]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_pageout.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * Date: 1985 | |
62 | * | |
63 | * The proverbial page-out daemon. | |
64 | */ | |
1c79356b | 65 | |
91447636 A |
66 | #include <stdint.h> |
67 | ||
68 | #include <debug.h> | |
1c79356b A |
69 | #include <mach_pagemap.h> |
70 | #include <mach_cluster_stats.h> | |
71 | #include <mach_kdb.h> | |
72 | #include <advisory_pageout.h> | |
73 | ||
74 | #include <mach/mach_types.h> | |
75 | #include <mach/memory_object.h> | |
76 | #include <mach/memory_object_default.h> | |
0b4e3aa0 | 77 | #include <mach/memory_object_control_server.h> |
1c79356b | 78 | #include <mach/mach_host_server.h> |
91447636 A |
79 | #include <mach/upl.h> |
80 | #include <mach/vm_map.h> | |
1c79356b A |
81 | #include <mach/vm_param.h> |
82 | #include <mach/vm_statistics.h> | |
2d21ac55 | 83 | #include <mach/sdt.h> |
91447636 A |
84 | |
85 | #include <kern/kern_types.h> | |
1c79356b | 86 | #include <kern/counters.h> |
91447636 A |
87 | #include <kern/host_statistics.h> |
88 | #include <kern/machine.h> | |
89 | #include <kern/misc_protos.h> | |
b0d623f7 | 90 | #include <kern/sched.h> |
1c79356b | 91 | #include <kern/thread.h> |
1c79356b | 92 | #include <kern/xpr.h> |
91447636 A |
93 | #include <kern/kalloc.h> |
94 | ||
95 | #include <machine/vm_tuning.h> | |
b0d623f7 | 96 | #include <machine/commpage.h> |
91447636 | 97 | |
2d21ac55 | 98 | #include <sys/kern_memorystatus.h> |
2d21ac55 | 99 | |
1c79356b | 100 | #include <vm/pmap.h> |
55e303ae | 101 | #include <vm/vm_fault.h> |
1c79356b A |
102 | #include <vm/vm_map.h> |
103 | #include <vm/vm_object.h> | |
104 | #include <vm/vm_page.h> | |
105 | #include <vm/vm_pageout.h> | |
91447636 | 106 | #include <vm/vm_protos.h> /* must be last */ |
2d21ac55 A |
107 | #include <vm/memory_object.h> |
108 | #include <vm/vm_purgeable_internal.h> | |
6d2010ae | 109 | #include <vm/vm_shared_region.h> |
91447636 A |
110 | /* |
111 | * ENCRYPTED SWAP: | |
112 | */ | |
91447636 | 113 | #include <../bsd/crypto/aes/aes.h> |
b0d623f7 | 114 | extern u_int32_t random(void); /* from <libkern/libkern.h> */ |
55e303ae | 115 | |
b0d623f7 A |
116 | #if UPL_DEBUG |
117 | #include <libkern/OSDebug.h> | |
118 | #endif | |
91447636 | 119 | |
6d2010ae A |
120 | extern void consider_pressure_events(void); |
121 | ||
2d21ac55 | 122 | #ifndef VM_PAGEOUT_BURST_ACTIVE_THROTTLE /* maximum iterations of the active queue to move pages to inactive */ |
2d21ac55 A |
123 | #define VM_PAGEOUT_BURST_ACTIVE_THROTTLE 100 |
124 | #endif | |
91447636 | 125 | |
2d21ac55 A |
126 | #ifndef VM_PAGEOUT_BURST_INACTIVE_THROTTLE /* maximum iterations of the inactive queue w/o stealing/cleaning a page */ |
127 | #ifdef CONFIG_EMBEDDED | |
128 | #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 1024 | |
129 | #else | |
130 | #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 4096 | |
131 | #endif | |
91447636 A |
132 | #endif |
133 | ||
134 | #ifndef VM_PAGEOUT_DEADLOCK_RELIEF | |
135 | #define VM_PAGEOUT_DEADLOCK_RELIEF 100 /* number of pages to move to break deadlock */ | |
136 | #endif | |
137 | ||
138 | #ifndef VM_PAGEOUT_INACTIVE_RELIEF | |
139 | #define VM_PAGEOUT_INACTIVE_RELIEF 50 /* minimum number of pages to move to the inactive q */ | |
140 | #endif | |
141 | ||
1c79356b | 142 | #ifndef VM_PAGE_LAUNDRY_MAX |
6d2010ae | 143 | #define VM_PAGE_LAUNDRY_MAX 128UL /* maximum pageouts on a given pageout queue */ |
1c79356b A |
144 | #endif /* VM_PAGEOUT_LAUNDRY_MAX */ |
145 | ||
1c79356b | 146 | #ifndef VM_PAGEOUT_BURST_WAIT |
6d2010ae | 147 | #define VM_PAGEOUT_BURST_WAIT 30 /* milliseconds */ |
1c79356b A |
148 | #endif /* VM_PAGEOUT_BURST_WAIT */ |
149 | ||
150 | #ifndef VM_PAGEOUT_EMPTY_WAIT | |
151 | #define VM_PAGEOUT_EMPTY_WAIT 200 /* milliseconds */ | |
152 | #endif /* VM_PAGEOUT_EMPTY_WAIT */ | |
153 | ||
91447636 A |
154 | #ifndef VM_PAGEOUT_DEADLOCK_WAIT |
155 | #define VM_PAGEOUT_DEADLOCK_WAIT 300 /* milliseconds */ | |
156 | #endif /* VM_PAGEOUT_DEADLOCK_WAIT */ | |
157 | ||
158 | #ifndef VM_PAGEOUT_IDLE_WAIT | |
159 | #define VM_PAGEOUT_IDLE_WAIT 10 /* milliseconds */ | |
160 | #endif /* VM_PAGEOUT_IDLE_WAIT */ | |
161 | ||
6d2010ae A |
162 | unsigned int vm_page_speculative_q_age_ms = VM_PAGE_SPECULATIVE_Q_AGE_MS; |
163 | unsigned int vm_page_speculative_percentage = 5; | |
164 | ||
2d21ac55 | 165 | #ifndef VM_PAGE_SPECULATIVE_TARGET |
6d2010ae | 166 | #define VM_PAGE_SPECULATIVE_TARGET(total) ((total) * 1 / (100 / vm_page_speculative_percentage)) |
2d21ac55 A |
167 | #endif /* VM_PAGE_SPECULATIVE_TARGET */ |
168 | ||
6d2010ae | 169 | |
2d21ac55 A |
170 | #ifndef VM_PAGE_INACTIVE_HEALTHY_LIMIT |
171 | #define VM_PAGE_INACTIVE_HEALTHY_LIMIT(total) ((total) * 1 / 200) | |
172 | #endif /* VM_PAGE_INACTIVE_HEALTHY_LIMIT */ | |
173 | ||
91447636 | 174 | |
1c79356b A |
175 | /* |
176 | * To obtain a reasonable LRU approximation, the inactive queue | |
177 | * needs to be large enough to give pages on it a chance to be | |
178 | * referenced a second time. This macro defines the fraction | |
179 | * of active+inactive pages that should be inactive. | |
180 | * The pageout daemon uses it to update vm_page_inactive_target. | |
181 | * | |
182 | * If vm_page_free_count falls below vm_page_free_target and | |
183 | * vm_page_inactive_count is below vm_page_inactive_target, | |
184 | * then the pageout daemon starts running. | |
185 | */ | |
186 | ||
187 | #ifndef VM_PAGE_INACTIVE_TARGET | |
188 | #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 3) | |
189 | #endif /* VM_PAGE_INACTIVE_TARGET */ | |
190 | ||
191 | /* | |
192 | * Once the pageout daemon starts running, it keeps going | |
193 | * until vm_page_free_count meets or exceeds vm_page_free_target. | |
194 | */ | |
195 | ||
196 | #ifndef VM_PAGE_FREE_TARGET | |
2d21ac55 A |
197 | #ifdef CONFIG_EMBEDDED |
198 | #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 100) | |
199 | #else | |
1c79356b | 200 | #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80) |
2d21ac55 | 201 | #endif |
1c79356b A |
202 | #endif /* VM_PAGE_FREE_TARGET */ |
203 | ||
204 | /* | |
205 | * The pageout daemon always starts running once vm_page_free_count | |
206 | * falls below vm_page_free_min. | |
207 | */ | |
208 | ||
209 | #ifndef VM_PAGE_FREE_MIN | |
2d21ac55 A |
210 | #ifdef CONFIG_EMBEDDED |
211 | #define VM_PAGE_FREE_MIN(free) (10 + (free) / 200) | |
212 | #else | |
213 | #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100) | |
214 | #endif | |
1c79356b A |
215 | #endif /* VM_PAGE_FREE_MIN */ |
216 | ||
6d2010ae | 217 | #define VM_PAGE_FREE_RESERVED_LIMIT 100 |
2d21ac55 A |
218 | #define VM_PAGE_FREE_MIN_LIMIT 1500 |
219 | #define VM_PAGE_FREE_TARGET_LIMIT 2000 | |
220 | ||
221 | ||
1c79356b A |
222 | /* |
223 | * When vm_page_free_count falls below vm_page_free_reserved, | |
224 | * only vm-privileged threads can allocate pages. vm-privilege | |
225 | * allows the pageout daemon and default pager (and any other | |
226 | * associated threads needed for default pageout) to continue | |
227 | * operation by dipping into the reserved pool of pages. | |
228 | */ | |
229 | ||
230 | #ifndef VM_PAGE_FREE_RESERVED | |
91447636 | 231 | #define VM_PAGE_FREE_RESERVED(n) \ |
b0d623f7 | 232 | ((unsigned) (6 * VM_PAGE_LAUNDRY_MAX) + (n)) |
1c79356b A |
233 | #endif /* VM_PAGE_FREE_RESERVED */ |
234 | ||
2d21ac55 A |
235 | /* |
236 | * When we dequeue pages from the inactive list, they are | |
237 | * reactivated (ie, put back on the active queue) if referenced. | |
238 | * However, it is possible to starve the free list if other | |
239 | * processors are referencing pages faster than we can turn off | |
240 | * the referenced bit. So we limit the number of reactivations | |
241 | * we will make per call of vm_pageout_scan(). | |
242 | */ | |
243 | #define VM_PAGE_REACTIVATE_LIMIT_MAX 20000 | |
244 | #ifndef VM_PAGE_REACTIVATE_LIMIT | |
245 | #ifdef CONFIG_EMBEDDED | |
246 | #define VM_PAGE_REACTIVATE_LIMIT(avail) (VM_PAGE_INACTIVE_TARGET(avail) / 2) | |
247 | #else | |
248 | #define VM_PAGE_REACTIVATE_LIMIT(avail) (MAX((avail) * 1 / 20,VM_PAGE_REACTIVATE_LIMIT_MAX)) | |
249 | #endif | |
250 | #endif /* VM_PAGE_REACTIVATE_LIMIT */ | |
251 | #define VM_PAGEOUT_INACTIVE_FORCE_RECLAIM 100 | |
252 | ||
91447636 | 253 | |
0b4e3aa0 A |
254 | /* |
255 | * Exported variable used to broadcast the activation of the pageout scan | |
256 | * Working Set uses this to throttle its use of pmap removes. In this | |
257 | * way, code which runs within memory in an uncontested context does | |
258 | * not keep encountering soft faults. | |
259 | */ | |
260 | ||
261 | unsigned int vm_pageout_scan_event_counter = 0; | |
1c79356b A |
262 | |
263 | /* | |
264 | * Forward declarations for internal routines. | |
265 | */ | |
91447636 A |
266 | |
267 | static void vm_pageout_garbage_collect(int); | |
268 | static void vm_pageout_iothread_continue(struct vm_pageout_queue *); | |
269 | static void vm_pageout_iothread_external(void); | |
270 | static void vm_pageout_iothread_internal(void); | |
91447636 | 271 | |
1c79356b A |
272 | extern void vm_pageout_continue(void); |
273 | extern void vm_pageout_scan(void); | |
1c79356b | 274 | |
2d21ac55 A |
275 | static thread_t vm_pageout_external_iothread = THREAD_NULL; |
276 | static thread_t vm_pageout_internal_iothread = THREAD_NULL; | |
277 | ||
1c79356b A |
278 | unsigned int vm_pageout_reserved_internal = 0; |
279 | unsigned int vm_pageout_reserved_really = 0; | |
280 | ||
91447636 | 281 | unsigned int vm_pageout_idle_wait = 0; /* milliseconds */ |
55e303ae | 282 | unsigned int vm_pageout_empty_wait = 0; /* milliseconds */ |
91447636 A |
283 | unsigned int vm_pageout_burst_wait = 0; /* milliseconds */ |
284 | unsigned int vm_pageout_deadlock_wait = 0; /* milliseconds */ | |
285 | unsigned int vm_pageout_deadlock_relief = 0; | |
286 | unsigned int vm_pageout_inactive_relief = 0; | |
287 | unsigned int vm_pageout_burst_active_throttle = 0; | |
288 | unsigned int vm_pageout_burst_inactive_throttle = 0; | |
1c79356b | 289 | |
6d2010ae A |
290 | int vm_upl_wait_for_pages = 0; |
291 | ||
9bccf70c A |
292 | /* |
293 | * Protection against zero fill flushing live working sets derived | |
294 | * from existing backing store and files | |
295 | */ | |
296 | unsigned int vm_accellerate_zf_pageout_trigger = 400; | |
2d21ac55 | 297 | unsigned int zf_queue_min_count = 100; |
2d21ac55 | 298 | unsigned int vm_zf_queue_count = 0; |
9bccf70c | 299 | |
b0d623f7 | 300 | uint64_t vm_zf_count __attribute__((aligned(8))) = 0; |
b0d623f7 | 301 | |
1c79356b A |
302 | /* |
303 | * These variables record the pageout daemon's actions: | |
304 | * how many pages it looks at and what happens to those pages. | |
305 | * No locking needed because only one thread modifies the variables. | |
306 | */ | |
307 | ||
308 | unsigned int vm_pageout_active = 0; /* debugging */ | |
6d2010ae | 309 | unsigned int vm_pageout_active_busy = 0; /* debugging */ |
1c79356b A |
310 | unsigned int vm_pageout_inactive = 0; /* debugging */ |
311 | unsigned int vm_pageout_inactive_throttled = 0; /* debugging */ | |
312 | unsigned int vm_pageout_inactive_forced = 0; /* debugging */ | |
313 | unsigned int vm_pageout_inactive_nolock = 0; /* debugging */ | |
314 | unsigned int vm_pageout_inactive_avoid = 0; /* debugging */ | |
315 | unsigned int vm_pageout_inactive_busy = 0; /* debugging */ | |
6d2010ae | 316 | unsigned int vm_pageout_inactive_error = 0; /* debugging */ |
1c79356b | 317 | unsigned int vm_pageout_inactive_absent = 0; /* debugging */ |
6d2010ae | 318 | unsigned int vm_pageout_inactive_notalive = 0; /* debugging */ |
1c79356b | 319 | unsigned int vm_pageout_inactive_used = 0; /* debugging */ |
6d2010ae | 320 | unsigned int vm_pageout_cache_evicted = 0; /* debugging */ |
1c79356b | 321 | unsigned int vm_pageout_inactive_clean = 0; /* debugging */ |
6d2010ae A |
322 | unsigned int vm_pageout_speculative_clean = 0; /* debugging */ |
323 | unsigned int vm_pageout_inactive_dirty_internal = 0; /* debugging */ | |
324 | unsigned int vm_pageout_inactive_dirty_external = 0; /* debugging */ | |
b0d623f7 A |
325 | unsigned int vm_pageout_inactive_deactivated = 0; /* debugging */ |
326 | unsigned int vm_pageout_inactive_zf = 0; /* debugging */ | |
1c79356b | 327 | unsigned int vm_pageout_dirty_no_pager = 0; /* debugging */ |
91447636 | 328 | unsigned int vm_pageout_purged_objects = 0; /* debugging */ |
1c79356b A |
329 | unsigned int vm_stat_discard = 0; /* debugging */ |
330 | unsigned int vm_stat_discard_sent = 0; /* debugging */ | |
331 | unsigned int vm_stat_discard_failure = 0; /* debugging */ | |
332 | unsigned int vm_stat_discard_throttle = 0; /* debugging */ | |
2d21ac55 A |
333 | unsigned int vm_pageout_reactivation_limit_exceeded = 0; /* debugging */ |
334 | unsigned int vm_pageout_catch_ups = 0; /* debugging */ | |
335 | unsigned int vm_pageout_inactive_force_reclaim = 0; /* debugging */ | |
1c79356b | 336 | |
6d2010ae | 337 | unsigned int vm_pageout_scan_reclaimed_throttled = 0; |
91447636 | 338 | unsigned int vm_pageout_scan_active_throttled = 0; |
6d2010ae A |
339 | unsigned int vm_pageout_scan_inactive_throttled_internal = 0; |
340 | unsigned int vm_pageout_scan_inactive_throttled_external = 0; | |
91447636 | 341 | unsigned int vm_pageout_scan_throttle = 0; /* debugging */ |
b0d623f7 | 342 | unsigned int vm_pageout_scan_throttle_aborted = 0; /* debugging */ |
91447636 A |
343 | unsigned int vm_pageout_scan_burst_throttle = 0; /* debugging */ |
344 | unsigned int vm_pageout_scan_empty_throttle = 0; /* debugging */ | |
345 | unsigned int vm_pageout_scan_deadlock_detected = 0; /* debugging */ | |
346 | unsigned int vm_pageout_scan_active_throttle_success = 0; /* debugging */ | |
347 | unsigned int vm_pageout_scan_inactive_throttle_success = 0; /* debugging */ | |
6d2010ae | 348 | unsigned int vm_pageout_inactive_external_forced_reactivate_count = 0; /* debugging */ |
b0d623f7 A |
349 | unsigned int vm_page_speculative_count_drifts = 0; |
350 | unsigned int vm_page_speculative_count_drift_max = 0; | |
351 | ||
55e303ae A |
352 | /* |
353 | * Backing store throttle when BS is exhausted | |
354 | */ | |
355 | unsigned int vm_backing_store_low = 0; | |
1c79356b A |
356 | |
357 | unsigned int vm_pageout_out_of_line = 0; | |
358 | unsigned int vm_pageout_in_place = 0; | |
55e303ae | 359 | |
b0d623f7 A |
360 | unsigned int vm_page_steal_pageout_page = 0; |
361 | ||
91447636 A |
362 | /* |
363 | * ENCRYPTED SWAP: | |
364 | * counters and statistics... | |
365 | */ | |
366 | unsigned long vm_page_decrypt_counter = 0; | |
367 | unsigned long vm_page_decrypt_for_upl_counter = 0; | |
368 | unsigned long vm_page_encrypt_counter = 0; | |
369 | unsigned long vm_page_encrypt_abort_counter = 0; | |
370 | unsigned long vm_page_encrypt_already_encrypted_counter = 0; | |
371 | boolean_t vm_pages_encrypted = FALSE; /* are there encrypted pages ? */ | |
372 | ||
91447636 A |
373 | struct vm_pageout_queue vm_pageout_queue_internal; |
374 | struct vm_pageout_queue vm_pageout_queue_external; | |
375 | ||
2d21ac55 A |
376 | unsigned int vm_page_speculative_target = 0; |
377 | ||
378 | vm_object_t vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
379 | ||
0b4c1975 | 380 | boolean_t (* volatile consider_buffer_cache_collect)(int) = NULL; |
b0d623f7 A |
381 | |
382 | #if DEVELOPMENT || DEBUG | |
4a3eedf9 | 383 | unsigned long vm_cs_validated_resets = 0; |
b0d623f7 | 384 | #endif |
55e303ae | 385 | |
6d2010ae A |
386 | int vm_debug_events = 0; |
387 | ||
388 | ||
55e303ae A |
389 | /* |
390 | * Routine: vm_backing_store_disable | |
391 | * Purpose: | |
392 | * Suspend non-privileged threads wishing to extend | |
393 | * backing store when we are low on backing store | |
394 | * (Synchronized by caller) | |
395 | */ | |
396 | void | |
397 | vm_backing_store_disable( | |
398 | boolean_t disable) | |
399 | { | |
400 | if(disable) { | |
401 | vm_backing_store_low = 1; | |
402 | } else { | |
403 | if(vm_backing_store_low) { | |
404 | vm_backing_store_low = 0; | |
405 | thread_wakeup((event_t) &vm_backing_store_low); | |
406 | } | |
407 | } | |
408 | } | |
409 | ||
410 | ||
1c79356b A |
411 | #if MACH_CLUSTER_STATS |
412 | unsigned long vm_pageout_cluster_dirtied = 0; | |
413 | unsigned long vm_pageout_cluster_cleaned = 0; | |
414 | unsigned long vm_pageout_cluster_collisions = 0; | |
415 | unsigned long vm_pageout_cluster_clusters = 0; | |
416 | unsigned long vm_pageout_cluster_conversions = 0; | |
417 | unsigned long vm_pageout_target_collisions = 0; | |
418 | unsigned long vm_pageout_target_page_dirtied = 0; | |
419 | unsigned long vm_pageout_target_page_freed = 0; | |
1c79356b A |
420 | #define CLUSTER_STAT(clause) clause |
421 | #else /* MACH_CLUSTER_STATS */ | |
422 | #define CLUSTER_STAT(clause) | |
423 | #endif /* MACH_CLUSTER_STATS */ | |
424 | ||
425 | /* | |
426 | * Routine: vm_pageout_object_terminate | |
427 | * Purpose: | |
2d21ac55 | 428 | * Destroy the pageout_object, and perform all of the |
1c79356b A |
429 | * required cleanup actions. |
430 | * | |
431 | * In/Out conditions: | |
432 | * The object must be locked, and will be returned locked. | |
433 | */ | |
434 | void | |
435 | vm_pageout_object_terminate( | |
436 | vm_object_t object) | |
437 | { | |
438 | vm_object_t shadow_object; | |
439 | ||
440 | /* | |
441 | * Deal with the deallocation (last reference) of a pageout object | |
442 | * (used for cleaning-in-place) by dropping the paging references/ | |
443 | * freeing pages in the original object. | |
444 | */ | |
445 | ||
446 | assert(object->pageout); | |
447 | shadow_object = object->shadow; | |
448 | vm_object_lock(shadow_object); | |
449 | ||
450 | while (!queue_empty(&object->memq)) { | |
451 | vm_page_t p, m; | |
452 | vm_object_offset_t offset; | |
453 | ||
454 | p = (vm_page_t) queue_first(&object->memq); | |
455 | ||
456 | assert(p->private); | |
457 | assert(p->pageout); | |
458 | p->pageout = FALSE; | |
459 | assert(!p->cleaning); | |
460 | ||
461 | offset = p->offset; | |
462 | VM_PAGE_FREE(p); | |
463 | p = VM_PAGE_NULL; | |
464 | ||
465 | m = vm_page_lookup(shadow_object, | |
6d2010ae | 466 | offset + object->vo_shadow_offset); |
1c79356b A |
467 | |
468 | if(m == VM_PAGE_NULL) | |
469 | continue; | |
470 | assert(m->cleaning); | |
0b4e3aa0 A |
471 | /* used as a trigger on upl_commit etc to recognize the */ |
472 | /* pageout daemon's subseqent desire to pageout a cleaning */ | |
473 | /* page. When the bit is on the upl commit code will */ | |
474 | /* respect the pageout bit in the target page over the */ | |
475 | /* caller's page list indication */ | |
476 | m->dump_cleaning = FALSE; | |
1c79356b | 477 | |
1c79356b A |
478 | assert((m->dirty) || (m->precious) || |
479 | (m->busy && m->cleaning)); | |
480 | ||
481 | /* | |
482 | * Handle the trusted pager throttle. | |
55e303ae | 483 | * Also decrement the burst throttle (if external). |
1c79356b A |
484 | */ |
485 | vm_page_lock_queues(); | |
486 | if (m->laundry) { | |
91447636 | 487 | vm_pageout_throttle_up(m); |
1c79356b A |
488 | } |
489 | ||
490 | /* | |
491 | * Handle the "target" page(s). These pages are to be freed if | |
492 | * successfully cleaned. Target pages are always busy, and are | |
493 | * wired exactly once. The initial target pages are not mapped, | |
494 | * (so cannot be referenced or modified) but converted target | |
495 | * pages may have been modified between the selection as an | |
496 | * adjacent page and conversion to a target. | |
497 | */ | |
498 | if (m->pageout) { | |
499 | assert(m->busy); | |
500 | assert(m->wire_count == 1); | |
501 | m->cleaning = FALSE; | |
2d21ac55 | 502 | m->encrypted_cleaning = FALSE; |
1c79356b A |
503 | m->pageout = FALSE; |
504 | #if MACH_CLUSTER_STATS | |
505 | if (m->wanted) vm_pageout_target_collisions++; | |
506 | #endif | |
507 | /* | |
508 | * Revoke all access to the page. Since the object is | |
509 | * locked, and the page is busy, this prevents the page | |
91447636 | 510 | * from being dirtied after the pmap_disconnect() call |
1c79356b | 511 | * returns. |
91447636 | 512 | * |
1c79356b A |
513 | * Since the page is left "dirty" but "not modifed", we |
514 | * can detect whether the page was redirtied during | |
515 | * pageout by checking the modify state. | |
516 | */ | |
91447636 A |
517 | if (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED) |
518 | m->dirty = TRUE; | |
519 | else | |
520 | m->dirty = FALSE; | |
1c79356b A |
521 | |
522 | if (m->dirty) { | |
523 | CLUSTER_STAT(vm_pageout_target_page_dirtied++;) | |
0b4c1975 | 524 | vm_page_unwire(m, TRUE); /* reactivates */ |
2d21ac55 | 525 | VM_STAT_INCR(reactivations); |
1c79356b | 526 | PAGE_WAKEUP_DONE(m); |
1c79356b A |
527 | } else { |
528 | CLUSTER_STAT(vm_pageout_target_page_freed++;) | |
529 | vm_page_free(m);/* clears busy, etc. */ | |
530 | } | |
531 | vm_page_unlock_queues(); | |
532 | continue; | |
533 | } | |
534 | /* | |
535 | * Handle the "adjacent" pages. These pages were cleaned in | |
536 | * place, and should be left alone. | |
537 | * If prep_pin_count is nonzero, then someone is using the | |
538 | * page, so make it active. | |
539 | */ | |
2d21ac55 | 540 | if (!m->active && !m->inactive && !m->throttled && !m->private) { |
0b4e3aa0 | 541 | if (m->reference) |
1c79356b A |
542 | vm_page_activate(m); |
543 | else | |
544 | vm_page_deactivate(m); | |
545 | } | |
6d2010ae A |
546 | if (m->overwriting) { |
547 | /* | |
548 | * the (COPY_OUT_FROM == FALSE) request_page_list case | |
549 | */ | |
550 | if (m->busy) { | |
551 | /* | |
552 | * We do not re-set m->dirty ! | |
553 | * The page was busy so no extraneous activity | |
554 | * could have occurred. COPY_INTO is a read into the | |
555 | * new pages. CLEAN_IN_PLACE does actually write | |
556 | * out the pages but handling outside of this code | |
557 | * will take care of resetting dirty. We clear the | |
558 | * modify however for the Programmed I/O case. | |
559 | */ | |
560 | pmap_clear_modify(m->phys_page); | |
2d21ac55 | 561 | |
6d2010ae A |
562 | m->busy = FALSE; |
563 | m->absent = FALSE; | |
564 | } else { | |
565 | /* | |
566 | * alternate (COPY_OUT_FROM == FALSE) request_page_list case | |
567 | * Occurs when the original page was wired | |
568 | * at the time of the list request | |
569 | */ | |
570 | assert(VM_PAGE_WIRED(m)); | |
571 | vm_page_unwire(m, TRUE); /* reactivates */ | |
572 | } | |
1c79356b A |
573 | m->overwriting = FALSE; |
574 | } else { | |
6d2010ae A |
575 | /* |
576 | * Set the dirty state according to whether or not the page was | |
577 | * modified during the pageout. Note that we purposefully do | |
578 | * NOT call pmap_clear_modify since the page is still mapped. | |
579 | * If the page were to be dirtied between the 2 calls, this | |
580 | * this fact would be lost. This code is only necessary to | |
581 | * maintain statistics, since the pmap module is always | |
582 | * consulted if m->dirty is false. | |
583 | */ | |
1c79356b | 584 | #if MACH_CLUSTER_STATS |
55e303ae | 585 | m->dirty = pmap_is_modified(m->phys_page); |
1c79356b A |
586 | |
587 | if (m->dirty) vm_pageout_cluster_dirtied++; | |
588 | else vm_pageout_cluster_cleaned++; | |
589 | if (m->wanted) vm_pageout_cluster_collisions++; | |
590 | #else | |
591 | m->dirty = 0; | |
592 | #endif | |
593 | } | |
6d2010ae A |
594 | if (m->encrypted_cleaning == TRUE) { |
595 | m->encrypted_cleaning = FALSE; | |
596 | m->busy = FALSE; | |
597 | } | |
1c79356b A |
598 | m->cleaning = FALSE; |
599 | ||
1c79356b A |
600 | /* |
601 | * Wakeup any thread waiting for the page to be un-cleaning. | |
602 | */ | |
603 | PAGE_WAKEUP(m); | |
604 | vm_page_unlock_queues(); | |
605 | } | |
606 | /* | |
607 | * Account for the paging reference taken in vm_paging_object_allocate. | |
608 | */ | |
b0d623f7 | 609 | vm_object_activity_end(shadow_object); |
1c79356b A |
610 | vm_object_unlock(shadow_object); |
611 | ||
612 | assert(object->ref_count == 0); | |
613 | assert(object->paging_in_progress == 0); | |
b0d623f7 | 614 | assert(object->activity_in_progress == 0); |
1c79356b A |
615 | assert(object->resident_page_count == 0); |
616 | return; | |
617 | } | |
618 | ||
1c79356b A |
619 | /* |
620 | * Routine: vm_pageclean_setup | |
621 | * | |
622 | * Purpose: setup a page to be cleaned (made non-dirty), but not | |
623 | * necessarily flushed from the VM page cache. | |
624 | * This is accomplished by cleaning in place. | |
625 | * | |
b0d623f7 A |
626 | * The page must not be busy, and new_object |
627 | * must be locked. | |
628 | * | |
1c79356b A |
629 | */ |
630 | void | |
631 | vm_pageclean_setup( | |
632 | vm_page_t m, | |
633 | vm_page_t new_m, | |
634 | vm_object_t new_object, | |
635 | vm_object_offset_t new_offset) | |
636 | { | |
1c79356b | 637 | assert(!m->busy); |
2d21ac55 | 638 | #if 0 |
1c79356b | 639 | assert(!m->cleaning); |
2d21ac55 | 640 | #endif |
1c79356b A |
641 | |
642 | XPR(XPR_VM_PAGEOUT, | |
643 | "vm_pageclean_setup, obj 0x%X off 0x%X page 0x%X new 0x%X new_off 0x%X\n", | |
b0d623f7 A |
644 | m->object, m->offset, m, |
645 | new_m, new_offset); | |
1c79356b | 646 | |
55e303ae | 647 | pmap_clear_modify(m->phys_page); |
1c79356b A |
648 | |
649 | /* | |
650 | * Mark original page as cleaning in place. | |
651 | */ | |
652 | m->cleaning = TRUE; | |
653 | m->dirty = TRUE; | |
654 | m->precious = FALSE; | |
655 | ||
656 | /* | |
657 | * Convert the fictitious page to a private shadow of | |
658 | * the real page. | |
659 | */ | |
660 | assert(new_m->fictitious); | |
2d21ac55 | 661 | assert(new_m->phys_page == vm_page_fictitious_addr); |
1c79356b A |
662 | new_m->fictitious = FALSE; |
663 | new_m->private = TRUE; | |
664 | new_m->pageout = TRUE; | |
55e303ae | 665 | new_m->phys_page = m->phys_page; |
b0d623f7 A |
666 | |
667 | vm_page_lockspin_queues(); | |
1c79356b | 668 | vm_page_wire(new_m); |
b0d623f7 | 669 | vm_page_unlock_queues(); |
1c79356b A |
670 | |
671 | vm_page_insert(new_m, new_object, new_offset); | |
672 | assert(!new_m->wanted); | |
673 | new_m->busy = FALSE; | |
674 | } | |
675 | ||
1c79356b A |
676 | /* |
677 | * Routine: vm_pageout_initialize_page | |
678 | * Purpose: | |
679 | * Causes the specified page to be initialized in | |
680 | * the appropriate memory object. This routine is used to push | |
681 | * pages into a copy-object when they are modified in the | |
682 | * permanent object. | |
683 | * | |
684 | * The page is moved to a temporary object and paged out. | |
685 | * | |
686 | * In/out conditions: | |
687 | * The page in question must not be on any pageout queues. | |
688 | * The object to which it belongs must be locked. | |
689 | * The page must be busy, but not hold a paging reference. | |
690 | * | |
691 | * Implementation: | |
692 | * Move this page to a completely new object. | |
693 | */ | |
694 | void | |
695 | vm_pageout_initialize_page( | |
696 | vm_page_t m) | |
697 | { | |
1c79356b A |
698 | vm_object_t object; |
699 | vm_object_offset_t paging_offset; | |
700 | vm_page_t holding_page; | |
2d21ac55 | 701 | memory_object_t pager; |
1c79356b A |
702 | |
703 | XPR(XPR_VM_PAGEOUT, | |
704 | "vm_pageout_initialize_page, page 0x%X\n", | |
b0d623f7 | 705 | m, 0, 0, 0, 0); |
1c79356b A |
706 | assert(m->busy); |
707 | ||
708 | /* | |
709 | * Verify that we really want to clean this page | |
710 | */ | |
711 | assert(!m->absent); | |
712 | assert(!m->error); | |
713 | assert(m->dirty); | |
714 | ||
715 | /* | |
716 | * Create a paging reference to let us play with the object. | |
717 | */ | |
718 | object = m->object; | |
719 | paging_offset = m->offset + object->paging_offset; | |
2d21ac55 A |
720 | |
721 | if (m->absent || m->error || m->restart || (!m->dirty && !m->precious)) { | |
1c79356b A |
722 | VM_PAGE_FREE(m); |
723 | panic("reservation without pageout?"); /* alan */ | |
2d21ac55 A |
724 | vm_object_unlock(object); |
725 | ||
726 | return; | |
727 | } | |
728 | ||
729 | /* | |
730 | * If there's no pager, then we can't clean the page. This should | |
731 | * never happen since this should be a copy object and therefore not | |
732 | * an external object, so the pager should always be there. | |
733 | */ | |
734 | ||
735 | pager = object->pager; | |
736 | ||
737 | if (pager == MEMORY_OBJECT_NULL) { | |
738 | VM_PAGE_FREE(m); | |
739 | panic("missing pager for copy object"); | |
1c79356b A |
740 | return; |
741 | } | |
742 | ||
743 | /* set the page for future call to vm_fault_list_request */ | |
2d21ac55 | 744 | vm_object_paging_begin(object); |
1c79356b | 745 | holding_page = NULL; |
b0d623f7 | 746 | |
55e303ae | 747 | pmap_clear_modify(m->phys_page); |
1c79356b | 748 | m->dirty = TRUE; |
55e303ae A |
749 | m->busy = TRUE; |
750 | m->list_req_pending = TRUE; | |
751 | m->cleaning = TRUE; | |
1c79356b | 752 | m->pageout = TRUE; |
b0d623f7 A |
753 | |
754 | vm_page_lockspin_queues(); | |
1c79356b | 755 | vm_page_wire(m); |
55e303ae | 756 | vm_page_unlock_queues(); |
b0d623f7 | 757 | |
55e303ae | 758 | vm_object_unlock(object); |
1c79356b A |
759 | |
760 | /* | |
761 | * Write the data to its pager. | |
762 | * Note that the data is passed by naming the new object, | |
763 | * not a virtual address; the pager interface has been | |
764 | * manipulated to use the "internal memory" data type. | |
765 | * [The object reference from its allocation is donated | |
766 | * to the eventual recipient.] | |
767 | */ | |
2d21ac55 | 768 | memory_object_data_initialize(pager, paging_offset, PAGE_SIZE); |
1c79356b A |
769 | |
770 | vm_object_lock(object); | |
2d21ac55 | 771 | vm_object_paging_end(object); |
1c79356b A |
772 | } |
773 | ||
774 | #if MACH_CLUSTER_STATS | |
775 | #define MAXCLUSTERPAGES 16 | |
776 | struct { | |
777 | unsigned long pages_in_cluster; | |
778 | unsigned long pages_at_higher_offsets; | |
779 | unsigned long pages_at_lower_offsets; | |
780 | } cluster_stats[MAXCLUSTERPAGES]; | |
781 | #endif /* MACH_CLUSTER_STATS */ | |
782 | ||
1c79356b A |
783 | |
784 | /* | |
785 | * vm_pageout_cluster: | |
786 | * | |
91447636 A |
787 | * Given a page, queue it to the appropriate I/O thread, |
788 | * which will page it out and attempt to clean adjacent pages | |
1c79356b A |
789 | * in the same operation. |
790 | * | |
91447636 | 791 | * The page must be busy, and the object and queues locked. We will take a |
55e303ae | 792 | * paging reference to prevent deallocation or collapse when we |
91447636 A |
793 | * release the object lock back at the call site. The I/O thread |
794 | * is responsible for consuming this reference | |
55e303ae A |
795 | * |
796 | * The page must not be on any pageout queue. | |
1c79356b | 797 | */ |
91447636 | 798 | |
1c79356b | 799 | void |
91447636 | 800 | vm_pageout_cluster(vm_page_t m) |
1c79356b A |
801 | { |
802 | vm_object_t object = m->object; | |
91447636 A |
803 | struct vm_pageout_queue *q; |
804 | ||
1c79356b A |
805 | |
806 | XPR(XPR_VM_PAGEOUT, | |
807 | "vm_pageout_cluster, object 0x%X offset 0x%X page 0x%X\n", | |
b0d623f7 A |
808 | object, m->offset, m, 0, 0); |
809 | ||
810 | VM_PAGE_CHECK(m); | |
6d2010ae A |
811 | #if DEBUG |
812 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
813 | #endif | |
814 | vm_object_lock_assert_exclusive(object); | |
1c79356b | 815 | |
91447636 A |
816 | /* |
817 | * Only a certain kind of page is appreciated here. | |
818 | */ | |
b0d623f7 | 819 | assert(m->busy && (m->dirty || m->precious) && (!VM_PAGE_WIRED(m))); |
6d2010ae A |
820 | assert(!m->cleaning && !m->pageout); |
821 | #ifndef CONFIG_FREEZE | |
822 | assert(!m->inactive && !m->active); | |
2d21ac55 | 823 | assert(!m->throttled); |
6d2010ae | 824 | #endif |
55e303ae A |
825 | |
826 | /* | |
827 | * protect the object from collapse - | |
828 | * locking in the object's paging_offset. | |
829 | */ | |
830 | vm_object_paging_begin(object); | |
55e303ae | 831 | |
1c79356b | 832 | /* |
91447636 A |
833 | * set the page for future call to vm_fault_list_request |
834 | * page should already be marked busy | |
1c79356b | 835 | */ |
91447636 | 836 | vm_page_wire(m); |
55e303ae A |
837 | m->list_req_pending = TRUE; |
838 | m->cleaning = TRUE; | |
1c79356b | 839 | m->pageout = TRUE; |
1c79356b | 840 | |
91447636 A |
841 | if (object->internal == TRUE) |
842 | q = &vm_pageout_queue_internal; | |
843 | else | |
844 | q = &vm_pageout_queue_external; | |
d1ecb069 A |
845 | |
846 | /* | |
847 | * pgo_laundry count is tied to the laundry bit | |
848 | */ | |
6d2010ae | 849 | m->laundry = TRUE; |
91447636 | 850 | q->pgo_laundry++; |
1c79356b | 851 | |
91447636 A |
852 | m->pageout_queue = TRUE; |
853 | queue_enter(&q->pgo_pending, m, vm_page_t, pageq); | |
854 | ||
855 | if (q->pgo_idle == TRUE) { | |
856 | q->pgo_idle = FALSE; | |
857 | thread_wakeup((event_t) &q->pgo_pending); | |
1c79356b | 858 | } |
b0d623f7 A |
859 | |
860 | VM_PAGE_CHECK(m); | |
1c79356b A |
861 | } |
862 | ||
55e303ae | 863 | |
91447636 | 864 | unsigned long vm_pageout_throttle_up_count = 0; |
1c79356b A |
865 | |
866 | /* | |
b0d623f7 A |
867 | * A page is back from laundry or we are stealing it back from |
868 | * the laundering state. See if there are some pages waiting to | |
91447636 | 869 | * go to laundry and if we can let some of them go now. |
1c79356b | 870 | * |
91447636 | 871 | * Object and page queues must be locked. |
1c79356b | 872 | */ |
91447636 A |
873 | void |
874 | vm_pageout_throttle_up( | |
6d2010ae | 875 | vm_page_t m) |
1c79356b | 876 | { |
6d2010ae | 877 | struct vm_pageout_queue *q; |
1c79356b | 878 | |
6d2010ae A |
879 | assert(m->object != VM_OBJECT_NULL); |
880 | assert(m->object != kernel_object); | |
1c79356b | 881 | |
6d2010ae | 882 | vm_pageout_throttle_up_count++; |
0b4c1975 | 883 | |
6d2010ae A |
884 | if (m->object->internal == TRUE) |
885 | q = &vm_pageout_queue_internal; | |
886 | else | |
887 | q = &vm_pageout_queue_external; | |
d1ecb069 | 888 | |
6d2010ae | 889 | if (m->pageout_queue == TRUE) { |
0b4c1975 | 890 | |
6d2010ae A |
891 | queue_remove(&q->pgo_pending, m, vm_page_t, pageq); |
892 | m->pageout_queue = FALSE; | |
1c79356b | 893 | |
6d2010ae A |
894 | m->pageq.next = NULL; |
895 | m->pageq.prev = NULL; | |
91447636 | 896 | |
6d2010ae A |
897 | vm_object_paging_end(m->object); |
898 | } | |
1c79356b | 899 | |
6d2010ae | 900 | if ( m->laundry == TRUE ) { |
91447636 | 901 | |
6d2010ae A |
902 | m->laundry = FALSE; |
903 | q->pgo_laundry--; | |
91447636 | 904 | |
6d2010ae A |
905 | if (q->pgo_throttled == TRUE) { |
906 | q->pgo_throttled = FALSE; | |
907 | thread_wakeup((event_t) &q->pgo_laundry); | |
908 | } | |
909 | if (q->pgo_draining == TRUE && q->pgo_laundry == 0) { | |
910 | q->pgo_draining = FALSE; | |
911 | thread_wakeup((event_t) (&q->pgo_laundry+1)); | |
912 | } | |
913 | } | |
914 | } | |
91447636 | 915 | |
b0d623f7 A |
916 | |
917 | /* | |
918 | * VM memory pressure monitoring. | |
919 | * | |
920 | * vm_pageout_scan() keeps track of the number of pages it considers and | |
921 | * reclaims, in the currently active vm_pageout_stat[vm_pageout_stat_now]. | |
922 | * | |
923 | * compute_memory_pressure() is called every second from compute_averages() | |
924 | * and moves "vm_pageout_stat_now" forward, to start accumulating the number | |
925 | * of recalimed pages in a new vm_pageout_stat[] bucket. | |
926 | * | |
927 | * mach_vm_pressure_monitor() collects past statistics about memory pressure. | |
928 | * The caller provides the number of seconds ("nsecs") worth of statistics | |
929 | * it wants, up to 30 seconds. | |
930 | * It computes the number of pages reclaimed in the past "nsecs" seconds and | |
931 | * also returns the number of pages the system still needs to reclaim at this | |
932 | * moment in time. | |
933 | */ | |
934 | #define VM_PAGEOUT_STAT_SIZE 31 | |
935 | struct vm_pageout_stat { | |
936 | unsigned int considered; | |
937 | unsigned int reclaimed; | |
938 | } vm_pageout_stats[VM_PAGEOUT_STAT_SIZE] = {{0,0}, }; | |
939 | unsigned int vm_pageout_stat_now = 0; | |
940 | unsigned int vm_memory_pressure = 0; | |
941 | ||
942 | #define VM_PAGEOUT_STAT_BEFORE(i) \ | |
943 | (((i) == 0) ? VM_PAGEOUT_STAT_SIZE - 1 : (i) - 1) | |
944 | #define VM_PAGEOUT_STAT_AFTER(i) \ | |
945 | (((i) == VM_PAGEOUT_STAT_SIZE - 1) ? 0 : (i) + 1) | |
946 | ||
947 | /* | |
948 | * Called from compute_averages(). | |
949 | */ | |
950 | void | |
951 | compute_memory_pressure( | |
952 | __unused void *arg) | |
953 | { | |
954 | unsigned int vm_pageout_next; | |
955 | ||
956 | vm_memory_pressure = | |
957 | vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].reclaimed; | |
958 | ||
959 | commpage_set_memory_pressure( vm_memory_pressure ); | |
960 | ||
961 | /* move "now" forward */ | |
962 | vm_pageout_next = VM_PAGEOUT_STAT_AFTER(vm_pageout_stat_now); | |
963 | vm_pageout_stats[vm_pageout_next].considered = 0; | |
964 | vm_pageout_stats[vm_pageout_next].reclaimed = 0; | |
965 | vm_pageout_stat_now = vm_pageout_next; | |
966 | } | |
967 | ||
968 | unsigned int | |
969 | mach_vm_ctl_page_free_wanted(void) | |
970 | { | |
