]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
23 | /* | |
24 | * Copyright (c) 1992, 1993 | |
25 | * The Regents of the University of California. All rights reserved. | |
26 | * | |
27 | * This code is derived from software contributed to Berkeley by | |
28 | * John Heidemann of the UCLA Ficus project. | |
29 | * | |
30 | * Redistribution and use in source and binary forms, with or without | |
31 | * modification, are permitted provided that the following conditions | |
32 | * are met: | |
33 | * 1. Redistributions of source code must retain the above copyright | |
34 | * notice, this list of conditions and the following disclaimer. | |
35 | * 2. Redistributions in binary form must reproduce the above copyright | |
36 | * notice, this list of conditions and the following disclaimer in the | |
37 | * documentation and/or other materials provided with the distribution. | |
38 | * 3. All advertising materials mentioning features or use of this software | |
39 | * must display the following acknowledgement: | |
40 | * This product includes software developed by the University of | |
41 | * California, Berkeley and its contributors. | |
42 | * 4. Neither the name of the University nor the names of its contributors | |
43 | * may be used to endorse or promote products derived from this software | |
44 | * without specific prior written permission. | |
45 | * | |
46 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
47 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
48 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
49 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
50 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
51 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
52 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
53 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
54 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
55 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
56 | * SUCH DAMAGE. | |
57 | * | |
58 | * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 | |
59 | * | |
60 | * Ancestors: | |
61 | * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 | |
62 | * ...and... | |
63 | * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project | |
64 | */ | |
65 | ||
66 | /* | |
67 | * Null Layer | |
68 | * | |
69 | * (See mount_null(8) for more information.) | |
70 | * | |
71 | * The null layer duplicates a portion of the file system | |
72 | * name space under a new name. In this respect, it is | |
73 | * similar to the loopback file system. It differs from | |
74 | * the loopback fs in two respects: it is implemented using | |
75 | * a stackable layers techniques, and it's "null-node"s stack above | |
76 | * all lower-layer vnodes, not just over directory vnodes. | |
77 | * | |
78 | * The null layer has two purposes. First, it serves as a demonstration | |
79 | * of layering by proving a layer which does nothing. (It actually | |
80 | * does everything the loopback file system does, which is slightly | |
81 | * more than nothing.) Second, the null layer can serve as a prototype | |
82 | * layer. Since it provides all necessary layer framework, | |
83 | * new file system layers can be created very easily be starting | |
84 | * with a null layer. | |
85 | * | |
86 | * The remainder of this man page examines the null layer as a basis | |
87 | * for constructing new layers. | |
88 | * | |
89 | * | |
90 | * INSTANTIATING NEW NULL LAYERS | |
91 | * | |
92 | * New null layers are created with mount_null(8). | |
93 | * Mount_null(8) takes two arguments, the pathname | |
94 | * of the lower vfs (target-pn) and the pathname where the null | |
95 | * layer will appear in the namespace (alias-pn). After | |
96 | * the null layer is put into place, the contents | |
97 | * of target-pn subtree will be aliased under alias-pn. | |
98 | * | |
99 | * | |
100 | * OPERATION OF A NULL LAYER | |
101 | * | |
102 | * The null layer is the minimum file system layer, | |
103 | * simply bypassing all possible operations to the lower layer | |
104 | * for processing there. The majority of its activity centers | |
