5218 | if ((bufsize == m_maxsize(MC_BIGCL) && sumclusters >= nclusters) || |
2d21ac55 | 5219 | (njcl > 0 && bufsize == m_maxsize(MC_16KCL) && |
6d2010ae | 5220 | (m_16kclusters << NCLPJCLSHIFT) >= njcl)) { |
2d21ac55 A |
5221 | return (0); |
5222 | } | |
5223 | ||
6d2010ae | 5224 | if (bufsize == m_maxsize(MC_BIGCL)) { |
2d21ac55 | 5225 | /* Under minimum */ |
6d2010ae A |
5226 | if (m_bigclusters < m_minlimit(MC_BIGCL)) |
5227 | return (m_minlimit(MC_BIGCL) - m_bigclusters); | |
5228 | ||
5229 | percent_pool = | |
5230 | ((sumclusters - freeclusters) * 100) / sumclusters; | |
5231 | percent_kmem = (sumclusters * 100) / nclusters; | |
5232 | ||
5233 | /* | |
5234 | * If a light/normal user, grow conservatively (75%) | |
5235 | * If a heavy user, grow aggressively (50%) | |
5236 | */ | |
5237 | if (percent_kmem < MBUF_GROWTH_NORMAL_THRESH) | |
5238 | mb_growth = MB_GROWTH_NORMAL; | |
5239 | else | |
5240 | mb_growth = MB_GROWTH_AGGRESSIVE; | |
5241 | ||
5242 | if (percent_kmem < 5) { | |
5243 | /* For initial allocations */ | |
5244 | i = num; | |
5245 | } else { | |
5246 | /* Return if >= MBIGCL_LOWAT clusters available */ | |
5247 | if (m_infree(MC_BIGCL) >= MBIGCL_LOWAT && | |
5248 | m_total(MC_BIGCL) >= | |
5249 | MBIGCL_LOWAT + m_minlimit(MC_BIGCL)) | |
2d21ac55 | 5250 | return (0); |
6d2010ae A |
5251 | |
5252 | /* Ensure at least num clusters are accessible */ | |
5253 | if (num >= m_infree(MC_BIGCL)) | |
5254 | i = num - m_infree(MC_BIGCL); | |
5255 | if (num > m_total(MC_BIGCL) - m_minlimit(MC_BIGCL)) | |
5256 | j = num - (m_total(MC_BIGCL) - | |
5257 | m_minlimit(MC_BIGCL)); | |
5258 | ||
2d21ac55 | 5259 | i = MAX(i, j); |
6d2010ae A |
5260 | |
5261 | /* | |
5262 | * Grow pool if percent_pool > 75 (normal growth) | |
5263 | * or percent_pool > 50 (aggressive growth). | |
5264 | */ | |
5265 | mb_growth_thresh = 100 - (100 / (1 << mb_growth)); | |
5266 | if (percent_pool > mb_growth_thresh) | |
5267 | j = ((sumclusters + num) >> mb_growth) - | |
5268 | freeclusters; | |
2d21ac55 | 5269 | i = MAX(i, j); |
2d21ac55 | 5270 | } |
6d2010ae A |
5271 | |
5272 | /* Check to ensure we didn't go over limits */ | |
5273 | if (i + m_bigclusters >= m_maxlimit(MC_BIGCL)) | |
5274 | i = m_maxlimit(MC_BIGCL) - m_bigclusters; | |
5275 | if ((i << 1) + sumclusters >= nclusters) | |
5276 | i = (nclusters - sumclusters) >> 1; | |
2d21ac55 | 5277 | VERIFY((m_total(MC_BIGCL) + i) <= m_maxlimit(MC_BIGCL)); |
6d2010ae A |
5278 | VERIFY(sumclusters + (i << 1) <= nclusters); |
5279 | ||
5280 | } else { /* 16K CL */ | |
2d21ac55 A |
5281 | VERIFY(njcl > 0); |
5282 | /* Under minimum */ | |
5283 | if (m_16kclusters < MIN16KCL) | |
5284 | return (MIN16KCL - m_16kclusters); | |
6d2010ae A |
5285 | if (m_16kclfree >= M16KCL_LOWAT) |
5286 | return (0); | |
5287 | ||
5288 | /* Ensure at least num clusters are available */ | |
5289 | if (num >= m_16kclfree) | |
5290 | i = num - m_16kclfree; | |
5291 | ||
5292 | /* Always grow 16KCL pool aggressively */ | |
5293 | if (((m_16kclusters + num) >> 1) > m_16kclfree) | |
5294 | j = ((m_16kclusters + num) >> 1) - m_16kclfree; | |
5295 | i = MAX(i, j); | |
5296 | ||
5297 | /* Check to ensure we don't go over limit */ | |
5298 | if (i + m_16kclusters >= m_maxlimit(MC_16KCL)) | |
5299 | i = m_maxlimit(MC_16KCL) - m_16kclusters; | |
2d21ac55 | 5300 | VERIFY((m_total(MC_16KCL) + i) <= m_maxlimit(MC_16KCL)); |
91447636 | 5301 | } |
2d21ac55 | 5302 | return (i); |
1c79356b | 5303 | } |
b0d623f7 A |
5304 | /* |
5305 | * Return the number of bytes in the mbuf chain, m. | |
6d2010ae A |
5306 | */ |
5307 | unsigned int | |
b0d623f7 A |
5308 | m_length(struct mbuf *m) |
5309 | { | |
5310 | struct mbuf *m0; | |
5311 | unsigned int pktlen; | |
5312 | ||
5313 | if (m->m_flags & M_PKTHDR) | |
5314 | return (m->m_pkthdr.len); | |
5315 | ||
5316 | pktlen = 0; | |
5317 | for (m0 = m; m0 != NULL; m0 = m0->m_next) | |
5318 | pktlen += m0->m_len; | |
5319 | return (pktlen); | |
5320 | } | |
5321 | ||
1c79356b A |
5322 | /* |
5323 | * Copy data from a buffer back into the indicated mbuf chain, | |
5324 | * starting "off" bytes from the beginning, extending the mbuf | |
5325 | * chain if necessary. | |
5326 | */ | |
5327 | void | |
b0d623f7 | 5328 | m_copyback(struct mbuf *m0, int off, int len, const void *cp) |
1c79356b | 5329 | { |
b0d623f7 A |
5330 | #if DEBUG |
5331 | struct mbuf *origm = m0; | |
5332 | int error; | |
5333 | #endif /* DEBUG */ | |
1c79356b | 5334 | |
2d21ac55 | 5335 | if (m0 == NULL) |
1c79356b | 5336 | return; |
b0d623f7 A |
5337 | |
5338 | #if DEBUG | |
5339 | error = | |
5340 | #endif /* DEBUG */ | |
5341 | m_copyback0(&m0, off, len, cp, | |
5342 | M_COPYBACK0_COPYBACK | M_COPYBACK0_EXTEND, M_DONTWAIT); | |
5343 | ||
5344 | #if DEBUG | |
5345 | if (error != 0 || (m0 != NULL && origm != m0)) | |
5346 | panic("m_copyback"); | |
5347 | #endif /* DEBUG */ | |
5348 | } | |
5349 | ||
5350 | struct mbuf * | |
5351 | m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how) | |
5352 | { | |
5353 | int error; | |
5354 | ||
5355 | /* don't support chain expansion */ | |
5356 | VERIFY(off + len <= m_length(m0)); | |
5357 | ||
5358 | error = m_copyback0(&m0, off, len, cp, | |
5359 | M_COPYBACK0_COPYBACK | M_COPYBACK0_COW, how); | |
5360 | if (error) { | |
5361 | /* | |
5362 | * no way to recover from partial success. | |
5363 | * just free the chain. | |
5364 | */ | |
5365 | m_freem(m0); | |
5366 | return (NULL); | |
5367 | } | |
5368 | return (m0); | |
5369 | } | |
5370 | ||
5371 | /* | |
5372 | * m_makewritable: ensure the specified range writable. | |
5373 | */ | |
5374 | int | |
5375 | m_makewritable(struct mbuf **mp, int off, int len, int how) | |
5376 | { | |
5377 | int error; | |
5378 | #if DEBUG | |
5379 | struct mbuf *n; | |
5380 | int origlen, reslen; | |
5381 | ||
5382 | origlen = m_length(*mp); | |
5383 | #endif /* DEBUG */ | |
5384 | ||
5385 | #if 0 /* M_COPYALL is large enough */ | |
5386 | if (len == M_COPYALL) | |
5387 | len = m_length(*mp) - off; /* XXX */ | |
5388 | #endif | |
5389 | ||
5390 | error = m_copyback0(mp, off, len, NULL, | |
5391 | M_COPYBACK0_PRESERVE | M_COPYBACK0_COW, how); | |
5392 | ||
5393 | #if DEBUG | |
5394 | reslen = 0; | |
5395 | for (n = *mp; n; n = n->m_next) | |
5396 | reslen += n->m_len; | |
5397 | if (origlen != reslen) | |
5398 | panic("m_makewritable: length changed"); | |
5399 | if (((*mp)->m_flags & M_PKTHDR) && reslen != (*mp)->m_pkthdr.len) | |
5400 | panic("m_makewritable: inconsist"); | |
5401 | #endif /* DEBUG */ | |
5402 | ||
5403 | return (error); | |
5404 | } | |
5405 | ||
5406 | static int | |
5407 | m_copyback0(struct mbuf **mp0, int off, int len, const void *vp, int flags, | |
5408 | int how) | |
5409 | { | |
5410 | int mlen; | |
5411 | struct mbuf *m, *n; | |
5412 | struct mbuf **mp; | |
5413 | int totlen = 0; | |
5414 | const char *cp = vp; | |
5415 | ||
5416 | VERIFY(mp0 != NULL); | |
5417 | VERIFY(*mp0 != NULL); | |
5418 | VERIFY((flags & M_COPYBACK0_PRESERVE) == 0 || cp == NULL); | |
5419 | VERIFY((flags & M_COPYBACK0_COPYBACK) == 0 || cp != NULL); | |
5420 | ||
5421 | /* | |
5422 | * we don't bother to update "totlen" in the case of M_COPYBACK0_COW, | |
5423 | * assuming that M_COPYBACK0_EXTEND and M_COPYBACK0_COW are exclusive. | |
5424 | */ | |
5425 | ||
5426 | VERIFY((~flags & (M_COPYBACK0_EXTEND|M_COPYBACK0_COW)) != 0); | |
5427 | ||
5428 | mp = mp0; | |
5429 | m = *mp; | |
1c79356b A |
5430 | while (off > (mlen = m->m_len)) { |
5431 | off -= mlen; | |
5432 | totlen += mlen; | |
2d21ac55 | 5433 | if (m->m_next == NULL) { |
b0d623f7 A |
5434 | int tspace; |
5435 | extend: | |
5436 | if (!(flags & M_COPYBACK0_EXTEND)) | |
1c79356b | 5437 | goto out; |
b0d623f7 A |
5438 | |
5439 | /* | |
5440 | * try to make some space at the end of "m". | |
5441 | */ | |
5442 | ||
5443 | mlen = m->m_len; | |
5444 | if (off + len >= MINCLSIZE && | |
5445 | !(m->m_flags & M_EXT) && m->m_len == 0) { | |
5446 | MCLGET(m, how); | |
5447 | } | |
5448 | tspace = M_TRAILINGSPACE(m); | |
5449 | if (tspace > 0) { | |
5450 | tspace = MIN(tspace, off + len); | |
5451 | VERIFY(tspace > 0); | |
5452 | bzero(mtod(m, char *) + m->m_len, | |
5453 | MIN(off, tspace)); | |
5454 | m->m_len += tspace; | |
5455 | off += mlen; | |
5456 | totlen -= mlen; | |
5457 | continue; | |
5458 | } | |
5459 | ||
5460 | /* | |
5461 | * need to allocate an mbuf. | |
5462 | */ | |
5463 | ||
5464 | if (off + len >= MINCLSIZE) { | |
5465 | n = m_getcl(how, m->m_type, 0); | |
5466 | } else { | |
5467 | n = _M_GET(how, m->m_type); | |
5468 | } | |
5469 | if (n == NULL) { | |
5470 | goto out; | |
5471 | } | |
5472 | n->m_len = 0; | |
5473 | n->m_len = MIN(M_TRAILINGSPACE(n), off + len); | |
5474 | bzero(mtod(n, char *), MIN(n->m_len, off)); | |
1c79356b A |
5475 | m->m_next = n; |
5476 | } | |
b0d623f7 | 5477 | mp = &m->m_next; |
1c79356b A |
5478 | m = m->m_next; |
5479 | } | |
5480 | while (len > 0) { | |
b0d623f7 A |
5481 | mlen = m->m_len - off; |
5482 | if (mlen != 0 && m_mclhasreference(m)) { | |
5483 | char *datap; | |
5484 | int eatlen; | |
5485 | ||
5486 | /* | |
5487 | * this mbuf is read-only. | |
5488 | * allocate a new writable mbuf and try again. | |
5489 | */ | |
5490 | ||
39236c6e | 5491 | #if DIAGNOSTIC |
b0d623f7 A |
5492 | if (!(flags & M_COPYBACK0_COW)) |
5493 | panic("m_copyback0: read-only"); | |
39236c6e | 5494 | #endif /* DIAGNOSTIC */ |
b0d623f7 A |
5495 | |
5496 | /* | |
5497 | * if we're going to write into the middle of | |
5498 | * a mbuf, split it first. | |
5499 | */ | |
5500 | if (off > 0 && len < mlen) { | |
5501 | n = m_split0(m, off, how, 0); | |
5502 | if (n == NULL) | |
5503 | goto enobufs; | |
5504 | m->m_next = n; | |
5505 | mp = &m->m_next; | |
5506 | m = n; | |
5507 | off = 0; | |
5508 | continue; | |
5509 | } | |
5510 | ||
5511 | /* | |
5512 | * XXX TODO coalesce into the trailingspace of | |
5513 | * the previous mbuf when possible. | |
5514 | */ | |
5515 | ||
5516 | /* | |
5517 | * allocate a new mbuf. copy packet header if needed. | |
5518 | */ | |
5519 | n = _M_GET(how, m->m_type); | |
5520 | if (n == NULL) | |
5521 | goto enobufs; | |
5522 | if (off == 0 && (m->m_flags & M_PKTHDR)) { | |
5523 | M_COPY_PKTHDR(n, m); | |
5524 | n->m_len = MHLEN; | |
5525 | } else { | |
5526 | if (len >= MINCLSIZE) | |
5527 | MCLGET(n, M_DONTWAIT); | |
5528 | n->m_len = | |
5529 | (n->m_flags & M_EXT) ? MCLBYTES : MLEN; | |
5530 | } | |
5531 | if (n->m_len > len) | |
5532 | n->m_len = len; | |
