]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_pageout.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * Date: 1985 | |
62 | * | |
63 | * The proverbial page-out daemon. | |
64 | */ | |
1c79356b | 65 | |
91447636 A |
66 | #include <stdint.h> |
67 | ||
68 | #include <debug.h> | |
1c79356b A |
69 | #include <mach_pagemap.h> |
70 | #include <mach_cluster_stats.h> | |
71 | #include <mach_kdb.h> | |
72 | #include <advisory_pageout.h> | |
73 | ||
74 | #include <mach/mach_types.h> | |
75 | #include <mach/memory_object.h> | |
76 | #include <mach/memory_object_default.h> | |
0b4e3aa0 | 77 | #include <mach/memory_object_control_server.h> |
1c79356b | 78 | #include <mach/mach_host_server.h> |
91447636 A |
79 | #include <mach/upl.h> |
80 | #include <mach/vm_map.h> | |
1c79356b A |
81 | #include <mach/vm_param.h> |
82 | #include <mach/vm_statistics.h> | |
2d21ac55 | 83 | #include <mach/sdt.h> |
91447636 A |
84 | |
85 | #include <kern/kern_types.h> | |
1c79356b | 86 | #include <kern/counters.h> |
91447636 A |
87 | #include <kern/host_statistics.h> |
88 | #include <kern/machine.h> | |
89 | #include <kern/misc_protos.h> | |
b0d623f7 | 90 | #include <kern/sched.h> |
1c79356b | 91 | #include <kern/thread.h> |
1c79356b | 92 | #include <kern/xpr.h> |
91447636 A |
93 | #include <kern/kalloc.h> |
94 | ||
95 | #include <machine/vm_tuning.h> | |
b0d623f7 | 96 | #include <machine/commpage.h> |
91447636 | 97 | |
2d21ac55 A |
98 | #if CONFIG_EMBEDDED |
99 | #include <sys/kern_memorystatus.h> | |
100 | #endif | |
101 | ||
1c79356b | 102 | #include <vm/pmap.h> |
55e303ae | 103 | #include <vm/vm_fault.h> |
1c79356b A |
104 | #include <vm/vm_map.h> |
105 | #include <vm/vm_object.h> | |
106 | #include <vm/vm_page.h> | |
107 | #include <vm/vm_pageout.h> | |
91447636 | 108 | #include <vm/vm_protos.h> /* must be last */ |
2d21ac55 A |
109 | #include <vm/memory_object.h> |
110 | #include <vm/vm_purgeable_internal.h> | |
1c79356b | 111 | |
91447636 A |
112 | /* |
113 | * ENCRYPTED SWAP: | |
114 | */ | |
91447636 | 115 | #include <../bsd/crypto/aes/aes.h> |
b0d623f7 | 116 | extern u_int32_t random(void); /* from <libkern/libkern.h> */ |
55e303ae | 117 | |
b0d623f7 A |
118 | #if UPL_DEBUG |
119 | #include <libkern/OSDebug.h> | |
120 | #endif | |
91447636 | 121 | |
2d21ac55 | 122 | #ifndef VM_PAGEOUT_BURST_ACTIVE_THROTTLE /* maximum iterations of the active queue to move pages to inactive */ |
2d21ac55 A |
123 | #define VM_PAGEOUT_BURST_ACTIVE_THROTTLE 100 |
124 | #endif | |
91447636 | 125 | |
2d21ac55 A |
126 | #ifndef VM_PAGEOUT_BURST_INACTIVE_THROTTLE /* maximum iterations of the inactive queue w/o stealing/cleaning a page */ |
127 | #ifdef CONFIG_EMBEDDED | |
128 | #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 1024 | |
129 | #else | |
130 | #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 4096 | |
131 | #endif | |
91447636 A |
132 | #endif |
133 | ||
134 | #ifndef VM_PAGEOUT_DEADLOCK_RELIEF | |
135 | #define VM_PAGEOUT_DEADLOCK_RELIEF 100 /* number of pages to move to break deadlock */ | |
136 | #endif | |
137 | ||
138 | #ifndef VM_PAGEOUT_INACTIVE_RELIEF | |
139 | #define VM_PAGEOUT_INACTIVE_RELIEF 50 /* minimum number of pages to move to the inactive q */ | |
140 | #endif | |
141 | ||
1c79356b | 142 | #ifndef VM_PAGE_LAUNDRY_MAX |
91447636 | 143 | #define VM_PAGE_LAUNDRY_MAX 16UL /* maximum pageouts on a given pageout queue */ |
1c79356b A |
144 | #endif /* VM_PAGEOUT_LAUNDRY_MAX */ |
145 | ||
1c79356b A |
146 | #ifndef VM_PAGEOUT_BURST_WAIT |
147 | #define VM_PAGEOUT_BURST_WAIT 30 /* milliseconds per page */ | |
148 | #endif /* VM_PAGEOUT_BURST_WAIT */ | |
149 | ||
150 | #ifndef VM_PAGEOUT_EMPTY_WAIT | |
151 | #define VM_PAGEOUT_EMPTY_WAIT 200 /* milliseconds */ | |
152 | #endif /* VM_PAGEOUT_EMPTY_WAIT */ | |
153 | ||
91447636 A |
154 | #ifndef VM_PAGEOUT_DEADLOCK_WAIT |
155 | #define VM_PAGEOUT_DEADLOCK_WAIT 300 /* milliseconds */ | |
156 | #endif /* VM_PAGEOUT_DEADLOCK_WAIT */ | |
157 | ||
158 | #ifndef VM_PAGEOUT_IDLE_WAIT | |
159 | #define VM_PAGEOUT_IDLE_WAIT 10 /* milliseconds */ | |
160 | #endif /* VM_PAGEOUT_IDLE_WAIT */ | |
161 | ||
2d21ac55 A |
162 | #ifndef VM_PAGE_SPECULATIVE_TARGET |
163 | #define VM_PAGE_SPECULATIVE_TARGET(total) ((total) * 1 / 20) | |
164 | #endif /* VM_PAGE_SPECULATIVE_TARGET */ | |
165 | ||
166 | #ifndef VM_PAGE_INACTIVE_HEALTHY_LIMIT | |
167 | #define VM_PAGE_INACTIVE_HEALTHY_LIMIT(total) ((total) * 1 / 200) | |
168 | #endif /* VM_PAGE_INACTIVE_HEALTHY_LIMIT */ | |
169 | ||
91447636 | 170 | |
1c79356b A |
171 | /* |
172 | * To obtain a reasonable LRU approximation, the inactive queue | |
173 | * needs to be large enough to give pages on it a chance to be | |
174 | * referenced a second time. This macro defines the fraction | |
175 | * of active+inactive pages that should be inactive. | |
176 | * The pageout daemon uses it to update vm_page_inactive_target. | |
177 | * | |
178 | * If vm_page_free_count falls below vm_page_free_target and | |
179 | * vm_page_inactive_count is below vm_page_inactive_target, | |
180 | * then the pageout daemon starts running. | |
181 | */ | |
182 | ||
183 | #ifndef VM_PAGE_INACTIVE_TARGET | |
184 | #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 3) | |
185 | #endif /* VM_PAGE_INACTIVE_TARGET */ | |
186 | ||
187 | /* | |
188 | * Once the pageout daemon starts running, it keeps going | |
189 | * until vm_page_free_count meets or exceeds vm_page_free_target. | |
190 | */ | |
191 | ||
192 | #ifndef VM_PAGE_FREE_TARGET | |
2d21ac55 A |
193 | #ifdef CONFIG_EMBEDDED |
194 | #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 100) | |
195 | #else | |
1c79356b | 196 | #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80) |
2d21ac55 | 197 | #endif |
1c79356b A |
198 | #endif /* VM_PAGE_FREE_TARGET */ |
199 | ||
200 | /* | |
201 | * The pageout daemon always starts running once vm_page_free_count | |
202 | * falls below vm_page_free_min. | |
203 | */ | |
204 | ||
205 | #ifndef VM_PAGE_FREE_MIN | |
2d21ac55 A |
206 | #ifdef CONFIG_EMBEDDED |
207 | #define VM_PAGE_FREE_MIN(free) (10 + (free) / 200) | |
208 | #else | |
209 | #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100) | |
210 | #endif | |
1c79356b A |
211 | #endif /* VM_PAGE_FREE_MIN */ |
212 | ||
2d21ac55 A |
213 | #define VM_PAGE_FREE_MIN_LIMIT 1500 |
214 | #define VM_PAGE_FREE_TARGET_LIMIT 2000 | |
215 | ||
216 | ||
1c79356b A |
217 | /* |
218 | * When vm_page_free_count falls below vm_page_free_reserved, | |
219 | * only vm-privileged threads can allocate pages. vm-privilege | |
220 | * allows the pageout daemon and default pager (and any other | |
221 | * associated threads needed for default pageout) to continue | |
222 | * operation by dipping into the reserved pool of pages. | |
223 | */ | |
224 | ||
225 | #ifndef VM_PAGE_FREE_RESERVED | |
91447636 | 226 | #define VM_PAGE_FREE_RESERVED(n) \ |
b0d623f7 | 227 | ((unsigned) (6 * VM_PAGE_LAUNDRY_MAX) + (n)) |
1c79356b A |
228 | #endif /* VM_PAGE_FREE_RESERVED */ |
229 | ||
2d21ac55 A |
230 | /* |
231 | * When we dequeue pages from the inactive list, they are | |
232 | * reactivated (ie, put back on the active queue) if referenced. | |
233 | * However, it is possible to starve the free list if other | |
234 | * processors are referencing pages faster than we can turn off | |
235 | * the referenced bit. So we limit the number of reactivations | |
236 | * we will make per call of vm_pageout_scan(). | |
237 | */ | |
238 | #define VM_PAGE_REACTIVATE_LIMIT_MAX 20000 | |
239 | #ifndef VM_PAGE_REACTIVATE_LIMIT | |
240 | #ifdef CONFIG_EMBEDDED | |
241 | #define VM_PAGE_REACTIVATE_LIMIT(avail) (VM_PAGE_INACTIVE_TARGET(avail) / 2) | |
242 | #else | |
243 | #define VM_PAGE_REACTIVATE_LIMIT(avail) (MAX((avail) * 1 / 20,VM_PAGE_REACTIVATE_LIMIT_MAX)) | |
244 | #endif | |
245 | #endif /* VM_PAGE_REACTIVATE_LIMIT */ | |
246 | #define VM_PAGEOUT_INACTIVE_FORCE_RECLAIM 100 | |
247 | ||
91447636 A |
248 | |
249 | /* | |
250 | * must hold the page queues lock to | |
251 | * manipulate this structure | |
252 | */ | |
253 | struct vm_pageout_queue { | |
254 | queue_head_t pgo_pending; /* laundry pages to be processed by pager's iothread */ | |
255 | unsigned int pgo_laundry; /* current count of laundry pages on queue or in flight */ | |
256 | unsigned int pgo_maxlaundry; | |
257 | ||
258 | unsigned int pgo_idle:1, /* iothread is blocked waiting for work to do */ | |
259 | pgo_busy:1, /* iothread is currently processing request from pgo_pending */ | |
260 | pgo_throttled:1,/* vm_pageout_scan thread needs a wakeup when pgo_laundry drops */ | |
261 | :0; | |
262 | }; | |
263 | ||
264 | #define VM_PAGE_Q_THROTTLED(q) \ | |
265 | ((q)->pgo_laundry >= (q)->pgo_maxlaundry) | |
266 | ||
267 | ||
0b4e3aa0 A |
268 | /* |
269 | * Exported variable used to broadcast the activation of the pageout scan | |
270 | * Working Set uses this to throttle its use of pmap removes. In this | |
271 | * way, code which runs within memory in an uncontested context does | |
272 | * not keep encountering soft faults. | |
273 | */ | |
274 | ||
275 | unsigned int vm_pageout_scan_event_counter = 0; | |
1c79356b A |
276 | |
277 | /* | |
278 | * Forward declarations for internal routines. | |
279 | */ | |
91447636 A |
280 | |
281 | static void vm_pageout_garbage_collect(int); | |
282 | static void vm_pageout_iothread_continue(struct vm_pageout_queue *); | |
283 | static void vm_pageout_iothread_external(void); | |
284 | static void vm_pageout_iothread_internal(void); | |
91447636 | 285 | |
1c79356b A |
286 | extern void vm_pageout_continue(void); |
287 | extern void vm_pageout_scan(void); | |
1c79356b | 288 | |
2d21ac55 A |
289 | static thread_t vm_pageout_external_iothread = THREAD_NULL; |
290 | static thread_t vm_pageout_internal_iothread = THREAD_NULL; | |
291 | ||
1c79356b A |
292 | unsigned int vm_pageout_reserved_internal = 0; |
293 | unsigned int vm_pageout_reserved_really = 0; | |
294 | ||
91447636 | 295 | unsigned int vm_pageout_idle_wait = 0; /* milliseconds */ |
55e303ae | 296 | unsigned int vm_pageout_empty_wait = 0; /* milliseconds */ |
91447636 A |
297 | unsigned int vm_pageout_burst_wait = 0; /* milliseconds */ |
298 | unsigned int vm_pageout_deadlock_wait = 0; /* milliseconds */ | |
299 | unsigned int vm_pageout_deadlock_relief = 0; | |
300 | unsigned int vm_pageout_inactive_relief = 0; | |
301 | unsigned int vm_pageout_burst_active_throttle = 0; | |
302 | unsigned int vm_pageout_burst_inactive_throttle = 0; | |
1c79356b | 303 | |
9bccf70c A |
304 | /* |
305 | * Protection against zero fill flushing live working sets derived | |
306 | * from existing backing store and files | |
307 | */ | |
308 | unsigned int vm_accellerate_zf_pageout_trigger = 400; | |
2d21ac55 | 309 | unsigned int zf_queue_min_count = 100; |
2d21ac55 | 310 | unsigned int vm_zf_queue_count = 0; |
9bccf70c | 311 | |
b0d623f7 A |
312 | #if defined(__ppc__) /* On ppc, vm statistics are still 32-bit */ |
313 | unsigned int vm_zf_count = 0; | |
314 | #else | |
315 | uint64_t vm_zf_count __attribute__((aligned(8))) = 0; | |
316 | #endif | |
317 | ||
1c79356b A |
318 | /* |
319 | * These variables record the pageout daemon's actions: | |
320 | * how many pages it looks at and what happens to those pages. | |
321 | * No locking needed because only one thread modifies the variables. | |
322 | */ | |
323 | ||
324 | unsigned int vm_pageout_active = 0; /* debugging */ | |
325 | unsigned int vm_pageout_inactive = 0; /* debugging */ | |
326 | unsigned int vm_pageout_inactive_throttled = 0; /* debugging */ | |
327 | unsigned int vm_pageout_inactive_forced = 0; /* debugging */ | |
328 | unsigned int vm_pageout_inactive_nolock = 0; /* debugging */ | |
329 | unsigned int vm_pageout_inactive_avoid = 0; /* debugging */ | |
330 | unsigned int vm_pageout_inactive_busy = 0; /* debugging */ | |
331 | unsigned int vm_pageout_inactive_absent = 0; /* debugging */ | |
332 | unsigned int vm_pageout_inactive_used = 0; /* debugging */ | |
333 | unsigned int vm_pageout_inactive_clean = 0; /* debugging */ | |
334 | unsigned int vm_pageout_inactive_dirty = 0; /* debugging */ | |
b0d623f7 A |
335 | unsigned int vm_pageout_inactive_deactivated = 0; /* debugging */ |
336 | unsigned int vm_pageout_inactive_zf = 0; /* debugging */ | |
1c79356b | 337 | unsigned int vm_pageout_dirty_no_pager = 0; /* debugging */ |
91447636 | 338 | unsigned int vm_pageout_purged_objects = 0; /* debugging */ |
1c79356b A |
339 | unsigned int vm_stat_discard = 0; /* debugging */ |
340 | unsigned int vm_stat_discard_sent = 0; /* debugging */ | |
341 | unsigned int vm_stat_discard_failure = 0; /* debugging */ | |
342 | unsigned int vm_stat_discard_throttle = 0; /* debugging */ | |
2d21ac55 A |
343 | unsigned int vm_pageout_reactivation_limit_exceeded = 0; /* debugging */ |
344 | unsigned int vm_pageout_catch_ups = 0; /* debugging */ | |
345 | unsigned int vm_pageout_inactive_force_reclaim = 0; /* debugging */ | |
1c79356b | 346 | |
91447636 A |
347 | unsigned int vm_pageout_scan_active_throttled = 0; |
348 | unsigned int vm_pageout_scan_inactive_throttled = 0; | |
349 | unsigned int vm_pageout_scan_throttle = 0; /* debugging */ | |
b0d623f7 | 350 | unsigned int vm_pageout_scan_throttle_aborted = 0; /* debugging */ |
91447636 A |
351 | unsigned int vm_pageout_scan_burst_throttle = 0; /* debugging */ |
352 | unsigned int vm_pageout_scan_empty_throttle = 0; /* debugging */ | |
353 | unsigned int vm_pageout_scan_deadlock_detected = 0; /* debugging */ | |
354 | unsigned int vm_pageout_scan_active_throttle_success = 0; /* debugging */ | |
355 | unsigned int vm_pageout_scan_inactive_throttle_success = 0; /* debugging */ | |
b0d623f7 A |
356 | |
357 | unsigned int vm_page_speculative_count_drifts = 0; | |
358 | unsigned int vm_page_speculative_count_drift_max = 0; | |
359 | ||
55e303ae A |
360 | /* |
361 | * Backing store throttle when BS is exhausted | |
362 | */ | |
363 | unsigned int vm_backing_store_low = 0; | |
1c79356b A |
364 | |
365 | unsigned int vm_pageout_out_of_line = 0; | |
366 | unsigned int vm_pageout_in_place = 0; | |
55e303ae | 367 | |
b0d623f7 A |
368 | unsigned int vm_page_steal_pageout_page = 0; |
369 | ||
91447636 A |
370 | /* |
371 | * ENCRYPTED SWAP: | |
372 | * counters and statistics... | |
373 | */ | |
374 | unsigned long vm_page_decrypt_counter = 0; | |
375 | unsigned long vm_page_decrypt_for_upl_counter = 0; | |
376 | unsigned long vm_page_encrypt_counter = 0; | |
377 | unsigned long vm_page_encrypt_abort_counter = 0; | |
378 | unsigned long vm_page_encrypt_already_encrypted_counter = 0; | |
379 | boolean_t vm_pages_encrypted = FALSE; /* are there encrypted pages ? */ | |
380 | ||
91447636 A |
381 | struct vm_pageout_queue vm_pageout_queue_internal; |
382 | struct vm_pageout_queue vm_pageout_queue_external; | |
383 | ||
2d21ac55 A |
384 | unsigned int vm_page_speculative_target = 0; |
385 | ||
386 | vm_object_t vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
387 | ||
b0d623f7 A |
388 | static boolean_t (* volatile consider_buffer_cache_collect)(void) = NULL; |
389 | ||
390 | #if DEVELOPMENT || DEBUG | |
4a3eedf9 | 391 | unsigned long vm_cs_validated_resets = 0; |
b0d623f7 | 392 | #endif |
55e303ae A |
393 | |
394 | /* | |
395 | * Routine: vm_backing_store_disable | |
396 | * Purpose: | |
397 | * Suspend non-privileged threads wishing to extend | |
398 | * backing store when we are low on backing store | |
399 | * (Synchronized by caller) | |
400 | */ | |
401 | void | |
402 | vm_backing_store_disable( | |
403 | boolean_t disable) | |
404 | { | |
405 | if(disable) { | |
406 | vm_backing_store_low = 1; | |
407 | } else { | |
408 | if(vm_backing_store_low) { | |
409 | vm_backing_store_low = 0; | |
410 | thread_wakeup((event_t) &vm_backing_store_low); | |
411 | } | |
412 | } | |
413 | } | |
414 | ||
415 | ||
1c79356b A |
416 | #if MACH_CLUSTER_STATS |
417 | unsigned long vm_pageout_cluster_dirtied = 0; | |
418 | unsigned long vm_pageout_cluster_cleaned = 0; | |
419 | unsigned long vm_pageout_cluster_collisions = 0; | |
420 | unsigned long vm_pageout_cluster_clusters = 0; | |
421 | unsigned long vm_pageout_cluster_conversions = 0; | |
422 | unsigned long vm_pageout_target_collisions = 0; | |
423 | unsigned long vm_pageout_target_page_dirtied = 0; | |
424 | unsigned long vm_pageout_target_page_freed = 0; | |
1c79356b A |
425 | #define CLUSTER_STAT(clause) clause |
426 | #else /* MACH_CLUSTER_STATS */ | |
427 | #define CLUSTER_STAT(clause) | |
428 | #endif /* MACH_CLUSTER_STATS */ | |
429 | ||
430 | /* | |
431 | * Routine: vm_pageout_object_terminate | |
432 | * Purpose: | |
2d21ac55 | 433 | * Destroy the pageout_object, and perform all of the |
1c79356b A |
434 | * required cleanup actions. |
435 | * | |
436 | * In/Out conditions: | |
437 | * The object must be locked, and will be returned locked. | |
438 | */ | |
439 | void | |
440 | vm_pageout_object_terminate( | |
441 | vm_object_t object) | |
442 | { | |
443 | vm_object_t shadow_object; | |
444 | ||
445 | /* | |
446 | * Deal with the deallocation (last reference) of a pageout object | |
447 | * (used for cleaning-in-place) by dropping the paging references/ | |
448 | * freeing pages in the original object. | |
449 | */ | |
450 | ||
451 | assert(object->pageout); | |
452 | shadow_object = object->shadow; | |
453 | vm_object_lock(shadow_object); | |
454 | ||
455 | while (!queue_empty(&object->memq)) { | |
456 | vm_page_t p, m; | |
457 | vm_object_offset_t offset; | |
458 | ||
459 | p = (vm_page_t) queue_first(&object->memq); | |
460 | ||
461 | assert(p->private); | |
462 | assert(p->pageout); | |
463 | p->pageout = FALSE; | |
464 | assert(!p->cleaning); | |
465 | ||
466 | offset = p->offset; | |
467 | VM_PAGE_FREE(p); | |
468 | p = VM_PAGE_NULL; | |
469 | ||
470 | m = vm_page_lookup(shadow_object, | |
471 | offset + object->shadow_offset); | |
472 | ||
473 | if(m == VM_PAGE_NULL) | |
474 | continue; | |
475 | assert(m->cleaning); | |
0b4e3aa0 A |
476 | /* used as a trigger on upl_commit etc to recognize the */ |
477 | /* pageout daemon's subseqent desire to pageout a cleaning */ | |
478 | /* page. When the bit is on the upl commit code will */ | |
479 | /* respect the pageout bit in the target page over the */ | |
480 | /* caller's page list indication */ | |
481 | m->dump_cleaning = FALSE; | |
1c79356b | 482 | |
1c79356b A |
483 | assert((m->dirty) || (m->precious) || |
484 | (m->busy && m->cleaning)); | |
485 | ||
486 | /* | |
487 | * Handle the trusted pager throttle. | |
55e303ae | 488 | * Also decrement the burst throttle (if external). |
1c79356b A |
489 | */ |
490 | vm_page_lock_queues(); | |
491 | if (m->laundry) { | |
91447636 | 492 | vm_pageout_throttle_up(m); |
1c79356b A |
493 | } |
494 | ||
495 | /* | |
496 | * Handle the "target" page(s). These pages are to be freed if | |
497 | * successfully cleaned. Target pages are always busy, and are | |
498 | * wired exactly once. The initial target pages are not mapped, | |
499 | * (so cannot be referenced or modified) but converted target | |
500 | * pages may have been modified between the selection as an | |
501 | * adjacent page and conversion to a target. | |
502 | */ | |
503 | if (m->pageout) { | |
504 | assert(m->busy); | |
505 | assert(m->wire_count == 1); | |
506 | m->cleaning = FALSE; | |
2d21ac55 | 507 | m->encrypted_cleaning = FALSE; |
1c79356b A |
508 | m->pageout = FALSE; |
509 | #if MACH_CLUSTER_STATS | |
510 | if (m->wanted) vm_pageout_target_collisions++; | |
511 | #endif | |
512 | /* | |
513 | * Revoke all access to the page. Since the object is | |
514 | * locked, and the page is busy, this prevents the page | |
91447636 | 515 | * from being dirtied after the pmap_disconnect() call |
1c79356b | 516 | * returns. |
91447636 | 517 | * |
1c79356b A |
518 | * Since the page is left "dirty" but "not modifed", we |
519 | * can detect whether the page was redirtied during | |
520 | * pageout by checking the modify state. | |
521 | */ | |
91447636 A |
522 | if (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED) |
523 | m->dirty = TRUE; | |
524 | else | |
525 | m->dirty = FALSE; | |
1c79356b A |
526 | |
527 | if (m->dirty) { | |
528 | CLUSTER_STAT(vm_pageout_target_page_dirtied++;) | |
529 | vm_page_unwire(m);/* reactivates */ | |
2d21ac55 | 530 | VM_STAT_INCR(reactivations); |
1c79356b | 531 | PAGE_WAKEUP_DONE(m); |
1c79356b A |
532 | } else { |
533 | CLUSTER_STAT(vm_pageout_target_page_freed++;) | |
534 | vm_page_free(m);/* clears busy, etc. */ | |
535 | } | |
536 | vm_page_unlock_queues(); | |
537 | continue; | |
538 | } | |
539 | /* | |
540 | * Handle the "adjacent" pages. These pages were cleaned in | |
541 | * place, and should be left alone. | |
542 | * If prep_pin_count is nonzero, then someone is using the | |
543 | * page, so make it active. | |
544 | */ | |
2d21ac55 | 545 | if (!m->active && !m->inactive && !m->throttled && !m->private) { |
0b4e3aa0 | 546 | if (m->reference) |
1c79356b A |
547 | vm_page_activate(m); |
548 | else | |
549 | vm_page_deactivate(m); | |
550 | } | |
551 | if((m->busy) && (m->cleaning)) { | |
552 | ||
553 | /* the request_page_list case, (COPY_OUT_FROM FALSE) */ | |
554 | m->busy = FALSE; | |
555 | ||
556 | /* We do not re-set m->dirty ! */ | |
557 | /* The page was busy so no extraneous activity */ | |
91447636 | 558 | /* could have occurred. COPY_INTO is a read into the */ |
1c79356b A |
559 | /* new pages. CLEAN_IN_PLACE does actually write */ |
560 | /* out the pages but handling outside of this code */ | |
561 | /* will take care of resetting dirty. We clear the */ | |
562 | /* modify however for the Programmed I/O case. */ | |
55e303ae | 563 | pmap_clear_modify(m->phys_page); |
2d21ac55 A |
564 | |
565 | m->absent = FALSE; | |
1c79356b A |
566 | m->overwriting = FALSE; |
567 | } else if (m->overwriting) { | |
568 | /* alternate request page list, write to page_list */ | |
569 | /* case. Occurs when the original page was wired */ | |
570 | /* at the time of the list request */ | |
b0d623f7 | 571 | assert(VM_PAGE_WIRED(m)); |
1c79356b A |
572 | vm_page_unwire(m);/* reactivates */ |
573 | m->overwriting = FALSE; | |
574 | } else { | |
575 | /* | |
576 | * Set the dirty state according to whether or not the page was | |
577 | * modified during the pageout. Note that we purposefully do | |
578 | * NOT call pmap_clear_modify since the page is still mapped. | |
579 | * If the page were to be dirtied between the 2 calls, this | |
580 | * this fact would be lost. This code is only necessary to | |
581 | * maintain statistics, since the pmap module is always | |
582 | * consulted if m->dirty is false. | |
583 | */ | |
584 | #if MACH_CLUSTER_STATS | |
55e303ae | 585 | m->dirty = pmap_is_modified(m->phys_page); |
1c79356b A |
586 | |
587 | if (m->dirty) vm_pageout_cluster_dirtied++; | |
588 | else vm_pageout_cluster_cleaned++; | |
589 | if (m->wanted) vm_pageout_cluster_collisions++; | |
590 | #else | |
591 | m->dirty = 0; | |
592 | #endif | |
593 | } | |
594 | m->cleaning = FALSE; | |
2d21ac55 | 595 | m->encrypted_cleaning = FALSE; |
1c79356b | 596 | |
1c79356b A |
597 | /* |
598 | * Wakeup any thread waiting for the page to be un-cleaning. | |
599 | */ | |
600 | PAGE_WAKEUP(m); | |
601 | vm_page_unlock_queues(); | |
602 | } | |
603 | /* | |
604 | * Account for the paging reference taken in vm_paging_object_allocate. | |
605 | */ | |
b0d623f7 | 606 | vm_object_activity_end(shadow_object); |
1c79356b A |
607 | vm_object_unlock(shadow_object); |
608 | ||
609 | assert(object->ref_count == 0); | |
610 | assert(object->paging_in_progress == 0); | |
b0d623f7 | 611 | assert(object->activity_in_progress == 0); |
1c79356b A |
612 | assert(object->resident_page_count == 0); |
613 | return; | |
614 | } | |
615 | ||
1c79356b A |
616 | /* |
617 | * Routine: vm_pageclean_setup | |
618 | * | |
619 | * Purpose: setup a page to be cleaned (made non-dirty), but not | |
620 | * necessarily flushed from the VM page cache. | |
621 | * This is accomplished by cleaning in place. | |
622 | * | |
b0d623f7 A |
623 | * The page must not be busy, and new_object |
624 | * must be locked. | |
625 | * | |
1c79356b A |
626 | */ |
627 | void | |
628 | vm_pageclean_setup( | |
629 | vm_page_t m, | |
630 | vm_page_t new_m, | |
631 | vm_object_t new_object, | |
632 | vm_object_offset_t new_offset) | |
633 | { | |
1c79356b | 634 | assert(!m->busy); |
2d21ac55 | 635 | #if 0 |
1c79356b | 636 | assert(!m->cleaning); |
2d21ac55 | 637 | #endif |
1c79356b A |
638 | |
639 | XPR(XPR_VM_PAGEOUT, | |
640 | "vm_pageclean_setup, obj 0x%X off 0x%X page 0x%X new 0x%X new_off 0x%X\n", | |
b0d623f7 A |
641 | m->object, m->offset, m, |
642 | new_m, new_offset); | |
1c79356b | 643 | |
55e303ae | 644 | pmap_clear_modify(m->phys_page); |
1c79356b A |
645 | |
646 | /* | |
647 | * Mark original page as cleaning in place. | |
648 | */ | |
649 | m->cleaning = TRUE; | |
650 | m->dirty = TRUE; | |
651 | m->precious = FALSE; | |
652 | ||
653 | /* | |
654 | * Convert the fictitious page to a private shadow of | |
655 | * the real page. | |
656 | */ | |
657 | assert(new_m->fictitious); | |
2d21ac55 | 658 | assert(new_m->phys_page == vm_page_fictitious_addr); |
1c79356b A |
659 | new_m->fictitious = FALSE; |
660 | new_m->private = TRUE; | |
661 | new_m->pageout = TRUE; | |
55e303ae | 662 | new_m->phys_page = m->phys_page; |
b0d623f7 A |
663 | |
664 | vm_page_lockspin_queues(); | |
1c79356b | 665 | vm_page_wire(new_m); |
b0d623f7 | 666 | vm_page_unlock_queues(); |
1c79356b A |
667 | |
668 | vm_page_insert(new_m, new_object, new_offset); | |
669 | assert(!new_m->wanted); | |
670 | new_m->busy = FALSE; | |
671 | } | |
672 | ||
1c79356b A |
673 | /* |
674 | * Routine: vm_pageout_initialize_page | |
675 | * Purpose: | |
676 | * Causes the specified page to be initialized in | |
677 | * the appropriate memory object. This routine is used to push | |
678 | * pages into a copy-object when they are modified in the | |
679 | * permanent object. | |
680 | * | |
681 | * The page is moved to a temporary object and paged out. | |
682 | * | |
683 | * In/out conditions: | |
684 | * The page in question must not be on any pageout queues. | |
685 | * The object to which it belongs must be locked. | |
686 | * The page must be busy, but not hold a paging reference. | |
687 | * | |
688 | * Implementation: | |
689 | * Move this page to a completely new object. | |
690 | */ | |
691 | void | |
692 | vm_pageout_initialize_page( | |
693 | vm_page_t m) | |
694 | { | |
1c79356b A |
695 | vm_object_t object; |
696 | vm_object_offset_t paging_offset; | |
697 | vm_page_t holding_page; | |
2d21ac55 | 698 | memory_object_t pager; |
1c79356b A |
699 | |
700 | XPR(XPR_VM_PAGEOUT, | |
701 | "vm_pageout_initialize_page, page 0x%X\n", | |
b0d623f7 | 702 | m, 0, 0, 0, 0); |
1c79356b A |
703 | assert(m->busy); |
704 | ||
705 | /* | |
706 | * Verify that we really want to clean this page | |
707 | */ | |
708 | assert(!m->absent); | |