105 | * on the bypass routine, though which nearly all vnode operations | |
106 | * pass. | |
107 | * | |
108 | * The bypass routine accepts arbitrary vnode operations for | |
109 | * handling by the lower layer. It begins by examing vnode | |
110 | * operation arguments and replacing any null-nodes by their | |
111 | * lower-layer equivlants. It then invokes the operation | |
112 | * on the lower layer. Finally, it replaces the null-nodes | |
113 | * in the arguments and, if a vnode is return by the operation, | |
114 | * stacks a null-node on top of the returned vnode. | |
115 | * | |
116 | * Although bypass handles most operations, vop_getattr, vop_lock, | |
117 | * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not | |
118 | * bypassed. Vop_getattr must change the fsid being returned. | |
119 | * Vop_lock and vop_unlock must handle any locking for the | |
120 | * current vnode as well as pass the lock request down. | |
121 | * Vop_inactive and vop_reclaim are not bypassed so that | |
122 | * they can handle freeing null-layer specific data. Vop_print | |
123 | * is not bypassed to avoid excessive debugging information. | |
124 | * Also, certain vnode operations change the locking state within | |
125 | * the operation (create, mknod, remove, link, rename, mkdir, rmdir, | |
126 | * and symlink). Ideally these operations should not change the | |
127 | * lock state, but should be changed to let the caller of the | |
128 | * function unlock them. Otherwise all intermediate vnode layers | |
129 | * (such as union, umapfs, etc) must catch these functions to do | |
130 | * the necessary locking at their layer. | |
131 | * | |
132 | * | |
133 | * INSTANTIATING VNODE STACKS | |
134 | * | |
135 | * Mounting associates the null layer with a lower layer, | |
136 | * effect stacking two VFSes. Vnode stacks are instead | |
137 | * created on demand as files are accessed. | |
138 | * | |
139 | * The initial mount creates a single vnode stack for the | |
140 | * root of the new null layer. All other vnode stacks | |
141 | * are created as a result of vnode operations on | |
142 | * this or other null vnode stacks. | |
143 | * | |
144 | * New vnode stacks come into existance as a result of | |
145 | * an operation which returns a vnode. | |
146 | * The bypass routine stacks a null-node above the new | |
147 | * vnode before returning it to the caller. | |
148 | * | |
149 | * For example, imagine mounting a null layer with | |
150 | * "mount_null /usr/include /dev/layer/null". | |
151 | * Changing directory to /dev/layer/null will assign | |
152 | * the root null-node (which was created when the null layer was mounted). | |
153 | * Now consider opening "sys". A vop_lookup would be | |
154 | * done on the root null-node. This operation would bypass through | |
155 | * to the lower layer which would return a vnode representing | |
156 | * the UFS "sys". Null_bypass then builds a null-node | |
157 | * aliasing the UFS "sys" and returns this to the caller. | |
158 | * Later operations on the null-node "sys" will repeat this | |
159 | * process when constructing other vnode stacks. | |
160 | * | |
161 | * | |
162 | * CREATING OTHER FILE SYSTEM LAYERS | |
163 | * | |
164 | * One of the easiest ways to construct new file system layers is to make | |
165 | * a copy of the null layer, rename all files and variables, and | |
166 | * then begin modifing the copy. Sed can be used to easily rename | |
167 | * all variables. | |
168 | * | |
169 | * The umap layer is an example of a layer descended from the | |
170 | * null layer. | |
171 | * | |
172 | * | |
173 | * INVOKING OPERATIONS ON LOWER LAYERS | |
174 | * | |
175 | * There are two techniques to invoke operations on a lower layer | |
176 | * when the operation cannot be completely bypassed. Each method | |
177 | * is appropriate in different situations. In both cases, | |
178 | * it is the responsibility of the aliasing layer to make | |
179 | * the operation arguments "correct" for the lower layer | |
180 | * by mapping an vnode arguments to the lower layer. | |
181 | * | |