5533 | ||
5534 | /* | |
5535 | * free the region which has been overwritten. | |
5536 | * copying data from old mbufs if requested. | |
5537 | */ | |
5538 | if (flags & M_COPYBACK0_PRESERVE) | |
5539 | datap = mtod(n, char *); | |
5540 | else | |
5541 | datap = NULL; | |
5542 | eatlen = n->m_len; | |
5543 | VERIFY(off == 0 || eatlen >= mlen); | |
5544 | if (off > 0) { | |
5545 | VERIFY(len >= mlen); | |
5546 | m->m_len = off; | |
5547 | m->m_next = n; | |
5548 | if (datap) { | |
5549 | m_copydata(m, off, mlen, datap); | |
5550 | datap += mlen; | |
5551 | } | |
5552 | eatlen -= mlen; | |
5553 | mp = &m->m_next; | |
5554 | m = m->m_next; | |
5555 | } | |
5556 | while (m != NULL && m_mclhasreference(m) && | |
5557 | n->m_type == m->m_type && eatlen > 0) { | |
5558 | mlen = MIN(eatlen, m->m_len); | |
5559 | if (datap) { | |
5560 | m_copydata(m, 0, mlen, datap); | |
5561 | datap += mlen; | |
5562 | } | |
5563 | m->m_data += mlen; | |
5564 | m->m_len -= mlen; | |
5565 | eatlen -= mlen; | |
5566 | if (m->m_len == 0) | |
5567 | *mp = m = m_free(m); | |
5568 | } | |
5569 | if (eatlen > 0) | |
5570 | n->m_len -= eatlen; | |
5571 | n->m_next = m; | |
5572 | *mp = m = n; | |
5573 | continue; | |
5574 | } | |
5575 | mlen = MIN(mlen, len); | |
5576 | if (flags & M_COPYBACK0_COPYBACK) { | |
5577 | bcopy(cp, mtod(m, caddr_t) + off, (unsigned)mlen); | |
5578 | cp += mlen; | |
5579 | } | |
1c79356b A |
5580 | len -= mlen; |
5581 | mlen += off; | |
5582 | off = 0; | |
5583 | totlen += mlen; | |
5584 | if (len == 0) | |
5585 | break; | |
2d21ac55 | 5586 | if (m->m_next == NULL) { |
b0d623f7 | 5587 | goto extend; |
1c79356b | 5588 | } |
b0d623f7 | 5589 | mp = &m->m_next; |
1c79356b A |
5590 | m = m->m_next; |
5591 | } | |
2d21ac55 | 5592 | out: |
b0d623f7 A |
5593 | if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) { |
5594 | VERIFY(flags & M_COPYBACK0_EXTEND); | |
1c79356b | 5595 | m->m_pkthdr.len = totlen; |
b0d623f7 A |
5596 | } |
5597 | ||
5598 | return (0); | |
5599 | ||
5600 | enobufs: | |
5601 | return (ENOBUFS); | |
1c79356b A |
5602 | } |
5603 | ||
39236c6e | 5604 | uint64_t |
2d21ac55 A |
5605 | mcl_to_paddr(char *addr) |
5606 | { | |
b0d623f7 | 5607 | vm_offset_t base_phys; |
1c79356b | 5608 | |
2d21ac55 | 5609 | if (!MBUF_IN_MAP(addr)) |
39236c6e A |
5610 | return (0); |
5611 | base_phys = mcl_paddr[atop_64(addr - (char *)mbutl)]; | |
1c79356b A |
5612 | |
5613 | if (base_phys == 0) | |
39236c6e A |
5614 | return (0); |
5615 | return ((uint64_t)(ptoa_64(base_phys) | ((uint64_t)addr & PAGE_MASK))); | |
1c79356b A |
5616 | } |
5617 | ||
5618 | /* | |
5619 | * Dup the mbuf chain passed in. The whole thing. No cute additional cruft. | |
5620 | * And really copy the thing. That way, we don't "precompute" checksums | |
2d21ac55 A |
5621 | * for unsuspecting consumers. Assumption: m->m_nextpkt == 0. Trick: for |
5622 | * small packets, don't dup into a cluster. That way received packets | |
5623 | * don't take up too much room in the sockbuf (cf. sbspace()). | |
1c79356b A |
5624 | */ |
5625 | int MDFail; | |
5626 | ||
5627 | struct mbuf * | |
91447636 | 5628 | m_dup(struct mbuf *m, int how) |
2d21ac55 | 5629 | { |
91447636 | 5630 | struct mbuf *n, **np; |
1c79356b A |
5631 | struct mbuf *top; |
5632 | int copyhdr = 0; | |
5633 | ||
5634 | np = ⊤ | |
2d21ac55 | 5635 | top = NULL; |
1c79356b A |
5636 | if (m->m_flags & M_PKTHDR) |
5637 | copyhdr = 1; | |
5638 | ||
5639 | /* | |
5640 | * Quick check: if we have one mbuf and its data fits in an | |
5641 | * mbuf with packet header, just copy and go. | |
5642 | */ | |
2d21ac55 A |
5643 | if (m->m_next == NULL) { |
5644 | /* Then just move the data into an mbuf and be done... */ | |
5645 | if (copyhdr) { | |
5646 | if (m->m_pkthdr.len <= MHLEN && m->m_len <= MHLEN) { | |
5647 | if ((n = _M_GETHDR(how, m->m_type)) == NULL) | |
5648 | return (NULL); | |
1c79356b | 5649 | n->m_len = m->m_len; |
3a60a9f5 A |
5650 | m_dup_pkthdr(n, m, how); |
5651 | bcopy(m->m_data, n->m_data, m->m_len); | |
2d21ac55 | 5652 | return (n); |
1c79356b | 5653 | } |
2d21ac55 A |
5654 | } else if (m->m_len <= MLEN) { |
5655 | if ((n = _M_GET(how, m->m_type)) == NULL) | |
5656 | return (NULL); | |
1c79356b A |
5657 | bcopy(m->m_data, n->m_data, m->m_len); |
5658 | n->m_len = m->m_len; | |
2d21ac55 | 5659 | return (n); |
1c79356b A |
5660 | } |
5661 | } | |
2d21ac55 | 5662 | while (m != NULL) { |
1c79356b A |
5663 | #if BLUE_DEBUG |
5664 | kprintf("<%x: %x, %x, %x\n", m, m->m_flags, m->m_len, | |
2d21ac55 | 5665 | m->m_data); |
1c79356b A |
5666 | #endif |
5667 | if (copyhdr) | |
2d21ac55 | 5668 | n = _M_GETHDR(how, m->m_type); |
1c79356b | 5669 | else |
2d21ac55 A |
5670 | n = _M_GET(how, m->m_type); |
5671 | if (n == NULL) | |
1c79356b | 5672 | goto nospace; |
2d21ac55 A |
5673 | if (m->m_flags & M_EXT) { |
5674 | if (m->m_len <= m_maxsize(MC_CL)) | |
5675 | MCLGET(n, how); | |
5676 | else if (m->m_len <= m_maxsize(MC_BIGCL)) | |
5677 | n = m_mbigget(n, how); | |
5678 | else if (m->m_len <= m_maxsize(MC_16KCL) && njcl > 0) | |
5679 | n = m_m16kget(n, how); | |
5680 | if (!(n->m_flags & M_EXT)) { | |
5681 | (void) m_free(n); | |
1c79356b | 5682 | goto nospace; |
2d21ac55 | 5683 | } |
1c79356b A |
5684 | } |
5685 | *np = n; | |
2d21ac55 A |
5686 | if (copyhdr) { |
5687 | /* Don't use M_COPY_PKTHDR: preserve m_data */ | |
3a60a9f5 | 5688 | m_dup_pkthdr(n, m, how); |
1c79356b | 5689 | copyhdr = 0; |
2d21ac55 | 5690 | if (!(n->m_flags & M_EXT)) |
1c79356b A |
5691 | n->m_data = n->m_pktdat; |
5692 | } | |
5693 | n->m_len = m->m_len; | |
5694 | /* | |
5695 | * Get the dup on the same bdry as the original | |
5696 | * Assume that the two mbufs have the same offset to data area | |
2d21ac55 | 5697 | * (up to word boundaries) |
1c79356b | 5698 | */ |
2d21ac55 | 5699 | bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), (unsigned)n->m_len); |
1c79356b A |
5700 | m = m->m_next; |
5701 | np = &n->m_next; | |
5702 | #if BLUE_DEBUG | |
5703 | kprintf(">%x: %x, %x, %x\n", n, n->m_flags, n->m_len, | |
2d21ac55 | 5704 | n->m_data); |
1c79356b A |
5705 | #endif |
5706 | } | |
5707 | ||
2d21ac55 | 5708 | if (top == NULL) |
1c79356b A |
5709 | MDFail++; |
5710 | return (top); | |
2d21ac55 A |
5711 | |
5712 | nospace: | |
1c79356b A |
5713 | m_freem(top); |
5714 | MDFail++; | |
2d21ac55 | 5715 | return (NULL); |
1c79356b A |
5716 | } |
5717 | ||
2d21ac55 A |
5718 | #define MBUF_MULTIPAGES(m) \ |
5719 | (((m)->m_flags & M_EXT) && \ | |
5720 | ((IS_P2ALIGNED((m)->m_data, NBPG) && (m)->m_len > NBPG) || \ | |
5721 | (!IS_P2ALIGNED((m)->m_data, NBPG) && \ | |
5722 | P2ROUNDUP((m)->m_data, NBPG) < ((uintptr_t)(m)->m_data + (m)->m_len)))) | |
5723 | ||
5724 | static struct mbuf * | |
5725 | m_expand(struct mbuf *m, struct mbuf **last) | |
9bccf70c | 5726 | { |
2d21ac55 A |
5727 | struct mbuf *top = NULL; |
5728 | struct mbuf **nm = ⊤ | |
5729 | uintptr_t data0, data; | |
5730 | unsigned int len0, len; | |
5731 | ||
5732 | VERIFY(MBUF_MULTIPAGES(m)); | |
5733 | VERIFY(m->m_next == NULL); | |
5734 | data0 = (uintptr_t)m->m_data; | |
5735 | len0 = m->m_len; | |
5736 | *last = top; | |
5737 | ||
5738 | for (;;) { | |
5739 | struct mbuf *n; | |
5740 | ||
5741 | data = data0; | |
5742 | if (IS_P2ALIGNED(data, NBPG) && len0 > NBPG) | |
5743 | len = NBPG; | |
5744 | else if (!IS_P2ALIGNED(data, NBPG) && | |
5745 | P2ROUNDUP(data, NBPG) < (data + len0)) | |
5746 | len = P2ROUNDUP(data, NBPG) - data; | |
5747 | else | |
5748 | len = len0; | |
5749 | ||
5750 | VERIFY(len > 0); | |
5751 | VERIFY(m->m_flags & M_EXT); | |
5752 | m->m_data = (void *)data; | |
5753 | m->m_len = len; | |
5754 | ||
5755 | *nm = *last = m; | |
5756 | nm = &m->m_next; | |
5757 | m->m_next = NULL; | |
5758 | ||
5759 | data0 += len; | |
5760 | len0 -= len; | |
5761 | if (len0 == 0) | |
5762 | break; | |
5763 | ||
5764 | n = _M_RETRY(M_DONTWAIT, MT_DATA); | |
5765 | if (n == NULL) { | |
5766 | m_freem(top); | |
5767 | top = *last = NULL; | |
5768 | break; | |
5769 | } | |
5770 | ||
5771 | n->m_ext = m->m_ext; | |
5772 | m_incref(m); | |
5773 | n->m_flags |= M_EXT; | |
5774 | m = n; | |
5775 | } | |
5776 | return (top); | |
9bccf70c A |
5777 | } |
5778 | ||
2d21ac55 A |
5779 | struct mbuf * |
5780 | m_normalize(struct mbuf *m) | |
9bccf70c | 5781 | { |
2d21ac55 A |
5782 | struct mbuf *top = NULL; |
5783 | struct mbuf **nm = ⊤ | |
5784 | boolean_t expanded = FALSE; | |
5785 | ||
5786 | while (m != NULL) { | |
5787 | struct mbuf *n; | |
5788 | ||
5789 | n = m->m_next; | |
5790 | m->m_next = NULL; | |
5791 | ||
5792 | /* Does the data cross one or more page boundaries? */ | |
5793 | if (MBUF_MULTIPAGES(m)) { | |
5794 | struct mbuf *last; | |
5795 | if ((m = m_expand(m, &last)) == NULL) { | |
5796 | m_freem(n); | |
5797 | m_freem(top); | |
5798 | top = NULL; | |
5799 | break; | |
5800 | } | |
5801 | *nm = m; | |
5802 | nm = &last->m_next; | |
5803 | expanded = TRUE; | |
5804 | } else { | |
5805 | *nm = m; | |
5806 | nm = &m->m_next; | |
5807 | } | |
5808 | m = n; | |
5809 | } | |
5810 | if (expanded) | |
5811 | atomic_add_32(&mb_normalized, 1); | |
5812 | return (top); | |
9bccf70c A |
5813 | } |
5814 | ||
6d2010ae A |
5815 | /* |
5816 | * Append the specified data to the indicated mbuf chain, | |
5817 | * Extend the mbuf chain if the new data does not fit in | |
5818 | * existing space. | |
5819 | * | |
5820 | * Return 1 if able to complete the job; otherwise 0. | |
5821 | */ | |
5822 | int | |
5823 | m_append(struct mbuf *m0, int len, caddr_t cp) | |
5824 | { | |
5825 | struct mbuf *m, *n; | |
5826 | int remainder, space; | |
5827 | ||
5828 | for (m = m0; m->m_next != NULL; m = m->m_next) | |
5829 | ; | |
5830 | remainder = len; | |
5831 | space = M_TRAILINGSPACE(m); | |
5832 | if (space > 0) { | |
5833 | /* | |
5834 | * Copy into available space. | |
5835 | */ | |
5836 | if (space > remainder) | |
5837 | space = remainder; | |
5838 | bcopy(cp, mtod(m, caddr_t) + m->m_len, space); | |
5839 | m->m_len += space; | |
5840 | cp += space, remainder -= space; | |
5841 | } | |
5842 | while (remainder > 0) { | |
5843 | /* | |
5844 | * Allocate a new mbuf; could check space | |
5845 | * and allocate a cluster instead. | |
5846 | */ | |
5847 | n = m_get(M_WAITOK, m->m_type); | |
5848 | if (n == NULL) | |
5849 | break; | |
5850 | n->m_len = min(MLEN, remainder); | |
5851 | bcopy(cp, mtod(n, caddr_t), n->m_len); | |
5852 | cp += n->m_len; | |
5853 | remainder -= n->m_len; | |