709 | assert(!m->error); | |
710 | assert(m->dirty); | |
711 | ||
712 | /* | |
713 | * Create a paging reference to let us play with the object. | |
714 | */ | |
715 | object = m->object; | |
716 | paging_offset = m->offset + object->paging_offset; | |
2d21ac55 A |
717 | |
718 | if (m->absent || m->error || m->restart || (!m->dirty && !m->precious)) { | |
1c79356b A |
719 | VM_PAGE_FREE(m); |
720 | panic("reservation without pageout?"); /* alan */ | |
2d21ac55 A |
721 | vm_object_unlock(object); |
722 | ||
723 | return; | |
724 | } | |
725 | ||
726 | /* | |
727 | * If there's no pager, then we can't clean the page. This should | |
728 | * never happen since this should be a copy object and therefore not | |
729 | * an external object, so the pager should always be there. | |
730 | */ | |
731 | ||
732 | pager = object->pager; | |
733 | ||
734 | if (pager == MEMORY_OBJECT_NULL) { | |
735 | VM_PAGE_FREE(m); | |
736 | panic("missing pager for copy object"); | |
1c79356b A |
737 | return; |
738 | } | |
739 | ||
740 | /* set the page for future call to vm_fault_list_request */ | |
2d21ac55 | 741 | vm_object_paging_begin(object); |
1c79356b | 742 | holding_page = NULL; |
b0d623f7 | 743 | |
55e303ae | 744 | pmap_clear_modify(m->phys_page); |
1c79356b | 745 | m->dirty = TRUE; |
55e303ae A |
746 | m->busy = TRUE; |
747 | m->list_req_pending = TRUE; | |
748 | m->cleaning = TRUE; | |
1c79356b | 749 | m->pageout = TRUE; |
b0d623f7 A |
750 | |
751 | vm_page_lockspin_queues(); | |
1c79356b | 752 | vm_page_wire(m); |
55e303ae | 753 | vm_page_unlock_queues(); |
b0d623f7 | 754 | |
55e303ae | 755 | vm_object_unlock(object); |
1c79356b A |
756 | |
757 | /* | |
758 | * Write the data to its pager. | |
759 | * Note that the data is passed by naming the new object, | |
760 | * not a virtual address; the pager interface has been | |
761 | * manipulated to use the "internal memory" data type. | |
762 | * [The object reference from its allocation is donated | |
763 | * to the eventual recipient.] | |
764 | */ | |
2d21ac55 | 765 | memory_object_data_initialize(pager, paging_offset, PAGE_SIZE); |
1c79356b A |
766 | |
767 | vm_object_lock(object); | |
2d21ac55 | 768 | vm_object_paging_end(object); |
1c79356b A |
769 | } |
770 | ||
771 | #if MACH_CLUSTER_STATS | |
772 | #define MAXCLUSTERPAGES 16 | |
773 | struct { | |
774 | unsigned long pages_in_cluster; | |
775 | unsigned long pages_at_higher_offsets; | |
776 | unsigned long pages_at_lower_offsets; | |
777 | } cluster_stats[MAXCLUSTERPAGES]; | |
778 | #endif /* MACH_CLUSTER_STATS */ | |
779 | ||
1c79356b A |
780 | |
781 | /* | |
782 | * vm_pageout_cluster: | |
783 | * | |
91447636 A |
784 | * Given a page, queue it to the appropriate I/O thread, |
785 | * which will page it out and attempt to clean adjacent pages | |
1c79356b A |
786 | * in the same operation. |
787 | * | |
91447636 | 788 | * The page must be busy, and the object and queues locked. We will take a |
55e303ae | 789 | * paging reference to prevent deallocation or collapse when we |
91447636 A |
790 | * release the object lock back at the call site. The I/O thread |
791 | * is responsible for consuming this reference | |
55e303ae A |
792 | * |
793 | * The page must not be on any pageout queue. | |
1c79356b | 794 | */ |
91447636 | 795 | |
1c79356b | 796 | void |
91447636 | 797 | vm_pageout_cluster(vm_page_t m) |
1c79356b A |
798 | { |
799 | vm_object_t object = m->object; | |
91447636 A |
800 | struct vm_pageout_queue *q; |
801 | ||
1c79356b A |
802 | |
803 | XPR(XPR_VM_PAGEOUT, | |
804 | "vm_pageout_cluster, object 0x%X offset 0x%X page 0x%X\n", | |
b0d623f7 A |
805 | object, m->offset, m, 0, 0); |
806 | ||
807 | VM_PAGE_CHECK(m); | |
1c79356b | 808 | |
91447636 A |
809 | /* |
810 | * Only a certain kind of page is appreciated here. | |
811 | */ | |
b0d623f7 | 812 | assert(m->busy && (m->dirty || m->precious) && (!VM_PAGE_WIRED(m))); |
91447636 | 813 | assert(!m->cleaning && !m->pageout && !m->inactive && !m->active); |
2d21ac55 | 814 | assert(!m->throttled); |
55e303ae A |
815 | |
816 | /* | |
817 | * protect the object from collapse - | |
818 | * locking in the object's paging_offset. | |
819 | */ | |
820 | vm_object_paging_begin(object); | |
55e303ae | 821 | |
1c79356b | 822 | /* |
91447636 A |
823 | * set the page for future call to vm_fault_list_request |
824 | * page should already be marked busy | |
1c79356b | 825 | */ |
91447636 | 826 | vm_page_wire(m); |
55e303ae A |
827 | m->list_req_pending = TRUE; |
828 | m->cleaning = TRUE; | |
1c79356b | 829 | m->pageout = TRUE; |
91447636 | 830 | m->laundry = TRUE; |
1c79356b | 831 | |
91447636 A |
832 | if (object->internal == TRUE) |
833 | q = &vm_pageout_queue_internal; | |
834 | else | |
835 | q = &vm_pageout_queue_external; | |
836 | q->pgo_laundry++; | |
1c79356b | 837 | |
91447636 A |
838 | m->pageout_queue = TRUE; |
839 | queue_enter(&q->pgo_pending, m, vm_page_t, pageq); | |
840 | ||
841 | if (q->pgo_idle == TRUE) { | |
842 | q->pgo_idle = FALSE; | |
843 | thread_wakeup((event_t) &q->pgo_pending); | |
1c79356b | 844 | } |
b0d623f7 A |
845 | |
846 | VM_PAGE_CHECK(m); | |
1c79356b A |
847 | } |
848 | ||
55e303ae | 849 | |
91447636 | 850 | unsigned long vm_pageout_throttle_up_count = 0; |
1c79356b A |
851 | |
852 | /* | |
b0d623f7 A |
853 | * A page is back from laundry or we are stealing it back from |
854 | * the laundering state. See if there are some pages waiting to | |
91447636 | 855 | * go to laundry and if we can let some of them go now. |
1c79356b | 856 | * |
91447636 | 857 | * Object and page queues must be locked. |
1c79356b | 858 | */ |
91447636 A |
859 | void |
860 | vm_pageout_throttle_up( | |
861 | vm_page_t m) | |
1c79356b | 862 | { |
91447636 | 863 | struct vm_pageout_queue *q; |
1c79356b | 864 | |
91447636 A |
865 | assert(m->laundry); |
866 | assert(m->object != VM_OBJECT_NULL); | |
867 | assert(m->object != kernel_object); | |
1c79356b | 868 | |
b0d623f7 A |
869 | vm_pageout_throttle_up_count++; |
870 | ||
91447636 A |
871 | if (m->object->internal == TRUE) |
872 | q = &vm_pageout_queue_internal; | |
873 | else | |
874 | q = &vm_pageout_queue_external; | |
1c79356b | 875 | |
b0d623f7 A |
876 | if (m->pageout_queue == TRUE) { |
877 | m->pageout_queue = FALSE; | |
878 | ||
879 | queue_remove(&q->pgo_pending, m, vm_page_t, pageq); | |
880 | m->pageq.next = NULL; | |
881 | m->pageq.prev = NULL; | |
882 | ||
883 | vm_object_paging_end(m->object); | |
884 | } | |
91447636 A |
885 | m->laundry = FALSE; |
886 | q->pgo_laundry--; | |
1c79356b | 887 | |
91447636 A |
888 | if (q->pgo_throttled == TRUE) { |
889 | q->pgo_throttled = FALSE; | |
890 | thread_wakeup((event_t) &q->pgo_laundry); | |
1c79356b | 891 | } |
1c79356b A |
892 | } |
893 | ||
91447636 | 894 | |
1c79356b A |
895 | /* |
896 | * vm_pageout_scan does the dirty work for the pageout daemon. | |
897 | * It returns with vm_page_queue_free_lock held and | |
898 | * vm_page_free_wanted == 0. | |
899 | */ | |
1c79356b | 900 | |
2d21ac55 | 901 | #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT (3 * MAX_UPL_TRANSFER) |
91447636 A |
902 | |
903 | #define FCS_IDLE 0 | |
904 | #define FCS_DELAYED 1 | |
905 | #define FCS_DEADLOCK_DETECTED 2 | |
906 | ||
907 | struct flow_control { | |
908 | int state; | |
909 | mach_timespec_t ts; | |
910 | }; | |
911 | ||
b0d623f7 A |
912 | |
913 | /* | |
914 | * VM memory pressure monitoring. | |
915 | * | |
916 | * vm_pageout_scan() keeps track of the number of pages it considers and | |
917 | * reclaims, in the currently active vm_pageout_stat[vm_pageout_stat_now]. | |
918 | * | |
919 | * compute_memory_pressure() is called every second from compute_averages() | |
920 | * and moves "vm_pageout_stat_now" forward, to start accumulating the number | |
921 | * of recalimed pages in a new vm_pageout_stat[] bucket. | |
922 | * | |
923 | * mach_vm_pressure_monitor() collects past statistics about memory pressure. | |
924 | * The caller provides the number of seconds ("nsecs") worth of statistics | |
925 | * it wants, up to 30 seconds. | |
926 | * It computes the number of pages reclaimed in the past "nsecs" seconds and | |
927 | * also returns the number of pages the system still needs to reclaim at this | |
928 | * moment in time. | |
929 | */ | |
930 | #define VM_PAGEOUT_STAT_SIZE 31 | |
931 | struct vm_pageout_stat { | |
932 | unsigned int considered; | |
933 | unsigned int reclaimed; | |
934 | } vm_pageout_stats[VM_PAGEOUT_STAT_SIZE] = {{0,0}, }; | |
935 | unsigned int vm_pageout_stat_now = 0; | |
936 | unsigned int vm_memory_pressure = 0; | |
937 | ||
938 | #define VM_PAGEOUT_STAT_BEFORE(i) \ | |
939 | (((i) == 0) ? VM_PAGEOUT_STAT_SIZE - 1 : (i) - 1) | |
940 | #define VM_PAGEOUT_STAT_AFTER(i) \ | |
941 | (((i) == VM_PAGEOUT_STAT_SIZE - 1) ? 0 : (i) + 1) | |
942 | ||
943 | /* | |
944 | * Called from compute_averages(). | |
945 | */ | |
946 | void | |
947 | compute_memory_pressure( | |
948 | __unused void *arg) | |
949 | { | |
950 | unsigned int vm_pageout_next; | |
951 | ||
952 | vm_memory_pressure = | |
953 | vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].reclaimed; | |
954 | ||
955 | commpage_set_memory_pressure( vm_memory_pressure ); | |
956 | ||
957 | /* move "now" forward */ | |
958 | vm_pageout_next = VM_PAGEOUT_STAT_AFTER(vm_pageout_stat_now); | |
959 | vm_pageout_stats[vm_pageout_next].considered = 0; | |
960 | vm_pageout_stats[vm_pageout_next].reclaimed = 0; | |
961 | vm_pageout_stat_now = vm_pageout_next; | |
962 | } | |
963 | ||
964 | unsigned int | |
965 | mach_vm_ctl_page_free_wanted(void) | |
966 | { | |
967 | unsigned int page_free_target, page_free_count, page_free_wanted; | |
968 | ||
969 | page_free_target = vm_page_free_target; | |
970 | page_free_count = vm_page_free_count; | |
971 | if (page_free_target > page_free_count) { | |
972 | page_free_wanted = page_free_target - page_free_count; | |
973 | } else { | |
974 | page_free_wanted = 0; | |
975 | } | |
976 | ||
977 | return page_free_wanted; | |
978 | } | |
979 | ||
980 | kern_return_t | |
981 | mach_vm_pressure_monitor( | |
982 | boolean_t wait_for_pressure, | |
983 | unsigned int nsecs_monitored, | |
984 | unsigned int *pages_reclaimed_p, | |
985 | unsigned int *pages_wanted_p) | |
986 | { | |
987 | wait_result_t wr; | |
988 | unsigned int vm_pageout_then, vm_pageout_now; | |
989 | unsigned int pages_reclaimed; | |
990 | ||
991 | /* | |
992 | * We don't take the vm_page_queue_lock here because we don't want | |
993 | * vm_pressure_monitor() to get in the way of the vm_pageout_scan() | |
994 | * thread when it's trying to reclaim memory. We don't need fully | |
995 | * accurate monitoring anyway... | |
996 | */ | |
997 | ||
998 | if (wait_for_pressure) { | |
999 | /* wait until there's memory pressure */ | |
1000 | while (vm_page_free_count >= vm_page_free_target) { | |
1001 | wr = assert_wait((event_t) &vm_page_free_wanted, | |
1002 | THREAD_INTERRUPTIBLE); | |
1003 | if (wr == THREAD_WAITING) { | |
1004 | wr = thread_block(THREAD_CONTINUE_NULL); | |
1005 | } | |
1006 | if (wr == THREAD_INTERRUPTED) { | |
1007 | return KERN_ABORTED; | |
1008 | } | |
1009 | if (wr == THREAD_AWAKENED) { | |
1010 | /* | |
1011 | * The memory pressure might have already | |
1012 | * been relieved but let's not block again | |
1013 | * and let's report that there was memory | |
1014 | * pressure at some point. | |
1015 | */ | |
1016 | break; | |
1017 | } | |
1018 | } | |
1019 | } | |
1020 | ||
1021 | /* provide the number of pages the system wants to reclaim */ | |
1022 | if (pages_wanted_p != NULL) { | |
1023 | *pages_wanted_p = mach_vm_ctl_page_free_wanted(); | |
1024 | } | |
1025 | ||
1026 | if (pages_reclaimed_p == NULL) { | |
1027 | return KERN_SUCCESS; | |
1028 | } | |
1029 | ||
1030 | /* provide number of pages reclaimed in the last "nsecs_monitored" */ | |
1031 | do { | |
1032 | vm_pageout_now = vm_pageout_stat_now; | |
1033 | pages_reclaimed = 0; | |
1034 | for (vm_pageout_then = | |
1035 | VM_PAGEOUT_STAT_BEFORE(vm_pageout_now); | |
1036 | vm_pageout_then != vm_pageout_now && | |
1037 | nsecs_monitored-- != 0; | |
1038 | vm_pageout_then = | |
1039 | VM_PAGEOUT_STAT_BEFORE(vm_pageout_then)) { | |
1040 | pages_reclaimed += vm_pageout_stats[vm_pageout_then].reclaimed; | |
1041 | } | |
1042 | } while (vm_pageout_now != vm_pageout_stat_now); | |
1043 | *pages_reclaimed_p = pages_reclaimed; | |
1044 | ||
1045 | return KERN_SUCCESS; | |
1046 | } | |
1047 | ||
1048 | /* Page States: Used below to maintain the page state | |
1049 | before it's removed from it's Q. This saved state | |
1050 | helps us do the right accounting in certain cases | |
1051 | */ | |
1052 | ||
1053 | #define PAGE_STATE_SPECULATIVE 1 | |
1054 | #define PAGE_STATE_THROTTLED 2 | |
1055 | #define PAGE_STATE_ZEROFILL 3 | |
1056 | #define PAGE_STATE_INACTIVE 4 | |
1057 | ||
1058 | #define VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m) \ | |
1059 | MACRO_BEGIN \ | |
1060 | /* \ | |
1061 | * If a "reusable" page somehow made it back into \ | |
1062 | * the active queue, it's been re-used and is not \ | |
1063 | * quite re-usable. \ | |
1064 | * If the VM object was "all_reusable", consider it \ | |
1065 | * as "all re-used" instead of converting it to \ | |
1066 | * "partially re-used", which could be expensive. \ | |
1067 | */ \ | |
1068 | if ((m)->reusable || \ | |
1069 | (m)->object->all_reusable) { \ | |
1070 | vm_object_reuse_pages((m)->object, \ | |
1071 | (m)->offset, \ | |
1072 | (m)->offset + PAGE_SIZE_64, \ | |
1073 | FALSE); \ | |
1074 | } \ | |
1075 | MACRO_END | |
1076 | ||
1c79356b A |
1077 | void |
1078 | vm_pageout_scan(void) | |
1079 | { | |
91447636 A |
1080 | unsigned int loop_count = 0; |
1081 | unsigned int inactive_burst_count = 0; | |
1082 | unsigned int active_burst_count = 0; | |
2d21ac55 A |
1083 | unsigned int reactivated_this_call; |
1084 | unsigned int reactivate_limit; | |
1085 | vm_page_t local_freeq = NULL; | |
55e303ae | 1086 | int local_freed = 0; |
2d21ac55 | 1087 | int delayed_unlock; |
91447636 A |
1088 | int refmod_state = 0; |
1089 | int vm_pageout_deadlock_target = 0; | |
1090 | struct vm_pageout_queue *iq; | |
1091 | struct vm_pageout_queue *eq; | |
2d21ac55 | 1092 | struct vm_speculative_age_q *sq; |
b0d623f7 | 1093 | struct flow_control flow_control = { 0, { 0, 0 } }; |
91447636 | 1094 | boolean_t inactive_throttled = FALSE; |
2d21ac55 | 1095 | boolean_t try_failed; |
91447636 A |
1096 | mach_timespec_t ts; |
1097 | unsigned int msecs = 0; | |
1098 | vm_object_t object; | |
2d21ac55 | 1099 | vm_object_t last_object_tried; |
b0d623f7 A |
1100 | #if defined(__ppc__) /* On ppc, vm statistics are still 32-bit */ |
1101 | unsigned int zf_ratio; | |
1102 | unsigned int zf_run_count; | |
1103 | #else | |
1104 | uint64_t zf_ratio; | |
1105 | uint64_t zf_run_count; | |
1106 | #endif | |
2d21ac55 A |
1107 | uint32_t catch_up_count = 0; |
1108 | uint32_t inactive_reclaim_run; | |
1109 | boolean_t forced_reclaim; | |
b0d623f7 | 1110 | int page_prev_state = 0; |
91447636 A |
1111 | |
1112 | flow_control.state = FCS_IDLE; | |
1113 | iq = &vm_pageout_queue_internal; | |
1114 | eq = &vm_pageout_queue_external; | |
2d21ac55 A |
1115 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; |
1116 | ||
1c79356b A |
1117 | |
1118 | XPR(XPR_VM_PAGEOUT, "vm_pageout_scan\n", 0, 0, 0, 0, 0); | |
1119 | ||
2d21ac55 A |
1120 | |
1121 | vm_page_lock_queues(); | |
1122 | delayed_unlock = 1; /* must be nonzero if Qs are locked, 0 if unlocked */ | |
1123 | ||
1124 | /* | |
1125 | * Calculate the max number of referenced pages on the inactive | |
1126 | * queue that we will reactivate. | |
1127 | */ | |
1128 | reactivated_this_call = 0; | |
1129 | reactivate_limit = VM_PAGE_REACTIVATE_LIMIT(vm_page_active_count + | |
1130 | vm_page_inactive_count); | |
1131 | inactive_reclaim_run = 0; | |
1132 | ||
1133 | ||
1c79356b A |
1134 | /*???*/ /* |
1135 | * We want to gradually dribble pages from the active queue | |
1136 | * to the inactive queue. If we let the inactive queue get | |
1137 | * very small, and then suddenly dump many pages into it, | |
1138 | * those pages won't get a sufficient chance to be referenced | |
1139 | * before we start taking them from the inactive queue. | |
1140 | * | |
1141 | * We must limit the rate at which we send pages to the pagers. | |
1142 | * data_write messages consume memory, for message buffers and | |
1143 | * for map-copy objects. If we get too far ahead of the pagers, | |
1144 | * we can potentially run out of memory. | |
1145 | * | |
1146 | * We can use the laundry count to limit directly the number | |
1147 | * of pages outstanding to the default pager. A similar | |
1148 | * strategy for external pagers doesn't work, because | |
1149 | * external pagers don't have to deallocate the pages sent them, | |
1150 | * and because we might have to send pages to external pagers | |
1151 | * even if they aren't processing writes. So we also | |
1152 | * use a burst count to limit writes to external pagers. | |
1153 | * | |
1154 | * When memory is very tight, we can't rely on external pagers to | |
1155 | * clean pages. They probably aren't running, because they | |
1156 | * aren't vm-privileged. If we kept sending dirty pages to them, | |
55e303ae | 1157 | * we could exhaust the free list. |
1c79356b | 1158 | */ |
91447636 | 1159 | |
1c79356b | 1160 | |
91447636 | 1161 | Restart: |
2d21ac55 A |
1162 | assert(delayed_unlock!=0); |
1163 | ||
1164 | /* | |
1165 | * A page is "zero-filled" if it was not paged in from somewhere, | |
1166 | * and it belongs to an object at least VM_ZF_OBJECT_SIZE_THRESHOLD big. | |
1167 | * Recalculate the zero-filled page ratio. We use this to apportion | |
1168 | * victimized pages between the normal and zero-filled inactive | |
1169 | * queues according to their relative abundance in memory. Thus if a task | |
1170 | * is flooding memory with zf pages, we begin to hunt them down. | |
1171 | * It would be better to throttle greedy tasks at a higher level, | |
1172 | * but at the moment mach vm cannot do this. | |
1173 | */ | |
1174 | { | |
b0d623f7 A |
1175 | #if defined(__ppc__) /* On ppc, vm statistics are still 32-bit */ |
1176 | uint32_t total = vm_page_active_count + vm_page_inactive_count; | |
1177 | uint32_t normal = total - vm_zf_count; | |
1178 | #else | |
1179 | uint64_t total = vm_page_active_count + vm_page_inactive_count; | |
1180 | uint64_t normal = total - vm_zf_count; | |
1181 | #endif | |
1182 | ||
2d21ac55 A |
1183 | /* zf_ratio is the number of zf pages we victimize per normal page */ |
1184 | ||
1185 | if (vm_zf_count < vm_accellerate_zf_pageout_trigger) | |
1186 | zf_ratio = 0; | |
1187 | else if ((vm_zf_count <= normal) || (normal == 0)) | |
1188 | zf_ratio = 1; | |
1189 | else | |
1190 | zf_ratio = vm_zf_count / normal; | |
1191 | ||
1192 | zf_run_count = 0; | |
1193 | } | |
1194 | ||
91447636 A |
1195 | /* |
1196 | * Recalculate vm_page_inactivate_target. | |
1197 | */ | |
1198 | vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count + | |
2d21ac55 A |
1199 | vm_page_inactive_count + |
1200 | vm_page_speculative_count); | |
1201 | /* | |
1202 | * don't want to wake the pageout_scan thread up everytime we fall below | |
1203 | * the targets... set a low water mark at 0.25% below the target | |
1204 | */ | |
1205 | vm_page_inactive_min = vm_page_inactive_target - (vm_page_inactive_target / 400); | |
1c79356b | 1206 | |
2d21ac55 A |
1207 | vm_page_speculative_target = VM_PAGE_SPECULATIVE_TARGET(vm_page_active_count + |
1208 | vm_page_inactive_count); | |
1209 | object = NULL; | |
1210 | last_object_tried = NULL; | |
1211 | try_failed = FALSE; | |
1212 | ||
1213 | if ((vm_page_inactive_count + vm_page_speculative_count) < VM_PAGE_INACTIVE_HEALTHY_LIMIT(vm_page_active_count)) | |
1214 | catch_up_count = vm_page_inactive_count + vm_page_speculative_count; | |
1215 | else | |
1216 | catch_up_count = 0; | |
1217 | ||
55e303ae | 1218 | for (;;) { |
91447636 | 1219 | vm_page_t m; |
1c79356b | 1220 | |
2d21ac55 | 1221 | DTRACE_VM2(rev, int, 1, (uint64_t *), NULL); |
1c79356b | 1222 | |
2d21ac55 A |
1223 | if (delayed_unlock == 0) { |
1224 | vm_page_lock_queues(); | |
1225 | delayed_unlock = 1; | |
1226 | } | |
91447636 | 1227 | |
2d21ac55 A |
1228 | /* |
1229 | * Don't sweep through active queue more than the throttle | |
1230 | * which should be kept relatively low | |
1231 | */ | |
b0d623f7 A |
1232 | active_burst_count = MIN(vm_pageout_burst_active_throttle, |
1233 | vm_page_active_count); | |
91447636 | 1234 | |
1c79356b A |
1235 | /* |
1236 | * Move pages from active to inactive. | |
1237 | */ | |
b0d623f7 | 1238 | if ((vm_page_inactive_count + vm_page_speculative_count) >= vm_page_inactive_target) |
2d21ac55 A |
1239 | goto done_moving_active_pages; |
1240 | ||
b0d623f7 | 1241 | while (!queue_empty(&vm_page_queue_active) && active_burst_count) { |
2d21ac55 A |
1242 | |
1243 | if (active_burst_count) | |
1244 | active_burst_count--; | |
1c79356b | 1245 | |
1c79356b | 1246 | vm_pageout_active++; |
55e303ae | 1247 | |
1c79356b | 1248 | m = (vm_page_t) queue_first(&vm_page_queue_active); |
91447636 A |
1249 | |
1250 | assert(m->active && !m->inactive); | |
1251 | assert(!m->laundry); | |
1252 | assert(m->object != kernel_object); | |
2d21ac55 A |
1253 | assert(m->phys_page != vm_page_guard_addr); |
1254 | ||
1255 | DTRACE_VM2(scan, int, 1, (uint64_t *), NULL); | |
1c79356b A |
1256 | |
1257 | /* | |
91447636 A |
1258 | * Try to lock object; since we've already got the |
1259 | * page queues lock, we can only 'try' for this one. | |
1260 | * if the 'try' fails, we need to do a mutex_pause | |
1261 | * to allow the owner of the object lock a chance to | |
1262 | * run... otherwise, we're likely to trip over this | |
1263 | * object in the same state as we work our way through | |
1264 | * the queue... clumps of pages associated with the same | |
1265 | * object are fairly typical on the inactive and active queues | |
1c79356b | 1266 | */ |
91447636 A |
1267 | if (m->object != object) { |
1268 | if (object != NULL) { | |
1269 | vm_object_unlock(object); | |
1270 | object = NULL; | |
2d21ac55 | 1271 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
1c79356b | 1272 | } |
2d21ac55 | 1273 | if (!vm_object_lock_try_scan(m->object)) { |
91447636 A |
1274 | /* |
1275 | * move page to end of active queue and continue | |
1276 | */ | |
1277 | queue_remove(&vm_page_queue_active, m, | |
1278 | vm_page_t, pageq); | |
1279 | queue_enter(&vm_page_queue_active, m, | |
1280 | vm_page_t, pageq); | |
2d21ac55 A |
1281 | |
1282 | try_failed = TRUE; | |
55e303ae | 1283 | |
2d21ac55 A |
1284 | m = (vm_page_t) queue_first(&vm_page_queue_active); |
1285 | /* | |
1286 | * this is the next object we're going to be interested in | |
b0d623f7 | 1287 | * try to make sure it's available after the mutex_yield |
2d21ac55 A |
1288 | * returns control |
1289 | */ | |
1290 | vm_pageout_scan_wants_object = m->object; | |
1291 | ||
91447636 | 1292 | goto done_with_activepage; |
55e303ae | 1293 | } |
91447636 | 1294 | object = m->object; |
2d21ac55 A |
1295 | |
1296 | try_failed = FALSE; | |
1c79356b | 1297 | } |
2d21ac55 | 1298 | |
1c79356b | 1299 | /* |
91447636 A |
1300 | * if the page is BUSY, then we pull it |
1301 | * off the active queue and leave it alone. | |
1302 | * when BUSY is cleared, it will get stuck | |
1303 | * back on the appropriate queue | |
1c79356b | 1304 | */ |
1c79356b | 1305 | if (m->busy) { |
1c79356b A |
1306 | queue_remove(&vm_page_queue_active, m, |
1307 | vm_page_t, pageq); | |
91447636 A |
1308 | m->pageq.next = NULL; |
1309 | m->pageq.prev = NULL; | |
1310 | ||
1c79356b A |
1311 | if (!m->fictitious) |
1312 | vm_page_active_count--; | |
91447636 A |
1313 | m->active = FALSE; |
1314 | ||
1315 | goto done_with_activepage; | |
1c79356b | 1316 | } |
91447636 | 1317 | |
b0d623f7 A |
1318 | /* deal with a rogue "reusable" page */ |
1319 | VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m); | |
1320 | ||
1c79356b A |
1321 | /* |
1322 | * Deactivate the page while holding the object | |
1323 | * locked, so we know the page is still not busy. | |
1324 | * This should prevent races between pmap_enter | |
1325 | * and pmap_clear_reference. The page might be | |
1326 | * absent or fictitious, but vm_page_deactivate | |
1327 | * can handle that. | |
1328 | */ | |
91447636 | 1329 | vm_page_deactivate(m); |
2d21ac55 | 1330 | |
91447636 | 1331 | done_with_activepage: |
2d21ac55 | 1332 | if (delayed_unlock++ > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT || try_failed == TRUE) { |
1c79356b | 1333 | |
91447636 | 1334 | if (object != NULL) { |
b0d623f7 | 1335 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
91447636 A |
1336 | vm_object_unlock(object); |
1337 | object = NULL; | |
1338 | } | |
1339 | if (local_freeq) { | |
b0d623f7 A |
1340 | vm_page_unlock_queues(); |
1341 | vm_page_free_list(local_freeq, TRUE); | |
91447636 | 1342 | |
2d21ac55 | 1343 | local_freeq = NULL; |
91447636 | 1344 | local_freed = 0; |
b0d623f7 A |
1345 | vm_page_lock_queues(); |
1346 | } else | |
1347 | lck_mtx_yield(&vm_page_queue_lock); | |
2d21ac55 A |
1348 | |
1349 | delayed_unlock = 1; | |
91447636 | 1350 | |
91447636 A |
1351 | /* |
1352 | * continue the while loop processing | |
1353 | * the active queue... need to hold | |
1354 | * the page queues lock | |
1355 | */ | |
55e303ae | 1356 | } |
1c79356b | 1357 | } |
91447636 A |
1358 | |
1359 | ||
1360 | ||
1361 | /********************************************************************** | |
1362 | * above this point we're playing with the active queue | |
1363 | * below this point we're playing with the throttling mechanisms | |
1364 | * and the inactive queue | |
1365 | **********************************************************************/ | |
1366 | ||
2d21ac55 | 1367 | done_moving_active_pages: |
91447636 | 1368 | |
1c79356b A |
1369 | /* |
1370 | * We are done if we have met our target *and* | |
1371 | * nobody is still waiting for a page. | |
1372 | */ | |
55e303ae | 1373 | if (vm_page_free_count + local_freed >= vm_page_free_target) { |
91447636 A |
1374 | if (object != NULL) { |
1375 | vm_object_unlock(object); | |
1376 | object = NULL; | |
1377 | } | |
2d21ac55 A |
1378 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
1379 | ||
55e303ae | 1380 | if (local_freeq) { |
b0d623f7 A |
1381 | vm_page_unlock_queues(); |
1382 | vm_page_free_list(local_freeq, TRUE); | |
55e303ae | 1383 | |
2d21ac55 | 1384 | local_freeq = NULL; |
55e303ae | 1385 | local_freed = 0; |
b0d623f7 | 1386 | vm_page_lock_queues(); |
55e303ae | 1387 | } |
2d21ac55 A |
1388 | /* |
1389 | * inactive target still not met... keep going | |
1390 | * until we get the queues balanced | |
1391 | */ | |
593a1d5f A |
1392 | |
1393 | /* | |
1394 | * Recalculate vm_page_inactivate_target. | |
1395 | */ | |
1396 | vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count + | |