182 | * The first approach is to call the aliasing layer's bypass routine. | |
183 | * This method is most suitable when you wish to invoke the operation | |
184 | * currently being hanldled on the lower layer. It has the advantage | |
185 | * that the bypass routine already must do argument mapping. | |
186 | * An example of this is null_getattrs in the null layer. | |
187 | * | |
188 | * A second approach is to directly invoked vnode operations on | |
189 | * the lower layer with the VOP_OPERATIONNAME interface. | |
190 | * The advantage of this method is that it is easy to invoke | |
191 | * arbitrary operations on the lower layer. The disadvantage | |
192 | * is that vnodes arguments must be manualy mapped. | |
193 | * | |
194 | */ | |
195 | ||
196 | #include <sys/param.h> | |
197 | #include <sys/systm.h> | |
198 | #include <sys/proc.h> | |
199 | #include <sys/time.h> | |
200 | #include <sys/types.h> | |
201 | #include <sys/vnode.h> | |
202 | #include <sys/mount.h> | |
203 | #include <sys/namei.h> | |
204 | #include <sys/malloc.h> | |
205 | #include <sys/buf.h> | |
206 | #include <miscfs/nullfs/null.h> | |
207 | ||
208 | ||
209 | int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */ | |
210 | ||
211 | /* | |
212 | * This is the 10-Apr-92 bypass routine. | |
213 | * This version has been optimized for speed, throwing away some | |
214 | * safety checks. It should still always work, but it's not as | |
215 | * robust to programmer errors. | |
216 | * Define SAFETY to include some error checking code. | |
217 | * | |
218 | * In general, we map all vnodes going down and unmap them on the way back. | |
219 | * As an exception to this, vnodes can be marked "unmapped" by setting | |
220 | * the Nth bit in operation's vdesc_flags. | |
221 | * | |
222 | * Also, some BSD vnode operations have the side effect of vrele'ing | |
223 | * their arguments. With stacking, the reference counts are held | |
224 | * by the upper node, not the lower one, so we must handle these | |
225 | * side-effects here. This is not of concern in Sun-derived systems | |
226 | * since there are no such side-effects. | |
227 | * | |
228 | * This makes the following assumptions: | |
229 | * - only one returned vpp | |
230 | * - no INOUT vpp's (Sun's vop_open has one of these) | |
231 | * - the vnode operation vector of the first vnode should be used | |
232 | * to determine what implementation of the op should be invoked | |
233 | * - all mapped vnodes are of our vnode-type (NEEDSWORK: | |
234 | * problems on rmdir'ing mount points and renaming?) | |
235 | */ | |
236 | int | |
237 | null_bypass(ap) | |
238 | struct vop_generic_args /* { | |
239 | struct vnodeop_desc *a_desc; | |
240 | <other random data follows, presumably> | |
241 | } */ *ap; | |
242 | { | |
243 | extern int (**null_vnodeop_p)(void *); /* not extern, really "forward" */ | |
244 | register struct vnode **this_vp_p; | |
245 | int error; | |
246 | struct vnode *old_vps[VDESC_MAX_VPS]; | |
247 | struct vnode **vps_p[VDESC_MAX_VPS]; | |
248 | struct vnode ***vppp; | |
249 | struct vnodeop_desc *descp = ap->a_desc; | |
250 | int reles, i; | |
251 | ||
252 | if (null_bug_bypass) | |
253 | printf ("null_bypass: %s\n", descp->vdesc_name); | |
254 | ||
255 | #ifdef SAFETY | |
256 | /* | |
257 | * We require at least one vp. | |
258 | */ | |
259 | if (descp->vdesc_vp_offsets == NULL || | |
260 | descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) | |
261 | panic ("null_bypass: no vp's in map.\n"); | |
262 | #endif | |
263 | ||
264 | /* | |
265 | * Map the vnodes going in. | |
266 | * Later, we'll invoke the operation based on | |
267 | * the first mapped vnode's operation vector. | |
268 | */ | |
269 | reles = descp->vdesc_flags; | |
270 | for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { | |
271 | if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) | |
272 | break; /* bail out at end of list */ | |
273 | vps_p[i] = this_vp_p = | |
274 | VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap); | |
275 | /* | |
276 | * We're not guaranteed that any but the first vnode | |
277 | * are of our type. Check for and don't map any | |