5854 | m->m_next = n; | |
5855 | m = n; | |
5856 | } | |
5857 | if (m0->m_flags & M_PKTHDR) | |
5858 | m0->m_pkthdr.len += len - remainder; | |
5859 | return (remainder == 0); | |
5860 | } | |
5861 | ||
5862 | struct mbuf * | |
5863 | m_last(struct mbuf *m) | |
5864 | { | |
5865 | while (m->m_next != NULL) | |
5866 | m = m->m_next; | |
5867 | return (m); | |
5868 | } | |
5869 | ||
316670eb A |
5870 | unsigned int |
5871 | m_fixhdr(struct mbuf *m0) | |
5872 | { | |
5873 | u_int len; | |
5874 | ||
39236c6e A |
5875 | VERIFY(m0->m_flags & M_PKTHDR); |
5876 | ||
316670eb A |
5877 | len = m_length2(m0, NULL); |
5878 | m0->m_pkthdr.len = len; | |
5879 | return (len); | |
5880 | } | |
5881 | ||
5882 | unsigned int | |
5883 | m_length2(struct mbuf *m0, struct mbuf **last) | |
5884 | { | |
5885 | struct mbuf *m; | |
5886 | u_int len; | |
5887 | ||
5888 | len = 0; | |
5889 | for (m = m0; m != NULL; m = m->m_next) { | |
5890 | len += m->m_len; | |
5891 | if (m->m_next == NULL) | |
5892 | break; | |
5893 | } | |
5894 | if (last != NULL) | |
5895 | *last = m; | |
5896 | return (len); | |
5897 | } | |
5898 | ||
5899 | /* | |
5900 | * Defragment a mbuf chain, returning the shortest possible chain of mbufs | |
5901 | * and clusters. If allocation fails and this cannot be completed, NULL will | |
5902 | * be returned, but the passed in chain will be unchanged. Upon success, | |
5903 | * the original chain will be freed, and the new chain will be returned. | |
5904 | * | |
5905 | * If a non-packet header is passed in, the original mbuf (chain?) will | |
5906 | * be returned unharmed. | |
5907 | * | |
5908 | * If offset is specfied, the first mbuf in the chain will have a leading | |
5909 | * space of the amount stated by the "off" parameter. | |
5910 | * | |
5911 | * This routine requires that the m_pkthdr.header field of the original | |
5912 | * mbuf chain is cleared by the caller. | |
5913 | */ | |
5914 | struct mbuf * | |
5915 | m_defrag_offset(struct mbuf *m0, u_int32_t off, int how) | |
5916 | { | |
5917 | struct mbuf *m_new = NULL, *m_final = NULL; | |
5918 | int progress = 0, length, pktlen; | |
5919 | ||
5920 | if (!(m0->m_flags & M_PKTHDR)) | |
5921 | return (m0); | |
5922 | ||
5923 | VERIFY(off < MHLEN); | |
5924 | m_fixhdr(m0); /* Needed sanity check */ | |
5925 | ||
5926 | pktlen = m0->m_pkthdr.len + off; | |
5927 | if (pktlen > MHLEN) | |
5928 | m_final = m_getcl(how, MT_DATA, M_PKTHDR); | |
5929 | else | |
5930 | m_final = m_gethdr(how, MT_DATA); | |
5931 | ||
5932 | if (m_final == NULL) | |
5933 | goto nospace; | |
5934 | ||
5935 | if (off > 0) { | |
5936 | pktlen -= off; | |
316670eb A |
5937 | m_final->m_data += off; |
5938 | } | |
5939 | ||
5940 | /* | |
5941 | * Caller must have handled the contents pointed to by this | |
5942 | * pointer before coming here, as otherwise it will point to | |
5943 | * the original mbuf which will get freed upon success. | |
5944 | */ | |
39236c6e | 5945 | VERIFY(m0->m_pkthdr.pkt_hdr == NULL); |
316670eb A |
5946 | |
5947 | if (m_dup_pkthdr(m_final, m0, how) == 0) | |
5948 | goto nospace; | |
5949 | ||
5950 | m_new = m_final; | |
5951 | ||
5952 | while (progress < pktlen) { | |
5953 | length = pktlen - progress; | |
5954 | if (length > MCLBYTES) | |
5955 | length = MCLBYTES; | |
39236c6e | 5956 | length -= ((m_new == m_final) ? off : 0); |
316670eb A |
5957 | |
5958 | if (m_new == NULL) { | |
5959 | if (length > MLEN) | |
5960 | m_new = m_getcl(how, MT_DATA, 0); | |
5961 | else | |
5962 | m_new = m_get(how, MT_DATA); | |
5963 | if (m_new == NULL) | |
5964 | goto nospace; | |
5965 | } | |
5966 | ||
5967 | m_copydata(m0, progress, length, mtod(m_new, caddr_t)); | |
5968 | progress += length; | |
5969 | m_new->m_len = length; | |
5970 | if (m_new != m_final) | |
5971 | m_cat(m_final, m_new); | |
5972 | m_new = NULL; | |
5973 | } | |
5974 | m_freem(m0); | |
5975 | m0 = m_final; | |
5976 | return (m0); | |
5977 | nospace: | |
5978 | if (m_final) | |
5979 | m_freem(m_final); | |
5980 | return (NULL); | |
5981 | } | |
5982 | ||
5983 | struct mbuf * | |
5984 | m_defrag(struct mbuf *m0, int how) | |
5985 | { | |
5986 | return (m_defrag_offset(m0, 0, how)); | |
5987 | } | |
5988 | ||
9bccf70c A |
5989 | void |
5990 | m_mchtype(struct mbuf *m, int t) | |
5991 | { | |
2d21ac55 A |
5992 | mtype_stat_inc(t); |
5993 | mtype_stat_dec(m->m_type); | |
5994 | (m)->m_type = t; | |
9bccf70c A |
5995 | } |
5996 | ||
2d21ac55 A |
5997 | void * |
5998 | m_mtod(struct mbuf *m) | |
9bccf70c | 5999 | { |
2d21ac55 | 6000 | return (MTOD(m, void *)); |
9bccf70c A |
6001 | } |
6002 | ||
2d21ac55 A |
6003 | struct mbuf * |
6004 | m_dtom(void *x) | |
9bccf70c | 6005 | { |
b0d623f7 | 6006 | return ((struct mbuf *)((uintptr_t)(x) & ~(MSIZE-1))); |
9bccf70c A |
6007 | } |
6008 | ||
2d21ac55 A |
6009 | void |
6010 | m_mcheck(struct mbuf *m) | |
9bccf70c | 6011 | { |
2d21ac55 | 6012 | _MCHECK(m); |
9bccf70c A |
6013 | } |
6014 | ||
6d2010ae A |
6015 | /* |
6016 | * Return a pointer to mbuf/offset of location in mbuf chain. | |
6017 | */ | |
6018 | struct mbuf * | |
6019 | m_getptr(struct mbuf *m, int loc, int *off) | |
6020 | { | |
6021 | ||
6022 | while (loc >= 0) { | |
6023 | /* Normal end of search. */ | |
6024 | if (m->m_len > loc) { | |
6025 | *off = loc; | |
6026 | return (m); | |
6027 | } else { | |
6028 | loc -= m->m_len; | |
6029 | if (m->m_next == NULL) { | |
6030 | if (loc == 0) { | |
6031 | /* Point at the end of valid data. */ | |
6032 | *off = m->m_len; | |
6033 | return (m); | |
6034 | } | |
6035 | return (NULL); | |
6036 | } | |
6037 | m = m->m_next; | |
6038 | } | |
6039 | } | |
6040 | return (NULL); | |
6041 | } | |
6042 | ||
2d21ac55 A |
6043 | /* |
6044 | * Inform the corresponding mcache(s) that there's a waiter below. | |
6045 | */ | |
6046 | static void | |
6047 | mbuf_waiter_inc(mbuf_class_t class, boolean_t comp) | |
9bccf70c | 6048 | { |
2d21ac55 A |
6049 | mcache_waiter_inc(m_cache(class)); |
6050 | if (comp) { | |
6051 | if (class == MC_CL) { | |
6052 | mcache_waiter_inc(m_cache(MC_MBUF_CL)); | |
6053 | } else if (class == MC_BIGCL) { | |
6054 | mcache_waiter_inc(m_cache(MC_MBUF_BIGCL)); | |
6055 | } else if (class == MC_16KCL) { | |
6056 | mcache_waiter_inc(m_cache(MC_MBUF_16KCL)); | |
6057 | } else { | |
6058 | mcache_waiter_inc(m_cache(MC_MBUF_CL)); | |
6059 | mcache_waiter_inc(m_cache(MC_MBUF_BIGCL)); | |
6060 | } | |
6061 | } | |
9bccf70c A |
6062 | } |
6063 | ||
2d21ac55 A |
6064 | /* |
6065 | * Inform the corresponding mcache(s) that there's no more waiter below. | |
6066 | */ | |
6067 | static void | |
6068 | mbuf_waiter_dec(mbuf_class_t class, boolean_t comp) | |
6069 | { | |
6070 | mcache_waiter_dec(m_cache(class)); | |
6071 | if (comp) { | |
6072 | if (class == MC_CL) { | |
6073 | mcache_waiter_dec(m_cache(MC_MBUF_CL)); | |
6074 | } else if (class == MC_BIGCL) { | |
6075 | mcache_waiter_dec(m_cache(MC_MBUF_BIGCL)); | |
6076 | } else if (class == MC_16KCL) { | |
6077 | mcache_waiter_dec(m_cache(MC_MBUF_16KCL)); | |
6078 | } else { | |
6079 | mcache_waiter_dec(m_cache(MC_MBUF_CL)); | |
6080 | mcache_waiter_dec(m_cache(MC_MBUF_BIGCL)); | |
6081 | } | |
6082 | } | |
6083 | } | |
9bccf70c | 6084 | |
6d2010ae A |
6085 | /* |
6086 | * Called during slab (blocking and non-blocking) allocation. If there | |
6087 | * is at least one waiter, and the time since the first waiter is blocked | |
6088 | * is greater than the watchdog timeout, panic the system. | |
6089 | */ | |
6090 | static void | |
6091 | mbuf_watchdog(void) | |
6092 | { | |
6093 | struct timeval now; | |
6094 | unsigned int since; | |
6095 | ||
6096 | if (mb_waiters == 0 || !mb_watchdog) | |
6097 | return; | |
6098 | ||
6099 | microuptime(&now); | |
6100 | since = now.tv_sec - mb_wdtstart.tv_sec; | |
6101 | if (since >= MB_WDT_MAXTIME) { | |
6102 | panic_plain("%s: %d waiters stuck for %u secs\n%s", __func__, | |
6103 | mb_waiters, since, mbuf_dump()); | |
6104 | /* NOTREACHED */ | |
6105 | } | |
6106 | } | |
6107 | ||
2d21ac55 A |
6108 | /* |
6109 | * Called during blocking allocation. Returns TRUE if one or more objects | |
6110 | * are available at the per-CPU caches layer and that allocation should be | |
6111 | * retried at that level. | |
6112 | */ | |
6113 | static boolean_t | |
6114 | mbuf_sleep(mbuf_class_t class, unsigned int num, int wait) | |
9bccf70c | 6115 | { |
2d21ac55 A |
6116 | boolean_t mcache_retry = FALSE; |
6117 | ||
6118 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
6119 | ||
6120 | /* Check if there's anything at the cache layer */ | |
6121 | if (mbuf_cached_above(class, wait)) { | |
6122 | mcache_retry = TRUE; | |
6123 | goto done; | |
6124 | } | |
6125 | ||
6126 | /* Nothing? Then try hard to get it from somewhere */ | |
6127 | m_reclaim(class, num, (wait & MCR_COMP)); | |
6128 | ||
6129 | /* We tried hard and got something? */ | |
6130 | if (m_infree(class) > 0) { | |
6131 | mbstat.m_wait++; | |
6132 | goto done; | |
6133 | } else if (mbuf_cached_above(class, wait)) { | |
6134 | mbstat.m_wait++; | |
6135 | mcache_retry = TRUE; | |
6136 | goto done; | |
6137 | } else if (wait & MCR_TRYHARD) { | |
6138 | mcache_retry = TRUE; | |
6139 | goto done; | |
6140 | } | |
6141 | ||
6142 | /* | |
6143 | * There's really nothing for us right now; inform the | |
6144 | * cache(s) that there is a waiter below and go to sleep. | |
6145 | */ | |
6146 | mbuf_waiter_inc(class, (wait & MCR_COMP)); | |
6147 | ||
6148 | VERIFY(!(wait & MCR_NOSLEEP)); | |
6d2010ae A |
6149 | |
6150 | /* | |
6151 | * If this is the first waiter, arm the watchdog timer. Otherwise | |
6152 | * check if we need to panic the system due to watchdog timeout. | |
6153 | */ | |
6154 | if (mb_waiters == 0) | |
6155 | microuptime(&mb_wdtstart); | |
6156 | else | |
6157 | mbuf_watchdog(); | |
6158 | ||
2d21ac55 A |
6159 | mb_waiters++; |
6160 | (void) msleep(mb_waitchan, mbuf_mlock, (PZERO-1), m_cname(class), NULL); | |
6161 | ||
6162 | /* We are now up; stop getting notified until next round */ | |
6163 | mbuf_waiter_dec(class, (wait & MCR_COMP)); | |
6164 | ||
6165 | /* We waited and got something */ | |
6166 | if (m_infree(class) > 0) { | |
6167 | mbstat.m_wait++; | |
6168 | goto done; | |
6169 | } else if (mbuf_cached_above(class, wait)) { | |
6170 | mbstat.m_wait++; | |
6171 | mcache_retry = TRUE; | |
6172 | } | |
6173 | done: | |
6174 | return (mcache_retry); | |
9bccf70c A |
6175 | } |
6176 | ||
91447636 | 6177 | static void |