1397 | vm_page_inactive_count + | |
1398 | vm_page_speculative_count); | |
1399 | ||
1400 | #ifndef CONFIG_EMBEDDED | |
1401 | /* | |
1402 | * XXX: if no active pages can be reclaimed, pageout scan can be stuck trying | |
1403 | * to balance the queues | |
1404 | */ | |
2d21ac55 A |
1405 | if (((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) && |
1406 | !queue_empty(&vm_page_queue_active)) | |
1407 | continue; | |
593a1d5f | 1408 | #endif |
2d21ac55 | 1409 | |
b0d623f7 | 1410 | lck_mtx_lock(&vm_page_queue_free_lock); |
55e303ae | 1411 | |
0b4e3aa0 | 1412 | if ((vm_page_free_count >= vm_page_free_target) && |
2d21ac55 | 1413 | (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) { |
55e303ae | 1414 | |
0b4e3aa0 | 1415 | vm_page_unlock_queues(); |
91447636 A |
1416 | |
1417 | thread_wakeup((event_t) &vm_pageout_garbage_collect); | |
2d21ac55 A |
1418 | |
1419 | assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL); | |
1420 | ||
91447636 | 1421 | return; |
0b4e3aa0 | 1422 | } |
b0d623f7 | 1423 | lck_mtx_unlock(&vm_page_queue_free_lock); |
1c79356b | 1424 | } |
b0d623f7 | 1425 | |
2d21ac55 | 1426 | /* |
b0d623f7 A |
1427 | * Before anything, we check if we have any ripe volatile |
1428 | * objects around. If so, try to purge the first object. | |
1429 | * If the purge fails, fall through to reclaim a page instead. | |
1430 | * If the purge succeeds, go back to the top and reevalute | |
1431 | * the new memory situation. | |
2d21ac55 A |
1432 | */ |
1433 | assert (available_for_purge>=0); | |
1434 | if (available_for_purge) | |
1435 | { | |
1436 | if (object != NULL) { | |
1437 | vm_object_unlock(object); | |
1438 | object = NULL; | |
1439 | } | |
b0d623f7 A |
1440 | if(TRUE == vm_purgeable_object_purge_one()) { |
1441 | continue; | |
1442 | } | |
2d21ac55 A |
1443 | } |
1444 | ||
1445 | if (queue_empty(&sq->age_q) && vm_page_speculative_count) { | |
1446 | /* | |
1447 | * try to pull pages from the aging bins | |
1448 | * see vm_page.h for an explanation of how | |
1449 | * this mechanism works | |
1450 | */ | |
1451 | struct vm_speculative_age_q *aq; | |
1452 | mach_timespec_t ts_fully_aged; | |
1453 | boolean_t can_steal = FALSE; | |
b0d623f7 | 1454 | int num_scanned_queues; |
2d21ac55 A |
1455 | |
1456 | aq = &vm_page_queue_speculative[speculative_steal_index]; | |
1457 | ||
b0d623f7 A |
1458 | num_scanned_queues = 0; |
1459 | while (queue_empty(&aq->age_q) && | |
1460 | num_scanned_queues++ != VM_PAGE_MAX_SPECULATIVE_AGE_Q) { | |
2d21ac55 A |
1461 | |
1462 | speculative_steal_index++; | |
1463 | ||
1464 | if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
1465 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
1466 | ||
1467 | aq = &vm_page_queue_speculative[speculative_steal_index]; | |
1468 | } | |
b0d623f7 A |
1469 | |
1470 | if (num_scanned_queues == | |
1471 | VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1) { | |
1472 | /* | |
1473 | * XXX We've scanned all the speculative | |
1474 | * queues but still haven't found one | |
1475 | * that is not empty, even though | |
1476 | * vm_page_speculative_count is not 0. | |
1477 | */ | |
1478 | /* report the anomaly... */ | |
1479 | printf("vm_pageout_scan: " | |
1480 | "all speculative queues empty " | |
1481 | "but count=%d. Re-adjusting.\n", | |
1482 | vm_page_speculative_count); | |
1483 | if (vm_page_speculative_count > | |
1484 | vm_page_speculative_count_drift_max) | |
1485 | vm_page_speculative_count_drift_max = vm_page_speculative_count; | |
1486 | vm_page_speculative_count_drifts++; | |
1487 | #if 6553678 | |
1488 | Debugger("vm_pageout_scan: no speculative pages"); | |
1489 | #endif | |
1490 | /* readjust... */ | |
1491 | vm_page_speculative_count = 0; | |
1492 | /* ... and continue */ | |
1493 | continue; | |
1494 | } | |
1495 | ||
2d21ac55 A |
1496 | if (vm_page_speculative_count > vm_page_speculative_target) |
1497 | can_steal = TRUE; | |
1498 | else { | |
1499 | ts_fully_aged.tv_sec = (VM_PAGE_MAX_SPECULATIVE_AGE_Q * VM_PAGE_SPECULATIVE_Q_AGE_MS) / 1000; | |
1500 | ts_fully_aged.tv_nsec = ((VM_PAGE_MAX_SPECULATIVE_AGE_Q * VM_PAGE_SPECULATIVE_Q_AGE_MS) % 1000) | |
1501 | * 1000 * NSEC_PER_USEC; | |
1502 | ||
1503 | ADD_MACH_TIMESPEC(&ts_fully_aged, &aq->age_ts); | |
55e303ae | 1504 | |
b0d623f7 A |
1505 | clock_sec_t sec; |
1506 | clock_nsec_t nsec; | |
1507 | clock_get_system_nanotime(&sec, &nsec); | |
1508 | ts.tv_sec = (unsigned int) sec; | |
1509 | ts.tv_nsec = nsec; | |
2d21ac55 A |
1510 | |
1511 | if (CMP_MACH_TIMESPEC(&ts, &ts_fully_aged) >= 0) | |
1512 | can_steal = TRUE; | |
1513 | } | |
1514 | if (can_steal == TRUE) | |
1515 | vm_page_speculate_ageit(aq); | |
1516 | } | |
91447636 | 1517 | |
1c79356b A |
1518 | /* |
1519 | * Sometimes we have to pause: | |
1520 | * 1) No inactive pages - nothing to do. | |
91447636 A |
1521 | * 2) Flow control - default pageout queue is full |
1522 | * 3) Loop control - no acceptable pages found on the inactive queue | |
1523 | * within the last vm_pageout_burst_inactive_throttle iterations | |
1c79356b | 1524 | */ |
2d21ac55 A |
1525 | if (queue_empty(&vm_page_queue_inactive) && queue_empty(&vm_page_queue_zf) && queue_empty(&sq->age_q) && |
1526 | (VM_PAGE_Q_THROTTLED(iq) || queue_empty(&vm_page_queue_throttled))) { | |
91447636 A |
1527 | vm_pageout_scan_empty_throttle++; |
1528 | msecs = vm_pageout_empty_wait; | |
1529 | goto vm_pageout_scan_delay; | |
1530 | ||
b0d623f7 | 1531 | } else if (inactive_burst_count >= |
593a1d5f A |
1532 | MIN(vm_pageout_burst_inactive_throttle, |
1533 | (vm_page_inactive_count + | |
1534 | vm_page_speculative_count))) { | |
91447636 A |
1535 | vm_pageout_scan_burst_throttle++; |
1536 | msecs = vm_pageout_burst_wait; | |
1537 | goto vm_pageout_scan_delay; | |
1538 | ||
2d21ac55 | 1539 | } else if (VM_PAGE_Q_THROTTLED(iq) && IP_VALID(memory_manager_default)) { |
b0d623f7 A |
1540 | clock_sec_t sec; |
1541 | clock_nsec_t nsec; | |
91447636 A |
1542 | |
1543 | switch (flow_control.state) { | |
1544 | ||
1545 | case FCS_IDLE: | |
1546 | reset_deadlock_timer: | |
1547 | ts.tv_sec = vm_pageout_deadlock_wait / 1000; | |
1548 | ts.tv_nsec = (vm_pageout_deadlock_wait % 1000) * 1000 * NSEC_PER_USEC; | |
b0d623f7 A |
1549 | clock_get_system_nanotime(&sec, &nsec); |
1550 | flow_control.ts.tv_sec = (unsigned int) sec; | |
1551 | flow_control.ts.tv_nsec = nsec; | |
91447636 A |
1552 | ADD_MACH_TIMESPEC(&flow_control.ts, &ts); |
1553 | ||
1554 | flow_control.state = FCS_DELAYED; | |
1555 | msecs = vm_pageout_deadlock_wait; | |
1c79356b | 1556 | |
91447636 A |
1557 | break; |
1558 | ||
1559 | case FCS_DELAYED: | |
b0d623f7 A |
1560 | clock_get_system_nanotime(&sec, &nsec); |
1561 | ts.tv_sec = (unsigned int) sec; | |
1562 | ts.tv_nsec = nsec; | |
91447636 A |
1563 | |
1564 | if (CMP_MACH_TIMESPEC(&ts, &flow_control.ts) >= 0) { | |
1565 | /* | |
1566 | * the pageout thread for the default pager is potentially | |
1567 | * deadlocked since the | |
1568 | * default pager queue has been throttled for more than the | |
1569 | * allowable time... we need to move some clean pages or dirty | |
1570 | * pages belonging to the external pagers if they aren't throttled | |
1571 | * vm_page_free_wanted represents the number of threads currently | |
1572 | * blocked waiting for pages... we'll move one page for each of | |
1573 | * these plus a fixed amount to break the logjam... once we're done | |
1574 | * moving this number of pages, we'll re-enter the FSC_DELAYED state | |
1575 | * with a new timeout target since we have no way of knowing | |
1576 | * whether we've broken the deadlock except through observation | |
1577 | * of the queue associated with the default pager... we need to | |
2d21ac55 | 1578 | * stop moving pages and allow the system to run to see what |
91447636 A |
1579 | * state it settles into. |
1580 | */ | |
2d21ac55 | 1581 | vm_pageout_deadlock_target = vm_pageout_deadlock_relief + vm_page_free_wanted + vm_page_free_wanted_privileged; |
91447636 A |
1582 | vm_pageout_scan_deadlock_detected++; |
1583 | flow_control.state = FCS_DEADLOCK_DETECTED; | |
55e303ae | 1584 | |
91447636 A |
1585 | thread_wakeup((event_t) &vm_pageout_garbage_collect); |
1586 | goto consider_inactive; | |
1587 | } | |
1588 | /* | |
1589 | * just resniff instead of trying | |
1590 | * to compute a new delay time... we're going to be | |
1591 | * awakened immediately upon a laundry completion, | |
1592 | * so we won't wait any longer than necessary | |
1593 | */ | |
1594 | msecs = vm_pageout_idle_wait; | |
1595 | break; | |
1c79356b | 1596 | |
91447636 A |
1597 | case FCS_DEADLOCK_DETECTED: |
1598 | if (vm_pageout_deadlock_target) | |
1599 | goto consider_inactive; | |
1600 | goto reset_deadlock_timer; | |
55e303ae | 1601 | |
91447636 A |
1602 | } |
1603 | vm_pageout_scan_throttle++; | |
1604 | iq->pgo_throttled = TRUE; | |
1605 | vm_pageout_scan_delay: | |
1606 | if (object != NULL) { | |
1607 | vm_object_unlock(object); | |
1608 | object = NULL; | |
1609 | } | |
2d21ac55 A |
1610 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
1611 | ||
55e303ae | 1612 | if (local_freeq) { |
b0d623f7 A |
1613 | vm_page_unlock_queues(); |
1614 | vm_page_free_list(local_freeq, TRUE); | |
55e303ae | 1615 | |
2d21ac55 | 1616 | local_freeq = NULL; |
55e303ae | 1617 | local_freed = 0; |
b0d623f7 A |
1618 | vm_page_lock_queues(); |
1619 | ||
1620 | if (flow_control.state == FCS_DELAYED && | |
1621 | !VM_PAGE_Q_THROTTLED(iq)) { | |
1622 | flow_control.state = FCS_IDLE; | |
1623 | vm_pageout_scan_throttle_aborted++; | |
1624 | goto consider_inactive; | |
1625 | } | |
55e303ae | 1626 | } |
2d21ac55 A |
1627 | #if CONFIG_EMBEDDED |
1628 | { | |
1629 | int percent_avail; | |
0b4e3aa0 | 1630 | |
2d21ac55 A |
1631 | /* |
1632 | * Decide if we need to send a memory status notification. | |
1633 | */ | |
1634 | percent_avail = | |
1635 | (vm_page_active_count + vm_page_inactive_count + | |
1636 | vm_page_speculative_count + vm_page_free_count + | |
cf7d32b8 | 1637 | (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / |
2d21ac55 A |
1638 | atop_64(max_mem); |
1639 | if (percent_avail >= (kern_memorystatus_level + 5) || | |
1640 | percent_avail <= (kern_memorystatus_level - 5)) { | |
1641 | kern_memorystatus_level = percent_avail; | |
1642 | thread_wakeup((event_t)&kern_memorystatus_wakeup); | |
1643 | } | |
1644 | } | |
1645 | #endif | |
1646 | assert_wait_timeout((event_t) &iq->pgo_laundry, THREAD_INTERRUPTIBLE, msecs, 1000*NSEC_PER_USEC); | |
2d21ac55 | 1647 | counter(c_vm_pageout_scan_block++); |
1c79356b | 1648 | |
91447636 | 1649 | vm_page_unlock_queues(); |
2d21ac55 A |
1650 | |
1651 | assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL); | |
b0d623f7 | 1652 | |
91447636 A |
1653 | thread_block(THREAD_CONTINUE_NULL); |
1654 | ||
1655 | vm_page_lock_queues(); | |
1656 | delayed_unlock = 1; | |
1657 | ||
1658 | iq->pgo_throttled = FALSE; | |
0b4e3aa0 | 1659 | |
2d21ac55 | 1660 | if (loop_count >= vm_page_inactive_count) |
55e303ae | 1661 | loop_count = 0; |
91447636 A |
1662 | inactive_burst_count = 0; |
1663 | ||
1c79356b A |
1664 | goto Restart; |
1665 | /*NOTREACHED*/ | |
1666 | } | |
1667 | ||
91447636 A |
1668 | |
1669 | flow_control.state = FCS_IDLE; | |
1670 | consider_inactive: | |
1671 | loop_count++; | |
1672 | inactive_burst_count++; | |
1c79356b | 1673 | vm_pageout_inactive++; |
9bccf70c | 1674 | |
2d21ac55 A |
1675 | /* Choose a victim. */ |
1676 | ||
1677 | while (1) { | |
1678 | m = NULL; | |
91447636 | 1679 | |
b0d623f7 A |
1680 | if (IP_VALID(memory_manager_default)) { |
1681 | assert(vm_page_throttled_count == 0); | |
1682 | assert(queue_empty(&vm_page_queue_throttled)); | |
91447636 | 1683 | } |
2d21ac55 A |
1684 | |
1685 | /* | |
b0d623f7 | 1686 | * The most eligible pages are ones we paged in speculatively, |
2d21ac55 A |
1687 | * but which have not yet been touched. |
1688 | */ | |
1689 | if ( !queue_empty(&sq->age_q) ) { | |
1690 | m = (vm_page_t) queue_first(&sq->age_q); | |
1691 | break; | |
9bccf70c | 1692 | } |
2d21ac55 A |
1693 | /* |
1694 | * Time for a zero-filled inactive page? | |
1695 | */ | |
1696 | if ( ((zf_run_count < zf_ratio) && vm_zf_queue_count >= zf_queue_min_count) || | |
1697 | queue_empty(&vm_page_queue_inactive)) { | |
1698 | if ( !queue_empty(&vm_page_queue_zf) ) { | |
1699 | m = (vm_page_t) queue_first(&vm_page_queue_zf); | |
1700 | zf_run_count++; | |
1701 | break; | |
1702 | } | |
1703 | } | |
1704 | /* | |
1705 | * It's either a normal inactive page or nothing. | |
1706 | */ | |
1707 | if ( !queue_empty(&vm_page_queue_inactive) ) { | |
1708 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
1709 | zf_run_count = 0; | |
1710 | break; | |
1711 | } | |
1712 | ||
1713 | panic("vm_pageout: no victim"); | |
9bccf70c | 1714 | } |
2d21ac55 A |
1715 | |
1716 | assert(!m->active && (m->inactive || m->speculative || m->throttled)); | |
91447636 A |
1717 | assert(!m->laundry); |
1718 | assert(m->object != kernel_object); | |
2d21ac55 A |
1719 | assert(m->phys_page != vm_page_guard_addr); |
1720 | ||
b0d623f7 A |
1721 | if (!m->speculative) { |
1722 | vm_pageout_stats[vm_pageout_stat_now].considered++; | |
1723 | } | |
1724 | ||
2d21ac55 | 1725 | DTRACE_VM2(scan, int, 1, (uint64_t *), NULL); |
1c79356b | 1726 | |
91447636 | 1727 | /* |
2d21ac55 A |
1728 | * check to see if we currently are working |
1729 | * with the same object... if so, we've | |
1730 | * already got the lock | |
91447636 A |
1731 | */ |
1732 | if (m->object != object) { | |
2d21ac55 A |
1733 | /* |
1734 | * the object associated with candidate page is | |
1735 | * different from the one we were just working | |
1736 | * with... dump the lock if we still own it | |
1737 | */ | |
91447636 A |
1738 | if (object != NULL) { |
1739 | vm_object_unlock(object); | |
1740 | object = NULL; | |
2d21ac55 | 1741 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
91447636 | 1742 | } |
2d21ac55 A |
1743 | /* |
1744 | * Try to lock object; since we've alread got the | |
1745 | * page queues lock, we can only 'try' for this one. | |
1746 | * if the 'try' fails, we need to do a mutex_pause | |
1747 | * to allow the owner of the object lock a chance to | |
1748 | * run... otherwise, we're likely to trip over this | |
1749 | * object in the same state as we work our way through | |
1750 | * the queue... clumps of pages associated with the same | |
1751 | * object are fairly typical on the inactive and active queues | |
1752 | */ | |
1753 | if (!vm_object_lock_try_scan(m->object)) { | |
b0d623f7 A |
1754 | vm_pageout_inactive_nolock++; |
1755 | ||
1756 | requeue_page: | |
91447636 A |
1757 | /* |
1758 | * Move page to end and continue. | |
1759 | * Don't re-issue ticket | |
1760 | */ | |
1761 | if (m->zero_fill) { | |
b0d623f7 A |
1762 | if (m->speculative) { |
1763 | panic("vm_pageout_scan(): page %p speculative and zero-fill !?\n", m); | |
1764 | } | |
1765 | assert(!m->speculative); | |
91447636 A |
1766 | queue_remove(&vm_page_queue_zf, m, |
1767 | vm_page_t, pageq); | |
1768 | queue_enter(&vm_page_queue_zf, m, | |
1769 | vm_page_t, pageq); | |
2d21ac55 A |
1770 | } else if (m->speculative) { |
1771 | remque(&m->pageq); | |
1772 | m->speculative = FALSE; | |
1773 | vm_page_speculative_count--; | |
1774 | ||
1775 | /* | |
b0d623f7 | 1776 | * move to the head of the inactive queue |
2d21ac55 A |
1777 | * to get it out of the way... the speculative |
1778 | * queue is generally too small to depend | |
1779 | * on there being enough pages from other | |
1780 | * objects to make cycling it back on the | |
1781 | * same queue a winning proposition | |
1782 | */ | |
b0d623f7 A |
1783 | queue_enter_first(&vm_page_queue_inactive, m, |
1784 | vm_page_t, pageq); | |
2d21ac55 A |
1785 | m->inactive = TRUE; |
1786 | vm_page_inactive_count++; | |
1787 | token_new_pagecount++; | |
1788 | } else if (m->throttled) { | |
1789 | queue_remove(&vm_page_queue_throttled, m, | |
1790 | vm_page_t, pageq); | |
1791 | m->throttled = FALSE; | |
1792 | vm_page_throttled_count--; | |
cf7d32b8 | 1793 | |
2d21ac55 A |
1794 | /* |
1795 | * not throttled any more, so can stick | |
1796 | * it on the inactive queue. | |
1797 | */ | |
1798 | queue_enter(&vm_page_queue_inactive, m, | |
1799 | vm_page_t, pageq); | |
1800 | m->inactive = TRUE; | |
1801 | vm_page_inactive_count++; | |
1802 | token_new_pagecount++; | |
91447636 A |
1803 | } else { |
1804 | queue_remove(&vm_page_queue_inactive, m, | |
1805 | vm_page_t, pageq); | |
2d21ac55 A |
1806 | #if MACH_ASSERT |
1807 | vm_page_inactive_count--; /* balance for purgeable queue asserts */ | |
1808 | #endif | |
cf7d32b8 | 1809 | vm_purgeable_q_advance_all(); |
2d21ac55 | 1810 | |
91447636 A |
1811 | queue_enter(&vm_page_queue_inactive, m, |
1812 | vm_page_t, pageq); | |
2d21ac55 A |
1813 | #if MACH_ASSERT |
1814 | vm_page_inactive_count++; /* balance for purgeable queue asserts */ | |
1815 | #endif | |
1816 | token_new_pagecount++; | |
55e303ae | 1817 | } |
2d21ac55 A |
1818 | pmap_clear_reference(m->phys_page); |
1819 | m->reference = FALSE; | |
1820 | ||
2d21ac55 A |
1821 | if ( !queue_empty(&sq->age_q) ) |
1822 | m = (vm_page_t) queue_first(&sq->age_q); | |
1823 | else if ( ((zf_run_count < zf_ratio) && vm_zf_queue_count >= zf_queue_min_count) || | |
1824 | queue_empty(&vm_page_queue_inactive)) { | |
1825 | if ( !queue_empty(&vm_page_queue_zf) ) | |
1826 | m = (vm_page_t) queue_first(&vm_page_queue_zf); | |
1827 | } else if ( !queue_empty(&vm_page_queue_inactive) ) { | |
1828 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
1829 | } | |
1830 | /* | |
1831 | * this is the next object we're going to be interested in | |
1832 | * try to make sure its available after the mutex_yield | |
1833 | * returns control | |
1834 | */ | |
1835 | vm_pageout_scan_wants_object = m->object; | |
1836 | ||
91447636 A |
1837 | /* |
1838 | * force us to dump any collected free pages | |
1839 | * and to pause before moving on | |
1840 | */ | |
2d21ac55 | 1841 | try_failed = TRUE; |
55e303ae | 1842 | |
91447636 | 1843 | goto done_with_inactivepage; |
1c79356b | 1844 | } |
91447636 | 1845 | object = m->object; |
2d21ac55 | 1846 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
0b4e3aa0 | 1847 | |
2d21ac55 | 1848 | try_failed = FALSE; |
1c79356b A |
1849 | } |
1850 | ||
1c79356b | 1851 | /* |
55e303ae A |
1852 | * Paging out pages of external objects which |
1853 | * are currently being created must be avoided. | |
1854 | * The pager may claim for memory, thus leading to a | |
1855 | * possible dead lock between it and the pageout thread, | |
1856 | * if such pages are finally chosen. The remaining assumption | |
1857 | * is that there will finally be enough available pages in the | |
1858 | * inactive pool to page out in order to satisfy all memory | |
1859 | * claimed by the thread which concurrently creates the pager. | |
1c79356b | 1860 | */ |
1c79356b A |
1861 | if (!object->pager_initialized && object->pager_created) { |
1862 | /* | |
1863 | * Move page to end and continue, hoping that | |
1864 | * there will be enough other inactive pages to | |
1865 | * page out so that the thread which currently | |
1866 | * initializes the pager will succeed. | |
0b4e3aa0 A |
1867 | * Don't re-grant the ticket, the page should |
1868 | * pulled from the queue and paged out whenever | |
1869 | * one of its logically adjacent fellows is | |
1870 | * targeted. | |
1c79356b | 1871 | */ |
1c79356b | 1872 | vm_pageout_inactive_avoid++; |
b0d623f7 | 1873 | goto requeue_page; |
91447636 | 1874 | } |
1c79356b | 1875 | /* |
2d21ac55 | 1876 | * Remove the page from its list. |
1c79356b | 1877 | */ |
2d21ac55 A |
1878 | if (m->speculative) { |
1879 | remque(&m->pageq); | |
b0d623f7 | 1880 | page_prev_state = PAGE_STATE_SPECULATIVE; |
2d21ac55 A |
1881 | m->speculative = FALSE; |
1882 | vm_page_speculative_count--; | |
1883 | } else if (m->throttled) { | |
1884 | queue_remove(&vm_page_queue_throttled, m, vm_page_t, pageq); | |
b0d623f7 | 1885 | page_prev_state = PAGE_STATE_THROTTLED; |
2d21ac55 A |
1886 | m->throttled = FALSE; |
1887 | vm_page_throttled_count--; | |
9bccf70c | 1888 | } else { |
2d21ac55 A |
1889 | if (m->zero_fill) { |
1890 | queue_remove(&vm_page_queue_zf, m, vm_page_t, pageq); | |
b0d623f7 | 1891 | page_prev_state = PAGE_STATE_ZEROFILL; |
2d21ac55 A |
1892 | vm_zf_queue_count--; |
1893 | } else { | |
b0d623f7 | 1894 | page_prev_state = PAGE_STATE_INACTIVE; |
2d21ac55 A |
1895 | queue_remove(&vm_page_queue_inactive, m, vm_page_t, pageq); |
1896 | } | |
1897 | m->inactive = FALSE; | |
1898 | if (!m->fictitious) | |
1899 | vm_page_inactive_count--; | |
b0d623f7 | 1900 | vm_purgeable_q_advance_all(); |
2d21ac55 A |
1901 | } |
1902 | ||
91447636 A |
1903 | m->pageq.next = NULL; |
1904 | m->pageq.prev = NULL; | |
1c79356b | 1905 | |
2d21ac55 A |
1906 | if ( !m->fictitious && catch_up_count) |
1907 | catch_up_count--; | |
1908 | ||
1909 | /* | |
1910 | * ENCRYPTED SWAP: | |
1911 | * if this page has already been picked up as part of a | |
1912 | * page-out cluster, it will be busy because it is being | |
1913 | * encrypted (see vm_object_upl_request()). But we still | |
1914 | * want to demote it from "clean-in-place" (aka "adjacent") | |
1915 | * to "clean-and-free" (aka "target"), so let's ignore its | |
1916 | * "busy" bit here and proceed to check for "cleaning" a | |
1917 | * little bit below... | |
1918 | */ | |
1919 | if ( !m->encrypted_cleaning && (m->busy || !object->alive)) { | |
1c79356b A |
1920 | /* |
1921 | * Somebody is already playing with this page. | |
1922 | * Leave it off the pageout queues. | |
2d21ac55 | 1923 | * |
1c79356b | 1924 | */ |
1c79356b | 1925 | vm_pageout_inactive_busy++; |
91447636 A |
1926 | |
1927 | goto done_with_inactivepage; | |
1c79356b A |
1928 | } |
1929 | ||
1930 | /* | |
1931 | * If it's absent or in error, we can reclaim the page. | |
1932 | */ | |
1933 | ||
1934 | if (m->absent || m->error) { | |
1935 | vm_pageout_inactive_absent++; | |
91447636 A |
1936 | reclaim_page: |
1937 | if (vm_pageout_deadlock_target) { | |
1938 | vm_pageout_scan_inactive_throttle_success++; | |
1939 | vm_pageout_deadlock_target--; | |
1940 | } | |
2d21ac55 A |
1941 | |
1942 | DTRACE_VM2(dfree, int, 1, (uint64_t *), NULL); | |
1943 | ||
b0d623f7 | 1944 | if (object->internal) { |
2d21ac55 A |
1945 | DTRACE_VM2(anonfree, int, 1, (uint64_t *), NULL); |
1946 | } else { | |
1947 | DTRACE_VM2(fsfree, int, 1, (uint64_t *), NULL); | |
1948 | } | |
b0d623f7 | 1949 | vm_page_free_prepare_queues(m); |
2d21ac55 | 1950 | |
b0d623f7 A |
1951 | /* |
1952 | * remove page from object here since we're already | |
1953 | * behind the object lock... defer the rest of the work | |
1954 | * we'd normally do in vm_page_free_prepare_object | |
1955 | * until 'vm_page_free_list' is called | |
1956 | */ | |
1957 | if (m->tabled) | |
1958 | vm_page_remove(m, TRUE); | |
55e303ae | 1959 | |
91447636 A |
1960 | assert(m->pageq.next == NULL && |
1961 | m->pageq.prev == NULL); | |
55e303ae A |
1962 | m->pageq.next = (queue_entry_t)local_freeq; |
1963 | local_freeq = m; | |
91447636 | 1964 | local_freed++; |
55e303ae | 1965 | |
91447636 A |
1966 | inactive_burst_count = 0; |
1967 | ||
b0d623f7 A |
1968 | if(page_prev_state != PAGE_STATE_SPECULATIVE) { |
1969 | vm_pageout_stats[vm_pageout_stat_now].reclaimed++; | |
1970 | page_prev_state = 0; | |
1971 | } | |
1972 | ||
91447636 | 1973 | goto done_with_inactivepage; |
1c79356b A |
1974 | } |
1975 | ||
1976 | assert(!m->private); | |
1977 | assert(!m->fictitious); | |
1978 | ||
1979 | /* | |
1980 | * If already cleaning this page in place, convert from | |
1981 | * "adjacent" to "target". We can leave the page mapped, | |
1982 | * and vm_pageout_object_terminate will determine whether | |
1983 | * to free or reactivate. | |
1984 | */ | |
1985 | ||
1986 | if (m->cleaning) { | |
0b4e3aa0 A |
1987 | m->busy = TRUE; |
1988 | m->pageout = TRUE; | |
1989 | m->dump_cleaning = TRUE; | |
1990 | vm_page_wire(m); | |
55e303ae | 1991 | |
91447636 A |
1992 | CLUSTER_STAT(vm_pageout_cluster_conversions++); |
1993 | ||
1994 | inactive_burst_count = 0; | |
1995 | ||
1996 | goto done_with_inactivepage; | |
1c79356b A |
1997 | } |
1998 | ||
b0d623f7 A |
1999 | /* |
2000 | * If the object is empty, the page must be reclaimed even | |
2001 | * if dirty or used. | |
2002 | * If the page belongs to a volatile object, we stick it back | |
2003 | * on. | |
2004 | */ | |
2005 | if (object->copy == VM_OBJECT_NULL) { | |
2006 | if (object->purgable == VM_PURGABLE_EMPTY) { | |
2007 | m->busy = TRUE; | |
2008 | if (m->pmapped == TRUE) { | |
2009 | /* unmap the page */ | |
2010 | refmod_state = pmap_disconnect(m->phys_page); | |
2011 | if (refmod_state & VM_MEM_MODIFIED) { | |
2012 | m->dirty = TRUE; | |
2013 | } | |
2014 | } | |
2015 | if (m->dirty || m->precious) { | |
2016 | /* we saved the cost of cleaning this page ! */ | |
2017 | vm_page_purged_count++; | |
2018 | } | |
2019 | goto reclaim_page; | |
2020 | } | |
2021 | if (object->purgable == VM_PURGABLE_VOLATILE) { | |
2022 | /* if it's wired, we can't put it on our queue */ | |
2023 | assert(!VM_PAGE_WIRED(m)); | |
2024 | /* just stick it back on! */ | |
2025 | goto reactivate_page; | |
2026 | } | |
2027 | } | |
2028 | ||
1c79356b A |
2029 | /* |
2030 | * If it's being used, reactivate. | |
2031 | * (Fictitious pages are either busy or absent.) | |
2d21ac55 A |
2032 | * First, update the reference and dirty bits |
2033 | * to make sure the page is unreferenced. | |
1c79356b | 2034 | */ |
2d21ac55 A |
2035 | refmod_state = -1; |
2036 | ||
2037 | if (m->reference == FALSE && m->pmapped == TRUE) { | |
91447636 A |
2038 | refmod_state = pmap_get_refmod(m->phys_page); |
2039 | ||
2040 | if (refmod_state & VM_MEM_REFERENCED) | |
2041 | m->reference = TRUE; | |
2042 | if (refmod_state & VM_MEM_MODIFIED) | |
2043 | m->dirty = TRUE; | |
2044 | } | |
b0d623f7 A |
2045 | |
2046 | if (m->reference || m->dirty) { | |
2047 | /* deal with a rogue "reusable" page */ | |
2048 | VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m); | |
2049 | } | |
2050 | ||
2d21ac55 A |
2051 | if (m->reference && !m->no_cache) { |
2052 | /* | |
2053 | * The page we pulled off the inactive list has | |
2054 | * been referenced. It is possible for other | |
2055 | * processors to be touching pages faster than we | |
2056 | * can clear the referenced bit and traverse the | |
2057 | * inactive queue, so we limit the number of | |
2058 | * reactivations. | |
2059 | */ | |
2060 | if (++reactivated_this_call >= reactivate_limit) { | |
2061 | vm_pageout_reactivation_limit_exceeded++; | |
2062 | } else if (catch_up_count) { | |
2063 | vm_pageout_catch_ups++; | |
2064 | } else if (++inactive_reclaim_run >= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM) { | |
2065 | vm_pageout_inactive_force_reclaim++; | |
2066 | } else { | |
b0d623f7 | 2067 | uint32_t isinuse; |
2d21ac55 | 2068 | reactivate_page: |
b0d623f7 A |