278 | * that aren't. (We must always map first vp or vclean fails.) | |
279 | */ | |
280 | if (i && (*this_vp_p == NULL || | |
281 | (*this_vp_p)->v_op != null_vnodeop_p)) { | |
282 | old_vps[i] = NULL; | |
283 | } else { | |
284 | old_vps[i] = *this_vp_p; | |
285 | *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p); | |
286 | /* | |
287 | * XXX - Several operations have the side effect | |
288 | * of vrele'ing their vp's. We must account for | |
289 | * that. (This should go away in the future.) | |
290 | */ | |
291 | if (reles & 1) | |
292 | VREF(*this_vp_p); | |
293 | } | |
294 | ||
295 | } | |
296 | ||
297 | /* | |
298 | * Call the operation on the lower layer | |
299 | * with the modified argument structure. | |
300 | */ | |
301 | error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap); | |
302 | ||
303 | /* | |
304 | * Maintain the illusion of call-by-value | |
305 | * by restoring vnodes in the argument structure | |
306 | * to their original value. | |
307 | */ | |
308 | reles = descp->vdesc_flags; | |
309 | for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { | |
310 | if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) | |
311 | break; /* bail out at end of list */ | |
312 | if (old_vps[i]) { | |
313 | *(vps_p[i]) = old_vps[i]; | |
314 | if (reles & 1) | |
315 | vrele(*(vps_p[i])); | |
316 | } | |
317 | } | |
318 | ||
319 | /* | |
320 | * Map the possible out-going vpp | |
321 | * (Assumes that the lower layer always returns | |
322 | * a VREF'ed vpp unless it gets an error.) | |
323 | */ | |
324 | if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && | |
325 | !(descp->vdesc_flags & VDESC_NOMAP_VPP) && | |
326 | !error) { | |
327 | /* | |
328 | * XXX - even though some ops have vpp returned vp's, | |
329 | * several ops actually vrele this before returning. | |
330 | * We must avoid these ops. | |
331 | * (This should go away when these ops are regularized.) | |
332 | */ | |
333 | if (descp->vdesc_flags & VDESC_VPP_WILLRELE) | |
334 | goto out; | |
335 | vppp = VOPARG_OFFSETTO(struct vnode***, | |
336 | descp->vdesc_vpp_offset,ap); | |
337 | error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp); | |
338 | } | |
339 | ||
340 | out: | |
341 | return (error); | |
342 | } | |
343 | ||
344 | /* | |
345 | * We have to carry on the locking protocol on the null layer vnodes | |
346 | * as we progress through the tree. We also have to enforce read-only | |
347 | * if this layer is mounted read-only. | |
348 | */ | |
349 | null_lookup(ap) | |
350 | struct vop_lookup_args /* { | |
351 | struct vnode * a_dvp; | |
352 | struct vnode ** a_vpp; | |
353 | struct componentname * a_cnp; | |
354 | } */ *ap; | |
355 | { | |
356 | struct componentname *cnp = ap->a_cnp; | |
357 | struct proc *p = cnp->cn_proc; | |
358 | int flags = cnp->cn_flags; | |
359 | struct vop_lock_args lockargs; | |
360 | struct vop_unlock_args unlockargs; | |
361 | struct vnode *dvp, *vp; | |
362 | int error; | |
363 | ||
364 | if ((flags & ISLASTCN) && (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) && | |
365 | (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) | |
366 | return (EROFS); | |
367 | error = null_bypass(ap); | |
368 | if (error == EJUSTRETURN && (flags & ISLASTCN) && | |
369 | (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) && | |
370 | (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) | |
371 | error = EROFS; | |
372 | /* | |
373 | * We must do the same locking and unlocking at this layer as | |
374 | * is done in the layers below us. We could figure this out | |
375 | * based on the error return and the LASTCN, LOCKPARENT, and | |
376 | * LOCKLEAF flags. However, it is more expidient to just find | |
377 | * out the state of the lower level vnodes and set ours to the | |
378 | * same state. | |
379 | */ | |
380 | dvp = ap->a_dvp; | |
381 | vp = *ap->a_vpp; | |
382 | if (dvp == vp) | |
383 | return (error); | |
384 | if (!VOP_ISLOCKED(dvp)) { | |
385 | unlockargs.a_vp = dvp; | |
386 | unlockargs.a_flags = 0; | |
387 | unlockargs.a_p = p; | |
388 | vop_nounlock(&unlockargs); | |
389 | } | |