2d21ac55 | 6178 | mbuf_worker_thread(void) |
1c79356b | 6179 | { |
2d21ac55 A |
6180 | int mbuf_expand; |
6181 | ||
91447636 | 6182 | while (1) { |
2d21ac55 A |
6183 | lck_mtx_lock(mbuf_mlock); |
6184 | ||
6185 | mbuf_expand = 0; | |
91447636 A |
6186 | if (mbuf_expand_mcl) { |
6187 | int n; | |
2d21ac55 A |
6188 | |
6189 | /* Adjust to current number of cluster in use */ | |
6190 | n = mbuf_expand_mcl - | |
6191 | (m_total(MC_CL) - m_infree(MC_CL)); | |
6192 | if ((n + m_total(MC_CL)) > m_maxlimit(MC_CL)) | |
6193 | n = m_maxlimit(MC_CL) - m_total(MC_CL); | |
91447636 | 6194 | mbuf_expand_mcl = 0; |
2d21ac55 A |
6195 | |
6196 | if (n > 0 && freelist_populate(MC_CL, n, M_WAIT) > 0) | |
6197 | mbuf_expand++; | |
91447636 A |
6198 | } |
6199 | if (mbuf_expand_big) { | |
6200 | int n; | |
2d21ac55 A |
6201 | |
6202 | /* Adjust to current number of 4 KB cluster in use */ | |
6203 | n = mbuf_expand_big - | |
6204 | (m_total(MC_BIGCL) - m_infree(MC_BIGCL)); | |
6205 | if ((n + m_total(MC_BIGCL)) > m_maxlimit(MC_BIGCL)) | |
6206 | n = m_maxlimit(MC_BIGCL) - m_total(MC_BIGCL); | |
91447636 | 6207 | mbuf_expand_big = 0; |
2d21ac55 A |
6208 | |
6209 | if (n > 0 && freelist_populate(MC_BIGCL, n, M_WAIT) > 0) | |
6210 | mbuf_expand++; | |
6211 | } | |
6212 | if (mbuf_expand_16k) { | |
6213 | int n; | |
6214 | ||
6215 | /* Adjust to current number of 16 KB cluster in use */ | |
6216 | n = mbuf_expand_16k - | |
6217 | (m_total(MC_16KCL) - m_infree(MC_16KCL)); | |
6218 | if ((n + m_total(MC_16KCL)) > m_maxlimit(MC_16KCL)) | |
6219 | n = m_maxlimit(MC_16KCL) - m_total(MC_16KCL); | |
6220 | mbuf_expand_16k = 0; | |
6221 | ||
6222 | if (n > 0) | |
6223 | (void) freelist_populate(MC_16KCL, n, M_WAIT); | |
6224 | } | |
6225 | ||
6226 | /* | |
6227 | * Because we can run out of memory before filling the mbuf | |
6228 | * map, we should not allocate more clusters than they are | |
6229 | * mbufs -- otherwise we could have a large number of useless | |
6230 | * clusters allocated. | |
91447636 | 6231 | */ |
2d21ac55 A |
6232 | if (mbuf_expand) { |
6233 | while (m_total(MC_MBUF) < | |
6234 | (m_total(MC_BIGCL) + m_total(MC_CL))) { | |
6235 | if (freelist_populate(MC_MBUF, 1, M_WAIT) == 0) | |
6236 | break; | |
6237 | } | |
91447636 | 6238 | } |
2d21ac55 A |
6239 | |
6240 | lck_mtx_unlock(mbuf_mlock); | |
6241 | ||
6242 | assert_wait(&mbuf_worker_run, THREAD_UNINT); | |
6243 | (void) thread_block((thread_continue_t)mbuf_worker_thread); | |
91447636 | 6244 | } |
1c79356b A |
6245 | } |
6246 | ||
91447636 | 6247 | static void |
2d21ac55 | 6248 | mbuf_worker_thread_init(void) |
55e303ae | 6249 | { |
2d21ac55 A |
6250 | mbuf_worker_ready++; |
6251 | mbuf_worker_thread(); | |
55e303ae | 6252 | } |
1c79356b | 6253 | |
2d21ac55 A |
6254 | static mcl_slab_t * |
6255 | slab_get(void *buf) | |
6256 | { | |
6257 | mcl_slabg_t *slg; | |
6258 | unsigned int ix, k; | |
6259 | ||
6260 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
6261 | ||
6262 | VERIFY(MBUF_IN_MAP(buf)); | |
6263 | ix = ((char *)buf - (char *)mbutl) >> MBSHIFT; | |
6264 | VERIFY(ix < maxslabgrp); | |
6265 | ||
6266 | if ((slg = slabstbl[ix]) == NULL) { | |
6267 | /* | |
fe8ab488 A |
6268 | * In the current implementation, we never shrink the slabs |
6269 | * table; if we attempt to reallocate a cluster group when | |
6270 | * it's already allocated, panic since this is a sign of a | |
6271 | * memory corruption (slabstbl[ix] got nullified). | |
2d21ac55 A |
6272 | */ |
6273 | ++slabgrp; | |
6274 | VERIFY(ix < slabgrp); | |
6275 | /* | |
6276 | * Slabs expansion can only be done single threaded; when | |
6277 | * we get here, it must be as a result of m_clalloc() which | |
6278 | * is serialized and therefore mb_clalloc_busy must be set. | |
6279 | */ | |
6280 | VERIFY(mb_clalloc_busy); | |
6281 | lck_mtx_unlock(mbuf_mlock); | |
6282 | ||
6283 | /* This is a new buffer; create the slabs group for it */ | |
6284 | MALLOC(slg, mcl_slabg_t *, sizeof (*slg), M_TEMP, | |
6285 | M_WAITOK | M_ZERO); | |
6286 | VERIFY(slg != NULL); | |
6287 | ||
6288 | lck_mtx_lock(mbuf_mlock); | |
6289 | /* | |
6290 | * No other thread could have gone into m_clalloc() after | |
6291 | * we dropped the lock above, so verify that it's true. | |
6292 | */ | |
6293 | VERIFY(mb_clalloc_busy); | |
6294 | ||
6295 | slabstbl[ix] = slg; | |
6296 | ||
6297 | /* Chain each slab in the group to its forward neighbor */ | |
6298 | for (k = 1; k < NSLABSPMB; k++) | |
6299 | slg->slg_slab[k - 1].sl_next = &slg->slg_slab[k]; | |
6300 | VERIFY(slg->slg_slab[NSLABSPMB - 1].sl_next == NULL); | |
6301 | ||
6302 | /* And chain the last slab in the previous group to this */ | |
6303 | if (ix > 0) { | |
6304 | VERIFY(slabstbl[ix - 1]-> | |
6305 | slg_slab[NSLABSPMB - 1].sl_next == NULL); | |
6306 | slabstbl[ix - 1]->slg_slab[NSLABSPMB - 1].sl_next = | |
6307 | &slg->slg_slab[0]; | |
6308 | } | |
6309 | } | |
6310 | ||
6d2010ae | 6311 | ix = MTOBG(buf) % NSLABSPMB; |
2d21ac55 A |
6312 | VERIFY(ix < NSLABSPMB); |
6313 | ||
6314 | return (&slg->slg_slab[ix]); | |
6315 | } | |
6316 | ||
6317 | static void | |
6318 | slab_init(mcl_slab_t *sp, mbuf_class_t class, u_int32_t flags, | |
6319 | void *base, void *head, unsigned int len, int refcnt, int chunks) | |
6320 | { | |
6321 | sp->sl_class = class; | |
6322 | sp->sl_flags = flags; | |
6323 | sp->sl_base = base; | |
6324 | sp->sl_head = head; | |
6325 | sp->sl_len = len; | |
6326 | sp->sl_refcnt = refcnt; | |
6327 | sp->sl_chunks = chunks; | |
6328 | slab_detach(sp); | |
6329 | } | |
6330 | ||
6331 | static void | |
6332 | slab_insert(mcl_slab_t *sp, mbuf_class_t class) | |
6333 | { | |
6334 | VERIFY(slab_is_detached(sp)); | |
6335 | m_slab_cnt(class)++; | |
6336 | TAILQ_INSERT_TAIL(&m_slablist(class), sp, sl_link); | |
6337 | sp->sl_flags &= ~SLF_DETACHED; | |
6d2010ae | 6338 | if (class == MC_16KCL) { |
2d21ac55 | 6339 | int k; |
6d2010ae | 6340 | for (k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
6341 | sp = sp->sl_next; |
6342 | /* Next slab must already be present */ | |
6343 | VERIFY(sp != NULL); | |
6344 | VERIFY(slab_is_detached(sp)); | |
6345 | sp->sl_flags &= ~SLF_DETACHED; | |
6346 | } | |
6347 | } | |
6348 | } | |
6349 | ||
6350 | static void | |
6351 | slab_remove(mcl_slab_t *sp, mbuf_class_t class) | |
6352 | { | |
6353 | VERIFY(!slab_is_detached(sp)); | |
6354 | VERIFY(m_slab_cnt(class) > 0); | |
6355 | m_slab_cnt(class)--; | |
6356 | TAILQ_REMOVE(&m_slablist(class), sp, sl_link); | |
6357 | slab_detach(sp); | |
6d2010ae | 6358 | if (class == MC_16KCL) { |
2d21ac55 | 6359 | int k; |
6d2010ae | 6360 | for (k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
6361 | sp = sp->sl_next; |
6362 | /* Next slab must already be present */ | |
6363 | VERIFY(sp != NULL); | |
6364 | VERIFY(!slab_is_detached(sp)); | |
6365 | slab_detach(sp); | |
6366 | } | |
6367 | } | |
6368 | } | |
6369 | ||
6370 | static boolean_t | |
6371 | slab_inrange(mcl_slab_t *sp, void *buf) | |
6372 | { | |
6373 | return ((uintptr_t)buf >= (uintptr_t)sp->sl_base && | |
6374 | (uintptr_t)buf < ((uintptr_t)sp->sl_base + sp->sl_len)); | |
6375 | } | |
6376 | ||
b0d623f7 | 6377 | #undef panic |
2d21ac55 A |
6378 | |
6379 | static void | |
6380 | slab_nextptr_panic(mcl_slab_t *sp, void *addr) | |
6381 | { | |
6382 | int i; | |
6383 | unsigned int chunk_len = sp->sl_len / sp->sl_chunks; | |
6384 | uintptr_t buf = (uintptr_t)sp->sl_base; | |
6385 | ||
6386 | for (i = 0; i < sp->sl_chunks; i++, buf += chunk_len) { | |
6387 | void *next = ((mcache_obj_t *)buf)->obj_next; | |
6388 | if (next != addr) | |
6389 | continue; | |
6d2010ae | 6390 | if (!mclverify) { |
2d21ac55 A |
6391 | if (next != NULL && !MBUF_IN_MAP(next)) { |
6392 | mcache_t *cp = m_cache(sp->sl_class); | |
6393 | panic("%s: %s buffer %p in slab %p modified " | |
6394 | "after free at offset 0: %p out of range " | |
6395 | "[%p-%p)\n", __func__, cp->mc_name, | |
6396 | (void *)buf, sp, next, mbutl, embutl); | |
6397 | /* NOTREACHED */ | |
6398 | } | |
6399 | } else { | |
6400 | mcache_audit_t *mca = mcl_audit_buf2mca(sp->sl_class, | |
6401 | (mcache_obj_t *)buf); | |
6402 | mcl_audit_verify_nextptr(next, mca); | |
6403 | } | |
6404 | } | |
6405 | } | |
6406 | ||
6407 | static void | |
6408 | slab_detach(mcl_slab_t *sp) | |
6409 | { | |
6410 | sp->sl_link.tqe_next = (mcl_slab_t *)-1; | |
6411 | sp->sl_link.tqe_prev = (mcl_slab_t **)-1; | |
6412 | sp->sl_flags |= SLF_DETACHED; | |
6413 | } | |
6414 | ||
6415 | static boolean_t | |
6416 | slab_is_detached(mcl_slab_t *sp) | |
6417 | { | |
6418 | return ((intptr_t)sp->sl_link.tqe_next == -1 && | |
6419 | (intptr_t)sp->sl_link.tqe_prev == -1 && | |
6420 | (sp->sl_flags & SLF_DETACHED)); | |
6421 | } | |
6422 | ||
6423 | static void | |
6424 | mcl_audit_init(void *buf, mcache_audit_t **mca_list, | |
6425 | mcache_obj_t **con_list, size_t con_size, unsigned int num) | |
6426 | { | |
6427 | mcache_audit_t *mca, *mca_tail; | |
6428 | mcache_obj_t *con = NULL; | |
6429 | boolean_t save_contents = (con_list != NULL); | |
6430 | unsigned int i, ix; | |
6431 | ||
6d2010ae | 6432 | ASSERT(num <= NMBPBG); |
2d21ac55 A |
6433 | ASSERT(con_list == NULL || con_size != 0); |
6434 | ||
6d2010ae A |
6435 | ix = MTOBG(buf); |
6436 | VERIFY(ix < maxclaudit); | |
6437 | ||
2d21ac55 | 6438 | /* Make sure we haven't been here before */ |
6d2010ae | 6439 | for (i = 0; i < NMBPBG; i++) |
2d21ac55 A |
6440 | VERIFY(mclaudit[ix].cl_audit[i] == NULL); |
6441 | ||
6442 | mca = mca_tail = *mca_list; | |
6443 | if (save_contents) | |
6444 | con = *con_list; | |
6445 | ||
6446 | for (i = 0; i < num; i++) { | |
6447 | mcache_audit_t *next; | |
6448 | ||
6449 | next = mca->mca_next; | |
6450 | bzero(mca, sizeof (*mca)); | |
6451 | mca->mca_next = next; | |
6452 | mclaudit[ix].cl_audit[i] = mca; | |
6453 | ||
6454 | /* Attach the contents buffer if requested */ | |
6455 | if (save_contents) { | |
39236c6e A |
6456 | mcl_saved_contents_t *msc = |
6457 | (mcl_saved_contents_t *)(void *)con; | |
6458 | ||
6459 | VERIFY(msc != NULL); | |
6460 | VERIFY(IS_P2ALIGNED(msc, sizeof (u_int64_t))); | |
6461 | VERIFY(con_size == sizeof (*msc)); | |
2d21ac55 | 6462 | mca->mca_contents_size = con_size; |
39236c6e | 6463 | mca->mca_contents = msc; |
2d21ac55 A |
6464 | con = con->obj_next; |
6465 | bzero(mca->mca_contents, mca->mca_contents_size); | |
6466 | } | |
6467 | ||
6468 | mca_tail = mca; | |
6469 | mca = mca->mca_next; | |
6470 | } | |
91447636 | 6471 | |