971 | unsigned int page_free_target, page_free_count, page_free_wanted; | |
972 | ||
973 | page_free_target = vm_page_free_target; | |
974 | page_free_count = vm_page_free_count; | |
975 | if (page_free_target > page_free_count) { | |
976 | page_free_wanted = page_free_target - page_free_count; | |
977 | } else { | |
978 | page_free_wanted = 0; | |
979 | } | |
980 | ||
981 | return page_free_wanted; | |
982 | } | |
983 | ||
984 | kern_return_t | |
985 | mach_vm_pressure_monitor( | |
986 | boolean_t wait_for_pressure, | |
987 | unsigned int nsecs_monitored, | |
988 | unsigned int *pages_reclaimed_p, | |
989 | unsigned int *pages_wanted_p) | |
990 | { | |
991 | wait_result_t wr; | |
992 | unsigned int vm_pageout_then, vm_pageout_now; | |
993 | unsigned int pages_reclaimed; | |
994 | ||
995 | /* | |
996 | * We don't take the vm_page_queue_lock here because we don't want | |
997 | * vm_pressure_monitor() to get in the way of the vm_pageout_scan() | |
998 | * thread when it's trying to reclaim memory. We don't need fully | |
999 | * accurate monitoring anyway... | |
1000 | */ | |
1001 | ||
1002 | if (wait_for_pressure) { | |
1003 | /* wait until there's memory pressure */ | |
1004 | while (vm_page_free_count >= vm_page_free_target) { | |
1005 | wr = assert_wait((event_t) &vm_page_free_wanted, | |
1006 | THREAD_INTERRUPTIBLE); | |
1007 | if (wr == THREAD_WAITING) { | |
1008 | wr = thread_block(THREAD_CONTINUE_NULL); | |
1009 | } | |
1010 | if (wr == THREAD_INTERRUPTED) { | |
1011 | return KERN_ABORTED; | |
1012 | } | |
1013 | if (wr == THREAD_AWAKENED) { | |
1014 | /* | |
1015 | * The memory pressure might have already | |
1016 | * been relieved but let's not block again | |
1017 | * and let's report that there was memory | |
1018 | * pressure at some point. | |
1019 | */ | |
1020 | break; | |
1021 | } | |
1022 | } | |
1023 | } | |
1024 | ||
1025 | /* provide the number of pages the system wants to reclaim */ | |
1026 | if (pages_wanted_p != NULL) { | |
1027 | *pages_wanted_p = mach_vm_ctl_page_free_wanted(); | |
1028 | } | |
1029 | ||
1030 | if (pages_reclaimed_p == NULL) { | |
1031 | return KERN_SUCCESS; | |
1032 | } | |
1033 | ||
1034 | /* provide number of pages reclaimed in the last "nsecs_monitored" */ | |
1035 | do { | |
1036 | vm_pageout_now = vm_pageout_stat_now; | |
1037 | pages_reclaimed = 0; | |
1038 | for (vm_pageout_then = | |
1039 | VM_PAGEOUT_STAT_BEFORE(vm_pageout_now); | |
1040 | vm_pageout_then != vm_pageout_now && | |
1041 | nsecs_monitored-- != 0; | |
1042 | vm_pageout_then = | |
1043 | VM_PAGEOUT_STAT_BEFORE(vm_pageout_then)) { | |
1044 | pages_reclaimed += vm_pageout_stats[vm_pageout_then].reclaimed; | |
1045 | } | |
1046 | } while (vm_pageout_now != vm_pageout_stat_now); | |
1047 | *pages_reclaimed_p = pages_reclaimed; | |
1048 | ||
1049 | return KERN_SUCCESS; | |
1050 | } | |
1051 | ||
1052 | /* Page States: Used below to maintain the page state | |
1053 | before it's removed from it's Q. This saved state | |
1054 | helps us do the right accounting in certain cases | |
1055 | */ | |
1056 | ||
6d2010ae A |
1057 | #define PAGE_STATE_SPECULATIVE 1 |
1058 | #define PAGE_STATE_ZEROFILL 2 | |
1059 | #define PAGE_STATE_INACTIVE 3 | |
1060 | #define PAGE_STATE_INACTIVE_FIRST 4 | |
b0d623f7 A |
1061 | |
1062 | #define VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m) \ | |
1063 | MACRO_BEGIN \ | |
1064 | /* \ | |
1065 | * If a "reusable" page somehow made it back into \ | |
1066 | * the active queue, it's been re-used and is not \ | |
1067 | * quite re-usable. \ | |
1068 | * If the VM object was "all_reusable", consider it \ | |
1069 | * as "all re-used" instead of converting it to \ | |
1070 | * "partially re-used", which could be expensive. \ | |
1071 | */ \ | |
1072 | if ((m)->reusable || \ | |
1073 | (m)->object->all_reusable) { \ | |
1074 | vm_object_reuse_pages((m)->object, \ | |
1075 | (m)->offset, \ | |
1076 | (m)->offset + PAGE_SIZE_64, \ | |
1077 | FALSE); \ | |
1078 | } \ | |
1079 | MACRO_END | |
1080 | ||
6d2010ae A |
1081 | |
1082 | #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT 128 | |
1083 | #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX 1024 | |
1084 | ||
1085 | #define FCS_IDLE 0 | |
1086 | #define FCS_DELAYED 1 | |
1087 | #define FCS_DEADLOCK_DETECTED 2 | |
1088 | ||
1089 | struct flow_control { | |
1090 | int state; | |
1091 | mach_timespec_t ts; | |
1092 | }; | |
1093 | ||
1094 | ||
1095 | /* | |
1096 | * vm_pageout_scan does the dirty work for the pageout daemon. | |
1097 | * It returns with vm_page_queue_free_lock held and | |
1098 | * vm_page_free_wanted == 0. | |
1099 | */ | |
1c79356b A |
1100 | void |
1101 | vm_pageout_scan(void) | |
1102 | { | |
91447636 A |
1103 | unsigned int loop_count = 0; |
1104 | unsigned int inactive_burst_count = 0; | |
1105 | unsigned int active_burst_count = 0; | |
2d21ac55 A |
1106 | unsigned int reactivated_this_call; |
1107 | unsigned int reactivate_limit; | |
1108 | vm_page_t local_freeq = NULL; | |
55e303ae | 1109 | int local_freed = 0; |
2d21ac55 | 1110 | int delayed_unlock; |
6d2010ae | 1111 | int delayed_unlock_limit = 0; |
91447636 A |
1112 | int refmod_state = 0; |
1113 | int vm_pageout_deadlock_target = 0; | |
1114 | struct vm_pageout_queue *iq; | |
1115 | struct vm_pageout_queue *eq; | |
2d21ac55 | 1116 | struct vm_speculative_age_q *sq; |
b0d623f7 | 1117 | struct flow_control flow_control = { 0, { 0, 0 } }; |
91447636 | 1118 | boolean_t inactive_throttled = FALSE; |
2d21ac55 | 1119 | boolean_t try_failed; |
6d2010ae A |
1120 | mach_timespec_t ts; |
1121 | unsigned int msecs = 0; | |
91447636 | 1122 | vm_object_t object; |
2d21ac55 | 1123 | vm_object_t last_object_tried; |
b0d623f7 A |
1124 | uint64_t zf_ratio; |
1125 | uint64_t zf_run_count; | |
2d21ac55 A |
1126 | uint32_t catch_up_count = 0; |
1127 | uint32_t inactive_reclaim_run; | |
1128 | boolean_t forced_reclaim; | |
b0d623f7 | 1129 | int page_prev_state = 0; |
6d2010ae A |
1130 | int cache_evict_throttle = 0; |
1131 | uint32_t vm_pageout_inactive_external_forced_reactivate_limit = 0; | |
1132 | ||
1133 | VM_DEBUG_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_START, | |
1134 | vm_pageout_speculative_clean, vm_pageout_inactive_clean, | |
1135 | vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external); | |
91447636 A |
1136 | |
1137 | flow_control.state = FCS_IDLE; | |
1138 | iq = &vm_pageout_queue_internal; | |
1139 | eq = &vm_pageout_queue_external; | |
2d21ac55 A |
1140 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; |
1141 | ||
1c79356b A |
1142 | |
1143 | XPR(XPR_VM_PAGEOUT, "vm_pageout_scan\n", 0, 0, 0, 0, 0); | |
1144 | ||
2d21ac55 A |
1145 | |
1146 | vm_page_lock_queues(); | |
1147 | delayed_unlock = 1; /* must be nonzero if Qs are locked, 0 if unlocked */ | |
1148 | ||
1149 | /* | |
1150 | * Calculate the max number of referenced pages on the inactive | |
1151 | * queue that we will reactivate. | |
1152 | */ | |
1153 | reactivated_this_call = 0; | |
1154 | reactivate_limit = VM_PAGE_REACTIVATE_LIMIT(vm_page_active_count + | |
1155 | vm_page_inactive_count); | |
1156 | inactive_reclaim_run = 0; | |
1157 | ||
1158 | ||
6d2010ae | 1159 | /* |
1c79356b A |
1160 | * We want to gradually dribble pages from the active queue |
1161 | * to the inactive queue. If we let the inactive queue get | |
1162 | * very small, and then suddenly dump many pages into it, | |
1163 | * those pages won't get a sufficient chance to be referenced | |
1164 | * before we start taking them from the inactive queue. | |
1165 | * | |
6d2010ae A |
1166 | * We must limit the rate at which we send pages to the pagers |
1167 | * so that we don't tie up too many pages in the I/O queues. | |
1168 | * We implement a throttling mechanism using the laundry count | |
1169 | * to limit the number of pages outstanding to the default | |
1170 | * and external pagers. We can bypass the throttles and look | |
1171 | * for clean pages if the pageout queues don't drain in a timely | |
1172 | * fashion since this may indicate that the pageout paths are | |
1173 | * stalled waiting for memory, which only we can provide. | |
1c79356b | 1174 | */ |
91447636 | 1175 | |
1c79356b | 1176 | |
91447636 | 1177 | Restart: |
2d21ac55 A |
1178 | assert(delayed_unlock!=0); |
1179 | ||
1180 | /* | |
1181 | * A page is "zero-filled" if it was not paged in from somewhere, | |
1182 | * and it belongs to an object at least VM_ZF_OBJECT_SIZE_THRESHOLD big. | |
1183 | * Recalculate the zero-filled page ratio. We use this to apportion | |
1184 | * victimized pages between the normal and zero-filled inactive | |
1185 | * queues according to their relative abundance in memory. Thus if a task | |
1186 | * is flooding memory with zf pages, we begin to hunt them down. | |
1187 | * It would be better to throttle greedy tasks at a higher level, | |
1188 | * but at the moment mach vm cannot do this. | |
1189 | */ | |
1190 | { | |
b0d623f7 A |
1191 | uint64_t total = vm_page_active_count + vm_page_inactive_count; |
1192 | uint64_t normal = total - vm_zf_count; | |
b0d623f7 | 1193 | |
2d21ac55 A |
1194 | /* zf_ratio is the number of zf pages we victimize per normal page */ |
1195 | ||
1196 | if (vm_zf_count < vm_accellerate_zf_pageout_trigger) | |
1197 | zf_ratio = 0; | |
1198 | else if ((vm_zf_count <= normal) || (normal == 0)) | |
1199 | zf_ratio = 1; | |
1200 | else | |
1201 | zf_ratio = vm_zf_count / normal; | |
1202 | ||
1203 | zf_run_count = 0; | |
1204 | } | |
1205 | ||
91447636 A |
1206 | /* |
1207 | * Recalculate vm_page_inactivate_target. | |
1208 | */ | |
1209 | vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count + | |
2d21ac55 A |
1210 | vm_page_inactive_count + |
1211 | vm_page_speculative_count); | |
1212 | /* | |
1213 | * don't want to wake the pageout_scan thread up everytime we fall below | |
1214 | * the targets... set a low water mark at 0.25% below the target | |
1215 | */ | |
1216 | vm_page_inactive_min = vm_page_inactive_target - (vm_page_inactive_target / 400); | |
1c79356b | 1217 | |
6d2010ae A |
1218 | if (vm_page_speculative_percentage > 50) |
1219 | vm_page_speculative_percentage = 50; | |
1220 | else if (vm_page_speculative_percentage <= 0) | |
1221 | vm_page_speculative_percentage = 1; | |
1222 | ||
2d21ac55 A |
1223 | vm_page_speculative_target = VM_PAGE_SPECULATIVE_TARGET(vm_page_active_count + |
1224 | vm_page_inactive_count); | |
6d2010ae A |
1225 | |
1226 | vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count; | |
1227 | ||
2d21ac55 A |
1228 | object = NULL; |
1229 | last_object_tried = NULL; | |
1230 | try_failed = FALSE; | |
1231 | ||
1232 | if ((vm_page_inactive_count + vm_page_speculative_count) < VM_PAGE_INACTIVE_HEALTHY_LIMIT(vm_page_active_count)) | |
1233 | catch_up_count = vm_page_inactive_count + vm_page_speculative_count; | |
1234 | else | |
1235 | catch_up_count = 0; | |
1236 | ||
55e303ae | 1237 | for (;;) { |
91447636 | 1238 | vm_page_t m; |
1c79356b | 1239 | |
2d21ac55 | 1240 | DTRACE_VM2(rev, int, 1, (uint64_t *), NULL); |
1c79356b | 1241 | |
2d21ac55 A |
1242 | if (delayed_unlock == 0) { |
1243 | vm_page_lock_queues(); | |
1244 | delayed_unlock = 1; | |
1245 | } | |
6d2010ae A |
1246 | if (vm_upl_wait_for_pages < 0) |
1247 | vm_upl_wait_for_pages = 0; | |
91447636 | 1248 | |
6d2010ae A |
1249 | delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT + vm_upl_wait_for_pages; |
1250 | ||
1251 | if (delayed_unlock_limit > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX) | |
1252 | delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX; | |
91447636 | 1253 | |
1c79356b | 1254 | /* |
6d2010ae | 1255 | * Move pages from active to inactive if we're below the target |
1c79356b | 1256 | */ |
b0d623f7 | 1257 | if ((vm_page_inactive_count + vm_page_speculative_count) >= vm_page_inactive_target) |
2d21ac55 A |
1258 | goto done_moving_active_pages; |
1259 | ||
6d2010ae A |
1260 | if (object != NULL) { |
1261 | vm_object_unlock(object); | |
1262 | object = NULL; | |
1263 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
1264 | } | |
1265 | /* | |
1266 | * Don't sweep through active queue more than the throttle | |
1267 | * which should be kept relatively low | |
1268 | */ | |
1269 | active_burst_count = MIN(vm_pageout_burst_active_throttle, | |
1270 | vm_page_active_count); | |
1271 | ||
1272 | VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_START, | |
1273 | vm_pageout_inactive, vm_pageout_inactive_used, vm_page_free_count, local_freed); | |
1274 | ||
1275 | VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_NONE, | |
1276 | vm_pageout_speculative_clean, vm_pageout_inactive_clean, | |
1277 | vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external); | |
2d21ac55 | 1278 | |
6d2010ae | 1279 | while (!queue_empty(&vm_page_queue_active) && active_burst_count--) { |
1c79356b | 1280 | |
1c79356b | 1281 | vm_pageout_active++; |
55e303ae | 1282 | |
1c79356b | 1283 | m = (vm_page_t) queue_first(&vm_page_queue_active); |
91447636 A |
1284 | |
1285 | assert(m->active && !m->inactive); | |
1286 | assert(!m->laundry); | |
1287 | assert(m->object != kernel_object); | |
2d21ac55 A |
1288 | assert(m->phys_page != vm_page_guard_addr); |
1289 | ||
1290 | DTRACE_VM2(scan, int, 1, (uint64_t *), NULL); | |
1c79356b A |
1291 | |
1292 | /* | |
6d2010ae A |
1293 | * The page might be absent or busy, |
1294 | * but vm_page_deactivate can handle that. | |
1c79356b | 1295 | */ |
91447636 | 1296 | vm_page_deactivate(m); |
2d21ac55 | 1297 | |
6d2010ae | 1298 | if (delayed_unlock++ > delayed_unlock_limit) { |
1c79356b | 1299 | |
91447636 | 1300 | if (local_freeq) { |
b0d623f7 | 1301 | vm_page_unlock_queues(); |
6d2010ae A |
1302 | |
1303 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START, | |
1304 | vm_page_free_count, local_freed, delayed_unlock_limit, 1); | |
1305 | ||
b0d623f7 | 1306 | vm_page_free_list(local_freeq, TRUE); |
91447636 | 1307 | |
6d2010ae A |
1308 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END, |
1309 | vm_page_free_count, 0, 0, 1); | |
1310 | ||
2d21ac55 | 1311 | local_freeq = NULL; |
91447636 | 1312 | local_freed = 0; |
b0d623f7 A |
1313 | vm_page_lock_queues(); |
1314 | } else | |
1315 | lck_mtx_yield(&vm_page_queue_lock); | |
2d21ac55 A |
1316 | |
1317 | delayed_unlock = 1; | |
91447636 | 1318 | |
91447636 A |
1319 | /* |
1320 | * continue the while loop processing | |
1321 | * the active queue... need to hold | |
1322 | * the page queues lock | |
1323 | */ | |
55e303ae | 1324 | } |
1c79356b | 1325 | } |
91447636 | 1326 | |
6d2010ae A |
1327 | VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_END, |
1328 | vm_page_active_count, vm_page_inactive_count, vm_page_speculative_count, vm_page_inactive_target); | |
91447636 A |
1329 | |
1330 | ||
1331 | /********************************************************************** | |
1332 | * above this point we're playing with the active queue | |
1333 | * below this point we're playing with the throttling mechanisms | |
1334 | * and the inactive queue | |
1335 | **********************************************************************/ | |
1336 | ||
2d21ac55 | 1337 | done_moving_active_pages: |
91447636 | 1338 | |
55e303ae | 1339 | if (vm_page_free_count + local_freed >= vm_page_free_target) { |
91447636 A |
1340 | if (object != NULL) { |
1341 | vm_object_unlock(object); | |
1342 | object = NULL; | |
1343 | } | |
2d21ac55 A |
1344 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
1345 | ||
55e303ae | 1346 | if (local_freeq) { |
b0d623f7 | 1347 | vm_page_unlock_queues(); |
6d2010ae A |
1348 | |
1349 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START, | |
1350 | vm_page_free_count, local_freed, delayed_unlock_limit, 2); | |
1351 | ||
b0d623f7 | 1352 | vm_page_free_list(local_freeq, TRUE); |
55e303ae | 1353 | |
6d2010ae A |
1354 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END, |
1355 | vm_page_free_count, local_freed, 0, 2); | |
1356 | ||
2d21ac55 | 1357 | local_freeq = NULL; |
55e303ae | 1358 | local_freed = 0; |
b0d623f7 | 1359 | vm_page_lock_queues(); |
55e303ae | 1360 | } |
2d21ac55 | 1361 | /* |
6d2010ae | 1362 | * recalculate vm_page_inactivate_target |
593a1d5f A |
1363 | */ |
1364 | vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count + | |
1365 | vm_page_inactive_count + | |
1366 | vm_page_speculative_count); | |
593a1d5f | 1367 | #ifndef CONFIG_EMBEDDED |
2d21ac55 | 1368 | if (((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) && |
6d2010ae A |
1369 | !queue_empty(&vm_page_queue_active)) { |
1370 | /* | |
1371 | * inactive target still not met... keep going | |
1372 | * until we get the queues balanced... | |
1373 | */ | |
2d21ac55 | 1374 | continue; |
6d2010ae | 1375 | } |
593a1d5f | 1376 | #endif |
b0d623f7 | 1377 | lck_mtx_lock(&vm_page_queue_free_lock); |
55e303ae | 1378 | |
0b4e3aa0 | 1379 | if ((vm_page_free_count >= vm_page_free_target) && |
2d21ac55 | 1380 | (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) { |
6d2010ae A |
1381 | /* |
1382 | * done - we have met our target *and* | |
1383 | * there is no one waiting for a page. | |
1384 | */ | |
0b4e3aa0 | 1385 | vm_page_unlock_queues(); |
91447636 A |
1386 | |
1387 | thread_wakeup((event_t) &vm_pageout_garbage_collect); | |
2d21ac55 A |
1388 | |
1389 | assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL); | |
1390 | ||
6d2010ae A |
1391 | VM_DEBUG_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_NONE, |
1392 | vm_pageout_inactive, vm_pageout_inactive_used, 0, 0); | |
1393 | VM_DEBUG_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_END, | |
1394 | vm_pageout_speculative_clean, vm_pageout_inactive_clean, | |
1395 | vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external); | |
1396 | ||
91447636 | 1397 | return; |
0b4e3aa0 | 1398 | } |
b0d623f7 | 1399 | lck_mtx_unlock(&vm_page_queue_free_lock); |
1c79356b | 1400 | } |
b0d623f7 | 1401 | |
2d21ac55 | 1402 | /* |
b0d623f7 A |
1403 | * Before anything, we check if we have any ripe volatile |
1404 | * objects around. If so, try to purge the first object. | |
1405 | * If the purge fails, fall through to reclaim a page instead. | |
1406 | * If the purge succeeds, go back to the top and reevalute | |
1407 | * the new memory situation. | |
2d21ac55 A |
1408 | */ |
1409 | assert (available_for_purge>=0); | |
1410 | if (available_for_purge) | |
1411 | { | |
1412 | if (object != NULL) { | |
1413 | vm_object_unlock(object); | |
1414 | object = NULL; | |
1415 | } | |
6d2010ae A |
1416 | |
1417 | VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_START, vm_page_free_count, 0, 0, 0); | |
1418 | ||
1419 | if (TRUE == vm_purgeable_object_purge_one()) { | |
1420 | ||
1421 | VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, vm_page_free_count, 0, 0, 0); | |
1422 | ||
b0d623f7 A |
1423 | continue; |
1424 | } | |
6d2010ae | 1425 | VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, 0, 0, 0, -1); |
2d21ac55 | 1426 | } |
2d21ac55 A |
1427 | if (queue_empty(&sq->age_q) && vm_page_speculative_count) { |
1428 | /* | |
6d2010ae | 1429 | * try to pull pages from the aging bins... |
2d21ac55 A |
1430 | * see vm_page.h for an explanation of how |
1431 | * this mechanism works | |
1432 | */ | |
1433 | struct vm_speculative_age_q *aq; | |
1434 | mach_timespec_t ts_fully_aged; | |
1435 | boolean_t can_steal = FALSE; | |
b0d623f7 | 1436 | int num_scanned_queues; |
2d21ac55 A |
1437 | |
1438 | aq = &vm_page_queue_speculative[speculative_steal_index]; | |
1439 | ||
b0d623f7 A |
1440 | num_scanned_queues = 0; |
1441 | while (queue_empty(&aq->age_q) && | |
1442 | num_scanned_queues++ != VM_PAGE_MAX_SPECULATIVE_AGE_Q) { | |
2d21ac55 A |
1443 | |
1444 | speculative_steal_index++; | |
1445 | ||
1446 | if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
1447 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
1448 | ||
1449 | aq = &vm_page_queue_speculative[speculative_steal_index]; | |
1450 | } | |
b0d623f7 | 1451 | |
6d2010ae | 1452 | if (num_scanned_queues == VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1) { |
b0d623f7 A |
1453 | /* |
1454 | * XXX We've scanned all the speculative | |
1455 | * queues but still haven't found one | |
1456 | * that is not empty, even though | |
1457 | * vm_page_speculative_count is not 0. | |
6d2010ae A |
1458 | * |
1459 | * report the anomaly... | |
b0d623f7 | 1460 | */ |
b0d623f7 A |
1461 | printf("vm_pageout_scan: " |
1462 | "all speculative queues empty " | |
1463 | "but count=%d. Re-adjusting.\n", | |
1464 | vm_page_speculative_count); | |
6d2010ae | 1465 | if (vm_page_speculative_count > vm_page_speculative_count_drift_max) |
b0d623f7 A |
1466 | vm_page_speculative_count_drift_max = vm_page_speculative_count; |
1467 | vm_page_speculative_count_drifts++; | |
1468 | #if 6553678 | |
1469 | Debugger("vm_pageout_scan: no speculative pages"); | |
1470 | #endif | |
1471 | /* readjust... */ | |
1472 | vm_page_speculative_count = 0; | |
1473 | /* ... and continue */ | |
1474 | continue; | |
1475 | } | |
1476 | ||
2d21ac55 A |
1477 | if (vm_page_speculative_count > vm_page_speculative_target) |
1478 | can_steal = TRUE; | |
1479 | else { | |
6d2010ae A |
1480 | ts_fully_aged.tv_sec = (VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_page_speculative_q_age_ms) / 1000; |
1481 | ts_fully_aged.tv_nsec = ((VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_page_speculative_q_age_ms) % 1000) | |
2d21ac55 A |
1482 | * 1000 * NSEC_PER_USEC; |
1483 | ||
1484 | ADD_MACH_TIMESPEC(&ts_fully_aged, &aq->age_ts); | |
55e303ae | 1485 | |
b0d623f7 A |
1486 | clock_sec_t sec; |
1487 | clock_nsec_t nsec; | |
1488 | clock_get_system_nanotime(&sec, &nsec); | |
1489 | ts.tv_sec = (unsigned int) sec; | |
1490 | ts.tv_nsec = nsec; | |
2d21ac55 A |
1491 | |
1492 | if (CMP_MACH_TIMESPEC(&ts, &ts_fully_aged) >= 0) | |
1493 | can_steal = TRUE; | |
1494 | } | |
1495 | if (can_steal == TRUE) | |
1496 | vm_page_speculate_ageit(aq); | |
1497 | } | |
6d2010ae A |
1498 | if (queue_empty(&sq->age_q) && cache_evict_throttle == 0) { |
1499 | int pages_evicted; | |
1500 | ||
1501 | if (object != NULL) { | |
1502 | vm_object_unlock(object); | |
1503 | object = NULL; | |
1504 | } | |
1505 | pages_evicted = vm_object_cache_evict(100, 10); | |
1506 | ||
1507 | if (pages_evicted) { | |
1508 | ||
1509 | vm_pageout_cache_evicted += pages_evicted; | |
1510 | ||
1511 | VM_DEBUG_EVENT(vm_pageout_cache_evict, VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE, | |
1512 | vm_page_free_count, pages_evicted, vm_pageout_cache_evicted, 0); | |
1513 | ||
1514 | /* | |
1515 | * we just freed up to 100 pages, | |
1516 | * so go back to the top of the main loop | |
1517 | * and re-evaulate the memory situation | |
1518 | */ | |
1519 | continue; | |
1520 | } else | |
1521 | cache_evict_throttle = 100; | |
1522 | } | |
1523 | if (cache_evict_throttle) | |
1524 | cache_evict_throttle--; | |
1525 | ||
91447636 | 1526 | |
1c79356b A |
1527 | /* |
1528 | * Sometimes we have to pause: | |
1529 | * 1) No inactive pages - nothing to do. | |
91447636 A |
1530 | * 2) Flow control - default pageout queue is full |
1531 | * 3) Loop control - no acceptable pages found on the inactive queue | |
1532 | * within the last vm_pageout_burst_inactive_throttle iterations | |
1c79356b | 1533 | */ |
6d2010ae | 1534 | if (queue_empty(&vm_page_queue_inactive) && queue_empty(&vm_page_queue_zf) && queue_empty(&sq->age_q)) { |
91447636 A |
1535 | vm_pageout_scan_empty_throttle++; |
1536 | msecs = vm_pageout_empty_wait; | |
1537 | goto vm_pageout_scan_delay; | |
1538 | ||
b0d623f7 | 1539 | } else if (inactive_burst_count >= |
593a1d5f A |
1540 | MIN(vm_pageout_burst_inactive_throttle, |
1541 | (vm_page_inactive_count + | |
1542 | vm_page_speculative_count))) { | |
91447636 A |
1543 | vm_pageout_scan_burst_throttle++; |
1544 | msecs = vm_pageout_burst_wait; | |
1545 | goto vm_pageout_scan_delay; | |
1546 | ||
6d2010ae A |
1547 | } else if (VM_PAGE_Q_THROTTLED(iq) && |
1548 | VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) { | |
b0d623f7 A |
1549 | clock_sec_t sec; |
1550 | clock_nsec_t nsec; | |
91447636 A |
1551 | |
1552 | switch (flow_control.state) { | |
1553 | ||
1554 | case FCS_IDLE: | |
1555 | reset_deadlock_timer: | |
1556 | ts.tv_sec = vm_pageout_deadlock_wait / 1000; | |
1557 | ts.tv_nsec = (vm_pageout_deadlock_wait % 1000) * 1000 * NSEC_PER_USEC; | |
b0d623f7 A |
1558 | clock_get_system_nanotime(&sec, &nsec); |
1559 | flow_control.ts.tv_sec = (unsigned int) sec; | |
1560 | flow_control.ts.tv_nsec = nsec; | |
91447636 A |
1561 | ADD_MACH_TIMESPEC(&flow_control.ts, &ts); |
1562 | ||
1563 | flow_control.state = FCS_DELAYED; | |
1564 | msecs = vm_pageout_deadlock_wait; | |
1c79356b | 1565 | |
91447636 A |
1566 | break; |
1567 | ||
1568 | case FCS_DELAYED: | |
b0d623f7 A |
1569 | clock_get_system_nanotime(&sec, &nsec); |
1570 | ts.tv_sec = (unsigned int) sec; | |
1571 | ts.tv_nsec = nsec; | |
91447636 A |
1572 | |
1573 | if (CMP_MACH_TIMESPEC(&ts, &flow_control.ts) >= 0) { | |
1574 | /* | |
1575 | * the pageout thread for the default pager is potentially | |
1576 | * deadlocked since the | |
1577 | * default pager queue has been throttled for more than the | |
1578 | * allowable time... we need to move some clean pages or dirty | |
1579 | * pages belonging to the external pagers if they aren't throttled | |
1580 | * vm_page_free_wanted represents the number of threads currently | |
1581 | * blocked waiting for pages... we'll move one page for each of | |
1582 | * these plus a fixed amount to break the logjam... once we're done | |
1583 | * moving this number of pages, we'll re-enter the FSC_DELAYED state | |
1584 | * with a new timeout target since we have no way of knowing | |
1585 | * whether we've broken the deadlock except through observation | |
1586 | * of the queue associated with the default pager... we need to | |
2d21ac55 | 1587 | * stop moving pages and allow the system to run to see what |
91447636 A |
1588 | * state it settles into. |
1589 | */ | |
2d21ac55 | 1590 | vm_pageout_deadlock_target = vm_pageout_deadlock_relief + vm_page_free_wanted + vm_page_free_wanted_privileged; |
91447636 A |
1591 | vm_pageout_scan_deadlock_detected++; |
1592 | flow_control.state = FCS_DEADLOCK_DETECTED; | |
55e303ae | 1593 | |
91447636 A |
1594 | thread_wakeup((event_t) &vm_pageout_garbage_collect); |
1595 | goto consider_inactive; | |
1596 | } | |
1597 | /* | |
1598 | * just resniff instead of trying | |
1599 | * to compute a new delay time... we're going to be | |
1600 | * awakened immediately upon a laundry completion, | |
1601 | * so we won't wait any longer than necessary | |
1602 | */ | |
1603 | msecs = vm_pageout_idle_wait; | |
1604 | break; | |
1c79356b | 1605 | |
91447636 A |
1606 | case FCS_DEADLOCK_DETECTED: |
1607 | if (vm_pageout_deadlock_target) | |
1608 | goto consider_inactive; | |
1609 | goto reset_deadlock_timer; | |
55e303ae | 1610 | |
91447636 A |
1611 | } |
1612 | vm_pageout_scan_throttle++; | |
1613 | iq->pgo_throttled = TRUE; | |
1614 | vm_pageout_scan_delay: | |
1615 | if (object != NULL) { | |
1616 | vm_object_unlock(object); | |
1617 | object = NULL; | |
1618 | } | |
2d21ac55 A |
1619 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
1620 | ||
55e303ae | 1621 | if (local_freeq) { |
b0d623f7 | 1622 | vm_page_unlock_queues(); |
6d2010ae A |
1623 | |
1624 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START, | |
1625 | vm_page_free_count, local_freed, delayed_unlock_limit, 3); | |
1626 | ||
b0d623f7 | 1627 | vm_page_free_list(local_freeq, TRUE); |
55e303ae | 1628 | |
6d2010ae A |
1629 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END, |
1630 | vm_page_free_count, local_freed, 0, 3); | |
1631 | ||
2d21ac55 | 1632 | local_freeq = NULL; |
55e303ae | 1633 | local_freed = 0; |
b0d623f7 A |
1634 | vm_page_lock_queues(); |
1635 | ||
1636 | if (flow_control.state == FCS_DELAYED && | |
1637 | !VM_PAGE_Q_THROTTLED(iq)) { | |
1638 | flow_control.state = FCS_IDLE; | |
1639 | vm_pageout_scan_throttle_aborted++; | |
1640 | goto consider_inactive; | |
1641 | } | |
55e303ae | 1642 | } |
0b4e3aa0 | 1643 | |
6d2010ae A |
1644 | VM_CHECK_MEMORYSTATUS; |
1645 | ||
2d21ac55 | 1646 | assert_wait_timeout((event_t) &iq->pgo_laundry, THREAD_INTERRUPTIBLE, msecs, 1000*NSEC_PER_USEC); |
2d21ac55 | 1647 | counter(c_vm_pageout_scan_block++); |
1c79356b | 1648 | |
91447636 | 1649 | vm_page_unlock_queues(); |
2d21ac55 A |
1650 | |
1651 | assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL); | |
b0d623f7 | 1652 | |
6d2010ae A |
1653 | VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START, |
1654 | iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0); | |
1655 | ||
91447636 A |
1656 | thread_block(THREAD_CONTINUE_NULL); |
1657 | ||
6d2010ae A |
1658 | VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END, |
1659 | iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0); | |
1660 | ||
91447636 A |
1661 | vm_page_lock_queues(); |
1662 | delayed_unlock = 1; | |
1663 | ||
1664 | iq->pgo_throttled = FALSE; | |
0b4e3aa0 | 1665 | |
2d21ac55 | 1666 | if (loop_count >= vm_page_inactive_count) |
55e303ae | 1667 | loop_count = 0; |
91447636 A |
1668 | inactive_burst_count = 0; |
1669 | ||
1c79356b A |
1670 | goto Restart; |
1671 | /*NOTREACHED*/ | |
1672 | } | |
1673 | ||
91447636 A |
1674 | |
1675 | flow_control.state = FCS_IDLE; | |
1676 | consider_inactive: | |
6d2010ae A |
1677 | vm_pageout_inactive_external_forced_reactivate_limit = MIN((vm_page_active_count + vm_page_inactive_count), |
1678 | vm_pageout_inactive_external_forced_reactivate_limit); | |
91447636 A |
1679 | loop_count++; |
1680 | inactive_burst_count++; | |
1c79356b | 1681 | vm_pageout_inactive++; |
9bccf70c | 1682 | |
2d21ac55 A |
1683 | /* Choose a victim. */ |
1684 | ||
1685 | while (1) { | |
1686 | m = NULL; | |
91447636 | 1687 | |
6d2010ae | 1688 | if (VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) { |
b0d623f7 A |
1689 | assert(vm_page_throttled_count == 0); |
1690 | assert(queue_empty(&vm_page_queue_throttled)); | |
91447636 | 1691 | } |
2d21ac55 A |
1692 | |
1693 | /* | |
b0d623f7 | 1694 | * The most eligible pages are ones we paged in speculatively, |
2d21ac55 A |
1695 | * but which have not yet been touched. |
1696 | */ | |
1697 | if ( !queue_empty(&sq->age_q) ) { | |
1698 | m = (vm_page_t) queue_first(&sq->age_q); | |
6d2010ae A |
1699 | |
1700 | page_prev_state = PAGE_STATE_SPECULATIVE; | |
2d21ac55 | 1701 | break; |
9bccf70c | 1702 | } |
2d21ac55 A |
1703 | /* |
1704 | * Time for a zero-filled inactive page? | |
1705 | */ | |
1706 | if ( ((zf_run_count < zf_ratio) && vm_zf_queue_count >= zf_queue_min_count) || | |
1707 | queue_empty(&vm_page_queue_inactive)) { | |
1708 | if ( !queue_empty(&vm_page_queue_zf) ) { | |
1709 | m = (vm_page_t) queue_first(&vm_page_queue_zf); | |
6d2010ae A |
1710 | |
1711 | page_prev_state = PAGE_STATE_ZEROFILL; | |
2d21ac55 A |
1712 | zf_run_count++; |
1713 | break; | |
1714 | } | |
1715 | } | |
1716 | /* | |
1717 | * It's either a normal inactive page or nothing. | |
1718 | */ | |
1719 | if ( !queue_empty(&vm_page_queue_inactive) ) { | |
1720 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
6d2010ae A |
1721 | |
1722 | page_prev_state = PAGE_STATE_INACTIVE; | |
2d21ac55 A |
1723 | zf_run_count = 0; |
1724 | break; | |
1725 | } | |
1726 | ||
1727 | panic("vm_pageout: no victim"); | |
9bccf70c | 1728 | } |
6d2010ae | 1729 | VM_PAGE_QUEUES_REMOVE(m); |
2d21ac55 | 1730 | |
91447636 | 1731 | assert(!m->laundry); |
6d2010ae A |
1732 | assert(!m->private); |
1733 | assert(!m->fictitious); | |
91447636 | 1734 | assert(m->object != kernel_object); |
2d21ac55 A |
1735 | assert(m->phys_page != vm_page_guard_addr); |
1736 | ||
6d2010ae A |
1737 | |
1738 | if (page_prev_state != PAGE_STATE_SPECULATIVE) | |
b0d623f7 | 1739 | vm_pageout_stats[vm_pageout_stat_now].considered++; |
b0d623f7 | 1740 | |
2d21ac55 | 1741 | DTRACE_VM2(scan, int, 1, (uint64_t *), NULL); |
1c79356b | 1742 | |
91447636 | 1743 | /* |
2d21ac55 A |
1744 | * check to see if we currently are working |
1745 | * with the same object... if so, we've | |
1746 | * already got the lock | |
91447636 A |
1747 | */ |
1748 | if (m->object != object) { | |
2d21ac55 A |
1749 | /* |
1750 | * the object associated with candidate page is | |
1751 | * different from the one we were just working | |
1752 | * with... dump the lock if we still own it | |
1753 | */ | |
91447636 A |
1754 | if (object != NULL) { |
1755 | vm_object_unlock(object); | |
1756 | object = NULL; | |
2d21ac55 | 1757 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
91447636 | 1758 | } |
2d21ac55 A |
1759 | /* |
1760 | * Try to lock object; since we've alread got the | |
1761 | * page queues lock, we can only 'try' for this one. | |
1762 | * if the 'try' fails, we need to do a mutex_pause | |
1763 | * to allow the owner of the object lock a chance to | |
1764 | * run... otherwise, we're likely to trip over this | |
1765 | * object in the same state as we work our way through | |
1766 | * the queue... clumps of pages associated with the same | |
1767 | * object are fairly typical on the inactive and active queues | |
1768 | */ | |
1769 | if (!vm_object_lock_try_scan(m->object)) { | |
6d2010ae A |
1770 | vm_page_t m_want = NULL; |
1771 | ||
b0d623f7 A |
1772 | vm_pageout_inactive_nolock++; |
1773 | ||
6d2010ae A |
1774 | if (page_prev_state == PAGE_STATE_SPECULATIVE) |
1775 | page_prev_state = PAGE_STATE_INACTIVE_FIRST; | |
2d21ac55 | 1776 | |
2d21ac55 A |
1777 | pmap_clear_reference(m->phys_page); |
1778 | m->reference = FALSE; | |
1779 | ||
6d2010ae A |
1780 | /* |
1781 | * m->object must be stable since we hold the page queues lock... | |
1782 | * we can update the scan_collisions field sans the object lock | |
1783 | * since it is a separate field and this is the only spot that does | |
1784 | * a read-modify-write operation and it is never executed concurrently... | |
1785 | * we can asynchronously set this field to 0 when creating a UPL, so it | |
1786 | * is possible for the value to be a bit non-determistic, but that's ok | |
1787 | * since it's only used as a hint | |
1788 | */ | |
1789 | m->object->scan_collisions++; | |
1790 | ||
2d21ac55 | 1791 | if ( !queue_empty(&sq->age_q) ) |
6d2010ae | 1792 | m_want = (vm_page_t) queue_first(&sq->age_q); |
2d21ac55 A |
1793 | else if ( ((zf_run_count < zf_ratio) && vm_zf_queue_count >= zf_queue_min_count) || |
1794 | queue_empty(&vm_page_queue_inactive)) { | |
1795 | if ( !queue_empty(&vm_page_queue_zf) ) | |
6d2010ae | 1796 | m_want = (vm_page_t) queue_first(&vm_page_queue_zf); |
2d21ac55 | 1797 | } else if ( !queue_empty(&vm_page_queue_inactive) ) { |
6d2010ae | 1798 | m_want = (vm_page_t) queue_first(&vm_page_queue_inactive); |
2d21ac55 A |
1799 | } |
1800 | /* | |
1801 | * this is the next object we're going to be interested in | |
1802 | * try to make sure its available after the mutex_yield | |
1803 | * returns control | |
1804 | */ | |
6d2010ae A |
1805 | if (m_want) |
1806 | vm_pageout_scan_wants_object = m_want->object; | |
2d21ac55 | 1807 | |
91447636 A |
1808 | /* |
1809 | * force us to dump any collected free pages | |
1810 | * and to pause before moving on | |
1811 | */ | |
2d21ac55 | 1812 | try_failed = TRUE; |
55e303ae | 1813 | |
6d2010ae | 1814 | goto requeue_page; |
1c79356b | 1815 | } |
91447636 | 1816 | object = m->object; |
2d21ac55 | 1817 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
0b4e3aa0 | 1818 | |
2d21ac55 | 1819 | try_failed = FALSE; |
1c79356b | 1820 | } |
6d2010ae A |
1821 | if (catch_up_count) |
1822 | catch_up_count--; | |
1c79356b | 1823 | |
6d2010ae A |
1824 | if (m->busy) { |
1825 | if (m->encrypted_cleaning) { | |
1826 | /* | |
1827 | * ENCRYPTED SWAP: | |
1828 | * if this page has already been picked up as | |
1829 | * part of a page-out cluster, it will be busy | |
1830 | * because it is being encrypted (see | |
1831 | * vm_object_upl_request()). But we still | |
1832 | * want to demote it from "clean-in-place" | |
1833 | * (aka "adjacent") to "clean-and-free" (aka | |
1834 | * "target"), so let's ignore its "busy" bit | |
1835 | * here and proceed to check for "cleaning" a | |
1836 | * little bit below... | |
1837 | * | |
1838 | * CAUTION CAUTION: | |
1839 | * A "busy" page should still be left alone for | |
1840 | * most purposes, so we have to be very careful | |
1841 | * not to process that page too much. | |
1842 | */ | |
1843 | assert(m->cleaning); | |
1844 | goto consider_inactive_page; | |
2d21ac55 | 1845 | } |
2d21ac55 | 1846 | |
1c79356b A |
1847 | /* |
1848 | * Somebody is already playing with this page. | |
6d2010ae | 1849 | * Put it back on the appropriate queue |
2d21ac55 | 1850 | * |
1c79356b | 1851 | */ |
1c79356b | 1852 | vm_pageout_inactive_busy++; |
6d2010ae A |
1853 | requeue_page: |
1854 | switch (page_prev_state) { | |
1855 | ||
1856 | case PAGE_STATE_SPECULATIVE: | |
1857 | vm_page_speculate(m, FALSE); | |
1858 | break; | |
91447636 | 1859 | |
6d2010ae A |
1860 | case PAGE_STATE_ZEROFILL: |
1861 | m->zero_fill = TRUE; | |
1862 | /* | |
1863 | * fall through to add in the | |
1864 | * inactive state | |