390 | if (vp != NULL && VOP_ISLOCKED(vp)) { | |
391 | lockargs.a_vp = vp; | |
392 | lockargs.a_flags = LK_SHARED; | |
393 | lockargs.a_p = p; | |
394 | vop_nolock(&lockargs); | |
395 | } | |
396 | return (error); | |
397 | } | |
398 | ||
399 | /* | |
400 | * Setattr call. Disallow write attempts if the layer is mounted read-only. | |
401 | */ | |
402 | int | |
403 | null_setattr(ap) | |
404 | struct vop_setattr_args /* { | |
405 | struct vnodeop_desc *a_desc; | |
406 | struct vnode *a_vp; | |
407 | struct vattr *a_vap; | |
408 | struct ucred *a_cred; | |
409 | struct proc *a_p; | |
410 | } */ *ap; | |
411 | { | |
412 | struct vnode *vp = ap->a_vp; | |
413 | struct vattr *vap = ap->a_vap; | |
414 | ||
415 | if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || | |
416 | vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || | |
417 | vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && | |
418 | (vp->v_mount->mnt_flag & MNT_RDONLY)) | |
419 | return (EROFS); | |
420 | if (vap->va_size != VNOVAL) { | |
421 | switch (vp->v_type) { | |
422 | case VDIR: | |
423 | return (EISDIR); | |
424 | case VCHR: | |
425 | case VBLK: | |
426 | case VSOCK: | |
427 | case VFIFO: | |
428 | return (0); | |
429 | case VREG: | |
430 | case VLNK: | |
431 | default: | |
432 | /* | |
433 | * Disallow write attempts if the filesystem is | |
434 | * mounted read-only. | |
435 | */ | |
436 | if (vp->v_mount->mnt_flag & MNT_RDONLY) | |
437 | return (EROFS); | |
438 | } | |
439 | } | |
440 | return (null_bypass(ap)); | |
441 | } | |
442 | ||
443 | /* | |
444 | * We handle getattr only to change the fsid. | |
445 | */ | |
446 | int | |
447 | null_getattr(ap) | |
448 | struct vop_getattr_args /* { | |
449 | struct vnode *a_vp; | |
450 | struct vattr *a_vap; | |
451 | struct ucred *a_cred; | |
452 | struct proc *a_p; | |
453 | } */ *ap; | |
454 | { | |
455 | int error; | |
456 | ||
457 | if (error = null_bypass(ap)) | |
458 | return (error); | |
459 | /* Requires that arguments be restored. */ | |
460 | ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0]; | |
461 | return (0); | |
462 | } | |
463 | ||
464 | int | |
465 | null_access(ap) | |
466 | struct vop_access_args /* { | |
467 | struct vnode *a_vp; | |
468 | int a_mode; | |
469 | struct ucred *a_cred; | |
470 | struct proc *a_p; | |
471 | } */ *ap; | |
472 | { | |
473 | struct vnode *vp = ap->a_vp; | |
474 | mode_t mode = ap->a_mode; | |
475 | ||
476 | /* | |
477 | * Disallow write attempts on read-only layers; | |
478 | * unless the file is a socket, fifo, or a block or | |
479 | * character device resident on the file system. | |
480 | */ | |
481 | if (mode & VWRITE) { | |
482 | switch (vp->v_type) { | |
483 | case VDIR: | |
484 | case VLNK: | |
485 | case VREG: | |
486 | if (vp->v_mount->mnt_flag & MNT_RDONLY) | |
487 | return (EROFS); | |
488 | break; | |
489 | } | |
490 | } | |
491 | return (null_bypass(ap)); | |
492 | } | |
493 | ||
494 | /* | |
495 | * We need to process our own vnode lock and then clear the | |
496 | * interlock flag as it applies only to our vnode, not the | |
497 | * vnodes below us on the stack. | |
498 | */ | |
499 | int | |
500 | null_lock(ap) | |
501 | struct vop_lock_args /* { | |
502 | struct vnode *a_vp; | |
503 | int a_flags; | |
504 | struct proc *a_p; | |
505 | } */ *ap; | |
506 | { | |
507 | ||
508 | vop_nolock(ap); | |
509 | if ((ap->a_flags & LK_TYPE_MASK) == LK_DRAIN) | |
510 | return (0); | |
511 | ap->a_flags &= ~LK_INTERLOCK; | |
512 | return (null_bypass(ap)); | |
513 | } | |
514 | ||
515 | /* | |
516 | * We need to process our own vnode unlock and then clear the | |
517 | * interlock flag as it applies only to our vnode, not the | |
518 | * vnodes below us on the stack. | |
519 | */ | |
520 | int | |
521 | null_unlock(ap) | |
522 | struct vop_unlock_args /* { | |
523 | struct vnode *a_vp; | |
524 | int a_flags; | |
525 | struct proc *a_p; | |
526 | } */ *ap; | |
527 | { | |
528 | struct vnode *vp = ap->a_vp; | |
529 | ||
530 | vop_nounlock(ap); | |
531 | ap->a_flags &= ~LK_INTERLOCK; | |
532 | return (null_bypass(ap)); | |
533 | } | |
534 | ||
535 | int | |
536 | null_inactive(ap) | |