2d21ac55 A |
6472 | if (save_contents) |
6473 | *con_list = con; | |
6474 | ||
6475 | *mca_list = mca_tail->mca_next; | |
6476 | mca_tail->mca_next = NULL; | |
6477 | } | |
6478 | ||
fe8ab488 A |
6479 | static void |
6480 | mcl_audit_free(void *buf, unsigned int num) | |
6481 | { | |
6482 | unsigned int i, ix; | |
6483 | mcache_audit_t *mca, *mca_list; | |
6484 | ||
6485 | ix = MTOBG(buf); | |
6486 | VERIFY(ix < maxclaudit); | |
6487 | ||
6488 | if (mclaudit[ix].cl_audit[0] != NULL) { | |
6489 | mca_list = mclaudit[ix].cl_audit[0]; | |
6490 | for (i = 0; i < num; i++) { | |
6491 | mca = mclaudit[ix].cl_audit[i]; | |
6492 | mclaudit[ix].cl_audit[i] = NULL; | |
6493 | if (mca->mca_contents) | |
6494 | mcache_free(mcl_audit_con_cache, | |
6495 | mca->mca_contents); | |
6496 | } | |
6497 | mcache_free_ext(mcache_audit_cache, | |
6498 | (mcache_obj_t *)mca_list); | |
6499 | } | |
6500 | } | |
6501 | ||
2d21ac55 | 6502 | /* |
6d2010ae | 6503 | * Given an address of a buffer (mbuf/2KB/4KB/16KB), return |
2d21ac55 A |
6504 | * the corresponding audit structure for that buffer. |
6505 | */ | |
6506 | static mcache_audit_t * | |
6507 | mcl_audit_buf2mca(mbuf_class_t class, mcache_obj_t *o) | |
6508 | { | |
6509 | mcache_audit_t *mca = NULL; | |
6d2010ae | 6510 | int ix = MTOBG(o); |
2d21ac55 | 6511 | |
6d2010ae | 6512 | VERIFY(ix < maxclaudit); |
2d21ac55 A |
6513 | VERIFY(IS_P2ALIGNED(o, MIN(m_maxsize(class), NBPG))); |
6514 | ||
6515 | switch (class) { | |
6516 | case MC_MBUF: | |
6517 | /* | |
6d2010ae | 6518 | * For the mbuf case, find the index of the page |
2d21ac55 | 6519 | * used by the mbuf and use that index to locate the |
6d2010ae A |
6520 | * base address of the page. Then find out the |
6521 | * mbuf index relative to the page base and use | |
2d21ac55 A |
6522 | * it to locate the audit structure. |
6523 | */ | |
6d2010ae A |
6524 | VERIFY(MCLIDX(BGTOM(ix), o) < (int)NMBPBG); |
6525 | mca = mclaudit[ix].cl_audit[MCLIDX(BGTOM(ix), o)]; | |
2d21ac55 A |
6526 | break; |
6527 | ||
6528 | case MC_CL: | |
6d2010ae A |
6529 | /* |
6530 | * Same thing as above, but for 2KB clusters in a page. | |
6531 | */ | |
6532 | VERIFY(CLBGIDX(BGTOM(ix), o) < (int)NCLPBG); | |
6533 | mca = mclaudit[ix].cl_audit[CLBGIDX(BGTOM(ix), o)]; | |
6534 | break; | |
6535 | ||
2d21ac55 A |
6536 | case MC_BIGCL: |
6537 | case MC_16KCL: | |
6538 | /* | |
6539 | * Same as above, but only return the first element. | |
6540 | */ | |
6541 | mca = mclaudit[ix].cl_audit[0]; | |
6542 | break; | |
6543 | ||
6544 | default: | |
6545 | VERIFY(0); | |
6546 | /* NOTREACHED */ | |
6547 | } | |
6548 | ||
6549 | return (mca); | |
6550 | } | |
6551 | ||
6552 | static void | |
6553 | mcl_audit_mbuf(mcache_audit_t *mca, void *addr, boolean_t composite, | |
6554 | boolean_t alloc) | |
6555 | { | |
6556 | struct mbuf *m = addr; | |
6557 | mcache_obj_t *next = ((mcache_obj_t *)m)->obj_next; | |
6558 | ||
6559 | VERIFY(mca->mca_contents != NULL && | |
6560 | mca->mca_contents_size == AUDIT_CONTENTS_SIZE); | |
6561 | ||
6d2010ae A |
6562 | if (mclverify) |
6563 | mcl_audit_verify_nextptr(next, mca); | |
2d21ac55 A |
6564 | |
6565 | if (!alloc) { | |
6566 | /* Save constructed mbuf fields */ | |
6567 | mcl_audit_save_mbuf(m, mca); | |
6d2010ae A |
6568 | if (mclverify) { |
6569 | mcache_set_pattern(MCACHE_FREE_PATTERN, m, | |
6570 | m_maxsize(MC_MBUF)); | |
6571 | } | |
2d21ac55 A |
6572 | ((mcache_obj_t *)m)->obj_next = next; |
6573 | return; | |
6574 | } | |
6575 | ||
6576 | /* Check if the buffer has been corrupted while in freelist */ | |
6d2010ae A |
6577 | if (mclverify) { |
6578 | mcache_audit_free_verify_set(mca, addr, 0, m_maxsize(MC_MBUF)); | |
6579 | } | |
2d21ac55 A |
6580 | /* Restore constructed mbuf fields */ |
6581 | mcl_audit_restore_mbuf(m, mca, composite); | |
6582 | } | |
6583 | ||
6584 | static void | |
6585 | mcl_audit_restore_mbuf(struct mbuf *m, mcache_audit_t *mca, boolean_t composite) | |
6586 | { | |
39236c6e | 6587 | struct mbuf *ms = MCA_SAVED_MBUF_PTR(mca); |
2d21ac55 A |
6588 | |
6589 | if (composite) { | |
6590 | struct mbuf *next = m->m_next; | |
6591 | VERIFY(ms->m_flags == M_EXT && MEXT_RFA(ms) != NULL && | |
6592 | MBUF_IS_COMPOSITE(ms)); | |
39236c6e | 6593 | VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE); |
2d21ac55 A |
6594 | /* |
6595 | * We could have hand-picked the mbuf fields and restore | |
6596 | * them individually, but that will be a maintenance | |
6597 | * headache. Instead, restore everything that was saved; | |
6598 | * the mbuf layer will recheck and reinitialize anyway. | |
6599 | */ | |
39236c6e | 6600 | bcopy(ms, m, MCA_SAVED_MBUF_SIZE); |
2d21ac55 A |
6601 | m->m_next = next; |
6602 | } else { | |
6603 | /* | |
6604 | * For a regular mbuf (no cluster attached) there's nothing | |
6605 | * to restore other than the type field, which is expected | |
6606 | * to be MT_FREE. | |
6607 | */ | |
6608 | m->m_type = ms->m_type; | |
6609 | } | |
6610 | _MCHECK(m); | |
6611 | } | |
6612 | ||
6613 | static void | |
6614 | mcl_audit_save_mbuf(struct mbuf *m, mcache_audit_t *mca) | |
6615 | { | |
39236c6e | 6616 | VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE); |
2d21ac55 | 6617 | _MCHECK(m); |
39236c6e | 6618 | bcopy(m, MCA_SAVED_MBUF_PTR(mca), MCA_SAVED_MBUF_SIZE); |
2d21ac55 A |
6619 | } |
6620 | ||
6621 | static void | |
6622 | mcl_audit_cluster(mcache_audit_t *mca, void *addr, size_t size, boolean_t alloc, | |
6623 | boolean_t save_next) | |
6624 | { | |
6625 | mcache_obj_t *next = ((mcache_obj_t *)addr)->obj_next; | |
6626 | ||
6627 | if (!alloc) { | |
6d2010ae A |
6628 | if (mclverify) { |
6629 | mcache_set_pattern(MCACHE_FREE_PATTERN, addr, size); | |
6630 | } | |
2d21ac55 A |
6631 | if (save_next) { |
6632 | mcl_audit_verify_nextptr(next, mca); | |
6633 | ((mcache_obj_t *)addr)->obj_next = next; | |
6634 | } | |
6d2010ae | 6635 | } else if (mclverify) { |
2d21ac55 A |
6636 | /* Check if the buffer has been corrupted while in freelist */ |
6637 | mcl_audit_verify_nextptr(next, mca); | |
6638 | mcache_audit_free_verify_set(mca, addr, 0, size); | |
6639 | } | |
6640 | } | |
6641 | ||
39236c6e A |
6642 | static void |
6643 | mcl_audit_scratch(mcache_audit_t *mca) | |
6644 | { | |
6645 | void *stack[MCACHE_STACK_DEPTH + 1]; | |
6646 | mcl_scratch_audit_t *msa; | |
6647 | struct timeval now; | |
6648 | ||
6649 | VERIFY(mca->mca_contents != NULL); | |
6650 | msa = MCA_SAVED_SCRATCH_PTR(mca); | |
6651 | ||
6652 | msa->msa_pthread = msa->msa_thread; | |
6653 | msa->msa_thread = current_thread(); | |
6654 | bcopy(msa->msa_stack, msa->msa_pstack, sizeof (msa->msa_pstack)); | |
6655 | msa->msa_pdepth = msa->msa_depth; | |
6656 | bzero(stack, sizeof (stack)); | |
6657 | msa->msa_depth = OSBacktrace(stack, MCACHE_STACK_DEPTH + 1) - 1; | |
fe8ab488 | 6658 | bcopy(&stack[1], msa->msa_stack, sizeof (msa->msa_stack)); |
39236c6e A |
6659 | |
6660 | msa->msa_ptstamp = msa->msa_tstamp; | |
6661 | microuptime(&now); | |
6662 | /* tstamp is in ms relative to base_ts */ | |
6663 | msa->msa_tstamp = ((now.tv_usec - mb_start.tv_usec) / 1000); | |
6664 | if ((now.tv_sec - mb_start.tv_sec) > 0) | |
6665 | msa->msa_tstamp += ((now.tv_sec - mb_start.tv_sec) * 1000); | |
6666 | } | |
6667 | ||
2d21ac55 A |
6668 | static void |
6669 | mcl_audit_mcheck_panic(struct mbuf *m) | |
6670 | { | |
6671 | mcache_audit_t *mca; | |
6672 | ||
6673 | MRANGE(m); | |
6674 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); | |
6675 | ||
6676 | panic("mcl_audit: freed mbuf %p with type 0x%x (instead of 0x%x)\n%s\n", | |
6677 | m, (u_int16_t)m->m_type, MT_FREE, mcache_dump_mca(mca)); | |
6678 | /* NOTREACHED */ | |
6679 | } | |
6680 | ||
6681 | static void | |
6682 | mcl_audit_verify_nextptr(void *next, mcache_audit_t *mca) | |
6683 | { | |
6d2010ae A |
6684 | if (next != NULL && !MBUF_IN_MAP(next) && |
6685 | (next != (void *)MCACHE_FREE_PATTERN || !mclverify)) { | |
2d21ac55 A |
6686 | panic("mcl_audit: buffer %p modified after free at offset 0: " |
6687 | "%p out of range [%p-%p)\n%s\n", | |
6688 | mca->mca_addr, next, mbutl, embutl, mcache_dump_mca(mca)); | |
6689 | /* NOTREACHED */ | |
6690 | } | |
6691 | } | |
6692 | ||
6d2010ae A |
6693 | /* This function turns on mbuf leak detection */ |
6694 | static void | |
6695 | mleak_activate(void) | |
6696 | { | |
6697 | mleak_table.mleak_sample_factor = MLEAK_SAMPLE_FACTOR; | |
6698 | PE_parse_boot_argn("mleak_sample_factor", | |
6699 | &mleak_table.mleak_sample_factor, | |
6700 | sizeof (mleak_table.mleak_sample_factor)); | |
6701 | ||
6702 | if (mleak_table.mleak_sample_factor == 0) | |
6703 | mclfindleak = 0; | |
6704 | ||
6705 | if (mclfindleak == 0) | |
6706 | return; | |
6707 | ||
6708 | vm_size_t alloc_size = | |
6709 | mleak_alloc_buckets * sizeof (struct mallocation); | |
6710 | vm_size_t trace_size = mleak_trace_buckets * sizeof (struct mtrace); | |
6711 | ||
6712 | MALLOC(mleak_allocations, struct mallocation *, alloc_size, | |
6713 | M_TEMP, M_WAITOK | M_ZERO); | |
6714 | VERIFY(mleak_allocations != NULL); | |
6715 | ||
6716 | MALLOC(mleak_traces, struct mtrace *, trace_size, | |
6717 | M_TEMP, M_WAITOK | M_ZERO); | |
6718 | VERIFY(mleak_traces != NULL); | |
6719 | ||
6720 | MALLOC(mleak_stat, mleak_stat_t *, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES), | |
6721 | M_TEMP, M_WAITOK | M_ZERO); | |
6722 | VERIFY(mleak_stat != NULL); | |
6723 | mleak_stat->ml_cnt = MLEAK_NUM_TRACES; | |
6724 | #ifdef __LP64__ | |
6725 | mleak_stat->ml_isaddr64 = 1; | |
6726 | #endif /* __LP64__ */ | |
6727 | } | |
6728 | ||
6729 | static void | |
6730 | mleak_logger(u_int32_t num, mcache_obj_t *addr, boolean_t alloc) | |
6731 | { | |
6732 | int temp; | |
6733 | ||
6734 | if (mclfindleak == 0) | |
6735 | return; | |
6736 | ||
6737 | if (!alloc) | |
6738 | return (mleak_free(addr)); | |
6739 | ||
6740 | temp = atomic_add_32_ov(&mleak_table.mleak_capture, 1); | |
6741 | ||
6742 | if ((temp % mleak_table.mleak_sample_factor) == 0 && addr != NULL) { | |
6743 | uintptr_t bt[MLEAK_STACK_DEPTH]; | |
6744 | int logged = fastbacktrace(bt, MLEAK_STACK_DEPTH); | |
6745 | mleak_log(bt, addr, logged, num); | |
6746 | } | |
6747 | } | |
6748 | ||
6749 | /* | |
6750 | * This function records the allocation in the mleak_allocations table | |
6751 | * and the backtrace in the mleak_traces table; if allocation slot is in use, | |
6752 | * replace old allocation with new one if the trace slot is in use, return | |