2069 | if ( !object->internal && object->pager != MEMORY_OBJECT_NULL && |
2070 | vnode_pager_get_isinuse(object->pager, &isinuse) == KERN_SUCCESS && !isinuse) { | |
2071 | /* | |
2072 | * no explict mappings of this object exist | |
2073 | * and it's not open via the filesystem | |
2074 | */ | |
2075 | vm_page_deactivate(m); | |
2076 | vm_pageout_inactive_deactivated++; | |
2077 | } else { | |
2078 | /* | |
2079 | * The page was/is being used, so put back on active list. | |
2080 | */ | |
2081 | vm_page_activate(m); | |
2082 | VM_STAT_INCR(reactivations); | |
2083 | } | |
2d21ac55 A |
2084 | vm_pageout_inactive_used++; |
2085 | inactive_burst_count = 0; | |
55e303ae | 2086 | |
2d21ac55 A |
2087 | goto done_with_inactivepage; |
2088 | } | |
2089 | /* | |
2090 | * Make sure we call pmap_get_refmod() if it | |
2091 | * wasn't already called just above, to update | |
2092 | * the dirty bit. | |
2093 | */ | |
2094 | if ((refmod_state == -1) && !m->dirty && m->pmapped) { | |
2095 | refmod_state = pmap_get_refmod(m->phys_page); | |
2096 | if (refmod_state & VM_MEM_MODIFIED) | |
2097 | m->dirty = TRUE; | |
2098 | } | |
2099 | forced_reclaim = TRUE; | |
2100 | } else { | |
2101 | forced_reclaim = FALSE; | |
1c79356b A |
2102 | } |
2103 | ||
91447636 A |
2104 | XPR(XPR_VM_PAGEOUT, |
2105 | "vm_pageout_scan, replace object 0x%X offset 0x%X page 0x%X\n", | |
b0d623f7 | 2106 | object, m->offset, m, 0,0); |
0b4e3aa0 | 2107 | |
91447636 A |
2108 | /* |
2109 | * we've got a candidate page to steal... | |
2110 | * | |
2111 | * m->dirty is up to date courtesy of the | |
2112 | * preceding check for m->reference... if | |
2113 | * we get here, then m->reference had to be | |
2d21ac55 A |
2114 | * FALSE (or possibly "reactivate_limit" was |
2115 | * exceeded), but in either case we called | |
2116 | * pmap_get_refmod() and updated both | |
2117 | * m->reference and m->dirty | |
91447636 A |
2118 | * |
2119 | * if it's dirty or precious we need to | |
2120 | * see if the target queue is throtttled | |
2121 | * it if is, we need to skip over it by moving it back | |
2122 | * to the end of the inactive queue | |
2123 | */ | |
b0d623f7 | 2124 | |
91447636 A |
2125 | inactive_throttled = FALSE; |
2126 | ||
2127 | if (m->dirty || m->precious) { | |
2128 | if (object->internal) { | |
2d21ac55 | 2129 | if (VM_PAGE_Q_THROTTLED(iq)) |
91447636 A |
2130 | inactive_throttled = TRUE; |
2131 | } else if (VM_PAGE_Q_THROTTLED(eq)) { | |
2d21ac55 | 2132 | inactive_throttled = TRUE; |
1c79356b | 2133 | } |
91447636 A |
2134 | } |
2135 | if (inactive_throttled == TRUE) { | |
2d21ac55 A |
2136 | throttle_inactive: |
2137 | if (!IP_VALID(memory_manager_default) && | |
2138 | object->internal && | |
2139 | (object->purgable == VM_PURGABLE_DENY || | |
cf7d32b8 A |
2140 | object->purgable == VM_PURGABLE_NONVOLATILE || |
2141 | object->purgable == VM_PURGABLE_VOLATILE )) { | |
2d21ac55 | 2142 | queue_enter(&vm_page_queue_throttled, m, |
91447636 | 2143 | vm_page_t, pageq); |
2d21ac55 A |
2144 | m->throttled = TRUE; |
2145 | vm_page_throttled_count++; | |
91447636 | 2146 | } else { |
2d21ac55 A |
2147 | if (m->zero_fill) { |
2148 | queue_enter(&vm_page_queue_zf, m, | |
2149 | vm_page_t, pageq); | |
2150 | vm_zf_queue_count++; | |
2151 | } else | |
2152 | queue_enter(&vm_page_queue_inactive, m, | |
2153 | vm_page_t, pageq); | |
2154 | m->inactive = TRUE; | |
2155 | if (!m->fictitious) { | |
2156 | vm_page_inactive_count++; | |
2157 | token_new_pagecount++; | |
2158 | } | |
1c79356b | 2159 | } |
91447636 | 2160 | vm_pageout_scan_inactive_throttled++; |
91447636 | 2161 | goto done_with_inactivepage; |
1c79356b | 2162 | } |
2d21ac55 | 2163 | |
1c79356b | 2164 | /* |
91447636 A |
2165 | * we've got a page that we can steal... |
2166 | * eliminate all mappings and make sure | |
2167 | * we have the up-to-date modified state | |
2168 | * first take the page BUSY, so that no new | |
2169 | * mappings can be made | |
1c79356b | 2170 | */ |
1c79356b | 2171 | m->busy = TRUE; |
55e303ae | 2172 | |
91447636 A |
2173 | /* |
2174 | * if we need to do a pmap_disconnect then we | |
2175 | * need to re-evaluate m->dirty since the pmap_disconnect | |
2176 | * provides the true state atomically... the | |
2177 | * page was still mapped up to the pmap_disconnect | |
2178 | * and may have been dirtied at the last microsecond | |
2179 | * | |
2180 | * we also check for the page being referenced 'late' | |
2181 | * if it was, we first need to do a WAKEUP_DONE on it | |
2182 | * since we already set m->busy = TRUE, before | |
2183 | * going off to reactivate it | |
2184 | * | |
2d21ac55 A |
2185 | * Note that if 'pmapped' is FALSE then the page is not |
2186 | * and has not been in any map, so there is no point calling | |
2187 | * pmap_disconnect(). m->dirty and/or m->reference could | |
2188 | * have been set in anticipation of likely usage of the page. | |
91447636 | 2189 | */ |
2d21ac55 | 2190 | if (m->pmapped == TRUE) { |
91447636 | 2191 | refmod_state = pmap_disconnect(m->phys_page); |
0b4e3aa0 | 2192 | |
91447636 A |
2193 | if (refmod_state & VM_MEM_MODIFIED) |
2194 | m->dirty = TRUE; | |
2195 | if (refmod_state & VM_MEM_REFERENCED) { | |
2d21ac55 A |
2196 | |
2197 | /* If m->reference is already set, this page must have | |
2198 | * already failed the reactivate_limit test, so don't | |
2199 | * bump the counts twice. | |
2200 | */ | |
2201 | if ( ! m->reference ) { | |
2202 | m->reference = TRUE; | |
2203 | if (forced_reclaim || | |
2204 | ++reactivated_this_call >= reactivate_limit) | |
2205 | vm_pageout_reactivation_limit_exceeded++; | |
2206 | else { | |
2207 | PAGE_WAKEUP_DONE(m); | |
2208 | goto reactivate_page; | |
2209 | } | |
2210 | } | |
91447636 A |
2211 | } |
2212 | } | |
2d21ac55 A |
2213 | /* |
2214 | * reset our count of pages that have been reclaimed | |
2215 | * since the last page was 'stolen' | |
2216 | */ | |
2217 | inactive_reclaim_run = 0; | |
2218 | ||
1c79356b A |
2219 | /* |
2220 | * If it's clean and not precious, we can free the page. | |
2221 | */ | |
1c79356b | 2222 | if (!m->dirty && !m->precious) { |
b0d623f7 A |
2223 | if (m->zero_fill) |
2224 | vm_pageout_inactive_zf++; | |
1c79356b | 2225 | vm_pageout_inactive_clean++; |
b0d623f7 | 2226 | |
1c79356b A |
2227 | goto reclaim_page; |
2228 | } | |
2d21ac55 A |
2229 | |
2230 | /* | |
2231 | * The page may have been dirtied since the last check | |
2232 | * for a throttled target queue (which may have been skipped | |
2233 | * if the page was clean then). With the dirty page | |
2234 | * disconnected here, we can make one final check. | |
2235 | */ | |
2236 | { | |
2237 | boolean_t disconnect_throttled = FALSE; | |
2238 | if (object->internal) { | |
2239 | if (VM_PAGE_Q_THROTTLED(iq)) | |
2240 | disconnect_throttled = TRUE; | |
2241 | } else if (VM_PAGE_Q_THROTTLED(eq)) { | |
2242 | disconnect_throttled = TRUE; | |
2243 | } | |
2244 | ||
2245 | if (disconnect_throttled == TRUE) { | |
2246 | PAGE_WAKEUP_DONE(m); | |
2247 | goto throttle_inactive; | |
2248 | } | |
2249 | } | |
2250 | ||
b0d623f7 A |
2251 | vm_pageout_stats[vm_pageout_stat_now].reclaimed++; |
2252 | ||
91447636 | 2253 | vm_pageout_cluster(m); |
1c79356b | 2254 | |
b0d623f7 A |
2255 | if (m->zero_fill) |
2256 | vm_pageout_inactive_zf++; | |
91447636 | 2257 | vm_pageout_inactive_dirty++; |
1c79356b | 2258 | |
91447636 | 2259 | inactive_burst_count = 0; |
1c79356b | 2260 | |
91447636 | 2261 | done_with_inactivepage: |
2d21ac55 | 2262 | if (delayed_unlock++ > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT || try_failed == TRUE) { |
1c79356b | 2263 | |
91447636 | 2264 | if (object != NULL) { |
b0d623f7 | 2265 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
91447636 A |
2266 | vm_object_unlock(object); |
2267 | object = NULL; | |
2268 | } | |
2269 | if (local_freeq) { | |
b0d623f7 A |
2270 | vm_page_unlock_queues(); |
2271 | vm_page_free_list(local_freeq, TRUE); | |
91447636 | 2272 | |
2d21ac55 | 2273 | local_freeq = NULL; |
91447636 | 2274 | local_freed = 0; |
b0d623f7 A |
2275 | vm_page_lock_queues(); |
2276 | } else | |
2277 | lck_mtx_yield(&vm_page_queue_lock); | |
2d21ac55 A |
2278 | |
2279 | delayed_unlock = 1; | |
1c79356b | 2280 | } |
91447636 A |
2281 | /* |
2282 | * back to top of pageout scan loop | |
2283 | */ | |
1c79356b | 2284 | } |
1c79356b A |
2285 | } |
2286 | ||
1c79356b | 2287 | |
1c79356b A |
2288 | int vm_page_free_count_init; |
2289 | ||
2290 | void | |
2291 | vm_page_free_reserve( | |
2292 | int pages) | |
2293 | { | |
2294 | int free_after_reserve; | |
2295 | ||
2296 | vm_page_free_reserved += pages; | |
2297 | ||
2298 | free_after_reserve = vm_page_free_count_init - vm_page_free_reserved; | |
2299 | ||
2300 | vm_page_free_min = vm_page_free_reserved + | |
2301 | VM_PAGE_FREE_MIN(free_after_reserve); | |
2302 | ||
2d21ac55 A |
2303 | if (vm_page_free_min > VM_PAGE_FREE_MIN_LIMIT) |
2304 | vm_page_free_min = VM_PAGE_FREE_MIN_LIMIT; | |
2305 | ||
1c79356b A |
2306 | vm_page_free_target = vm_page_free_reserved + |
2307 | VM_PAGE_FREE_TARGET(free_after_reserve); | |
2308 | ||
2d21ac55 A |
2309 | if (vm_page_free_target > VM_PAGE_FREE_TARGET_LIMIT) |
2310 | vm_page_free_target = VM_PAGE_FREE_TARGET_LIMIT; | |
2311 | ||
1c79356b A |
2312 | if (vm_page_free_target < vm_page_free_min + 5) |
2313 | vm_page_free_target = vm_page_free_min + 5; | |
2d21ac55 | 2314 | |
b0d623f7 A |
2315 | vm_page_throttle_limit = vm_page_free_target - (vm_page_free_target / 3); |
2316 | vm_page_creation_throttle = vm_page_free_target / 2; | |
1c79356b A |
2317 | } |
2318 | ||
2319 | /* | |
2320 | * vm_pageout is the high level pageout daemon. | |
2321 | */ | |
2322 | ||
55e303ae A |
2323 | void |
2324 | vm_pageout_continue(void) | |
2325 | { | |
2d21ac55 | 2326 | DTRACE_VM2(pgrrun, int, 1, (uint64_t *), NULL); |
55e303ae A |
2327 | vm_pageout_scan_event_counter++; |
2328 | vm_pageout_scan(); | |
2329 | /* we hold vm_page_queue_free_lock now */ | |
2330 | assert(vm_page_free_wanted == 0); | |
2d21ac55 | 2331 | assert(vm_page_free_wanted_privileged == 0); |
55e303ae | 2332 | assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT); |
b0d623f7 | 2333 | lck_mtx_unlock(&vm_page_queue_free_lock); |
55e303ae A |
2334 | |
2335 | counter(c_vm_pageout_block++); | |
91447636 | 2336 | thread_block((thread_continue_t)vm_pageout_continue); |
55e303ae A |
2337 | /*NOTREACHED*/ |
2338 | } | |
1c79356b | 2339 | |
91447636 | 2340 | |
91447636 | 2341 | #ifdef FAKE_DEADLOCK |
1c79356b | 2342 | |
91447636 A |
2343 | #define FAKE_COUNT 5000 |
2344 | ||
2345 | int internal_count = 0; | |
2346 | int fake_deadlock = 0; | |
2347 | ||
2348 | #endif | |
2349 | ||
2350 | static void | |
2351 | vm_pageout_iothread_continue(struct vm_pageout_queue *q) | |
2352 | { | |
2353 | vm_page_t m = NULL; | |
2354 | vm_object_t object; | |
2355 | boolean_t need_wakeup; | |
2d21ac55 A |
2356 | memory_object_t pager; |
2357 | thread_t self = current_thread(); | |
91447636 | 2358 | |
2d21ac55 A |
2359 | if ((vm_pageout_internal_iothread != THREAD_NULL) |
2360 | && (self == vm_pageout_external_iothread ) | |
2361 | && (self->options & TH_OPT_VMPRIV)) | |
2362 | self->options &= ~TH_OPT_VMPRIV; | |
2363 | ||
2364 | vm_page_lockspin_queues(); | |
91447636 A |
2365 | |
2366 | while ( !queue_empty(&q->pgo_pending) ) { | |
2367 | ||
2368 | q->pgo_busy = TRUE; | |
2369 | queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq); | |
b0d623f7 | 2370 | VM_PAGE_CHECK(m); |
91447636 | 2371 | m->pageout_queue = FALSE; |
91447636 A |
2372 | m->pageq.next = NULL; |
2373 | m->pageq.prev = NULL; | |
b0d623f7 A |
2374 | vm_page_unlock_queues(); |
2375 | ||
91447636 A |
2376 | #ifdef FAKE_DEADLOCK |
2377 | if (q == &vm_pageout_queue_internal) { | |
2378 | vm_offset_t addr; | |
2379 | int pg_count; | |
2380 | ||
2381 | internal_count++; | |
2382 | ||
2383 | if ((internal_count == FAKE_COUNT)) { | |
2384 | ||
2385 | pg_count = vm_page_free_count + vm_page_free_reserved; | |
2386 | ||
2387 | if (kmem_alloc(kernel_map, &addr, PAGE_SIZE * pg_count) == KERN_SUCCESS) { | |
2388 | kmem_free(kernel_map, addr, PAGE_SIZE * pg_count); | |
2389 | } | |
2390 | internal_count = 0; | |
2391 | fake_deadlock++; | |
2392 | } | |
2393 | } | |
2394 | #endif | |
2395 | object = m->object; | |
2396 | ||
2d21ac55 A |
2397 | vm_object_lock(object); |
2398 | ||
91447636 | 2399 | if (!object->pager_initialized) { |
91447636 A |
2400 | |
2401 | /* | |
2402 | * If there is no memory object for the page, create | |
2403 | * one and hand it to the default pager. | |
2404 | */ | |
2405 | ||
2406 | if (!object->pager_initialized) | |
0c530ab8 A |
2407 | vm_object_collapse(object, |
2408 | (vm_object_offset_t) 0, | |
2409 | TRUE); | |
91447636 A |
2410 | if (!object->pager_initialized) |
2411 | vm_object_pager_create(object); | |
2412 | if (!object->pager_initialized) { | |
2413 | /* | |
2414 | * Still no pager for the object. | |
2415 | * Reactivate the page. | |
2416 | * | |
2417 | * Should only happen if there is no | |
2418 | * default pager. | |
2419 | */ | |
2d21ac55 | 2420 | vm_page_lockspin_queues(); |
b0d623f7 A |
2421 | |
2422 | vm_pageout_queue_steal(m, TRUE); | |
91447636 A |
2423 | vm_pageout_dirty_no_pager++; |
2424 | vm_page_activate(m); | |
b0d623f7 | 2425 | |
91447636 A |
2426 | vm_page_unlock_queues(); |
2427 | ||
2428 | /* | |
2429 | * And we are done with it. | |
2430 | */ | |
2431 | PAGE_WAKEUP_DONE(m); | |
2432 | ||
2433 | vm_object_paging_end(object); | |
2434 | vm_object_unlock(object); | |
2435 | ||
2d21ac55 | 2436 | vm_page_lockspin_queues(); |
91447636 | 2437 | continue; |
2d21ac55 A |
2438 | } |
2439 | } | |
2440 | pager = object->pager; | |
2441 | if (pager == MEMORY_OBJECT_NULL) { | |
2442 | /* | |
2443 | * This pager has been destroyed by either | |
2444 | * memory_object_destroy or vm_object_destroy, and | |
2445 | * so there is nowhere for the page to go. | |
2446 | * Just free the page... VM_PAGE_FREE takes | |
2447 | * care of cleaning up all the state... | |
2448 | * including doing the vm_pageout_throttle_up | |
2449 | */ | |
91447636 | 2450 | |
2d21ac55 | 2451 | VM_PAGE_FREE(m); |
91447636 | 2452 | |
2d21ac55 | 2453 | vm_object_paging_end(object); |
91447636 | 2454 | vm_object_unlock(object); |
2d21ac55 A |
2455 | |
2456 | vm_page_lockspin_queues(); | |
2457 | continue; | |
91447636 | 2458 | } |
b0d623f7 | 2459 | VM_PAGE_CHECK(m); |
2d21ac55 | 2460 | vm_object_unlock(object); |
91447636 A |
2461 | /* |
2462 | * we expect the paging_in_progress reference to have | |
2463 | * already been taken on the object before it was added | |
2464 | * to the appropriate pageout I/O queue... this will | |
2465 | * keep the object from being terminated and/or the | |
2466 | * paging_offset from changing until the I/O has | |
2467 | * completed... therefore no need to lock the object to | |
2468 | * pull the paging_offset from it. | |
2469 | * | |
2470 | * Send the data to the pager. | |
2471 | * any pageout clustering happens there | |
2472 | */ | |
2d21ac55 | 2473 | memory_object_data_return(pager, |
91447636 A |
2474 | m->offset + object->paging_offset, |
2475 | PAGE_SIZE, | |
2476 | NULL, | |
2477 | NULL, | |
2478 | FALSE, | |
2479 | FALSE, | |
2480 | 0); | |
2481 | ||
2482 | vm_object_lock(object); | |
2483 | vm_object_paging_end(object); | |
2484 | vm_object_unlock(object); | |
2485 | ||
2d21ac55 | 2486 | vm_page_lockspin_queues(); |
91447636 A |
2487 | } |
2488 | assert_wait((event_t) q, THREAD_UNINT); | |
2489 | ||
2490 | ||
2491 | if (q->pgo_throttled == TRUE && !VM_PAGE_Q_THROTTLED(q)) { | |
2492 | q->pgo_throttled = FALSE; | |
2493 | need_wakeup = TRUE; | |
2494 | } else | |
2495 | need_wakeup = FALSE; | |
2496 | ||
2497 | q->pgo_busy = FALSE; | |
2498 | q->pgo_idle = TRUE; | |
2499 | vm_page_unlock_queues(); | |
2500 | ||
2501 | if (need_wakeup == TRUE) | |
2502 | thread_wakeup((event_t) &q->pgo_laundry); | |
2503 | ||
2504 | thread_block_parameter((thread_continue_t)vm_pageout_iothread_continue, (void *) &q->pgo_pending); | |
2505 | /*NOTREACHED*/ | |
2506 | } | |
2507 | ||
2508 | ||
2509 | static void | |
2510 | vm_pageout_iothread_external(void) | |
2511 | { | |
2d21ac55 A |
2512 | thread_t self = current_thread(); |
2513 | ||
2514 | self->options |= TH_OPT_VMPRIV; | |
91447636 A |
2515 | |
2516 | vm_pageout_iothread_continue(&vm_pageout_queue_external); | |
2517 | /*NOTREACHED*/ | |
2518 | } | |
2519 | ||
2520 | ||
2521 | static void | |
2522 | vm_pageout_iothread_internal(void) | |
2523 | { | |
2524 | thread_t self = current_thread(); | |
2525 | ||
2526 | self->options |= TH_OPT_VMPRIV; | |
2527 | ||
2528 | vm_pageout_iothread_continue(&vm_pageout_queue_internal); | |
2529 | /*NOTREACHED*/ | |
2530 | } | |
2531 | ||
b0d623f7 A |
2532 | kern_return_t |
2533 | vm_set_buffer_cleanup_callout(boolean_t (*func)(void)) | |
2534 | { | |
2535 | if (OSCompareAndSwapPtr(NULL, func, (void * volatile *) &consider_buffer_cache_collect)) { | |
2536 | return KERN_SUCCESS; | |
2537 | } else { | |
2538 | return KERN_FAILURE; /* Already set */ | |
2539 | } | |
2540 | } | |
2541 | ||
91447636 A |
2542 | static void |
2543 | vm_pageout_garbage_collect(int collect) | |
2544 | { | |
2545 | if (collect) { | |
b0d623f7 | 2546 | boolean_t buf_large_zfree = FALSE; |
91447636 A |
2547 | stack_collect(); |
2548 | ||
2549 | /* | |
2550 | * consider_zone_gc should be last, because the other operations | |
2551 | * might return memory to zones. | |
2552 | */ | |
2553 | consider_machine_collect(); | |
b0d623f7 A |
2554 | if (consider_buffer_cache_collect != NULL) { |
2555 | buf_large_zfree = (*consider_buffer_cache_collect)(); | |
2556 | } | |
2557 | consider_zone_gc(buf_large_zfree); | |
91447636 A |
2558 | |
2559 | consider_machine_adjust(); | |
2560 | } | |
2561 | ||
2562 | assert_wait((event_t) &vm_pageout_garbage_collect, THREAD_UNINT); | |
2563 | ||
2564 | thread_block_parameter((thread_continue_t) vm_pageout_garbage_collect, (void *)1); | |
2565 | /*NOTREACHED*/ | |
2566 | } | |
2567 | ||
2568 | ||
2569 | ||
2570 | void | |
2571 | vm_pageout(void) | |
2572 | { | |
2573 | thread_t self = current_thread(); | |
2574 | thread_t thread; | |
2575 | kern_return_t result; | |
2576 | spl_t s; | |
2577 | ||
2578 | /* | |
2579 | * Set thread privileges. | |
2580 | */ | |
2581 | s = splsched(); | |
2582 | thread_lock(self); | |
2583 | self->priority = BASEPRI_PREEMPT - 1; | |
2584 | set_sched_pri(self, self->priority); | |
2585 | thread_unlock(self); | |
2d21ac55 A |
2586 | |
2587 | if (!self->reserved_stack) | |
2588 | self->reserved_stack = self->kernel_stack; | |
2589 | ||
91447636 A |
2590 | splx(s); |
2591 | ||
2592 | /* | |
2593 | * Initialize some paging parameters. | |
2594 | */ | |
2595 | ||
2596 | if (vm_pageout_idle_wait == 0) | |
2597 | vm_pageout_idle_wait = VM_PAGEOUT_IDLE_WAIT; | |
2598 | ||
2599 | if (vm_pageout_burst_wait == 0) | |
2600 | vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT; | |
2601 | ||
2602 | if (vm_pageout_empty_wait == 0) | |
2603 | vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT; | |
2604 | ||
2605 | if (vm_pageout_deadlock_wait == 0) | |
2606 | vm_pageout_deadlock_wait = VM_PAGEOUT_DEADLOCK_WAIT; | |
2607 | ||
2608 | if (vm_pageout_deadlock_relief == 0) | |
2609 | vm_pageout_deadlock_relief = VM_PAGEOUT_DEADLOCK_RELIEF; | |
2610 | ||
2611 | if (vm_pageout_inactive_relief == 0) | |
2612 | vm_pageout_inactive_relief = VM_PAGEOUT_INACTIVE_RELIEF; | |
2613 | ||
2614 | if (vm_pageout_burst_active_throttle == 0) | |
2615 | vm_pageout_burst_active_throttle = VM_PAGEOUT_BURST_ACTIVE_THROTTLE; | |
2616 | ||
2617 | if (vm_pageout_burst_inactive_throttle == 0) | |
2618 | vm_pageout_burst_inactive_throttle = VM_PAGEOUT_BURST_INACTIVE_THROTTLE; | |
2619 | ||
2620 | /* | |
2621 | * Set kernel task to low backing store privileged | |
55e303ae A |
2622 | * status |
2623 | */ | |
2624 | task_lock(kernel_task); | |
2625 | kernel_task->priv_flags |= VM_BACKING_STORE_PRIV; | |
2626 | task_unlock(kernel_task); | |
2627 | ||
1c79356b | 2628 | vm_page_free_count_init = vm_page_free_count; |
2d21ac55 | 2629 | |
1c79356b A |
2630 | /* |
2631 | * even if we've already called vm_page_free_reserve | |
2632 | * call it again here to insure that the targets are | |
2633 | * accurately calculated (it uses vm_page_free_count_init) | |
2634 | * calling it with an arg of 0 will not change the reserve | |
2635 | * but will re-calculate free_min and free_target | |
2636 | */ | |
91447636 A |
2637 | if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED(processor_count)) { |
2638 | vm_page_free_reserve((VM_PAGE_FREE_RESERVED(processor_count)) - vm_page_free_reserved); | |
55e303ae | 2639 | } else |
1c79356b A |
2640 | vm_page_free_reserve(0); |
2641 | ||
55e303ae | 2642 | |
91447636 A |
2643 | queue_init(&vm_pageout_queue_external.pgo_pending); |
2644 | vm_pageout_queue_external.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX; | |
2645 | vm_pageout_queue_external.pgo_laundry = 0; | |
2646 | vm_pageout_queue_external.pgo_idle = FALSE; | |
2647 | vm_pageout_queue_external.pgo_busy = FALSE; | |
2648 | vm_pageout_queue_external.pgo_throttled = FALSE; | |
55e303ae | 2649 | |
91447636 | 2650 | queue_init(&vm_pageout_queue_internal.pgo_pending); |
2d21ac55 | 2651 | vm_pageout_queue_internal.pgo_maxlaundry = 0; |
91447636 A |
2652 | vm_pageout_queue_internal.pgo_laundry = 0; |
2653 | vm_pageout_queue_internal.pgo_idle = FALSE; | |
2654 | vm_pageout_queue_internal.pgo_busy = FALSE; | |
2655 | vm_pageout_queue_internal.pgo_throttled = FALSE; | |
9bccf70c | 2656 | |
55e303ae | 2657 | |
2d21ac55 A |
2658 | /* internal pageout thread started when default pager registered first time */ |
2659 | /* external pageout and garbage collection threads started here */ | |
55e303ae | 2660 | |
2d21ac55 A |
2661 | result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_external, NULL, |
2662 | BASEPRI_PREEMPT - 1, | |
2663 | &vm_pageout_external_iothread); | |
91447636 A |
2664 | if (result != KERN_SUCCESS) |
2665 | panic("vm_pageout_iothread_external: create failed"); | |
55e303ae | 2666 | |
2d21ac55 | 2667 | thread_deallocate(vm_pageout_external_iothread); |
9bccf70c | 2668 | |
2d21ac55 A |
2669 | result = kernel_thread_start_priority((thread_continue_t)vm_pageout_garbage_collect, NULL, |
2670 | MINPRI_KERNEL, | |
2671 | &thread); | |
91447636 A |
2672 | if (result != KERN_SUCCESS) |
2673 | panic("vm_pageout_garbage_collect: create failed"); | |
55e303ae | 2674 | |
91447636 | 2675 | thread_deallocate(thread); |
55e303ae | 2676 | |
8f6c56a5 A |
2677 | vm_object_reaper_init(); |
2678 | ||
2d21ac55 | 2679 | |
91447636 | 2680 | vm_pageout_continue(); |
2d21ac55 A |
2681 | |
2682 | /* | |
2683 | * Unreached code! | |
2684 | * | |
2685 | * The vm_pageout_continue() call above never returns, so the code below is never | |
2686 | * executed. We take advantage of this to declare several DTrace VM related probe | |
2687 | * points that our kernel doesn't have an analog for. These are probe points that | |
2688 | * exist in Solaris and are in the DTrace documentation, so people may have written | |
2689 | * scripts that use them. Declaring the probe points here means their scripts will | |
2690 | * compile and execute which we want for portability of the scripts, but since this | |
2691 | * section of code is never reached, the probe points will simply never fire. Yes, | |
2692 | * this is basically a hack. The problem is the DTrace probe points were chosen with | |
2693 | * Solaris specific VM events in mind, not portability to different VM implementations. | |
2694 | */ | |
2695 | ||
2696 | DTRACE_VM2(execfree, int, 1, (uint64_t *), NULL); | |
2697 | DTRACE_VM2(execpgin, int, 1, (uint64_t *), NULL); | |
2698 | DTRACE_VM2(execpgout, int, 1, (uint64_t *), NULL); | |
2699 | DTRACE_VM2(pgswapin, int, 1, (uint64_t *), NULL); | |
2700 | DTRACE_VM2(pgswapout, int, 1, (uint64_t *), NULL); | |
2701 | DTRACE_VM2(swapin, int, 1, (uint64_t *), NULL); | |
2702 | DTRACE_VM2(swapout, int, 1, (uint64_t *), NULL); | |
91447636 | 2703 | /*NOTREACHED*/ |
9bccf70c A |
2704 | } |
2705 | ||
2d21ac55 A |
2706 | kern_return_t |
2707 | vm_pageout_internal_start(void) | |
2708 | { | |
2709 | kern_return_t result; | |
2710 | ||
2711 | vm_pageout_queue_internal.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX; | |
2712 | result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_internal, NULL, BASEPRI_PREEMPT - 1, &vm_pageout_internal_iothread); | |
2713 | if (result == KERN_SUCCESS) | |
2714 | thread_deallocate(vm_pageout_internal_iothread); | |
2715 | return result; | |
2716 | } | |
2717 | ||
1c79356b | 2718 | |
b0d623f7 A |
2719 | /* |
2720 | * when marshalling pages into a UPL and subsequently committing | |
2721 | * or aborting them, it is necessary to hold | |
2722 | * the vm_page_queue_lock (a hot global lock) for certain operations | |
2723 | * on the page... however, the majority of the work can be done | |
2724 | * while merely holding the object lock... in fact there are certain | |
2725 | * collections of pages that don't require any work brokered by the | |
2726 | * vm_page_queue_lock... to mitigate the time spent behind the global | |
2727 | * lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT | |
2728 | * while doing all of the work that doesn't require the vm_page_queue_lock... | |
2729 | * then call dw_do_work to acquire the vm_page_queue_lock and do the | |
2730 | * necessary work for each page... we will grab the busy bit on the page | |
2731 | * if it's not already held so that dw_do_work can drop the object lock | |
2732 | * if it can't immediately take the vm_page_queue_lock in order to compete | |
2733 | * for the locks in the same order that vm_pageout_scan takes them. | |
2734 | * the operation names are modeled after the names of the routines that | |
2735 | * need to be called in order to make the changes very obvious in the | |
2736 | * original loop | |
2737 | */ | |
2738 | ||
2739 | #define DELAYED_WORK_LIMIT 32 | |
2740 | ||
2741 | #define DW_vm_page_unwire 0x01 | |
2742 | #define DW_vm_page_wire 0x02 | |
2743 | #define DW_vm_page_free 0x04 | |
2744 | #define DW_vm_page_activate 0x08 | |
2745 | #define DW_vm_page_deactivate_internal 0x10 | |
2746 | #define DW_vm_page_speculate 0x20 | |
2747 | #define DW_vm_page_lru 0x40 | |
2748 | #define DW_vm_pageout_throttle_up 0x80 | |
2749 | #define DW_PAGE_WAKEUP 0x100 | |
2750 | #define DW_clear_busy 0x200 | |
2751 | #define DW_clear_reference 0x400 | |
2752 | #define DW_set_reference 0x800 | |
2753 | ||
2754 | struct dw { | |
2755 | vm_page_t dw_m; | |
2756 | int dw_mask; | |
2757 | }; | |
2758 | ||
2759 | ||
2760 | static void dw_do_work(vm_object_t object, struct dw *dwp, int dw_count); | |
2761 | ||
2762 | ||
2763 | ||
2764 | static upl_t | |
2765 | upl_create(int type, int flags, upl_size_t size) | |
0b4e3aa0 A |
2766 | { |
2767 | upl_t upl; | |
2d21ac55 A |
2768 | int page_field_size = 0; |
2769 | int upl_flags = 0; | |