1865 | */ | |
1866 | case PAGE_STATE_INACTIVE: | |
1867 | VM_PAGE_ENQUEUE_INACTIVE(m, FALSE); | |
1868 | break; | |
1869 | ||
1870 | case PAGE_STATE_INACTIVE_FIRST: | |
1871 | VM_PAGE_ENQUEUE_INACTIVE(m, TRUE); | |
1872 | break; | |
1873 | } | |
91447636 | 1874 | goto done_with_inactivepage; |
1c79356b A |
1875 | } |
1876 | ||
6d2010ae | 1877 | |
1c79356b | 1878 | /* |
6d2010ae A |
1879 | * If it's absent, in error or the object is no longer alive, |
1880 | * we can reclaim the page... in the no longer alive case, | |
1881 | * there are 2 states the page can be in that preclude us | |
1882 | * from reclaiming it - busy or cleaning - that we've already | |
1883 | * dealt with | |
1c79356b | 1884 | */ |
6d2010ae | 1885 | if (m->absent || m->error || !object->alive) { |
1c79356b | 1886 | |
6d2010ae A |
1887 | if (m->absent) |
1888 | vm_pageout_inactive_absent++; | |
1889 | else if (!object->alive) | |
1890 | vm_pageout_inactive_notalive++; | |
1891 | else | |
1892 | vm_pageout_inactive_error++; | |
91447636 A |
1893 | reclaim_page: |
1894 | if (vm_pageout_deadlock_target) { | |
1895 | vm_pageout_scan_inactive_throttle_success++; | |
1896 | vm_pageout_deadlock_target--; | |
1897 | } | |
2d21ac55 A |
1898 | |
1899 | DTRACE_VM2(dfree, int, 1, (uint64_t *), NULL); | |
1900 | ||
b0d623f7 | 1901 | if (object->internal) { |
2d21ac55 A |
1902 | DTRACE_VM2(anonfree, int, 1, (uint64_t *), NULL); |
1903 | } else { | |
1904 | DTRACE_VM2(fsfree, int, 1, (uint64_t *), NULL); | |
1905 | } | |
b0d623f7 | 1906 | vm_page_free_prepare_queues(m); |
2d21ac55 | 1907 | |
b0d623f7 A |
1908 | /* |
1909 | * remove page from object here since we're already | |
1910 | * behind the object lock... defer the rest of the work | |
1911 | * we'd normally do in vm_page_free_prepare_object | |
1912 | * until 'vm_page_free_list' is called | |
1913 | */ | |
1914 | if (m->tabled) | |
1915 | vm_page_remove(m, TRUE); | |
55e303ae | 1916 | |
91447636 A |
1917 | assert(m->pageq.next == NULL && |
1918 | m->pageq.prev == NULL); | |
55e303ae A |
1919 | m->pageq.next = (queue_entry_t)local_freeq; |
1920 | local_freeq = m; | |
91447636 | 1921 | local_freed++; |
55e303ae | 1922 | |
91447636 A |
1923 | inactive_burst_count = 0; |
1924 | ||
6d2010ae | 1925 | if (page_prev_state != PAGE_STATE_SPECULATIVE) |
b0d623f7 | 1926 | vm_pageout_stats[vm_pageout_stat_now].reclaimed++; |
b0d623f7 | 1927 | |
91447636 | 1928 | goto done_with_inactivepage; |
1c79356b | 1929 | } |
b0d623f7 A |
1930 | /* |
1931 | * If the object is empty, the page must be reclaimed even | |
1932 | * if dirty or used. | |
1933 | * If the page belongs to a volatile object, we stick it back | |
1934 | * on. | |
1935 | */ | |
1936 | if (object->copy == VM_OBJECT_NULL) { | |
1937 | if (object->purgable == VM_PURGABLE_EMPTY) { | |
1938 | m->busy = TRUE; | |
1939 | if (m->pmapped == TRUE) { | |
1940 | /* unmap the page */ | |
1941 | refmod_state = pmap_disconnect(m->phys_page); | |
1942 | if (refmod_state & VM_MEM_MODIFIED) { | |
1943 | m->dirty = TRUE; | |
1944 | } | |
1945 | } | |
1946 | if (m->dirty || m->precious) { | |
1947 | /* we saved the cost of cleaning this page ! */ | |
1948 | vm_page_purged_count++; | |
1949 | } | |
1950 | goto reclaim_page; | |
1951 | } | |
1952 | if (object->purgable == VM_PURGABLE_VOLATILE) { | |
1953 | /* if it's wired, we can't put it on our queue */ | |
1954 | assert(!VM_PAGE_WIRED(m)); | |
6d2010ae | 1955 | |
b0d623f7 | 1956 | /* just stick it back on! */ |
6d2010ae | 1957 | reactivated_this_call++; |
b0d623f7 A |
1958 | goto reactivate_page; |
1959 | } | |
1960 | } | |
1961 | ||
6d2010ae A |
1962 | consider_inactive_page: |
1963 | if (m->busy) { | |
1964 | /* | |
1965 | * CAUTION CAUTION: | |
1966 | * A "busy" page should always be left alone, except... | |
1967 | */ | |
1968 | if (m->cleaning && m->encrypted_cleaning) { | |
1969 | /* | |
1970 | * ENCRYPTED_SWAP: | |
1971 | * We could get here with a "busy" page | |
1972 | * if it's being encrypted during a | |
1973 | * "clean-in-place" operation. We'll deal | |
1974 | * with it right away by testing if it has been | |
1975 | * referenced and either reactivating it or | |
1976 | * promoting it from "clean-in-place" to | |
1977 | * "clean-and-free". | |
1978 | */ | |
1979 | } else { | |
1980 | panic("\"busy\" page considered for pageout\n"); | |
1981 | } | |
1982 | } | |
1983 | ||
1c79356b A |
1984 | /* |
1985 | * If it's being used, reactivate. | |
1986 | * (Fictitious pages are either busy or absent.) | |
2d21ac55 A |
1987 | * First, update the reference and dirty bits |
1988 | * to make sure the page is unreferenced. | |
1c79356b | 1989 | */ |
2d21ac55 A |
1990 | refmod_state = -1; |
1991 | ||
1992 | if (m->reference == FALSE && m->pmapped == TRUE) { | |
91447636 A |
1993 | refmod_state = pmap_get_refmod(m->phys_page); |
1994 | ||
1995 | if (refmod_state & VM_MEM_REFERENCED) | |
1996 | m->reference = TRUE; | |
1997 | if (refmod_state & VM_MEM_MODIFIED) | |
1998 | m->dirty = TRUE; | |
1999 | } | |
b0d623f7 | 2000 | |
6d2010ae A |
2001 | /* |
2002 | * If already cleaning this page in place and it hasn't | |
2003 | * been recently referenced, convert from | |
2004 | * "adjacent" to "target". We can leave the page mapped, | |
2005 | * and upl_commit_range will determine whether | |
2006 | * to free or reactivate. | |
2007 | * | |
2008 | * note: if m->encrypted_cleaning == TRUE, then | |
2009 | * m->cleaning == TRUE | |
2010 | * and we'll handle it here | |
2011 | */ | |
2012 | if (m->cleaning) { | |
2013 | ||
2014 | if (m->reference == TRUE) { | |
2015 | reactivated_this_call++; | |
2016 | goto reactivate_page; | |
2017 | } | |
2018 | m->busy = TRUE; | |
2019 | m->pageout = TRUE; | |
2020 | m->dump_cleaning = TRUE; | |
2021 | vm_page_wire(m); | |
2022 | ||
2023 | CLUSTER_STAT(vm_pageout_cluster_conversions++); | |
2024 | ||
2025 | inactive_burst_count = 0; | |
2026 | ||
2027 | goto done_with_inactivepage; | |
2028 | } | |
2029 | ||
b0d623f7 A |
2030 | if (m->reference || m->dirty) { |
2031 | /* deal with a rogue "reusable" page */ | |
2032 | VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m); | |
2033 | } | |
2034 | ||
2d21ac55 A |
2035 | if (m->reference && !m->no_cache) { |
2036 | /* | |
2037 | * The page we pulled off the inactive list has | |
2038 | * been referenced. It is possible for other | |
2039 | * processors to be touching pages faster than we | |
2040 | * can clear the referenced bit and traverse the | |
2041 | * inactive queue, so we limit the number of | |
2042 | * reactivations. | |
2043 | */ | |
2044 | if (++reactivated_this_call >= reactivate_limit) { | |
2045 | vm_pageout_reactivation_limit_exceeded++; | |
2046 | } else if (catch_up_count) { | |
2047 | vm_pageout_catch_ups++; | |
2048 | } else if (++inactive_reclaim_run >= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM) { | |
2049 | vm_pageout_inactive_force_reclaim++; | |
2050 | } else { | |
b0d623f7 | 2051 | uint32_t isinuse; |
2d21ac55 | 2052 | reactivate_page: |
b0d623f7 A |
2053 | if ( !object->internal && object->pager != MEMORY_OBJECT_NULL && |
2054 | vnode_pager_get_isinuse(object->pager, &isinuse) == KERN_SUCCESS && !isinuse) { | |
2055 | /* | |
2056 | * no explict mappings of this object exist | |
2057 | * and it's not open via the filesystem | |
2058 | */ | |
2059 | vm_page_deactivate(m); | |
2060 | vm_pageout_inactive_deactivated++; | |
2061 | } else { | |
2062 | /* | |
2063 | * The page was/is being used, so put back on active list. | |
2064 | */ | |
2065 | vm_page_activate(m); | |
2066 | VM_STAT_INCR(reactivations); | |
2067 | } | |
2d21ac55 A |
2068 | vm_pageout_inactive_used++; |
2069 | inactive_burst_count = 0; | |
55e303ae | 2070 | |
2d21ac55 A |
2071 | goto done_with_inactivepage; |
2072 | } | |
2073 | /* | |
2074 | * Make sure we call pmap_get_refmod() if it | |
2075 | * wasn't already called just above, to update | |
2076 | * the dirty bit. | |
2077 | */ | |
2078 | if ((refmod_state == -1) && !m->dirty && m->pmapped) { | |
2079 | refmod_state = pmap_get_refmod(m->phys_page); | |
2080 | if (refmod_state & VM_MEM_MODIFIED) | |
2081 | m->dirty = TRUE; | |
2082 | } | |
2083 | forced_reclaim = TRUE; | |
2084 | } else { | |
2085 | forced_reclaim = FALSE; | |
1c79356b A |
2086 | } |
2087 | ||
91447636 A |
2088 | XPR(XPR_VM_PAGEOUT, |
2089 | "vm_pageout_scan, replace object 0x%X offset 0x%X page 0x%X\n", | |
b0d623f7 | 2090 | object, m->offset, m, 0,0); |
0b4e3aa0 | 2091 | |
91447636 A |
2092 | /* |
2093 | * we've got a candidate page to steal... | |
2094 | * | |
2095 | * m->dirty is up to date courtesy of the | |
2096 | * preceding check for m->reference... if | |
2097 | * we get here, then m->reference had to be | |
2d21ac55 A |
2098 | * FALSE (or possibly "reactivate_limit" was |
2099 | * exceeded), but in either case we called | |
2100 | * pmap_get_refmod() and updated both | |
2101 | * m->reference and m->dirty | |
91447636 A |
2102 | * |
2103 | * if it's dirty or precious we need to | |
2104 | * see if the target queue is throtttled | |
2105 | * it if is, we need to skip over it by moving it back | |
2106 | * to the end of the inactive queue | |
2107 | */ | |
b0d623f7 | 2108 | |
91447636 A |
2109 | inactive_throttled = FALSE; |
2110 | ||
2111 | if (m->dirty || m->precious) { | |
2112 | if (object->internal) { | |
2d21ac55 | 2113 | if (VM_PAGE_Q_THROTTLED(iq)) |
91447636 A |
2114 | inactive_throttled = TRUE; |
2115 | } else if (VM_PAGE_Q_THROTTLED(eq)) { | |
2d21ac55 | 2116 | inactive_throttled = TRUE; |
1c79356b | 2117 | } |
91447636 | 2118 | } |
2d21ac55 | 2119 | throttle_inactive: |
6d2010ae A |
2120 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && |
2121 | object->internal && m->dirty && | |
2122 | (object->purgable == VM_PURGABLE_DENY || | |
2123 | object->purgable == VM_PURGABLE_NONVOLATILE || | |
2124 | object->purgable == VM_PURGABLE_VOLATILE)) { | |
2125 | queue_enter(&vm_page_queue_throttled, m, | |
2126 | vm_page_t, pageq); | |
2127 | m->throttled = TRUE; | |
2128 | vm_page_throttled_count++; | |
2129 | ||
2130 | vm_pageout_scan_reclaimed_throttled++; | |
2131 | ||
2132 | goto done_with_inactivepage; | |
2133 | } | |
2134 | if (inactive_throttled == TRUE) { | |
2135 | ||
2136 | if (object->internal) | |
2137 | vm_pageout_scan_inactive_throttled_internal++; | |
2138 | else | |
2139 | vm_pageout_scan_inactive_throttled_external++; | |
2140 | ||
2141 | if (page_prev_state == PAGE_STATE_SPECULATIVE) | |
2142 | page_prev_state = PAGE_STATE_INACTIVE; | |
2143 | ||
2144 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && object->internal == FALSE) { | |
2145 | /* | |
2146 | * a) The external pageout queue is throttled | |
2147 | * b) We're done with the active queue and moved on to the inactive queue | |
2148 | * c) We start noticing dirty pages and usually we would put them at the end of the inactive queue, but, | |
2149 | * d) We don't have a default pager, and so, | |
2150 | * e) We push these onto the active queue in an effort to cause a re-evaluation of the active queue | |
2151 | * and get back some, possibly clean, pages. | |
2152 | * | |
2153 | * We also keep a count of the pages of this kind, since, these will be a good indicator of us being in a deadlock | |
2154 | * on systems without a dynamic pager, where: | |
2155 | * a) The external pageout thread is stuck on the truncate lock for a file that is being extended i.e. written. | |
2156 | * b) The thread doing the writing is waiting for pages while holding the truncate lock | |
2157 | * c) Most of the pages in the inactive queue belong to this file. | |
2158 | */ | |
2159 | ||
2160 | vm_page_activate(m); | |
2161 | vm_pageout_inactive_external_forced_reactivate_count++; | |
2162 | vm_pageout_inactive_external_forced_reactivate_limit--; | |
2163 | ||
2164 | if (vm_pageout_inactive_external_forced_reactivate_limit <= 0){ | |
2165 | vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count; | |
2166 | #if CONFIG_EMBEDDED | |
2167 | /* | |
2168 | * Possible deadlock scenario so request jetsam action | |
2169 | */ | |
2170 | assert(object); | |
2171 | vm_object_unlock(object); | |
2172 | object = VM_OBJECT_NULL; | |
2173 | vm_page_unlock_queues(); | |
2174 | ||
2175 | if (jetsam_kill_top_proc(TRUE, kJetsamFlagsKilledVM) < 0){ | |
2176 | panic("vm_pageout_scan: Jetsam request failed\n"); | |
2177 | } | |
2178 | ||
2179 | vm_page_lock_queues(); | |
2180 | delayed_unlock = 1; | |
2181 | #endif | |
2d21ac55 | 2182 | } |
6d2010ae A |
2183 | inactive_burst_count = 0; |
2184 | goto done_with_inactivepage; | |
2185 | } else { | |
2186 | goto requeue_page; | |
1c79356b | 2187 | } |
1c79356b | 2188 | } |
2d21ac55 | 2189 | |
1c79356b | 2190 | /* |
91447636 A |
2191 | * we've got a page that we can steal... |
2192 | * eliminate all mappings and make sure | |
2193 | * we have the up-to-date modified state | |
2194 | * first take the page BUSY, so that no new | |
2195 | * mappings can be made | |
1c79356b | 2196 | */ |
1c79356b | 2197 | m->busy = TRUE; |
55e303ae | 2198 | |
91447636 A |
2199 | /* |
2200 | * if we need to do a pmap_disconnect then we | |
2201 | * need to re-evaluate m->dirty since the pmap_disconnect | |
2202 | * provides the true state atomically... the | |
2203 | * page was still mapped up to the pmap_disconnect | |
2204 | * and may have been dirtied at the last microsecond | |
2205 | * | |
2206 | * we also check for the page being referenced 'late' | |
2207 | * if it was, we first need to do a WAKEUP_DONE on it | |
2208 | * since we already set m->busy = TRUE, before | |
2209 | * going off to reactivate it | |
2210 | * | |
2d21ac55 A |
2211 | * Note that if 'pmapped' is FALSE then the page is not |
2212 | * and has not been in any map, so there is no point calling | |
2213 | * pmap_disconnect(). m->dirty and/or m->reference could | |
2214 | * have been set in anticipation of likely usage of the page. | |
91447636 | 2215 | */ |
2d21ac55 | 2216 | if (m->pmapped == TRUE) { |
91447636 | 2217 | refmod_state = pmap_disconnect(m->phys_page); |
0b4e3aa0 | 2218 | |
91447636 A |
2219 | if (refmod_state & VM_MEM_MODIFIED) |
2220 | m->dirty = TRUE; | |
2221 | if (refmod_state & VM_MEM_REFERENCED) { | |
2d21ac55 A |
2222 | |
2223 | /* If m->reference is already set, this page must have | |
2224 | * already failed the reactivate_limit test, so don't | |
2225 | * bump the counts twice. | |
2226 | */ | |
2227 | if ( ! m->reference ) { | |
2228 | m->reference = TRUE; | |
2229 | if (forced_reclaim || | |
2230 | ++reactivated_this_call >= reactivate_limit) | |
2231 | vm_pageout_reactivation_limit_exceeded++; | |
2232 | else { | |
2233 | PAGE_WAKEUP_DONE(m); | |
2234 | goto reactivate_page; | |
2235 | } | |
2236 | } | |
91447636 A |
2237 | } |
2238 | } | |
2d21ac55 A |
2239 | /* |
2240 | * reset our count of pages that have been reclaimed | |
2241 | * since the last page was 'stolen' | |
2242 | */ | |
2243 | inactive_reclaim_run = 0; | |
2244 | ||
1c79356b A |
2245 | /* |
2246 | * If it's clean and not precious, we can free the page. | |
2247 | */ | |
1c79356b | 2248 | if (!m->dirty && !m->precious) { |
b0d623f7 | 2249 | |
6d2010ae A |
2250 | if (page_prev_state == PAGE_STATE_SPECULATIVE) |
2251 | vm_pageout_speculative_clean++; | |
2252 | else { | |
2253 | if (page_prev_state == PAGE_STATE_ZEROFILL) | |
2254 | vm_pageout_inactive_zf++; | |
2255 | vm_pageout_inactive_clean++; | |
2256 | } | |
1c79356b A |
2257 | goto reclaim_page; |
2258 | } | |
2d21ac55 A |
2259 | |
2260 | /* | |
2261 | * The page may have been dirtied since the last check | |
2262 | * for a throttled target queue (which may have been skipped | |
2263 | * if the page was clean then). With the dirty page | |
2264 | * disconnected here, we can make one final check. | |
2265 | */ | |
6d2010ae A |
2266 | if (object->internal) { |
2267 | if (VM_PAGE_Q_THROTTLED(iq)) | |
2268 | inactive_throttled = TRUE; | |
2269 | } else if (VM_PAGE_Q_THROTTLED(eq)) { | |
2270 | inactive_throttled = TRUE; | |
2271 | } | |
2d21ac55 | 2272 | |
6d2010ae A |
2273 | if (inactive_throttled == TRUE) { |
2274 | /* | |
2275 | * we set busy before issuing the pmap_disconnect, | |
2276 | * so clear it and wakeup anyone that happened upon | |
2277 | * it in that state | |
2278 | */ | |
2279 | PAGE_WAKEUP_DONE(m); | |
2280 | goto throttle_inactive; | |
2d21ac55 A |
2281 | } |
2282 | ||
b0d623f7 A |
2283 | vm_pageout_stats[vm_pageout_stat_now].reclaimed++; |
2284 | ||
91447636 | 2285 | vm_pageout_cluster(m); |
1c79356b | 2286 | |
6d2010ae | 2287 | if (page_prev_state == PAGE_STATE_ZEROFILL) |
b0d623f7 | 2288 | vm_pageout_inactive_zf++; |
6d2010ae A |
2289 | if (object->internal) |
2290 | vm_pageout_inactive_dirty_internal++; | |
2291 | else | |
2292 | vm_pageout_inactive_dirty_external++; | |
2293 | ||
91447636 | 2294 | inactive_burst_count = 0; |
1c79356b | 2295 | |
91447636 | 2296 | done_with_inactivepage: |
6d2010ae | 2297 | if (delayed_unlock++ > delayed_unlock_limit || try_failed == TRUE) { |
1c79356b | 2298 | |
91447636 | 2299 | if (object != NULL) { |
b0d623f7 | 2300 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
91447636 A |
2301 | vm_object_unlock(object); |
2302 | object = NULL; | |
2303 | } | |
2304 | if (local_freeq) { | |
b0d623f7 | 2305 | vm_page_unlock_queues(); |
6d2010ae A |
2306 | |
2307 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START, | |
2308 | vm_page_free_count, local_freed, delayed_unlock_limit, 4); | |
2309 | ||
b0d623f7 | 2310 | vm_page_free_list(local_freeq, TRUE); |
91447636 | 2311 | |
6d2010ae A |
2312 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END, |
2313 | vm_page_free_count, local_freed, 0, 4); | |
2314 | ||
2d21ac55 | 2315 | local_freeq = NULL; |
91447636 | 2316 | local_freed = 0; |
b0d623f7 A |
2317 | vm_page_lock_queues(); |
2318 | } else | |
2319 | lck_mtx_yield(&vm_page_queue_lock); | |
2d21ac55 A |
2320 | |
2321 | delayed_unlock = 1; | |
1c79356b | 2322 | } |
91447636 A |
2323 | /* |
2324 | * back to top of pageout scan loop | |
2325 | */ | |
1c79356b | 2326 | } |
1c79356b A |
2327 | } |
2328 | ||
1c79356b | 2329 | |
1c79356b A |
2330 | int vm_page_free_count_init; |
2331 | ||
2332 | void | |
2333 | vm_page_free_reserve( | |
2334 | int pages) | |
2335 | { | |
2336 | int free_after_reserve; | |
2337 | ||
2338 | vm_page_free_reserved += pages; | |
2339 | ||
6d2010ae A |
2340 | if (vm_page_free_reserved > VM_PAGE_FREE_RESERVED_LIMIT) |
2341 | vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT; | |
2342 | ||
1c79356b A |
2343 | free_after_reserve = vm_page_free_count_init - vm_page_free_reserved; |
2344 | ||
2345 | vm_page_free_min = vm_page_free_reserved + | |
2346 | VM_PAGE_FREE_MIN(free_after_reserve); | |
2347 | ||
2d21ac55 A |
2348 | if (vm_page_free_min > VM_PAGE_FREE_MIN_LIMIT) |
2349 | vm_page_free_min = VM_PAGE_FREE_MIN_LIMIT; | |
2350 | ||
1c79356b A |
2351 | vm_page_free_target = vm_page_free_reserved + |
2352 | VM_PAGE_FREE_TARGET(free_after_reserve); | |
2353 | ||
2d21ac55 A |
2354 | if (vm_page_free_target > VM_PAGE_FREE_TARGET_LIMIT) |
2355 | vm_page_free_target = VM_PAGE_FREE_TARGET_LIMIT; | |
2356 | ||
1c79356b A |
2357 | if (vm_page_free_target < vm_page_free_min + 5) |
2358 | vm_page_free_target = vm_page_free_min + 5; | |
2d21ac55 | 2359 | |
b0d623f7 A |
2360 | vm_page_throttle_limit = vm_page_free_target - (vm_page_free_target / 3); |
2361 | vm_page_creation_throttle = vm_page_free_target / 2; | |
1c79356b A |
2362 | } |
2363 | ||
2364 | /* | |
2365 | * vm_pageout is the high level pageout daemon. | |
2366 | */ | |
2367 | ||
55e303ae A |
2368 | void |
2369 | vm_pageout_continue(void) | |
2370 | { | |
2d21ac55 | 2371 | DTRACE_VM2(pgrrun, int, 1, (uint64_t *), NULL); |
55e303ae A |
2372 | vm_pageout_scan_event_counter++; |
2373 | vm_pageout_scan(); | |
2374 | /* we hold vm_page_queue_free_lock now */ | |
2375 | assert(vm_page_free_wanted == 0); | |
2d21ac55 | 2376 | assert(vm_page_free_wanted_privileged == 0); |
55e303ae | 2377 | assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT); |
b0d623f7 | 2378 | lck_mtx_unlock(&vm_page_queue_free_lock); |
55e303ae A |
2379 | |
2380 | counter(c_vm_pageout_block++); | |
91447636 | 2381 | thread_block((thread_continue_t)vm_pageout_continue); |
55e303ae A |
2382 | /*NOTREACHED*/ |
2383 | } | |
1c79356b | 2384 | |
91447636 | 2385 | |
91447636 | 2386 | #ifdef FAKE_DEADLOCK |
1c79356b | 2387 | |
91447636 A |
2388 | #define FAKE_COUNT 5000 |
2389 | ||
2390 | int internal_count = 0; | |
2391 | int fake_deadlock = 0; | |
2392 | ||
2393 | #endif | |
2394 | ||
2395 | static void | |
2396 | vm_pageout_iothread_continue(struct vm_pageout_queue *q) | |
2397 | { | |
2398 | vm_page_t m = NULL; | |
2399 | vm_object_t object; | |
2d21ac55 A |
2400 | memory_object_t pager; |
2401 | thread_t self = current_thread(); | |
91447636 | 2402 | |
2d21ac55 A |
2403 | if ((vm_pageout_internal_iothread != THREAD_NULL) |
2404 | && (self == vm_pageout_external_iothread ) | |
2405 | && (self->options & TH_OPT_VMPRIV)) | |
2406 | self->options &= ~TH_OPT_VMPRIV; | |
2407 | ||
2408 | vm_page_lockspin_queues(); | |
91447636 A |
2409 | |
2410 | while ( !queue_empty(&q->pgo_pending) ) { | |
2411 | ||
2412 | q->pgo_busy = TRUE; | |
2413 | queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq); | |
6d2010ae A |
2414 | if (m->object == slide_info.slide_object) { |
2415 | panic("slid page %p not allowed on this path\n", m); | |
2416 | } | |
b0d623f7 | 2417 | VM_PAGE_CHECK(m); |
91447636 | 2418 | m->pageout_queue = FALSE; |
91447636 A |
2419 | m->pageq.next = NULL; |
2420 | m->pageq.prev = NULL; | |
b0d623f7 A |
2421 | vm_page_unlock_queues(); |
2422 | ||
91447636 A |
2423 | #ifdef FAKE_DEADLOCK |
2424 | if (q == &vm_pageout_queue_internal) { | |
2425 | vm_offset_t addr; | |
2426 | int pg_count; | |
2427 | ||
2428 | internal_count++; | |
2429 | ||
2430 | if ((internal_count == FAKE_COUNT)) { | |
2431 | ||
2432 | pg_count = vm_page_free_count + vm_page_free_reserved; | |
2433 | ||
2434 | if (kmem_alloc(kernel_map, &addr, PAGE_SIZE * pg_count) == KERN_SUCCESS) { | |
2435 | kmem_free(kernel_map, addr, PAGE_SIZE * pg_count); | |
2436 | } | |
2437 | internal_count = 0; | |
2438 | fake_deadlock++; | |
2439 | } | |
2440 | } | |
2441 | #endif | |
2442 | object = m->object; | |
2443 | ||
2d21ac55 A |
2444 | vm_object_lock(object); |
2445 | ||
91447636 | 2446 | if (!object->pager_initialized) { |
91447636 A |
2447 | |
2448 | /* | |
2449 | * If there is no memory object for the page, create | |
2450 | * one and hand it to the default pager. | |
2451 | */ | |
2452 | ||
2453 | if (!object->pager_initialized) | |
0c530ab8 A |
2454 | vm_object_collapse(object, |
2455 | (vm_object_offset_t) 0, | |
2456 | TRUE); | |
91447636 A |
2457 | if (!object->pager_initialized) |
2458 | vm_object_pager_create(object); | |
2459 | if (!object->pager_initialized) { | |
2460 | /* | |
2461 | * Still no pager for the object. | |
2462 | * Reactivate the page. | |
2463 | * | |
2464 | * Should only happen if there is no | |
2465 | * default pager. | |
2466 | */ | |
2d21ac55 | 2467 | vm_page_lockspin_queues(); |
b0d623f7 A |
2468 | |
2469 | vm_pageout_queue_steal(m, TRUE); | |
91447636 | 2470 | vm_page_activate(m); |
6d2010ae | 2471 | vm_pageout_dirty_no_pager++; |
b0d623f7 | 2472 | |
91447636 A |
2473 | vm_page_unlock_queues(); |
2474 | ||
2475 | /* | |
2476 | * And we are done with it. | |
2477 | */ | |
2478 | PAGE_WAKEUP_DONE(m); | |
2479 | ||
2480 | vm_object_paging_end(object); | |
2481 | vm_object_unlock(object); | |
2482 | ||
2d21ac55 | 2483 | vm_page_lockspin_queues(); |
91447636 | 2484 | continue; |
2d21ac55 A |
2485 | } |
2486 | } | |
2487 | pager = object->pager; | |
2488 | if (pager == MEMORY_OBJECT_NULL) { | |
2489 | /* | |
2490 | * This pager has been destroyed by either | |
2491 | * memory_object_destroy or vm_object_destroy, and | |
2492 | * so there is nowhere for the page to go. | |
2d21ac55 | 2493 | */ |
0b4c1975 A |
2494 | if (m->pageout) { |
2495 | /* | |
2496 | * Just free the page... VM_PAGE_FREE takes | |
2497 | * care of cleaning up all the state... | |
2498 | * including doing the vm_pageout_throttle_up | |
2499 | */ | |
2500 | VM_PAGE_FREE(m); | |
2501 | } else { | |
2502 | vm_page_lockspin_queues(); | |
91447636 | 2503 | |
0b4c1975 A |
2504 | vm_pageout_queue_steal(m, TRUE); |
2505 | vm_page_activate(m); | |
2506 | ||
2507 | vm_page_unlock_queues(); | |
91447636 | 2508 | |
0b4c1975 A |
2509 | /* |
2510 | * And we are done with it. | |
2511 | */ | |
2512 | PAGE_WAKEUP_DONE(m); | |
2513 | } | |
2d21ac55 | 2514 | vm_object_paging_end(object); |
91447636 | 2515 | vm_object_unlock(object); |
2d21ac55 A |
2516 | |
2517 | vm_page_lockspin_queues(); | |
2518 | continue; | |
91447636 | 2519 | } |
b0d623f7 | 2520 | VM_PAGE_CHECK(m); |
2d21ac55 | 2521 | vm_object_unlock(object); |
91447636 A |
2522 | /* |
2523 | * we expect the paging_in_progress reference to have | |
2524 | * already been taken on the object before it was added | |
2525 | * to the appropriate pageout I/O queue... this will | |
2526 | * keep the object from being terminated and/or the | |
2527 | * paging_offset from changing until the I/O has | |
2528 | * completed... therefore no need to lock the object to | |
2529 | * pull the paging_offset from it. | |
2530 | * | |
2531 | * Send the data to the pager. | |
2532 | * any pageout clustering happens there | |
2533 | */ | |
2d21ac55 | 2534 | memory_object_data_return(pager, |
91447636 A |
2535 | m->offset + object->paging_offset, |
2536 | PAGE_SIZE, | |
2537 | NULL, | |
2538 | NULL, | |
2539 | FALSE, | |
2540 | FALSE, | |
2541 | 0); | |
2542 | ||
2543 | vm_object_lock(object); | |
2544 | vm_object_paging_end(object); | |
2545 | vm_object_unlock(object); | |
2546 | ||
2d21ac55 | 2547 | vm_page_lockspin_queues(); |
91447636 A |
2548 | } |
2549 | assert_wait((event_t) q, THREAD_UNINT); | |
2550 | ||
91447636 A |
2551 | if (q->pgo_throttled == TRUE && !VM_PAGE_Q_THROTTLED(q)) { |
2552 | q->pgo_throttled = FALSE; | |
0b4c1975 A |
2553 | thread_wakeup((event_t) &q->pgo_laundry); |
2554 | } | |
2555 | if (q->pgo_draining == TRUE && q->pgo_laundry == 0) { | |
2556 | q->pgo_draining = FALSE; | |
2557 | thread_wakeup((event_t) (&q->pgo_laundry+1)); | |
2558 | } | |
91447636 A |
2559 | q->pgo_busy = FALSE; |
2560 | q->pgo_idle = TRUE; | |
2561 | vm_page_unlock_queues(); | |
2562 | ||
91447636 A |
2563 | thread_block_parameter((thread_continue_t)vm_pageout_iothread_continue, (void *) &q->pgo_pending); |
2564 | /*NOTREACHED*/ | |
2565 | } | |
2566 | ||
2567 | ||
2568 | static void | |
2569 | vm_pageout_iothread_external(void) | |
2570 | { | |
2d21ac55 A |
2571 | thread_t self = current_thread(); |
2572 | ||
2573 | self->options |= TH_OPT_VMPRIV; | |
91447636 A |
2574 | |
2575 | vm_pageout_iothread_continue(&vm_pageout_queue_external); | |
2576 | /*NOTREACHED*/ | |
2577 | } | |
2578 | ||
2579 | ||
2580 | static void | |
2581 | vm_pageout_iothread_internal(void) | |
2582 | { | |
2583 | thread_t self = current_thread(); | |
2584 | ||
2585 | self->options |= TH_OPT_VMPRIV; | |
2586 | ||
2587 | vm_pageout_iothread_continue(&vm_pageout_queue_internal); | |
2588 | /*NOTREACHED*/ | |
2589 | } | |
2590 | ||
b0d623f7 | 2591 | kern_return_t |
0b4c1975 | 2592 | vm_set_buffer_cleanup_callout(boolean_t (*func)(int)) |
b0d623f7 A |
2593 | { |
2594 | if (OSCompareAndSwapPtr(NULL, func, (void * volatile *) &consider_buffer_cache_collect)) { | |
2595 | return KERN_SUCCESS; | |
2596 | } else { | |
2597 | return KERN_FAILURE; /* Already set */ | |
2598 | } | |
2599 | } | |
2600 | ||
91447636 A |
2601 | static void |
2602 | vm_pageout_garbage_collect(int collect) | |
2603 | { | |
2604 | if (collect) { | |
b0d623f7 | 2605 | boolean_t buf_large_zfree = FALSE; |
91447636 A |
2606 | stack_collect(); |
2607 | ||
2608 | /* | |
2609 | * consider_zone_gc should be last, because the other operations | |
2610 | * might return memory to zones. | |
2611 | */ | |
2612 | consider_machine_collect(); | |
b0d623f7 | 2613 | if (consider_buffer_cache_collect != NULL) { |
0b4c1975 | 2614 | buf_large_zfree = (*consider_buffer_cache_collect)(0); |
b0d623f7 A |
2615 | } |
2616 | consider_zone_gc(buf_large_zfree); | |
91447636 A |
2617 | |
2618 | consider_machine_adjust(); | |
6d2010ae A |
2619 | consider_pressure_events(); |
2620 | ||
91447636 A |
2621 | } |
2622 | ||
2623 | assert_wait((event_t) &vm_pageout_garbage_collect, THREAD_UNINT); | |
2624 | ||
2625 | thread_block_parameter((thread_continue_t) vm_pageout_garbage_collect, (void *)1); | |
2626 | /*NOTREACHED*/ | |
2627 | } | |
2628 | ||
2629 | ||
2630 | ||
2631 | void | |
2632 | vm_pageout(void) | |
2633 | { | |
2634 | thread_t self = current_thread(); | |
2635 | thread_t thread; | |
2636 | kern_return_t result; | |
2637 | spl_t s; | |
2638 | ||
2639 | /* | |
2640 | * Set thread privileges. | |
2641 | */ | |
2642 | s = splsched(); | |
2643 | thread_lock(self); | |
2644 | self->priority = BASEPRI_PREEMPT - 1; | |
2645 | set_sched_pri(self, self->priority); | |
2646 | thread_unlock(self); | |
2d21ac55 A |
2647 | |
2648 | if (!self->reserved_stack) | |
2649 | self->reserved_stack = self->kernel_stack; | |
2650 | ||
91447636 A |
2651 | splx(s); |
2652 | ||
2653 | /* | |
2654 | * Initialize some paging parameters. | |
2655 | */ | |
2656 | ||
2657 | if (vm_pageout_idle_wait == 0) | |
2658 | vm_pageout_idle_wait = VM_PAGEOUT_IDLE_WAIT; | |
2659 | ||
2660 | if (vm_pageout_burst_wait == 0) | |
2661 | vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT; | |
2662 | ||
2663 | if (vm_pageout_empty_wait == 0) | |
2664 | vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT; | |
2665 | ||
2666 | if (vm_pageout_deadlock_wait == 0) | |
2667 | vm_pageout_deadlock_wait = VM_PAGEOUT_DEADLOCK_WAIT; | |
2668 | ||
2669 | if (vm_pageout_deadlock_relief == 0) | |
2670 | vm_pageout_deadlock_relief = VM_PAGEOUT_DEADLOCK_RELIEF; | |
2671 | ||
2672 | if (vm_pageout_inactive_relief == 0) | |
2673 | vm_pageout_inactive_relief = VM_PAGEOUT_INACTIVE_RELIEF; | |
2674 | ||
2675 | if (vm_pageout_burst_active_throttle == 0) | |
2676 | vm_pageout_burst_active_throttle = VM_PAGEOUT_BURST_ACTIVE_THROTTLE; | |
2677 | ||
2678 | if (vm_pageout_burst_inactive_throttle == 0) | |
2679 | vm_pageout_burst_inactive_throttle = VM_PAGEOUT_BURST_INACTIVE_THROTTLE; | |
2680 | ||
2681 | /* | |
2682 | * Set kernel task to low backing store privileged | |
55e303ae A |
2683 | * status |
2684 | */ | |
2685 | task_lock(kernel_task); | |
2686 | kernel_task->priv_flags |= VM_BACKING_STORE_PRIV; | |
2687 | task_unlock(kernel_task); | |
2688 | ||
1c79356b | 2689 | vm_page_free_count_init = vm_page_free_count; |
2d21ac55 | 2690 | |
1c79356b A |
2691 | /* |
2692 | * even if we've already called vm_page_free_reserve | |
2693 | * call it again here to insure that the targets are | |
2694 | * accurately calculated (it uses vm_page_free_count_init) | |
2695 | * calling it with an arg of 0 will not change the reserve | |
2696 | * but will re-calculate free_min and free_target | |
2697 | */ | |
91447636 A |
2698 | if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED(processor_count)) { |
2699 | vm_page_free_reserve((VM_PAGE_FREE_RESERVED(processor_count)) - vm_page_free_reserved); | |
55e303ae | 2700 | } else |
1c79356b A |
2701 | vm_page_free_reserve(0); |
2702 | ||
55e303ae | 2703 | |
91447636 A |
2704 | queue_init(&vm_pageout_queue_external.pgo_pending); |
2705 | vm_pageout_queue_external.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX; | |
2706 | vm_pageout_queue_external.pgo_laundry = 0; | |
2707 | vm_pageout_queue_external.pgo_idle = FALSE; | |
2708 | vm_pageout_queue_external.pgo_busy = FALSE; | |
2709 | vm_pageout_queue_external.pgo_throttled = FALSE; | |
0b4c1975 | 2710 | vm_pageout_queue_external.pgo_draining = FALSE; |
55e303ae | 2711 | |
91447636 | 2712 | queue_init(&vm_pageout_queue_internal.pgo_pending); |
2d21ac55 | 2713 | vm_pageout_queue_internal.pgo_maxlaundry = 0; |
91447636 A |
2714 | vm_pageout_queue_internal.pgo_laundry = 0; |
2715 | vm_pageout_queue_internal.pgo_idle = FALSE; | |
2716 | vm_pageout_queue_internal.pgo_busy = FALSE; | |
2717 | vm_pageout_queue_internal.pgo_throttled = FALSE; | |
0b4c1975 | 2718 | vm_pageout_queue_internal.pgo_draining = FALSE; |
9bccf70c | 2719 | |
55e303ae | 2720 | |
2d21ac55 A |
2721 | /* internal pageout thread started when default pager registered first time */ |
2722 | /* external pageout and garbage collection threads started here */ | |
55e303ae | 2723 | |
2d21ac55 A |
2724 | result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_external, NULL, |
2725 | BASEPRI_PREEMPT - 1, | |
2726 | &vm_pageout_external_iothread); | |
91447636 A |
2727 | if (result != KERN_SUCCESS) |
2728 | panic("vm_pageout_iothread_external: create failed"); | |
55e303ae | 2729 | |
2d21ac55 | 2730 | thread_deallocate(vm_pageout_external_iothread); |
9bccf70c | 2731 | |
2d21ac55 A |
2732 | result = kernel_thread_start_priority((thread_continue_t)vm_pageout_garbage_collect, NULL, |
2733 | MINPRI_KERNEL, | |
2734 | &thread); | |
91447636 A |
2735 | if (result != KERN_SUCCESS) |
2736 | panic("vm_pageout_garbage_collect: create failed"); | |
55e303ae | 2737 | |
91447636 | 2738 | thread_deallocate(thread); |
55e303ae | 2739 | |
8f6c56a5 A |
2740 | vm_object_reaper_init(); |
2741 | ||
2d21ac55 | 2742 | |
91447636 | 2743 | vm_pageout_continue(); |
2d21ac55 A |
2744 | |
2745 | /* | |
2746 | * Unreached code! | |
2747 | * | |
2748 | * The vm_pageout_continue() call above never returns, so the code below is never | |
2749 | * executed. We take advantage of this to declare several DTrace VM related probe | |
2750 | * points that our kernel doesn't have an analog for. These are probe points that | |
2751 | * exist in Solaris and are in the DTrace documentation, so people may have written | |
2752 | * scripts that use them. Declaring the probe points here means their scripts will | |
2753 | * compile and execute which we want for portability of the scripts, but since this | |
2754 | * section of code is never reached, the probe points will simply never fire. Yes, | |
2755 | * this is basically a hack. The problem is the DTrace probe points were chosen with | |
2756 | * Solaris specific VM events in mind, not portability to different VM implementations. | |
2757 | */ | |
2758 | ||
2759 | DTRACE_VM2(execfree, int, 1, (uint64_t *), NULL); | |
2760 | DTRACE_VM2(execpgin, int, 1, (uint64_t *), NULL); | |
2761 | DTRACE_VM2(execpgout, int, 1, (uint64_t *), NULL); | |
2762 | DTRACE_VM2(pgswapin, int, 1, (uint64_t *), NULL); | |
2763 | DTRACE_VM2(pgswapout, int, 1, (uint64_t *), NULL); | |
2764 | DTRACE_VM2(swapin, int, 1, (uint64_t *), NULL); | |
2765 | DTRACE_VM2(swapout, int, 1, (uint64_t *), NULL); | |
91447636 | 2766 | /*NOTREACHED*/ |
9bccf70c A |
2767 | } |
2768 | ||
2d21ac55 A |
2769 | kern_return_t |
2770 | vm_pageout_internal_start(void) | |
2771 | { | |
2772 | kern_return_t result; | |
2773 | ||
2774 | vm_pageout_queue_internal.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX; | |
2775 | result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_internal, NULL, BASEPRI_PREEMPT - 1, &vm_pageout_internal_iothread); | |
2776 | if (result == KERN_SUCCESS) | |
2777 | thread_deallocate(vm_pageout_internal_iothread); | |
2778 | return result; | |
2779 | } | |
2780 | ||
1c79356b | 2781 | |
b0d623f7 A |
2782 | static upl_t |
2783 | upl_create(int type, int flags, upl_size_t size) | |
0b4e3aa0 A |
2784 | { |
2785 | upl_t upl; | |
2d21ac55 A |
2786 | int page_field_size = 0; |
2787 | int upl_flags = 0; | |
2788 | int upl_size = sizeof(struct upl); | |
0b4e3aa0 | 2789 | |
b0d623f7 A |
2790 | size = round_page_32(size); |
2791 | ||
2d21ac55 | 2792 | if (type & UPL_CREATE_LITE) { |
b0d623f7 | 2793 | page_field_size = (atop(size) + 7) >> 3; |
55e303ae | 2794 | page_field_size = (page_field_size + 3) & 0xFFFFFFFC; |
2d21ac55 A |
2795 | |
2796 | upl_flags |= UPL_LITE; | |
55e303ae | 2797 | } |
2d21ac55 | 2798 | if (type & UPL_CREATE_INTERNAL) { |
b0d623f7 | 2799 | upl_size += (int) sizeof(struct upl_page_info) * atop(size); |
2d21ac55 A |
2800 | |
2801 | upl_flags |= UPL_INTERNAL; | |
0b4e3aa0 | 2802 | } |
2d21ac55 A |
2803 | upl = (upl_t)kalloc(upl_size + page_field_size); |
2804 | ||
2805 | if (page_field_size) | |
2806 | bzero((char *)upl + upl_size, page_field_size); | |
2807 | ||
2808 | upl->flags = upl_flags | flags; | |
0b4e3aa0 A |
2809 | upl->src_object = NULL; |
2810 | upl->kaddr = (vm_offset_t)0; | |
2811 | upl->size = 0; | |
2812 | upl->map_object = NULL; | |
2813 | upl->ref_count = 1; | |
6d2010ae | 2814 | upl->ext_ref_count = 0; |
0c530ab8 | 2815 | upl->highest_page = 0; |
0b4e3aa0 | 2816 | upl_lock_init(upl); |
b0d623f7 A |
2817 | upl->vector_upl = NULL; |
2818 | #if UPL_DEBUG | |
0b4e3aa0 A |
2819 | upl->ubc_alias1 = 0; |
2820 | upl->ubc_alias2 = 0; | |
b0d623f7 A |
2821 | |
2822 | upl->upl_creator = current_thread(); | |
2823 | upl->upl_state = 0; | |
2824 | upl->upl_commit_index = 0; | |
2825 | bzero(&upl->upl_commit_records[0], sizeof(upl->upl_commit_records)); | |
2826 | ||
2827 | (void) OSBacktrace(&upl->upl_create_retaddr[0], UPL_DEBUG_STACK_FRAMES); | |