6753 | * (or increment refcount if same trace). | |
6754 | */ | |
6755 | static boolean_t | |
6756 | mleak_log(uintptr_t *bt, mcache_obj_t *addr, uint32_t depth, int num) | |
6757 | { | |
6758 | struct mallocation *allocation; | |
6759 | struct mtrace *trace; | |
6760 | uint32_t trace_index; | |
6d2010ae A |
6761 | |
6762 | /* Quit if someone else modifying the tables */ | |
6763 | if (!lck_mtx_try_lock_spin(mleak_lock)) { | |
6764 | mleak_table.total_conflicts++; | |
6765 | return (FALSE); | |
6766 | } | |
6767 | ||
6768 | allocation = &mleak_allocations[hashaddr((uintptr_t)addr, | |
6769 | mleak_alloc_buckets)]; | |
6770 | trace_index = hashbacktrace(bt, depth, mleak_trace_buckets); | |
6771 | trace = &mleak_traces[trace_index]; | |
6772 | ||
6773 | VERIFY(allocation <= &mleak_allocations[mleak_alloc_buckets - 1]); | |
6774 | VERIFY(trace <= &mleak_traces[mleak_trace_buckets - 1]); | |
6775 | ||
6776 | allocation->hitcount++; | |
6777 | trace->hitcount++; | |
6778 | ||
6779 | /* | |
6780 | * If the allocation bucket we want is occupied | |
6781 | * and the occupier has the same trace, just bail. | |
6782 | */ | |
6783 | if (allocation->element != NULL && | |
6784 | trace_index == allocation->trace_index) { | |
6785 | mleak_table.alloc_collisions++; | |
6786 | lck_mtx_unlock(mleak_lock); | |
6787 | return (TRUE); | |
6788 | } | |
6789 | ||
6790 | /* | |
6791 | * Store the backtrace in the traces array; | |
6792 | * Size of zero = trace bucket is free. | |
6793 | */ | |
6794 | if (trace->allocs > 0 && | |
6795 | bcmp(trace->addr, bt, (depth * sizeof (uintptr_t))) != 0) { | |
6796 | /* Different, unique trace, but the same hash! Bail out. */ | |
6797 | trace->collisions++; | |
6798 | mleak_table.trace_collisions++; | |
6799 | lck_mtx_unlock(mleak_lock); | |
6800 | return (TRUE); | |
6801 | } else if (trace->allocs > 0) { | |
6802 | /* Same trace, already added, so increment refcount */ | |
6803 | trace->allocs++; | |
6804 | } else { | |
6805 | /* Found an unused trace bucket, so record the trace here */ | |
6806 | if (trace->depth != 0) { | |
6807 | /* this slot previously used but not currently in use */ | |
6808 | mleak_table.trace_overwrites++; | |
6809 | } | |
6810 | mleak_table.trace_recorded++; | |
6811 | trace->allocs = 1; | |
6812 | memcpy(trace->addr, bt, (depth * sizeof (uintptr_t))); | |
6813 | trace->depth = depth; | |
6814 | trace->collisions = 0; | |
6815 | } | |
6816 | ||
6817 | /* Step 2: Store the allocation record in the allocations array */ | |
6818 | if (allocation->element != NULL) { | |
6819 | /* | |
6820 | * Replace an existing allocation. No need to preserve | |
6821 | * because only a subset of the allocations are being | |
6822 | * recorded anyway. | |
6823 | */ | |
6824 | mleak_table.alloc_collisions++; | |
6825 | } else if (allocation->trace_index != 0) { | |
6826 | mleak_table.alloc_overwrites++; | |
6827 | } | |
6828 | allocation->element = addr; | |
6829 | allocation->trace_index = trace_index; | |
6830 | allocation->count = num; | |
6831 | mleak_table.alloc_recorded++; | |
6832 | mleak_table.outstanding_allocs++; | |
6833 | ||
6d2010ae A |
6834 | lck_mtx_unlock(mleak_lock); |
6835 | return (TRUE); | |
6836 | } | |
6837 | ||
6838 | static void | |
6839 | mleak_free(mcache_obj_t *addr) | |
6840 | { | |
6841 | while (addr != NULL) { | |
6842 | struct mallocation *allocation = &mleak_allocations | |
6843 | [hashaddr((uintptr_t)addr, mleak_alloc_buckets)]; | |
6844 | ||
6845 | if (allocation->element == addr && | |
6846 | allocation->trace_index < mleak_trace_buckets) { | |
6847 | lck_mtx_lock_spin(mleak_lock); | |
6848 | if (allocation->element == addr && | |
6849 | allocation->trace_index < mleak_trace_buckets) { | |
6850 | struct mtrace *trace; | |
6851 | trace = &mleak_traces[allocation->trace_index]; | |
6852 | /* allocs = 0 means trace bucket is unused */ | |
6853 | if (trace->allocs > 0) | |
6854 | trace->allocs--; | |
6855 | if (trace->allocs == 0) | |
6856 | trace->depth = 0; | |
6857 | /* NULL element means alloc bucket is unused */ | |
6858 | allocation->element = NULL; | |
6859 | mleak_table.outstanding_allocs--; | |
6860 | } | |
6861 | lck_mtx_unlock(mleak_lock); | |
6862 | } | |
6863 | addr = addr->obj_next; | |
6864 | } | |
6865 | } | |
6866 | ||
316670eb A |
6867 | static void |
6868 | mleak_sort_traces() | |
6869 | { | |
6870 | int i, j, k; | |
6871 | struct mtrace *swap; | |
6872 | ||
6873 | for(i = 0; i < MLEAK_NUM_TRACES; i++) | |
6874 | mleak_top_trace[i] = NULL; | |
6875 | ||
6876 | for(i = 0, j = 0; j < MLEAK_NUM_TRACES && i < mleak_trace_buckets; i++) | |
6877 | { | |
6878 | if (mleak_traces[i].allocs <= 0) | |
6879 | continue; | |
6880 | ||
6881 | mleak_top_trace[j] = &mleak_traces[i]; | |
6882 | for (k = j; k > 0; k--) { | |
6883 | if (mleak_top_trace[k]->allocs <= | |
6884 | mleak_top_trace[k-1]->allocs) | |
6885 | break; | |
6886 | ||
6887 | swap = mleak_top_trace[k-1]; | |
6888 | mleak_top_trace[k-1] = mleak_top_trace[k]; | |
6889 | mleak_top_trace[k] = swap; | |
6890 | } | |
6891 | j++; | |
6892 | } | |
6893 | ||
6894 | j--; | |
6895 | for(; i < mleak_trace_buckets; i++) { | |
6896 | if (mleak_traces[i].allocs <= mleak_top_trace[j]->allocs) | |
6897 | continue; | |
6898 | ||
6899 | mleak_top_trace[j] = &mleak_traces[i]; | |
6900 | ||
6901 | for (k = j; k > 0; k--) { | |
6902 | if (mleak_top_trace[k]->allocs <= | |
6903 | mleak_top_trace[k-1]->allocs) | |
6904 | break; | |
6905 | ||
6906 | swap = mleak_top_trace[k-1]; | |
6907 | mleak_top_trace[k-1] = mleak_top_trace[k]; | |
6908 | mleak_top_trace[k] = swap; | |
6909 | } | |
6910 | } | |
6911 | } | |
6912 | ||
6913 | static void | |
6914 | mleak_update_stats() | |
6915 | { | |
6916 | mleak_trace_stat_t *mltr; | |
6917 | int i; | |
6918 | ||
6919 | VERIFY(mleak_stat != NULL); | |
6920 | #ifdef __LP64__ | |
6921 | VERIFY(mleak_stat->ml_isaddr64); | |
6922 | #else | |
6923 | VERIFY(!mleak_stat->ml_isaddr64); | |
6924 | #endif /* !__LP64__ */ | |
6925 | VERIFY(mleak_stat->ml_cnt == MLEAK_NUM_TRACES); | |
6926 | ||
6927 | mleak_sort_traces(); | |
6928 | ||
6929 | mltr = &mleak_stat->ml_trace[0]; | |
6930 | bzero(mltr, sizeof (*mltr) * MLEAK_NUM_TRACES); | |
6931 | for (i = 0; i < MLEAK_NUM_TRACES; i++) { | |
6932 | int j; | |
6933 | ||
6934 | if (mleak_top_trace[i] == NULL || | |
6935 | mleak_top_trace[i]->allocs == 0) | |
6936 | continue; | |
6937 | ||
6938 | mltr->mltr_collisions = mleak_top_trace[i]->collisions; | |
6939 | mltr->mltr_hitcount = mleak_top_trace[i]->hitcount; | |
6940 | mltr->mltr_allocs = mleak_top_trace[i]->allocs; | |
6941 | mltr->mltr_depth = mleak_top_trace[i]->depth; | |
6942 | ||
6943 | VERIFY(mltr->mltr_depth <= MLEAK_STACK_DEPTH); | |
6944 | for (j = 0; j < mltr->mltr_depth; j++) | |
6945 | mltr->mltr_addr[j] = mleak_top_trace[i]->addr[j]; | |
6946 | ||
6947 | mltr++; | |
6948 | } | |
6949 | } | |
6950 | ||
6d2010ae A |
6951 | static struct mbtypes { |
6952 | int mt_type; | |
6953 | const char *mt_name; | |
6954 | } mbtypes[] = { | |
6955 | { MT_DATA, "data" }, | |
6956 | { MT_OOBDATA, "oob data" }, | |
6957 | { MT_CONTROL, "ancillary data" }, | |
6958 | { MT_HEADER, "packet headers" }, | |
6959 | { MT_SOCKET, "socket structures" }, | |
6960 | { MT_PCB, "protocol control blocks" }, | |
6961 | { MT_RTABLE, "routing table entries" }, | |
6962 | { MT_HTABLE, "IMP host table entries" }, | |
6963 | { MT_ATABLE, "address resolution tables" }, | |
6964 | { MT_FTABLE, "fragment reassembly queue headers" }, | |
6965 | { MT_SONAME, "socket names and addresses" }, | |
6966 | { MT_SOOPTS, "socket options" }, | |
6967 | { MT_RIGHTS, "access rights" }, | |
6968 | { MT_IFADDR, "interface addresses" }, | |
6969 | { MT_TAG, "packet tags" }, | |
6970 | { 0, NULL } | |
6971 | }; | |
6972 | ||
6973 | #define MBUF_DUMP_BUF_CHK() { \ | |
6974 | clen -= k; \ | |
6975 | if (clen < 1) \ | |
6976 | goto done; \ | |
6977 | c += k; \ | |
6978 | } | |
6979 | ||
6980 | static char * | |
6981 | mbuf_dump(void) | |
6982 | { | |
6983 | unsigned long totmem = 0, totfree = 0, totmbufs, totused, totpct; | |
6984 | u_int32_t m_mbufs = 0, m_clfree = 0, m_bigclfree = 0; | |
6985 | u_int32_t m_mbufclfree = 0, m_mbufbigclfree = 0; | |
6986 | u_int32_t m_16kclusters = 0, m_16kclfree = 0, m_mbuf16kclfree = 0; | |
6987 | int nmbtypes = sizeof (mbstat.m_mtypes) / sizeof (short); | |
6988 | uint8_t seen[256]; | |
6989 | struct mbtypes *mp; | |
6990 | mb_class_stat_t *sp; | |
316670eb | 6991 | mleak_trace_stat_t *mltr; |
6d2010ae | 6992 | char *c = mbuf_dump_buf; |
316670eb | 6993 | int i, k, clen = MBUF_DUMP_BUF_SIZE; |
6d2010ae A |
6994 | |
6995 | mbuf_dump_buf[0] = '\0'; | |
6996 | ||
6997 | /* synchronize all statistics in the mbuf table */ | |
6998 | mbuf_stat_sync(); | |
6999 | mbuf_mtypes_sync(TRUE); | |
7000 | ||
7001 | sp = &mb_stat->mbs_class[0]; | |
7002 | for (i = 0; i < mb_stat->mbs_cnt; i++, sp++) { | |
7003 | u_int32_t mem; | |
7004 | ||
7005 | if (m_class(i) == MC_MBUF) { | |
7006 | m_mbufs = sp->mbcl_active; | |
7007 | } else if (m_class(i) == MC_CL) { | |
7008 | m_clfree = sp->mbcl_total - sp->mbcl_active; | |
7009 | } else if (m_class(i) == MC_BIGCL) { | |
7010 | m_bigclfree = sp->mbcl_total - sp->mbcl_active; | |
7011 | } else if (njcl > 0 && m_class(i) == MC_16KCL) { | |
7012 | m_16kclfree = sp->mbcl_total - sp->mbcl_active; | |
7013 | m_16kclusters = sp->mbcl_total; | |
7014 | } else if (m_class(i) == MC_MBUF_CL) { | |
7015 | m_mbufclfree = sp->mbcl_total - sp->mbcl_active; | |
7016 | } else if (m_class(i) == MC_MBUF_BIGCL) { | |
7017 | m_mbufbigclfree = sp->mbcl_total - sp->mbcl_active; | |
7018 | } else if (njcl > 0 && m_class(i) == MC_MBUF_16KCL) { | |
7019 | m_mbuf16kclfree = sp->mbcl_total - sp->mbcl_active; | |
7020 | } | |
7021 | ||
7022 | mem = sp->mbcl_ctotal * sp->mbcl_size; | |
7023 | totmem += mem; | |
7024 | totfree += (sp->mbcl_mc_cached + sp->mbcl_infree) * | |
7025 | sp->mbcl_size; | |
7026 | ||
7027 | } | |
7028 | ||
7029 | /* adjust free counts to include composite caches */ | |
7030 | m_clfree += m_mbufclfree; | |
7031 | m_bigclfree += m_mbufbigclfree; | |
7032 | m_16kclfree += m_mbuf16kclfree; | |
7033 | ||
7034 | totmbufs = 0; | |
7035 | for (mp = mbtypes; mp->mt_name != NULL; mp++) | |
7036 | totmbufs += mbstat.m_mtypes[mp->mt_type]; | |
7037 | if (totmbufs > m_mbufs) | |
7038 | totmbufs = m_mbufs; | |
7039 | k = snprintf(c, clen, "%lu/%u mbufs in use:\n", totmbufs, m_mbufs); | |
7040 | MBUF_DUMP_BUF_CHK(); | |