2770 | int upl_size = sizeof(struct upl); | |
0b4e3aa0 | 2771 | |
b0d623f7 A |
2772 | size = round_page_32(size); |
2773 | ||
2d21ac55 | 2774 | if (type & UPL_CREATE_LITE) { |
b0d623f7 | 2775 | page_field_size = (atop(size) + 7) >> 3; |
55e303ae | 2776 | page_field_size = (page_field_size + 3) & 0xFFFFFFFC; |
2d21ac55 A |
2777 | |
2778 | upl_flags |= UPL_LITE; | |
55e303ae | 2779 | } |
2d21ac55 | 2780 | if (type & UPL_CREATE_INTERNAL) { |
b0d623f7 | 2781 | upl_size += (int) sizeof(struct upl_page_info) * atop(size); |
2d21ac55 A |
2782 | |
2783 | upl_flags |= UPL_INTERNAL; | |
0b4e3aa0 | 2784 | } |
2d21ac55 A |
2785 | upl = (upl_t)kalloc(upl_size + page_field_size); |
2786 | ||
2787 | if (page_field_size) | |
2788 | bzero((char *)upl + upl_size, page_field_size); | |
2789 | ||
2790 | upl->flags = upl_flags | flags; | |
0b4e3aa0 A |
2791 | upl->src_object = NULL; |
2792 | upl->kaddr = (vm_offset_t)0; | |
2793 | upl->size = 0; | |
2794 | upl->map_object = NULL; | |
2795 | upl->ref_count = 1; | |
0c530ab8 | 2796 | upl->highest_page = 0; |
0b4e3aa0 | 2797 | upl_lock_init(upl); |
b0d623f7 A |
2798 | upl->vector_upl = NULL; |
2799 | #if UPL_DEBUG | |
0b4e3aa0 A |
2800 | upl->ubc_alias1 = 0; |
2801 | upl->ubc_alias2 = 0; | |
b0d623f7 A |
2802 | |
2803 | upl->upl_creator = current_thread(); | |
2804 | upl->upl_state = 0; | |
2805 | upl->upl_commit_index = 0; | |
2806 | bzero(&upl->upl_commit_records[0], sizeof(upl->upl_commit_records)); | |
2807 | ||
2808 | (void) OSBacktrace(&upl->upl_create_retaddr[0], UPL_DEBUG_STACK_FRAMES); | |
91447636 | 2809 | #endif /* UPL_DEBUG */ |
b0d623f7 | 2810 | |
0b4e3aa0 A |
2811 | return(upl); |
2812 | } | |
2813 | ||
2814 | static void | |
2d21ac55 | 2815 | upl_destroy(upl_t upl) |
0b4e3aa0 | 2816 | { |
55e303ae | 2817 | int page_field_size; /* bit field in word size buf */ |
2d21ac55 | 2818 | int size; |
0b4e3aa0 | 2819 | |
b0d623f7 | 2820 | #if UPL_DEBUG |
0b4e3aa0 | 2821 | { |
55e303ae | 2822 | vm_object_t object; |
2d21ac55 A |
2823 | |
2824 | if (upl->flags & UPL_SHADOWED) { | |
55e303ae A |
2825 | object = upl->map_object->shadow; |
2826 | } else { | |
2827 | object = upl->map_object; | |
2828 | } | |
2829 | vm_object_lock(object); | |
2d21ac55 | 2830 | queue_remove(&object->uplq, upl, upl_t, uplq); |
55e303ae | 2831 | vm_object_unlock(object); |
0b4e3aa0 | 2832 | } |
91447636 | 2833 | #endif /* UPL_DEBUG */ |
2d21ac55 A |
2834 | /* |
2835 | * drop a reference on the map_object whether or | |
2836 | * not a pageout object is inserted | |
2837 | */ | |
2838 | if (upl->flags & UPL_SHADOWED) | |
0b4e3aa0 | 2839 | vm_object_deallocate(upl->map_object); |
55e303ae | 2840 | |
2d21ac55 A |
2841 | if (upl->flags & UPL_DEVICE_MEMORY) |
2842 | size = PAGE_SIZE; | |
2843 | else | |
2844 | size = upl->size; | |
55e303ae | 2845 | page_field_size = 0; |
2d21ac55 | 2846 | |
55e303ae | 2847 | if (upl->flags & UPL_LITE) { |
2d21ac55 | 2848 | page_field_size = ((size/PAGE_SIZE) + 7) >> 3; |
55e303ae A |
2849 | page_field_size = (page_field_size + 3) & 0xFFFFFFFC; |
2850 | } | |
b0d623f7 A |
2851 | upl_lock_destroy(upl); |
2852 | upl->vector_upl = (vector_upl_t) 0xfeedbeef; | |
2d21ac55 | 2853 | if (upl->flags & UPL_INTERNAL) { |
91447636 A |
2854 | kfree(upl, |
2855 | sizeof(struct upl) + | |
2d21ac55 | 2856 | (sizeof(struct upl_page_info) * (size/PAGE_SIZE)) |
91447636 | 2857 | + page_field_size); |
0b4e3aa0 | 2858 | } else { |
91447636 | 2859 | kfree(upl, sizeof(struct upl) + page_field_size); |
0b4e3aa0 A |
2860 | } |
2861 | } | |
2862 | ||
91447636 | 2863 | void uc_upl_dealloc(upl_t upl); |
0b4e3aa0 | 2864 | __private_extern__ void |
2d21ac55 | 2865 | uc_upl_dealloc(upl_t upl) |
1c79356b | 2866 | { |
2d21ac55 | 2867 | if (--upl->ref_count == 0) |
1c79356b | 2868 | upl_destroy(upl); |
1c79356b A |
2869 | } |
2870 | ||
0b4e3aa0 | 2871 | void |
2d21ac55 | 2872 | upl_deallocate(upl_t upl) |
0b4e3aa0 | 2873 | { |
b0d623f7 A |
2874 | if (--upl->ref_count == 0) { |
2875 | if(vector_upl_is_valid(upl)) | |
2876 | vector_upl_deallocate(upl); | |
0b4e3aa0 | 2877 | upl_destroy(upl); |
b0d623f7 | 2878 | } |
0b4e3aa0 | 2879 | } |
1c79356b | 2880 | |
b0d623f7 A |
2881 | #if DEVELOPMENT || DEBUG |
2882 | /*/* | |
91447636 A |
2883 | * Statistics about UPL enforcement of copy-on-write obligations. |
2884 | */ | |
2885 | unsigned long upl_cow = 0; | |
2886 | unsigned long upl_cow_again = 0; | |
91447636 A |
2887 | unsigned long upl_cow_pages = 0; |
2888 | unsigned long upl_cow_again_pages = 0; | |
b0d623f7 A |
2889 | |
2890 | unsigned long iopl_cow = 0; | |
2891 | unsigned long iopl_cow_pages = 0; | |
2892 | #endif | |
91447636 | 2893 | |
1c79356b | 2894 | /* |
0b4e3aa0 | 2895 | * Routine: vm_object_upl_request |
1c79356b A |
2896 | * Purpose: |
2897 | * Cause the population of a portion of a vm_object. | |
2898 | * Depending on the nature of the request, the pages | |
2899 | * returned may be contain valid data or be uninitialized. | |
2900 | * A page list structure, listing the physical pages | |
2901 | * will be returned upon request. | |
2902 | * This function is called by the file system or any other | |
2903 | * supplier of backing store to a pager. | |
2904 | * IMPORTANT NOTE: The caller must still respect the relationship | |
2905 | * between the vm_object and its backing memory object. The | |
2906 | * caller MUST NOT substitute changes in the backing file | |
2907 | * without first doing a memory_object_lock_request on the | |
2908 | * target range unless it is know that the pages are not | |
2909 | * shared with another entity at the pager level. | |
2910 | * Copy_in_to: | |
2911 | * if a page list structure is present | |
2912 | * return the mapped physical pages, where a | |
2913 | * page is not present, return a non-initialized | |
2914 | * one. If the no_sync bit is turned on, don't | |
2915 | * call the pager unlock to synchronize with other | |
2916 | * possible copies of the page. Leave pages busy | |
2917 | * in the original object, if a page list structure | |
2918 | * was specified. When a commit of the page list | |
2919 | * pages is done, the dirty bit will be set for each one. | |
2920 | * Copy_out_from: | |
2921 | * If a page list structure is present, return | |
2922 | * all mapped pages. Where a page does not exist | |
2923 | * map a zero filled one. Leave pages busy in | |
2924 | * the original object. If a page list structure | |
2925 | * is not specified, this call is a no-op. | |
2926 | * | |
2927 | * Note: access of default pager objects has a rather interesting | |
2928 | * twist. The caller of this routine, presumably the file system | |
2929 | * page cache handling code, will never actually make a request | |
2930 | * against a default pager backed object. Only the default | |
2931 | * pager will make requests on backing store related vm_objects | |
2932 | * In this way the default pager can maintain the relationship | |
2933 | * between backing store files (abstract memory objects) and | |
2934 | * the vm_objects (cache objects), they support. | |
2935 | * | |
2936 | */ | |
91447636 | 2937 | |
0b4e3aa0 A |
2938 | __private_extern__ kern_return_t |
2939 | vm_object_upl_request( | |
1c79356b | 2940 | vm_object_t object, |
91447636 A |
2941 | vm_object_offset_t offset, |
2942 | upl_size_t size, | |
1c79356b | 2943 | upl_t *upl_ptr, |
0b4e3aa0 A |
2944 | upl_page_info_array_t user_page_list, |
2945 | unsigned int *page_list_count, | |
91447636 | 2946 | int cntrl_flags) |
1c79356b | 2947 | { |
91447636 | 2948 | vm_page_t dst_page = VM_PAGE_NULL; |
2d21ac55 A |
2949 | vm_object_offset_t dst_offset; |
2950 | upl_size_t xfer_size; | |
1c79356b | 2951 | boolean_t dirty; |
55e303ae | 2952 | boolean_t hw_dirty; |
1c79356b | 2953 | upl_t upl = NULL; |
91447636 A |
2954 | unsigned int entry; |
2955 | #if MACH_CLUSTER_STATS | |
1c79356b | 2956 | boolean_t encountered_lrp = FALSE; |
91447636 | 2957 | #endif |
1c79356b | 2958 | vm_page_t alias_page = NULL; |
2d21ac55 | 2959 | int refmod_state = 0; |
91447636 A |
2960 | wpl_array_t lite_list = NULL; |
2961 | vm_object_t last_copy_object; | |
b0d623f7 A |
2962 | struct dw dw_array[DELAYED_WORK_LIMIT]; |
2963 | struct dw *dwp; | |
2964 | int dw_count; | |
91447636 A |
2965 | |
2966 | if (cntrl_flags & ~UPL_VALID_FLAGS) { | |
2967 | /* | |
2968 | * For forward compatibility's sake, | |
2969 | * reject any unknown flag. | |
2970 | */ | |
2971 | return KERN_INVALID_VALUE; | |
2972 | } | |
2d21ac55 A |
2973 | if ( (!object->internal) && (object->paging_offset != 0) ) |
2974 | panic("vm_object_upl_request: external object with non-zero paging offset\n"); | |
2975 | if (object->phys_contiguous) | |
2976 | panic("vm_object_upl_request: contiguous object specified\n"); | |
0b4e3aa0 | 2977 | |
0b4e3aa0 | 2978 | |
cf7d32b8 A |
2979 | if ((size / PAGE_SIZE) > MAX_UPL_SIZE) |
2980 | size = MAX_UPL_SIZE * PAGE_SIZE; | |
1c79356b | 2981 | |
2d21ac55 | 2982 | if ( (cntrl_flags & UPL_SET_INTERNAL) && page_list_count != NULL) |
cf7d32b8 | 2983 | *page_list_count = MAX_UPL_SIZE; |
1c79356b | 2984 | |
2d21ac55 A |
2985 | if (cntrl_flags & UPL_SET_INTERNAL) { |
2986 | if (cntrl_flags & UPL_SET_LITE) { | |
55e303ae | 2987 | |
2d21ac55 | 2988 | upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE, 0, size); |
91447636 | 2989 | |
2d21ac55 A |
2990 | user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); |
2991 | lite_list = (wpl_array_t) | |
91447636 | 2992 | (((uintptr_t)user_page_list) + |
2d21ac55 | 2993 | ((size/PAGE_SIZE) * sizeof(upl_page_info_t))); |
b0d623f7 A |
2994 | if (size == 0) { |
2995 | user_page_list = NULL; | |
2996 | lite_list = NULL; | |
2997 | } | |
1c79356b | 2998 | } else { |
2d21ac55 | 2999 | upl = upl_create(UPL_CREATE_INTERNAL, 0, size); |
55e303ae | 3000 | |
2d21ac55 | 3001 | user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); |
b0d623f7 A |
3002 | if (size == 0) { |
3003 | user_page_list = NULL; | |
3004 | } | |
55e303ae | 3005 | } |
2d21ac55 A |
3006 | } else { |
3007 | if (cntrl_flags & UPL_SET_LITE) { | |
91447636 | 3008 | |
2d21ac55 | 3009 | upl = upl_create(UPL_CREATE_EXTERNAL | UPL_CREATE_LITE, 0, size); |
55e303ae | 3010 | |
2d21ac55 | 3011 | lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); |
b0d623f7 A |
3012 | if (size == 0) { |
3013 | lite_list = NULL; | |
3014 | } | |
55e303ae | 3015 | } else { |
2d21ac55 | 3016 | upl = upl_create(UPL_CREATE_EXTERNAL, 0, size); |
0b4e3aa0 | 3017 | } |
55e303ae | 3018 | } |
2d21ac55 A |
3019 | *upl_ptr = upl; |
3020 | ||
3021 | if (user_page_list) | |
3022 | user_page_list[0].device = FALSE; | |
91447636 | 3023 | |
2d21ac55 A |
3024 | if (cntrl_flags & UPL_SET_LITE) { |
3025 | upl->map_object = object; | |
3026 | } else { | |
3027 | upl->map_object = vm_object_allocate(size); | |
3028 | /* | |
3029 | * No neeed to lock the new object: nobody else knows | |
3030 | * about it yet, so it's all ours so far. | |
3031 | */ | |
3032 | upl->map_object->shadow = object; | |
3033 | upl->map_object->pageout = TRUE; | |
3034 | upl->map_object->can_persist = FALSE; | |
3035 | upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
3036 | upl->map_object->shadow_offset = offset; | |
3037 | upl->map_object->wimg_bits = object->wimg_bits; | |
3038 | ||
3039 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
3040 | ||
3041 | upl->flags |= UPL_SHADOWED; | |
3042 | } | |
3043 | /* | |
91447636 A |
3044 | * ENCRYPTED SWAP: |
3045 | * Just mark the UPL as "encrypted" here. | |
3046 | * We'll actually encrypt the pages later, | |
3047 | * in upl_encrypt(), when the caller has | |
3048 | * selected which pages need to go to swap. | |
3049 | */ | |
2d21ac55 | 3050 | if (cntrl_flags & UPL_ENCRYPT) |
91447636 | 3051 | upl->flags |= UPL_ENCRYPTED; |
2d21ac55 A |
3052 | |
3053 | if (cntrl_flags & UPL_FOR_PAGEOUT) | |
91447636 | 3054 | upl->flags |= UPL_PAGEOUT; |
2d21ac55 | 3055 | |
55e303ae | 3056 | vm_object_lock(object); |
b0d623f7 | 3057 | vm_object_activity_begin(object); |
2d21ac55 A |
3058 | |
3059 | /* | |
3060 | * we can lock in the paging_offset once paging_in_progress is set | |
3061 | */ | |
3062 | upl->size = size; | |
3063 | upl->offset = offset + object->paging_offset; | |
55e303ae | 3064 | |
b0d623f7 | 3065 | #if UPL_DEBUG |
2d21ac55 | 3066 | queue_enter(&object->uplq, upl, upl_t, uplq); |
91447636 | 3067 | #endif /* UPL_DEBUG */ |
91447636 | 3068 | |
2d21ac55 | 3069 | if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != VM_OBJECT_NULL) { |
91447636 | 3070 | /* |
2d21ac55 A |
3071 | * Honor copy-on-write obligations |
3072 | * | |
91447636 A |
3073 | * The caller is gathering these pages and |
3074 | * might modify their contents. We need to | |
3075 | * make sure that the copy object has its own | |
3076 | * private copies of these pages before we let | |
3077 | * the caller modify them. | |
3078 | */ | |
3079 | vm_object_update(object, | |
3080 | offset, | |
3081 | size, | |
3082 | NULL, | |
3083 | NULL, | |
3084 | FALSE, /* should_return */ | |
3085 | MEMORY_OBJECT_COPY_SYNC, | |
3086 | VM_PROT_NO_CHANGE); | |
b0d623f7 | 3087 | #if DEVELOPMENT || DEBUG |
91447636 A |
3088 | upl_cow++; |
3089 | upl_cow_pages += size >> PAGE_SHIFT; | |
b0d623f7 | 3090 | #endif |
55e303ae | 3091 | } |
2d21ac55 A |
3092 | /* |
3093 | * remember which copy object we synchronized with | |
3094 | */ | |
91447636 | 3095 | last_copy_object = object->copy; |
1c79356b | 3096 | entry = 0; |
55e303ae | 3097 | |
2d21ac55 A |
3098 | xfer_size = size; |
3099 | dst_offset = offset; | |
3100 | ||
b0d623f7 A |
3101 | dwp = &dw_array[0]; |
3102 | dw_count = 0; | |
3103 | ||
2d21ac55 A |
3104 | while (xfer_size) { |
3105 | ||
b0d623f7 A |
3106 | dwp->dw_mask = 0; |
3107 | ||
2d21ac55 | 3108 | if ((alias_page == NULL) && !(cntrl_flags & UPL_SET_LITE)) { |
2d21ac55 A |
3109 | vm_object_unlock(object); |
3110 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
b0d623f7 | 3111 | vm_object_lock(object); |
4a3eedf9 | 3112 | } |
2d21ac55 A |
3113 | if (cntrl_flags & UPL_COPYOUT_FROM) { |
3114 | upl->flags |= UPL_PAGE_SYNC_DONE; | |
3115 | ||
91447636 | 3116 | if ( ((dst_page = vm_page_lookup(object, dst_offset)) == VM_PAGE_NULL) || |
1c79356b A |
3117 | dst_page->fictitious || |
3118 | dst_page->absent || | |
3119 | dst_page->error || | |
b0d623f7 | 3120 | (VM_PAGE_WIRED(dst_page) && !dst_page->pageout && !dst_page->list_req_pending)) { |
91447636 A |
3121 | |
3122 | if (user_page_list) | |
1c79356b | 3123 | user_page_list[entry].phys_addr = 0; |
2d21ac55 | 3124 | |
b0d623f7 | 3125 | goto try_next_page; |
2d21ac55 A |
3126 | } |
3127 | /* | |
3128 | * grab this up front... | |
3129 | * a high percentange of the time we're going to | |
3130 | * need the hardware modification state a bit later | |
3131 | * anyway... so we can eliminate an extra call into | |
3132 | * the pmap layer by grabbing it here and recording it | |
3133 | */ | |
3134 | if (dst_page->pmapped) | |
3135 | refmod_state = pmap_get_refmod(dst_page->phys_page); | |
3136 | else | |
3137 | refmod_state = 0; | |
3138 | ||
3139 | if ( (refmod_state & VM_MEM_REFERENCED) && dst_page->inactive ) { | |
91447636 | 3140 | /* |
2d21ac55 A |
3141 | * page is on inactive list and referenced... |
3142 | * reactivate it now... this gets it out of the | |
3143 | * way of vm_pageout_scan which would have to | |
3144 | * reactivate it upon tripping over it | |
91447636 | 3145 | */ |
b0d623f7 | 3146 | dwp->dw_mask |= DW_vm_page_activate; |
2d21ac55 A |
3147 | } |
3148 | if (cntrl_flags & UPL_RET_ONLY_DIRTY) { | |
3149 | /* | |
3150 | * we're only asking for DIRTY pages to be returned | |
3151 | */ | |
3152 | if (dst_page->list_req_pending || !(cntrl_flags & UPL_FOR_PAGEOUT)) { | |
91447636 | 3153 | /* |
2d21ac55 A |
3154 | * if we were the page stolen by vm_pageout_scan to be |
3155 | * cleaned (as opposed to a buddy being clustered in | |
3156 | * or this request is not being driven by a PAGEOUT cluster | |
3157 | * then we only need to check for the page being dirty or | |
3158 | * precious to decide whether to return it | |
91447636 | 3159 | */ |
2d21ac55 | 3160 | if (dst_page->dirty || dst_page->precious || (refmod_state & VM_MEM_MODIFIED)) |
91447636 | 3161 | goto check_busy; |
2d21ac55 | 3162 | goto dont_return; |
1c79356b | 3163 | } |
2d21ac55 A |
3164 | /* |
3165 | * this is a request for a PAGEOUT cluster and this page | |
3166 | * is merely along for the ride as a 'buddy'... not only | |
3167 | * does it have to be dirty to be returned, but it also | |
3168 | * can't have been referenced recently... note that we've | |
3169 | * already filtered above based on whether this page is | |
3170 | * currently on the inactive queue or it meets the page | |
3171 | * ticket (generation count) check | |
3172 | */ | |
3173 | if ( !(refmod_state & VM_MEM_REFERENCED) && | |
3174 | ((refmod_state & VM_MEM_MODIFIED) || dst_page->dirty || dst_page->precious) ) { | |
3175 | goto check_busy; | |
1c79356b | 3176 | } |
2d21ac55 A |
3177 | dont_return: |
3178 | /* | |
3179 | * if we reach here, we're not to return | |
3180 | * the page... go on to the next one | |
3181 | */ | |
3182 | if (user_page_list) | |
3183 | user_page_list[entry].phys_addr = 0; | |
55e303ae | 3184 | |
b0d623f7 | 3185 | goto try_next_page; |
2d21ac55 A |
3186 | } |
3187 | check_busy: | |
3188 | if (dst_page->busy && (!(dst_page->list_req_pending && dst_page->pageout))) { | |
3189 | if (cntrl_flags & UPL_NOBLOCK) { | |
3190 | if (user_page_list) | |
3191 | user_page_list[entry].phys_addr = 0; | |
55e303ae | 3192 | |
b0d623f7 | 3193 | goto try_next_page; |
1c79356b | 3194 | } |
2d21ac55 A |
3195 | /* |
3196 | * someone else is playing with the | |
3197 | * page. We will have to wait. | |
3198 | */ | |
2d21ac55 | 3199 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
1c79356b | 3200 | |
2d21ac55 A |
3201 | continue; |
3202 | } | |
3203 | /* | |
3204 | * Someone else already cleaning the page? | |
3205 | */ | |
b0d623f7 | 3206 | if ((dst_page->cleaning || dst_page->absent || VM_PAGE_WIRED(dst_page)) && !dst_page->list_req_pending) { |
2d21ac55 A |
3207 | if (user_page_list) |
3208 | user_page_list[entry].phys_addr = 0; | |
91447636 | 3209 | |
b0d623f7 | 3210 | goto try_next_page; |
2d21ac55 A |
3211 | } |
3212 | /* | |
3213 | * ENCRYPTED SWAP: | |
3214 | * The caller is gathering this page and might | |
3215 | * access its contents later on. Decrypt the | |
3216 | * page before adding it to the UPL, so that | |
3217 | * the caller never sees encrypted data. | |
3218 | */ | |
3219 | if (! (cntrl_flags & UPL_ENCRYPT) && dst_page->encrypted) { | |
3220 | int was_busy; | |
91447636 A |
3221 | |
3222 | /* | |
2d21ac55 A |
3223 | * save the current state of busy |
3224 | * mark page as busy while decrypt | |
3225 | * is in progress since it will drop | |
3226 | * the object lock... | |
91447636 | 3227 | */ |
2d21ac55 A |
3228 | was_busy = dst_page->busy; |
3229 | dst_page->busy = TRUE; | |
91447636 | 3230 | |
2d21ac55 A |
3231 | vm_page_decrypt(dst_page, 0); |
3232 | vm_page_decrypt_for_upl_counter++; | |
3233 | /* | |
3234 | * restore to original busy state | |
3235 | */ | |
3236 | dst_page->busy = was_busy; | |
b0d623f7 A |
3237 | } |
3238 | if (dst_page->pageout_queue == TRUE) { | |
91447636 | 3239 | |
b0d623f7 A |
3240 | vm_page_lockspin_queues(); |
3241 | ||
3242 | if (dst_page->pageout_queue == TRUE) { | |
3243 | /* | |
3244 | * we've buddied up a page for a clustered pageout | |
3245 | * that has already been moved to the pageout | |
3246 | * queue by pageout_scan... we need to remove | |
3247 | * it from the queue and drop the laundry count | |
3248 | * on that queue | |
3249 | */ | |
3250 | vm_pageout_throttle_up(dst_page); | |
3251 | } | |
3252 | vm_page_unlock_queues(); | |
91447636 | 3253 | } |
2d21ac55 A |
3254 | #if MACH_CLUSTER_STATS |
3255 | /* | |
3256 | * pageout statistics gathering. count | |
3257 | * all the pages we will page out that | |
3258 | * were not counted in the initial | |
3259 | * vm_pageout_scan work | |
3260 | */ | |
3261 | if (dst_page->list_req_pending) | |
3262 | encountered_lrp = TRUE; | |
3263 | if ((dst_page->dirty || (dst_page->object->internal && dst_page->precious)) && !dst_page->list_req_pending) { | |
3264 | if (encountered_lrp) | |
3265 | CLUSTER_STAT(pages_at_higher_offsets++;) | |
3266 | else | |
3267 | CLUSTER_STAT(pages_at_lower_offsets++;) | |
3268 | } | |
3269 | #endif | |
3270 | /* | |
3271 | * Turn off busy indication on pending | |
3272 | * pageout. Note: we can only get here | |
3273 | * in the request pending case. | |
3274 | */ | |
3275 | dst_page->list_req_pending = FALSE; | |
3276 | dst_page->busy = FALSE; | |
3277 | ||
3278 | hw_dirty = refmod_state & VM_MEM_MODIFIED; | |
3279 | dirty = hw_dirty ? TRUE : dst_page->dirty; | |
3280 | ||
3281 | if (dst_page->phys_page > upl->highest_page) | |
3282 | upl->highest_page = dst_page->phys_page; | |
3283 | ||
3284 | if (cntrl_flags & UPL_SET_LITE) { | |
b0d623f7 | 3285 | unsigned int pg_num; |
2d21ac55 | 3286 | |
b0d623f7 A |
3287 | pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE); |
3288 | assert(pg_num == (dst_offset-offset)/PAGE_SIZE); | |
2d21ac55 A |
3289 | lite_list[pg_num>>5] |= 1 << (pg_num & 31); |
3290 | ||
3291 | if (hw_dirty) | |
3292 | pmap_clear_modify(dst_page->phys_page); | |
3293 | ||
3294 | /* | |
3295 | * Mark original page as cleaning | |
3296 | * in place. | |
3297 | */ | |
3298 | dst_page->cleaning = TRUE; | |
3299 | dst_page->precious = FALSE; | |
3300 | } else { | |
3301 | /* | |
3302 | * use pageclean setup, it is more | |
3303 | * convenient even for the pageout | |
3304 | * cases here | |
3305 | */ | |
3306 | vm_object_lock(upl->map_object); | |
3307 | vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size); | |
3308 | vm_object_unlock(upl->map_object); | |
3309 | ||
3310 | alias_page->absent = FALSE; | |
3311 | alias_page = NULL; | |
1c79356b | 3312 | } |
2d21ac55 A |
3313 | #if MACH_PAGEMAP |
3314 | /* | |
3315 | * Record that this page has been | |
3316 | * written out | |
3317 | */ | |
3318 | vm_external_state_set(object->existence_map, dst_page->offset); | |
3319 | #endif /*MACH_PAGEMAP*/ | |
3320 | dst_page->dirty = dirty; | |
55e303ae | 3321 | |
2d21ac55 A |
3322 | if (!dirty) |
3323 | dst_page->precious = TRUE; | |
91447636 | 3324 | |
2d21ac55 A |
3325 | if (dst_page->pageout) |
3326 | dst_page->busy = TRUE; | |
3327 | ||
3328 | if ( (cntrl_flags & UPL_ENCRYPT) ) { | |
3329 | /* | |
3330 | * ENCRYPTED SWAP: | |
3331 | * We want to deny access to the target page | |
3332 | * because its contents are about to be | |
3333 | * encrypted and the user would be very | |
3334 | * confused to see encrypted data instead | |
3335 | * of their data. | |
3336 | * We also set "encrypted_cleaning" to allow | |
3337 | * vm_pageout_scan() to demote that page | |
3338 | * from "adjacent/clean-in-place" to | |
3339 | * "target/clean-and-free" if it bumps into | |
3340 | * this page during its scanning while we're | |
3341 | * still processing this cluster. | |
3342 | */ | |
3343 | dst_page->busy = TRUE; | |
3344 | dst_page->encrypted_cleaning = TRUE; | |
3345 | } | |
3346 | if ( !(cntrl_flags & UPL_CLEAN_IN_PLACE) ) { | |
3347 | /* | |
3348 | * deny access to the target page | |
3349 | * while it is being worked on | |
3350 | */ | |
b0d623f7 | 3351 | if ((!dst_page->pageout) && ( !VM_PAGE_WIRED(dst_page))) { |
2d21ac55 A |
3352 | dst_page->busy = TRUE; |
3353 | dst_page->pageout = TRUE; | |
b0d623f7 A |
3354 | |
3355 | dwp->dw_mask |= DW_vm_page_wire; | |
2d21ac55 A |
3356 | } |
3357 | } | |
3358 | } else { | |
3359 | if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != last_copy_object) { | |
91447636 | 3360 | /* |
2d21ac55 A |
3361 | * Honor copy-on-write obligations |
3362 | * | |
91447636 A |
3363 | * The copy object has changed since we |
3364 | * last synchronized for copy-on-write. | |
3365 | * Another copy object might have been | |
3366 | * inserted while we released the object's | |
3367 | * lock. Since someone could have seen the | |
3368 | * original contents of the remaining pages | |
3369 | * through that new object, we have to | |
3370 | * synchronize with it again for the remaining | |
3371 | * pages only. The previous pages are "busy" | |
3372 | * so they can not be seen through the new | |
3373 | * mapping. The new mapping will see our | |
3374 | * upcoming changes for those previous pages, | |
3375 | * but that's OK since they couldn't see what | |
3376 | * was there before. It's just a race anyway | |
3377 | * and there's no guarantee of consistency or | |
3378 | * atomicity. We just don't want new mappings | |
3379 | * to see both the *before* and *after* pages. | |
3380 | */ | |
3381 | if (object->copy != VM_OBJECT_NULL) { | |
3382 | vm_object_update( | |
3383 | object, | |
3384 | dst_offset,/* current offset */ | |
3385 | xfer_size, /* remaining size */ | |
3386 | NULL, | |
3387 | NULL, | |
3388 | FALSE, /* should_return */ | |
3389 | MEMORY_OBJECT_COPY_SYNC, | |
3390 | VM_PROT_NO_CHANGE); | |
2d21ac55 | 3391 | |
b0d623f7 | 3392 | #if DEVELOPMENT || DEBUG |
91447636 | 3393 | upl_cow_again++; |
2d21ac55 | 3394 | upl_cow_again_pages += xfer_size >> PAGE_SHIFT; |
b0d623f7 | 3395 | #endif |
91447636 | 3396 | } |
2d21ac55 A |
3397 | /* |
3398 | * remember the copy object we synced with | |
3399 | */ | |
91447636 A |
3400 | last_copy_object = object->copy; |
3401 | } | |
91447636 A |
3402 | dst_page = vm_page_lookup(object, dst_offset); |
3403 | ||
2d21ac55 | 3404 | if (dst_page != VM_PAGE_NULL) { |
b0d623f7 A |
3405 | |
3406 | if ((cntrl_flags & UPL_RET_ONLY_ABSENT)) { | |
3407 | ||
3408 | if ( !(dst_page->absent && dst_page->list_req_pending) ) { | |
3409 | /* | |
2d21ac55 A |
3410 | * skip over pages already present in the cache |
3411 | */ | |
b0d623f7 A |
3412 | if (user_page_list) |
3413 | user_page_list[entry].phys_addr = 0; | |
2d21ac55 | 3414 | |
b0d623f7 | 3415 | goto try_next_page; |
55e303ae | 3416 | } |
b0d623f7 A |
3417 | } |
3418 | if ( !(dst_page->list_req_pending) ) { | |
3419 | ||
2d21ac55 A |
3420 | if (dst_page->cleaning) { |
3421 | /* | |
3422 | * someone else is writing to the page... wait... | |
3423 | */ | |
2d21ac55 A |
3424 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
3425 | ||
3426 | continue; | |
3427 | } | |
3428 | } else { | |
3429 | if (dst_page->fictitious && | |
3430 | dst_page->phys_page == vm_page_fictitious_addr) { | |
3431 | assert( !dst_page->speculative); | |
3432 | /* | |
3433 | * dump the fictitious page | |
3434 | */ | |
3435 | dst_page->list_req_pending = FALSE; | |
55e303ae | 3436 | |
b0d623f7 | 3437 | VM_PAGE_FREE(dst_page); |
2d21ac55 A |
3438 | |
3439 | dst_page = NULL; | |
b0d623f7 | 3440 | |
2d21ac55 A |
3441 | } else if (dst_page->absent) { |
3442 | /* | |
3443 | * the default_pager case | |
3444 | */ | |
3445 | dst_page->list_req_pending = FALSE; | |
3446 | dst_page->busy = FALSE; | |
b0d623f7 A |
3447 | |
3448 | } else if (dst_page->pageout) { | |