91447636 | 2828 | #endif /* UPL_DEBUG */ |
b0d623f7 | 2829 | |
0b4e3aa0 A |
2830 | return(upl); |
2831 | } | |
2832 | ||
2833 | static void | |
2d21ac55 | 2834 | upl_destroy(upl_t upl) |
0b4e3aa0 | 2835 | { |
55e303ae | 2836 | int page_field_size; /* bit field in word size buf */ |
2d21ac55 | 2837 | int size; |
0b4e3aa0 | 2838 | |
6d2010ae A |
2839 | if (upl->ext_ref_count) { |
2840 | panic("upl(%p) ext_ref_count", upl); | |
2841 | } | |
2842 | ||
b0d623f7 | 2843 | #if UPL_DEBUG |
0b4e3aa0 | 2844 | { |
55e303ae | 2845 | vm_object_t object; |
2d21ac55 A |
2846 | |
2847 | if (upl->flags & UPL_SHADOWED) { | |
55e303ae A |
2848 | object = upl->map_object->shadow; |
2849 | } else { | |
2850 | object = upl->map_object; | |
2851 | } | |
2852 | vm_object_lock(object); | |
2d21ac55 | 2853 | queue_remove(&object->uplq, upl, upl_t, uplq); |
55e303ae | 2854 | vm_object_unlock(object); |
0b4e3aa0 | 2855 | } |
91447636 | 2856 | #endif /* UPL_DEBUG */ |
2d21ac55 A |
2857 | /* |
2858 | * drop a reference on the map_object whether or | |
2859 | * not a pageout object is inserted | |
2860 | */ | |
2861 | if (upl->flags & UPL_SHADOWED) | |
0b4e3aa0 | 2862 | vm_object_deallocate(upl->map_object); |
55e303ae | 2863 | |
2d21ac55 A |
2864 | if (upl->flags & UPL_DEVICE_MEMORY) |
2865 | size = PAGE_SIZE; | |
2866 | else | |
2867 | size = upl->size; | |
55e303ae | 2868 | page_field_size = 0; |
2d21ac55 | 2869 | |
55e303ae | 2870 | if (upl->flags & UPL_LITE) { |
2d21ac55 | 2871 | page_field_size = ((size/PAGE_SIZE) + 7) >> 3; |
55e303ae A |
2872 | page_field_size = (page_field_size + 3) & 0xFFFFFFFC; |
2873 | } | |
b0d623f7 A |
2874 | upl_lock_destroy(upl); |
2875 | upl->vector_upl = (vector_upl_t) 0xfeedbeef; | |
2d21ac55 | 2876 | if (upl->flags & UPL_INTERNAL) { |
91447636 A |
2877 | kfree(upl, |
2878 | sizeof(struct upl) + | |
2d21ac55 | 2879 | (sizeof(struct upl_page_info) * (size/PAGE_SIZE)) |
91447636 | 2880 | + page_field_size); |
0b4e3aa0 | 2881 | } else { |
91447636 | 2882 | kfree(upl, sizeof(struct upl) + page_field_size); |
0b4e3aa0 A |
2883 | } |
2884 | } | |
2885 | ||
0b4e3aa0 | 2886 | void |
2d21ac55 | 2887 | upl_deallocate(upl_t upl) |
0b4e3aa0 | 2888 | { |
b0d623f7 A |
2889 | if (--upl->ref_count == 0) { |
2890 | if(vector_upl_is_valid(upl)) | |
2891 | vector_upl_deallocate(upl); | |
0b4e3aa0 | 2892 | upl_destroy(upl); |
b0d623f7 | 2893 | } |
0b4e3aa0 | 2894 | } |
1c79356b | 2895 | |
b0d623f7 A |
2896 | #if DEVELOPMENT || DEBUG |
2897 | /*/* | |
91447636 A |
2898 | * Statistics about UPL enforcement of copy-on-write obligations. |
2899 | */ | |
2900 | unsigned long upl_cow = 0; | |
2901 | unsigned long upl_cow_again = 0; | |
91447636 A |
2902 | unsigned long upl_cow_pages = 0; |
2903 | unsigned long upl_cow_again_pages = 0; | |
b0d623f7 A |
2904 | |
2905 | unsigned long iopl_cow = 0; | |
2906 | unsigned long iopl_cow_pages = 0; | |
2907 | #endif | |
91447636 | 2908 | |
1c79356b | 2909 | /* |
0b4e3aa0 | 2910 | * Routine: vm_object_upl_request |
1c79356b A |
2911 | * Purpose: |
2912 | * Cause the population of a portion of a vm_object. | |
2913 | * Depending on the nature of the request, the pages | |
2914 | * returned may be contain valid data or be uninitialized. | |
2915 | * A page list structure, listing the physical pages | |
2916 | * will be returned upon request. | |
2917 | * This function is called by the file system or any other | |
2918 | * supplier of backing store to a pager. | |
2919 | * IMPORTANT NOTE: The caller must still respect the relationship | |
2920 | * between the vm_object and its backing memory object. The | |
2921 | * caller MUST NOT substitute changes in the backing file | |
2922 | * without first doing a memory_object_lock_request on the | |
2923 | * target range unless it is know that the pages are not | |
2924 | * shared with another entity at the pager level. | |
2925 | * Copy_in_to: | |
2926 | * if a page list structure is present | |
2927 | * return the mapped physical pages, where a | |
2928 | * page is not present, return a non-initialized | |
2929 | * one. If the no_sync bit is turned on, don't | |
2930 | * call the pager unlock to synchronize with other | |
2931 | * possible copies of the page. Leave pages busy | |
2932 | * in the original object, if a page list structure | |
2933 | * was specified. When a commit of the page list | |
2934 | * pages is done, the dirty bit will be set for each one. | |
2935 | * Copy_out_from: | |
2936 | * If a page list structure is present, return | |
2937 | * all mapped pages. Where a page does not exist | |
2938 | * map a zero filled one. Leave pages busy in | |
2939 | * the original object. If a page list structure | |
2940 | * is not specified, this call is a no-op. | |
2941 | * | |
2942 | * Note: access of default pager objects has a rather interesting | |
2943 | * twist. The caller of this routine, presumably the file system | |
2944 | * page cache handling code, will never actually make a request | |
2945 | * against a default pager backed object. Only the default | |
2946 | * pager will make requests on backing store related vm_objects | |
2947 | * In this way the default pager can maintain the relationship | |
2948 | * between backing store files (abstract memory objects) and | |
2949 | * the vm_objects (cache objects), they support. | |
2950 | * | |
2951 | */ | |
91447636 | 2952 | |
0b4e3aa0 A |
2953 | __private_extern__ kern_return_t |
2954 | vm_object_upl_request( | |
1c79356b | 2955 | vm_object_t object, |
91447636 A |
2956 | vm_object_offset_t offset, |
2957 | upl_size_t size, | |
1c79356b | 2958 | upl_t *upl_ptr, |
0b4e3aa0 A |
2959 | upl_page_info_array_t user_page_list, |
2960 | unsigned int *page_list_count, | |
91447636 | 2961 | int cntrl_flags) |
1c79356b | 2962 | { |
91447636 | 2963 | vm_page_t dst_page = VM_PAGE_NULL; |
2d21ac55 A |
2964 | vm_object_offset_t dst_offset; |
2965 | upl_size_t xfer_size; | |
6d2010ae | 2966 | unsigned int size_in_pages; |
1c79356b | 2967 | boolean_t dirty; |
55e303ae | 2968 | boolean_t hw_dirty; |
1c79356b | 2969 | upl_t upl = NULL; |
91447636 A |
2970 | unsigned int entry; |
2971 | #if MACH_CLUSTER_STATS | |
1c79356b | 2972 | boolean_t encountered_lrp = FALSE; |
91447636 | 2973 | #endif |
1c79356b | 2974 | vm_page_t alias_page = NULL; |
2d21ac55 | 2975 | int refmod_state = 0; |
91447636 A |
2976 | wpl_array_t lite_list = NULL; |
2977 | vm_object_t last_copy_object; | |
6d2010ae A |
2978 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; |
2979 | struct vm_page_delayed_work *dwp; | |
b0d623f7 | 2980 | int dw_count; |
6d2010ae | 2981 | int dw_limit; |
91447636 A |
2982 | |
2983 | if (cntrl_flags & ~UPL_VALID_FLAGS) { | |
2984 | /* | |
2985 | * For forward compatibility's sake, | |
2986 | * reject any unknown flag. | |
2987 | */ | |
2988 | return KERN_INVALID_VALUE; | |
2989 | } | |
2d21ac55 A |
2990 | if ( (!object->internal) && (object->paging_offset != 0) ) |
2991 | panic("vm_object_upl_request: external object with non-zero paging offset\n"); | |
2992 | if (object->phys_contiguous) | |
2993 | panic("vm_object_upl_request: contiguous object specified\n"); | |
0b4e3aa0 | 2994 | |
0b4e3aa0 | 2995 | |
cf7d32b8 A |
2996 | if ((size / PAGE_SIZE) > MAX_UPL_SIZE) |
2997 | size = MAX_UPL_SIZE * PAGE_SIZE; | |
1c79356b | 2998 | |
2d21ac55 | 2999 | if ( (cntrl_flags & UPL_SET_INTERNAL) && page_list_count != NULL) |
cf7d32b8 | 3000 | *page_list_count = MAX_UPL_SIZE; |
1c79356b | 3001 | |
2d21ac55 A |
3002 | if (cntrl_flags & UPL_SET_INTERNAL) { |
3003 | if (cntrl_flags & UPL_SET_LITE) { | |
55e303ae | 3004 | |
2d21ac55 | 3005 | upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE, 0, size); |
91447636 | 3006 | |
2d21ac55 A |
3007 | user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); |
3008 | lite_list = (wpl_array_t) | |
91447636 | 3009 | (((uintptr_t)user_page_list) + |
2d21ac55 | 3010 | ((size/PAGE_SIZE) * sizeof(upl_page_info_t))); |
b0d623f7 A |
3011 | if (size == 0) { |
3012 | user_page_list = NULL; | |
3013 | lite_list = NULL; | |
3014 | } | |
1c79356b | 3015 | } else { |
2d21ac55 | 3016 | upl = upl_create(UPL_CREATE_INTERNAL, 0, size); |
55e303ae | 3017 | |
2d21ac55 | 3018 | user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); |
b0d623f7 A |
3019 | if (size == 0) { |
3020 | user_page_list = NULL; | |
3021 | } | |
55e303ae | 3022 | } |
2d21ac55 A |
3023 | } else { |
3024 | if (cntrl_flags & UPL_SET_LITE) { | |
91447636 | 3025 | |
2d21ac55 | 3026 | upl = upl_create(UPL_CREATE_EXTERNAL | UPL_CREATE_LITE, 0, size); |
55e303ae | 3027 | |
2d21ac55 | 3028 | lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); |
b0d623f7 A |
3029 | if (size == 0) { |
3030 | lite_list = NULL; | |
3031 | } | |
55e303ae | 3032 | } else { |
2d21ac55 | 3033 | upl = upl_create(UPL_CREATE_EXTERNAL, 0, size); |
0b4e3aa0 | 3034 | } |
55e303ae | 3035 | } |
2d21ac55 A |
3036 | *upl_ptr = upl; |
3037 | ||
3038 | if (user_page_list) | |
3039 | user_page_list[0].device = FALSE; | |
91447636 | 3040 | |
2d21ac55 A |
3041 | if (cntrl_flags & UPL_SET_LITE) { |
3042 | upl->map_object = object; | |
3043 | } else { | |
3044 | upl->map_object = vm_object_allocate(size); | |
3045 | /* | |
3046 | * No neeed to lock the new object: nobody else knows | |
3047 | * about it yet, so it's all ours so far. | |
3048 | */ | |
3049 | upl->map_object->shadow = object; | |
3050 | upl->map_object->pageout = TRUE; | |
3051 | upl->map_object->can_persist = FALSE; | |
3052 | upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
6d2010ae | 3053 | upl->map_object->vo_shadow_offset = offset; |
2d21ac55 A |
3054 | upl->map_object->wimg_bits = object->wimg_bits; |
3055 | ||
3056 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
3057 | ||
3058 | upl->flags |= UPL_SHADOWED; | |
3059 | } | |
3060 | /* | |
91447636 A |
3061 | * ENCRYPTED SWAP: |
3062 | * Just mark the UPL as "encrypted" here. | |
3063 | * We'll actually encrypt the pages later, | |
3064 | * in upl_encrypt(), when the caller has | |
3065 | * selected which pages need to go to swap. | |
3066 | */ | |
2d21ac55 | 3067 | if (cntrl_flags & UPL_ENCRYPT) |
91447636 | 3068 | upl->flags |= UPL_ENCRYPTED; |
2d21ac55 A |
3069 | |
3070 | if (cntrl_flags & UPL_FOR_PAGEOUT) | |
91447636 | 3071 | upl->flags |= UPL_PAGEOUT; |
2d21ac55 | 3072 | |
55e303ae | 3073 | vm_object_lock(object); |
b0d623f7 | 3074 | vm_object_activity_begin(object); |
2d21ac55 A |
3075 | |
3076 | /* | |
3077 | * we can lock in the paging_offset once paging_in_progress is set | |
3078 | */ | |
3079 | upl->size = size; | |
3080 | upl->offset = offset + object->paging_offset; | |
55e303ae | 3081 | |
b0d623f7 | 3082 | #if UPL_DEBUG |
2d21ac55 | 3083 | queue_enter(&object->uplq, upl, upl_t, uplq); |
91447636 | 3084 | #endif /* UPL_DEBUG */ |
91447636 | 3085 | |
2d21ac55 | 3086 | if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != VM_OBJECT_NULL) { |
91447636 | 3087 | /* |
2d21ac55 A |
3088 | * Honor copy-on-write obligations |
3089 | * | |
91447636 A |
3090 | * The caller is gathering these pages and |
3091 | * might modify their contents. We need to | |
3092 | * make sure that the copy object has its own | |
3093 | * private copies of these pages before we let | |
3094 | * the caller modify them. | |
3095 | */ | |
3096 | vm_object_update(object, | |
3097 | offset, | |
3098 | size, | |
3099 | NULL, | |
3100 | NULL, | |
3101 | FALSE, /* should_return */ | |
3102 | MEMORY_OBJECT_COPY_SYNC, | |
3103 | VM_PROT_NO_CHANGE); | |
b0d623f7 | 3104 | #if DEVELOPMENT || DEBUG |
91447636 A |
3105 | upl_cow++; |
3106 | upl_cow_pages += size >> PAGE_SHIFT; | |
b0d623f7 | 3107 | #endif |
55e303ae | 3108 | } |
2d21ac55 A |
3109 | /* |
3110 | * remember which copy object we synchronized with | |
3111 | */ | |
91447636 | 3112 | last_copy_object = object->copy; |
1c79356b | 3113 | entry = 0; |
55e303ae | 3114 | |
2d21ac55 A |
3115 | xfer_size = size; |
3116 | dst_offset = offset; | |
6d2010ae | 3117 | size_in_pages = size / PAGE_SIZE; |
2d21ac55 | 3118 | |
b0d623f7 A |
3119 | dwp = &dw_array[0]; |
3120 | dw_count = 0; | |
6d2010ae A |
3121 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
3122 | ||
3123 | if (vm_page_free_count > (vm_page_free_target + size_in_pages) || | |
3124 | object->resident_page_count < (MAX_UPL_SIZE * 2)) | |
3125 | object->scan_collisions = 0; | |
b0d623f7 | 3126 | |
2d21ac55 A |
3127 | while (xfer_size) { |
3128 | ||
b0d623f7 A |
3129 | dwp->dw_mask = 0; |
3130 | ||
2d21ac55 | 3131 | if ((alias_page == NULL) && !(cntrl_flags & UPL_SET_LITE)) { |
2d21ac55 A |
3132 | vm_object_unlock(object); |
3133 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
b0d623f7 | 3134 | vm_object_lock(object); |
4a3eedf9 | 3135 | } |
2d21ac55 A |
3136 | if (cntrl_flags & UPL_COPYOUT_FROM) { |
3137 | upl->flags |= UPL_PAGE_SYNC_DONE; | |
3138 | ||
91447636 | 3139 | if ( ((dst_page = vm_page_lookup(object, dst_offset)) == VM_PAGE_NULL) || |
1c79356b A |
3140 | dst_page->fictitious || |
3141 | dst_page->absent || | |
3142 | dst_page->error || | |
b0d623f7 | 3143 | (VM_PAGE_WIRED(dst_page) && !dst_page->pageout && !dst_page->list_req_pending)) { |
91447636 A |
3144 | |
3145 | if (user_page_list) | |
1c79356b | 3146 | user_page_list[entry].phys_addr = 0; |
2d21ac55 | 3147 | |
b0d623f7 | 3148 | goto try_next_page; |
2d21ac55 A |
3149 | } |
3150 | /* | |
3151 | * grab this up front... | |
3152 | * a high percentange of the time we're going to | |
3153 | * need the hardware modification state a bit later | |
3154 | * anyway... so we can eliminate an extra call into | |
3155 | * the pmap layer by grabbing it here and recording it | |
3156 | */ | |
3157 | if (dst_page->pmapped) | |
3158 | refmod_state = pmap_get_refmod(dst_page->phys_page); | |
3159 | else | |
3160 | refmod_state = 0; | |
3161 | ||
3162 | if ( (refmod_state & VM_MEM_REFERENCED) && dst_page->inactive ) { | |
91447636 | 3163 | /* |
2d21ac55 A |
3164 | * page is on inactive list and referenced... |
3165 | * reactivate it now... this gets it out of the | |
3166 | * way of vm_pageout_scan which would have to | |
3167 | * reactivate it upon tripping over it | |
91447636 | 3168 | */ |
b0d623f7 | 3169 | dwp->dw_mask |= DW_vm_page_activate; |
2d21ac55 A |
3170 | } |
3171 | if (cntrl_flags & UPL_RET_ONLY_DIRTY) { | |
3172 | /* | |
3173 | * we're only asking for DIRTY pages to be returned | |
3174 | */ | |
3175 | if (dst_page->list_req_pending || !(cntrl_flags & UPL_FOR_PAGEOUT)) { | |
91447636 | 3176 | /* |
2d21ac55 A |
3177 | * if we were the page stolen by vm_pageout_scan to be |
3178 | * cleaned (as opposed to a buddy being clustered in | |
3179 | * or this request is not being driven by a PAGEOUT cluster | |
3180 | * then we only need to check for the page being dirty or | |
3181 | * precious to decide whether to return it | |
91447636 | 3182 | */ |
2d21ac55 | 3183 | if (dst_page->dirty || dst_page->precious || (refmod_state & VM_MEM_MODIFIED)) |
91447636 | 3184 | goto check_busy; |
2d21ac55 | 3185 | goto dont_return; |
1c79356b | 3186 | } |
2d21ac55 A |
3187 | /* |
3188 | * this is a request for a PAGEOUT cluster and this page | |
3189 | * is merely along for the ride as a 'buddy'... not only | |
3190 | * does it have to be dirty to be returned, but it also | |
3191 | * can't have been referenced recently... note that we've | |
3192 | * already filtered above based on whether this page is | |
3193 | * currently on the inactive queue or it meets the page | |
3194 | * ticket (generation count) check | |
3195 | */ | |
6d2010ae | 3196 | if ( (cntrl_flags & UPL_CLEAN_IN_PLACE || !(refmod_state & VM_MEM_REFERENCED) || dst_page->throttled) && |
2d21ac55 A |
3197 | ((refmod_state & VM_MEM_MODIFIED) || dst_page->dirty || dst_page->precious) ) { |
3198 | goto check_busy; | |
1c79356b | 3199 | } |
2d21ac55 A |
3200 | dont_return: |
3201 | /* | |
3202 | * if we reach here, we're not to return | |
3203 | * the page... go on to the next one | |
3204 | */ | |
3205 | if (user_page_list) | |
3206 | user_page_list[entry].phys_addr = 0; | |
55e303ae | 3207 | |
b0d623f7 | 3208 | goto try_next_page; |
2d21ac55 A |
3209 | } |
3210 | check_busy: | |
0b4c1975 | 3211 | if (dst_page->busy && (!(dst_page->list_req_pending && (dst_page->pageout || dst_page->cleaning)))) { |
2d21ac55 A |
3212 | if (cntrl_flags & UPL_NOBLOCK) { |
3213 | if (user_page_list) | |
3214 | user_page_list[entry].phys_addr = 0; | |
55e303ae | 3215 | |
b0d623f7 | 3216 | goto try_next_page; |
1c79356b | 3217 | } |
2d21ac55 A |
3218 | /* |
3219 | * someone else is playing with the | |
3220 | * page. We will have to wait. | |
3221 | */ | |
2d21ac55 | 3222 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
1c79356b | 3223 | |
2d21ac55 A |
3224 | continue; |
3225 | } | |
3226 | /* | |
3227 | * Someone else already cleaning the page? | |
3228 | */ | |
b0d623f7 | 3229 | if ((dst_page->cleaning || dst_page->absent || VM_PAGE_WIRED(dst_page)) && !dst_page->list_req_pending) { |
2d21ac55 A |
3230 | if (user_page_list) |
3231 | user_page_list[entry].phys_addr = 0; | |
91447636 | 3232 | |
b0d623f7 | 3233 | goto try_next_page; |
2d21ac55 A |
3234 | } |
3235 | /* | |
3236 | * ENCRYPTED SWAP: | |
3237 | * The caller is gathering this page and might | |
3238 | * access its contents later on. Decrypt the | |
3239 | * page before adding it to the UPL, so that | |
3240 | * the caller never sees encrypted data. | |
3241 | */ | |
3242 | if (! (cntrl_flags & UPL_ENCRYPT) && dst_page->encrypted) { | |
3243 | int was_busy; | |
91447636 A |
3244 | |
3245 | /* | |
2d21ac55 A |
3246 | * save the current state of busy |
3247 | * mark page as busy while decrypt | |
3248 | * is in progress since it will drop | |
3249 | * the object lock... | |
91447636 | 3250 | */ |
2d21ac55 A |
3251 | was_busy = dst_page->busy; |
3252 | dst_page->busy = TRUE; | |
91447636 | 3253 | |
2d21ac55 A |
3254 | vm_page_decrypt(dst_page, 0); |
3255 | vm_page_decrypt_for_upl_counter++; | |
3256 | /* | |
3257 | * restore to original busy state | |
3258 | */ | |
3259 | dst_page->busy = was_busy; | |
b0d623f7 A |
3260 | } |
3261 | if (dst_page->pageout_queue == TRUE) { | |
91447636 | 3262 | |
b0d623f7 A |
3263 | vm_page_lockspin_queues(); |
3264 | ||
6d2010ae | 3265 | if (dst_page->pageout_queue == TRUE) { |
b0d623f7 A |
3266 | /* |
3267 | * we've buddied up a page for a clustered pageout | |
3268 | * that has already been moved to the pageout | |
3269 | * queue by pageout_scan... we need to remove | |
3270 | * it from the queue and drop the laundry count | |
3271 | * on that queue | |
3272 | */ | |
3273 | vm_pageout_throttle_up(dst_page); | |
3274 | } | |
3275 | vm_page_unlock_queues(); | |
91447636 | 3276 | } |
2d21ac55 A |
3277 | #if MACH_CLUSTER_STATS |
3278 | /* | |
3279 | * pageout statistics gathering. count | |
3280 | * all the pages we will page out that | |
3281 | * were not counted in the initial | |
3282 | * vm_pageout_scan work | |
3283 | */ | |
3284 | if (dst_page->list_req_pending) | |
3285 | encountered_lrp = TRUE; | |
3286 | if ((dst_page->dirty || (dst_page->object->internal && dst_page->precious)) && !dst_page->list_req_pending) { | |
3287 | if (encountered_lrp) | |
3288 | CLUSTER_STAT(pages_at_higher_offsets++;) | |
3289 | else | |
3290 | CLUSTER_STAT(pages_at_lower_offsets++;) | |
3291 | } | |
3292 | #endif | |
3293 | /* | |
3294 | * Turn off busy indication on pending | |
3295 | * pageout. Note: we can only get here | |
3296 | * in the request pending case. | |
3297 | */ | |
3298 | dst_page->list_req_pending = FALSE; | |
3299 | dst_page->busy = FALSE; | |
3300 | ||
3301 | hw_dirty = refmod_state & VM_MEM_MODIFIED; | |
3302 | dirty = hw_dirty ? TRUE : dst_page->dirty; | |
3303 | ||
3304 | if (dst_page->phys_page > upl->highest_page) | |
3305 | upl->highest_page = dst_page->phys_page; | |
3306 | ||
3307 | if (cntrl_flags & UPL_SET_LITE) { | |
b0d623f7 | 3308 | unsigned int pg_num; |
2d21ac55 | 3309 | |
b0d623f7 A |
3310 | pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE); |
3311 | assert(pg_num == (dst_offset-offset)/PAGE_SIZE); | |
2d21ac55 A |
3312 | lite_list[pg_num>>5] |= 1 << (pg_num & 31); |
3313 | ||
3314 | if (hw_dirty) | |
3315 | pmap_clear_modify(dst_page->phys_page); | |
3316 | ||
3317 | /* | |
3318 | * Mark original page as cleaning | |
3319 | * in place. | |
3320 | */ | |
3321 | dst_page->cleaning = TRUE; | |
3322 | dst_page->precious = FALSE; | |
3323 | } else { | |
3324 | /* | |
3325 | * use pageclean setup, it is more | |
3326 | * convenient even for the pageout | |
3327 | * cases here | |
3328 | */ | |
3329 | vm_object_lock(upl->map_object); | |
3330 | vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size); | |
3331 | vm_object_unlock(upl->map_object); | |
3332 | ||
3333 | alias_page->absent = FALSE; | |
3334 | alias_page = NULL; | |
1c79356b | 3335 | } |
2d21ac55 A |
3336 | #if MACH_PAGEMAP |
3337 | /* | |
3338 | * Record that this page has been | |
3339 | * written out | |
3340 | */ | |
3341 | vm_external_state_set(object->existence_map, dst_page->offset); | |
3342 | #endif /*MACH_PAGEMAP*/ | |
3343 | dst_page->dirty = dirty; | |
55e303ae | 3344 | |
2d21ac55 A |
3345 | if (!dirty) |
3346 | dst_page->precious = TRUE; | |
91447636 | 3347 | |
2d21ac55 A |
3348 | if (dst_page->pageout) |
3349 | dst_page->busy = TRUE; | |
3350 | ||
3351 | if ( (cntrl_flags & UPL_ENCRYPT) ) { | |
3352 | /* | |
3353 | * ENCRYPTED SWAP: | |
3354 | * We want to deny access to the target page | |
3355 | * because its contents are about to be | |
3356 | * encrypted and the user would be very | |
3357 | * confused to see encrypted data instead | |
3358 | * of their data. | |
3359 | * We also set "encrypted_cleaning" to allow | |
3360 | * vm_pageout_scan() to demote that page | |
3361 | * from "adjacent/clean-in-place" to | |
3362 | * "target/clean-and-free" if it bumps into | |
3363 | * this page during its scanning while we're | |
3364 | * still processing this cluster. | |
3365 | */ | |
3366 | dst_page->busy = TRUE; | |
3367 | dst_page->encrypted_cleaning = TRUE; | |
3368 | } | |
3369 | if ( !(cntrl_flags & UPL_CLEAN_IN_PLACE) ) { | |
3370 | /* | |
3371 | * deny access to the target page | |
3372 | * while it is being worked on | |
3373 | */ | |
b0d623f7 | 3374 | if ((!dst_page->pageout) && ( !VM_PAGE_WIRED(dst_page))) { |
2d21ac55 A |
3375 | dst_page->busy = TRUE; |
3376 | dst_page->pageout = TRUE; | |
b0d623f7 A |
3377 | |
3378 | dwp->dw_mask |= DW_vm_page_wire; | |
2d21ac55 A |
3379 | } |
3380 | } | |
3381 | } else { | |
3382 | if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != last_copy_object) { | |
91447636 | 3383 | /* |
2d21ac55 A |
3384 | * Honor copy-on-write obligations |
3385 | * | |
91447636 A |
3386 | * The copy object has changed since we |
3387 | * last synchronized for copy-on-write. | |
3388 | * Another copy object might have been | |
3389 | * inserted while we released the object's | |
3390 | * lock. Since someone could have seen the | |
3391 | * original contents of the remaining pages | |
3392 | * through that new object, we have to | |
3393 | * synchronize with it again for the remaining | |
3394 | * pages only. The previous pages are "busy" | |
3395 | * so they can not be seen through the new | |
3396 | * mapping. The new mapping will see our | |
3397 | * upcoming changes for those previous pages, | |
3398 | * but that's OK since they couldn't see what | |
3399 | * was there before. It's just a race anyway | |
3400 | * and there's no guarantee of consistency or | |
3401 | * atomicity. We just don't want new mappings | |
3402 | * to see both the *before* and *after* pages. | |
3403 | */ | |
3404 | if (object->copy != VM_OBJECT_NULL) { | |
3405 | vm_object_update( | |
3406 | object, | |
3407 | dst_offset,/* current offset */ | |
3408 | xfer_size, /* remaining size */ | |
3409 | NULL, | |
3410 | NULL, | |
3411 | FALSE, /* should_return */ | |
3412 | MEMORY_OBJECT_COPY_SYNC, | |
3413 | VM_PROT_NO_CHANGE); | |
2d21ac55 | 3414 | |
b0d623f7 | 3415 | #if DEVELOPMENT || DEBUG |
91447636 | 3416 | upl_cow_again++; |
2d21ac55 | 3417 | upl_cow_again_pages += xfer_size >> PAGE_SHIFT; |
b0d623f7 | 3418 | #endif |
91447636 | 3419 | } |
2d21ac55 A |
3420 | /* |
3421 | * remember the copy object we synced with | |
3422 | */ | |
91447636 A |
3423 | last_copy_object = object->copy; |
3424 | } | |
91447636 A |
3425 | dst_page = vm_page_lookup(object, dst_offset); |
3426 | ||
2d21ac55 | 3427 | if (dst_page != VM_PAGE_NULL) { |
b0d623f7 A |
3428 | |
3429 | if ((cntrl_flags & UPL_RET_ONLY_ABSENT)) { | |
3430 | ||
3431 | if ( !(dst_page->absent && dst_page->list_req_pending) ) { | |
3432 | /* | |
2d21ac55 A |
3433 | * skip over pages already present in the cache |
3434 | */ | |
b0d623f7 A |
3435 | if (user_page_list) |
3436 | user_page_list[entry].phys_addr = 0; | |
2d21ac55 | 3437 | |
b0d623f7 | 3438 | goto try_next_page; |
55e303ae | 3439 | } |
b0d623f7 A |
3440 | } |
3441 | if ( !(dst_page->list_req_pending) ) { | |
3442 | ||
2d21ac55 A |
3443 | if (dst_page->cleaning) { |
3444 | /* | |
3445 | * someone else is writing to the page... wait... | |
3446 | */ | |
2d21ac55 A |
3447 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
3448 | ||
3449 | continue; | |
3450 | } | |
3451 | } else { | |
3452 | if (dst_page->fictitious && | |
3453 | dst_page->phys_page == vm_page_fictitious_addr) { | |
3454 | assert( !dst_page->speculative); | |
3455 | /* | |
3456 | * dump the fictitious page | |
3457 | */ | |
3458 | dst_page->list_req_pending = FALSE; | |
55e303ae | 3459 | |
b0d623f7 | 3460 | VM_PAGE_FREE(dst_page); |
2d21ac55 A |
3461 | |
3462 | dst_page = NULL; | |
b0d623f7 | 3463 | |
2d21ac55 A |
3464 | } else if (dst_page->absent) { |
3465 | /* | |
3466 | * the default_pager case | |
3467 | */ | |
3468 | dst_page->list_req_pending = FALSE; | |
6d2010ae | 3469 | PAGE_WAKEUP_DONE(dst_page); |
b0d623f7 | 3470 | |
0b4c1975 | 3471 | } else if (dst_page->pageout || dst_page->cleaning) { |
b0d623f7 A |
3472 | /* |
3473 | * page was earmarked by vm_pageout_scan | |
3474 | * to be cleaned and stolen... we're going | |
3475 | * to take it back since we are not attempting | |
3476 | * to read that page and we don't want to stall | |
3477 | * waiting for it to be cleaned for 2 reasons... | |
3478 | * 1 - no use paging it out and back in | |
3479 | * 2 - if we stall, we may casue a deadlock in | |
3480 | * the FS trying to acquire the its locks | |
3481 | * on the VNOP_PAGEOUT path presuming that | |
3482 | * those locks are already held on the read | |
3483 | * path before trying to create this UPL | |
3484 | * | |
3485 | * so undo all of the state that vm_pageout_scan | |
3486 | * hung on this page | |
3487 | */ | |
b0d623f7 | 3488 | vm_pageout_queue_steal(dst_page, FALSE); |
6d2010ae | 3489 | PAGE_WAKEUP_DONE(dst_page); |
2d21ac55 | 3490 | } |
0b4e3aa0 | 3491 | } |
1c79356b | 3492 | } |
2d21ac55 A |
3493 | if (dst_page == VM_PAGE_NULL) { |
3494 | if (object->private) { | |
0b4e3aa0 A |
3495 | /* |
3496 | * This is a nasty wrinkle for users | |
3497 | * of upl who encounter device or | |
3498 | * private memory however, it is | |
3499 | * unavoidable, only a fault can | |
2d21ac55 | 3500 | * resolve the actual backing |
0b4e3aa0 A |
3501 | * physical page by asking the |
3502 | * backing device. | |
3503 | */ | |
2d21ac55 | 3504 | if (user_page_list) |
55e303ae | 3505 | user_page_list[entry].phys_addr = 0; |
2d21ac55 | 3506 | |
b0d623f7 | 3507 | goto try_next_page; |
0b4e3aa0 | 3508 | } |
6d2010ae A |
3509 | if (object->scan_collisions) { |
3510 | /* | |
3511 | * the pageout_scan thread is trying to steal | |
3512 | * pages from this object, but has run into our | |
3513 | * lock... grab 2 pages from the head of the object... | |
3514 | * the first is freed on behalf of pageout_scan, the | |
3515 | * 2nd is for our own use... we use vm_object_page_grab | |
3516 | * in both cases to avoid taking pages from the free | |
3517 | * list since we are under memory pressure and our | |
3518 | * lock on this object is getting in the way of | |
3519 | * relieving it | |
3520 | */ | |
3521 | dst_page = vm_object_page_grab(object); | |
3522 | ||
3523 | if (dst_page != VM_PAGE_NULL) | |
3524 | vm_page_release(dst_page); | |
2d21ac55 | 3525 | |
6d2010ae A |
3526 | dst_page = vm_object_page_grab(object); |
3527 | } | |
3528 | if (dst_page == VM_PAGE_NULL) { | |
3529 | /* | |
3530 | * need to allocate a page | |
3531 | */ | |
3532 | dst_page = vm_page_grab(); | |
3533 | } | |
1c79356b | 3534 | if (dst_page == VM_PAGE_NULL) { |
2d21ac55 A |
3535 | if ( (cntrl_flags & (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) == (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) { |
3536 | /* | |
3537 | * we don't want to stall waiting for pages to come onto the free list | |
3538 | * while we're already holding absent pages in this UPL | |
3539 | * the caller will deal with the empty slots | |
3540 | */ | |
3541 | if (user_page_list) | |
3542 | user_page_list[entry].phys_addr = 0; | |
3543 | ||
3544 | goto try_next_page; | |
3545 | } | |
3546 | /* | |
3547 | * no pages available... wait | |
3548 | * then try again for the same | |
3549 | * offset... | |
3550 | */ | |
0b4e3aa0 | 3551 | vm_object_unlock(object); |
6d2010ae A |
3552 | |
3553 | OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages); | |
3554 | ||
3555 | VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0); | |
3556 | ||
0b4e3aa0 | 3557 | VM_PAGE_WAIT(); |
6d2010ae A |
3558 | OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages); |
3559 | ||
3560 | VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0); | |
3561 | ||
b0d623f7 | 3562 | vm_object_lock(object); |
2d21ac55 | 3563 | |
0b4e3aa0 | 3564 | continue; |
1c79356b | 3565 | } |
b0d623f7 | 3566 | vm_page_insert(dst_page, object, dst_offset); |
4a3eedf9 | 3567 | |
2d21ac55 | 3568 | dst_page->absent = TRUE; |
4a3eedf9 | 3569 | dst_page->busy = FALSE; |
2d21ac55 A |
3570 | |
3571 | if (cntrl_flags & UPL_RET_ONLY_ABSENT) { | |
91447636 A |
3572 | /* |
3573 | * if UPL_RET_ONLY_ABSENT was specified, | |
3574 | * than we're definitely setting up a | |
3575 | * upl for a clustered read/pagein | |
3576 | * operation... mark the pages as clustered | |
2d21ac55 A |
3577 | * so upl_commit_range can put them on the |
3578 | * speculative list | |
91447636 A |
3579 | */ |
3580 | dst_page->clustered = TRUE; | |
3581 | } | |
1c79356b | 3582 | } |
b0d623f7 A |
3583 | if (dst_page->fictitious) { |
3584 | panic("need corner case for fictitious page"); | |
3585 | } | |
3586 | if (dst_page->busy) { | |
3587 | /* | |
3588 | * someone else is playing with the | |
3589 | * page. We will have to wait. | |
3590 | */ | |
3591 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
3592 | ||
3593 | continue; | |
3594 | } | |
91447636 A |
3595 | /* |
3596 | * ENCRYPTED SWAP: | |
3597 | */ | |
3598 | if (cntrl_flags & UPL_ENCRYPT) { | |
3599 | /* | |
3600 | * The page is going to be encrypted when we | |
3601 | * get it from the pager, so mark it so. | |
3602 | */ | |
3603 | dst_page->encrypted = TRUE; | |
3604 | } else { | |
3605 | /* | |
3606 | * Otherwise, the page will not contain | |
3607 | * encrypted data. | |
3608 | */ | |
3609 | dst_page->encrypted = FALSE; | |
3610 | } | |
1c79356b | 3611 | dst_page->overwriting = TRUE; |
2d21ac55 | 3612 | |
2d21ac55 A |
3613 | if (dst_page->pmapped) { |
3614 | if ( !(cntrl_flags & UPL_FILE_IO)) | |
3615 | /* | |
3616 | * eliminate all mappings from the | |
3617 | * original object and its prodigy | |
55e303ae | 3618 | */ |
2d21ac55 A |
3619 | refmod_state = pmap_disconnect(dst_page->phys_page); |
3620 | else | |
3621 | refmod_state = pmap_get_refmod(dst_page->phys_page); | |
3622 | } else | |
3623 | refmod_state = 0; | |
55e303ae | 3624 | |
2d21ac55 A |
3625 | hw_dirty = refmod_state & VM_MEM_MODIFIED; |
3626 | dirty = hw_dirty ? TRUE : dst_page->dirty; | |
1c79356b | 3627 | |
2d21ac55 | 3628 | if (cntrl_flags & UPL_SET_LITE) { |
b0d623f7 | 3629 | unsigned int pg_num; |
1c79356b | 3630 | |
b0d623f7 A |
3631 | pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE); |
3632 | assert(pg_num == (dst_offset-offset)/PAGE_SIZE); | |
2d21ac55 | 3633 | lite_list[pg_num>>5] |= 1 << (pg_num & 31); |
91447636 | 3634 | |
2d21ac55 A |
3635 | if (hw_dirty) |
3636 | pmap_clear_modify(dst_page->phys_page); | |
0b4e3aa0 | 3637 | |
2d21ac55 A |
3638 | /* |
3639 | * Mark original page as cleaning | |
3640 | * in place. | |
3641 | */ | |
3642 | dst_page->cleaning = TRUE; | |
3643 | dst_page->precious = FALSE; | |
3644 | } else { | |
3645 | /* | |
3646 | * use pageclean setup, it is more | |
3647 | * convenient even for the pageout | |
3648 | * cases here | |
3649 | */ | |
3650 | vm_object_lock(upl->map_object); | |
3651 | vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size); | |
3652 | vm_object_unlock(upl->map_object); | |
0b4e3aa0 | 3653 | |
2d21ac55 A |
3654 | alias_page->absent = FALSE; |
3655 | alias_page = NULL; | |
3656 | } | |
1c79356b | 3657 | |
6d2010ae A |
3658 | if (cntrl_flags & UPL_REQUEST_SET_DIRTY) { |
3659 | upl->flags &= ~UPL_CLEAR_DIRTY; | |
3660 | upl->flags |= UPL_SET_DIRTY; | |
3661 | dirty = TRUE; | |
3662 | upl->flags |= UPL_SET_DIRTY; | |
3663 | } else if (cntrl_flags & UPL_CLEAN_IN_PLACE) { | |
2d21ac55 A |
3664 | /* |
3665 | * clean in place for read implies | |
3666 | * that a write will be done on all | |
3667 | * the pages that are dirty before | |
3668 | * a upl commit is done. The caller | |
3669 | * is obligated to preserve the | |
3670 | * contents of all pages marked dirty | |
3671 | */ | |
3672 | upl->flags |= UPL_CLEAR_DIRTY; | |
3673 | } | |
3674 | dst_page->dirty = dirty; | |
91447636 | 3675 | |
2d21ac55 A |
3676 | if (!dirty) |
3677 | dst_page->precious = TRUE; | |
3678 | ||
b0d623f7 | 3679 | if ( !VM_PAGE_WIRED(dst_page)) { |
2d21ac55 A |
3680 | /* |
3681 | * deny access to the target page while | |
3682 | * it is being worked on | |
3683 | */ | |
3684 | dst_page->busy = TRUE; | |
3685 | } else | |
b0d623f7 | 3686 | dwp->dw_mask |= DW_vm_page_wire; |
2d21ac55 | 3687 | |
b0d623f7 A |
3688 | /* |
3689 | * We might be about to satisfy a fault which has been | |
3690 | * requested. So no need for the "restart" bit. | |
3691 | */ | |
3692 | dst_page->restart = FALSE; | |
3693 | if (!dst_page->absent && !(cntrl_flags & UPL_WILL_MODIFY)) { | |
2d21ac55 A |
3694 | /* |
3695 | * expect the page to be used | |
3696 | */ | |
b0d623f7 | 3697 | dwp->dw_mask |= DW_set_reference; |
2d21ac55 | 3698 | } |
6d2010ae A |
3699 | if (cntrl_flags & UPL_PRECIOUS) { |
3700 | if (dst_page->object->internal) { | |
3701 | dst_page->dirty = TRUE; | |
3702 | dst_page->precious = FALSE; | |
3703 | } else { | |
3704 | dst_page->precious = TRUE; | |
3705 | } | |
3706 | } else { | |
3707 | dst_page->precious = FALSE; | |
3708 | } | |
2d21ac55 | 3709 | } |
d41d1dae A |
3710 | if (dst_page->busy) |
3711 | upl->flags |= UPL_HAS_BUSY; | |
3712 | ||
2d21ac55 A |
3713 | if (dst_page->phys_page > upl->highest_page) |
3714 | upl->highest_page = dst_page->phys_page; | |
3715 | if (user_page_list) { | |
3716 | user_page_list[entry].phys_addr = dst_page->phys_page; | |
2d21ac55 A |
3717 | user_page_list[entry].pageout = dst_page->pageout; |
3718 | user_page_list[entry].absent = dst_page->absent; | |
593a1d5f | 3719 | user_page_list[entry].dirty = dst_page->dirty; |
2d21ac55 | 3720 | user_page_list[entry].precious = dst_page->precious; |
593a1d5f | 3721 | user_page_list[entry].device = FALSE; |
2d21ac55 A |
3722 | if (dst_page->clustered == TRUE) |
3723 | user_page_list[entry].speculative = dst_page->speculative; | |
3724 | else | |
3725 | user_page_list[entry].speculative = FALSE; | |
593a1d5f A |
3726 | user_page_list[entry].cs_validated = dst_page->cs_validated; |
3727 | user_page_list[entry].cs_tainted = dst_page->cs_tainted; | |
2d21ac55 A |
3728 | } |
3729 | /* | |
3730 | * if UPL_RET_ONLY_ABSENT is set, then | |
3731 | * we are working with a fresh page and we've | |
3732 | * just set the clustered flag on it to | |
3733 | * indicate that it was drug in as part of a | |
3734 | * speculative cluster... so leave it alone | |
3735 | */ | |
3736 | if ( !(cntrl_flags & UPL_RET_ONLY_ABSENT)) { | |
3737 | /* | |
3738 | * someone is explicitly grabbing this page... | |
3739 | * update clustered and speculative state | |
3740 | * | |
3741 | */ | |
3742 | VM_PAGE_CONSUME_CLUSTERED(dst_page); | |
3743 | } | |
b0d623f7 A |
3744 | try_next_page: |
3745 | if (dwp->dw_mask) { | |
3746 | if (dwp->dw_mask & DW_vm_page_activate) | |
3747 | VM_STAT_INCR(reactivations); | |
4a3eedf9 | 3748 | |
6d2010ae | 3749 | VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count); |
b0d623f7 | 3750 | |
6d2010ae A |
3751 | if (dw_count >= dw_limit) { |
3752 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
b0d623f7 A |
3753 | |
3754 | dwp = &dw_array[0]; | |
3755 | dw_count = 0; | |
4a3eedf9 | 3756 | } |
2d21ac55 | 3757 | } |
2d21ac55 A |
3758 | entry++; |
3759 | dst_offset += PAGE_SIZE_64; | |
3760 | xfer_size -= PAGE_SIZE; | |
3761 | } | |
b0d623f7 | 3762 | if (dw_count) |
6d2010ae | 3763 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); |
b0d623f7 | 3764 | |