7041 | ||
7042 | bzero(&seen, sizeof (seen)); | |
7043 | for (mp = mbtypes; mp->mt_name != NULL; mp++) { | |
7044 | if (mbstat.m_mtypes[mp->mt_type] != 0) { | |
7045 | seen[mp->mt_type] = 1; | |
7046 | k = snprintf(c, clen, "\t%u mbufs allocated to %s\n", | |
7047 | mbstat.m_mtypes[mp->mt_type], mp->mt_name); | |
7048 | MBUF_DUMP_BUF_CHK(); | |
7049 | } | |
7050 | } | |
7051 | seen[MT_FREE] = 1; | |
7052 | for (i = 0; i < nmbtypes; i++) | |
7053 | if (!seen[i] && mbstat.m_mtypes[i] != 0) { | |
7054 | k = snprintf(c, clen, "\t%u mbufs allocated to " | |
7055 | "<mbuf type %d>\n", mbstat.m_mtypes[i], i); | |
7056 | MBUF_DUMP_BUF_CHK(); | |
7057 | } | |
7058 | if ((m_mbufs - totmbufs) > 0) { | |
7059 | k = snprintf(c, clen, "\t%lu mbufs allocated to caches\n", | |
7060 | m_mbufs - totmbufs); | |
7061 | MBUF_DUMP_BUF_CHK(); | |
7062 | } | |
7063 | k = snprintf(c, clen, "%u/%u mbuf 2KB clusters in use\n" | |
7064 | "%u/%u mbuf 4KB clusters in use\n", | |
7065 | (unsigned int)(mbstat.m_clusters - m_clfree), | |
7066 | (unsigned int)mbstat.m_clusters, | |
7067 | (unsigned int)(mbstat.m_bigclusters - m_bigclfree), | |
7068 | (unsigned int)mbstat.m_bigclusters); | |
7069 | MBUF_DUMP_BUF_CHK(); | |
7070 | ||
7071 | if (njcl > 0) { | |
7072 | k = snprintf(c, clen, "%u/%u mbuf %uKB clusters in use\n", | |
7073 | m_16kclusters - m_16kclfree, m_16kclusters, | |
7074 | njclbytes / 1024); | |
7075 | MBUF_DUMP_BUF_CHK(); | |
7076 | } | |
7077 | totused = totmem - totfree; | |
7078 | if (totmem == 0) { | |
7079 | totpct = 0; | |
7080 | } else if (totused < (ULONG_MAX / 100)) { | |
7081 | totpct = (totused * 100) / totmem; | |
7082 | } else { | |
7083 | u_long totmem1 = totmem / 100; | |
7084 | u_long totused1 = totused / 100; | |
7085 | totpct = (totused1 * 100) / totmem1; | |
7086 | } | |
7087 | k = snprintf(c, clen, "%lu KB allocated to network (approx. %lu%% " | |
7088 | "in use)\n", totmem / 1024, totpct); | |
7089 | MBUF_DUMP_BUF_CHK(); | |
7090 | ||
316670eb A |
7091 | /* mbuf leak detection statistics */ |
7092 | mleak_update_stats(); | |
7093 | ||
7094 | k = snprintf(c, clen, "\nmbuf leak detection table:\n"); | |
7095 | MBUF_DUMP_BUF_CHK(); | |
7096 | k = snprintf(c, clen, "\ttotal captured: %u (one per %u)\n", | |
7097 | mleak_table.mleak_capture / mleak_table.mleak_sample_factor, | |
7098 | mleak_table.mleak_sample_factor); | |
7099 | MBUF_DUMP_BUF_CHK(); | |
7100 | k = snprintf(c, clen, "\ttotal allocs outstanding: %llu\n", | |
7101 | mleak_table.outstanding_allocs); | |
7102 | MBUF_DUMP_BUF_CHK(); | |
7103 | k = snprintf(c, clen, "\tnew hash recorded: %llu allocs, %llu traces\n", | |
7104 | mleak_table.alloc_recorded, mleak_table.trace_recorded); | |
7105 | MBUF_DUMP_BUF_CHK(); | |
7106 | k = snprintf(c, clen, "\thash collisions: %llu allocs, %llu traces\n", | |
7107 | mleak_table.alloc_collisions, mleak_table.trace_collisions); | |
7108 | MBUF_DUMP_BUF_CHK(); | |
7109 | k = snprintf(c, clen, "\toverwrites: %llu allocs, %llu traces\n", | |
7110 | mleak_table.alloc_overwrites, mleak_table.trace_overwrites); | |
7111 | MBUF_DUMP_BUF_CHK(); | |
7112 | k = snprintf(c, clen, "\tlock conflicts: %llu\n\n", | |
7113 | mleak_table.total_conflicts); | |
7114 | MBUF_DUMP_BUF_CHK(); | |
7115 | ||
7116 | k = snprintf(c, clen, "top %d outstanding traces:\n", | |
7117 | mleak_stat->ml_cnt); | |
7118 | MBUF_DUMP_BUF_CHK(); | |
7119 | for (i = 0; i < mleak_stat->ml_cnt; i++) { | |
7120 | mltr = &mleak_stat->ml_trace[i]; | |
7121 | k = snprintf(c, clen, "[%d] %llu outstanding alloc(s), " | |
7122 | "%llu hit(s), %llu collision(s)\n", (i + 1), | |
7123 | mltr->mltr_allocs, mltr->mltr_hitcount, | |
7124 | mltr->mltr_collisions); | |
7125 | MBUF_DUMP_BUF_CHK(); | |
7126 | } | |
7127 | ||
7128 | if (mleak_stat->ml_isaddr64) | |
7129 | k = snprintf(c, clen, MB_LEAK_HDR_64); | |
7130 | else | |
7131 | k = snprintf(c, clen, MB_LEAK_HDR_32); | |
7132 | MBUF_DUMP_BUF_CHK(); | |
7133 | ||
7134 | for (i = 0; i < MLEAK_STACK_DEPTH; i++) { | |
7135 | int j; | |
7136 | k = snprintf(c, clen, "%2d: ", (i + 1)); | |
7137 | MBUF_DUMP_BUF_CHK(); | |
7138 | for (j = 0; j < mleak_stat->ml_cnt; j++) { | |
7139 | mltr = &mleak_stat->ml_trace[j]; | |
7140 | if (i < mltr->mltr_depth) { | |
7141 | if (mleak_stat->ml_isaddr64) { | |
7142 | k = snprintf(c, clen, "0x%0llx ", | |
fe8ab488 A |
7143 | (uint64_t)VM_KERNEL_UNSLIDE( |
7144 | mltr->mltr_addr[i])); | |
316670eb A |
7145 | } else { |
7146 | k = snprintf(c, clen, | |
7147 | "0x%08x ", | |
fe8ab488 A |
7148 | (uint32_t)VM_KERNEL_UNSLIDE( |
7149 | mltr->mltr_addr[i])); | |
316670eb A |
7150 | } |
7151 | } else { | |
7152 | if (mleak_stat->ml_isaddr64) | |
7153 | k = snprintf(c, clen, | |
7154 | MB_LEAK_SPACING_64); | |
7155 | else | |
7156 | k = snprintf(c, clen, | |
7157 | MB_LEAK_SPACING_32); | |
7158 | } | |
7159 | MBUF_DUMP_BUF_CHK(); | |
7160 | } | |
7161 | k = snprintf(c, clen, "\n"); | |
7162 | MBUF_DUMP_BUF_CHK(); | |
7163 | } | |
6d2010ae A |
7164 | done: |
7165 | return (mbuf_dump_buf); | |
7166 | } | |
7167 | ||
7168 | #undef MBUF_DUMP_BUF_CHK | |
7169 | ||
39236c6e A |
7170 | /* |
7171 | * Convert between a regular and a packet header mbuf. Caller is responsible | |
7172 | * for setting or clearing M_PKTHDR; this routine does the rest of the work. | |
7173 | */ | |
7174 | int | |
7175 | m_reinit(struct mbuf *m, int hdr) | |
7176 | { | |
7177 | int ret = 0; | |
7178 | ||
7179 | if (hdr) { | |
7180 | VERIFY(!(m->m_flags & M_PKTHDR)); | |
7181 | if (!(m->m_flags & M_EXT) && | |
7182 | (m->m_data != m->m_dat || m->m_len > 0)) { | |
7183 | /* | |
7184 | * If there's no external cluster attached and the | |
7185 | * mbuf appears to contain user data, we cannot | |
7186 | * safely convert this to a packet header mbuf, | |
7187 | * as the packet header structure might overlap | |
7188 | * with the data. | |
7189 | */ | |
fe8ab488 A |
7190 | printf("%s: cannot set M_PKTHDR on altered mbuf %llx, " |
7191 | "m_data %llx (expected %llx), " | |
7192 | "m_len %d (expected 0)\n", | |
7193 | __func__, | |
7194 | (uint64_t)VM_KERNEL_ADDRPERM(m), | |
7195 | (uint64_t)VM_KERNEL_ADDRPERM(m->m_data), | |
7196 | (uint64_t)VM_KERNEL_ADDRPERM(m->m_dat), m->m_len); | |
39236c6e A |
7197 | ret = EBUSY; |
7198 | } else { | |
7199 | VERIFY((m->m_flags & M_EXT) || m->m_data == m->m_dat); | |
7200 | m->m_flags |= M_PKTHDR; | |
7201 | MBUF_INIT_PKTHDR(m); | |
7202 | } | |
7203 | } else { | |
7204 | /* Check for scratch area overflow */ | |
7205 | m_redzone_verify(m); | |
7206 | /* Free the aux data and tags if there is any */ | |
7207 | m_tag_delete_chain(m, NULL); | |
7208 | m->m_flags &= ~M_PKTHDR; | |
7209 | } | |
7210 | ||
7211 | return (ret); | |
7212 | } | |
7213 | ||
7214 | void | |
7215 | m_scratch_init(struct mbuf *m) | |
7216 | { | |
fe8ab488 A |
7217 | struct pkthdr *pkt = &m->m_pkthdr; |
7218 | ||
39236c6e A |
7219 | VERIFY(m->m_flags & M_PKTHDR); |
7220 | ||
fe8ab488 A |
7221 | /* See comments in <rdar://problem/14040693> */ |
7222 | if (pkt->pkt_flags & PKTF_PRIV_GUARDED) { | |
7223 | panic_plain("Invalid attempt to modify guarded module-private " | |
7224 | "area: mbuf %p, pkt_flags 0x%x\n", m, pkt->pkt_flags); | |
7225 | /* NOTREACHED */ | |
7226 | } | |
7227 | ||
7228 | bzero(&pkt->pkt_mpriv, sizeof (pkt->pkt_mpriv)); | |
39236c6e A |
7229 | } |
7230 | ||
fe8ab488 A |
7231 | /* |
7232 | * This routine is reserved for mbuf_get_driver_scratch(); clients inside | |
7233 | * xnu that intend on utilizing the module-private area should directly | |
7234 | * refer to the pkt_mpriv structure in the pkthdr. They are also expected | |
7235 | * to set and clear PKTF_PRIV_GUARDED, while owning the packet and prior | |
7236 | * to handing it off to another module, respectively. | |
7237 | */ | |
39236c6e A |
7238 | u_int32_t |
7239 | m_scratch_get(struct mbuf *m, u_int8_t **p) | |
7240 | { | |
fe8ab488 A |
7241 | struct pkthdr *pkt = &m->m_pkthdr; |
7242 | ||
39236c6e A |
7243 | VERIFY(m->m_flags & M_PKTHDR); |
7244 | ||
fe8ab488 A |
7245 | /* See comments in <rdar://problem/14040693> */ |
7246 | if (pkt->pkt_flags & PKTF_PRIV_GUARDED) { | |
7247 | panic_plain("Invalid attempt to access guarded module-private " | |
7248 | "area: mbuf %p, pkt_flags 0x%x\n", m, pkt->pkt_flags); | |
7249 | /* NOTREACHED */ | |
7250 | } | |
7251 | ||
39236c6e A |
7252 | if (mcltrace) { |
7253 | mcache_audit_t *mca; | |
7254 | ||
7255 | lck_mtx_lock(mbuf_mlock); | |
7256 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); | |
7257 | if (mca->mca_uflags & MB_SCVALID) | |
7258 | mcl_audit_scratch(mca); | |
7259 | lck_mtx_unlock(mbuf_mlock); | |
7260 | } | |
7261 | ||
fe8ab488 A |
7262 | *p = (u_int8_t *)&pkt->pkt_mpriv; |
7263 | return (sizeof (pkt->pkt_mpriv)); | |
39236c6e A |
7264 | } |
7265 | ||
7266 | static void | |
7267 | m_redzone_init(struct mbuf *m) | |
7268 | { | |
7269 | VERIFY(m->m_flags & M_PKTHDR); | |
7270 | /* | |
7271 | * Each mbuf has a unique red zone pattern, which is a XOR | |
7272 | * of the red zone cookie and the address of the mbuf. | |
7273 | */ | |
7274 | m->m_pkthdr.redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie; | |
7275 | } | |
7276 | ||
7277 | static void | |
7278 | m_redzone_verify(struct mbuf *m) | |
7279 | { | |
7280 | u_int32_t mb_redzone; | |
7281 | ||
7282 | VERIFY(m->m_flags & M_PKTHDR); | |
7283 | ||
7284 | mb_redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie; | |
7285 | if (m->m_pkthdr.redzone != mb_redzone) { | |
7286 | panic("mbuf %p redzone violation with value 0x%x " | |
7287 | "(instead of 0x%x, using cookie 0x%x)\n", | |
7288 | m, m->m_pkthdr.redzone, mb_redzone, mb_redzone_cookie); | |
7289 | /* NOTREACHED */ | |
7290 | } | |
7291 | } | |
7292 | ||
fe8ab488 A |
7293 | /* |
7294 | * Send a report of mbuf usage if the usage is at least 6% of max limit | |
7295 | * or if there has been at least 3% increase since the last report. | |
7296 | * | |
7297 | * The values 6% and 3% are chosen so that we can do simple arithmetic | |
7298 | * with shift operations. | |
7299 | */ | |
7300 | static boolean_t | |
7301 | mbuf_report_usage(mbuf_class_t cl) | |
7302 | { | |
7303 | /* if a report is already in progress, nothing to do */ | |
7304 | if (mb_peak_newreport) | |
7305 | return (TRUE); | |
7306 | ||
7307 | if (m_total(cl) > m_peak(cl) && | |
7308 | m_total(cl) >= (m_maxlimit(cl) >> 4) && | |
7309 | (m_total(cl) - m_peak(cl)) >= (m_peak(cl) >> 5)) | |
7310 | return (TRUE); | |