3449 | /* | |
3450 | * page was earmarked by vm_pageout_scan | |
3451 | * to be cleaned and stolen... we're going | |
3452 | * to take it back since we are not attempting | |
3453 | * to read that page and we don't want to stall | |
3454 | * waiting for it to be cleaned for 2 reasons... | |
3455 | * 1 - no use paging it out and back in | |
3456 | * 2 - if we stall, we may casue a deadlock in | |
3457 | * the FS trying to acquire the its locks | |
3458 | * on the VNOP_PAGEOUT path presuming that | |
3459 | * those locks are already held on the read | |
3460 | * path before trying to create this UPL | |
3461 | * | |
3462 | * so undo all of the state that vm_pageout_scan | |
3463 | * hung on this page | |
3464 | */ | |
3465 | dst_page->busy = FALSE; | |
3466 | ||
3467 | vm_pageout_queue_steal(dst_page, FALSE); | |
2d21ac55 | 3468 | } |
0b4e3aa0 | 3469 | } |
1c79356b | 3470 | } |
2d21ac55 A |
3471 | if (dst_page == VM_PAGE_NULL) { |
3472 | if (object->private) { | |
0b4e3aa0 A |
3473 | /* |
3474 | * This is a nasty wrinkle for users | |
3475 | * of upl who encounter device or | |
3476 | * private memory however, it is | |
3477 | * unavoidable, only a fault can | |
2d21ac55 | 3478 | * resolve the actual backing |
0b4e3aa0 A |
3479 | * physical page by asking the |
3480 | * backing device. | |
3481 | */ | |
2d21ac55 | 3482 | if (user_page_list) |
55e303ae | 3483 | user_page_list[entry].phys_addr = 0; |
2d21ac55 | 3484 | |
b0d623f7 | 3485 | goto try_next_page; |
0b4e3aa0 | 3486 | } |
2d21ac55 A |
3487 | /* |
3488 | * need to allocate a page | |
2d21ac55 | 3489 | */ |
4a3eedf9 | 3490 | dst_page = vm_page_grab(); |
2d21ac55 | 3491 | |
1c79356b | 3492 | if (dst_page == VM_PAGE_NULL) { |
2d21ac55 A |
3493 | if ( (cntrl_flags & (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) == (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) { |
3494 | /* | |
3495 | * we don't want to stall waiting for pages to come onto the free list | |
3496 | * while we're already holding absent pages in this UPL | |
3497 | * the caller will deal with the empty slots | |
3498 | */ | |
3499 | if (user_page_list) | |
3500 | user_page_list[entry].phys_addr = 0; | |
3501 | ||
3502 | goto try_next_page; | |
3503 | } | |
3504 | /* | |
3505 | * no pages available... wait | |
3506 | * then try again for the same | |
3507 | * offset... | |
3508 | */ | |
0b4e3aa0 A |
3509 | vm_object_unlock(object); |
3510 | VM_PAGE_WAIT(); | |
b0d623f7 | 3511 | vm_object_lock(object); |
2d21ac55 | 3512 | |
0b4e3aa0 | 3513 | continue; |
1c79356b | 3514 | } |
b0d623f7 | 3515 | vm_page_insert(dst_page, object, dst_offset); |
4a3eedf9 | 3516 | |
2d21ac55 | 3517 | dst_page->absent = TRUE; |
4a3eedf9 | 3518 | dst_page->busy = FALSE; |
2d21ac55 A |
3519 | |
3520 | if (cntrl_flags & UPL_RET_ONLY_ABSENT) { | |
91447636 A |
3521 | /* |
3522 | * if UPL_RET_ONLY_ABSENT was specified, | |
3523 | * than we're definitely setting up a | |
3524 | * upl for a clustered read/pagein | |
3525 | * operation... mark the pages as clustered | |
2d21ac55 A |
3526 | * so upl_commit_range can put them on the |
3527 | * speculative list | |
91447636 A |
3528 | */ |
3529 | dst_page->clustered = TRUE; | |
3530 | } | |
1c79356b | 3531 | } |
b0d623f7 A |
3532 | if (dst_page->fictitious) { |
3533 | panic("need corner case for fictitious page"); | |
3534 | } | |
3535 | if (dst_page->busy) { | |
3536 | /* | |
3537 | * someone else is playing with the | |
3538 | * page. We will have to wait. | |
3539 | */ | |
3540 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
3541 | ||
3542 | continue; | |
3543 | } | |
91447636 A |
3544 | /* |
3545 | * ENCRYPTED SWAP: | |
3546 | */ | |
3547 | if (cntrl_flags & UPL_ENCRYPT) { | |
3548 | /* | |
3549 | * The page is going to be encrypted when we | |
3550 | * get it from the pager, so mark it so. | |
3551 | */ | |
3552 | dst_page->encrypted = TRUE; | |
3553 | } else { | |
3554 | /* | |
3555 | * Otherwise, the page will not contain | |
3556 | * encrypted data. | |
3557 | */ | |
3558 | dst_page->encrypted = FALSE; | |
3559 | } | |
1c79356b | 3560 | dst_page->overwriting = TRUE; |
2d21ac55 | 3561 | |
2d21ac55 A |
3562 | if (dst_page->pmapped) { |
3563 | if ( !(cntrl_flags & UPL_FILE_IO)) | |
3564 | /* | |
3565 | * eliminate all mappings from the | |
3566 | * original object and its prodigy | |
55e303ae | 3567 | */ |
2d21ac55 A |
3568 | refmod_state = pmap_disconnect(dst_page->phys_page); |
3569 | else | |
3570 | refmod_state = pmap_get_refmod(dst_page->phys_page); | |
3571 | } else | |
3572 | refmod_state = 0; | |
55e303ae | 3573 | |
2d21ac55 A |
3574 | hw_dirty = refmod_state & VM_MEM_MODIFIED; |
3575 | dirty = hw_dirty ? TRUE : dst_page->dirty; | |
1c79356b | 3576 | |
2d21ac55 | 3577 | if (cntrl_flags & UPL_SET_LITE) { |
b0d623f7 | 3578 | unsigned int pg_num; |
1c79356b | 3579 | |
b0d623f7 A |
3580 | pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE); |
3581 | assert(pg_num == (dst_offset-offset)/PAGE_SIZE); | |
2d21ac55 | 3582 | lite_list[pg_num>>5] |= 1 << (pg_num & 31); |
91447636 | 3583 | |
2d21ac55 A |
3584 | if (hw_dirty) |
3585 | pmap_clear_modify(dst_page->phys_page); | |
0b4e3aa0 | 3586 | |
2d21ac55 A |
3587 | /* |
3588 | * Mark original page as cleaning | |
3589 | * in place. | |
3590 | */ | |
3591 | dst_page->cleaning = TRUE; | |
3592 | dst_page->precious = FALSE; | |
3593 | } else { | |
3594 | /* | |
3595 | * use pageclean setup, it is more | |
3596 | * convenient even for the pageout | |
3597 | * cases here | |
3598 | */ | |
3599 | vm_object_lock(upl->map_object); | |
3600 | vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size); | |
3601 | vm_object_unlock(upl->map_object); | |
0b4e3aa0 | 3602 | |
2d21ac55 A |
3603 | alias_page->absent = FALSE; |
3604 | alias_page = NULL; | |
3605 | } | |
1c79356b | 3606 | |
2d21ac55 A |
3607 | if (cntrl_flags & UPL_CLEAN_IN_PLACE) { |
3608 | /* | |
3609 | * clean in place for read implies | |
3610 | * that a write will be done on all | |
3611 | * the pages that are dirty before | |
3612 | * a upl commit is done. The caller | |
3613 | * is obligated to preserve the | |
3614 | * contents of all pages marked dirty | |
3615 | */ | |
3616 | upl->flags |= UPL_CLEAR_DIRTY; | |
3617 | } | |
3618 | dst_page->dirty = dirty; | |
91447636 | 3619 | |
2d21ac55 A |
3620 | if (!dirty) |
3621 | dst_page->precious = TRUE; | |
3622 | ||
b0d623f7 | 3623 | if ( !VM_PAGE_WIRED(dst_page)) { |
2d21ac55 A |
3624 | /* |
3625 | * deny access to the target page while | |
3626 | * it is being worked on | |
3627 | */ | |
3628 | dst_page->busy = TRUE; | |
3629 | } else | |
b0d623f7 | 3630 | dwp->dw_mask |= DW_vm_page_wire; |
2d21ac55 | 3631 | |
b0d623f7 A |
3632 | /* |
3633 | * We might be about to satisfy a fault which has been | |
3634 | * requested. So no need for the "restart" bit. | |
3635 | */ | |
3636 | dst_page->restart = FALSE; | |
3637 | if (!dst_page->absent && !(cntrl_flags & UPL_WILL_MODIFY)) { | |
2d21ac55 A |
3638 | /* |
3639 | * expect the page to be used | |
3640 | */ | |
b0d623f7 | 3641 | dwp->dw_mask |= DW_set_reference; |
2d21ac55 A |
3642 | } |
3643 | dst_page->precious = (cntrl_flags & UPL_PRECIOUS) ? TRUE : FALSE; | |
3644 | } | |
3645 | if (dst_page->phys_page > upl->highest_page) | |
3646 | upl->highest_page = dst_page->phys_page; | |
3647 | if (user_page_list) { | |
3648 | user_page_list[entry].phys_addr = dst_page->phys_page; | |
2d21ac55 A |
3649 | user_page_list[entry].pageout = dst_page->pageout; |
3650 | user_page_list[entry].absent = dst_page->absent; | |
593a1d5f | 3651 | user_page_list[entry].dirty = dst_page->dirty; |
2d21ac55 | 3652 | user_page_list[entry].precious = dst_page->precious; |
593a1d5f | 3653 | user_page_list[entry].device = FALSE; |
2d21ac55 A |
3654 | if (dst_page->clustered == TRUE) |
3655 | user_page_list[entry].speculative = dst_page->speculative; | |
3656 | else | |
3657 | user_page_list[entry].speculative = FALSE; | |
593a1d5f A |
3658 | user_page_list[entry].cs_validated = dst_page->cs_validated; |
3659 | user_page_list[entry].cs_tainted = dst_page->cs_tainted; | |
2d21ac55 A |
3660 | } |
3661 | /* | |
3662 | * if UPL_RET_ONLY_ABSENT is set, then | |
3663 | * we are working with a fresh page and we've | |
3664 | * just set the clustered flag on it to | |
3665 | * indicate that it was drug in as part of a | |
3666 | * speculative cluster... so leave it alone | |
3667 | */ | |
3668 | if ( !(cntrl_flags & UPL_RET_ONLY_ABSENT)) { | |
3669 | /* | |
3670 | * someone is explicitly grabbing this page... | |
3671 | * update clustered and speculative state | |
3672 | * | |
3673 | */ | |
3674 | VM_PAGE_CONSUME_CLUSTERED(dst_page); | |
3675 | } | |
b0d623f7 A |
3676 | try_next_page: |
3677 | if (dwp->dw_mask) { | |
3678 | if (dwp->dw_mask & DW_vm_page_activate) | |
3679 | VM_STAT_INCR(reactivations); | |
4a3eedf9 | 3680 | |
b0d623f7 A |
3681 | if (dst_page->busy == FALSE) { |
3682 | /* | |
3683 | * dw_do_work may need to drop the object lock | |
3684 | * if it does, we need the pages it's looking at to | |
3685 | * be held stable via the busy bit. | |
3686 | */ | |
3687 | dst_page->busy = TRUE; | |
3688 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); | |
3689 | } | |
3690 | dwp->dw_m = dst_page; | |
3691 | dwp++; | |
3692 | dw_count++; | |
3693 | ||
3694 | if (dw_count >= DELAYED_WORK_LIMIT) { | |
3695 | dw_do_work(object, &dw_array[0], dw_count); | |
3696 | ||
3697 | dwp = &dw_array[0]; | |
3698 | dw_count = 0; | |
4a3eedf9 | 3699 | } |
2d21ac55 | 3700 | } |
2d21ac55 A |
3701 | entry++; |
3702 | dst_offset += PAGE_SIZE_64; | |
3703 | xfer_size -= PAGE_SIZE; | |
3704 | } | |
b0d623f7 A |
3705 | if (dw_count) |
3706 | dw_do_work(object, &dw_array[0], dw_count); | |
3707 | ||
2d21ac55 | 3708 | if (alias_page != NULL) { |
b0d623f7 | 3709 | VM_PAGE_FREE(alias_page); |
1c79356b | 3710 | } |
91447636 | 3711 | |
2d21ac55 A |
3712 | if (page_list_count != NULL) { |
3713 | if (upl->flags & UPL_INTERNAL) | |
3714 | *page_list_count = 0; | |
3715 | else if (*page_list_count > entry) | |
3716 | *page_list_count = entry; | |
3717 | } | |
b0d623f7 A |
3718 | #if UPL_DEBUG |
3719 | upl->upl_state = 1; | |
3720 | #endif | |
1c79356b | 3721 | vm_object_unlock(object); |
2d21ac55 | 3722 | |
1c79356b A |
3723 | return KERN_SUCCESS; |
3724 | } | |
3725 | ||
0b4e3aa0 | 3726 | /* JMM - Backward compatability for now */ |
1c79356b | 3727 | kern_return_t |
91447636 A |
3728 | vm_fault_list_request( /* forward */ |
3729 | memory_object_control_t control, | |
3730 | vm_object_offset_t offset, | |
3731 | upl_size_t size, | |
3732 | upl_t *upl_ptr, | |
3733 | upl_page_info_t **user_page_list_ptr, | |
2d21ac55 | 3734 | unsigned int page_list_count, |
91447636 A |
3735 | int cntrl_flags); |
3736 | kern_return_t | |
0b4e3aa0 A |
3737 | vm_fault_list_request( |
3738 | memory_object_control_t control, | |
1c79356b | 3739 | vm_object_offset_t offset, |
91447636 | 3740 | upl_size_t size, |
0b4e3aa0 | 3741 | upl_t *upl_ptr, |
1c79356b | 3742 | upl_page_info_t **user_page_list_ptr, |
2d21ac55 | 3743 | unsigned int page_list_count, |
1c79356b A |
3744 | int cntrl_flags) |
3745 | { | |
0c530ab8 | 3746 | unsigned int local_list_count; |
0b4e3aa0 A |
3747 | upl_page_info_t *user_page_list; |
3748 | kern_return_t kr; | |
3749 | ||
b0d623f7 A |
3750 | if((cntrl_flags & UPL_VECTOR)==UPL_VECTOR) |
3751 | return KERN_INVALID_ARGUMENT; | |
3752 | ||
0b4e3aa0 A |
3753 | if (user_page_list_ptr != NULL) { |
3754 | local_list_count = page_list_count; | |
3755 | user_page_list = *user_page_list_ptr; | |
3756 | } else { | |
3757 | local_list_count = 0; | |
3758 | user_page_list = NULL; | |
3759 | } | |
3760 | kr = memory_object_upl_request(control, | |
3761 | offset, | |
3762 | size, | |
3763 | upl_ptr, | |
3764 | user_page_list, | |
3765 | &local_list_count, | |
3766 | cntrl_flags); | |
3767 | ||
3768 | if(kr != KERN_SUCCESS) | |
3769 | return kr; | |
3770 | ||
3771 | if ((user_page_list_ptr != NULL) && (cntrl_flags & UPL_INTERNAL)) { | |
3772 | *user_page_list_ptr = UPL_GET_INTERNAL_PAGE_LIST(*upl_ptr); | |
3773 | } | |
3774 | ||
3775 | return KERN_SUCCESS; | |
3776 | } | |
3777 | ||
3778 | ||
3779 | ||
3780 | /* | |
3781 | * Routine: vm_object_super_upl_request | |
3782 | * Purpose: | |
3783 | * Cause the population of a portion of a vm_object | |
3784 | * in much the same way as memory_object_upl_request. | |
3785 | * Depending on the nature of the request, the pages | |
3786 | * returned may be contain valid data or be uninitialized. | |
3787 | * However, the region may be expanded up to the super | |
3788 | * cluster size provided. | |
3789 | */ | |
3790 | ||
3791 | __private_extern__ kern_return_t | |
3792 | vm_object_super_upl_request( | |
3793 | vm_object_t object, | |
3794 | vm_object_offset_t offset, | |
91447636 A |
3795 | upl_size_t size, |
3796 | upl_size_t super_cluster, | |
0b4e3aa0 A |
3797 | upl_t *upl, |
3798 | upl_page_info_t *user_page_list, | |
3799 | unsigned int *page_list_count, | |
3800 | int cntrl_flags) | |
3801 | { | |
b0d623f7 | 3802 | if (object->paging_offset > offset || ((cntrl_flags & UPL_VECTOR)==UPL_VECTOR)) |
1c79356b | 3803 | return KERN_FAILURE; |
0b4e3aa0 | 3804 | |
55e303ae | 3805 | assert(object->paging_in_progress); |
1c79356b | 3806 | offset = offset - object->paging_offset; |
91447636 | 3807 | |
91447636 | 3808 | if (super_cluster > size) { |
1c79356b A |
3809 | |
3810 | vm_object_offset_t base_offset; | |
91447636 | 3811 | upl_size_t super_size; |
b0d623f7 | 3812 | vm_object_size_t super_size_64; |
1c79356b | 3813 | |
2d21ac55 A |
3814 | base_offset = (offset & ~((vm_object_offset_t) super_cluster - 1)); |
3815 | super_size = (offset + size) > (base_offset + super_cluster) ? super_cluster<<1 : super_cluster; | |
b0d623f7 A |
3816 | super_size_64 = ((base_offset + super_size) > object->size) ? (object->size - base_offset) : super_size; |
3817 | super_size = (upl_size_t) super_size_64; | |
3818 | assert(super_size == super_size_64); | |
2d21ac55 A |
3819 | |
3820 | if (offset > (base_offset + super_size)) { | |
3821 | panic("vm_object_super_upl_request: Missed target pageout" | |
3822 | " %#llx,%#llx, %#x, %#x, %#x, %#llx\n", | |
3823 | offset, base_offset, super_size, super_cluster, | |
3824 | size, object->paging_offset); | |
3825 | } | |
91447636 A |
3826 | /* |
3827 | * apparently there is a case where the vm requests a | |
3828 | * page to be written out who's offset is beyond the | |
3829 | * object size | |
3830 | */ | |
b0d623f7 A |
3831 | if ((offset + size) > (base_offset + super_size)) { |
3832 | super_size_64 = (offset + size) - base_offset; | |
3833 | super_size = (upl_size_t) super_size_64; | |
3834 | assert(super_size == super_size_64); | |
3835 | } | |
1c79356b A |
3836 | |
3837 | offset = base_offset; | |
3838 | size = super_size; | |
3839 | } | |
2d21ac55 | 3840 | return vm_object_upl_request(object, offset, size, upl, user_page_list, page_list_count, cntrl_flags); |
1c79356b A |
3841 | } |
3842 | ||
b0d623f7 | 3843 | |
91447636 A |
3844 | kern_return_t |
3845 | vm_map_create_upl( | |
3846 | vm_map_t map, | |
3847 | vm_map_address_t offset, | |
3848 | upl_size_t *upl_size, | |
3849 | upl_t *upl, | |
3850 | upl_page_info_array_t page_list, | |
3851 | unsigned int *count, | |
3852 | int *flags) | |
3853 | { | |
3854 | vm_map_entry_t entry; | |
3855 | int caller_flags; | |
3856 | int force_data_sync; | |
3857 | int sync_cow_data; | |
3858 | vm_object_t local_object; | |
3859 | vm_map_offset_t local_offset; | |
3860 | vm_map_offset_t local_start; | |
3861 | kern_return_t ret; | |
3862 | ||
3863 | caller_flags = *flags; | |
3864 | ||
3865 | if (caller_flags & ~UPL_VALID_FLAGS) { | |
3866 | /* | |
3867 | * For forward compatibility's sake, | |
3868 | * reject any unknown flag. | |
3869 | */ | |
3870 | return KERN_INVALID_VALUE; | |
3871 | } | |
91447636 A |
3872 | force_data_sync = (caller_flags & UPL_FORCE_DATA_SYNC); |
3873 | sync_cow_data = !(caller_flags & UPL_COPYOUT_FROM); | |
3874 | ||
2d21ac55 | 3875 | if (upl == NULL) |
91447636 A |
3876 | return KERN_INVALID_ARGUMENT; |
3877 | ||
91447636 | 3878 | REDISCOVER_ENTRY: |
b0d623f7 | 3879 | vm_map_lock_read(map); |
2d21ac55 | 3880 | |
91447636 | 3881 | if (vm_map_lookup_entry(map, offset, &entry)) { |
2d21ac55 | 3882 | |
b0d623f7 A |
3883 | if ((entry->vme_end - offset) < *upl_size) { |
3884 | *upl_size = (upl_size_t) (entry->vme_end - offset); | |
3885 | assert(*upl_size == entry->vme_end - offset); | |
3886 | } | |
2d21ac55 | 3887 | |
91447636 | 3888 | if (caller_flags & UPL_QUERY_OBJECT_TYPE) { |
2d21ac55 A |
3889 | *flags = 0; |
3890 | ||
b0d623f7 | 3891 | if ( !entry->is_sub_map && entry->object.vm_object != VM_OBJECT_NULL) { |
2d21ac55 A |
3892 | if (entry->object.vm_object->private) |
3893 | *flags = UPL_DEV_MEMORY; | |
3894 | ||
3895 | if (entry->object.vm_object->phys_contiguous) | |
91447636 | 3896 | *flags |= UPL_PHYS_CONTIG; |
91447636 | 3897 | } |
b0d623f7 | 3898 | vm_map_unlock_read(map); |
2d21ac55 | 3899 | |
91447636 A |
3900 | return KERN_SUCCESS; |
3901 | } | |
2d21ac55 | 3902 | if (entry->object.vm_object == VM_OBJECT_NULL || !entry->object.vm_object->phys_contiguous) { |
b0d623f7 A |
3903 | if ((*upl_size/PAGE_SIZE) > MAX_UPL_SIZE) |
3904 | *upl_size = MAX_UPL_SIZE * PAGE_SIZE; | |
2d21ac55 | 3905 | } |
91447636 A |
3906 | /* |
3907 | * Create an object if necessary. | |
3908 | */ | |
3909 | if (entry->object.vm_object == VM_OBJECT_NULL) { | |
b0d623f7 A |
3910 | |
3911 | if (vm_map_lock_read_to_write(map)) | |
3912 | goto REDISCOVER_ENTRY; | |
3913 | ||
2d21ac55 | 3914 | entry->object.vm_object = vm_object_allocate((vm_size_t)(entry->vme_end - entry->vme_start)); |
91447636 | 3915 | entry->offset = 0; |
b0d623f7 A |
3916 | |
3917 | vm_map_lock_write_to_read(map); | |
91447636 A |
3918 | } |
3919 | if (!(caller_flags & UPL_COPYOUT_FROM)) { | |
3920 | if (!(entry->protection & VM_PROT_WRITE)) { | |
b0d623f7 | 3921 | vm_map_unlock_read(map); |
91447636 A |
3922 | return KERN_PROTECTION_FAILURE; |
3923 | } | |
3924 | if (entry->needs_copy) { | |
b0d623f7 A |
3925 | /* |
3926 | * Honor copy-on-write for COPY_SYMMETRIC | |
3927 | * strategy. | |
3928 | */ | |
91447636 A |
3929 | vm_map_t local_map; |
3930 | vm_object_t object; | |
91447636 A |
3931 | vm_object_offset_t new_offset; |
3932 | vm_prot_t prot; | |
3933 | boolean_t wired; | |
91447636 A |
3934 | vm_map_version_t version; |
3935 | vm_map_t real_map; | |
3936 | ||
3937 | local_map = map; | |
2d21ac55 A |
3938 | |
3939 | if (vm_map_lookup_locked(&local_map, | |
3940 | offset, VM_PROT_WRITE, | |
3941 | OBJECT_LOCK_EXCLUSIVE, | |
3942 | &version, &object, | |
3943 | &new_offset, &prot, &wired, | |
3944 | NULL, | |
b0d623f7 A |
3945 | &real_map) != KERN_SUCCESS) { |
3946 | vm_map_unlock_read(local_map); | |
91447636 A |
3947 | return KERN_FAILURE; |
3948 | } | |
2d21ac55 | 3949 | if (real_map != map) |
91447636 | 3950 | vm_map_unlock(real_map); |
b0d623f7 A |
3951 | vm_map_unlock_read(local_map); |
3952 | ||
91447636 | 3953 | vm_object_unlock(object); |
91447636 A |
3954 | |
3955 | goto REDISCOVER_ENTRY; | |
3956 | } | |
3957 | } | |
3958 | if (entry->is_sub_map) { | |
3959 | vm_map_t submap; | |
3960 | ||
3961 | submap = entry->object.sub_map; | |
3962 | local_start = entry->vme_start; | |
3963 | local_offset = entry->offset; | |
2d21ac55 | 3964 | |
91447636 | 3965 | vm_map_reference(submap); |
b0d623f7 | 3966 | vm_map_unlock_read(map); |
91447636 | 3967 | |
2d21ac55 A |
3968 | ret = vm_map_create_upl(submap, |
3969 | local_offset + (offset - local_start), | |
3970 | upl_size, upl, page_list, count, flags); | |
91447636 | 3971 | vm_map_deallocate(submap); |
2d21ac55 | 3972 | |
91447636 A |
3973 | return ret; |
3974 | } | |
91447636 | 3975 | if (sync_cow_data) { |
2d21ac55 | 3976 | if (entry->object.vm_object->shadow || entry->object.vm_object->copy) { |
91447636 A |
3977 | local_object = entry->object.vm_object; |
3978 | local_start = entry->vme_start; | |
3979 | local_offset = entry->offset; | |
2d21ac55 | 3980 | |
91447636 | 3981 | vm_object_reference(local_object); |
b0d623f7 | 3982 | vm_map_unlock_read(map); |
91447636 | 3983 | |
b0d623f7 | 3984 | if (local_object->shadow && local_object->copy) { |
2d21ac55 A |
3985 | vm_object_lock_request( |
3986 | local_object->shadow, | |
3987 | (vm_object_offset_t) | |
3988 | ((offset - local_start) + | |
3989 | local_offset) + | |
3990 | local_object->shadow_offset, | |
3991 | *upl_size, FALSE, | |
3992 | MEMORY_OBJECT_DATA_SYNC, | |
3993 | VM_PROT_NO_CHANGE); | |
91447636 A |
3994 | } |
3995 | sync_cow_data = FALSE; | |
3996 | vm_object_deallocate(local_object); | |
2d21ac55 | 3997 | |
91447636 A |
3998 | goto REDISCOVER_ENTRY; |
3999 | } | |
4000 | } | |
91447636 | 4001 | if (force_data_sync) { |
91447636 A |
4002 | local_object = entry->object.vm_object; |
4003 | local_start = entry->vme_start; | |
4004 | local_offset = entry->offset; | |
2d21ac55 | 4005 | |
91447636 | 4006 | vm_object_reference(local_object); |
b0d623f7 | 4007 | vm_map_unlock_read(map); |
91447636 A |
4008 | |
4009 | vm_object_lock_request( | |
2d21ac55 A |
4010 | local_object, |
4011 | (vm_object_offset_t) | |
4012 | ((offset - local_start) + local_offset), | |
4013 | (vm_object_size_t)*upl_size, FALSE, | |
4014 | MEMORY_OBJECT_DATA_SYNC, | |
4015 | VM_PROT_NO_CHANGE); | |
4016 | ||
91447636 A |
4017 | force_data_sync = FALSE; |
4018 | vm_object_deallocate(local_object); | |
2d21ac55 | 4019 | |
91447636 A |
4020 | goto REDISCOVER_ENTRY; |
4021 | } | |
2d21ac55 A |
4022 | if (entry->object.vm_object->private) |
4023 | *flags = UPL_DEV_MEMORY; | |
4024 | else | |
4025 | *flags = 0; | |
4026 | ||
4027 | if (entry->object.vm_object->phys_contiguous) | |
4028 | *flags |= UPL_PHYS_CONTIG; | |
91447636 | 4029 | |
91447636 A |
4030 | local_object = entry->object.vm_object; |
4031 | local_offset = entry->offset; | |
4032 | local_start = entry->vme_start; | |
2d21ac55 | 4033 | |
91447636 | 4034 | vm_object_reference(local_object); |
b0d623f7 | 4035 | vm_map_unlock_read(map); |
2d21ac55 A |
4036 | |
4037 | ret = vm_object_iopl_request(local_object, | |
4038 | (vm_object_offset_t) ((offset - local_start) + local_offset), | |
4039 | *upl_size, | |
4040 | upl, | |
4041 | page_list, | |
4042 | count, | |
4043 | caller_flags); | |
91447636 | 4044 | vm_object_deallocate(local_object); |
2d21ac55 | 4045 | |
91447636 A |
4046 | return(ret); |
4047 | } | |
b0d623f7 | 4048 | vm_map_unlock_read(map); |
1c79356b | 4049 | |
2d21ac55 | 4050 | return(KERN_FAILURE); |
91447636 A |
4051 | } |
4052 | ||
4053 | /* | |
4054 | * Internal routine to enter a UPL into a VM map. | |
4055 | * | |
4056 | * JMM - This should just be doable through the standard | |
4057 | * vm_map_enter() API. | |
4058 | */ | |
1c79356b | 4059 | kern_return_t |
91447636 A |
4060 | vm_map_enter_upl( |
4061 | vm_map_t map, | |
4062 | upl_t upl, | |
b0d623f7 | 4063 | vm_map_offset_t *dst_addr) |
1c79356b | 4064 | { |
91447636 | 4065 | vm_map_size_t size; |
1c79356b | 4066 | vm_object_offset_t offset; |
91447636 | 4067 | vm_map_offset_t addr; |
1c79356b A |
4068 | vm_page_t m; |
4069 | kern_return_t kr; | |
b0d623f7 A |
4070 | int isVectorUPL = 0, curr_upl=0; |
4071 | upl_t vector_upl = NULL; | |
4072 | vm_offset_t vector_upl_dst_addr = 0; | |
4073 | vm_map_t vector_upl_submap = NULL; | |
4074 | upl_offset_t subupl_offset = 0; | |
4075 | upl_size_t subupl_size = 0; | |
1c79356b | 4076 | |
0b4e3aa0 A |
4077 | if (upl == UPL_NULL) |
4078 | return KERN_INVALID_ARGUMENT; | |
4079 | ||
b0d623f7 A |
4080 | if((isVectorUPL = vector_upl_is_valid(upl))) { |
4081 | int mapped=0,valid_upls=0; | |
4082 | vector_upl = upl; | |
4083 | ||
4084 | upl_lock(vector_upl); | |
4085 | for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) { | |
4086 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl ); | |
4087 | if(upl == NULL) | |
4088 | continue; | |
4089 | valid_upls++; | |
4090 | if (UPL_PAGE_LIST_MAPPED & upl->flags) | |
4091 | mapped++; | |
4092 | } | |
4093 | ||
4094 | if(mapped) { | |
4095 | if(mapped != valid_upls) | |
4096 | panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped\n", mapped, valid_upls); | |
4097 | else { | |
4098 | upl_unlock(vector_upl); | |
4099 | return KERN_FAILURE; | |
4100 | } | |
4101 | } | |
4102 | ||
4103 | kr = kmem_suballoc(map, &vector_upl_dst_addr, vector_upl->size, FALSE, VM_FLAGS_ANYWHERE, &vector_upl_submap); | |
4104 | if( kr != KERN_SUCCESS ) | |
4105 | panic("Vector UPL submap allocation failed\n"); | |
4106 | map = vector_upl_submap; | |
4107 | vector_upl_set_submap(vector_upl, vector_upl_submap, vector_upl_dst_addr); | |
4108 | curr_upl=0; | |
4109 | } | |
4110 | else | |
4111 | upl_lock(upl); | |
4112 | ||
4113 | process_upl_to_enter: | |
4114 | if(isVectorUPL){ | |
4115 | if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) { | |
4116 | *dst_addr = vector_upl_dst_addr; | |
4117 | upl_unlock(vector_upl); | |
4118 | return KERN_SUCCESS; | |
4119 | } | |
4120 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ ); | |
4121 | if(upl == NULL) | |
4122 | goto process_upl_to_enter; | |
4123 | vector_upl_get_iostate(vector_upl, upl, &subupl_offset, &subupl_size); | |
4124 | *dst_addr = (vm_map_offset_t)(vector_upl_dst_addr + (vm_map_offset_t)subupl_offset); | |
4125 | } | |
0b4e3aa0 | 4126 | |
2d21ac55 A |
4127 | /* |
4128 | * check to see if already mapped | |
4129 | */ | |
4130 | if (UPL_PAGE_LIST_MAPPED & upl->flags) { | |
0b4e3aa0 | 4131 | upl_unlock(upl); |
1c79356b | 4132 | return KERN_FAILURE; |
0b4e3aa0 | 4133 | } |
1c79356b | 4134 | |
2d21ac55 A |
4135 | if ((!(upl->flags & UPL_SHADOWED)) && !((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || |
4136 | (upl->map_object->phys_contiguous))) { | |
55e303ae A |
4137 | vm_object_t object; |
4138 | vm_page_t alias_page; | |
4139 | vm_object_offset_t new_offset; | |
b0d623f7 | 4140 | unsigned int pg_num; |
55e303ae A |
4141 | wpl_array_t lite_list; |
4142 | ||
2d21ac55 | 4143 | if (upl->flags & UPL_INTERNAL) { |
55e303ae | 4144 | lite_list = (wpl_array_t) |
91447636 | 4145 | ((((uintptr_t)upl) + sizeof(struct upl)) |
2d21ac55 | 4146 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); |
55e303ae | 4147 | } else { |
2d21ac55 | 4148 | lite_list = (wpl_array_t)(((uintptr_t)upl) + sizeof(struct upl)); |
55e303ae A |
4149 | } |
4150 | object = upl->map_object; | |
4151 | upl->map_object = vm_object_allocate(upl->size); | |
2d21ac55 | 4152 | |
55e303ae | 4153 | vm_object_lock(upl->map_object); |
2d21ac55 | 4154 | |
55e303ae A |
4155 | upl->map_object->shadow = object; |
4156 | upl->map_object->pageout = TRUE; | |
4157 | upl->map_object->can_persist = FALSE; | |
2d21ac55 A |
4158 | upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
4159 | upl->map_object->shadow_offset = upl->offset - object->paging_offset; | |
55e303ae | 4160 | upl->map_object->wimg_bits = object->wimg_bits; |
55e303ae A |
4161 | offset = upl->map_object->shadow_offset; |