2d21ac55 | 3765 | if (alias_page != NULL) { |
b0d623f7 | 3766 | VM_PAGE_FREE(alias_page); |
1c79356b | 3767 | } |
91447636 | 3768 | |
2d21ac55 A |
3769 | if (page_list_count != NULL) { |
3770 | if (upl->flags & UPL_INTERNAL) | |
3771 | *page_list_count = 0; | |
3772 | else if (*page_list_count > entry) | |
3773 | *page_list_count = entry; | |
3774 | } | |
b0d623f7 A |
3775 | #if UPL_DEBUG |
3776 | upl->upl_state = 1; | |
3777 | #endif | |
1c79356b | 3778 | vm_object_unlock(object); |
2d21ac55 | 3779 | |
1c79356b A |
3780 | return KERN_SUCCESS; |
3781 | } | |
3782 | ||
0b4e3aa0 | 3783 | /* JMM - Backward compatability for now */ |
1c79356b | 3784 | kern_return_t |
91447636 A |
3785 | vm_fault_list_request( /* forward */ |
3786 | memory_object_control_t control, | |
3787 | vm_object_offset_t offset, | |
3788 | upl_size_t size, | |
3789 | upl_t *upl_ptr, | |
3790 | upl_page_info_t **user_page_list_ptr, | |
2d21ac55 | 3791 | unsigned int page_list_count, |
91447636 A |
3792 | int cntrl_flags); |
3793 | kern_return_t | |
0b4e3aa0 A |
3794 | vm_fault_list_request( |
3795 | memory_object_control_t control, | |
1c79356b | 3796 | vm_object_offset_t offset, |
91447636 | 3797 | upl_size_t size, |
0b4e3aa0 | 3798 | upl_t *upl_ptr, |
1c79356b | 3799 | upl_page_info_t **user_page_list_ptr, |
2d21ac55 | 3800 | unsigned int page_list_count, |
1c79356b A |
3801 | int cntrl_flags) |
3802 | { | |
0c530ab8 | 3803 | unsigned int local_list_count; |
0b4e3aa0 A |
3804 | upl_page_info_t *user_page_list; |
3805 | kern_return_t kr; | |
3806 | ||
b0d623f7 A |
3807 | if((cntrl_flags & UPL_VECTOR)==UPL_VECTOR) |
3808 | return KERN_INVALID_ARGUMENT; | |
3809 | ||
0b4e3aa0 A |
3810 | if (user_page_list_ptr != NULL) { |
3811 | local_list_count = page_list_count; | |
3812 | user_page_list = *user_page_list_ptr; | |
3813 | } else { | |
3814 | local_list_count = 0; | |
3815 | user_page_list = NULL; | |
3816 | } | |
3817 | kr = memory_object_upl_request(control, | |
3818 | offset, | |
3819 | size, | |
3820 | upl_ptr, | |
3821 | user_page_list, | |
3822 | &local_list_count, | |
3823 | cntrl_flags); | |
3824 | ||
3825 | if(kr != KERN_SUCCESS) | |
3826 | return kr; | |
3827 | ||
3828 | if ((user_page_list_ptr != NULL) && (cntrl_flags & UPL_INTERNAL)) { | |
3829 | *user_page_list_ptr = UPL_GET_INTERNAL_PAGE_LIST(*upl_ptr); | |
3830 | } | |
3831 | ||
3832 | return KERN_SUCCESS; | |
3833 | } | |
3834 | ||
3835 | ||
3836 | ||
3837 | /* | |
3838 | * Routine: vm_object_super_upl_request | |
3839 | * Purpose: | |
3840 | * Cause the population of a portion of a vm_object | |
3841 | * in much the same way as memory_object_upl_request. | |
3842 | * Depending on the nature of the request, the pages | |
3843 | * returned may be contain valid data or be uninitialized. | |
3844 | * However, the region may be expanded up to the super | |
3845 | * cluster size provided. | |
3846 | */ | |
3847 | ||
3848 | __private_extern__ kern_return_t | |
3849 | vm_object_super_upl_request( | |
3850 | vm_object_t object, | |
3851 | vm_object_offset_t offset, | |
91447636 A |
3852 | upl_size_t size, |
3853 | upl_size_t super_cluster, | |
0b4e3aa0 A |
3854 | upl_t *upl, |
3855 | upl_page_info_t *user_page_list, | |
3856 | unsigned int *page_list_count, | |
3857 | int cntrl_flags) | |
3858 | { | |
b0d623f7 | 3859 | if (object->paging_offset > offset || ((cntrl_flags & UPL_VECTOR)==UPL_VECTOR)) |
1c79356b | 3860 | return KERN_FAILURE; |
0b4e3aa0 | 3861 | |
55e303ae | 3862 | assert(object->paging_in_progress); |
1c79356b | 3863 | offset = offset - object->paging_offset; |
91447636 | 3864 | |
91447636 | 3865 | if (super_cluster > size) { |
1c79356b A |
3866 | |
3867 | vm_object_offset_t base_offset; | |
91447636 | 3868 | upl_size_t super_size; |
b0d623f7 | 3869 | vm_object_size_t super_size_64; |
1c79356b | 3870 | |
2d21ac55 A |
3871 | base_offset = (offset & ~((vm_object_offset_t) super_cluster - 1)); |
3872 | super_size = (offset + size) > (base_offset + super_cluster) ? super_cluster<<1 : super_cluster; | |
6d2010ae | 3873 | super_size_64 = ((base_offset + super_size) > object->vo_size) ? (object->vo_size - base_offset) : super_size; |
b0d623f7 A |
3874 | super_size = (upl_size_t) super_size_64; |
3875 | assert(super_size == super_size_64); | |
2d21ac55 A |
3876 | |
3877 | if (offset > (base_offset + super_size)) { | |
3878 | panic("vm_object_super_upl_request: Missed target pageout" | |
3879 | " %#llx,%#llx, %#x, %#x, %#x, %#llx\n", | |
3880 | offset, base_offset, super_size, super_cluster, | |
3881 | size, object->paging_offset); | |
3882 | } | |
91447636 A |
3883 | /* |
3884 | * apparently there is a case where the vm requests a | |
3885 | * page to be written out who's offset is beyond the | |
3886 | * object size | |
3887 | */ | |
b0d623f7 A |
3888 | if ((offset + size) > (base_offset + super_size)) { |
3889 | super_size_64 = (offset + size) - base_offset; | |
3890 | super_size = (upl_size_t) super_size_64; | |
3891 | assert(super_size == super_size_64); | |
3892 | } | |
1c79356b A |
3893 | |
3894 | offset = base_offset; | |
3895 | size = super_size; | |
3896 | } | |
2d21ac55 | 3897 | return vm_object_upl_request(object, offset, size, upl, user_page_list, page_list_count, cntrl_flags); |
1c79356b A |
3898 | } |
3899 | ||
b0d623f7 | 3900 | |
91447636 A |
3901 | kern_return_t |
3902 | vm_map_create_upl( | |
3903 | vm_map_t map, | |
3904 | vm_map_address_t offset, | |
3905 | upl_size_t *upl_size, | |
3906 | upl_t *upl, | |
3907 | upl_page_info_array_t page_list, | |
3908 | unsigned int *count, | |
3909 | int *flags) | |
3910 | { | |
3911 | vm_map_entry_t entry; | |
3912 | int caller_flags; | |
3913 | int force_data_sync; | |
3914 | int sync_cow_data; | |
3915 | vm_object_t local_object; | |
3916 | vm_map_offset_t local_offset; | |
3917 | vm_map_offset_t local_start; | |
3918 | kern_return_t ret; | |
3919 | ||
3920 | caller_flags = *flags; | |
3921 | ||
3922 | if (caller_flags & ~UPL_VALID_FLAGS) { | |
3923 | /* | |
3924 | * For forward compatibility's sake, | |
3925 | * reject any unknown flag. | |
3926 | */ | |
3927 | return KERN_INVALID_VALUE; | |
3928 | } | |
91447636 A |
3929 | force_data_sync = (caller_flags & UPL_FORCE_DATA_SYNC); |
3930 | sync_cow_data = !(caller_flags & UPL_COPYOUT_FROM); | |
3931 | ||
2d21ac55 | 3932 | if (upl == NULL) |
91447636 A |
3933 | return KERN_INVALID_ARGUMENT; |
3934 | ||
91447636 | 3935 | REDISCOVER_ENTRY: |
b0d623f7 | 3936 | vm_map_lock_read(map); |
2d21ac55 | 3937 | |
91447636 | 3938 | if (vm_map_lookup_entry(map, offset, &entry)) { |
2d21ac55 | 3939 | |
b0d623f7 A |
3940 | if ((entry->vme_end - offset) < *upl_size) { |
3941 | *upl_size = (upl_size_t) (entry->vme_end - offset); | |
3942 | assert(*upl_size == entry->vme_end - offset); | |
3943 | } | |
2d21ac55 | 3944 | |
91447636 | 3945 | if (caller_flags & UPL_QUERY_OBJECT_TYPE) { |
2d21ac55 A |
3946 | *flags = 0; |
3947 | ||
b0d623f7 | 3948 | if ( !entry->is_sub_map && entry->object.vm_object != VM_OBJECT_NULL) { |
2d21ac55 A |
3949 | if (entry->object.vm_object->private) |
3950 | *flags = UPL_DEV_MEMORY; | |
3951 | ||
3952 | if (entry->object.vm_object->phys_contiguous) | |
91447636 | 3953 | *flags |= UPL_PHYS_CONTIG; |
91447636 | 3954 | } |
b0d623f7 | 3955 | vm_map_unlock_read(map); |
2d21ac55 | 3956 | |
91447636 A |
3957 | return KERN_SUCCESS; |
3958 | } | |
e2d2fc5c A |
3959 | |
3960 | if (entry->is_sub_map) { | |
3961 | vm_map_t submap; | |
3962 | ||
3963 | submap = entry->object.sub_map; | |
3964 | local_start = entry->vme_start; | |
3965 | local_offset = entry->offset; | |
3966 | ||
3967 | vm_map_reference(submap); | |
3968 | vm_map_unlock_read(map); | |
3969 | ||
3970 | ret = vm_map_create_upl(submap, | |
3971 | local_offset + (offset - local_start), | |
3972 | upl_size, upl, page_list, count, flags); | |
3973 | vm_map_deallocate(submap); | |
3974 | ||
3975 | return ret; | |
3976 | } | |
3977 | ||
2d21ac55 | 3978 | if (entry->object.vm_object == VM_OBJECT_NULL || !entry->object.vm_object->phys_contiguous) { |
b0d623f7 A |
3979 | if ((*upl_size/PAGE_SIZE) > MAX_UPL_SIZE) |
3980 | *upl_size = MAX_UPL_SIZE * PAGE_SIZE; | |
2d21ac55 | 3981 | } |
e2d2fc5c | 3982 | |
91447636 A |
3983 | /* |
3984 | * Create an object if necessary. | |
3985 | */ | |
3986 | if (entry->object.vm_object == VM_OBJECT_NULL) { | |
b0d623f7 A |
3987 | |
3988 | if (vm_map_lock_read_to_write(map)) | |
3989 | goto REDISCOVER_ENTRY; | |
3990 | ||
2d21ac55 | 3991 | entry->object.vm_object = vm_object_allocate((vm_size_t)(entry->vme_end - entry->vme_start)); |
91447636 | 3992 | entry->offset = 0; |
b0d623f7 A |
3993 | |
3994 | vm_map_lock_write_to_read(map); | |
91447636 A |
3995 | } |
3996 | if (!(caller_flags & UPL_COPYOUT_FROM)) { | |
3997 | if (!(entry->protection & VM_PROT_WRITE)) { | |
b0d623f7 | 3998 | vm_map_unlock_read(map); |
91447636 A |
3999 | return KERN_PROTECTION_FAILURE; |
4000 | } | |
e2d2fc5c A |
4001 | |
4002 | #if !CONFIG_EMBEDDED | |
4003 | local_object = entry->object.vm_object; | |
4004 | if (vm_map_entry_should_cow_for_true_share(entry) && | |
4005 | local_object->vo_size > *upl_size && | |
4006 | *upl_size != 0) { | |
4007 | vm_prot_t prot; | |
4008 | ||
4009 | /* | |
4010 | * Set up the targeted range for copy-on-write to avoid | |
4011 | * applying true_share/copy_delay to the entire object. | |
4012 | */ | |
4013 | ||
4014 | if (vm_map_lock_read_to_write(map)) { | |
4015 | goto REDISCOVER_ENTRY; | |
4016 | } | |
4017 | ||
4018 | vm_map_clip_start(map, entry, vm_map_trunc_page(offset)); | |
4019 | vm_map_clip_end(map, entry, vm_map_round_page(offset + *upl_size)); | |
4020 | prot = entry->protection & ~VM_PROT_WRITE; | |
4021 | if (override_nx(map, entry->alias) && prot) | |
4022 | prot |= VM_PROT_EXECUTE; | |
4023 | vm_object_pmap_protect(local_object, | |
4024 | entry->offset, | |
4025 | entry->vme_end - entry->vme_start, | |
4026 | ((entry->is_shared || map->mapped) | |
4027 | ? PMAP_NULL | |
4028 | : map->pmap), | |
4029 | entry->vme_start, | |
4030 | prot); | |
4031 | entry->needs_copy = TRUE; | |
4032 | ||
4033 | vm_map_lock_write_to_read(map); | |
4034 | } | |
4035 | #endif /* !CONFIG_EMBEDDED */ | |
4036 | ||
91447636 | 4037 | if (entry->needs_copy) { |
b0d623f7 A |
4038 | /* |
4039 | * Honor copy-on-write for COPY_SYMMETRIC | |
4040 | * strategy. | |
4041 | */ | |
91447636 A |
4042 | vm_map_t local_map; |
4043 | vm_object_t object; | |
91447636 A |
4044 | vm_object_offset_t new_offset; |
4045 | vm_prot_t prot; | |
4046 | boolean_t wired; | |
91447636 A |
4047 | vm_map_version_t version; |
4048 | vm_map_t real_map; | |
4049 | ||
4050 | local_map = map; | |
2d21ac55 A |
4051 | |
4052 | if (vm_map_lookup_locked(&local_map, | |
4053 | offset, VM_PROT_WRITE, | |
4054 | OBJECT_LOCK_EXCLUSIVE, | |
4055 | &version, &object, | |
4056 | &new_offset, &prot, &wired, | |
4057 | NULL, | |
b0d623f7 A |
4058 | &real_map) != KERN_SUCCESS) { |
4059 | vm_map_unlock_read(local_map); | |
91447636 A |
4060 | return KERN_FAILURE; |
4061 | } | |
2d21ac55 | 4062 | if (real_map != map) |
91447636 | 4063 | vm_map_unlock(real_map); |
b0d623f7 A |
4064 | vm_map_unlock_read(local_map); |
4065 | ||
91447636 | 4066 | vm_object_unlock(object); |
91447636 A |
4067 | |
4068 | goto REDISCOVER_ENTRY; | |
4069 | } | |
4070 | } | |
91447636 | 4071 | if (sync_cow_data) { |
2d21ac55 | 4072 | if (entry->object.vm_object->shadow || entry->object.vm_object->copy) { |
91447636 A |
4073 | local_object = entry->object.vm_object; |
4074 | local_start = entry->vme_start; | |
4075 | local_offset = entry->offset; | |
2d21ac55 | 4076 | |
91447636 | 4077 | vm_object_reference(local_object); |
b0d623f7 | 4078 | vm_map_unlock_read(map); |
91447636 | 4079 | |
b0d623f7 | 4080 | if (local_object->shadow && local_object->copy) { |
2d21ac55 A |
4081 | vm_object_lock_request( |
4082 | local_object->shadow, | |
4083 | (vm_object_offset_t) | |
4084 | ((offset - local_start) + | |
4085 | local_offset) + | |
6d2010ae | 4086 | local_object->vo_shadow_offset, |
2d21ac55 A |
4087 | *upl_size, FALSE, |
4088 | MEMORY_OBJECT_DATA_SYNC, | |
4089 | VM_PROT_NO_CHANGE); | |
91447636 A |
4090 | } |
4091 | sync_cow_data = FALSE; | |
4092 | vm_object_deallocate(local_object); | |
2d21ac55 | 4093 | |
91447636 A |
4094 | goto REDISCOVER_ENTRY; |
4095 | } | |
4096 | } | |
91447636 | 4097 | if (force_data_sync) { |
91447636 A |
4098 | local_object = entry->object.vm_object; |
4099 | local_start = entry->vme_start; | |
4100 | local_offset = entry->offset; | |
2d21ac55 | 4101 | |
91447636 | 4102 | vm_object_reference(local_object); |
b0d623f7 | 4103 | vm_map_unlock_read(map); |
91447636 A |
4104 | |
4105 | vm_object_lock_request( | |
2d21ac55 A |
4106 | local_object, |
4107 | (vm_object_offset_t) | |
4108 | ((offset - local_start) + local_offset), | |
4109 | (vm_object_size_t)*upl_size, FALSE, | |
4110 | MEMORY_OBJECT_DATA_SYNC, | |
4111 | VM_PROT_NO_CHANGE); | |
4112 | ||
91447636 A |
4113 | force_data_sync = FALSE; |
4114 | vm_object_deallocate(local_object); | |
2d21ac55 | 4115 | |
91447636 A |
4116 | goto REDISCOVER_ENTRY; |
4117 | } | |
2d21ac55 A |
4118 | if (entry->object.vm_object->private) |
4119 | *flags = UPL_DEV_MEMORY; | |
4120 | else | |
4121 | *flags = 0; | |
4122 | ||
4123 | if (entry->object.vm_object->phys_contiguous) | |
4124 | *flags |= UPL_PHYS_CONTIG; | |
91447636 | 4125 | |
91447636 A |
4126 | local_object = entry->object.vm_object; |
4127 | local_offset = entry->offset; | |
4128 | local_start = entry->vme_start; | |
2d21ac55 | 4129 | |
91447636 | 4130 | vm_object_reference(local_object); |
b0d623f7 | 4131 | vm_map_unlock_read(map); |
2d21ac55 A |
4132 | |
4133 | ret = vm_object_iopl_request(local_object, | |
4134 | (vm_object_offset_t) ((offset - local_start) + local_offset), | |
4135 | *upl_size, | |
4136 | upl, | |
4137 | page_list, | |
4138 | count, | |
4139 | caller_flags); | |
91447636 | 4140 | vm_object_deallocate(local_object); |
2d21ac55 | 4141 | |
91447636 A |
4142 | return(ret); |
4143 | } | |
b0d623f7 | 4144 | vm_map_unlock_read(map); |
1c79356b | 4145 | |
2d21ac55 | 4146 | return(KERN_FAILURE); |
91447636 A |
4147 | } |
4148 | ||
4149 | /* | |
4150 | * Internal routine to enter a UPL into a VM map. | |
4151 | * | |
4152 | * JMM - This should just be doable through the standard | |
4153 | * vm_map_enter() API. | |
4154 | */ | |
1c79356b | 4155 | kern_return_t |
91447636 A |
4156 | vm_map_enter_upl( |
4157 | vm_map_t map, | |
4158 | upl_t upl, | |
b0d623f7 | 4159 | vm_map_offset_t *dst_addr) |
1c79356b | 4160 | { |
91447636 | 4161 | vm_map_size_t size; |
1c79356b | 4162 | vm_object_offset_t offset; |
91447636 | 4163 | vm_map_offset_t addr; |
1c79356b A |
4164 | vm_page_t m; |
4165 | kern_return_t kr; | |
b0d623f7 A |
4166 | int isVectorUPL = 0, curr_upl=0; |
4167 | upl_t vector_upl = NULL; | |
4168 | vm_offset_t vector_upl_dst_addr = 0; | |
4169 | vm_map_t vector_upl_submap = NULL; | |
4170 | upl_offset_t subupl_offset = 0; | |
4171 | upl_size_t subupl_size = 0; | |
1c79356b | 4172 | |
0b4e3aa0 A |
4173 | if (upl == UPL_NULL) |
4174 | return KERN_INVALID_ARGUMENT; | |
4175 | ||
b0d623f7 A |
4176 | if((isVectorUPL = vector_upl_is_valid(upl))) { |
4177 | int mapped=0,valid_upls=0; | |
4178 | vector_upl = upl; | |
4179 | ||
4180 | upl_lock(vector_upl); | |
4181 | for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) { | |
4182 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl ); | |
4183 | if(upl == NULL) | |
4184 | continue; | |
4185 | valid_upls++; | |
4186 | if (UPL_PAGE_LIST_MAPPED & upl->flags) | |
4187 | mapped++; | |
4188 | } | |
4189 | ||
4190 | if(mapped) { | |
4191 | if(mapped != valid_upls) | |
4192 | panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped\n", mapped, valid_upls); | |
4193 | else { | |
4194 | upl_unlock(vector_upl); | |
4195 | return KERN_FAILURE; | |
4196 | } | |
4197 | } | |
4198 | ||
4199 | kr = kmem_suballoc(map, &vector_upl_dst_addr, vector_upl->size, FALSE, VM_FLAGS_ANYWHERE, &vector_upl_submap); | |
4200 | if( kr != KERN_SUCCESS ) | |
4201 | panic("Vector UPL submap allocation failed\n"); | |
4202 | map = vector_upl_submap; | |
4203 | vector_upl_set_submap(vector_upl, vector_upl_submap, vector_upl_dst_addr); | |
4204 | curr_upl=0; | |
4205 | } | |
4206 | else | |
4207 | upl_lock(upl); | |
4208 | ||
4209 | process_upl_to_enter: | |
4210 | if(isVectorUPL){ | |
4211 | if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) { | |
4212 | *dst_addr = vector_upl_dst_addr; | |
4213 | upl_unlock(vector_upl); | |
4214 | return KERN_SUCCESS; | |
4215 | } | |
4216 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ ); | |
4217 | if(upl == NULL) | |
4218 | goto process_upl_to_enter; | |
6d2010ae | 4219 | |
b0d623f7 A |
4220 | vector_upl_get_iostate(vector_upl, upl, &subupl_offset, &subupl_size); |
4221 | *dst_addr = (vm_map_offset_t)(vector_upl_dst_addr + (vm_map_offset_t)subupl_offset); | |
d41d1dae A |
4222 | } else { |
4223 | /* | |
4224 | * check to see if already mapped | |
4225 | */ | |
4226 | if (UPL_PAGE_LIST_MAPPED & upl->flags) { | |
4227 | upl_unlock(upl); | |
4228 | return KERN_FAILURE; | |
4229 | } | |
b0d623f7 | 4230 | } |
d41d1dae A |
4231 | if ((!(upl->flags & UPL_SHADOWED)) && |
4232 | ((upl->flags & UPL_HAS_BUSY) || | |
4233 | !((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || (upl->map_object->phys_contiguous)))) { | |
0b4e3aa0 | 4234 | |
55e303ae A |
4235 | vm_object_t object; |
4236 | vm_page_t alias_page; | |
4237 | vm_object_offset_t new_offset; | |
b0d623f7 | 4238 | unsigned int pg_num; |
55e303ae A |
4239 | wpl_array_t lite_list; |
4240 | ||
2d21ac55 | 4241 | if (upl->flags & UPL_INTERNAL) { |
55e303ae | 4242 | lite_list = (wpl_array_t) |
91447636 | 4243 | ((((uintptr_t)upl) + sizeof(struct upl)) |
2d21ac55 | 4244 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); |
55e303ae | 4245 | } else { |
2d21ac55 | 4246 | lite_list = (wpl_array_t)(((uintptr_t)upl) + sizeof(struct upl)); |
55e303ae A |
4247 | } |
4248 | object = upl->map_object; | |
4249 | upl->map_object = vm_object_allocate(upl->size); | |
2d21ac55 | 4250 | |
55e303ae | 4251 | vm_object_lock(upl->map_object); |
2d21ac55 | 4252 | |
55e303ae A |
4253 | upl->map_object->shadow = object; |
4254 | upl->map_object->pageout = TRUE; | |
4255 | upl->map_object->can_persist = FALSE; | |
2d21ac55 | 4256 | upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
6d2010ae | 4257 | upl->map_object->vo_shadow_offset = upl->offset - object->paging_offset; |
55e303ae | 4258 | upl->map_object->wimg_bits = object->wimg_bits; |
6d2010ae | 4259 | offset = upl->map_object->vo_shadow_offset; |
55e303ae A |
4260 | new_offset = 0; |
4261 | size = upl->size; | |
91447636 | 4262 | |
2d21ac55 | 4263 | upl->flags |= UPL_SHADOWED; |
91447636 | 4264 | |
2d21ac55 | 4265 | while (size) { |
b0d623f7 A |
4266 | pg_num = (unsigned int) (new_offset / PAGE_SIZE); |
4267 | assert(pg_num == new_offset / PAGE_SIZE); | |
55e303ae | 4268 | |
2d21ac55 | 4269 | if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { |
55e303ae | 4270 | |
2d21ac55 | 4271 | VM_PAGE_GRAB_FICTITIOUS(alias_page); |
91447636 | 4272 | |
2d21ac55 | 4273 | vm_object_lock(object); |
91447636 | 4274 | |
2d21ac55 A |
4275 | m = vm_page_lookup(object, offset); |
4276 | if (m == VM_PAGE_NULL) { | |
4277 | panic("vm_upl_map: page missing\n"); | |
4278 | } | |
55e303ae | 4279 | |
2d21ac55 A |
4280 | /* |
4281 | * Convert the fictitious page to a private | |
4282 | * shadow of the real page. | |
4283 | */ | |
4284 | assert(alias_page->fictitious); | |
4285 | alias_page->fictitious = FALSE; | |
4286 | alias_page->private = TRUE; | |
4287 | alias_page->pageout = TRUE; | |
4288 | /* | |
4289 | * since m is a page in the upl it must | |
4290 | * already be wired or BUSY, so it's | |
4291 | * safe to assign the underlying physical | |
4292 | * page to the alias | |
4293 | */ | |
4294 | alias_page->phys_page = m->phys_page; | |
4295 | ||
4296 | vm_object_unlock(object); | |
4297 | ||
4298 | vm_page_lockspin_queues(); | |
4299 | vm_page_wire(alias_page); | |
4300 | vm_page_unlock_queues(); | |
4301 | ||
4302 | /* | |
4303 | * ENCRYPTED SWAP: | |
4304 | * The virtual page ("m") has to be wired in some way | |
4305 | * here or its physical page ("m->phys_page") could | |
4306 | * be recycled at any time. | |
4307 | * Assuming this is enforced by the caller, we can't | |
4308 | * get an encrypted page here. Since the encryption | |
4309 | * key depends on the VM page's "pager" object and | |
4310 | * the "paging_offset", we couldn't handle 2 pageable | |
4311 | * VM pages (with different pagers and paging_offsets) | |
4312 | * sharing the same physical page: we could end up | |
4313 | * encrypting with one key (via one VM page) and | |
4314 | * decrypting with another key (via the alias VM page). | |
4315 | */ | |
4316 | ASSERT_PAGE_DECRYPTED(m); | |
55e303ae | 4317 | |
2d21ac55 A |
4318 | vm_page_insert(alias_page, upl->map_object, new_offset); |
4319 | ||
4320 | assert(!alias_page->wanted); | |
4321 | alias_page->busy = FALSE; | |
4322 | alias_page->absent = FALSE; | |
4323 | } | |
4324 | size -= PAGE_SIZE; | |
4325 | offset += PAGE_SIZE_64; | |
4326 | new_offset += PAGE_SIZE_64; | |
55e303ae | 4327 | } |
91447636 | 4328 | vm_object_unlock(upl->map_object); |
55e303ae | 4329 | } |
d41d1dae | 4330 | if (upl->flags & UPL_SHADOWED) |
55e303ae | 4331 | offset = 0; |
d41d1dae A |
4332 | else |
4333 | offset = upl->offset - upl->map_object->paging_offset; | |
6d2010ae | 4334 | |
1c79356b A |
4335 | size = upl->size; |
4336 | ||
2d21ac55 | 4337 | vm_object_reference(upl->map_object); |
1c79356b | 4338 | |
b0d623f7 A |
4339 | if(!isVectorUPL) { |
4340 | *dst_addr = 0; | |
4341 | /* | |
4342 | * NEED A UPL_MAP ALIAS | |
4343 | */ | |
4344 | kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0, | |
4345 | VM_FLAGS_ANYWHERE, upl->map_object, offset, FALSE, | |
4346 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
d41d1dae A |
4347 | |
4348 | if (kr != KERN_SUCCESS) { | |
4349 | upl_unlock(upl); | |
4350 | return(kr); | |
4351 | } | |
b0d623f7 A |
4352 | } |
4353 | else { | |
4354 | kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0, | |
4355 | VM_FLAGS_FIXED, upl->map_object, offset, FALSE, | |
4356 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
4357 | if(kr) | |
4358 | panic("vm_map_enter failed for a Vector UPL\n"); | |
4359 | } | |
91447636 A |
4360 | vm_object_lock(upl->map_object); |
4361 | ||
2d21ac55 | 4362 | for (addr = *dst_addr; size > 0; size -= PAGE_SIZE, addr += PAGE_SIZE) { |
1c79356b | 4363 | m = vm_page_lookup(upl->map_object, offset); |
2d21ac55 A |
4364 | |
4365 | if (m) { | |
2d21ac55 | 4366 | m->pmapped = TRUE; |
b0d623f7 A |
4367 | |
4368 | /* CODE SIGNING ENFORCEMENT: page has been wpmapped, | |
4369 | * but only in kernel space. If this was on a user map, | |
4370 | * we'd have to set the wpmapped bit. */ | |
4371 | /* m->wpmapped = TRUE; */ | |
4372 | assert(map==kernel_map); | |
9bccf70c | 4373 | |
6d2010ae | 4374 | PMAP_ENTER(map->pmap, addr, m, VM_PROT_ALL, 0, TRUE); |
1c79356b | 4375 | } |
2d21ac55 | 4376 | offset += PAGE_SIZE_64; |
1c79356b | 4377 | } |
91447636 A |
4378 | vm_object_unlock(upl->map_object); |
4379 | ||
2d21ac55 A |
4380 | /* |
4381 | * hold a reference for the mapping | |
4382 | */ | |
4383 | upl->ref_count++; | |
1c79356b | 4384 | upl->flags |= UPL_PAGE_LIST_MAPPED; |
b0d623f7 A |
4385 | upl->kaddr = (vm_offset_t) *dst_addr; |
4386 | assert(upl->kaddr == *dst_addr); | |
4387 | ||
d41d1dae | 4388 | if(isVectorUPL) |
b0d623f7 | 4389 | goto process_upl_to_enter; |
2d21ac55 | 4390 | |
d41d1dae A |
4391 | upl_unlock(upl); |
4392 | ||
1c79356b A |
4393 | return KERN_SUCCESS; |
4394 | } | |
4395 | ||
91447636 A |
4396 | /* |
4397 | * Internal routine to remove a UPL mapping from a VM map. | |
4398 | * | |
4399 | * XXX - This should just be doable through a standard | |
4400 | * vm_map_remove() operation. Otherwise, implicit clean-up | |
4401 | * of the target map won't be able to correctly remove | |
4402 | * these (and release the reference on the UPL). Having | |
4403 | * to do this means we can't map these into user-space | |
4404 | * maps yet. | |
4405 | */ | |
1c79356b | 4406 | kern_return_t |
91447636 | 4407 | vm_map_remove_upl( |
1c79356b A |
4408 | vm_map_t map, |
4409 | upl_t upl) | |
4410 | { | |
0b4e3aa0 | 4411 | vm_address_t addr; |
91447636 | 4412 | upl_size_t size; |
b0d623f7 A |
4413 | int isVectorUPL = 0, curr_upl = 0; |
4414 | upl_t vector_upl = NULL; | |
1c79356b | 4415 | |
0b4e3aa0 A |
4416 | if (upl == UPL_NULL) |
4417 | return KERN_INVALID_ARGUMENT; | |
4418 | ||
b0d623f7 A |
4419 | if((isVectorUPL = vector_upl_is_valid(upl))) { |
4420 | int unmapped=0, valid_upls=0; | |
4421 | vector_upl = upl; | |
4422 | upl_lock(vector_upl); | |
4423 | for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) { | |
4424 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl ); | |
4425 | if(upl == NULL) | |
4426 | continue; | |
4427 | valid_upls++; | |
4428 | if (!(UPL_PAGE_LIST_MAPPED & upl->flags)) | |
4429 | unmapped++; | |
4430 | } | |
4431 | ||
4432 | if(unmapped) { | |
4433 | if(unmapped != valid_upls) | |
4434 | panic("%d of the %d sub-upls within the Vector UPL is/are not mapped\n", unmapped, valid_upls); | |
4435 | else { | |
4436 | upl_unlock(vector_upl); | |
4437 | return KERN_FAILURE; | |
4438 | } | |
4439 | } | |
4440 | curr_upl=0; | |
4441 | } | |
4442 | else | |
4443 | upl_lock(upl); | |
4444 | ||
4445 | process_upl_to_remove: | |
4446 | if(isVectorUPL) { | |
4447 | if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) { | |
4448 | vm_map_t v_upl_submap; | |
4449 | vm_offset_t v_upl_submap_dst_addr; | |
4450 | vector_upl_get_submap(vector_upl, &v_upl_submap, &v_upl_submap_dst_addr); | |
4451 | ||
4452 | vm_map_remove(map, v_upl_submap_dst_addr, v_upl_submap_dst_addr + vector_upl->size, VM_MAP_NO_FLAGS); | |
4453 | vm_map_deallocate(v_upl_submap); | |
4454 | upl_unlock(vector_upl); | |
4455 | return KERN_SUCCESS; | |
4456 | } | |
4457 | ||
4458 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ ); | |
4459 | if(upl == NULL) | |
4460 | goto process_upl_to_remove; | |
4461 | } | |
2d21ac55 A |
4462 | |
4463 | if (upl->flags & UPL_PAGE_LIST_MAPPED) { | |
0b4e3aa0 | 4464 | addr = upl->kaddr; |
1c79356b | 4465 | size = upl->size; |
2d21ac55 | 4466 | |
0b4e3aa0 A |
4467 | assert(upl->ref_count > 1); |
4468 | upl->ref_count--; /* removing mapping ref */ | |
2d21ac55 | 4469 | |
1c79356b A |
4470 | upl->flags &= ~UPL_PAGE_LIST_MAPPED; |
4471 | upl->kaddr = (vm_offset_t) 0; | |
b0d623f7 A |
4472 | |
4473 | if(!isVectorUPL) { | |
4474 | upl_unlock(upl); | |
4475 | ||
4476 | vm_map_remove(map, | |
4477 | vm_map_trunc_page(addr), | |
4478 | vm_map_round_page(addr + size), | |
4479 | VM_MAP_NO_FLAGS); | |
4480 | ||
4481 | return KERN_SUCCESS; | |
4482 | } | |
4483 | else { | |
4484 | /* | |
4485 | * If it's a Vectored UPL, we'll be removing the entire | |
4486 | * submap anyways, so no need to remove individual UPL | |
4487 | * element mappings from within the submap | |
4488 | */ | |
4489 | goto process_upl_to_remove; | |
4490 | } | |
1c79356b | 4491 | } |
0b4e3aa0 | 4492 | upl_unlock(upl); |
2d21ac55 | 4493 | |
0b4e3aa0 | 4494 | return KERN_FAILURE; |
1c79356b A |
4495 | } |
4496 | ||
b0d623f7 | 4497 | |
1c79356b | 4498 | kern_return_t |
0b4e3aa0 | 4499 | upl_commit_range( |
1c79356b | 4500 | upl_t upl, |
91447636 A |
4501 | upl_offset_t offset, |
4502 | upl_size_t size, | |
1c79356b | 4503 | int flags, |
0b4e3aa0 A |
4504 | upl_page_info_t *page_list, |
4505 | mach_msg_type_number_t count, | |
4506 | boolean_t *empty) | |
1c79356b | 4507 | { |
b0d623f7 | 4508 | upl_size_t xfer_size, subupl_size = size; |
55e303ae | 4509 | vm_object_t shadow_object; |
2d21ac55 | 4510 | vm_object_t object; |
1c79356b | 4511 | vm_object_offset_t target_offset; |
b0d623f7 | 4512 | upl_offset_t subupl_offset = offset; |
1c79356b | 4513 | int entry; |
55e303ae A |
4514 | wpl_array_t lite_list; |
4515 | int occupied; | |
91447636 | 4516 | int clear_refmod = 0; |
2d21ac55 | 4517 | int pgpgout_count = 0; |
6d2010ae A |
4518 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; |
4519 | struct vm_page_delayed_work *dwp; | |
4520 | int dw_count; | |
4521 | int dw_limit; | |
4522 | int isVectorUPL = 0; | |
b0d623f7 | 4523 | upl_t vector_upl = NULL; |
6d2010ae | 4524 | boolean_t should_be_throttled = FALSE; |
1c79356b | 4525 | |
0b4e3aa0 A |
4526 | *empty = FALSE; |
4527 | ||
4528 | if (upl == UPL_NULL) | |
4529 | return KERN_INVALID_ARGUMENT; | |
4530 | ||
4531 | if (count == 0) | |
4532 | page_list = NULL; | |
4533 | ||
b0d623f7 A |
4534 | if((isVectorUPL = vector_upl_is_valid(upl))) { |
4535 | vector_upl = upl; | |
4536 | upl_lock(vector_upl); | |
4537 | } | |
4538 | else | |
4539 | upl_lock(upl); | |
4540 | ||
4541 | process_upl_to_commit: | |
4542 | ||
4543 | if(isVectorUPL) { | |
4544 | size = subupl_size; | |
4545 | offset = subupl_offset; | |
4546 | if(size == 0) { | |
4547 | upl_unlock(vector_upl); | |
4548 | return KERN_SUCCESS; | |
4549 | } | |
4550 | upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size); | |
4551 | if(upl == NULL) { | |
4552 | upl_unlock(vector_upl); | |
4553 | return KERN_FAILURE; | |
4554 | } | |
4555 | page_list = UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(upl); | |
4556 | subupl_size -= size; | |
4557 | subupl_offset += size; | |
4558 | } | |
4559 | ||
4560 | #if UPL_DEBUG | |
4561 | if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) { | |
4562 | (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES); | |
4563 | ||
4564 | upl->upl_commit_records[upl->upl_commit_index].c_beg = offset; | |
4565 | upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size); | |
4566 | ||
4567 | upl->upl_commit_index++; | |
4568 | } | |
4569 | #endif | |
2d21ac55 A |
4570 | if (upl->flags & UPL_DEVICE_MEMORY) |
4571 | xfer_size = 0; | |
4572 | else if ((offset + size) <= upl->size) | |
4573 | xfer_size = size; | |
b0d623f7 A |
4574 | else { |
4575 | if(!isVectorUPL) | |
4576 | upl_unlock(upl); | |
4577 | else { | |
4578 | upl_unlock(vector_upl); | |
4579 | } | |
2d21ac55 | 4580 | return KERN_FAILURE; |
91447636 | 4581 | } |
6d2010ae A |
4582 | if (upl->flags & UPL_SET_DIRTY) |
4583 | flags |= UPL_COMMIT_SET_DIRTY; | |
55e303ae A |
4584 | if (upl->flags & UPL_CLEAR_DIRTY) |
4585 | flags |= UPL_COMMIT_CLEAR_DIRTY; | |
4586 | ||
2d21ac55 A |
4587 | if (upl->flags & UPL_INTERNAL) |
4588 | lite_list = (wpl_array_t) ((((uintptr_t)upl) + sizeof(struct upl)) | |
4589 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); | |
4590 | else | |
4591 | lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); | |
1c79356b | 4592 | |
2d21ac55 A |
4593 | object = upl->map_object; |
4594 | ||
4595 | if (upl->flags & UPL_SHADOWED) { | |
4596 | vm_object_lock(object); | |
4597 | shadow_object = object->shadow; | |
55e303ae | 4598 | } else { |
2d21ac55 | 4599 | shadow_object = object; |
55e303ae | 4600 | } |
1c79356b A |
4601 | entry = offset/PAGE_SIZE; |
4602 | target_offset = (vm_object_offset_t)offset; | |
55e303ae | 4603 | |
b0d623f7 A |
4604 | if (upl->flags & UPL_KERNEL_OBJECT) |
4605 | vm_object_lock_shared(shadow_object); | |
4606 | else | |
4607 | vm_object_lock(shadow_object); | |
4a3eedf9 | 4608 | |
b0d623f7 A |
4609 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
4610 | assert(shadow_object->blocked_access); | |
4611 | shadow_object->blocked_access = FALSE; | |
4612 | vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED); | |
4a3eedf9 | 4613 | } |
4a3eedf9 | 4614 | |
593a1d5f A |
4615 | if (shadow_object->code_signed) { |
4616 | /* | |
4617 | * CODE SIGNING: | |
4618 | * If the object is code-signed, do not let this UPL tell | |
4619 | * us if the pages are valid or not. Let the pages be | |
4620 | * validated by VM the normal way (when they get mapped or | |
4621 | * copied). | |
4622 | */ | |
4623 | flags &= ~UPL_COMMIT_CS_VALIDATED; | |
4624 | } | |
4625 | if (! page_list) { | |
4626 | /* | |
4627 | * No page list to get the code-signing info from !? | |
4628 | */ | |
4629 | flags &= ~UPL_COMMIT_CS_VALIDATED; | |
4630 | } | |
6d2010ae A |
4631 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && shadow_object->internal) |
4632 | should_be_throttled = TRUE; | |
593a1d5f | 4633 | |
b0d623f7 A |
4634 | dwp = &dw_array[0]; |
4635 | dw_count = 0; | |
6d2010ae | 4636 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
b0d623f7 | 4637 | |
91447636 | 4638 | while (xfer_size) { |
2d21ac55 A |
4639 | vm_page_t t, m; |
4640 | ||
b0d623f7 A |
4641 | dwp->dw_mask = 0; |
4642 | clear_refmod = 0; | |
4643 | ||
55e303ae | 4644 | m = VM_PAGE_NULL; |
d7e50217 | 4645 | |
55e303ae | 4646 | if (upl->flags & UPL_LITE) { |
b0d623f7 | 4647 | unsigned int pg_num; |
55e303ae | 4648 | |
b0d623f7 A |
4649 | pg_num = (unsigned int) (target_offset/PAGE_SIZE); |
4650 | assert(pg_num == target_offset/PAGE_SIZE); | |
55e303ae A |
4651 | |
4652 | if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { | |
4653 | lite_list[pg_num>>5] &= ~(1 << (pg_num & 31)); | |
2d21ac55 | 4654 | |
b0d623f7 A |
4655 | if (!(upl->flags & UPL_KERNEL_OBJECT)) |
4656 | m = vm_page_lookup(shadow_object, target_offset + (upl->offset - shadow_object->paging_offset)); | |
55e303ae A |
4657 | } |
4658 | } | |
2d21ac55 A |
4659 | if (upl->flags & UPL_SHADOWED) { |
4660 | if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) { | |
4661 | ||
55e303ae A |
4662 | t->pageout = FALSE; |
4663 | ||
b0d623f7 | 4664 | VM_PAGE_FREE(t); |
55e303ae | 4665 | |
2d21ac55 | 4666 | if (m == VM_PAGE_NULL) |
6d2010ae | 4667 | m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset); |
55e303ae A |
4668 | } |
4669 | } | |
b0d623f7 | 4670 | if ((upl->flags & UPL_KERNEL_OBJECT) || m == VM_PAGE_NULL) |
593a1d5f | 4671 | goto commit_next_page; |
55e303ae | 4672 | |
593a1d5f A |
4673 | if (flags & UPL_COMMIT_CS_VALIDATED) { |
4674 | /* | |
4675 | * CODE SIGNING: | |
4676 | * Set the code signing bits according to | |
4677 | * what the UPL says they should be. | |
4678 | */ | |
4679 | m->cs_validated = page_list[entry].cs_validated; | |
4680 | m->cs_tainted = page_list[entry].cs_tainted; | |
4681 | } | |
4682 | if (upl->flags & UPL_IO_WIRE) { | |
55e303ae | 4683 | |
593a1d5f A |
4684 | if (page_list) |
4685 | page_list[entry].phys_addr = 0; | |
2d21ac55 | 4686 | |
6d2010ae | 4687 | if (flags & UPL_COMMIT_SET_DIRTY) { |
593a1d5f | 4688 | m->dirty = TRUE; |
6d2010ae | 4689 | } else if (flags & UPL_COMMIT_CLEAR_DIRTY) { |
593a1d5f | 4690 | m->dirty = FALSE; |
b0d623f7 | 4691 | |
593a1d5f A |
4692 | if (! (flags & UPL_COMMIT_CS_VALIDATED) && |
4693 | m->cs_validated && !m->cs_tainted) { | |
4a3eedf9 A |
4694 | /* |
4695 | * CODE SIGNING: | |
4696 | * This page is no longer dirty | |
4697 | * but could have been modified, | |
4698 | * so it will need to be | |
4699 | * re-validated. | |
4700 | */ | |
4701 | m->cs_validated = FALSE; | |
b0d623f7 | 4702 | #if DEVELOPMENT || DEBUG |
4a3eedf9 | 4703 | vm_cs_validated_resets++; |
b0d623f7 A |
4704 | #endif |
4705 | pmap_disconnect(m->phys_page); | |
4a3eedf9 | 4706 | } |
91447636 | 4707 | clear_refmod |= VM_MEM_MODIFIED; |
55e303ae | 4708 | } |
b0d623f7 A |
4709 | if (flags & UPL_COMMIT_INACTIVATE) { |
4710 | dwp->dw_mask |= DW_vm_page_deactivate_internal; | |
4711 | clear_refmod |= VM_MEM_REFERENCED; | |
4712 | } | |
4713 | if (upl->flags & UPL_ACCESS_BLOCKED) { | |
593a1d5f A |
4714 | /* |
4715 | * We blocked access to the pages in this UPL. | |
4716 | * Clear the "busy" bit and wake up any waiter | |
4717 | * for this page. | |
4718 | */ | |
b0d623f7 | 4719 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); |
593a1d5f | 4720 | } |
0b4c1975 A |
4721 | if (m->absent) { |
4722 | if (flags & UPL_COMMIT_FREE_ABSENT) | |
4723 | dwp->dw_mask |= DW_vm_page_free; | |
d41d1dae | 4724 | else { |
0b4c1975 | 4725 | m->absent = FALSE; |
d41d1dae | 4726 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); |
7ddcb079 A |
4727 | |
4728 | if ( !(dwp->dw_mask & DW_vm_page_deactivate_internal)) | |
4729 | dwp->dw_mask |= DW_vm_page_activate; | |
d41d1dae A |
4730 | } |
4731 | } else | |
4732 | dwp->dw_mask |= DW_vm_page_unwire; | |
4733 | ||
593a1d5f A |
4734 | goto commit_next_page; |
4735 | } | |
4736 | /* | |
4737 | * make sure to clear the hardware | |
4738 | * modify or reference bits before | |
4739 | * releasing the BUSY bit on this page | |
4740 | * otherwise we risk losing a legitimate | |
4741 | * change of state | |
4742 | */ | |
4743 | if (flags & UPL_COMMIT_CLEAR_DIRTY) { | |
4744 | m->dirty = FALSE; | |
2d21ac55 | 4745 | |
593a1d5f A |
4746 | if (! (flags & UPL_COMMIT_CS_VALIDATED) && |
4747 | m->cs_validated && !m->cs_tainted) { | |
4748 | /* | |
4749 | * CODE SIGNING: | |
4750 | * This page is no longer dirty | |
4751 | * but could have been modified, | |
4752 | * so it will need to be | |
4753 | * re-validated. | |
4754 | */ | |
4755 | m->cs_validated = FALSE; | |
4756 | #if DEVELOPMENT || DEBUG | |
4757 | vm_cs_validated_resets++; | |
4758 | #endif | |
b0d623f7 | 4759 | pmap_disconnect(m->phys_page); |
55e303ae | 4760 | } |