537 | struct vop_inactive_args /* { | |
538 | struct vnode *a_vp; | |
539 | struct proc *a_p; | |
540 | } */ *ap; | |
541 | { | |
542 | /* | |
543 | * Do nothing (and _don't_ bypass). | |
544 | * Wait to vrele lowervp until reclaim, | |
545 | * so that until then our null_node is in the | |
546 | * cache and reusable. | |
547 | * | |
548 | * NEEDSWORK: Someday, consider inactive'ing | |
549 | * the lowervp and then trying to reactivate it | |
550 | * with capabilities (v_id) | |
551 | * like they do in the name lookup cache code. | |
552 | * That's too much work for now. | |
553 | */ | |
554 | VOP_UNLOCK(ap->a_vp, 0, ap->a_p); | |
555 | return (0); | |
556 | } | |
557 | ||
558 | int | |
559 | null_reclaim(ap) | |
560 | struct vop_reclaim_args /* { | |
561 | struct vnode *a_vp; | |
562 | struct proc *a_p; | |
563 | } */ *ap; | |
564 | { | |
565 | struct vnode *vp = ap->a_vp; | |
566 | struct null_node *xp = VTONULL(vp); | |
567 | struct vnode *lowervp = xp->null_lowervp; | |
568 | ||
569 | /* | |
570 | * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p, | |
571 | * so we can't call VOPs on ourself. | |
572 | */ | |
573 | /* After this assignment, this node will not be re-used. */ | |
574 | xp->null_lowervp = NULL; | |
575 | LIST_REMOVE(xp, null_hash); | |
576 | FREE(vp->v_data, M_TEMP); | |
577 | vp->v_data = NULL; | |
578 | vrele (lowervp); | |
579 | return (0); | |
580 | } | |
581 | ||
582 | int | |
583 | null_print(ap) | |
584 | struct vop_print_args /* { | |
585 | struct vnode *a_vp; | |
586 | } */ *ap; | |
587 | { | |
588 | register struct vnode *vp = ap->a_vp; | |
589 | printf ("\ttag VT_NULLFS, vp=%x, lowervp=%x\n", vp, NULLVPTOLOWERVP(vp)); | |
590 | return (0); | |
591 | } | |
592 | ||
593 | /* | |
594 | * XXX - vop_strategy must be hand coded because it has no | |
595 | * vnode in its arguments. | |
596 | * This goes away with a merged VM/buffer cache. | |
597 | */ | |
598 | int | |
599 | null_strategy(ap) | |
600 | struct vop_strategy_args /* { | |
601 | struct buf *a_bp; | |
602 | } */ *ap; | |
603 | { | |
604 | struct buf *bp = ap->a_bp; | |
605 | int error; | |
606 | struct vnode *savedvp; | |
607 | ||
608 | savedvp = bp->b_vp; | |
609 | bp->b_vp = NULLVPTOLOWERVP(bp->b_vp); | |
610 | ||
611 | error = VOP_STRATEGY(bp); | |
612 | ||
613 | bp->b_vp = savedvp; | |
614 | ||
615 | return (error); | |
616 | } | |
617 | ||
618 | /* | |
619 | * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no | |
620 | * vnode in its arguments. | |
621 | * This goes away with a merged VM/buffer cache. | |
622 | */ | |
623 | int | |
624 | null_bwrite(ap) | |
625 | struct vop_bwrite_args /* { | |
626 | struct buf *a_bp; | |
627 | } */ *ap; | |
628 | { | |
629 | struct buf *bp = ap->a_bp; | |
630 | int error; | |
631 | struct vnode *savedvp; | |
632 | ||
633 | savedvp = bp->b_vp; | |
634 | bp->b_vp = NULLVPTOLOWERVP(bp->b_vp); | |
635 | ||
636 | error = VOP_BWRITE(bp); | |
637 | ||
638 | bp->b_vp = savedvp; | |
639 | ||
640 | return (error); | |
641 | } | |
642 | ||
643 | /* | |
644 | * Global vfs data structures | |
645 | */ | |
646 | ||
647 | #define VOPFUNC int (*)(void *) | |
648 | ||
649 | int (**null_vnodeop_p)(void *); | |
650 | struct vnodeopv_entry_desc null_vnodeop_entries[] = { | |
651 | { &vop_default_desc, (VOPFUNC)null_bypass }, | |
652 | ||
653 | { &vop_lookup_desc, (VOPFUNC)null_lookup }, | |
654 | { &vop_setattr_desc, (VOPFUNC)null_setattr }, | |
655 | { &vop_getattr_desc, (VOPFUNC)null_getattr }, | |
656 | { &vop_access_desc, (VOPFUNC)null_access }, | |
657 | { &vop_lock_desc, (VOPFUNC)null_lock }, | |
658 | { &vop_unlock_desc, (VOPFUNC)null_unlock }, | |
659 | { &vop_inactive_desc, (VOPFUNC)null_inactive }, | |
660 | { &vop_reclaim_desc, (VOPFUNC)null_reclaim }, | |
661 | { &vop_print_desc, (VOPFUNC)null_print }, | |
662 | ||
663 | { &vop_strategy_desc, (VOPFUNC)null_strategy }, | |
664 | { &vop_bwrite_desc, (VOPFUNC)null_bwrite }, | |
665 | ||
666 | { (struct vnodeop_desc*)NULL, (int(*)())NULL } | |
667 | }; | |
668 | struct vnodeopv_desc null_vnodeop_opv_desc = | |
669 | { &null_vnodeop_p, null_vnodeop_entries }; |