4162 | new_offset = 0; | |
4163 | size = upl->size; | |
91447636 | 4164 | |
2d21ac55 | 4165 | upl->flags |= UPL_SHADOWED; |
91447636 | 4166 | |
2d21ac55 | 4167 | while (size) { |
b0d623f7 A |
4168 | pg_num = (unsigned int) (new_offset / PAGE_SIZE); |
4169 | assert(pg_num == new_offset / PAGE_SIZE); | |
55e303ae | 4170 | |
2d21ac55 | 4171 | if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { |
55e303ae | 4172 | |
2d21ac55 | 4173 | VM_PAGE_GRAB_FICTITIOUS(alias_page); |
91447636 | 4174 | |
2d21ac55 | 4175 | vm_object_lock(object); |
91447636 | 4176 | |
2d21ac55 A |
4177 | m = vm_page_lookup(object, offset); |
4178 | if (m == VM_PAGE_NULL) { | |
4179 | panic("vm_upl_map: page missing\n"); | |
4180 | } | |
55e303ae | 4181 | |
2d21ac55 A |
4182 | /* |
4183 | * Convert the fictitious page to a private | |
4184 | * shadow of the real page. | |
4185 | */ | |
4186 | assert(alias_page->fictitious); | |
4187 | alias_page->fictitious = FALSE; | |
4188 | alias_page->private = TRUE; | |
4189 | alias_page->pageout = TRUE; | |
4190 | /* | |
4191 | * since m is a page in the upl it must | |
4192 | * already be wired or BUSY, so it's | |
4193 | * safe to assign the underlying physical | |
4194 | * page to the alias | |
4195 | */ | |
4196 | alias_page->phys_page = m->phys_page; | |
4197 | ||
4198 | vm_object_unlock(object); | |
4199 | ||
4200 | vm_page_lockspin_queues(); | |
4201 | vm_page_wire(alias_page); | |
4202 | vm_page_unlock_queues(); | |
4203 | ||
4204 | /* | |
4205 | * ENCRYPTED SWAP: | |
4206 | * The virtual page ("m") has to be wired in some way | |
4207 | * here or its physical page ("m->phys_page") could | |
4208 | * be recycled at any time. | |
4209 | * Assuming this is enforced by the caller, we can't | |
4210 | * get an encrypted page here. Since the encryption | |
4211 | * key depends on the VM page's "pager" object and | |
4212 | * the "paging_offset", we couldn't handle 2 pageable | |
4213 | * VM pages (with different pagers and paging_offsets) | |
4214 | * sharing the same physical page: we could end up | |
4215 | * encrypting with one key (via one VM page) and | |
4216 | * decrypting with another key (via the alias VM page). | |
4217 | */ | |
4218 | ASSERT_PAGE_DECRYPTED(m); | |
55e303ae | 4219 | |
2d21ac55 A |
4220 | vm_page_insert(alias_page, upl->map_object, new_offset); |
4221 | ||
4222 | assert(!alias_page->wanted); | |
4223 | alias_page->busy = FALSE; | |
4224 | alias_page->absent = FALSE; | |
4225 | } | |
4226 | size -= PAGE_SIZE; | |
4227 | offset += PAGE_SIZE_64; | |
4228 | new_offset += PAGE_SIZE_64; | |
55e303ae | 4229 | } |
91447636 | 4230 | vm_object_unlock(upl->map_object); |
55e303ae A |
4231 | } |
4232 | if ((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || upl->map_object->phys_contiguous) | |
4233 | offset = upl->offset - upl->map_object->paging_offset; | |
4234 | else | |
4235 | offset = 0; | |
1c79356b A |
4236 | size = upl->size; |
4237 | ||
2d21ac55 | 4238 | vm_object_reference(upl->map_object); |
1c79356b | 4239 | |
b0d623f7 A |
4240 | if(!isVectorUPL) { |
4241 | *dst_addr = 0; | |
4242 | /* | |
4243 | * NEED A UPL_MAP ALIAS | |
4244 | */ | |
4245 | kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0, | |
4246 | VM_FLAGS_ANYWHERE, upl->map_object, offset, FALSE, | |
4247 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
4248 | } | |
4249 | else { | |
4250 | kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0, | |
4251 | VM_FLAGS_FIXED, upl->map_object, offset, FALSE, | |
4252 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
4253 | if(kr) | |
4254 | panic("vm_map_enter failed for a Vector UPL\n"); | |
4255 | } | |
1c79356b | 4256 | |
0b4e3aa0 A |
4257 | if (kr != KERN_SUCCESS) { |
4258 | upl_unlock(upl); | |
1c79356b | 4259 | return(kr); |
0b4e3aa0 | 4260 | } |
91447636 A |
4261 | vm_object_lock(upl->map_object); |
4262 | ||
2d21ac55 | 4263 | for (addr = *dst_addr; size > 0; size -= PAGE_SIZE, addr += PAGE_SIZE) { |
1c79356b | 4264 | m = vm_page_lookup(upl->map_object, offset); |
2d21ac55 A |
4265 | |
4266 | if (m) { | |
4267 | unsigned int cache_attr; | |
4268 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; | |
4269 | ||
4270 | m->pmapped = TRUE; | |
b0d623f7 A |
4271 | |
4272 | /* CODE SIGNING ENFORCEMENT: page has been wpmapped, | |
4273 | * but only in kernel space. If this was on a user map, | |
4274 | * we'd have to set the wpmapped bit. */ | |
4275 | /* m->wpmapped = TRUE; */ | |
4276 | assert(map==kernel_map); | |
9bccf70c | 4277 | |
2d21ac55 | 4278 | PMAP_ENTER(map->pmap, addr, m, VM_PROT_ALL, cache_attr, TRUE); |
1c79356b | 4279 | } |
2d21ac55 | 4280 | offset += PAGE_SIZE_64; |
1c79356b | 4281 | } |
91447636 A |
4282 | vm_object_unlock(upl->map_object); |
4283 | ||
2d21ac55 A |
4284 | /* |
4285 | * hold a reference for the mapping | |
4286 | */ | |
4287 | upl->ref_count++; | |
1c79356b | 4288 | upl->flags |= UPL_PAGE_LIST_MAPPED; |
b0d623f7 A |
4289 | upl->kaddr = (vm_offset_t) *dst_addr; |
4290 | assert(upl->kaddr == *dst_addr); | |
4291 | ||
4292 | if(!isVectorUPL) | |
4293 | upl_unlock(upl); | |
4294 | else | |
4295 | goto process_upl_to_enter; | |
2d21ac55 | 4296 | |
1c79356b A |
4297 | return KERN_SUCCESS; |
4298 | } | |
4299 | ||
91447636 A |
4300 | /* |
4301 | * Internal routine to remove a UPL mapping from a VM map. | |
4302 | * | |
4303 | * XXX - This should just be doable through a standard | |
4304 | * vm_map_remove() operation. Otherwise, implicit clean-up | |
4305 | * of the target map won't be able to correctly remove | |
4306 | * these (and release the reference on the UPL). Having | |
4307 | * to do this means we can't map these into user-space | |
4308 | * maps yet. | |
4309 | */ | |
1c79356b | 4310 | kern_return_t |
91447636 | 4311 | vm_map_remove_upl( |
1c79356b A |
4312 | vm_map_t map, |
4313 | upl_t upl) | |
4314 | { | |
0b4e3aa0 | 4315 | vm_address_t addr; |
91447636 | 4316 | upl_size_t size; |
b0d623f7 A |
4317 | int isVectorUPL = 0, curr_upl = 0; |
4318 | upl_t vector_upl = NULL; | |
1c79356b | 4319 | |
0b4e3aa0 A |
4320 | if (upl == UPL_NULL) |
4321 | return KERN_INVALID_ARGUMENT; | |
4322 | ||
b0d623f7 A |
4323 | if((isVectorUPL = vector_upl_is_valid(upl))) { |
4324 | int unmapped=0, valid_upls=0; | |
4325 | vector_upl = upl; | |
4326 | upl_lock(vector_upl); | |
4327 | for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) { | |
4328 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl ); | |
4329 | if(upl == NULL) | |
4330 | continue; | |
4331 | valid_upls++; | |
4332 | if (!(UPL_PAGE_LIST_MAPPED & upl->flags)) | |
4333 | unmapped++; | |
4334 | } | |
4335 | ||
4336 | if(unmapped) { | |
4337 | if(unmapped != valid_upls) | |
4338 | panic("%d of the %d sub-upls within the Vector UPL is/are not mapped\n", unmapped, valid_upls); | |
4339 | else { | |
4340 | upl_unlock(vector_upl); | |
4341 | return KERN_FAILURE; | |
4342 | } | |
4343 | } | |
4344 | curr_upl=0; | |
4345 | } | |
4346 | else | |
4347 | upl_lock(upl); | |
4348 | ||
4349 | process_upl_to_remove: | |
4350 | if(isVectorUPL) { | |
4351 | if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) { | |
4352 | vm_map_t v_upl_submap; | |
4353 | vm_offset_t v_upl_submap_dst_addr; | |
4354 | vector_upl_get_submap(vector_upl, &v_upl_submap, &v_upl_submap_dst_addr); | |
4355 | ||
4356 | vm_map_remove(map, v_upl_submap_dst_addr, v_upl_submap_dst_addr + vector_upl->size, VM_MAP_NO_FLAGS); | |
4357 | vm_map_deallocate(v_upl_submap); | |
4358 | upl_unlock(vector_upl); | |
4359 | return KERN_SUCCESS; | |
4360 | } | |
4361 | ||
4362 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ ); | |
4363 | if(upl == NULL) | |
4364 | goto process_upl_to_remove; | |
4365 | } | |
2d21ac55 A |
4366 | |
4367 | if (upl->flags & UPL_PAGE_LIST_MAPPED) { | |
0b4e3aa0 | 4368 | addr = upl->kaddr; |
1c79356b | 4369 | size = upl->size; |
2d21ac55 | 4370 | |
0b4e3aa0 A |
4371 | assert(upl->ref_count > 1); |
4372 | upl->ref_count--; /* removing mapping ref */ | |
2d21ac55 | 4373 | |
1c79356b A |
4374 | upl->flags &= ~UPL_PAGE_LIST_MAPPED; |
4375 | upl->kaddr = (vm_offset_t) 0; | |
b0d623f7 A |
4376 | |
4377 | if(!isVectorUPL) { | |
4378 | upl_unlock(upl); | |
4379 | ||
4380 | vm_map_remove(map, | |
4381 | vm_map_trunc_page(addr), | |
4382 | vm_map_round_page(addr + size), | |
4383 | VM_MAP_NO_FLAGS); | |
4384 | ||
4385 | return KERN_SUCCESS; | |
4386 | } | |
4387 | else { | |
4388 | /* | |
4389 | * If it's a Vectored UPL, we'll be removing the entire | |
4390 | * submap anyways, so no need to remove individual UPL | |
4391 | * element mappings from within the submap | |
4392 | */ | |
4393 | goto process_upl_to_remove; | |
4394 | } | |
1c79356b | 4395 | } |
0b4e3aa0 | 4396 | upl_unlock(upl); |
2d21ac55 | 4397 | |
0b4e3aa0 | 4398 | return KERN_FAILURE; |
1c79356b A |
4399 | } |
4400 | ||
b0d623f7 A |
4401 | static void |
4402 | dw_do_work( | |
4403 | vm_object_t object, | |
4404 | struct dw *dwp, | |
4405 | int dw_count) | |
4406 | { | |
4407 | int j; | |
4408 | boolean_t held_as_spin = TRUE; | |
4409 | ||
4410 | /* | |
4411 | * pageout_scan takes the vm_page_lock_queues first | |
4412 | * then tries for the object lock... to avoid what | |
4413 | * is effectively a lock inversion, we'll go to the | |
4414 | * trouble of taking them in that same order... otherwise | |
4415 | * if this object contains the majority of the pages resident | |
4416 | * in the UBC (or a small set of large objects actively being | |
4417 | * worked on contain the majority of the pages), we could | |
4418 | * cause the pageout_scan thread to 'starve' in its attempt | |
4419 | * to find pages to move to the free queue, since it has to | |
4420 | * successfully acquire the object lock of any candidate page | |
4421 | * before it can steal/clean it. | |
4422 | */ | |
4423 | if (!vm_page_trylockspin_queues()) { | |
4424 | vm_object_unlock(object); | |
4425 | ||
4426 | vm_page_lockspin_queues(); | |
4427 | ||
4428 | for (j = 0; ; j++) { | |
4429 | if (!vm_object_lock_avoid(object) && | |
4430 | _vm_object_lock_try(object)) | |
4431 | break; | |
4432 | vm_page_unlock_queues(); | |
4433 | mutex_pause(j); | |
4434 | vm_page_lockspin_queues(); | |
4435 | } | |
4436 | } | |
4437 | for (j = 0; j < dw_count; j++, dwp++) { | |
4438 | ||
4439 | if (dwp->dw_mask & DW_vm_pageout_throttle_up) | |
4440 | vm_pageout_throttle_up(dwp->dw_m); | |
4441 | ||
4442 | if (dwp->dw_mask & DW_vm_page_wire) | |
4443 | vm_page_wire(dwp->dw_m); | |
4444 | else if (dwp->dw_mask & DW_vm_page_unwire) | |
4445 | vm_page_unwire(dwp->dw_m); | |
4446 | ||
4447 | if (dwp->dw_mask & DW_vm_page_free) { | |
4448 | if (held_as_spin == TRUE) { | |
4449 | vm_page_lockconvert_queues(); | |
4450 | held_as_spin = FALSE; | |
4451 | } | |
4452 | vm_page_free(dwp->dw_m); | |
4453 | } else { | |
4454 | if (dwp->dw_mask & DW_vm_page_deactivate_internal) | |
4455 | vm_page_deactivate_internal(dwp->dw_m, FALSE); | |
4456 | else if (dwp->dw_mask & DW_vm_page_activate) | |
4457 | vm_page_activate(dwp->dw_m); | |
4458 | else if (dwp->dw_mask & DW_vm_page_speculate) | |
4459 | vm_page_speculate(dwp->dw_m, TRUE); | |
4460 | else if (dwp->dw_mask & DW_vm_page_lru) | |
4461 | vm_page_lru(dwp->dw_m); | |
4462 | ||
4463 | if (dwp->dw_mask & DW_set_reference) | |
4464 | dwp->dw_m->reference = TRUE; | |
4465 | else if (dwp->dw_mask & DW_clear_reference) | |
4466 | dwp->dw_m->reference = FALSE; | |
4467 | ||
4468 | if (dwp->dw_mask & DW_clear_busy) | |
4469 | dwp->dw_m->busy = FALSE; | |
4470 | ||
4471 | if (dwp->dw_mask & DW_PAGE_WAKEUP) | |
4472 | PAGE_WAKEUP(dwp->dw_m); | |
4473 | } | |
4474 | } | |
4475 | vm_page_unlock_queues(); | |
4476 | } | |
4477 | ||
4478 | ||
4479 | ||
1c79356b | 4480 | kern_return_t |
0b4e3aa0 | 4481 | upl_commit_range( |
1c79356b | 4482 | upl_t upl, |
91447636 A |
4483 | upl_offset_t offset, |
4484 | upl_size_t size, | |
1c79356b | 4485 | int flags, |
0b4e3aa0 A |
4486 | upl_page_info_t *page_list, |
4487 | mach_msg_type_number_t count, | |
4488 | boolean_t *empty) | |
1c79356b | 4489 | { |
b0d623f7 | 4490 | upl_size_t xfer_size, subupl_size = size; |
55e303ae | 4491 | vm_object_t shadow_object; |
2d21ac55 | 4492 | vm_object_t object; |
1c79356b | 4493 | vm_object_offset_t target_offset; |
b0d623f7 | 4494 | upl_offset_t subupl_offset = offset; |
1c79356b | 4495 | int entry; |
55e303ae A |
4496 | wpl_array_t lite_list; |
4497 | int occupied; | |
91447636 | 4498 | int clear_refmod = 0; |
2d21ac55 | 4499 | int pgpgout_count = 0; |
b0d623f7 A |
4500 | struct dw dw_array[DELAYED_WORK_LIMIT]; |
4501 | struct dw *dwp; | |
4502 | int dw_count, isVectorUPL = 0; | |
4503 | upl_t vector_upl = NULL; | |
1c79356b | 4504 | |
0b4e3aa0 A |
4505 | *empty = FALSE; |
4506 | ||
4507 | if (upl == UPL_NULL) | |
4508 | return KERN_INVALID_ARGUMENT; | |
4509 | ||
4510 | if (count == 0) | |
4511 | page_list = NULL; | |
4512 | ||
b0d623f7 A |
4513 | if((isVectorUPL = vector_upl_is_valid(upl))) { |
4514 | vector_upl = upl; | |
4515 | upl_lock(vector_upl); | |
4516 | } | |
4517 | else | |
4518 | upl_lock(upl); | |
4519 | ||
4520 | process_upl_to_commit: | |
4521 | ||
4522 | if(isVectorUPL) { | |
4523 | size = subupl_size; | |
4524 | offset = subupl_offset; | |
4525 | if(size == 0) { | |
4526 | upl_unlock(vector_upl); | |
4527 | return KERN_SUCCESS; | |
4528 | } | |
4529 | upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size); | |
4530 | if(upl == NULL) { | |
4531 | upl_unlock(vector_upl); | |
4532 | return KERN_FAILURE; | |
4533 | } | |
4534 | page_list = UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(upl); | |
4535 | subupl_size -= size; | |
4536 | subupl_offset += size; | |
4537 | } | |
4538 | ||
4539 | #if UPL_DEBUG | |
4540 | if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) { | |
4541 | (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES); | |
4542 | ||
4543 | upl->upl_commit_records[upl->upl_commit_index].c_beg = offset; | |
4544 | upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size); | |
4545 | ||
4546 | upl->upl_commit_index++; | |
4547 | } | |
4548 | #endif | |
2d21ac55 A |
4549 | if (upl->flags & UPL_DEVICE_MEMORY) |
4550 | xfer_size = 0; | |
4551 | else if ((offset + size) <= upl->size) | |
4552 | xfer_size = size; | |
b0d623f7 A |
4553 | else { |
4554 | if(!isVectorUPL) | |
4555 | upl_unlock(upl); | |
4556 | else { | |
4557 | upl_unlock(vector_upl); | |
4558 | } | |
2d21ac55 | 4559 | return KERN_FAILURE; |
91447636 | 4560 | } |
55e303ae A |
4561 | if (upl->flags & UPL_CLEAR_DIRTY) |
4562 | flags |= UPL_COMMIT_CLEAR_DIRTY; | |
4563 | ||
2d21ac55 A |
4564 | if (upl->flags & UPL_INTERNAL) |
4565 | lite_list = (wpl_array_t) ((((uintptr_t)upl) + sizeof(struct upl)) | |
4566 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); | |
4567 | else | |
4568 | lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); | |
1c79356b | 4569 | |
2d21ac55 A |
4570 | object = upl->map_object; |
4571 | ||
4572 | if (upl->flags & UPL_SHADOWED) { | |
4573 | vm_object_lock(object); | |
4574 | shadow_object = object->shadow; | |
55e303ae | 4575 | } else { |
2d21ac55 | 4576 | shadow_object = object; |
55e303ae | 4577 | } |
1c79356b A |
4578 | entry = offset/PAGE_SIZE; |
4579 | target_offset = (vm_object_offset_t)offset; | |
55e303ae | 4580 | |
b0d623f7 A |
4581 | if (upl->flags & UPL_KERNEL_OBJECT) |
4582 | vm_object_lock_shared(shadow_object); | |
4583 | else | |
4584 | vm_object_lock(shadow_object); | |
4a3eedf9 | 4585 | |
b0d623f7 A |
4586 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
4587 | assert(shadow_object->blocked_access); | |
4588 | shadow_object->blocked_access = FALSE; | |
4589 | vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED); | |
4a3eedf9 | 4590 | } |
4a3eedf9 | 4591 | |
593a1d5f A |
4592 | if (shadow_object->code_signed) { |
4593 | /* | |
4594 | * CODE SIGNING: | |
4595 | * If the object is code-signed, do not let this UPL tell | |
4596 | * us if the pages are valid or not. Let the pages be | |
4597 | * validated by VM the normal way (when they get mapped or | |
4598 | * copied). | |
4599 | */ | |
4600 | flags &= ~UPL_COMMIT_CS_VALIDATED; | |
4601 | } | |
4602 | if (! page_list) { | |
4603 | /* | |
4604 | * No page list to get the code-signing info from !? | |
4605 | */ | |
4606 | flags &= ~UPL_COMMIT_CS_VALIDATED; | |
4607 | } | |
4608 | ||
b0d623f7 A |
4609 | dwp = &dw_array[0]; |
4610 | dw_count = 0; | |
4611 | ||
91447636 | 4612 | while (xfer_size) { |
2d21ac55 A |
4613 | vm_page_t t, m; |
4614 | ||
b0d623f7 A |
4615 | dwp->dw_mask = 0; |
4616 | clear_refmod = 0; | |
4617 | ||
55e303ae | 4618 | m = VM_PAGE_NULL; |
d7e50217 | 4619 | |
55e303ae | 4620 | if (upl->flags & UPL_LITE) { |
b0d623f7 | 4621 | unsigned int pg_num; |
55e303ae | 4622 | |
b0d623f7 A |
4623 | pg_num = (unsigned int) (target_offset/PAGE_SIZE); |
4624 | assert(pg_num == target_offset/PAGE_SIZE); | |
55e303ae A |
4625 | |
4626 | if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { | |
4627 | lite_list[pg_num>>5] &= ~(1 << (pg_num & 31)); | |
2d21ac55 | 4628 | |
b0d623f7 A |
4629 | if (!(upl->flags & UPL_KERNEL_OBJECT)) |
4630 | m = vm_page_lookup(shadow_object, target_offset + (upl->offset - shadow_object->paging_offset)); | |
55e303ae A |
4631 | } |
4632 | } | |
2d21ac55 A |
4633 | if (upl->flags & UPL_SHADOWED) { |
4634 | if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) { | |
4635 | ||
55e303ae A |
4636 | t->pageout = FALSE; |
4637 | ||
b0d623f7 | 4638 | VM_PAGE_FREE(t); |
55e303ae | 4639 | |
2d21ac55 A |
4640 | if (m == VM_PAGE_NULL) |
4641 | m = vm_page_lookup(shadow_object, target_offset + object->shadow_offset); | |
55e303ae A |
4642 | } |
4643 | } | |
b0d623f7 | 4644 | if ((upl->flags & UPL_KERNEL_OBJECT) || m == VM_PAGE_NULL) |
593a1d5f | 4645 | goto commit_next_page; |
55e303ae | 4646 | |
593a1d5f A |
4647 | if (flags & UPL_COMMIT_CS_VALIDATED) { |
4648 | /* | |
4649 | * CODE SIGNING: | |
4650 | * Set the code signing bits according to | |
4651 | * what the UPL says they should be. | |
4652 | */ | |
4653 | m->cs_validated = page_list[entry].cs_validated; | |
4654 | m->cs_tainted = page_list[entry].cs_tainted; | |
4655 | } | |
4656 | if (upl->flags & UPL_IO_WIRE) { | |
55e303ae | 4657 | |
b0d623f7 | 4658 | dwp->dw_mask |= DW_vm_page_unwire; |
55e303ae | 4659 | |
593a1d5f A |
4660 | if (page_list) |
4661 | page_list[entry].phys_addr = 0; | |
2d21ac55 | 4662 | |
593a1d5f A |
4663 | if (flags & UPL_COMMIT_SET_DIRTY) |
4664 | m->dirty = TRUE; | |
4665 | else if (flags & UPL_COMMIT_CLEAR_DIRTY) { | |
4666 | m->dirty = FALSE; | |
b0d623f7 | 4667 | |
593a1d5f A |
4668 | if (! (flags & UPL_COMMIT_CS_VALIDATED) && |
4669 | m->cs_validated && !m->cs_tainted) { | |
4a3eedf9 A |
4670 | /* |
4671 | * CODE SIGNING: | |
4672 | * This page is no longer dirty | |
4673 | * but could have been modified, | |
4674 | * so it will need to be | |
4675 | * re-validated. | |
4676 | */ | |
4677 | m->cs_validated = FALSE; | |
b0d623f7 | 4678 | #if DEVELOPMENT || DEBUG |
4a3eedf9 | 4679 | vm_cs_validated_resets++; |
b0d623f7 A |
4680 | #endif |
4681 | pmap_disconnect(m->phys_page); | |
4a3eedf9 | 4682 | } |
91447636 | 4683 | clear_refmod |= VM_MEM_MODIFIED; |
55e303ae | 4684 | } |
b0d623f7 A |
4685 | if (flags & UPL_COMMIT_INACTIVATE) { |
4686 | dwp->dw_mask |= DW_vm_page_deactivate_internal; | |
4687 | clear_refmod |= VM_MEM_REFERENCED; | |
4688 | } | |
4689 | if (upl->flags & UPL_ACCESS_BLOCKED) { | |
593a1d5f A |
4690 | /* |
4691 | * We blocked access to the pages in this UPL. | |
4692 | * Clear the "busy" bit and wake up any waiter | |
4693 | * for this page. | |
4694 | */ | |
b0d623f7 | 4695 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); |
593a1d5f A |
4696 | } |
4697 | goto commit_next_page; | |
4698 | } | |
4699 | /* | |
4700 | * make sure to clear the hardware | |
4701 | * modify or reference bits before | |
4702 | * releasing the BUSY bit on this page | |
4703 | * otherwise we risk losing a legitimate | |
4704 | * change of state | |
4705 | */ | |
4706 | if (flags & UPL_COMMIT_CLEAR_DIRTY) { | |
4707 | m->dirty = FALSE; | |
2d21ac55 | 4708 | |
593a1d5f A |
4709 | if (! (flags & UPL_COMMIT_CS_VALIDATED) && |
4710 | m->cs_validated && !m->cs_tainted) { | |
4711 | /* | |
4712 | * CODE SIGNING: | |
4713 | * This page is no longer dirty | |
4714 | * but could have been modified, | |
4715 | * so it will need to be | |
4716 | * re-validated. | |
4717 | */ | |
4718 | m->cs_validated = FALSE; | |
4719 | #if DEVELOPMENT || DEBUG | |
4720 | vm_cs_validated_resets++; | |
4721 | #endif | |
b0d623f7 | 4722 | pmap_disconnect(m->phys_page); |
55e303ae | 4723 | } |
593a1d5f A |
4724 | clear_refmod |= VM_MEM_MODIFIED; |
4725 | } | |
593a1d5f A |
4726 | if (page_list) { |
4727 | upl_page_info_t *p; | |
2d21ac55 | 4728 | |
593a1d5f | 4729 | p = &(page_list[entry]); |
b0d623f7 | 4730 | |
593a1d5f A |
4731 | if (p->phys_addr && p->pageout && !m->pageout) { |
4732 | m->busy = TRUE; | |
4733 | m->pageout = TRUE; | |
b0d623f7 A |
4734 | |
4735 | dwp->dw_mask |= DW_vm_page_wire; | |
4736 | ||
593a1d5f A |
4737 | } else if (p->phys_addr && |
4738 | !p->pageout && m->pageout && | |
4739 | !m->dump_cleaning) { | |
2d21ac55 | 4740 | m->pageout = FALSE; |
593a1d5f A |
4741 | m->absent = FALSE; |
4742 | m->overwriting = FALSE; | |
b0d623f7 A |
4743 | |
4744 | dwp->dw_mask |= (DW_vm_page_unwire | DW_clear_busy | DW_PAGE_WAKEUP); | |
593a1d5f A |
4745 | } |
4746 | page_list[entry].phys_addr = 0; | |
4747 | } | |
4748 | m->dump_cleaning = FALSE; | |
2d21ac55 | 4749 | |
593a1d5f | 4750 | if (m->laundry) |
b0d623f7 | 4751 | dwp->dw_mask |= DW_vm_pageout_throttle_up; |
91447636 | 4752 | |
593a1d5f A |
4753 | if (m->pageout) { |
4754 | m->cleaning = FALSE; | |
4755 | m->encrypted_cleaning = FALSE; | |
4756 | m->pageout = FALSE; | |
1c79356b | 4757 | #if MACH_CLUSTER_STATS |
593a1d5f | 4758 | if (m->wanted) vm_pageout_target_collisions++; |
1c79356b | 4759 | #endif |
2d21ac55 | 4760 | m->dirty = FALSE; |
b0d623f7 | 4761 | |
593a1d5f A |
4762 | if (! (flags & UPL_COMMIT_CS_VALIDATED) && |
4763 | m->cs_validated && !m->cs_tainted) { | |
4a3eedf9 A |
4764 | /* |
4765 | * CODE SIGNING: | |
4766 | * This page is no longer dirty | |
4767 | * but could have been modified, | |
4768 | * so it will need to be | |
4769 | * re-validated. | |
4770 | */ | |
4771 | m->cs_validated = FALSE; | |
593a1d5f | 4772 | #if DEVELOPMENT || DEBUG |
4a3eedf9 | 4773 | vm_cs_validated_resets++; |
593a1d5f | 4774 | #endif |
b0d623f7 | 4775 | pmap_disconnect(m->phys_page); |
4a3eedf9 | 4776 | } |
b0d623f7 A |
4777 | |
4778 | if ((flags & UPL_COMMIT_SET_DIRTY) || | |
4779 | (m->pmapped && (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED))) | |
593a1d5f | 4780 | m->dirty = TRUE; |
b0d623f7 | 4781 | |
593a1d5f A |
4782 | if (m->dirty) { |
4783 | /* | |
4784 | * page was re-dirtied after we started | |
4785 | * the pageout... reactivate it since | |
4786 | * we don't know whether the on-disk | |
4787 | * copy matches what is now in memory | |
2d21ac55 | 4788 | */ |
b0d623f7 A |
4789 | dwp->dw_mask |= (DW_vm_page_unwire | DW_clear_busy | DW_PAGE_WAKEUP); |
4790 | ||
593a1d5f A |
4791 | if (upl->flags & UPL_PAGEOUT) { |
4792 | CLUSTER_STAT(vm_pageout_target_page_dirtied++;) | |
4793 | VM_STAT_INCR(reactivations); | |
4794 | DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); | |
4795 | } | |
593a1d5f A |
4796 | } else { |
4797 | /* | |
4798 | * page has been successfully cleaned | |
4799 | * go ahead and free it for other use | |
2d21ac55 | 4800 | */ |
b0d623f7 | 4801 | |
593a1d5f A |
4802 | if (m->object->internal) { |
4803 | DTRACE_VM2(anonpgout, int, 1, (uint64_t *), NULL); | |
4804 | } else { | |
4805 | DTRACE_VM2(fspgout, int, 1, (uint64_t *), NULL); | |
4806 | } | |
b0d623f7 A |
4807 | dwp->dw_mask |= DW_vm_page_free; |
4808 | ||
593a1d5f A |
4809 | if (upl->flags & UPL_PAGEOUT) { |
4810 | CLUSTER_STAT(vm_pageout_target_page_freed++;) | |
b0d623f7 | 4811 | |
593a1d5f A |
4812 | if (page_list[entry].dirty) { |
4813 | VM_STAT_INCR(pageouts); | |
4814 | DTRACE_VM2(pgout, int, 1, (uint64_t *), NULL); | |
4815 | pgpgout_count++; | |
4816 | } | |
4817 | } | |
de355530 | 4818 | } |
593a1d5f A |
4819 | goto commit_next_page; |
4820 | } | |
4821 | #if MACH_CLUSTER_STATS | |
4822 | if (m->wpmapped) | |
4823 | m->dirty = pmap_is_modified(m->phys_page); | |
4824 | ||
4825 | if (m->dirty) vm_pageout_cluster_dirtied++; | |
4826 | else vm_pageout_cluster_cleaned++; | |
4827 | if (m->wanted) vm_pageout_cluster_collisions++; | |
4828 | #endif | |
4829 | m->dirty = FALSE; | |
91447636 | 4830 | |
593a1d5f A |
4831 | if (! (flags & UPL_COMMIT_CS_VALIDATED) && |
4832 | m->cs_validated && !m->cs_tainted) { | |
2d21ac55 | 4833 | /* |
593a1d5f A |
4834 | * CODE SIGNING: |
4835 | * This page is no longer dirty | |
4836 | * but could have been modified, | |
4837 | * so it will need to be | |
4838 | * re-validated. | |
2d21ac55 | 4839 | */ |
593a1d5f A |
4840 | m->cs_validated = FALSE; |
4841 | #if DEVELOPMENT || DEBUG | |
4842 | vm_cs_validated_resets++; | |
4843 | #endif | |
b0d623f7 | 4844 | pmap_disconnect(m->phys_page); |
593a1d5f | 4845 | } |
55e303ae | 4846 | |
593a1d5f A |
4847 | if ((m->busy) && (m->cleaning)) { |
4848 | /* | |
4849 | * the request_page_list case | |
4850 | */ | |
4851 | m->absent = FALSE; | |
4852 | m->overwriting = FALSE; | |
b0d623f7 A |
4853 | |
4854 | dwp->dw_mask |= DW_clear_busy; | |
4855 | ||
593a1d5f A |
4856 | } else if (m->overwriting) { |
4857 | /* | |
4858 | * alternate request page list, write to | |
4859 | * page_list case. Occurs when the original | |
4860 | * page was wired at the time of the list | |
4861 | * request | |
4862 | */ | |
b0d623f7 | 4863 | assert(VM_PAGE_WIRED(m)); |
593a1d5f | 4864 | m->overwriting = FALSE; |
b0d623f7 A |
4865 | |
4866 | dwp->dw_mask |= DW_vm_page_unwire; /* reactivates */ | |
593a1d5f A |
4867 | } |
4868 | m->cleaning = FALSE; | |
4869 | m->encrypted_cleaning = FALSE; | |
b0d623f7 | 4870 | |
593a1d5f A |
4871 | /* |
4872 | * It is a part of the semantic of COPYOUT_FROM | |
4873 | * UPLs that a commit implies cache sync | |
4874 | * between the vm page and the backing store | |
4875 | * this can be used to strip the precious bit | |
4876 | * as well as clean | |
4877 | */ | |
b0d623f7 | 4878 | if ((upl->flags & UPL_PAGE_SYNC_DONE) || (flags & UPL_COMMIT_CLEAR_PRECIOUS)) |
593a1d5f | 4879 | m->precious = FALSE; |
b0d623f7 | 4880 | |
593a1d5f A |
4881 | if (flags & UPL_COMMIT_SET_DIRTY) |
4882 | m->dirty = TRUE; | |
b0d623f7 | 4883 | |
593a1d5f | 4884 | if ((flags & UPL_COMMIT_INACTIVATE) && !m->clustered && !m->speculative) { |
b0d623f7 A |
4885 | dwp->dw_mask |= DW_vm_page_deactivate_internal; |
4886 | clear_refmod |= VM_MEM_REFERENCED; | |
4887 | ||
593a1d5f | 4888 | } else if (!m->active && !m->inactive && !m->speculative) { |
b0d623f7 A |
4889 | |
4890 | if (m->clustered || (flags & UPL_COMMIT_SPECULATE)) | |
4891 | dwp->dw_mask |= DW_vm_page_speculate; | |
593a1d5f | 4892 | else if (m->reference) |