593a1d5f A |
4761 | clear_refmod |= VM_MEM_MODIFIED; |
4762 | } | |
593a1d5f A |
4763 | if (page_list) { |
4764 | upl_page_info_t *p; | |
2d21ac55 | 4765 | |
593a1d5f | 4766 | p = &(page_list[entry]); |
b0d623f7 | 4767 | |
593a1d5f A |
4768 | if (p->phys_addr && p->pageout && !m->pageout) { |
4769 | m->busy = TRUE; | |
4770 | m->pageout = TRUE; | |
b0d623f7 A |
4771 | |
4772 | dwp->dw_mask |= DW_vm_page_wire; | |
4773 | ||
593a1d5f A |
4774 | } else if (p->phys_addr && |
4775 | !p->pageout && m->pageout && | |
4776 | !m->dump_cleaning) { | |
2d21ac55 | 4777 | m->pageout = FALSE; |
593a1d5f A |
4778 | m->absent = FALSE; |
4779 | m->overwriting = FALSE; | |
b0d623f7 A |
4780 | |
4781 | dwp->dw_mask |= (DW_vm_page_unwire | DW_clear_busy | DW_PAGE_WAKEUP); | |
593a1d5f A |
4782 | } |
4783 | page_list[entry].phys_addr = 0; | |
4784 | } | |
4785 | m->dump_cleaning = FALSE; | |
2d21ac55 | 4786 | |
593a1d5f | 4787 | if (m->laundry) |
b0d623f7 | 4788 | dwp->dw_mask |= DW_vm_pageout_throttle_up; |
91447636 | 4789 | |
593a1d5f A |
4790 | if (m->pageout) { |
4791 | m->cleaning = FALSE; | |
4792 | m->encrypted_cleaning = FALSE; | |
4793 | m->pageout = FALSE; | |
1c79356b | 4794 | #if MACH_CLUSTER_STATS |
593a1d5f | 4795 | if (m->wanted) vm_pageout_target_collisions++; |
1c79356b | 4796 | #endif |
2d21ac55 | 4797 | m->dirty = FALSE; |
b0d623f7 | 4798 | |
593a1d5f A |
4799 | if (! (flags & UPL_COMMIT_CS_VALIDATED) && |
4800 | m->cs_validated && !m->cs_tainted) { | |
4a3eedf9 A |
4801 | /* |
4802 | * CODE SIGNING: | |
4803 | * This page is no longer dirty | |
4804 | * but could have been modified, | |
4805 | * so it will need to be | |
4806 | * re-validated. | |
4807 | */ | |
4808 | m->cs_validated = FALSE; | |
593a1d5f | 4809 | #if DEVELOPMENT || DEBUG |
4a3eedf9 | 4810 | vm_cs_validated_resets++; |
593a1d5f | 4811 | #endif |
b0d623f7 | 4812 | pmap_disconnect(m->phys_page); |
4a3eedf9 | 4813 | } |
b0d623f7 A |
4814 | |
4815 | if ((flags & UPL_COMMIT_SET_DIRTY) || | |
4816 | (m->pmapped && (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED))) | |
593a1d5f | 4817 | m->dirty = TRUE; |
b0d623f7 | 4818 | |
593a1d5f A |
4819 | if (m->dirty) { |
4820 | /* | |
4821 | * page was re-dirtied after we started | |
4822 | * the pageout... reactivate it since | |
4823 | * we don't know whether the on-disk | |
4824 | * copy matches what is now in memory | |
2d21ac55 | 4825 | */ |
b0d623f7 A |
4826 | dwp->dw_mask |= (DW_vm_page_unwire | DW_clear_busy | DW_PAGE_WAKEUP); |
4827 | ||
593a1d5f A |
4828 | if (upl->flags & UPL_PAGEOUT) { |
4829 | CLUSTER_STAT(vm_pageout_target_page_dirtied++;) | |
4830 | VM_STAT_INCR(reactivations); | |
4831 | DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); | |
4832 | } | |
593a1d5f A |
4833 | } else { |
4834 | /* | |
4835 | * page has been successfully cleaned | |
4836 | * go ahead and free it for other use | |
2d21ac55 | 4837 | */ |
b0d623f7 | 4838 | |
593a1d5f A |
4839 | if (m->object->internal) { |
4840 | DTRACE_VM2(anonpgout, int, 1, (uint64_t *), NULL); | |
4841 | } else { | |
4842 | DTRACE_VM2(fspgout, int, 1, (uint64_t *), NULL); | |
4843 | } | |
b0d623f7 A |
4844 | dwp->dw_mask |= DW_vm_page_free; |
4845 | ||
593a1d5f A |
4846 | if (upl->flags & UPL_PAGEOUT) { |
4847 | CLUSTER_STAT(vm_pageout_target_page_freed++;) | |
b0d623f7 | 4848 | |
593a1d5f A |
4849 | if (page_list[entry].dirty) { |
4850 | VM_STAT_INCR(pageouts); | |
4851 | DTRACE_VM2(pgout, int, 1, (uint64_t *), NULL); | |
4852 | pgpgout_count++; | |
4853 | } | |
4854 | } | |
de355530 | 4855 | } |
593a1d5f A |
4856 | goto commit_next_page; |
4857 | } | |
4858 | #if MACH_CLUSTER_STATS | |
4859 | if (m->wpmapped) | |
4860 | m->dirty = pmap_is_modified(m->phys_page); | |
4861 | ||
4862 | if (m->dirty) vm_pageout_cluster_dirtied++; | |
4863 | else vm_pageout_cluster_cleaned++; | |
4864 | if (m->wanted) vm_pageout_cluster_collisions++; | |
4865 | #endif | |
4866 | m->dirty = FALSE; | |
91447636 | 4867 | |
593a1d5f A |
4868 | if (! (flags & UPL_COMMIT_CS_VALIDATED) && |
4869 | m->cs_validated && !m->cs_tainted) { | |
2d21ac55 | 4870 | /* |
593a1d5f A |
4871 | * CODE SIGNING: |
4872 | * This page is no longer dirty | |
4873 | * but could have been modified, | |
4874 | * so it will need to be | |
4875 | * re-validated. | |
2d21ac55 | 4876 | */ |
593a1d5f A |
4877 | m->cs_validated = FALSE; |
4878 | #if DEVELOPMENT || DEBUG | |
4879 | vm_cs_validated_resets++; | |
4880 | #endif | |
b0d623f7 | 4881 | pmap_disconnect(m->phys_page); |
593a1d5f | 4882 | } |
55e303ae | 4883 | |
6d2010ae | 4884 | if (m->overwriting) { |
593a1d5f | 4885 | /* |
6d2010ae | 4886 | * the (COPY_OUT_FROM == FALSE) request_page_list case |
593a1d5f | 4887 | */ |
6d2010ae A |
4888 | if (m->busy) { |
4889 | m->absent = FALSE; | |
b0d623f7 | 4890 | |
6d2010ae A |
4891 | dwp->dw_mask |= DW_clear_busy; |
4892 | } else { | |
4893 | /* | |
4894 | * alternate (COPY_OUT_FROM == FALSE) page_list case | |
4895 | * Occurs when the original page was wired | |
4896 | * at the time of the list request | |
4897 | */ | |
4898 | assert(VM_PAGE_WIRED(m)); | |
b0d623f7 | 4899 | |
6d2010ae A |
4900 | dwp->dw_mask |= DW_vm_page_unwire; /* reactivates */ |
4901 | } | |
593a1d5f | 4902 | m->overwriting = FALSE; |
6d2010ae A |
4903 | } |
4904 | if (m->encrypted_cleaning == TRUE) { | |
4905 | m->encrypted_cleaning = FALSE; | |
b0d623f7 | 4906 | |
6d2010ae | 4907 | dwp->dw_mask |= DW_clear_busy; |
593a1d5f A |
4908 | } |
4909 | m->cleaning = FALSE; | |
b0d623f7 | 4910 | |
593a1d5f A |
4911 | /* |
4912 | * It is a part of the semantic of COPYOUT_FROM | |
4913 | * UPLs that a commit implies cache sync | |
4914 | * between the vm page and the backing store | |
4915 | * this can be used to strip the precious bit | |
4916 | * as well as clean | |
4917 | */ | |
b0d623f7 | 4918 | if ((upl->flags & UPL_PAGE_SYNC_DONE) || (flags & UPL_COMMIT_CLEAR_PRECIOUS)) |
593a1d5f | 4919 | m->precious = FALSE; |
b0d623f7 | 4920 | |
593a1d5f A |
4921 | if (flags & UPL_COMMIT_SET_DIRTY) |
4922 | m->dirty = TRUE; | |
b0d623f7 | 4923 | |
6d2010ae A |
4924 | if (should_be_throttled == TRUE && !m->active && !m->inactive && !m->speculative && !m->throttled) { |
4925 | /* | |
4926 | * page coming back in from being 'frozen'... | |
4927 | * it was dirty before it was frozen, so keep it so | |
4928 | * the vm_page_activate will notice that it really belongs | |
4929 | * on the throttle queue and put it there | |
4930 | */ | |
4931 | m->dirty = TRUE; | |
4932 | dwp->dw_mask |= DW_vm_page_activate; | |
b0d623f7 | 4933 | |
6d2010ae A |
4934 | } else { |
4935 | if ((flags & UPL_COMMIT_INACTIVATE) && !m->clustered && !m->speculative) { | |
b0d623f7 A |
4936 | dwp->dw_mask |= DW_vm_page_deactivate_internal; |
4937 | clear_refmod |= VM_MEM_REFERENCED; | |
6d2010ae A |
4938 | } else if (!m->active && !m->inactive && !m->speculative) { |
4939 | ||
4940 | if (m->clustered || (flags & UPL_COMMIT_SPECULATE)) | |
4941 | dwp->dw_mask |= DW_vm_page_speculate; | |
4942 | else if (m->reference) | |
4943 | dwp->dw_mask |= DW_vm_page_activate; | |
4944 | else { | |
4945 | dwp->dw_mask |= DW_vm_page_deactivate_internal; | |
4946 | clear_refmod |= VM_MEM_REFERENCED; | |
4947 | } | |
b0d623f7 | 4948 | } |
593a1d5f | 4949 | } |
b0d623f7 | 4950 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
2d21ac55 | 4951 | /* |
593a1d5f A |
4952 | * We blocked access to the pages in this URL. |
4953 | * Clear the "busy" bit on this page before we | |
4954 | * wake up any waiter. | |
2d21ac55 | 4955 | */ |
b0d623f7 | 4956 | dwp->dw_mask |= DW_clear_busy; |
1c79356b | 4957 | } |
593a1d5f A |
4958 | /* |
4959 | * Wakeup any thread waiting for the page to be un-cleaning. | |
4960 | */ | |
b0d623f7 | 4961 | dwp->dw_mask |= DW_PAGE_WAKEUP; |
593a1d5f | 4962 | |
2d21ac55 | 4963 | commit_next_page: |
b0d623f7 A |
4964 | if (clear_refmod) |
4965 | pmap_clear_refmod(m->phys_page, clear_refmod); | |
4966 | ||
1c79356b A |
4967 | target_offset += PAGE_SIZE_64; |
4968 | xfer_size -= PAGE_SIZE; | |
4969 | entry++; | |
2d21ac55 | 4970 | |
b0d623f7 A |
4971 | if (dwp->dw_mask) { |
4972 | if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) { | |
6d2010ae | 4973 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); |
4a3eedf9 | 4974 | |
6d2010ae A |
4975 | if (dw_count >= dw_limit) { |
4976 | vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count); | |
b0d623f7 A |
4977 | |
4978 | dwp = &dw_array[0]; | |
4979 | dw_count = 0; | |
4980 | } | |
4981 | } else { | |
4982 | if (dwp->dw_mask & DW_clear_busy) | |
4983 | m->busy = FALSE; | |
4984 | ||
4985 | if (dwp->dw_mask & DW_PAGE_WAKEUP) | |
4986 | PAGE_WAKEUP(m); | |
4a3eedf9 | 4987 | } |
2d21ac55 | 4988 | } |
1c79356b | 4989 | } |
b0d623f7 | 4990 | if (dw_count) |
6d2010ae | 4991 | vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count); |
55e303ae A |
4992 | |
4993 | occupied = 1; | |
4994 | ||
4995 | if (upl->flags & UPL_DEVICE_MEMORY) { | |
4996 | occupied = 0; | |
4997 | } else if (upl->flags & UPL_LITE) { | |
4998 | int pg_num; | |
4999 | int i; | |
2d21ac55 | 5000 | |
55e303ae A |
5001 | pg_num = upl->size/PAGE_SIZE; |
5002 | pg_num = (pg_num + 31) >> 5; | |
5003 | occupied = 0; | |
2d21ac55 A |
5004 | |
5005 | for (i = 0; i < pg_num; i++) { | |
5006 | if (lite_list[i] != 0) { | |
55e303ae A |
5007 | occupied = 1; |
5008 | break; | |
5009 | } | |
5010 | } | |
5011 | } else { | |
2d21ac55 | 5012 | if (queue_empty(&upl->map_object->memq)) |
55e303ae | 5013 | occupied = 0; |
55e303ae | 5014 | } |
2d21ac55 | 5015 | if (occupied == 0) { |
b0d623f7 A |
5016 | /* |
5017 | * If this UPL element belongs to a Vector UPL and is | |
5018 | * empty, then this is the right function to deallocate | |
5019 | * it. So go ahead set the *empty variable. The flag | |
5020 | * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view | |
5021 | * should be considered relevant for the Vector UPL and not | |
5022 | * the internal UPLs. | |
5023 | */ | |
5024 | if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) | |
0b4e3aa0 | 5025 | *empty = TRUE; |
2d21ac55 | 5026 | |
b0d623f7 | 5027 | if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) { |
2d21ac55 A |
5028 | /* |
5029 | * this is not a paging object | |
5030 | * so we need to drop the paging reference | |
5031 | * that was taken when we created the UPL | |
5032 | * against this object | |
5033 | */ | |
b0d623f7 | 5034 | vm_object_activity_end(shadow_object); |
2d21ac55 A |
5035 | } else { |
5036 | /* | |
5037 | * we dontated the paging reference to | |
5038 | * the map object... vm_pageout_object_terminate | |
5039 | * will drop this reference | |
5040 | */ | |
5041 | } | |
1c79356b | 5042 | } |
55e303ae | 5043 | vm_object_unlock(shadow_object); |
91447636 A |
5044 | if (object != shadow_object) |
5045 | vm_object_unlock(object); | |
b0d623f7 A |
5046 | |
5047 | if(!isVectorUPL) | |
5048 | upl_unlock(upl); | |
5049 | else { | |
5050 | /* | |
5051 | * If we completed our operations on an UPL that is | |
5052 | * part of a Vectored UPL and if empty is TRUE, then | |
5053 | * we should go ahead and deallocate this UPL element. | |
5054 | * Then we check if this was the last of the UPL elements | |
5055 | * within that Vectored UPL. If so, set empty to TRUE | |
5056 | * so that in ubc_upl_commit_range or ubc_upl_commit, we | |
5057 | * can go ahead and deallocate the Vector UPL too. | |
5058 | */ | |
5059 | if(*empty==TRUE) { | |
5060 | *empty = vector_upl_set_subupl(vector_upl, upl, 0); | |
5061 | upl_deallocate(upl); | |
5062 | } | |
5063 | goto process_upl_to_commit; | |
5064 | } | |
0b4e3aa0 | 5065 | |
2d21ac55 A |
5066 | if (pgpgout_count) { |
5067 | DTRACE_VM2(pgpgout, int, pgpgout_count, (uint64_t *), NULL); | |
5068 | } | |
5069 | ||
1c79356b A |
5070 | return KERN_SUCCESS; |
5071 | } | |
5072 | ||
0b4e3aa0 A |
5073 | kern_return_t |
5074 | upl_abort_range( | |
1c79356b | 5075 | upl_t upl, |
91447636 A |
5076 | upl_offset_t offset, |
5077 | upl_size_t size, | |
0b4e3aa0 A |
5078 | int error, |
5079 | boolean_t *empty) | |
1c79356b | 5080 | { |
b0d623f7 | 5081 | upl_size_t xfer_size, subupl_size = size; |
55e303ae | 5082 | vm_object_t shadow_object; |
2d21ac55 | 5083 | vm_object_t object; |
1c79356b | 5084 | vm_object_offset_t target_offset; |
b0d623f7 | 5085 | upl_offset_t subupl_offset = offset; |
1c79356b | 5086 | int entry; |
55e303ae A |
5087 | wpl_array_t lite_list; |
5088 | int occupied; | |
6d2010ae A |
5089 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; |
5090 | struct vm_page_delayed_work *dwp; | |
5091 | int dw_count; | |
5092 | int dw_limit; | |
5093 | int isVectorUPL = 0; | |
b0d623f7 | 5094 | upl_t vector_upl = NULL; |
1c79356b | 5095 | |
0b4e3aa0 A |
5096 | *empty = FALSE; |
5097 | ||
5098 | if (upl == UPL_NULL) | |
5099 | return KERN_INVALID_ARGUMENT; | |
5100 | ||
2d21ac55 | 5101 | if ( (upl->flags & UPL_IO_WIRE) && !(error & UPL_ABORT_DUMP_PAGES) ) |
0b4c1975 | 5102 | return upl_commit_range(upl, offset, size, UPL_COMMIT_FREE_ABSENT, NULL, 0, empty); |
55e303ae | 5103 | |
b0d623f7 A |
5104 | if((isVectorUPL = vector_upl_is_valid(upl))) { |
5105 | vector_upl = upl; | |
5106 | upl_lock(vector_upl); | |
5107 | } | |
5108 | else | |
5109 | upl_lock(upl); | |
5110 | ||
5111 | process_upl_to_abort: | |
5112 | if(isVectorUPL) { | |
5113 | size = subupl_size; | |
5114 | offset = subupl_offset; | |
5115 | if(size == 0) { | |
5116 | upl_unlock(vector_upl); | |
5117 | return KERN_SUCCESS; | |
5118 | } | |
5119 | upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size); | |
5120 | if(upl == NULL) { | |
5121 | upl_unlock(vector_upl); | |
5122 | return KERN_FAILURE; | |
5123 | } | |
5124 | subupl_size -= size; | |
5125 | subupl_offset += size; | |
5126 | } | |
5127 | ||
5128 | *empty = FALSE; | |
5129 | ||
5130 | #if UPL_DEBUG | |
5131 | if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) { | |
5132 | (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES); | |
5133 | ||
5134 | upl->upl_commit_records[upl->upl_commit_index].c_beg = offset; | |
5135 | upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size); | |
5136 | upl->upl_commit_records[upl->upl_commit_index].c_aborted = 1; | |
5137 | ||
5138 | upl->upl_commit_index++; | |
5139 | } | |
5140 | #endif | |
2d21ac55 | 5141 | if (upl->flags & UPL_DEVICE_MEMORY) |
1c79356b | 5142 | xfer_size = 0; |
2d21ac55 A |
5143 | else if ((offset + size) <= upl->size) |
5144 | xfer_size = size; | |
b0d623f7 A |
5145 | else { |
5146 | if(!isVectorUPL) | |
5147 | upl_unlock(upl); | |
5148 | else { | |
5149 | upl_unlock(vector_upl); | |
5150 | } | |
55e303ae | 5151 | |
b0d623f7 A |
5152 | return KERN_FAILURE; |
5153 | } | |
2d21ac55 | 5154 | if (upl->flags & UPL_INTERNAL) { |
55e303ae | 5155 | lite_list = (wpl_array_t) |
91447636 | 5156 | ((((uintptr_t)upl) + sizeof(struct upl)) |
55e303ae A |
5157 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); |
5158 | } else { | |
5159 | lite_list = (wpl_array_t) | |
91447636 | 5160 | (((uintptr_t)upl) + sizeof(struct upl)); |
55e303ae | 5161 | } |
2d21ac55 A |
5162 | object = upl->map_object; |
5163 | ||
5164 | if (upl->flags & UPL_SHADOWED) { | |
5165 | vm_object_lock(object); | |
5166 | shadow_object = object->shadow; | |
5167 | } else | |
5168 | shadow_object = object; | |
5169 | ||
1c79356b A |
5170 | entry = offset/PAGE_SIZE; |
5171 | target_offset = (vm_object_offset_t)offset; | |
2d21ac55 | 5172 | |
b0d623f7 A |
5173 | if (upl->flags & UPL_KERNEL_OBJECT) |
5174 | vm_object_lock_shared(shadow_object); | |
5175 | else | |
5176 | vm_object_lock(shadow_object); | |
4a3eedf9 | 5177 | |
b0d623f7 A |
5178 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
5179 | assert(shadow_object->blocked_access); | |
5180 | shadow_object->blocked_access = FALSE; | |
5181 | vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED); | |
4a3eedf9 | 5182 | } |
b0d623f7 A |
5183 | |
5184 | dwp = &dw_array[0]; | |
5185 | dw_count = 0; | |
6d2010ae | 5186 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
b0d623f7 A |
5187 | |
5188 | if ((error & UPL_ABORT_DUMP_PAGES) && (upl->flags & UPL_KERNEL_OBJECT)) | |
5189 | panic("upl_abort_range: kernel_object being DUMPED"); | |
4a3eedf9 | 5190 | |
2d21ac55 A |
5191 | while (xfer_size) { |
5192 | vm_page_t t, m; | |
5193 | ||
b0d623f7 A |
5194 | dwp->dw_mask = 0; |
5195 | ||
55e303ae | 5196 | m = VM_PAGE_NULL; |
2d21ac55 A |
5197 | |
5198 | if (upl->flags & UPL_LITE) { | |
b0d623f7 A |
5199 | unsigned int pg_num; |
5200 | ||
5201 | pg_num = (unsigned int) (target_offset/PAGE_SIZE); | |
5202 | assert(pg_num == target_offset/PAGE_SIZE); | |
5203 | ||
2d21ac55 A |
5204 | |
5205 | if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { | |
55e303ae | 5206 | lite_list[pg_num>>5] &= ~(1 << (pg_num & 31)); |
2d21ac55 | 5207 | |
b0d623f7 A |
5208 | if ( !(upl->flags & UPL_KERNEL_OBJECT)) |
5209 | m = vm_page_lookup(shadow_object, target_offset + | |
5210 | (upl->offset - shadow_object->paging_offset)); | |
55e303ae A |
5211 | } |
5212 | } | |
2d21ac55 A |
5213 | if (upl->flags & UPL_SHADOWED) { |
5214 | if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) { | |
5215 | t->pageout = FALSE; | |
5216 | ||
b0d623f7 | 5217 | VM_PAGE_FREE(t); |
2d21ac55 A |
5218 | |
5219 | if (m == VM_PAGE_NULL) | |
6d2010ae | 5220 | m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset); |
55e303ae A |
5221 | } |
5222 | } | |
b0d623f7 A |
5223 | if ((upl->flags & UPL_KERNEL_OBJECT)) |
5224 | goto abort_next_page; | |
5225 | ||
2d21ac55 A |
5226 | if (m != VM_PAGE_NULL) { |
5227 | ||
5228 | if (m->absent) { | |
91447636 A |
5229 | boolean_t must_free = TRUE; |
5230 | ||
2d21ac55 A |
5231 | /* |
5232 | * COPYOUT = FALSE case | |
5233 | * check for error conditions which must | |
5234 | * be passed back to the pages customer | |
5235 | */ | |
5236 | if (error & UPL_ABORT_RESTART) { | |
1c79356b A |
5237 | m->restart = TRUE; |
5238 | m->absent = FALSE; | |
2d21ac55 | 5239 | m->unusual = TRUE; |
91447636 | 5240 | must_free = FALSE; |
2d21ac55 | 5241 | } else if (error & UPL_ABORT_UNAVAILABLE) { |
1c79356b A |
5242 | m->restart = FALSE; |
5243 | m->unusual = TRUE; | |
91447636 | 5244 | must_free = FALSE; |
2d21ac55 | 5245 | } else if (error & UPL_ABORT_ERROR) { |
1c79356b A |
5246 | m->restart = FALSE; |
5247 | m->absent = FALSE; | |
1c79356b | 5248 | m->error = TRUE; |
2d21ac55 | 5249 | m->unusual = TRUE; |
91447636 | 5250 | must_free = FALSE; |
1c79356b | 5251 | } |
6d2010ae A |
5252 | if (m->clustered) { |
5253 | /* | |
5254 | * This page was a part of a speculative | |
5255 | * read-ahead initiated by the kernel | |
5256 | * itself. No one is expecting this | |
5257 | * page and no one will clean up its | |
5258 | * error state if it ever becomes valid | |
5259 | * in the future. | |
5260 | * We have to free it here. | |
5261 | */ | |
5262 | must_free = TRUE; | |
5263 | } | |
91447636 A |
5264 | |
5265 | /* | |
5266 | * ENCRYPTED SWAP: | |
5267 | * If the page was already encrypted, | |
5268 | * we don't really need to decrypt it | |
5269 | * now. It will get decrypted later, | |
5270 | * on demand, as soon as someone needs | |
5271 | * to access its contents. | |
5272 | */ | |
1c79356b A |
5273 | |
5274 | m->cleaning = FALSE; | |
2d21ac55 | 5275 | m->encrypted_cleaning = FALSE; |
6d2010ae A |
5276 | |
5277 | if (m->overwriting && !m->busy) { | |
5278 | /* | |
5279 | * this shouldn't happen since | |
5280 | * this is an 'absent' page, but | |
5281 | * it doesn't hurt to check for | |
5282 | * the 'alternate' method of | |
5283 | * stabilizing the page... | |
5284 | * we will mark 'busy' to be cleared | |
5285 | * in the following code which will | |
5286 | * take care of the primary stabilzation | |
5287 | * method (i.e. setting 'busy' to TRUE) | |
5288 | */ | |
5289 | dwp->dw_mask |= DW_vm_page_unwire; | |
5290 | } | |
1c79356b | 5291 | m->overwriting = FALSE; |
b0d623f7 A |
5292 | |
5293 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); | |
91447636 | 5294 | |
2d21ac55 | 5295 | if (must_free == TRUE) |
b0d623f7 | 5296 | dwp->dw_mask |= DW_vm_page_free; |
2d21ac55 | 5297 | else |
b0d623f7 | 5298 | dwp->dw_mask |= DW_vm_page_activate; |
2d21ac55 A |
5299 | } else { |
5300 | /* | |
5301 | * Handle the trusted pager throttle. | |
5302 | */ | |
5303 | if (m->laundry) | |
b0d623f7 | 5304 | dwp->dw_mask |= DW_vm_pageout_throttle_up; |
2d21ac55 | 5305 | |
6d2010ae A |
5306 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
5307 | /* | |
5308 | * We blocked access to the pages in this UPL. | |
5309 | * Clear the "busy" bit and wake up any waiter | |
5310 | * for this page. | |
5311 | */ | |
5312 | dwp->dw_mask |= DW_clear_busy; | |
5313 | } | |
2d21ac55 A |
5314 | if (m->pageout) { |
5315 | assert(m->busy); | |
5316 | assert(m->wire_count == 1); | |
5317 | m->pageout = FALSE; | |
b0d623f7 | 5318 | |
6d2010ae A |
5319 | dwp->dw_mask |= (DW_vm_page_unwire | DW_clear_busy); |
5320 | } | |
5321 | if (m->overwriting) { | |
5322 | if (m->busy) | |
5323 | dwp->dw_mask |= DW_clear_busy; | |
5324 | else { | |
5325 | /* | |
5326 | * deal with the 'alternate' method | |
5327 | * of stabilizing the page... | |
5328 | * we will either free the page | |
5329 | * or mark 'busy' to be cleared | |
5330 | * in the following code which will | |
5331 | * take care of the primary stabilzation | |
5332 | * method (i.e. setting 'busy' to TRUE) | |
5333 | */ | |
5334 | dwp->dw_mask |= DW_vm_page_unwire; | |
5335 | } | |
5336 | m->overwriting = FALSE; | |
5337 | } | |
5338 | if (m->encrypted_cleaning == TRUE) { | |
5339 | m->encrypted_cleaning = FALSE; | |
5340 | ||
5341 | dwp->dw_mask |= DW_clear_busy; | |
1c79356b | 5342 | } |
2d21ac55 A |
5343 | m->dump_cleaning = FALSE; |
5344 | m->cleaning = FALSE; | |
1c79356b | 5345 | #if MACH_PAGEMAP |
2d21ac55 | 5346 | vm_external_state_clr(m->object->existence_map, m->offset); |
1c79356b | 5347 | #endif /* MACH_PAGEMAP */ |
2d21ac55 A |
5348 | if (error & UPL_ABORT_DUMP_PAGES) { |
5349 | pmap_disconnect(m->phys_page); | |
b0d623f7 A |
5350 | |
5351 | dwp->dw_mask |= DW_vm_page_free; | |
2d21ac55 A |
5352 | } else { |
5353 | if (error & UPL_ABORT_REFERENCE) { | |
5354 | /* | |
5355 | * we've been told to explictly | |
5356 | * reference this page... for | |
5357 | * file I/O, this is done by | |
5358 | * implementing an LRU on the inactive q | |
5359 | */ | |
b0d623f7 | 5360 | dwp->dw_mask |= DW_vm_page_lru; |
2d21ac55 | 5361 | } |
6d2010ae | 5362 | dwp->dw_mask |= DW_PAGE_WAKEUP; |
2d21ac55 | 5363 | } |
1c79356b | 5364 | } |
2d21ac55 | 5365 | } |
b0d623f7 | 5366 | abort_next_page: |
55e303ae A |
5367 | target_offset += PAGE_SIZE_64; |
5368 | xfer_size -= PAGE_SIZE; | |
5369 | entry++; | |
b0d623f7 A |
5370 | |
5371 | if (dwp->dw_mask) { | |
5372 | if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) { | |
6d2010ae | 5373 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); |
b0d623f7 | 5374 | |
6d2010ae A |
5375 | if (dw_count >= dw_limit) { |
5376 | vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count); | |
b0d623f7 A |
5377 | |
5378 | dwp = &dw_array[0]; | |
5379 | dw_count = 0; | |
5380 | } | |
5381 | } else { | |
5382 | if (dwp->dw_mask & DW_clear_busy) | |
5383 | m->busy = FALSE; | |
5384 | ||
5385 | if (dwp->dw_mask & DW_PAGE_WAKEUP) | |
5386 | PAGE_WAKEUP(m); | |
5387 | } | |
5388 | } | |
d7e50217 | 5389 | } |
b0d623f7 | 5390 | if (dw_count) |
6d2010ae | 5391 | vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count); |
2d21ac55 | 5392 | |
55e303ae | 5393 | occupied = 1; |
2d21ac55 | 5394 | |
55e303ae A |
5395 | if (upl->flags & UPL_DEVICE_MEMORY) { |
5396 | occupied = 0; | |
5397 | } else if (upl->flags & UPL_LITE) { | |
5398 | int pg_num; | |
5399 | int i; | |
2d21ac55 | 5400 | |
55e303ae A |
5401 | pg_num = upl->size/PAGE_SIZE; |
5402 | pg_num = (pg_num + 31) >> 5; | |
5403 | occupied = 0; | |
2d21ac55 A |
5404 | |
5405 | for (i = 0; i < pg_num; i++) { | |
5406 | if (lite_list[i] != 0) { | |
55e303ae A |
5407 | occupied = 1; |
5408 | break; | |
5409 | } | |
5410 | } | |
5411 | } else { | |
2d21ac55 | 5412 | if (queue_empty(&upl->map_object->memq)) |
55e303ae | 5413 | occupied = 0; |
55e303ae | 5414 | } |
2d21ac55 | 5415 | if (occupied == 0) { |
b0d623f7 A |
5416 | /* |
5417 | * If this UPL element belongs to a Vector UPL and is | |
5418 | * empty, then this is the right function to deallocate | |
5419 | * it. So go ahead set the *empty variable. The flag | |
5420 | * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view | |
5421 | * should be considered relevant for the Vector UPL and | |
5422 | * not the internal UPLs. | |
5423 | */ | |
5424 | if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) | |
0b4e3aa0 | 5425 | *empty = TRUE; |
2d21ac55 | 5426 | |
b0d623f7 | 5427 | if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) { |
2d21ac55 A |
5428 | /* |
5429 | * this is not a paging object | |
5430 | * so we need to drop the paging reference | |
5431 | * that was taken when we created the UPL | |
5432 | * against this object | |
5433 | */ | |
b0d623f7 | 5434 | vm_object_activity_end(shadow_object); |
2d21ac55 A |
5435 | } else { |
5436 | /* | |
5437 | * we dontated the paging reference to | |
5438 | * the map object... vm_pageout_object_terminate | |
5439 | * will drop this reference | |
5440 | */ | |
5441 | } | |
1c79356b | 5442 | } |
55e303ae | 5443 | vm_object_unlock(shadow_object); |
91447636 A |
5444 | if (object != shadow_object) |
5445 | vm_object_unlock(object); | |
b0d623f7 A |
5446 | |
5447 | if(!isVectorUPL) | |
5448 | upl_unlock(upl); | |
5449 | else { | |
5450 | /* | |
5451 | * If we completed our operations on an UPL that is | |
5452 | * part of a Vectored UPL and if empty is TRUE, then | |
5453 | * we should go ahead and deallocate this UPL element. | |
5454 | * Then we check if this was the last of the UPL elements | |
5455 | * within that Vectored UPL. If so, set empty to TRUE | |
5456 | * so that in ubc_upl_abort_range or ubc_upl_abort, we | |
5457 | * can go ahead and deallocate the Vector UPL too. | |
5458 | */ | |
5459 | if(*empty == TRUE) { | |
5460 | *empty = vector_upl_set_subupl(vector_upl, upl,0); | |
5461 | upl_deallocate(upl); | |
5462 | } | |
5463 | goto process_upl_to_abort; | |
5464 | } | |
55e303ae | 5465 | |
1c79356b A |
5466 | return KERN_SUCCESS; |
5467 | } | |
5468 | ||
2d21ac55 | 5469 | |
1c79356b | 5470 | kern_return_t |
0b4e3aa0 | 5471 | upl_abort( |
1c79356b A |
5472 | upl_t upl, |
5473 | int error) | |
2d21ac55 A |
5474 | { |
5475 | boolean_t empty; | |
5476 | ||
5477 | return upl_abort_range(upl, 0, upl->size, error, &empty); | |
1c79356b A |
5478 | } |
5479 | ||
55e303ae | 5480 | |
2d21ac55 A |
5481 | /* an option on commit should be wire */ |
5482 | kern_return_t | |
5483 | upl_commit( | |
5484 | upl_t upl, | |
5485 | upl_page_info_t *page_list, | |
5486 | mach_msg_type_number_t count) | |
5487 | { | |
5488 | boolean_t empty; | |
5489 | ||
5490 | return upl_commit_range(upl, 0, upl->size, 0, page_list, count, &empty); | |
5491 | } | |
5492 | ||
55e303ae | 5493 | |
b0d623f7 A |
5494 | unsigned int vm_object_iopl_request_sleep_for_cleaning = 0; |
5495 | ||
55e303ae A |
5496 | kern_return_t |
5497 | vm_object_iopl_request( | |
5498 | vm_object_t object, | |
5499 | vm_object_offset_t offset, | |
91447636 | 5500 | upl_size_t size, |
55e303ae A |
5501 | upl_t *upl_ptr, |
5502 | upl_page_info_array_t user_page_list, | |
5503 | unsigned int *page_list_count, | |
5504 | int cntrl_flags) | |
5505 | { | |
5506 | vm_page_t dst_page; | |
2d21ac55 A |
5507 | vm_object_offset_t dst_offset; |
5508 | upl_size_t xfer_size; | |
55e303ae | 5509 | upl_t upl = NULL; |
91447636 A |
5510 | unsigned int entry; |
5511 | wpl_array_t lite_list = NULL; | |
91447636 | 5512 | int no_zero_fill = FALSE; |
6d2010ae | 5513 | unsigned int size_in_pages; |
2d21ac55 | 5514 | u_int32_t psize; |
55e303ae A |
5515 | kern_return_t ret; |
5516 | vm_prot_t prot; | |
2d21ac55 | 5517 | struct vm_object_fault_info fault_info; |
6d2010ae A |
5518 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; |
5519 | struct vm_page_delayed_work *dwp; | |
b0d623f7 | 5520 | int dw_count; |
6d2010ae | 5521 | int dw_limit; |
b0d623f7 | 5522 | int dw_index; |
55e303ae | 5523 | |
91447636 A |
5524 | if (cntrl_flags & ~UPL_VALID_FLAGS) { |
5525 | /* | |
5526 | * For forward compatibility's sake, | |
5527 | * reject any unknown flag. | |
5528 | */ | |
5529 | return KERN_INVALID_VALUE; | |
5530 | } | |
0b4c1975 | 5531 | if (vm_lopage_needed == FALSE) |
0c530ab8 A |
5532 | cntrl_flags &= ~UPL_NEED_32BIT_ADDR; |
5533 | ||
5534 | if (cntrl_flags & UPL_NEED_32BIT_ADDR) { | |
5535 | if ( (cntrl_flags & (UPL_SET_IO_WIRE | UPL_SET_LITE)) != (UPL_SET_IO_WIRE | UPL_SET_LITE)) | |
5536 | return KERN_INVALID_VALUE; | |
5537 | ||
5538 | if (object->phys_contiguous) { | |
6d2010ae | 5539 | if ((offset + object->vo_shadow_offset) >= (vm_object_offset_t)max_valid_dma_address) |
0c530ab8 | 5540 | return KERN_INVALID_ADDRESS; |
2d21ac55 | 5541 | |
6d2010ae | 5542 | if (((offset + object->vo_shadow_offset) + size) >= (vm_object_offset_t)max_valid_dma_address) |
0c530ab8 A |
5543 | return KERN_INVALID_ADDRESS; |
5544 | } | |
5545 | } | |
91447636 A |
5546 | |
5547 | if (cntrl_flags & UPL_ENCRYPT) { | |
5548 | /* | |
5549 | * ENCRYPTED SWAP: | |
5550 | * The paging path doesn't use this interface, | |
5551 | * so we don't support the UPL_ENCRYPT flag | |
5552 | * here. We won't encrypt the pages. | |
5553 | */ | |
5554 | assert(! (cntrl_flags & UPL_ENCRYPT)); | |
5555 | } | |
91447636 A |
5556 | if (cntrl_flags & UPL_NOZEROFILL) |
5557 | no_zero_fill = TRUE; | |
5558 | ||
5559 | if (cntrl_flags & UPL_COPYOUT_FROM) | |
55e303ae | 5560 | prot = VM_PROT_READ; |
91447636 | 5561 | else |
55e303ae | 5562 | prot = VM_PROT_READ | VM_PROT_WRITE; |
55e303ae | 5563 | |
b0d623f7 A |
5564 | if (((size/PAGE_SIZE) > MAX_UPL_SIZE) && !object->phys_contiguous) |
5565 | size = MAX_UPL_SIZE * PAGE_SIZE; | |
55e303ae | 5566 | |
2d21ac55 A |
5567 | if (cntrl_flags & UPL_SET_INTERNAL) { |
5568 | if (page_list_count != NULL) | |
cf7d32b8 | 5569 | *page_list_count = MAX_UPL_SIZE; |
2d21ac55 A |
5570 | } |
5571 | if (((cntrl_flags & UPL_SET_INTERNAL) && !(object->phys_contiguous)) && | |
5572 | ((page_list_count != NULL) && (*page_list_count != 0) && *page_list_count < (size/page_size))) | |
5573 | return KERN_INVALID_ARGUMENT; | |
55e303ae | 5574 | |
2d21ac55 A |
5575 | if ((!object->internal) && (object->paging_offset != 0)) |
5576 | panic("vm_object_iopl_request: external object with non-zero paging offset\n"); | |
5577 | ||
5578 | ||
5579 | if (object->phys_contiguous) | |
5580 | psize = PAGE_SIZE; | |
5581 | else | |
5582 | psize = size; | |
5583 | ||
5584 | if (cntrl_flags & UPL_SET_INTERNAL) { | |
5585 | upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE, UPL_IO_WIRE, psize); | |
5586 | ||
5587 | user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); | |
5588 | lite_list = (wpl_array_t) (((uintptr_t)user_page_list) + | |
5589 | ((psize / PAGE_SIZE) * sizeof(upl_page_info_t))); | |
b0d623f7 A |
5590 | if (size == 0) { |
5591 | user_page_list = NULL; | |
5592 | lite_list = NULL; | |
5593 | } | |
2d21ac55 A |
5594 | } else { |
5595 | upl = upl_create(UPL_CREATE_LITE, UPL_IO_WIRE, psize); | |
55e303ae | 5596 | |
2d21ac55 | 5597 | lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); |
b0d623f7 A |
5598 | if (size == 0) { |
5599 | lite_list = NULL; | |
5600 | } | |
55e303ae | 5601 | } |
2d21ac55 A |
5602 | if (user_page_list) |
5603 | user_page_list[0].device = FALSE; | |
5604 | *upl_ptr = upl; | |
55e303ae | 5605 | |
2d21ac55 A |
5606 | upl->map_object = object; |
5607 | upl->size = size; | |
5608 | ||
6d2010ae A |
5609 | size_in_pages = size / PAGE_SIZE; |
5610 | ||
b0d623f7 A |
5611 | if (object == kernel_object && |
5612 | !(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS))) { | |
5613 | upl->flags |= UPL_KERNEL_OBJECT; | |
5614 | #if UPL_DEBUG | |
5615 | vm_object_lock(object); | |
5616 | #else | |
5617 | vm_object_lock_shared(object); | |
5618 | #endif | |
5619 | } else { | |
5620 | vm_object_lock(object); | |
5621 | vm_object_activity_begin(object); | |
5622 | } | |
2d21ac55 A |
5623 | /* |
5624 | * paging in progress also protects the paging_offset | |
5625 | */ | |
5626 | upl->offset = offset + object->paging_offset; | |
55e303ae | 5627 | |
b0d623f7 A |
5628 | if (cntrl_flags & UPL_BLOCK_ACCESS) { |
5629 | /* | |
5630 | * The user requested that access to the pages in this URL | |
5631 | * be blocked until the UPL is commited or aborted. | |
5632 | */ | |
5633 | upl->flags |= UPL_ACCESS_BLOCKED; | |
5634 | } | |
5635 | ||
2d21ac55 | 5636 | if (object->phys_contiguous) { |
b0d623f7 | 5637 | #if UPL_DEBUG |
2d21ac55 A |
5638 | queue_enter(&object->uplq, upl, upl_t, uplq); |
5639 | #endif /* UPL_DEBUG */ | |
55e303ae | 5640 | |
b0d623f7 A |
5641 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
5642 | assert(!object->blocked_access); | |
5643 | object->blocked_access = TRUE; | |
5644 | } | |
5645 | ||
2d21ac55 | 5646 | vm_object_unlock(object); |
55e303ae | 5647 | |
2d21ac55 A |
5648 | /* |
5649 | * don't need any shadow mappings for this one | |
5650 | * since it is already I/O memory | |
5651 | */ | |
5652 | upl->flags |= UPL_DEVICE_MEMORY; | |
55e303ae | 5653 | |
6d2010ae | 5654 | upl->highest_page = (ppnum_t) ((offset + object->vo_shadow_offset + size - 1)>>PAGE_SHIFT); |
2d21ac55 A |
5655 | |
5656 | if (user_page_list) { | |
6d2010ae | 5657 | user_page_list[0].phys_addr = (ppnum_t) ((offset + object->vo_shadow_offset)>>PAGE_SHIFT); |
2d21ac55 | 5658 | user_page_list[0].device = TRUE; |
55e303ae | 5659 | } |
2d21ac55 A |
5660 | if (page_list_count != NULL) { |
5661 | if (upl->flags & UPL_INTERNAL) | |
5662 | *page_list_count = 0; | |
5663 | else | |
5664 | *page_list_count = 1; | |
55e303ae | 5665 | } |
2d21ac55 | 5666 | return KERN_SUCCESS; |
55e303ae | 5667 | } |
b0d623f7 A |
5668 | if (object != kernel_object) { |
5669 | /* | |
5670 | * Protect user space from future COW operations | |
5671 | */ | |
5672 | object->true_share = TRUE; | |
55e303ae | 5673 | |
b0d623f7 A |
5674 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) |
5675 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
5676 | } | |
6d2010ae | 5677 | |
b0d623f7 | 5678 | #if UPL_DEBUG |
2d21ac55 | 5679 | queue_enter(&object->uplq, upl, upl_t, uplq); |
91447636 | 5680 | #endif /* UPL_DEBUG */ |
91447636 | 5681 | |
b0d623f7 A |
5682 | if (!(cntrl_flags & UPL_COPYOUT_FROM) && |
5683 | object->copy != VM_OBJECT_NULL) { | |
91447636 | 5684 | /* |
b0d623f7 A |
5685 | * Honor copy-on-write obligations |
5686 | * | |
5687 | * The caller is gathering these pages and | |
5688 | * might modify their contents. We need to | |
5689 | * make sure that the copy object has its own | |
5690 | * private copies of these pages before we let | |
5691 | * the caller modify them. | |
5692 | * | |
5693 | * NOTE: someone else could map the original object | |
5694 | * after we've done this copy-on-write here, and they | |
5695 | * could then see an inconsistent picture of the memory | |
5696 | * while it's being modified via the UPL. To prevent this, | |
5697 | * we would have to block access to these pages until the | |
5698 | * UPL is released. We could use the UPL_BLOCK_ACCESS | |
5699 | * code path for that... | |
91447636 | 5700 | */ |
b0d623f7 A |
5701 | vm_object_update(object, |
5702 | offset, | |
5703 | size, | |
5704 | NULL, | |
5705 | NULL, | |
5706 | FALSE, /* should_return */ | |
5707 | MEMORY_OBJECT_COPY_SYNC, | |
5708 | VM_PROT_NO_CHANGE); | |
5709 | #if DEVELOPMENT || DEBUG | |
5710 | iopl_cow++; | |
5711 | iopl_cow_pages += size >> PAGE_SHIFT; | |
5712 | #endif | |
55e303ae | 5713 | } |
b0d623f7 A |
5714 | |
5715 | ||
55e303ae | 5716 | entry = 0; |
2d21ac55 A |
5717 | |
5718 | xfer_size = size; | |
5719 | dst_offset = offset; | |
5720 | ||
5721 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
5722 | fault_info.user_tag = 0; | |
5723 | fault_info.lo_offset = offset; | |
5724 | fault_info.hi_offset = offset + xfer_size; | |
5725 | fault_info.no_cache = FALSE; | |
b0d623f7 | 5726 | fault_info.stealth = FALSE; |
6d2010ae A |
5727 | fault_info.io_sync = FALSE; |
5728 | fault_info.cs_bypass = FALSE; | |
0b4c1975 | 5729 | fault_info.mark_zf_absent = TRUE; |
b0d623f7 A |
5730 | |
5731 | dwp = &dw_array[0]; | |
5732 | dw_count = 0; | |
6d2010ae | 5733 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
2d21ac55 | 5734 | |
55e303ae | 5735 | while (xfer_size) { |
2d21ac55 | 5736 | vm_fault_return_t result; |
b0d623f7 A |
5737 | unsigned int pg_num; |
5738 | ||
5739 | dwp->dw_mask = 0; | |
2d21ac55 | 5740 | |
55e303ae A |
5741 | dst_page = vm_page_lookup(object, dst_offset); |
5742 | ||
91447636 A |
5743 | /* |
5744 | * ENCRYPTED SWAP: | |
5745 | * If the page is encrypted, we need to decrypt it, | |
5746 | * so force a soft page fault. | |
5747 | */ | |
b0d623f7 A |
5748 | if (dst_page == VM_PAGE_NULL || |
5749 | dst_page->busy || | |
5750 | dst_page->encrypted || | |
5751 | dst_page->error || | |
5752 | dst_page->restart || | |
5753 | dst_page->absent || | |