7311 | return (FALSE); | |
7312 | } | |
7313 | ||
7314 | __private_extern__ void | |
7315 | mbuf_report_peak_usage(void) | |
7316 | { | |
7317 | int i = 0; | |
7318 | u_int64_t uptime; | |
7319 | struct nstat_sysinfo_data ns_data; | |
7320 | uint32_t memreleased = 0; | |
7321 | ||
7322 | uptime = net_uptime(); | |
7323 | lck_mtx_lock(mbuf_mlock); | |
7324 | ||
7325 | /* Generate an initial report after 1 week of uptime */ | |
7326 | if (!mb_peak_firstreport && | |
7327 | uptime > MBUF_PEAK_FIRST_REPORT_THRESHOLD) { | |
7328 | mb_peak_newreport = TRUE; | |
7329 | mb_peak_firstreport = TRUE; | |
7330 | } | |
7331 | ||
7332 | if (!mb_peak_newreport) { | |
7333 | lck_mtx_unlock(mbuf_mlock); | |
7334 | return; | |
7335 | } | |
7336 | ||
7337 | /* | |
7338 | * Since a report is being generated before 1 week, | |
7339 | * we do not need to force another one later | |
7340 | */ | |
7341 | if (uptime < MBUF_PEAK_FIRST_REPORT_THRESHOLD) | |
7342 | mb_peak_firstreport = TRUE; | |
7343 | ||
7344 | for (i = 0; i < NELEM(mbuf_table); i++) { | |
7345 | m_peak(m_class(i)) = m_total(m_class(i)); | |
7346 | memreleased += m_release_cnt(i); | |
7347 | } | |
7348 | mb_peak_newreport = FALSE; | |
7349 | lck_mtx_unlock(mbuf_mlock); | |
7350 | ||
7351 | bzero(&ns_data, sizeof(ns_data)); | |
7352 | ns_data.flags = NSTAT_SYSINFO_MBUF_STATS; | |
7353 | ns_data.u.mb_stats.total_256b = m_peak(MC_MBUF); | |
7354 | ns_data.u.mb_stats.total_2kb = m_peak(MC_CL); | |
7355 | ns_data.u.mb_stats.total_4kb = m_peak(MC_BIGCL); | |
7356 | ns_data.u.mb_stats.sbmb_total = total_sbmb_cnt_peak; | |
7357 | ns_data.u.mb_stats.sb_atmbuflimit = sbmb_limreached; | |
7358 | ns_data.u.mb_stats.draincnt = mbstat.m_drain; | |
7359 | ns_data.u.mb_stats.memreleased = memreleased; | |
7360 | ||
7361 | nstat_sysinfo_send_data(&ns_data); | |
7362 | } | |
7363 | ||
7364 | /* | |
7365 | * Called by the VM when there's memory pressure. | |
7366 | */ | |
7367 | __private_extern__ void | |
7368 | m_drain(void) | |
7369 | { | |
7370 | mbuf_class_t mc; | |
7371 | mcl_slab_t *sp, *sp_tmp, *nsp; | |
7372 | unsigned int num, k, interval, released = 0; | |
7373 | unsigned int total_mem = 0, use_mem = 0; | |
7374 | boolean_t ret, purge_caches = FALSE; | |
7375 | ppnum_t offset; | |
7376 | mcache_obj_t *obj; | |
7377 | float per; | |
7378 | static uint64_t last_drain = 0; | |
7379 | static unsigned char scratch[32]; | |
7380 | static ppnum_t scratch_pa = 0; | |
7381 | ||
7382 | if (mb_drain_maxint == 0 || mb_waiters) | |
7383 | return; | |
7384 | if (scratch_pa == 0) { | |
7385 | bzero(scratch, sizeof(scratch)); | |
7386 | scratch_pa = pmap_find_phys(kernel_pmap, (addr64_t)scratch); | |
7387 | VERIFY(scratch_pa); | |
7388 | } else if (mclverify) { | |
7389 | /* | |
7390 | * Panic if a driver wrote to our scratch memory. | |
7391 | */ | |
7392 | for (k = 0; k < sizeof(scratch); k++) | |
7393 | if (scratch[k]) | |
7394 | panic("suspect DMA to freed address"); | |
7395 | } | |
7396 | /* | |
7397 | * Don't free memory too often as that could cause excessive | |
7398 | * waiting times for mbufs. Purge caches if we were asked to drain | |
7399 | * in the last 5 minutes. | |
7400 | */ | |
7401 | lck_mtx_lock(mbuf_mlock); | |
7402 | if (last_drain == 0) { | |
7403 | last_drain = net_uptime(); | |
7404 | lck_mtx_unlock(mbuf_mlock); | |
7405 | return; | |
7406 | } | |
7407 | interval = net_uptime() - last_drain; | |
7408 | if (interval <= mb_drain_maxint) { | |
7409 | lck_mtx_unlock(mbuf_mlock); | |
7410 | return; | |
7411 | } | |
7412 | if (interval <= mb_drain_maxint * 5) | |
7413 | purge_caches = TRUE; | |
7414 | last_drain = net_uptime(); | |
7415 | /* | |
7416 | * Don't free any memory if we're using 60% or more. | |
7417 | */ | |
7418 | for (mc = 0; mc < NELEM(mbuf_table); mc++) { | |
7419 | total_mem += m_total(mc) * m_maxsize(mc); | |
7420 | use_mem += m_active(mc) * m_maxsize(mc); | |
7421 | } | |
7422 | per = (float)use_mem / (float)total_mem; | |
7423 | if (per >= 0.6) { | |
7424 | lck_mtx_unlock(mbuf_mlock); | |
7425 | return; | |
7426 | } | |
7427 | /* | |
7428 | * Purge all the caches. This effectively disables | |
7429 | * caching for a few seconds, but the mbuf worker thread will | |
7430 | * re-enable them again. | |
7431 | */ | |
7432 | if (purge_caches == TRUE) | |
7433 | for (mc = 0; mc < NELEM(mbuf_table); mc++) { | |
7434 | if (m_total(mc) < m_avgtotal(mc)) | |
7435 | continue; | |
7436 | lck_mtx_unlock(mbuf_mlock); | |
7437 | ret = mcache_purge_cache(m_cache(mc), FALSE); | |
7438 | lck_mtx_lock(mbuf_mlock); | |
7439 | if (ret == TRUE) | |
7440 | m_purge_cnt(mc)++; | |
7441 | } | |
7442 | /* | |
7443 | * Move the objects from the composite class freelist to | |
7444 | * the rudimentary slabs list, but keep at least 10% of the average | |
7445 | * total in the freelist. | |
7446 | */ | |
7447 | for (mc = 0; mc < NELEM(mbuf_table); mc++) { | |
7448 | while (m_cobjlist(mc) && | |
7449 | m_total(mc) < m_avgtotal(mc) && | |
7450 | m_infree(mc) > 0.1 * m_avgtotal(mc) + m_minlimit(mc)) { | |
7451 | obj = m_cobjlist(mc); | |
7452 | m_cobjlist(mc) = obj->obj_next; | |
7453 | obj->obj_next = NULL; | |
7454 | num = cslab_free(mc, obj, 1); | |
7455 | VERIFY(num == 1); | |
7456 | m_free_cnt(mc)++; | |
7457 | m_infree(mc)--; | |
7458 | /* cslab_free() handles m_total */ | |
7459 | } | |
7460 | } | |
7461 | /* | |
7462 | * Free the buffers present in the slab list up to 10% of the total | |
7463 | * average per class. | |
7464 | * | |
7465 | * We walk the list backwards in an attempt to reduce fragmentation. | |
7466 | */ | |
7467 | for (mc = NELEM(mbuf_table) - 1; (int)mc >= 0; mc--) { | |
7468 | TAILQ_FOREACH_SAFE(sp, &m_slablist(mc), sl_link, sp_tmp) { | |
7469 | /* | |
7470 | * Process only unused slabs occupying memory. | |
7471 | */ | |
7472 | if (sp->sl_refcnt != 0 || sp->sl_len == 0 || | |
7473 | sp->sl_base == NULL) | |
7474 | continue; | |
7475 | if (m_total(mc) < m_avgtotal(mc) || | |
7476 | m_infree(mc) < 0.1 * m_avgtotal(mc) + m_minlimit(mc)) | |
7477 | break; | |
7478 | slab_remove(sp, mc); | |
7479 | switch (mc) { | |
7480 | case MC_MBUF: | |
7481 | m_infree(mc) -= NMBPBG; | |
7482 | m_total(mc) -= NMBPBG; | |
7483 | if (mclaudit != NULL) | |
7484 | mcl_audit_free(sp->sl_base, NMBPBG); | |
7485 | break; | |
7486 | case MC_CL: | |
7487 | m_infree(mc) -= NCLPBG; | |
7488 | m_total(mc) -= NCLPBG; | |
7489 | if (mclaudit != NULL) | |
7490 | mcl_audit_free(sp->sl_base, NMBPBG); | |
7491 | break; | |
7492 | case MC_BIGCL: | |
7493 | m_infree(mc)--; | |
7494 | m_total(mc)--; | |
7495 | if (mclaudit != NULL) | |
7496 | mcl_audit_free(sp->sl_base, NMBPBG); | |
7497 | break; | |
7498 | case MC_16KCL: | |
7499 | m_infree(mc)--; | |
7500 | m_total(mc)--; | |
7501 | for (nsp = sp, k = 1; k < NSLABSP16KB; k++) { | |
7502 | nsp = nsp->sl_next; | |
7503 | VERIFY(nsp->sl_refcnt == 0 && | |
7504 | nsp->sl_base != NULL && | |
7505 | nsp->sl_len == 0); | |
7506 | slab_init(nsp, 0, 0, NULL, NULL, 0, 0, | |
7507 | 0); | |
7508 | nsp->sl_flags = 0; | |
7509 | } | |
7510 | if (mclaudit != NULL) | |
7511 | mcl_audit_free(sp->sl_base, 1); | |
7512 | break; | |
7513 | default: | |
7514 | /* | |
7515 | * The composite classes have their own | |
7516 | * freelist (m_cobjlist), so we only | |
7517 | * process rudimentary classes here. | |
7518 | */ | |
7519 | VERIFY(0); | |
7520 | } | |
7521 | m_release_cnt(mc) += m_size(mc); | |
7522 | released += m_size(mc); | |
7523 | offset = ((char *)sp->sl_base - (char *)mbutl) / NBPG; | |
7524 | /* | |
7525 | * Make sure the IOMapper points to a valid, but | |
7526 | * bogus, address. This should prevent further DMA | |
7527 | * accesses to freed memory. | |
7528 | */ | |
7529 | IOMapperInsertPage(mcl_paddr_base, offset, scratch_pa); | |
7530 | mcl_paddr[offset] = 0; | |
7531 | kmem_free(mb_map, (vm_offset_t)sp->sl_base, | |
7532 | sp->sl_len); | |
7533 | slab_init(sp, 0, 0, NULL, NULL, 0, 0, 0); | |
7534 | sp->sl_flags = 0; | |
7535 | } | |
7536 | } | |
7537 | mbstat.m_drain++; | |
7538 | mbstat.m_bigclusters = m_total(MC_BIGCL); | |
7539 | mbstat.m_clusters = m_total(MC_CL); | |
7540 | mbstat.m_mbufs = m_total(MC_MBUF); | |
7541 | mbuf_stat_sync(); | |
7542 | mbuf_mtypes_sync(TRUE); | |
7543 | lck_mtx_unlock(mbuf_mlock); | |
7544 | } | |
7545 | ||
7546 | static int | |
7547 | m_drain_force_sysctl SYSCTL_HANDLER_ARGS | |
7548 | { | |
7549 | #pragma unused(arg1, arg2) | |
7550 | int val = 0, err; | |
7551 | ||
7552 | err = sysctl_handle_int(oidp, &val, 0, req); | |
7553 | if (err != 0 || req->newptr == USER_ADDR_NULL) | |
7554 | return (err); | |
7555 | if (val) | |
7556 | m_drain(); | |
7557 | ||
7558 | return (err); | |
7559 | } | |
7560 | ||
2d21ac55 | 7561 | SYSCTL_DECL(_kern_ipc); |
6d2010ae | 7562 | SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, |
fe8ab488 | 7563 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
2d21ac55 | 7564 | 0, 0, mbstat_sysctl, "S,mbstat", ""); |
6d2010ae | 7565 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_stat, |
fe8ab488 | 7566 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
2d21ac55 | 7567 | 0, 0, mb_stat_sysctl, "S,mb_stat", ""); |
6d2010ae | 7568 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_top_trace, |
fe8ab488 | 7569 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
6d2010ae A |
7570 | 0, 0, mleak_top_trace_sysctl, "S,mb_top_trace", ""); |
7571 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_table, | |
fe8ab488 | 7572 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
6d2010ae A |
7573 | 0, 0, mleak_table_sysctl, "S,mleak_table", ""); |
7574 | SYSCTL_INT(_kern_ipc, OID_AUTO, mleak_sample_factor, | |
7575 | CTLFLAG_RW | CTLFLAG_LOCKED, &mleak_table.mleak_sample_factor, 0, ""); | |
7576 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_normalized, | |
7577 | CTLFLAG_RD | CTLFLAG_LOCKED, &mb_normalized, 0, ""); | |
7578 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_watchdog, | |
7579 | CTLFLAG_RW | CTLFLAG_LOCKED, &mb_watchdog, 0, ""); | |
fe8ab488 A |
7580 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_drain_force, |
7581 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, 0, | |
7582 | m_drain_force_sysctl, "I", | |
7583 | "Forces the mbuf garbage collection to run"); | |
7584 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_drain_maxint, | |
7585 | CTLFLAG_RW | CTLFLAG_LOCKED, &mb_drain_maxint, 0, | |
7586 | "Minimum time interval between garbage collection"); |