5754 | dst_page->fictitious) { | |
5755 | ||
5756 | if (object == kernel_object) | |
5757 | panic("vm_object_iopl_request: missing/bad page in kernel object\n"); | |
2d21ac55 | 5758 | |
55e303ae A |
5759 | do { |
5760 | vm_page_t top_page; | |
5761 | kern_return_t error_code; | |
5762 | int interruptible; | |
5763 | ||
2d21ac55 | 5764 | if (cntrl_flags & UPL_SET_INTERRUPTIBLE) |
55e303ae | 5765 | interruptible = THREAD_ABORTSAFE; |
2d21ac55 | 5766 | else |
55e303ae | 5767 | interruptible = THREAD_UNINT; |
2d21ac55 A |
5768 | |
5769 | fault_info.interruptible = interruptible; | |
5770 | fault_info.cluster_size = xfer_size; | |
55e303ae | 5771 | |
b0d623f7 A |
5772 | vm_object_paging_begin(object); |
5773 | ||
55e303ae | 5774 | result = vm_fault_page(object, dst_offset, |
2d21ac55 A |
5775 | prot | VM_PROT_WRITE, FALSE, |
5776 | &prot, &dst_page, &top_page, | |
5777 | (int *)0, | |
5778 | &error_code, no_zero_fill, | |
5779 | FALSE, &fault_info); | |
5780 | ||
5781 | switch (result) { | |
5782 | ||
55e303ae A |
5783 | case VM_FAULT_SUCCESS: |
5784 | ||
d41d1dae A |
5785 | if ( !dst_page->absent) { |
5786 | PAGE_WAKEUP_DONE(dst_page); | |
5787 | } else { | |
5788 | /* | |
5789 | * we only get back an absent page if we | |
5790 | * requested that it not be zero-filled | |
5791 | * because we are about to fill it via I/O | |
5792 | * | |
5793 | * absent pages should be left BUSY | |
5794 | * to prevent them from being faulted | |
5795 | * into an address space before we've | |
5796 | * had a chance to complete the I/O on | |
5797 | * them since they may contain info that | |
5798 | * shouldn't be seen by the faulting task | |
5799 | */ | |
5800 | } | |
55e303ae A |
5801 | /* |
5802 | * Release paging references and | |
5803 | * top-level placeholder page, if any. | |
5804 | */ | |
2d21ac55 | 5805 | if (top_page != VM_PAGE_NULL) { |
55e303ae | 5806 | vm_object_t local_object; |
2d21ac55 A |
5807 | |
5808 | local_object = top_page->object; | |
5809 | ||
5810 | if (top_page->object != dst_page->object) { | |
5811 | vm_object_lock(local_object); | |
55e303ae | 5812 | VM_PAGE_FREE(top_page); |
2d21ac55 A |
5813 | vm_object_paging_end(local_object); |
5814 | vm_object_unlock(local_object); | |
55e303ae A |
5815 | } else { |
5816 | VM_PAGE_FREE(top_page); | |
2d21ac55 | 5817 | vm_object_paging_end(local_object); |
55e303ae A |
5818 | } |
5819 | } | |
b0d623f7 | 5820 | vm_object_paging_end(object); |
55e303ae A |
5821 | break; |
5822 | ||
55e303ae A |
5823 | case VM_FAULT_RETRY: |
5824 | vm_object_lock(object); | |
55e303ae A |
5825 | break; |
5826 | ||
6d2010ae A |
5827 | case VM_FAULT_MEMORY_SHORTAGE: |
5828 | OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages); | |
2d21ac55 | 5829 | |
6d2010ae | 5830 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0); |
55e303ae | 5831 | |
55e303ae | 5832 | if (vm_page_wait(interruptible)) { |
6d2010ae A |
5833 | OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages); |
5834 | ||
5835 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0); | |
55e303ae | 5836 | vm_object_lock(object); |
6d2010ae | 5837 | |
55e303ae A |
5838 | break; |
5839 | } | |
6d2010ae A |
5840 | OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages); |
5841 | ||
5842 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1); | |
5843 | ||
55e303ae A |
5844 | /* fall thru */ |
5845 | ||
5846 | case VM_FAULT_INTERRUPTED: | |
5847 | error_code = MACH_SEND_INTERRUPTED; | |
5848 | case VM_FAULT_MEMORY_ERROR: | |
b0d623f7 | 5849 | memory_error: |
2d21ac55 | 5850 | ret = (error_code ? error_code: KERN_MEMORY_ERROR); |
0c530ab8 | 5851 | |
2d21ac55 | 5852 | vm_object_lock(object); |
0c530ab8 | 5853 | goto return_err; |
b0d623f7 A |
5854 | |
5855 | case VM_FAULT_SUCCESS_NO_VM_PAGE: | |
5856 | /* success but no page: fail */ | |
5857 | vm_object_paging_end(object); | |
5858 | vm_object_unlock(object); | |
5859 | goto memory_error; | |
5860 | ||
5861 | default: | |
5862 | panic("vm_object_iopl_request: unexpected error" | |
5863 | " 0x%x from vm_fault_page()\n", result); | |
55e303ae | 5864 | } |
2d21ac55 | 5865 | } while (result != VM_FAULT_SUCCESS); |
b0d623f7 | 5866 | |
55e303ae | 5867 | } |
b0d623f7 A |
5868 | if (upl->flags & UPL_KERNEL_OBJECT) |
5869 | goto record_phys_addr; | |
5870 | ||
5871 | if (dst_page->cleaning) { | |
5872 | /* | |
5873 | * Someone else is cleaning this page in place.as | |
5874 | * In theory, we should be able to proceed and use this | |
5875 | * page but they'll probably end up clearing the "busy" | |
5876 | * bit on it in upl_commit_range() but they didn't set | |
5877 | * it, so they would clear our "busy" bit and open | |
5878 | * us to race conditions. | |
5879 | * We'd better wait for the cleaning to complete and | |
5880 | * then try again. | |
5881 | */ | |
5882 | vm_object_iopl_request_sleep_for_cleaning++; | |
5883 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
5884 | continue; | |
5885 | } | |
0c530ab8 A |
5886 | if ( (cntrl_flags & UPL_NEED_32BIT_ADDR) && |
5887 | dst_page->phys_page >= (max_valid_dma_address >> PAGE_SHIFT) ) { | |
5888 | vm_page_t low_page; | |
5889 | int refmod; | |
5890 | ||
5891 | /* | |
5892 | * support devices that can't DMA above 32 bits | |
5893 | * by substituting pages from a pool of low address | |
5894 | * memory for any pages we find above the 4G mark | |
5895 | * can't substitute if the page is already wired because | |
5896 | * we don't know whether that physical address has been | |
5897 | * handed out to some other 64 bit capable DMA device to use | |
5898 | */ | |
b0d623f7 | 5899 | if (VM_PAGE_WIRED(dst_page)) { |
0c530ab8 A |
5900 | ret = KERN_PROTECTION_FAILURE; |
5901 | goto return_err; | |
5902 | } | |
0c530ab8 A |
5903 | low_page = vm_page_grablo(); |
5904 | ||
5905 | if (low_page == VM_PAGE_NULL) { | |
5906 | ret = KERN_RESOURCE_SHORTAGE; | |
5907 | goto return_err; | |
5908 | } | |
5909 | /* | |
5910 | * from here until the vm_page_replace completes | |
5911 | * we musn't drop the object lock... we don't | |
5912 | * want anyone refaulting this page in and using | |
5913 | * it after we disconnect it... we want the fault | |
5914 | * to find the new page being substituted. | |
5915 | */ | |
2d21ac55 A |
5916 | if (dst_page->pmapped) |
5917 | refmod = pmap_disconnect(dst_page->phys_page); | |
5918 | else | |
5919 | refmod = 0; | |
d41d1dae | 5920 | |
6d2010ae | 5921 | if (!dst_page->absent) |
d41d1dae | 5922 | vm_page_copy(dst_page, low_page); |
2d21ac55 | 5923 | |
0c530ab8 A |
5924 | low_page->reference = dst_page->reference; |
5925 | low_page->dirty = dst_page->dirty; | |
d41d1dae | 5926 | low_page->absent = dst_page->absent; |
0c530ab8 A |
5927 | |
5928 | if (refmod & VM_MEM_REFERENCED) | |
5929 | low_page->reference = TRUE; | |
5930 | if (refmod & VM_MEM_MODIFIED) | |
5931 | low_page->dirty = TRUE; | |
5932 | ||
0c530ab8 | 5933 | vm_page_replace(low_page, object, dst_offset); |
0c530ab8 A |
5934 | |
5935 | dst_page = low_page; | |
5936 | /* | |
5937 | * vm_page_grablo returned the page marked | |
5938 | * BUSY... we don't need a PAGE_WAKEUP_DONE | |
5939 | * here, because we've never dropped the object lock | |
5940 | */ | |
d41d1dae A |
5941 | if ( !dst_page->absent) |
5942 | dst_page->busy = FALSE; | |
0c530ab8 | 5943 | } |
d41d1dae A |
5944 | if ( !dst_page->busy) |
5945 | dwp->dw_mask |= DW_vm_page_wire; | |
55e303ae | 5946 | |
91447636 A |
5947 | if (cntrl_flags & UPL_BLOCK_ACCESS) { |
5948 | /* | |
5949 | * Mark the page "busy" to block any future page fault | |
6d2010ae A |
5950 | * on this page in addition to wiring it. |
5951 | * We'll also remove the mapping | |
91447636 A |
5952 | * of all these pages before leaving this routine. |
5953 | */ | |
5954 | assert(!dst_page->fictitious); | |
5955 | dst_page->busy = TRUE; | |
5956 | } | |
2d21ac55 A |
5957 | /* |
5958 | * expect the page to be used | |
5959 | * page queues lock must be held to set 'reference' | |
5960 | */ | |
b0d623f7 | 5961 | dwp->dw_mask |= DW_set_reference; |
55e303ae | 5962 | |
2d21ac55 A |
5963 | if (!(cntrl_flags & UPL_COPYOUT_FROM)) |
5964 | dst_page->dirty = TRUE; | |
b0d623f7 | 5965 | record_phys_addr: |
d41d1dae A |
5966 | if (dst_page->busy) |
5967 | upl->flags |= UPL_HAS_BUSY; | |
5968 | ||
b0d623f7 A |
5969 | pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE); |
5970 | assert(pg_num == (dst_offset-offset)/PAGE_SIZE); | |
5971 | lite_list[pg_num>>5] |= 1 << (pg_num & 31); | |
55e303ae | 5972 | |
2d21ac55 A |
5973 | if (dst_page->phys_page > upl->highest_page) |
5974 | upl->highest_page = dst_page->phys_page; | |
55e303ae | 5975 | |
2d21ac55 A |
5976 | if (user_page_list) { |
5977 | user_page_list[entry].phys_addr = dst_page->phys_page; | |
2d21ac55 A |
5978 | user_page_list[entry].pageout = dst_page->pageout; |
5979 | user_page_list[entry].absent = dst_page->absent; | |
593a1d5f | 5980 | user_page_list[entry].dirty = dst_page->dirty; |
2d21ac55 | 5981 | user_page_list[entry].precious = dst_page->precious; |
593a1d5f | 5982 | user_page_list[entry].device = FALSE; |
2d21ac55 A |
5983 | if (dst_page->clustered == TRUE) |
5984 | user_page_list[entry].speculative = dst_page->speculative; | |
5985 | else | |
5986 | user_page_list[entry].speculative = FALSE; | |
593a1d5f A |
5987 | user_page_list[entry].cs_validated = dst_page->cs_validated; |
5988 | user_page_list[entry].cs_tainted = dst_page->cs_tainted; | |
55e303ae | 5989 | } |
b0d623f7 A |
5990 | if (object != kernel_object) { |
5991 | /* | |
5992 | * someone is explicitly grabbing this page... | |
5993 | * update clustered and speculative state | |
5994 | * | |
5995 | */ | |
5996 | VM_PAGE_CONSUME_CLUSTERED(dst_page); | |
55e303ae A |
5997 | } |
5998 | entry++; | |
5999 | dst_offset += PAGE_SIZE_64; | |
6000 | xfer_size -= PAGE_SIZE; | |
b0d623f7 A |
6001 | |
6002 | if (dwp->dw_mask) { | |
6d2010ae | 6003 | VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count); |
b0d623f7 | 6004 | |
6d2010ae A |
6005 | if (dw_count >= dw_limit) { |
6006 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
b0d623f7 A |
6007 | |
6008 | dwp = &dw_array[0]; | |
6009 | dw_count = 0; | |
6010 | } | |
6011 | } | |
55e303ae | 6012 | } |
b0d623f7 | 6013 | if (dw_count) |
6d2010ae | 6014 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); |
55e303ae | 6015 | |
2d21ac55 A |
6016 | if (page_list_count != NULL) { |
6017 | if (upl->flags & UPL_INTERNAL) | |
55e303ae | 6018 | *page_list_count = 0; |
2d21ac55 | 6019 | else if (*page_list_count > entry) |
55e303ae A |
6020 | *page_list_count = entry; |
6021 | } | |
55e303ae | 6022 | vm_object_unlock(object); |
55e303ae | 6023 | |
91447636 A |
6024 | if (cntrl_flags & UPL_BLOCK_ACCESS) { |
6025 | /* | |
6026 | * We've marked all the pages "busy" so that future | |
6027 | * page faults will block. | |
6028 | * Now remove the mapping for these pages, so that they | |
6029 | * can't be accessed without causing a page fault. | |
6030 | */ | |
6031 | vm_object_pmap_protect(object, offset, (vm_object_size_t)size, | |
6032 | PMAP_NULL, 0, VM_PROT_NONE); | |
b0d623f7 A |
6033 | assert(!object->blocked_access); |
6034 | object->blocked_access = TRUE; | |
91447636 | 6035 | } |
91447636 | 6036 | return KERN_SUCCESS; |
0c530ab8 | 6037 | |
0c530ab8 | 6038 | return_err: |
b0d623f7 | 6039 | dw_index = 0; |
0c530ab8 A |
6040 | |
6041 | for (; offset < dst_offset; offset += PAGE_SIZE) { | |
0b4c1975 A |
6042 | boolean_t need_unwire; |
6043 | ||
0c530ab8 A |
6044 | dst_page = vm_page_lookup(object, offset); |
6045 | ||
6046 | if (dst_page == VM_PAGE_NULL) | |
d41d1dae | 6047 | panic("vm_object_iopl_request: Wired page missing. \n"); |
2d21ac55 | 6048 | |
0b4c1975 A |
6049 | /* |
6050 | * if we've already processed this page in an earlier | |
6051 | * dw_do_work, we need to undo the wiring... we will | |
6052 | * leave the dirty and reference bits on if they | |
6053 | * were set, since we don't have a good way of knowing | |
6054 | * what the previous state was and we won't get here | |
6055 | * under any normal circumstances... we will always | |
6056 | * clear BUSY and wakeup any waiters via vm_page_free | |
6057 | * or PAGE_WAKEUP_DONE | |
6058 | */ | |
6059 | need_unwire = TRUE; | |
6060 | ||
b0d623f7 A |
6061 | if (dw_count) { |
6062 | if (dw_array[dw_index].dw_m == dst_page) { | |
0b4c1975 A |
6063 | /* |
6064 | * still in the deferred work list | |
6065 | * which means we haven't yet called | |
6066 | * vm_page_wire on this page | |
6067 | */ | |
6068 | need_unwire = FALSE; | |
d41d1dae A |
6069 | |
6070 | dw_index++; | |
6071 | dw_count--; | |
b0d623f7 A |
6072 | } |
6073 | } | |
0b4c1975 A |
6074 | vm_page_lock_queues(); |
6075 | ||
d41d1dae A |
6076 | if (dst_page->absent) { |
6077 | vm_page_free(dst_page); | |
0b4c1975 | 6078 | |
d41d1dae A |
6079 | need_unwire = FALSE; |
6080 | } else { | |
6081 | if (need_unwire == TRUE) | |
6082 | vm_page_unwire(dst_page, TRUE); | |
0b4c1975 | 6083 | |
0b4c1975 | 6084 | PAGE_WAKEUP_DONE(dst_page); |
6d2010ae | 6085 | } |
0c530ab8 | 6086 | vm_page_unlock_queues(); |
2d21ac55 | 6087 | |
0b4c1975 A |
6088 | if (need_unwire == TRUE) |
6089 | VM_STAT_INCR(reactivations); | |
0c530ab8 | 6090 | } |
b0d623f7 A |
6091 | #if UPL_DEBUG |
6092 | upl->upl_state = 2; | |
6093 | #endif | |
6094 | if (! (upl->flags & UPL_KERNEL_OBJECT)) { | |
6095 | vm_object_activity_end(object); | |
6096 | } | |
0c530ab8 A |
6097 | vm_object_unlock(object); |
6098 | upl_destroy(upl); | |
6099 | ||
6100 | return ret; | |
1c79356b A |
6101 | } |
6102 | ||
91447636 A |
6103 | kern_return_t |
6104 | upl_transpose( | |
6105 | upl_t upl1, | |
6106 | upl_t upl2) | |
1c79356b | 6107 | { |
91447636 A |
6108 | kern_return_t retval; |
6109 | boolean_t upls_locked; | |
6110 | vm_object_t object1, object2; | |
1c79356b | 6111 | |
b0d623f7 | 6112 | if (upl1 == UPL_NULL || upl2 == UPL_NULL || upl1 == upl2 || ((upl1->flags & UPL_VECTOR)==UPL_VECTOR) || ((upl2->flags & UPL_VECTOR)==UPL_VECTOR)) { |
91447636 A |
6113 | return KERN_INVALID_ARGUMENT; |
6114 | } | |
6115 | ||
6116 | upls_locked = FALSE; | |
1c79356b | 6117 | |
91447636 A |
6118 | /* |
6119 | * Since we need to lock both UPLs at the same time, | |
6120 | * avoid deadlocks by always taking locks in the same order. | |
6121 | */ | |
6122 | if (upl1 < upl2) { | |
6123 | upl_lock(upl1); | |
6124 | upl_lock(upl2); | |
6125 | } else { | |
6126 | upl_lock(upl2); | |
6127 | upl_lock(upl1); | |
6128 | } | |
6129 | upls_locked = TRUE; /* the UPLs will need to be unlocked */ | |
6130 | ||
6131 | object1 = upl1->map_object; | |
6132 | object2 = upl2->map_object; | |
6133 | ||
6134 | if (upl1->offset != 0 || upl2->offset != 0 || | |
6135 | upl1->size != upl2->size) { | |
6136 | /* | |
6137 | * We deal only with full objects, not subsets. | |
6138 | * That's because we exchange the entire backing store info | |
6139 | * for the objects: pager, resident pages, etc... We can't do | |
6140 | * only part of it. | |
6141 | */ | |
6142 | retval = KERN_INVALID_VALUE; | |
6143 | goto done; | |
6144 | } | |
6145 | ||
6146 | /* | |
6147 | * Tranpose the VM objects' backing store. | |
6148 | */ | |
6149 | retval = vm_object_transpose(object1, object2, | |
6150 | (vm_object_size_t) upl1->size); | |
6151 | ||
6152 | if (retval == KERN_SUCCESS) { | |
6153 | /* | |
6154 | * Make each UPL point to the correct VM object, i.e. the | |
6155 | * object holding the pages that the UPL refers to... | |
6156 | */ | |
b0d623f7 | 6157 | #if UPL_DEBUG |
2d21ac55 A |
6158 | queue_remove(&object1->uplq, upl1, upl_t, uplq); |
6159 | queue_remove(&object2->uplq, upl2, upl_t, uplq); | |
6160 | #endif | |
91447636 A |
6161 | upl1->map_object = object2; |
6162 | upl2->map_object = object1; | |
b0d623f7 | 6163 | #if UPL_DEBUG |
2d21ac55 A |
6164 | queue_enter(&object1->uplq, upl2, upl_t, uplq); |
6165 | queue_enter(&object2->uplq, upl1, upl_t, uplq); | |
6166 | #endif | |
91447636 A |
6167 | } |
6168 | ||
6169 | done: | |
6170 | /* | |
6171 | * Cleanup. | |
6172 | */ | |
6173 | if (upls_locked) { | |
6174 | upl_unlock(upl1); | |
6175 | upl_unlock(upl2); | |
6176 | upls_locked = FALSE; | |
6177 | } | |
6178 | ||
6179 | return retval; | |
6180 | } | |
6181 | ||
6182 | /* | |
6183 | * ENCRYPTED SWAP: | |
6184 | * | |
6185 | * Rationale: the user might have some encrypted data on disk (via | |
6186 | * FileVault or any other mechanism). That data is then decrypted in | |
6187 | * memory, which is safe as long as the machine is secure. But that | |
6188 | * decrypted data in memory could be paged out to disk by the default | |
6189 | * pager. The data would then be stored on disk in clear (not encrypted) | |
6190 | * and it could be accessed by anyone who gets physical access to the | |
6191 | * disk (if the laptop or the disk gets stolen for example). This weakens | |
6192 | * the security offered by FileVault. | |
6193 | * | |
6194 | * Solution: the default pager will optionally request that all the | |
6195 | * pages it gathers for pageout be encrypted, via the UPL interfaces, | |
6196 | * before it sends this UPL to disk via the vnode_pageout() path. | |
6197 | * | |
6198 | * Notes: | |
6199 | * | |
6200 | * To avoid disrupting the VM LRU algorithms, we want to keep the | |
6201 | * clean-in-place mechanisms, which allow us to send some extra pages to | |
6202 | * swap (clustering) without actually removing them from the user's | |
6203 | * address space. We don't want the user to unknowingly access encrypted | |
6204 | * data, so we have to actually remove the encrypted pages from the page | |
6205 | * table. When the user accesses the data, the hardware will fail to | |
6206 | * locate the virtual page in its page table and will trigger a page | |
6207 | * fault. We can then decrypt the page and enter it in the page table | |
6208 | * again. Whenever we allow the user to access the contents of a page, | |
6209 | * we have to make sure it's not encrypted. | |
6210 | * | |
6211 | * | |
6212 | */ | |
6213 | /* | |
6214 | * ENCRYPTED SWAP: | |
6215 | * Reserve of virtual addresses in the kernel address space. | |
6216 | * We need to map the physical pages in the kernel, so that we | |
6217 | * can call the encryption/decryption routines with a kernel | |
6218 | * virtual address. We keep this pool of pre-allocated kernel | |
6219 | * virtual addresses so that we don't have to scan the kernel's | |
6d2010ae | 6220 | * virtual address space each time we need to encrypt or decrypt |
91447636 A |
6221 | * a physical page. |
6222 | * It would be nice to be able to encrypt and decrypt in physical | |
6223 | * mode but that might not always be more efficient... | |
6224 | */ | |
6225 | decl_simple_lock_data(,vm_paging_lock) | |
6226 | #define VM_PAGING_NUM_PAGES 64 | |
6227 | vm_map_offset_t vm_paging_base_address = 0; | |
6228 | boolean_t vm_paging_page_inuse[VM_PAGING_NUM_PAGES] = { FALSE, }; | |
6229 | int vm_paging_max_index = 0; | |
2d21ac55 A |
6230 | int vm_paging_page_waiter = 0; |
6231 | int vm_paging_page_waiter_total = 0; | |
91447636 A |
6232 | unsigned long vm_paging_no_kernel_page = 0; |
6233 | unsigned long vm_paging_objects_mapped = 0; | |
6234 | unsigned long vm_paging_pages_mapped = 0; | |
6235 | unsigned long vm_paging_objects_mapped_slow = 0; | |
6236 | unsigned long vm_paging_pages_mapped_slow = 0; | |
6237 | ||
2d21ac55 A |
6238 | void |
6239 | vm_paging_map_init(void) | |
6240 | { | |
6241 | kern_return_t kr; | |
6242 | vm_map_offset_t page_map_offset; | |
6243 | vm_map_entry_t map_entry; | |
6244 | ||
6245 | assert(vm_paging_base_address == 0); | |
6246 | ||
6247 | /* | |
6248 | * Initialize our pool of pre-allocated kernel | |
6249 | * virtual addresses. | |
6250 | */ | |
6251 | page_map_offset = 0; | |
6252 | kr = vm_map_find_space(kernel_map, | |
6253 | &page_map_offset, | |
6254 | VM_PAGING_NUM_PAGES * PAGE_SIZE, | |
6255 | 0, | |
6256 | 0, | |
6257 | &map_entry); | |
6258 | if (kr != KERN_SUCCESS) { | |
6259 | panic("vm_paging_map_init: kernel_map full\n"); | |
6260 | } | |
6261 | map_entry->object.vm_object = kernel_object; | |
b0d623f7 | 6262 | map_entry->offset = page_map_offset; |
6d2010ae A |
6263 | map_entry->protection = VM_PROT_NONE; |
6264 | map_entry->max_protection = VM_PROT_NONE; | |
6265 | map_entry->permanent = TRUE; | |
2d21ac55 A |
6266 | vm_object_reference(kernel_object); |
6267 | vm_map_unlock(kernel_map); | |
6268 | ||
6269 | assert(vm_paging_base_address == 0); | |
6270 | vm_paging_base_address = page_map_offset; | |
6271 | } | |
6272 | ||
91447636 A |
6273 | /* |
6274 | * ENCRYPTED SWAP: | |
6275 | * vm_paging_map_object: | |
6276 | * Maps part of a VM object's pages in the kernel | |
6277 | * virtual address space, using the pre-allocated | |
6278 | * kernel virtual addresses, if possible. | |
6279 | * Context: | |
6280 | * The VM object is locked. This lock will get | |
2d21ac55 A |
6281 | * dropped and re-acquired though, so the caller |
6282 | * must make sure the VM object is kept alive | |
6283 | * (by holding a VM map that has a reference | |
6284 | * on it, for example, or taking an extra reference). | |
6285 | * The page should also be kept busy to prevent | |
6286 | * it from being reclaimed. | |
91447636 A |
6287 | */ |
6288 | kern_return_t | |
6289 | vm_paging_map_object( | |
6290 | vm_map_offset_t *address, | |
6291 | vm_page_t page, | |
6292 | vm_object_t object, | |
6293 | vm_object_offset_t offset, | |
2d21ac55 | 6294 | vm_map_size_t *size, |
593a1d5f | 6295 | vm_prot_t protection, |
2d21ac55 | 6296 | boolean_t can_unlock_object) |
91447636 A |
6297 | { |
6298 | kern_return_t kr; | |
6299 | vm_map_offset_t page_map_offset; | |
6300 | vm_map_size_t map_size; | |
6301 | vm_object_offset_t object_offset; | |
91447636 | 6302 | int i; |
91447636 | 6303 | |
593a1d5f | 6304 | |
91447636 | 6305 | if (page != VM_PAGE_NULL && *size == PAGE_SIZE) { |
2d21ac55 | 6306 | assert(page->busy); |
91447636 | 6307 | /* |
91447636 A |
6308 | * Use one of the pre-allocated kernel virtual addresses |
6309 | * and just enter the VM page in the kernel address space | |
6310 | * at that virtual address. | |
6311 | */ | |
91447636 A |
6312 | simple_lock(&vm_paging_lock); |
6313 | ||
91447636 A |
6314 | /* |
6315 | * Try and find an available kernel virtual address | |
6316 | * from our pre-allocated pool. | |
6317 | */ | |
6318 | page_map_offset = 0; | |
2d21ac55 A |
6319 | for (;;) { |
6320 | for (i = 0; i < VM_PAGING_NUM_PAGES; i++) { | |
6321 | if (vm_paging_page_inuse[i] == FALSE) { | |
6322 | page_map_offset = | |
6323 | vm_paging_base_address + | |
6324 | (i * PAGE_SIZE); | |
6325 | break; | |
6326 | } | |
6327 | } | |
6328 | if (page_map_offset != 0) { | |
6329 | /* found a space to map our page ! */ | |
6330 | break; | |
6331 | } | |
6332 | ||
6333 | if (can_unlock_object) { | |
6334 | /* | |
6335 | * If we can afford to unlock the VM object, | |
6336 | * let's take the slow path now... | |
6337 | */ | |
91447636 A |
6338 | break; |
6339 | } | |
2d21ac55 A |
6340 | /* |
6341 | * We can't afford to unlock the VM object, so | |
6342 | * let's wait for a space to become available... | |
6343 | */ | |
6344 | vm_paging_page_waiter_total++; | |
6345 | vm_paging_page_waiter++; | |
6346 | thread_sleep_fast_usimple_lock(&vm_paging_page_waiter, | |
6347 | &vm_paging_lock, | |
6348 | THREAD_UNINT); | |
6349 | vm_paging_page_waiter--; | |
6350 | /* ... and try again */ | |
91447636 A |
6351 | } |
6352 | ||
6353 | if (page_map_offset != 0) { | |
6354 | /* | |
6355 | * We found a kernel virtual address; | |
6356 | * map the physical page to that virtual address. | |
6357 | */ | |
6358 | if (i > vm_paging_max_index) { | |
6359 | vm_paging_max_index = i; | |
6360 | } | |
6361 | vm_paging_page_inuse[i] = TRUE; | |
6362 | simple_unlock(&vm_paging_lock); | |
2d21ac55 | 6363 | |
2d21ac55 A |
6364 | page->pmapped = TRUE; |
6365 | ||
6366 | /* | |
6367 | * Keep the VM object locked over the PMAP_ENTER | |
6368 | * and the actual use of the page by the kernel, | |
6369 | * or this pmap mapping might get undone by a | |
6370 | * vm_object_pmap_protect() call... | |
6371 | */ | |
0c530ab8 A |
6372 | PMAP_ENTER(kernel_pmap, |
6373 | page_map_offset, | |
6374 | page, | |
593a1d5f | 6375 | protection, |
6d2010ae | 6376 | 0, |
0c530ab8 | 6377 | TRUE); |
91447636 A |
6378 | vm_paging_objects_mapped++; |
6379 | vm_paging_pages_mapped++; | |
6380 | *address = page_map_offset; | |
91447636 A |
6381 | |
6382 | /* all done and mapped, ready to use ! */ | |
6383 | return KERN_SUCCESS; | |
6384 | } | |
6385 | ||
6386 | /* | |
6387 | * We ran out of pre-allocated kernel virtual | |
6388 | * addresses. Just map the page in the kernel | |
6389 | * the slow and regular way. | |
6390 | */ | |
6391 | vm_paging_no_kernel_page++; | |
6392 | simple_unlock(&vm_paging_lock); | |
2d21ac55 A |
6393 | } |
6394 | ||
6395 | if (! can_unlock_object) { | |
6396 | return KERN_NOT_SUPPORTED; | |
91447636 | 6397 | } |
91447636 A |
6398 | |
6399 | object_offset = vm_object_trunc_page(offset); | |
6400 | map_size = vm_map_round_page(*size); | |
6401 | ||
6402 | /* | |
6403 | * Try and map the required range of the object | |
6404 | * in the kernel_map | |
6405 | */ | |
6406 | ||
91447636 A |
6407 | vm_object_reference_locked(object); /* for the map entry */ |
6408 | vm_object_unlock(object); | |
6409 | ||
6410 | kr = vm_map_enter(kernel_map, | |
6411 | address, | |
6412 | map_size, | |
6413 | 0, | |
6414 | VM_FLAGS_ANYWHERE, | |
6415 | object, | |
6416 | object_offset, | |
6417 | FALSE, | |
593a1d5f | 6418 | protection, |
91447636 A |
6419 | VM_PROT_ALL, |
6420 | VM_INHERIT_NONE); | |
6421 | if (kr != KERN_SUCCESS) { | |
6422 | *address = 0; | |
6423 | *size = 0; | |
6424 | vm_object_deallocate(object); /* for the map entry */ | |
2d21ac55 | 6425 | vm_object_lock(object); |
91447636 A |
6426 | return kr; |
6427 | } | |
6428 | ||
6429 | *size = map_size; | |
6430 | ||
6431 | /* | |
6432 | * Enter the mapped pages in the page table now. | |
6433 | */ | |
6434 | vm_object_lock(object); | |
2d21ac55 A |
6435 | /* |
6436 | * VM object must be kept locked from before PMAP_ENTER() | |
6437 | * until after the kernel is done accessing the page(s). | |
6438 | * Otherwise, the pmap mappings in the kernel could be | |
6439 | * undone by a call to vm_object_pmap_protect(). | |
6440 | */ | |
6441 | ||
91447636 A |
6442 | for (page_map_offset = 0; |
6443 | map_size != 0; | |
6444 | map_size -= PAGE_SIZE_64, page_map_offset += PAGE_SIZE_64) { | |
91447636 A |
6445 | |
6446 | page = vm_page_lookup(object, offset + page_map_offset); | |
6447 | if (page == VM_PAGE_NULL) { | |
2d21ac55 A |
6448 | printf("vm_paging_map_object: no page !?"); |
6449 | vm_object_unlock(object); | |
6450 | kr = vm_map_remove(kernel_map, *address, *size, | |
6451 | VM_MAP_NO_FLAGS); | |
6452 | assert(kr == KERN_SUCCESS); | |
6453 | *address = 0; | |
6454 | *size = 0; | |
6455 | vm_object_lock(object); | |
6456 | return KERN_MEMORY_ERROR; | |
91447636 | 6457 | } |
2d21ac55 | 6458 | page->pmapped = TRUE; |
91447636 | 6459 | |
2d21ac55 | 6460 | //assert(pmap_verify_free(page->phys_page)); |
91447636 A |
6461 | PMAP_ENTER(kernel_pmap, |
6462 | *address + page_map_offset, | |
6463 | page, | |
593a1d5f | 6464 | protection, |
6d2010ae | 6465 | 0, |
0c530ab8 | 6466 | TRUE); |
91447636 A |
6467 | } |
6468 | ||
6469 | vm_paging_objects_mapped_slow++; | |
b0d623f7 | 6470 | vm_paging_pages_mapped_slow += (unsigned long) (map_size / PAGE_SIZE_64); |
91447636 A |
6471 | |
6472 | return KERN_SUCCESS; | |
6473 | } | |
6474 | ||
6475 | /* | |
6476 | * ENCRYPTED SWAP: | |
6477 | * vm_paging_unmap_object: | |
6478 | * Unmaps part of a VM object's pages from the kernel | |
6479 | * virtual address space. | |
6480 | * Context: | |
6481 | * The VM object is locked. This lock will get | |
6482 | * dropped and re-acquired though. | |
6483 | */ | |
6484 | void | |
6485 | vm_paging_unmap_object( | |
6486 | vm_object_t object, | |
6487 | vm_map_offset_t start, | |
6488 | vm_map_offset_t end) | |
6489 | { | |
6490 | kern_return_t kr; | |
91447636 | 6491 | int i; |
91447636 | 6492 | |
0c530ab8 | 6493 | if ((vm_paging_base_address == 0) || |
8f6c56a5 A |
6494 | (start < vm_paging_base_address) || |
6495 | (end > (vm_paging_base_address | |
2d21ac55 | 6496 | + (VM_PAGING_NUM_PAGES * PAGE_SIZE)))) { |
91447636 A |
6497 | /* |
6498 | * We didn't use our pre-allocated pool of | |
6499 | * kernel virtual address. Deallocate the | |
6500 | * virtual memory. | |
6501 | */ | |
6502 | if (object != VM_OBJECT_NULL) { | |
6503 | vm_object_unlock(object); | |
6504 | } | |
6505 | kr = vm_map_remove(kernel_map, start, end, VM_MAP_NO_FLAGS); | |
6506 | if (object != VM_OBJECT_NULL) { | |
6507 | vm_object_lock(object); | |
6508 | } | |
6509 | assert(kr == KERN_SUCCESS); | |
6510 | } else { | |
6511 | /* | |
6512 | * We used a kernel virtual address from our | |
6513 | * pre-allocated pool. Put it back in the pool | |
6514 | * for next time. | |
6515 | */ | |
91447636 | 6516 | assert(end - start == PAGE_SIZE); |
b0d623f7 A |
6517 | i = (int) ((start - vm_paging_base_address) >> PAGE_SHIFT); |
6518 | assert(i >= 0 && i < VM_PAGING_NUM_PAGES); | |
91447636 A |
6519 | |
6520 | /* undo the pmap mapping */ | |
0c530ab8 | 6521 | pmap_remove(kernel_pmap, start, end); |
91447636 A |
6522 | |
6523 | simple_lock(&vm_paging_lock); | |
6524 | vm_paging_page_inuse[i] = FALSE; | |
2d21ac55 A |
6525 | if (vm_paging_page_waiter) { |
6526 | thread_wakeup(&vm_paging_page_waiter); | |
6527 | } | |
91447636 | 6528 | simple_unlock(&vm_paging_lock); |
91447636 A |
6529 | } |
6530 | } | |
6531 | ||
2d21ac55 | 6532 | #if CRYPTO |
91447636 A |
6533 | /* |
6534 | * Encryption data. | |
6535 | * "iv" is the "initial vector". Ideally, we want to | |
6536 | * have a different one for each page we encrypt, so that | |
6537 | * crackers can't find encryption patterns too easily. | |
6538 | */ | |
6539 | #define SWAP_CRYPT_AES_KEY_SIZE 128 /* XXX 192 and 256 don't work ! */ | |
6540 | boolean_t swap_crypt_ctx_initialized = FALSE; | |
6541 | aes_32t swap_crypt_key[8]; /* big enough for a 256 key */ | |
6542 | aes_ctx swap_crypt_ctx; | |
6543 | const unsigned char swap_crypt_null_iv[AES_BLOCK_SIZE] = {0xa, }; | |
6544 | ||
6545 | #if DEBUG | |
6546 | boolean_t swap_crypt_ctx_tested = FALSE; | |
6547 | unsigned char swap_crypt_test_page_ref[4096] __attribute__((aligned(4096))); | |
6548 | unsigned char swap_crypt_test_page_encrypt[4096] __attribute__((aligned(4096))); | |
6549 | unsigned char swap_crypt_test_page_decrypt[4096] __attribute__((aligned(4096))); | |
6550 | #endif /* DEBUG */ | |
6551 | ||
91447636 A |
6552 | /* |
6553 | * Initialize the encryption context: key and key size. | |
6554 | */ | |
6555 | void swap_crypt_ctx_initialize(void); /* forward */ | |
6556 | void | |
6557 | swap_crypt_ctx_initialize(void) | |
6558 | { | |
6559 | unsigned int i; | |
6560 | ||
6561 | /* | |
6562 | * No need for locking to protect swap_crypt_ctx_initialized | |
6563 | * because the first use of encryption will come from the | |
6564 | * pageout thread (we won't pagein before there's been a pageout) | |
6565 | * and there's only one pageout thread. | |
6566 | */ | |
6567 | if (swap_crypt_ctx_initialized == FALSE) { | |
6568 | for (i = 0; | |
6569 | i < (sizeof (swap_crypt_key) / | |
6570 | sizeof (swap_crypt_key[0])); | |
6571 | i++) { | |
6572 | swap_crypt_key[i] = random(); | |
6573 | } | |
6574 | aes_encrypt_key((const unsigned char *) swap_crypt_key, | |
6575 | SWAP_CRYPT_AES_KEY_SIZE, | |
6576 | &swap_crypt_ctx.encrypt); | |
6577 | aes_decrypt_key((const unsigned char *) swap_crypt_key, | |
6578 | SWAP_CRYPT_AES_KEY_SIZE, | |
6579 | &swap_crypt_ctx.decrypt); | |
6580 | swap_crypt_ctx_initialized = TRUE; | |
6581 | } | |
6582 | ||
6583 | #if DEBUG | |
6584 | /* | |
6585 | * Validate the encryption algorithms. | |
6586 | */ | |
6587 | if (swap_crypt_ctx_tested == FALSE) { | |
6588 | /* initialize */ | |
6589 | for (i = 0; i < 4096; i++) { | |
6590 | swap_crypt_test_page_ref[i] = (char) i; | |
6591 | } | |
6592 | /* encrypt */ | |
6593 | aes_encrypt_cbc(swap_crypt_test_page_ref, | |
6594 | swap_crypt_null_iv, | |
6595 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6596 | swap_crypt_test_page_encrypt, | |
6597 | &swap_crypt_ctx.encrypt); | |
6598 | /* decrypt */ | |
6599 | aes_decrypt_cbc(swap_crypt_test_page_encrypt, | |
6600 | swap_crypt_null_iv, | |
6601 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6602 | swap_crypt_test_page_decrypt, | |
6603 | &swap_crypt_ctx.decrypt); | |
6604 | /* compare result with original */ | |
6605 | for (i = 0; i < 4096; i ++) { | |
6606 | if (swap_crypt_test_page_decrypt[i] != | |
6607 | swap_crypt_test_page_ref[i]) { | |
6608 | panic("encryption test failed"); | |
6609 | } | |
6610 | } | |
6611 | ||
6612 | /* encrypt again */ | |
6613 | aes_encrypt_cbc(swap_crypt_test_page_decrypt, | |
6614 | swap_crypt_null_iv, | |
6615 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6616 | swap_crypt_test_page_decrypt, | |
6617 | &swap_crypt_ctx.encrypt); | |
6618 | /* decrypt in place */ | |
6619 | aes_decrypt_cbc(swap_crypt_test_page_decrypt, | |
6620 | swap_crypt_null_iv, | |
6621 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6622 | swap_crypt_test_page_decrypt, | |
6623 | &swap_crypt_ctx.decrypt); | |
6624 | for (i = 0; i < 4096; i ++) { | |
6625 | if (swap_crypt_test_page_decrypt[i] != | |
6626 | swap_crypt_test_page_ref[i]) { | |
6627 | panic("in place encryption test failed"); | |
6628 | } | |
6629 | } | |
6630 | ||
6631 | swap_crypt_ctx_tested = TRUE; | |
6632 | } | |
6633 | #endif /* DEBUG */ | |
6634 | } | |
6635 | ||
6636 | /* | |
6637 | * ENCRYPTED SWAP: | |
6638 | * vm_page_encrypt: | |
6639 | * Encrypt the given page, for secure paging. | |
6640 | * The page might already be mapped at kernel virtual | |
6641 | * address "kernel_mapping_offset". Otherwise, we need | |
6642 | * to map it. | |
6643 | * | |
6644 | * Context: | |
6645 | * The page's object is locked, but this lock will be released | |
6646 | * and re-acquired. | |
6647 | * The page is busy and not accessible by users (not entered in any pmap). | |
6648 | */ | |
6649 | void | |
6650 | vm_page_encrypt( | |
6651 | vm_page_t page, | |
6652 | vm_map_offset_t kernel_mapping_offset) | |
6653 | { | |
91447636 | 6654 | kern_return_t kr; |
91447636 A |
6655 | vm_map_size_t kernel_mapping_size; |
6656 | vm_offset_t kernel_vaddr; | |
6657 | union { | |
6658 | unsigned char aes_iv[AES_BLOCK_SIZE]; | |
6659 | struct { | |
6660 | memory_object_t pager_object; | |
6661 | vm_object_offset_t paging_offset; | |
6662 | } vm; | |
6663 | } encrypt_iv; | |
6664 | ||
6665 | if (! vm_pages_encrypted) { | |
6666 | vm_pages_encrypted = TRUE; | |
6667 | } | |
6668 | ||
6669 | assert(page->busy); | |
6670 | assert(page->dirty || page->precious); | |
6671 | ||
6672 | if (page->encrypted) { | |
6673 | /* | |
6674 | * Already encrypted: no need to do it again. | |
6675 | */ | |
6676 | vm_page_encrypt_already_encrypted_counter++; | |
6677 | return; | |
6678 | } | |
6679 | ASSERT_PAGE_DECRYPTED(page); | |
6680 | ||
6681 | /* | |
2d21ac55 A |
6682 | * Take a paging-in-progress reference to keep the object |
6683 | * alive even if we have to unlock it (in vm_paging_map_object() | |
6684 | * for example)... | |
91447636 | 6685 | */ |
2d21ac55 | 6686 | vm_object_paging_begin(page->object); |
91447636 A |
6687 | |
6688 | if (kernel_mapping_offset == 0) { | |
6689 | /* | |
6690 | * The page hasn't already been mapped in kernel space | |
6691 | * by the caller. Map it now, so that we can access | |
6692 | * its contents and encrypt them. | |
6693 | */ | |
6694 | kernel_mapping_size = PAGE_SIZE; | |
6695 | kr = vm_paging_map_object(&kernel_mapping_offset, | |
6696 | page, | |
6697 | page->object, | |
6698 | page->offset, | |
2d21ac55 | 6699 | &kernel_mapping_size, |
593a1d5f | 6700 | VM_PROT_READ | VM_PROT_WRITE, |
2d21ac55 | 6701 | FALSE); |
91447636 A |
6702 | if (kr != KERN_SUCCESS) { |
6703 | panic("vm_page_encrypt: " | |
6704 | "could not map page in kernel: 0x%x\n", | |
6705 | kr); | |
6706 | } | |
6707 | } else { | |
6708 | kernel_mapping_size = 0; | |
6709 | } | |
6710 | kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset); | |
6711 | ||
6712 | if (swap_crypt_ctx_initialized == FALSE) { | |
6713 | swap_crypt_ctx_initialize(); | |
6714 | } | |
6715 | assert(swap_crypt_ctx_initialized); | |
6716 | ||
6717 | /* | |
6718 | * Prepare an "initial vector" for the encryption. | |
6719 | * We use the "pager" and the "paging_offset" for that | |
6720 | * page to obfuscate the encrypted data a bit more and | |
6721 | * prevent crackers from finding patterns that they could | |
6722 | * use to break the key. | |
6723 | */ | |
6724 | bzero(&encrypt_iv.aes_iv[0], sizeof (encrypt_iv.aes_iv)); | |
6725 | encrypt_iv.vm.pager_object = page->object->pager; | |
6726 | encrypt_iv.vm.paging_offset = | |
6727 | page->object->paging_offset + page->offset; | |
6728 | ||
91447636 A |
6729 | /* encrypt the "initial vector" */ |
6730 | aes_encrypt_cbc((const unsigned char *) &encrypt_iv.aes_iv[0], | |
6731 | swap_crypt_null_iv, | |
6732 | 1, | |
6733 | &encrypt_iv.aes_iv[0], | |
6734 | &swap_crypt_ctx.encrypt); | |
6735 | ||
6736 | /* | |
6737 | * Encrypt the page. | |
6738 | */ | |
6739 | aes_encrypt_cbc((const unsigned char *) kernel_vaddr, | |
6740 | &encrypt_iv.aes_iv[0], | |
6741 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6742 | (unsigned char *) kernel_vaddr, | |
6743 | &swap_crypt_ctx.encrypt); | |
6744 | ||
6745 | vm_page_encrypt_counter++; | |
6746 | ||
91447636 A |
6747 | /* |
6748 | * Unmap the page from the kernel's address space, | |
6749 | * if we had to map it ourselves. Otherwise, let | |
6750 | * the caller undo the mapping if needed. | |
6751 | */ | |
6752 | if (kernel_mapping_size != 0) { | |
6753 | vm_paging_unmap_object(page->object, | |
6754 | kernel_mapping_offset, | |
6755 | kernel_mapping_offset + kernel_mapping_size); | |
6756 | } | |
6757 | ||
6758 | /* | |
2d21ac55 | 6759 | * Clear the "reference" and "modified" bits. |
91447636 A |
6760 | * This should clean up any impact the encryption had |
6761 | * on them. | |
2d21ac55 A |
6762 | * The page was kept busy and disconnected from all pmaps, |
6763 | * so it can't have been referenced or modified from user | |
6764 | * space. | |
6765 | * The software bits will be reset later after the I/O | |
6766 | * has completed (in upl_commit_range()). | |
91447636 | 6767 | */ |
2d21ac55 | 6768 | pmap_clear_refmod(page->phys_page, VM_MEM_REFERENCED | VM_MEM_MODIFIED); |
91447636 A |
6769 | |
6770 | page->encrypted = TRUE; | |
2d21ac55 A |
6771 | |
6772 | vm_object_paging_end(page->object); | |
91447636 A |
6773 | } |
6774 | ||
6775 | /* | |
6776 | * ENCRYPTED SWAP: | |
6777 | * vm_page_decrypt: | |
6778 | * Decrypt the given page. | |
6779 | * The page might already be mapped at kernel virtual | |
6780 | * address "kernel_mapping_offset". Otherwise, we need | |
6781 | * to map it. | |
6782 | * | |
6783 | * Context: | |
6784 | * The page's VM object is locked but will be unlocked and relocked. | |
6785 | * The page is busy and not accessible by users (not entered in any pmap). | |
6786 | */ | |
6787 | void | |
6788 | vm_page_decrypt( | |
6789 | vm_page_t page, | |
6790 | vm_map_offset_t kernel_mapping_offset) | |
6791 | { | |
91447636 A |
6792 | kern_return_t kr; |
6793 | vm_map_size_t kernel_mapping_size; | |
6794 | vm_offset_t kernel_vaddr; | |
91447636 A |
6795 | union { |
6796 | unsigned char aes_iv[AES_BLOCK_SIZE]; | |
6797 | struct { | |
6798 | memory_object_t pager_object; | |
6799 | vm_object_offset_t paging_offset; | |
6800 | } vm; | |
6801 | } decrypt_iv; | |
6d2010ae | 6802 | boolean_t was_dirty; |
91447636 A |
6803 | |
6804 | assert(page->busy); | |
6805 | assert(page->encrypted); | |
6806 | ||
6d2010ae A |
6807 | was_dirty = page->dirty; |
6808 | ||
91447636 | 6809 | /* |
2d21ac55 A |
6810 | * Take a paging-in-progress reference to keep the object |
6811 | * alive even if we have to unlock it (in vm_paging_map_object() | |
6812 | * for example)... | |
91447636 | 6813 | */ |
2d21ac55 | 6814 | vm_object_paging_begin(page->object); |
91447636 A |
6815 | |
6816 | if (kernel_mapping_offset == 0) { | |
6817 | /* | |
6818 | * The page hasn't already been mapped in kernel space | |
6819 | * by the caller. Map it now, so that we can access | |
6820 | * its contents and decrypt them. | |
6821 | */ | |
6822 | kernel_mapping_size = PAGE_SIZE; | |
6823 | kr = vm_paging_map_object(&kernel_mapping_offset, | |
6824 | page, | |
6825 | page->object, | |
6826 | page->offset, | |
2d21ac55 | 6827 | &kernel_mapping_size, |
593a1d5f | 6828 | VM_PROT_READ | VM_PROT_WRITE, |
2d21ac55 | 6829 | FALSE); |
91447636 A |
6830 | if (kr != KERN_SUCCESS) { |
6831 | panic("vm_page_decrypt: " | |
2d21ac55 A |
6832 | "could not map page in kernel: 0x%x\n", |
6833 | kr); | |
91447636 A |
6834 | } |
6835 | } else { | |
6836 | kernel_mapping_size = 0; | |
6837 | } | |
6838 | kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset); | |
6839 | ||
6840 | assert(swap_crypt_ctx_initialized); | |
6841 | ||
6842 | /* | |
6843 | * Prepare an "initial vector" for the decryption. | |
6844 | * It has to be the same as the "initial vector" we | |
6845 | * used to encrypt that page. | |
6846 | */ | |
6847 | bzero(&decrypt_iv.aes_iv[0], sizeof (decrypt_iv.aes_iv)); | |
6848 | decrypt_iv.vm.pager_object = page->object->pager; | |
6849 | decrypt_iv.vm.paging_offset = | |
6850 | page->object->paging_offset + page->offset; | |
6851 | ||
91447636 A |
6852 | /* encrypt the "initial vector" */ |
6853 | aes_encrypt_cbc((const unsigned char *) &decrypt_iv.aes_iv[0], | |
6854 | swap_crypt_null_iv, | |
6855 | 1, | |
6856 | &decrypt_iv.aes_iv[0], | |
6857 | &swap_crypt_ctx.encrypt); | |
6858 | ||
6859 | /* | |
6860 | * Decrypt the page. | |
6861 | */ | |
6862 | aes_decrypt_cbc((const unsigned char *) kernel_vaddr, | |
6863 | &decrypt_iv.aes_iv[0], | |
6864 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6865 | (unsigned char *) kernel_vaddr, | |
6866 | &swap_crypt_ctx.decrypt); | |
6867 | vm_page_decrypt_counter++; | |
6868 | ||
91447636 A |
6869 | /* |
6870 | * Unmap the page from the kernel's address space, | |
6871 | * if we had to map it ourselves. Otherwise, let | |
6872 | * the caller undo the mapping if needed. | |
6873 | */ | |
6874 | if (kernel_mapping_size != 0) { | |
6875 | vm_paging_unmap_object(page->object, | |
6876 | kernel_vaddr, | |
6877 | kernel_vaddr + PAGE_SIZE); | |
6878 | } | |
6879 | ||
6d2010ae A |
6880 | if (was_dirty) { |
6881 | /* | |
6882 | * The pager did not specify that the page would be | |
6883 | * clean when it got paged in, so let's not clean it here | |
6884 | * either. | |
6885 | */ | |
6886 | } else { | |
6887 | /* | |
6888 | * After decryption, the page is actually still clean. | |
6889 | * It was encrypted as part of paging, which "cleans" | |
6890 | * the "dirty" pages. | |
6891 | * Noone could access it after it was encrypted | |
6892 | * and the decryption doesn't count. | |
6893 | */ | |
6894 | page->dirty = FALSE; | |
6895 | assert (page->cs_validated == FALSE); | |
6896 | pmap_clear_refmod(page->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
6897 | } | |
91447636 A |
6898 | page->encrypted = FALSE; |
6899 | ||
6900 | /* | |
6901 | * We've just modified the page's contents via the data cache and part | |
6902 | * of the new contents might still be in the cache and not yet in RAM. | |
6903 | * Since the page is now available and might get gathered in a UPL to | |
6904 | * be part of a DMA transfer from a driver that expects the memory to | |
6905 | * be coherent at this point, we have to flush the data cache. | |
6906 | */ | |
0c530ab8 | 6907 | pmap_sync_page_attributes_phys(page->phys_page); |
91447636 A |
6908 | /* |
6909 | * Since the page is not mapped yet, some code might assume that it | |
6910 | * doesn't need to invalidate the instruction cache when writing to | |
2d21ac55 A |
6911 | * that page. That code relies on "pmapped" being FALSE, so that the |
6912 | * caches get synchronized when the page is first mapped. | |
91447636 | 6913 | */ |
2d21ac55 A |
6914 | assert(pmap_verify_free(page->phys_page)); |
6915 | page->pmapped = FALSE; | |
4a3eedf9 | 6916 | page->wpmapped = FALSE; |
2d21ac55 A |
6917 | |
6918 | vm_object_paging_end(page->object); | |
91447636 A |
6919 | } |
6920 | ||
b0d623f7 | 6921 | #if DEVELOPMENT || DEBUG |
91447636 A |
6922 | unsigned long upl_encrypt_upls = 0; |
6923 | unsigned long upl_encrypt_pages = 0; | |
b0d623f7 | 6924 | #endif |
91447636 A |
6925 | |
6926 | /* | |
6927 | * ENCRYPTED SWAP: | |
6928 | * | |
6929 | * upl_encrypt: | |
6930 | * Encrypts all the pages in the UPL, within the specified range. | |
6931 | * | |
6932 | */ | |
6933 | void | |
6934 | upl_encrypt( | |
6935 | upl_t upl, | |
6936 | upl_offset_t crypt_offset, | |
6937 | upl_size_t crypt_size) | |
6938 | { | |
b0d623f7 A |
6939 | upl_size_t upl_size, subupl_size=crypt_size; |
6940 | upl_offset_t offset_in_upl, subupl_offset=crypt_offset; | |
91447636 | 6941 | vm_object_t upl_object; |
b0d623f7 | 6942 | vm_object_offset_t upl_offset; |
91447636 A |
6943 | vm_page_t page; |
6944 | vm_object_t shadow_object; | |
6945 | vm_object_offset_t shadow_offset; | |
6946 | vm_object_offset_t paging_offset; | |
6947 | vm_object_offset_t base_offset; | |
b0d623f7 A |
6948 | int isVectorUPL = 0; |
6949 | upl_t vector_upl = NULL; | |
6950 | ||
6951 | if((isVectorUPL = vector_upl_is_valid(upl))) | |
6952 | vector_upl = upl; | |
6953 | ||
6954 | process_upl_to_encrypt: | |
6955 | if(isVectorUPL) { | |
6956 | crypt_size = subupl_size; | |
6957 | crypt_offset = subupl_offset; | |
6958 | upl = vector_upl_subupl_byoffset(vector_upl, &crypt_offset, &crypt_size); | |
6959 | if(upl == NULL) | |
6960 | panic("upl_encrypt: Accessing a sub-upl that doesn't exist\n"); | |
6961 | subupl_size -= crypt_size; | |
6962 | subupl_offset += crypt_size; | |
6963 | } | |
91447636 | 6964 | |
b0d623f7 | 6965 | #if DEVELOPMENT || DEBUG |
91447636 A |
6966 | upl_encrypt_upls++; |
6967 | upl_encrypt_pages += crypt_size / PAGE_SIZE; | |
b0d623f7 | 6968 | #endif |
91447636 A |
6969 | upl_object = upl->map_object; |
6970 | upl_offset = upl->offset; | |
6971 | upl_size = upl->size; | |
6972 | ||
91447636 A |
6973 | vm_object_lock(upl_object); |
6974 | ||
6975 | /* | |
6976 | * Find the VM object that contains the actual pages. | |
6977 | */ | |
6978 | if (upl_object->pageout) { | |
6979 | shadow_object = upl_object->shadow; | |
6980 | /* | |
6981 | * The offset in the shadow object is actually also | |
6982 | * accounted for in upl->offset. It possibly shouldn't be | |
6983 | * this way, but for now don't account for it twice. | |
6984 | */ | |
6985 | shadow_offset = 0; | |
6986 | assert(upl_object->paging_offset == 0); /* XXX ? */ | |
6987 | vm_object_lock(shadow_object); | |
6988 | } else { | |
6989 | shadow_object = upl_object; | |
6990 | shadow_offset = 0; | |
6991 | } | |
6992 | ||
6993 | paging_offset = shadow_object->paging_offset; | |
6994 | vm_object_paging_begin(shadow_object); | |
6995 | ||
2d21ac55 A |
6996 | if (shadow_object != upl_object) |
6997 | vm_object_unlock(upl_object); | |
6998 | ||
91447636 A |
6999 | |
7000 | base_offset = shadow_offset; | |
7001 | base_offset += upl_offset; | |
7002 | base_offset += crypt_offset; | |
7003 | base_offset -= paging_offset; | |
91447636 | 7004 | |
2d21ac55 | 7005 | assert(crypt_offset + crypt_size <= upl_size); |
91447636 | 7006 | |
b0d623f7 A |
7007 | for (offset_in_upl = 0; |
7008 | offset_in_upl < crypt_size; | |
7009 | offset_in_upl += PAGE_SIZE) { | |
91447636 | 7010 | page = vm_page_lookup(shadow_object, |
b0d623f7 | 7011 | base_offset + offset_in_upl); |
91447636 A |
7012 | if (page == VM_PAGE_NULL) { |
7013 | panic("upl_encrypt: " | |
6d2010ae | 7014 | "no page for (obj=%p,off=0x%llx+0x%x)!\n", |
91447636 A |
7015 | shadow_object, |
7016 | base_offset, | |
b0d623f7 | 7017 | offset_in_upl); |
91447636 | 7018 | } |
2d21ac55 A |
7019 | /* |
7020 | * Disconnect the page from all pmaps, so that nobody can | |
7021 | * access it while it's encrypted. After that point, all | |
7022 | * accesses to this page will cause a page fault and block | |
7023 | * while the page is busy being encrypted. After the | |
7024 | * encryption completes, any access will cause a | |
7025 | * page fault and the page gets decrypted at that time. | |
7026 | */ | |
7027 | pmap_disconnect(page->phys_page); | |
91447636 | 7028 | vm_page_encrypt(page, 0); |
2d21ac55 | 7029 | |
b0d623f7 | 7030 | if (vm_object_lock_avoid(shadow_object)) { |
2d21ac55 A |
7031 | /* |
7032 | * Give vm_pageout_scan() a chance to convert more | |
7033 | * pages from "clean-in-place" to "clean-and-free", | |
7034 | * if it's interested in the same pages we selected | |
7035 | * in this cluster. | |
7036 | */ | |
7037 | vm_object_unlock(shadow_object); | |
b0d623f7 | 7038 | mutex_pause(2); |
2d21ac55 A |
7039 | vm_object_lock(shadow_object); |
7040 | } | |
91447636 A |
7041 | } |
7042 | ||
7043 | vm_object_paging_end(shadow_object); | |
7044 | vm_object_unlock(shadow_object); | |
b0d623f7 A |
7045 | |
7046 | if(isVectorUPL && subupl_size) | |
7047 | goto process_upl_to_encrypt; | |
91447636 A |
7048 | } |
7049 | ||
2d21ac55 A |
7050 | #else /* CRYPTO */ |
7051 | void | |
7052 | upl_encrypt( | |
7053 | __unused upl_t upl, | |
7054 | __unused upl_offset_t crypt_offset, | |
7055 | __unused upl_size_t crypt_size) | |
7056 | { | |
7057 | } | |
7058 | ||
7059 | void | |
7060 | vm_page_encrypt( | |
7061 | __unused vm_page_t page, | |
7062 | __unused vm_map_offset_t kernel_mapping_offset) | |
7063 | { | |
7064 | } | |
7065 | ||
7066 | void | |
7067 | vm_page_decrypt( | |
7068 | __unused vm_page_t page, | |
7069 | __unused vm_map_offset_t kernel_mapping_offset) | |
7070 | { | |
7071 | } | |
7072 | ||
7073 | #endif /* CRYPTO */ | |
7074 | ||
b0d623f7 A |
7075 | void |
7076 | vm_pageout_queue_steal(vm_page_t page, boolean_t queues_locked) | |
7077 | { | |
0b4c1975 A |
7078 | boolean_t pageout; |
7079 | ||
7080 | pageout = page->pageout; | |
7081 | ||
b0d623f7 A |
7082 | page->list_req_pending = FALSE; |
7083 | page->cleaning = FALSE; | |
7084 | page->pageout = FALSE; | |
7085 | ||
7086 | if (!queues_locked) { | |
7087 | vm_page_lockspin_queues(); | |
7088 | } | |
7089 | ||
7090 | /* | |
7091 | * need to drop the laundry count... | |
7092 | * we may also need to remove it | |
7093 | * from the I/O paging queue... | |
7094 | * vm_pageout_throttle_up handles both cases | |
7095 | * | |
7096 | * the laundry and pageout_queue flags are cleared... | |
7097 | */ | |
7098 | vm_pageout_throttle_up(page); | |
b0d623f7 | 7099 | |
0b4c1975 A |
7100 | if (pageout == TRUE) { |
7101 | /* | |
7102 | * toss the wire count we picked up | |
7103 | * when we intially set this page up | |
7104 | * to be cleaned... | |
7105 | */ | |
7106 | vm_page_unwire(page, TRUE); | |
7107 | } | |
b0d623f7 A |
7108 | vm_page_steal_pageout_page++; |
7109 | ||
7110 | if (!queues_locked) { | |
7111 | vm_page_unlock_queues(); | |
7112 | } | |
7113 | } | |
7114 | ||
7115 | upl_t | |
7116 | vector_upl_create(vm_offset_t upl_offset) | |
7117 | { | |
7118 | int vector_upl_size = sizeof(struct _vector_upl); | |
7119 | int i=0; | |
7120 | upl_t upl; | |
7121 | vector_upl_t vector_upl = (vector_upl_t)kalloc(vector_upl_size); | |
7122 | ||
7123 | upl = upl_create(0,UPL_VECTOR,0); | |
7124 | upl->vector_upl = vector_upl; | |
7125 | upl->offset = upl_offset; | |
7126 | vector_upl->size = 0; | |
7127 | vector_upl->offset = upl_offset; | |
7128 | vector_upl->invalid_upls=0; | |
7129 | vector_upl->num_upls=0; | |
7130 | vector_upl->pagelist = NULL; | |
7131 | ||
7132 | for(i=0; i < MAX_VECTOR_UPL_ELEMENTS ; i++) { | |
7133 | vector_upl->upl_iostates[i].size = 0; | |
7134 | vector_upl->upl_iostates[i].offset = 0; | |
7135 | ||
7136 | } | |
7137 | return upl; | |
7138 | } | |
7139 | ||
7140 | void | |
7141 | vector_upl_deallocate(upl_t upl) | |
7142 | { | |
7143 | if(upl) { | |
7144 | vector_upl_t vector_upl = upl->vector_upl; | |
7145 | if(vector_upl) { | |
7146 | if(vector_upl->invalid_upls != vector_upl->num_upls) | |
7147 | panic("Deallocating non-empty Vectored UPL\n"); | |
7148 | kfree(vector_upl->pagelist,(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE))); | |
7149 | vector_upl->invalid_upls=0; | |
7150 | vector_upl->num_upls = 0; | |
7151 | vector_upl->pagelist = NULL; | |
7152 | vector_upl->size = 0; | |
7153 | vector_upl->offset = 0; | |
7154 | kfree(vector_upl, sizeof(struct _vector_upl)); | |
7155 | vector_upl = (vector_upl_t)0xdeadbeef; | |
7156 | } | |
7157 | else | |
7158 | panic("vector_upl_deallocate was passed a non-vectored upl\n"); | |
7159 | } | |
7160 | else | |
7161 | panic("vector_upl_deallocate was passed a NULL upl\n"); | |
7162 | } | |
7163 | ||
7164 | boolean_t | |
7165 | vector_upl_is_valid(upl_t upl) | |
7166 | { | |
7167 | if(upl && ((upl->flags & UPL_VECTOR)==UPL_VECTOR)) { | |
7168 | vector_upl_t vector_upl = upl->vector_upl; | |
7169 | if(vector_upl == NULL || vector_upl == (vector_upl_t)0xdeadbeef || vector_upl == (vector_upl_t)0xfeedbeef) | |
7170 | return FALSE; | |
7171 | else | |
7172 | return TRUE; | |
7173 | } | |
7174 | return FALSE; | |
7175 | } | |
7176 | ||
7177 | boolean_t | |
7178 | vector_upl_set_subupl(upl_t upl,upl_t subupl, uint32_t io_size) | |
7179 | { | |
7180 | if(vector_upl_is_valid(upl)) { | |
7181 | vector_upl_t vector_upl = upl->vector_upl; | |
7182 | ||
7183 | if(vector_upl) { | |
7184 | if(subupl) { | |
7185 | if(io_size) { | |
7186 | if(io_size < PAGE_SIZE) | |
7187 | io_size = PAGE_SIZE; | |
7188 | subupl->vector_upl = (void*)vector_upl; | |
7189 | vector_upl->upl_elems[vector_upl->num_upls++] = subupl; | |
7190 | vector_upl->size += io_size; | |
7191 | upl->size += io_size; | |
7192 | } | |
7193 | else { | |
7194 | uint32_t i=0,invalid_upls=0; | |
7195 | for(i = 0; i < vector_upl->num_upls; i++) { | |
7196 | if(vector_upl->upl_elems[i] == subupl) | |
7197 | break; | |
7198 | } | |
7199 | if(i == vector_upl->num_upls) | |
7200 | panic("Trying to remove sub-upl when none exists"); | |
7201 | ||
7202 | vector_upl->upl_elems[i] = NULL; | |
7203 | invalid_upls = hw_atomic_add(&(vector_upl)->invalid_upls, 1); | |
7204 | if(invalid_upls == vector_upl->num_upls) | |
7205 | return TRUE; | |
7206 | else | |
7207 | return FALSE; | |
7208 | } | |
7209 | } | |
7210 | else | |
7211 | panic("vector_upl_set_subupl was passed a NULL upl element\n"); | |
7212 | } | |
7213 | else | |
7214 | panic("vector_upl_set_subupl was passed a non-vectored upl\n"); | |
7215 | } | |
7216 | else | |
7217 | panic("vector_upl_set_subupl was passed a NULL upl\n"); | |
7218 | ||
7219 | return FALSE; | |
7220 | } | |
7221 | ||
7222 | void | |
7223 | vector_upl_set_pagelist(upl_t upl) | |
7224 | { | |
7225 | if(vector_upl_is_valid(upl)) { | |
7226 | uint32_t i=0; | |
7227 | vector_upl_t vector_upl = upl->vector_upl; | |
7228 | ||
7229 | if(vector_upl) { | |
7230 | vm_offset_t pagelist_size=0, cur_upl_pagelist_size=0; | |
7231 | ||
7232 | vector_upl->pagelist = (upl_page_info_array_t)kalloc(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)); | |
7233 | ||
7234 | for(i=0; i < vector_upl->num_upls; i++) { | |
7235 | cur_upl_pagelist_size = sizeof(struct upl_page_info) * vector_upl->upl_elems[i]->size/PAGE_SIZE; | |
7236 | bcopy(UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(vector_upl->upl_elems[i]), (char*)vector_upl->pagelist + pagelist_size, cur_upl_pagelist_size); | |
7237 | pagelist_size += cur_upl_pagelist_size; | |
7238 | if(vector_upl->upl_elems[i]->highest_page > upl->highest_page) | |
7239 | upl->highest_page = vector_upl->upl_elems[i]->highest_page; | |
7240 | } | |
7241 | assert( pagelist_size == (sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)) ); | |
7242 | } | |
7243 | else | |
7244 | panic("vector_upl_set_pagelist was passed a non-vectored upl\n"); | |
7245 | } | |
7246 | else | |
7247 | panic("vector_upl_set_pagelist was passed a NULL upl\n"); | |
7248 | ||
7249 | } | |
7250 | ||
7251 | upl_t | |
7252 | vector_upl_subupl_byindex(upl_t upl, uint32_t index) | |
7253 | { | |
7254 | if(vector_upl_is_valid(upl)) { | |
7255 | vector_upl_t vector_upl = upl->vector_upl; | |
7256 | if(vector_upl) { | |
7257 | if(index < vector_upl->num_upls) | |
7258 | return vector_upl->upl_elems[index]; | |
7259 | } | |
7260 | else | |
7261 | panic("vector_upl_subupl_byindex was passed a non-vectored upl\n"); | |
7262 | } | |
7263 | return NULL; | |
7264 | } | |
7265 | ||
7266 | upl_t | |
7267 | vector_upl_subupl_byoffset(upl_t upl, upl_offset_t *upl_offset, upl_size_t *upl_size) | |
7268 | { | |
7269 | if(vector_upl_is_valid(upl)) { | |
7270 | uint32_t i=0; | |
7271 | vector_upl_t vector_upl = upl->vector_upl; | |
7272 | ||
7273 | if(vector_upl) { | |
7274 | upl_t subupl = NULL; | |
7275 | vector_upl_iostates_t subupl_state; | |
7276 | ||
7277 | for(i=0; i < vector_upl->num_upls; i++) { | |
7278 | subupl = vector_upl->upl_elems[i]; | |
7279 | subupl_state = vector_upl->upl_iostates[i]; | |
7280 | if( *upl_offset <= (subupl_state.offset + subupl_state.size - 1)) { | |
7281 | /* We could have been passed an offset/size pair that belongs | |
7282 | * to an UPL element that has already been committed/aborted. | |
7283 | * If so, return NULL. | |
7284 | */ | |
7285 | if(subupl == NULL) | |
7286 | return NULL; | |
7287 | if((subupl_state.offset + subupl_state.size) < (*upl_offset + *upl_size)) { | |
7288 | *upl_size = (subupl_state.offset + subupl_state.size) - *upl_offset; | |
7289 | if(*upl_size > subupl_state.size) | |
7290 | *upl_size = subupl_state.size; | |
7291 | } | |
7292 | if(*upl_offset >= subupl_state.offset) | |
7293 | *upl_offset -= subupl_state.offset; | |
7294 | else if(i) | |
7295 | panic("Vector UPL offset miscalculation\n"); | |
7296 | return subupl; | |
7297 | } | |
7298 | } | |
7299 | } | |
7300 | else | |
7301 | panic("vector_upl_subupl_byoffset was passed a non-vectored UPL\n"); | |
7302 | } | |
7303 | return NULL; | |
7304 | } | |
7305 | ||
7306 | void | |
7307 | vector_upl_get_submap(upl_t upl, vm_map_t *v_upl_submap, vm_offset_t *submap_dst_addr) | |
7308 | { | |
7309 | *v_upl_submap = NULL; | |
7310 | ||
7311 | if(vector_upl_is_valid(upl)) { | |
7312 | vector_upl_t vector_upl = upl->vector_upl; | |
7313 | if(vector_upl) { | |
7314 | *v_upl_submap = vector_upl->submap; | |
7315 | *submap_dst_addr = vector_upl->submap_dst_addr; | |
7316 | } | |
7317 | else | |
7318 | panic("vector_upl_get_submap was passed a non-vectored UPL\n"); | |
7319 | } | |
7320 | else | |
7321 | panic("vector_upl_get_submap was passed a null UPL\n"); | |
7322 | } | |
7323 | ||
7324 | void | |
7325 | vector_upl_set_submap(upl_t upl, vm_map_t submap, vm_offset_t submap_dst_addr) | |
7326 | { | |
7327 | if(vector_upl_is_valid(upl)) { | |
7328 | vector_upl_t vector_upl = upl->vector_upl; | |
7329 | if(vector_upl) { | |
7330 | vector_upl->submap = submap; | |
7331 | vector_upl->submap_dst_addr = submap_dst_addr; | |
7332 | } | |
7333 | else | |
7334 | panic("vector_upl_get_submap was passed a non-vectored UPL\n"); | |
7335 | } | |
7336 | else | |
7337 | panic("vector_upl_get_submap was passed a NULL UPL\n"); | |
7338 | } | |
7339 | ||
7340 | void | |
7341 | vector_upl_set_iostate(upl_t upl, upl_t subupl, upl_offset_t offset, upl_size_t size) | |
7342 | { | |
7343 | if(vector_upl_is_valid(upl)) { | |
7344 | uint32_t i = 0; | |
7345 | vector_upl_t vector_upl = upl->vector_upl; | |
7346 | ||
7347 | if(vector_upl) { | |
7348 | for(i = 0; i < vector_upl->num_upls; i++) { | |
7349 | if(vector_upl->upl_elems[i] == subupl) | |
7350 | break; | |
7351 | } | |
7352 | ||
7353 | if(i == vector_upl->num_upls) | |
7354 | panic("setting sub-upl iostate when none exists"); | |
7355 | ||
7356 | vector_upl->upl_iostates[i].offset = offset; | |
7357 | if(size < PAGE_SIZE) | |
7358 | size = PAGE_SIZE; | |
7359 | vector_upl->upl_iostates[i].size = size; | |
7360 | } | |
7361 | else | |
7362 | panic("vector_upl_set_iostate was passed a non-vectored UPL\n"); | |
7363 | } | |
7364 | else | |
7365 | panic("vector_upl_set_iostate was passed a NULL UPL\n"); | |
7366 | } | |
7367 | ||
7368 | void | |
7369 | vector_upl_get_iostate(upl_t upl, upl_t subupl, upl_offset_t *offset, upl_size_t *size) | |
7370 | { | |
7371 | if(vector_upl_is_valid(upl)) { | |
7372 | uint32_t i = 0; | |
7373 | vector_upl_t vector_upl = upl->vector_upl; | |
7374 | ||
7375 | if(vector_upl) { | |
7376 | for(i = 0; i < vector_upl->num_upls; i++) { | |
7377 | if(vector_upl->upl_elems[i] == subupl) | |
7378 | break; | |
7379 | } | |
7380 | ||
7381 | if(i == vector_upl->num_upls) | |
7382 | panic("getting sub-upl iostate when none exists"); | |
7383 | ||
7384 | *offset = vector_upl->upl_iostates[i].offset; | |
7385 | *size = vector_upl->upl_iostates[i].size; | |
7386 | } | |
7387 | else | |
7388 | panic("vector_upl_get_iostate was passed a non-vectored UPL\n"); | |
7389 | } | |
7390 | else | |
7391 | panic("vector_upl_get_iostate was passed a NULL UPL\n"); | |
7392 | } | |
7393 | ||
7394 | void | |
7395 | vector_upl_get_iostate_byindex(upl_t upl, uint32_t index, upl_offset_t *offset, upl_size_t *size) | |
7396 | { | |
7397 | if(vector_upl_is_valid(upl)) { | |
7398 | vector_upl_t vector_upl = upl->vector_upl; | |
7399 | if(vector_upl) { | |
7400 | if(index < vector_upl->num_upls) { | |
7401 | *offset = vector_upl->upl_iostates[index].offset; | |
7402 | *size = vector_upl->upl_iostates[index].size; | |
7403 | } | |
7404 | else | |
7405 | *offset = *size = 0; | |
7406 | } | |
7407 | else | |
7408 | panic("vector_upl_get_iostate_byindex was passed a non-vectored UPL\n"); | |
7409 | } | |
7410 | else | |
7411 | panic("vector_upl_get_iostate_byindex was passed a NULL UPL\n"); | |
7412 | } | |
7413 | ||
7414 | upl_page_info_t * | |
7415 | upl_get_internal_vectorupl_pagelist(upl_t upl) | |
7416 | { | |
7417 | return ((vector_upl_t)(upl->vector_upl))->pagelist; | |
7418 | } | |
7419 | ||
7420 | void * | |
7421 | upl_get_internal_vectorupl(upl_t upl) | |
7422 | { | |
7423 | return upl->vector_upl; | |
7424 | } | |
7425 | ||
91447636 A |
7426 | vm_size_t |
7427 | upl_get_internal_pagelist_offset(void) | |
7428 | { | |
7429 | return sizeof(struct upl); | |
7430 | } | |
7431 | ||
91447636 A |
7432 | void |
7433 | upl_clear_dirty( | |
0c530ab8 A |
7434 | upl_t upl, |
7435 | boolean_t value) | |
91447636 | 7436 | { |
0c530ab8 A |
7437 | if (value) { |
7438 | upl->flags |= UPL_CLEAR_DIRTY; | |
7439 | } else { | |
7440 | upl->flags &= ~UPL_CLEAR_DIRTY; | |
7441 | } | |
91447636 A |
7442 | } |
7443 | ||
6d2010ae A |
7444 | void |
7445 | upl_set_referenced( | |
7446 | upl_t upl, | |
7447 | boolean_t value) | |
7448 | { | |
7449 | upl_lock(upl); | |
7450 | if (value) { | |
7451 | upl->ext_ref_count++; | |
7452 | } else { | |
7453 | if (!upl->ext_ref_count) { | |
7454 | panic("upl_set_referenced not %p\n", upl); | |
7455 | } | |
7456 | upl->ext_ref_count--; | |
7457 | } | |
7458 | upl_unlock(upl); | |
7459 | } | |
7460 | ||
7461 | boolean_t | |
7462 | vm_page_is_slideable(vm_page_t m) | |
7463 | { | |
7464 | boolean_t result = FALSE; | |
7465 | vm_object_t slide_object = slide_info.slide_object; | |
7466 | mach_vm_offset_t start = slide_info.start; | |
7467 | mach_vm_offset_t end = slide_info.end; | |
7468 | ||
7469 | /* make sure our page belongs to the one object allowed to do this */ | |
7470 | if (slide_object == VM_OBJECT_NULL) { | |
7471 | return result; | |
7472 | } | |
7473 | ||
7474 | /*Should we traverse down the chain?*/ | |
7475 | if (m->object != slide_object) { | |
7476 | return result; | |
7477 | } | |
7478 | ||
7479 | if(!m->slid && (start <= m->offset && end > m->offset)) { | |
7480 | result = TRUE; | |
7481 | } | |
7482 | return result; | |
7483 | } | |
7484 | ||
7485 | int vm_page_slide_counter = 0; | |
7486 | int vm_page_slide_errors = 0; | |
7487 | kern_return_t | |
7488 | vm_page_slide( | |
7489 | vm_page_t page, | |
7490 | vm_map_offset_t kernel_mapping_offset) | |
7491 | { | |
7492 | kern_return_t kr; | |
7493 | vm_map_size_t kernel_mapping_size; | |
7494 | vm_offset_t kernel_vaddr; | |
7495 | uint32_t pageIndex = 0; | |
7496 | ||
7497 | assert(!page->slid); | |
7498 | ||
7499 | /* | |
7500 | * Take a paging-in-progress reference to keep the object | |
7501 | * alive even if we have to unlock it (in vm_paging_map_object() | |
7502 | * for example)... | |
7503 | */ | |
7504 | vm_object_paging_begin(page->object); | |
7505 | ||
7506 | if (kernel_mapping_offset == 0) { | |
7507 | /* | |
7508 | * The page hasn't already been mapped in kernel space | |
7509 | * by the caller. Map it now, so that we can access | |
7510 | * its contents and decrypt them. | |
7511 | */ | |
7512 | kernel_mapping_size = PAGE_SIZE; | |
7513 | kr = vm_paging_map_object(&kernel_mapping_offset, | |
7514 | page, | |
7515 | page->object, | |
7516 | page->offset, | |
7517 | &kernel_mapping_size, | |
7518 | VM_PROT_READ | VM_PROT_WRITE, | |
7519 | FALSE); | |
7520 | if (kr != KERN_SUCCESS) { | |
7521 | panic("vm_page_slide: " | |
7522 | "could not map page in kernel: 0x%x\n", | |
7523 | kr); | |
7524 | } | |
7525 | } else { | |
7526 | kernel_mapping_size = 0; | |
7527 | } | |
7528 | kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset); | |
7529 | ||
7530 | /* | |
7531 | * Slide the pointers on the page. | |
7532 | */ | |
7533 | ||
7534 | /*assert that slide_file_info.start/end are page-aligned?*/ | |
7535 | ||
7536 | pageIndex = (uint32_t)((page->offset - slide_info.start)/PAGE_SIZE); | |
7537 | kr = vm_shared_region_slide(kernel_vaddr, pageIndex); | |
7538 | vm_page_slide_counter++; | |
7539 | ||
7540 | /* | |
7541 | * Unmap the page from the kernel's address space, | |
7542 | */ | |
7543 | if (kernel_mapping_size != 0) { | |
7544 | vm_paging_unmap_object(page->object, | |
7545 | kernel_vaddr, | |
7546 | kernel_vaddr + PAGE_SIZE); | |
7547 | } | |
7548 | ||
7549 | page->dirty = FALSE; | |
7550 | pmap_clear_refmod(page->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
7551 | ||
7552 | if (kr == KERN_SUCCESS) { | |
7553 | page->slid = TRUE; | |
7554 | } else { | |
7555 | page->error = TRUE; | |
7556 | vm_page_slide_errors++; | |
7557 | } | |
7558 | ||
7559 | vm_object_paging_end(page->object); | |
7560 | ||
7561 | return kr; | |
7562 | } | |
7563 | ||
91447636 A |
7564 | |
7565 | #ifdef MACH_BSD | |
1c79356b | 7566 | |
2d21ac55 A |
7567 | boolean_t upl_device_page(upl_page_info_t *upl) |
7568 | { | |
7569 | return(UPL_DEVICE_PAGE(upl)); | |
7570 | } | |
1c79356b A |
7571 | boolean_t upl_page_present(upl_page_info_t *upl, int index) |
7572 | { | |
7573 | return(UPL_PAGE_PRESENT(upl, index)); | |
7574 | } | |
2d21ac55 A |
7575 | boolean_t upl_speculative_page(upl_page_info_t *upl, int index) |
7576 | { | |
7577 | return(UPL_SPECULATIVE_PAGE(upl, index)); | |
7578 | } | |
1c79356b A |
7579 | boolean_t upl_dirty_page(upl_page_info_t *upl, int index) |
7580 | { | |
7581 | return(UPL_DIRTY_PAGE(upl, index)); | |
7582 | } | |
7583 | boolean_t upl_valid_page(upl_page_info_t *upl, int index) | |
7584 | { | |
7585 | return(UPL_VALID_PAGE(upl, index)); | |
7586 | } | |
91447636 | 7587 | ppnum_t upl_phys_page(upl_page_info_t *upl, int index) |
1c79356b | 7588 | { |
91447636 | 7589 | return(UPL_PHYS_PAGE(upl, index)); |
1c79356b A |
7590 | } |
7591 | ||
2d21ac55 | 7592 | |
0b4e3aa0 A |
7593 | void |
7594 | vm_countdirtypages(void) | |
1c79356b A |
7595 | { |
7596 | vm_page_t m; | |
7597 | int dpages; | |
7598 | int pgopages; | |
7599 | int precpages; | |
7600 | ||
7601 | ||
7602 | dpages=0; | |
7603 | pgopages=0; | |
7604 | precpages=0; | |
7605 | ||
7606 | vm_page_lock_queues(); | |
7607 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
7608 | do { | |
7609 | if (m ==(vm_page_t )0) break; | |
7610 | ||
7611 | if(m->dirty) dpages++; | |
7612 | if(m->pageout) pgopages++; | |
7613 | if(m->precious) precpages++; | |
7614 | ||
91447636 | 7615 | assert(m->object != kernel_object); |
1c79356b A |
7616 | m = (vm_page_t) queue_next(&m->pageq); |
7617 | if (m ==(vm_page_t )0) break; | |
7618 | ||
7619 | } while (!queue_end(&vm_page_queue_inactive,(queue_entry_t) m)); | |
7620 | vm_page_unlock_queues(); | |
9bccf70c | 7621 | |
2d21ac55 A |
7622 | vm_page_lock_queues(); |
7623 | m = (vm_page_t) queue_first(&vm_page_queue_throttled); | |
7624 | do { | |
7625 | if (m ==(vm_page_t )0) break; | |
7626 | ||
7627 | dpages++; | |
7628 | assert(m->dirty); | |
7629 | assert(!m->pageout); | |
7630 | assert(m->object != kernel_object); | |
7631 | m = (vm_page_t) queue_next(&m->pageq); | |
7632 | if (m ==(vm_page_t )0) break; | |
7633 | ||
7634 | } while (!queue_end(&vm_page_queue_throttled,(queue_entry_t) m)); | |
7635 | vm_page_unlock_queues(); | |
7636 | ||
9bccf70c A |
7637 | vm_page_lock_queues(); |
7638 | m = (vm_page_t) queue_first(&vm_page_queue_zf); | |
7639 | do { | |
7640 | if (m ==(vm_page_t )0) break; | |
7641 | ||
7642 | if(m->dirty) dpages++; | |
7643 | if(m->pageout) pgopages++; | |
7644 | if(m->precious) precpages++; | |
7645 | ||
91447636 | 7646 | assert(m->object != kernel_object); |
9bccf70c A |
7647 | m = (vm_page_t) queue_next(&m->pageq); |
7648 | if (m ==(vm_page_t )0) break; | |
7649 | ||
7650 | } while (!queue_end(&vm_page_queue_zf,(queue_entry_t) m)); | |
7651 | vm_page_unlock_queues(); | |
1c79356b A |
7652 | |
7653 | printf("IN Q: %d : %d : %d\n", dpages, pgopages, precpages); | |
7654 | ||
7655 | dpages=0; | |
7656 | pgopages=0; | |
7657 | precpages=0; | |
7658 | ||
7659 | vm_page_lock_queues(); | |
7660 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
7661 | ||
7662 | do { | |
7663 | if(m == (vm_page_t )0) break; | |
7664 | if(m->dirty) dpages++; | |
7665 | if(m->pageout) pgopages++; | |
7666 | if(m->precious) precpages++; | |
7667 | ||
91447636 | 7668 | assert(m->object != kernel_object); |
1c79356b A |
7669 | m = (vm_page_t) queue_next(&m->pageq); |
7670 | if(m == (vm_page_t )0) break; | |
7671 | ||
7672 | } while (!queue_end(&vm_page_queue_active,(queue_entry_t) m)); | |
7673 | vm_page_unlock_queues(); | |
7674 | ||
7675 | printf("AC Q: %d : %d : %d\n", dpages, pgopages, precpages); | |
7676 | ||
7677 | } | |
7678 | #endif /* MACH_BSD */ | |
7679 | ||
0c530ab8 | 7680 | ppnum_t upl_get_highest_page( |
2d21ac55 | 7681 | upl_t upl) |
0c530ab8 | 7682 | { |
2d21ac55 | 7683 | return upl->highest_page; |
0c530ab8 A |
7684 | } |
7685 | ||
b0d623f7 A |
7686 | upl_size_t upl_get_size( |
7687 | upl_t upl) | |
7688 | { | |
7689 | return upl->size; | |
7690 | } | |
7691 | ||
7692 | #if UPL_DEBUG | |
7693 | kern_return_t upl_ubc_alias_set(upl_t upl, uintptr_t alias1, uintptr_t alias2) | |
1c79356b A |
7694 | { |
7695 | upl->ubc_alias1 = alias1; | |
7696 | upl->ubc_alias2 = alias2; | |
7697 | return KERN_SUCCESS; | |
7698 | } | |
b0d623f7 | 7699 | int upl_ubc_alias_get(upl_t upl, uintptr_t * al, uintptr_t * al2) |
1c79356b A |
7700 | { |
7701 | if(al) | |
7702 | *al = upl->ubc_alias1; | |
7703 | if(al2) | |
7704 | *al2 = upl->ubc_alias2; | |
7705 | return KERN_SUCCESS; | |
7706 | } | |
91447636 | 7707 | #endif /* UPL_DEBUG */ |
1c79356b A |
7708 | |
7709 | ||
7710 | ||
7711 | #if MACH_KDB | |
7712 | #include <ddb/db_output.h> | |
7713 | #include <ddb/db_print.h> | |
7714 | #include <vm/vm_print.h> | |
7715 | ||
7716 | #define printf kdbprintf | |
1c79356b A |
7717 | void db_pageout(void); |
7718 | ||
7719 | void | |
7720 | db_vm(void) | |
7721 | { | |
1c79356b A |
7722 | |
7723 | iprintf("VM Statistics:\n"); | |
7724 | db_indent += 2; | |
7725 | iprintf("pages:\n"); | |
7726 | db_indent += 2; | |
7727 | iprintf("activ %5d inact %5d free %5d", | |
7728 | vm_page_active_count, vm_page_inactive_count, | |
7729 | vm_page_free_count); | |
7730 | printf(" wire %5d gobbl %5d\n", | |
7731 | vm_page_wire_count, vm_page_gobble_count); | |
1c79356b A |
7732 | db_indent -= 2; |
7733 | iprintf("target:\n"); | |
7734 | db_indent += 2; | |
7735 | iprintf("min %5d inact %5d free %5d", | |
7736 | vm_page_free_min, vm_page_inactive_target, | |
7737 | vm_page_free_target); | |
7738 | printf(" resrv %5d\n", vm_page_free_reserved); | |
7739 | db_indent -= 2; | |
1c79356b | 7740 | iprintf("pause:\n"); |
1c79356b A |
7741 | db_pageout(); |
7742 | db_indent -= 2; | |
7743 | } | |
7744 | ||
1c79356b | 7745 | #if MACH_COUNTERS |
91447636 | 7746 | extern int c_laundry_pages_freed; |
1c79356b A |
7747 | #endif /* MACH_COUNTERS */ |
7748 | ||
91447636 A |
7749 | void |
7750 | db_pageout(void) | |
7751 | { | |
1c79356b A |
7752 | iprintf("Pageout Statistics:\n"); |
7753 | db_indent += 2; | |
7754 | iprintf("active %5d inactv %5d\n", | |
7755 | vm_pageout_active, vm_pageout_inactive); | |
7756 | iprintf("nolock %5d avoid %5d busy %5d absent %5d\n", | |
7757 | vm_pageout_inactive_nolock, vm_pageout_inactive_avoid, | |
7758 | vm_pageout_inactive_busy, vm_pageout_inactive_absent); | |
6d2010ae | 7759 | iprintf("used %5d clean %5d dirty(internal) %5d dirty(external) %5d\n", |
1c79356b | 7760 | vm_pageout_inactive_used, vm_pageout_inactive_clean, |
6d2010ae | 7761 | vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external); |
1c79356b A |
7762 | #if MACH_COUNTERS |
7763 | iprintf("laundry_pages_freed %d\n", c_laundry_pages_freed); | |
7764 | #endif /* MACH_COUNTERS */ | |
7765 | #if MACH_CLUSTER_STATS | |
7766 | iprintf("Cluster Statistics:\n"); | |
7767 | db_indent += 2; | |
7768 | iprintf("dirtied %5d cleaned %5d collisions %5d\n", | |
7769 | vm_pageout_cluster_dirtied, vm_pageout_cluster_cleaned, | |
7770 | vm_pageout_cluster_collisions); | |
7771 | iprintf("clusters %5d conversions %5d\n", | |
7772 | vm_pageout_cluster_clusters, vm_pageout_cluster_conversions); | |
7773 | db_indent -= 2; | |
7774 | iprintf("Target Statistics:\n"); | |
7775 | db_indent += 2; | |
7776 | iprintf("collisions %5d page_dirtied %5d page_freed %5d\n", | |
7777 | vm_pageout_target_collisions, vm_pageout_target_page_dirtied, | |
7778 | vm_pageout_target_page_freed); | |
1c79356b A |
7779 | db_indent -= 2; |
7780 | #endif /* MACH_CLUSTER_STATS */ | |
7781 | db_indent -= 2; | |
7782 | } | |
7783 | ||
1c79356b | 7784 | #endif /* MACH_KDB */ |