b0d623f7 A |
4893 | dwp->dw_mask |= DW_vm_page_activate; |
4894 | else { | |
4895 | dwp->dw_mask |= DW_vm_page_deactivate_internal; | |
4896 | clear_refmod |= VM_MEM_REFERENCED; | |
4897 | } | |
593a1d5f | 4898 | } |
b0d623f7 | 4899 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
2d21ac55 | 4900 | /* |
593a1d5f A |
4901 | * We blocked access to the pages in this URL. |
4902 | * Clear the "busy" bit on this page before we | |
4903 | * wake up any waiter. | |
2d21ac55 | 4904 | */ |
b0d623f7 | 4905 | dwp->dw_mask |= DW_clear_busy; |
1c79356b | 4906 | } |
593a1d5f A |
4907 | /* |
4908 | * Wakeup any thread waiting for the page to be un-cleaning. | |
4909 | */ | |
b0d623f7 | 4910 | dwp->dw_mask |= DW_PAGE_WAKEUP; |
593a1d5f | 4911 | |
2d21ac55 | 4912 | commit_next_page: |
b0d623f7 A |
4913 | if (clear_refmod) |
4914 | pmap_clear_refmod(m->phys_page, clear_refmod); | |
4915 | ||
1c79356b A |
4916 | target_offset += PAGE_SIZE_64; |
4917 | xfer_size -= PAGE_SIZE; | |
4918 | entry++; | |
2d21ac55 | 4919 | |
b0d623f7 A |
4920 | if (dwp->dw_mask) { |
4921 | if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) { | |
4922 | if (m->busy == FALSE) { | |
4923 | /* | |
4924 | * dw_do_work may need to drop the object lock | |
4925 | * if it does, we need the pages it's looking at to | |
4926 | * be held stable via the busy bit. | |
4927 | */ | |
4928 | m->busy = TRUE; | |
4929 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); | |
4930 | } | |
4931 | dwp->dw_m = m; | |
4932 | dwp++; | |
4933 | dw_count++; | |
4a3eedf9 | 4934 | |
b0d623f7 A |
4935 | if (dw_count >= DELAYED_WORK_LIMIT) { |
4936 | dw_do_work(shadow_object, &dw_array[0], dw_count); | |
4937 | ||
4938 | dwp = &dw_array[0]; | |
4939 | dw_count = 0; | |
4940 | } | |
4941 | } else { | |
4942 | if (dwp->dw_mask & DW_clear_busy) | |
4943 | m->busy = FALSE; | |
4944 | ||
4945 | if (dwp->dw_mask & DW_PAGE_WAKEUP) | |
4946 | PAGE_WAKEUP(m); | |
4a3eedf9 | 4947 | } |
2d21ac55 | 4948 | } |
1c79356b | 4949 | } |
b0d623f7 A |
4950 | if (dw_count) |
4951 | dw_do_work(shadow_object, &dw_array[0], dw_count); | |
55e303ae A |
4952 | |
4953 | occupied = 1; | |
4954 | ||
4955 | if (upl->flags & UPL_DEVICE_MEMORY) { | |
4956 | occupied = 0; | |
4957 | } else if (upl->flags & UPL_LITE) { | |
4958 | int pg_num; | |
4959 | int i; | |
2d21ac55 | 4960 | |
55e303ae A |
4961 | pg_num = upl->size/PAGE_SIZE; |
4962 | pg_num = (pg_num + 31) >> 5; | |
4963 | occupied = 0; | |
2d21ac55 A |
4964 | |
4965 | for (i = 0; i < pg_num; i++) { | |
4966 | if (lite_list[i] != 0) { | |
55e303ae A |
4967 | occupied = 1; |
4968 | break; | |
4969 | } | |
4970 | } | |
4971 | } else { | |
2d21ac55 | 4972 | if (queue_empty(&upl->map_object->memq)) |
55e303ae | 4973 | occupied = 0; |
55e303ae | 4974 | } |
2d21ac55 | 4975 | if (occupied == 0) { |
b0d623f7 A |
4976 | /* |
4977 | * If this UPL element belongs to a Vector UPL and is | |
4978 | * empty, then this is the right function to deallocate | |
4979 | * it. So go ahead set the *empty variable. The flag | |
4980 | * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view | |
4981 | * should be considered relevant for the Vector UPL and not | |
4982 | * the internal UPLs. | |
4983 | */ | |
4984 | if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) | |
0b4e3aa0 | 4985 | *empty = TRUE; |
2d21ac55 | 4986 | |
b0d623f7 | 4987 | if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) { |
2d21ac55 A |
4988 | /* |
4989 | * this is not a paging object | |
4990 | * so we need to drop the paging reference | |
4991 | * that was taken when we created the UPL | |
4992 | * against this object | |
4993 | */ | |
b0d623f7 | 4994 | vm_object_activity_end(shadow_object); |
2d21ac55 A |
4995 | } else { |
4996 | /* | |
4997 | * we dontated the paging reference to | |
4998 | * the map object... vm_pageout_object_terminate | |
4999 | * will drop this reference | |
5000 | */ | |
5001 | } | |
1c79356b | 5002 | } |
55e303ae | 5003 | vm_object_unlock(shadow_object); |
91447636 A |
5004 | if (object != shadow_object) |
5005 | vm_object_unlock(object); | |
b0d623f7 A |
5006 | |
5007 | if(!isVectorUPL) | |
5008 | upl_unlock(upl); | |
5009 | else { | |
5010 | /* | |
5011 | * If we completed our operations on an UPL that is | |
5012 | * part of a Vectored UPL and if empty is TRUE, then | |
5013 | * we should go ahead and deallocate this UPL element. | |
5014 | * Then we check if this was the last of the UPL elements | |
5015 | * within that Vectored UPL. If so, set empty to TRUE | |
5016 | * so that in ubc_upl_commit_range or ubc_upl_commit, we | |
5017 | * can go ahead and deallocate the Vector UPL too. | |
5018 | */ | |
5019 | if(*empty==TRUE) { | |
5020 | *empty = vector_upl_set_subupl(vector_upl, upl, 0); | |
5021 | upl_deallocate(upl); | |
5022 | } | |
5023 | goto process_upl_to_commit; | |
5024 | } | |
0b4e3aa0 | 5025 | |
2d21ac55 A |
5026 | if (pgpgout_count) { |
5027 | DTRACE_VM2(pgpgout, int, pgpgout_count, (uint64_t *), NULL); | |
5028 | } | |
5029 | ||
1c79356b A |
5030 | return KERN_SUCCESS; |
5031 | } | |
5032 | ||
0b4e3aa0 A |
5033 | kern_return_t |
5034 | upl_abort_range( | |
1c79356b | 5035 | upl_t upl, |
91447636 A |
5036 | upl_offset_t offset, |
5037 | upl_size_t size, | |
0b4e3aa0 A |
5038 | int error, |
5039 | boolean_t *empty) | |
1c79356b | 5040 | { |
b0d623f7 | 5041 | upl_size_t xfer_size, subupl_size = size; |
55e303ae | 5042 | vm_object_t shadow_object; |
2d21ac55 | 5043 | vm_object_t object; |
1c79356b | 5044 | vm_object_offset_t target_offset; |
b0d623f7 | 5045 | upl_offset_t subupl_offset = offset; |
1c79356b | 5046 | int entry; |
55e303ae A |
5047 | wpl_array_t lite_list; |
5048 | int occupied; | |
b0d623f7 A |
5049 | struct dw dw_array[DELAYED_WORK_LIMIT]; |
5050 | struct dw *dwp; | |
5051 | int dw_count, isVectorUPL = 0; | |
5052 | upl_t vector_upl = NULL; | |
1c79356b | 5053 | |
0b4e3aa0 A |
5054 | *empty = FALSE; |
5055 | ||
5056 | if (upl == UPL_NULL) | |
5057 | return KERN_INVALID_ARGUMENT; | |
5058 | ||
2d21ac55 A |
5059 | if ( (upl->flags & UPL_IO_WIRE) && !(error & UPL_ABORT_DUMP_PAGES) ) |
5060 | return upl_commit_range(upl, offset, size, 0, NULL, 0, empty); | |
55e303ae | 5061 | |
b0d623f7 A |
5062 | if((isVectorUPL = vector_upl_is_valid(upl))) { |
5063 | vector_upl = upl; | |
5064 | upl_lock(vector_upl); | |
5065 | } | |
5066 | else | |
5067 | upl_lock(upl); | |
5068 | ||
5069 | process_upl_to_abort: | |
5070 | if(isVectorUPL) { | |
5071 | size = subupl_size; | |
5072 | offset = subupl_offset; | |
5073 | if(size == 0) { | |
5074 | upl_unlock(vector_upl); | |
5075 | return KERN_SUCCESS; | |
5076 | } | |
5077 | upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size); | |
5078 | if(upl == NULL) { | |
5079 | upl_unlock(vector_upl); | |
5080 | return KERN_FAILURE; | |
5081 | } | |
5082 | subupl_size -= size; | |
5083 | subupl_offset += size; | |
5084 | } | |
5085 | ||
5086 | *empty = FALSE; | |
5087 | ||
5088 | #if UPL_DEBUG | |
5089 | if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) { | |
5090 | (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES); | |
5091 | ||
5092 | upl->upl_commit_records[upl->upl_commit_index].c_beg = offset; | |
5093 | upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size); | |
5094 | upl->upl_commit_records[upl->upl_commit_index].c_aborted = 1; | |
5095 | ||
5096 | upl->upl_commit_index++; | |
5097 | } | |
5098 | #endif | |
2d21ac55 | 5099 | if (upl->flags & UPL_DEVICE_MEMORY) |
1c79356b | 5100 | xfer_size = 0; |
2d21ac55 A |
5101 | else if ((offset + size) <= upl->size) |
5102 | xfer_size = size; | |
b0d623f7 A |
5103 | else { |
5104 | if(!isVectorUPL) | |
5105 | upl_unlock(upl); | |
5106 | else { | |
5107 | upl_unlock(vector_upl); | |
5108 | } | |
55e303ae | 5109 | |
b0d623f7 A |
5110 | return KERN_FAILURE; |
5111 | } | |
2d21ac55 | 5112 | if (upl->flags & UPL_INTERNAL) { |
55e303ae | 5113 | lite_list = (wpl_array_t) |
91447636 | 5114 | ((((uintptr_t)upl) + sizeof(struct upl)) |
55e303ae A |
5115 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); |
5116 | } else { | |
5117 | lite_list = (wpl_array_t) | |
91447636 | 5118 | (((uintptr_t)upl) + sizeof(struct upl)); |
55e303ae | 5119 | } |
2d21ac55 A |
5120 | object = upl->map_object; |
5121 | ||
5122 | if (upl->flags & UPL_SHADOWED) { | |
5123 | vm_object_lock(object); | |
5124 | shadow_object = object->shadow; | |
5125 | } else | |
5126 | shadow_object = object; | |
5127 | ||
1c79356b A |
5128 | entry = offset/PAGE_SIZE; |
5129 | target_offset = (vm_object_offset_t)offset; | |
2d21ac55 | 5130 | |
b0d623f7 A |
5131 | if (upl->flags & UPL_KERNEL_OBJECT) |
5132 | vm_object_lock_shared(shadow_object); | |
5133 | else | |
5134 | vm_object_lock(shadow_object); | |
4a3eedf9 | 5135 | |
b0d623f7 A |
5136 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
5137 | assert(shadow_object->blocked_access); | |
5138 | shadow_object->blocked_access = FALSE; | |
5139 | vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED); | |
4a3eedf9 | 5140 | } |
b0d623f7 A |
5141 | |
5142 | dwp = &dw_array[0]; | |
5143 | dw_count = 0; | |
5144 | ||
5145 | if ((error & UPL_ABORT_DUMP_PAGES) && (upl->flags & UPL_KERNEL_OBJECT)) | |
5146 | panic("upl_abort_range: kernel_object being DUMPED"); | |
4a3eedf9 | 5147 | |
2d21ac55 A |
5148 | while (xfer_size) { |
5149 | vm_page_t t, m; | |
5150 | ||
b0d623f7 A |
5151 | dwp->dw_mask = 0; |
5152 | ||
55e303ae | 5153 | m = VM_PAGE_NULL; |
2d21ac55 A |
5154 | |
5155 | if (upl->flags & UPL_LITE) { | |
b0d623f7 A |
5156 | unsigned int pg_num; |
5157 | ||
5158 | pg_num = (unsigned int) (target_offset/PAGE_SIZE); | |
5159 | assert(pg_num == target_offset/PAGE_SIZE); | |
5160 | ||
2d21ac55 A |
5161 | |
5162 | if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { | |
55e303ae | 5163 | lite_list[pg_num>>5] &= ~(1 << (pg_num & 31)); |
2d21ac55 | 5164 | |
b0d623f7 A |
5165 | if ( !(upl->flags & UPL_KERNEL_OBJECT)) |
5166 | m = vm_page_lookup(shadow_object, target_offset + | |
5167 | (upl->offset - shadow_object->paging_offset)); | |
55e303ae A |
5168 | } |
5169 | } | |
2d21ac55 A |
5170 | if (upl->flags & UPL_SHADOWED) { |
5171 | if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) { | |
5172 | t->pageout = FALSE; | |
5173 | ||
b0d623f7 | 5174 | VM_PAGE_FREE(t); |
2d21ac55 A |
5175 | |
5176 | if (m == VM_PAGE_NULL) | |
5177 | m = vm_page_lookup(shadow_object, target_offset + object->shadow_offset); | |
55e303ae A |
5178 | } |
5179 | } | |
b0d623f7 A |
5180 | if ((upl->flags & UPL_KERNEL_OBJECT)) |
5181 | goto abort_next_page; | |
5182 | ||
2d21ac55 A |
5183 | if (m != VM_PAGE_NULL) { |
5184 | ||
5185 | if (m->absent) { | |
91447636 A |
5186 | boolean_t must_free = TRUE; |
5187 | ||
2d21ac55 A |
5188 | m->clustered = FALSE; |
5189 | /* | |
5190 | * COPYOUT = FALSE case | |
5191 | * check for error conditions which must | |
5192 | * be passed back to the pages customer | |
5193 | */ | |
5194 | if (error & UPL_ABORT_RESTART) { | |
1c79356b A |
5195 | m->restart = TRUE; |
5196 | m->absent = FALSE; | |
2d21ac55 | 5197 | m->unusual = TRUE; |
91447636 | 5198 | must_free = FALSE; |
2d21ac55 | 5199 | } else if (error & UPL_ABORT_UNAVAILABLE) { |
1c79356b A |
5200 | m->restart = FALSE; |
5201 | m->unusual = TRUE; | |
91447636 | 5202 | must_free = FALSE; |
2d21ac55 | 5203 | } else if (error & UPL_ABORT_ERROR) { |
1c79356b A |
5204 | m->restart = FALSE; |
5205 | m->absent = FALSE; | |
1c79356b | 5206 | m->error = TRUE; |
2d21ac55 | 5207 | m->unusual = TRUE; |
91447636 | 5208 | must_free = FALSE; |
1c79356b | 5209 | } |
91447636 A |
5210 | |
5211 | /* | |
5212 | * ENCRYPTED SWAP: | |
5213 | * If the page was already encrypted, | |
5214 | * we don't really need to decrypt it | |
5215 | * now. It will get decrypted later, | |
5216 | * on demand, as soon as someone needs | |
5217 | * to access its contents. | |
5218 | */ | |
1c79356b A |
5219 | |
5220 | m->cleaning = FALSE; | |
2d21ac55 | 5221 | m->encrypted_cleaning = FALSE; |
1c79356b | 5222 | m->overwriting = FALSE; |
b0d623f7 A |
5223 | |
5224 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); | |
91447636 | 5225 | |
2d21ac55 | 5226 | if (must_free == TRUE) |
b0d623f7 | 5227 | dwp->dw_mask |= DW_vm_page_free; |
2d21ac55 | 5228 | else |
b0d623f7 | 5229 | dwp->dw_mask |= DW_vm_page_activate; |
2d21ac55 A |
5230 | } else { |
5231 | /* | |
5232 | * Handle the trusted pager throttle. | |
5233 | */ | |
5234 | if (m->laundry) | |
b0d623f7 | 5235 | dwp->dw_mask |= DW_vm_pageout_throttle_up; |
2d21ac55 A |
5236 | |
5237 | if (m->pageout) { | |
5238 | assert(m->busy); | |
5239 | assert(m->wire_count == 1); | |
5240 | m->pageout = FALSE; | |
b0d623f7 A |
5241 | |
5242 | dwp->dw_mask |= DW_vm_page_unwire; | |
1c79356b | 5243 | } |
2d21ac55 A |
5244 | m->dump_cleaning = FALSE; |
5245 | m->cleaning = FALSE; | |
5246 | m->encrypted_cleaning = FALSE; | |
5247 | m->overwriting = FALSE; | |
1c79356b | 5248 | #if MACH_PAGEMAP |
2d21ac55 | 5249 | vm_external_state_clr(m->object->existence_map, m->offset); |
1c79356b | 5250 | #endif /* MACH_PAGEMAP */ |
2d21ac55 A |
5251 | if (error & UPL_ABORT_DUMP_PAGES) { |
5252 | pmap_disconnect(m->phys_page); | |
b0d623f7 A |
5253 | |
5254 | dwp->dw_mask |= DW_vm_page_free; | |
2d21ac55 A |
5255 | } else { |
5256 | if (error & UPL_ABORT_REFERENCE) { | |
5257 | /* | |
5258 | * we've been told to explictly | |
5259 | * reference this page... for | |
5260 | * file I/O, this is done by | |
5261 | * implementing an LRU on the inactive q | |
5262 | */ | |
b0d623f7 | 5263 | dwp->dw_mask |= DW_vm_page_lru; |
2d21ac55 | 5264 | } |
b0d623f7 | 5265 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); |
2d21ac55 | 5266 | } |
1c79356b | 5267 | } |
2d21ac55 | 5268 | } |
b0d623f7 | 5269 | abort_next_page: |
55e303ae A |
5270 | target_offset += PAGE_SIZE_64; |
5271 | xfer_size -= PAGE_SIZE; | |
5272 | entry++; | |
b0d623f7 A |
5273 | |
5274 | if (dwp->dw_mask) { | |
5275 | if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) { | |
5276 | if (m->busy == FALSE) { | |
5277 | /* | |
5278 | * dw_do_work may need to drop the object lock | |
5279 | * if it does, we need the pages it's looking at to | |
5280 | * be held stable via the busy bit. | |
5281 | */ | |
5282 | m->busy = TRUE; | |
5283 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); | |
5284 | } | |
5285 | dwp->dw_m = m; | |
5286 | dwp++; | |
5287 | dw_count++; | |
5288 | ||
5289 | if (dw_count >= DELAYED_WORK_LIMIT) { | |
5290 | dw_do_work(shadow_object, &dw_array[0], dw_count); | |
5291 | ||
5292 | dwp = &dw_array[0]; | |
5293 | dw_count = 0; | |
5294 | } | |
5295 | } else { | |
5296 | if (dwp->dw_mask & DW_clear_busy) | |
5297 | m->busy = FALSE; | |
5298 | ||
5299 | if (dwp->dw_mask & DW_PAGE_WAKEUP) | |
5300 | PAGE_WAKEUP(m); | |
5301 | } | |
5302 | } | |
d7e50217 | 5303 | } |
b0d623f7 A |
5304 | if (dw_count) |
5305 | dw_do_work(shadow_object, &dw_array[0], dw_count); | |
2d21ac55 | 5306 | |
55e303ae | 5307 | occupied = 1; |
2d21ac55 | 5308 | |
55e303ae A |
5309 | if (upl->flags & UPL_DEVICE_MEMORY) { |
5310 | occupied = 0; | |
5311 | } else if (upl->flags & UPL_LITE) { | |
5312 | int pg_num; | |
5313 | int i; | |
2d21ac55 | 5314 | |
55e303ae A |
5315 | pg_num = upl->size/PAGE_SIZE; |
5316 | pg_num = (pg_num + 31) >> 5; | |
5317 | occupied = 0; | |
2d21ac55 A |
5318 | |
5319 | for (i = 0; i < pg_num; i++) { | |
5320 | if (lite_list[i] != 0) { | |
55e303ae A |
5321 | occupied = 1; |
5322 | break; | |
5323 | } | |
5324 | } | |
5325 | } else { | |
2d21ac55 | 5326 | if (queue_empty(&upl->map_object->memq)) |
55e303ae | 5327 | occupied = 0; |
55e303ae | 5328 | } |
2d21ac55 | 5329 | if (occupied == 0) { |
b0d623f7 A |
5330 | /* |
5331 | * If this UPL element belongs to a Vector UPL and is | |
5332 | * empty, then this is the right function to deallocate | |
5333 | * it. So go ahead set the *empty variable. The flag | |
5334 | * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view | |
5335 | * should be considered relevant for the Vector UPL and | |
5336 | * not the internal UPLs. | |
5337 | */ | |
5338 | if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) | |
0b4e3aa0 | 5339 | *empty = TRUE; |
2d21ac55 | 5340 | |
b0d623f7 | 5341 | if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) { |
2d21ac55 A |
5342 | /* |
5343 | * this is not a paging object | |
5344 | * so we need to drop the paging reference | |
5345 | * that was taken when we created the UPL | |
5346 | * against this object | |
5347 | */ | |
b0d623f7 | 5348 | vm_object_activity_end(shadow_object); |
2d21ac55 A |
5349 | } else { |
5350 | /* | |
5351 | * we dontated the paging reference to | |
5352 | * the map object... vm_pageout_object_terminate | |
5353 | * will drop this reference | |
5354 | */ | |
5355 | } | |
1c79356b | 5356 | } |
55e303ae | 5357 | vm_object_unlock(shadow_object); |
91447636 A |
5358 | if (object != shadow_object) |
5359 | vm_object_unlock(object); | |
b0d623f7 A |
5360 | |
5361 | if(!isVectorUPL) | |
5362 | upl_unlock(upl); | |
5363 | else { | |
5364 | /* | |
5365 | * If we completed our operations on an UPL that is | |
5366 | * part of a Vectored UPL and if empty is TRUE, then | |
5367 | * we should go ahead and deallocate this UPL element. | |
5368 | * Then we check if this was the last of the UPL elements | |
5369 | * within that Vectored UPL. If so, set empty to TRUE | |
5370 | * so that in ubc_upl_abort_range or ubc_upl_abort, we | |
5371 | * can go ahead and deallocate the Vector UPL too. | |
5372 | */ | |
5373 | if(*empty == TRUE) { | |
5374 | *empty = vector_upl_set_subupl(vector_upl, upl,0); | |
5375 | upl_deallocate(upl); | |
5376 | } | |
5377 | goto process_upl_to_abort; | |
5378 | } | |
55e303ae | 5379 | |
1c79356b A |
5380 | return KERN_SUCCESS; |
5381 | } | |
5382 | ||
2d21ac55 | 5383 | |
1c79356b | 5384 | kern_return_t |
0b4e3aa0 | 5385 | upl_abort( |
1c79356b A |
5386 | upl_t upl, |
5387 | int error) | |
2d21ac55 A |
5388 | { |
5389 | boolean_t empty; | |
5390 | ||
5391 | return upl_abort_range(upl, 0, upl->size, error, &empty); | |
1c79356b A |
5392 | } |
5393 | ||
55e303ae | 5394 | |
2d21ac55 A |
5395 | /* an option on commit should be wire */ |
5396 | kern_return_t | |
5397 | upl_commit( | |
5398 | upl_t upl, | |
5399 | upl_page_info_t *page_list, | |
5400 | mach_msg_type_number_t count) | |
5401 | { | |
5402 | boolean_t empty; | |
5403 | ||
5404 | return upl_commit_range(upl, 0, upl->size, 0, page_list, count, &empty); | |
5405 | } | |
5406 | ||
55e303ae | 5407 | |
b0d623f7 A |
5408 | unsigned int vm_object_iopl_request_sleep_for_cleaning = 0; |
5409 | ||
55e303ae A |
5410 | kern_return_t |
5411 | vm_object_iopl_request( | |
5412 | vm_object_t object, | |
5413 | vm_object_offset_t offset, | |
91447636 | 5414 | upl_size_t size, |
55e303ae A |
5415 | upl_t *upl_ptr, |
5416 | upl_page_info_array_t user_page_list, | |
5417 | unsigned int *page_list_count, | |
5418 | int cntrl_flags) | |
5419 | { | |
5420 | vm_page_t dst_page; | |
2d21ac55 A |
5421 | vm_object_offset_t dst_offset; |
5422 | upl_size_t xfer_size; | |
55e303ae | 5423 | upl_t upl = NULL; |
91447636 A |
5424 | unsigned int entry; |
5425 | wpl_array_t lite_list = NULL; | |
91447636 | 5426 | int no_zero_fill = FALSE; |
2d21ac55 | 5427 | u_int32_t psize; |
55e303ae A |
5428 | kern_return_t ret; |
5429 | vm_prot_t prot; | |
2d21ac55 | 5430 | struct vm_object_fault_info fault_info; |
b0d623f7 A |
5431 | struct dw dw_array[DELAYED_WORK_LIMIT]; |
5432 | struct dw *dwp; | |
5433 | int dw_count; | |
5434 | int dw_index; | |
55e303ae | 5435 | |
91447636 A |
5436 | if (cntrl_flags & ~UPL_VALID_FLAGS) { |
5437 | /* | |
5438 | * For forward compatibility's sake, | |
5439 | * reject any unknown flag. | |
5440 | */ | |
5441 | return KERN_INVALID_VALUE; | |
5442 | } | |
0c530ab8 A |
5443 | if (vm_lopage_poolsize == 0) |
5444 | cntrl_flags &= ~UPL_NEED_32BIT_ADDR; | |
5445 | ||
5446 | if (cntrl_flags & UPL_NEED_32BIT_ADDR) { | |
5447 | if ( (cntrl_flags & (UPL_SET_IO_WIRE | UPL_SET_LITE)) != (UPL_SET_IO_WIRE | UPL_SET_LITE)) | |
5448 | return KERN_INVALID_VALUE; | |
5449 | ||
5450 | if (object->phys_contiguous) { | |
5451 | if ((offset + object->shadow_offset) >= (vm_object_offset_t)max_valid_dma_address) | |
5452 | return KERN_INVALID_ADDRESS; | |
2d21ac55 A |
5453 | |
5454 | if (((offset + object->shadow_offset) + size) >= (vm_object_offset_t)max_valid_dma_address) | |
0c530ab8 A |
5455 | return KERN_INVALID_ADDRESS; |
5456 | } | |
5457 | } | |
91447636 A |
5458 | |
5459 | if (cntrl_flags & UPL_ENCRYPT) { | |
5460 | /* | |
5461 | * ENCRYPTED SWAP: | |
5462 | * The paging path doesn't use this interface, | |
5463 | * so we don't support the UPL_ENCRYPT flag | |
5464 | * here. We won't encrypt the pages. | |
5465 | */ | |
5466 | assert(! (cntrl_flags & UPL_ENCRYPT)); | |
5467 | } | |
91447636 A |
5468 | if (cntrl_flags & UPL_NOZEROFILL) |
5469 | no_zero_fill = TRUE; | |
5470 | ||
5471 | if (cntrl_flags & UPL_COPYOUT_FROM) | |
55e303ae | 5472 | prot = VM_PROT_READ; |
91447636 | 5473 | else |
55e303ae | 5474 | prot = VM_PROT_READ | VM_PROT_WRITE; |
55e303ae | 5475 | |
b0d623f7 A |
5476 | if (((size/PAGE_SIZE) > MAX_UPL_SIZE) && !object->phys_contiguous) |
5477 | size = MAX_UPL_SIZE * PAGE_SIZE; | |
55e303ae | 5478 | |
2d21ac55 A |
5479 | if (cntrl_flags & UPL_SET_INTERNAL) { |
5480 | if (page_list_count != NULL) | |
cf7d32b8 | 5481 | *page_list_count = MAX_UPL_SIZE; |
2d21ac55 A |
5482 | } |
5483 | if (((cntrl_flags & UPL_SET_INTERNAL) && !(object->phys_contiguous)) && | |
5484 | ((page_list_count != NULL) && (*page_list_count != 0) && *page_list_count < (size/page_size))) | |
5485 | return KERN_INVALID_ARGUMENT; | |
55e303ae | 5486 | |
2d21ac55 A |
5487 | if ((!object->internal) && (object->paging_offset != 0)) |
5488 | panic("vm_object_iopl_request: external object with non-zero paging offset\n"); | |
5489 | ||
5490 | ||
5491 | if (object->phys_contiguous) | |
5492 | psize = PAGE_SIZE; | |
5493 | else | |
5494 | psize = size; | |
5495 | ||
5496 | if (cntrl_flags & UPL_SET_INTERNAL) { | |
5497 | upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE, UPL_IO_WIRE, psize); | |
5498 | ||
5499 | user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); | |
5500 | lite_list = (wpl_array_t) (((uintptr_t)user_page_list) + | |
5501 | ((psize / PAGE_SIZE) * sizeof(upl_page_info_t))); | |
b0d623f7 A |
5502 | if (size == 0) { |
5503 | user_page_list = NULL; | |
5504 | lite_list = NULL; | |
5505 | } | |
2d21ac55 A |
5506 | } else { |
5507 | upl = upl_create(UPL_CREATE_LITE, UPL_IO_WIRE, psize); | |
55e303ae | 5508 | |
2d21ac55 | 5509 | lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); |
b0d623f7 A |
5510 | if (size == 0) { |
5511 | lite_list = NULL; | |
5512 | } | |
55e303ae | 5513 | } |
2d21ac55 A |
5514 | if (user_page_list) |
5515 | user_page_list[0].device = FALSE; | |
5516 | *upl_ptr = upl; | |
55e303ae | 5517 | |
2d21ac55 A |
5518 | upl->map_object = object; |
5519 | upl->size = size; | |
5520 | ||
b0d623f7 A |
5521 | if (object == kernel_object && |
5522 | !(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS))) { | |
5523 | upl->flags |= UPL_KERNEL_OBJECT; | |
5524 | #if UPL_DEBUG | |
5525 | vm_object_lock(object); | |
5526 | #else | |
5527 | vm_object_lock_shared(object); | |
5528 | #endif | |
5529 | } else { | |
5530 | vm_object_lock(object); | |
5531 | vm_object_activity_begin(object); | |
5532 | } | |
2d21ac55 A |
5533 | /* |
5534 | * paging in progress also protects the paging_offset | |
5535 | */ | |
5536 | upl->offset = offset + object->paging_offset; | |
55e303ae | 5537 | |
b0d623f7 A |
5538 | if (cntrl_flags & UPL_BLOCK_ACCESS) { |
5539 | /* | |
5540 | * The user requested that access to the pages in this URL | |
5541 | * be blocked until the UPL is commited or aborted. | |
5542 | */ | |
5543 | upl->flags |= UPL_ACCESS_BLOCKED; | |
5544 | } | |
5545 | ||
2d21ac55 | 5546 | if (object->phys_contiguous) { |
b0d623f7 | 5547 | #if UPL_DEBUG |
2d21ac55 A |
5548 | queue_enter(&object->uplq, upl, upl_t, uplq); |
5549 | #endif /* UPL_DEBUG */ | |
55e303ae | 5550 | |
b0d623f7 A |
5551 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
5552 | assert(!object->blocked_access); | |
5553 | object->blocked_access = TRUE; | |
5554 | } | |
5555 | ||
2d21ac55 | 5556 | vm_object_unlock(object); |
55e303ae | 5557 | |
2d21ac55 A |
5558 | /* |
5559 | * don't need any shadow mappings for this one | |
5560 | * since it is already I/O memory | |
5561 | */ | |
5562 | upl->flags |= UPL_DEVICE_MEMORY; | |
55e303ae | 5563 | |
b0d623f7 | 5564 | upl->highest_page = (ppnum_t) ((offset + object->shadow_offset + size - 1)>>PAGE_SHIFT); |
2d21ac55 A |
5565 | |
5566 | if (user_page_list) { | |
b0d623f7 | 5567 | user_page_list[0].phys_addr = (ppnum_t) ((offset + object->shadow_offset)>>PAGE_SHIFT); |
2d21ac55 | 5568 | user_page_list[0].device = TRUE; |
55e303ae | 5569 | } |
2d21ac55 A |
5570 | if (page_list_count != NULL) { |
5571 | if (upl->flags & UPL_INTERNAL) | |
5572 | *page_list_count = 0; | |
5573 | else | |
5574 | *page_list_count = 1; | |
55e303ae | 5575 | } |
2d21ac55 | 5576 | return KERN_SUCCESS; |
55e303ae | 5577 | } |
b0d623f7 A |
5578 | if (object != kernel_object) { |
5579 | /* | |
5580 | * Protect user space from future COW operations | |
5581 | */ | |
5582 | object->true_share = TRUE; | |
55e303ae | 5583 | |
b0d623f7 A |
5584 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) |
5585 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
5586 | } | |
55e303ae | 5587 | |
b0d623f7 | 5588 | #if UPL_DEBUG |
2d21ac55 | 5589 | queue_enter(&object->uplq, upl, upl_t, uplq); |
91447636 | 5590 | #endif /* UPL_DEBUG */ |
91447636 | 5591 | |
b0d623f7 A |
5592 | if (!(cntrl_flags & UPL_COPYOUT_FROM) && |
5593 | object->copy != VM_OBJECT_NULL) { | |
91447636 | 5594 | /* |
b0d623f7 A |
5595 | * Honor copy-on-write obligations |
5596 | * | |
5597 | * The caller is gathering these pages and | |
5598 | * might modify their contents. We need to | |
5599 | * make sure that the copy object has its own | |
5600 | * private copies of these pages before we let | |
5601 | * the caller modify them. | |
5602 | * | |
5603 | * NOTE: someone else could map the original object | |
5604 | * after we've done this copy-on-write here, and they | |
5605 | * could then see an inconsistent picture of the memory | |
5606 | * while it's being modified via the UPL. To prevent this, | |
5607 | * we would have to block access to these pages until the | |
5608 | * UPL is released. We could use the UPL_BLOCK_ACCESS | |
5609 | * code path for that... | |
91447636 | 5610 | */ |
b0d623f7 A |
5611 | vm_object_update(object, |
5612 | offset, | |
5613 | size, | |
5614 | NULL, | |
5615 | NULL, | |
5616 | FALSE, /* should_return */ | |
5617 | MEMORY_OBJECT_COPY_SYNC, | |
5618 | VM_PROT_NO_CHANGE); | |
5619 | #if DEVELOPMENT || DEBUG | |
5620 | iopl_cow++; | |
5621 | iopl_cow_pages += size >> PAGE_SHIFT; | |
5622 | #endif | |
55e303ae | 5623 | } |
b0d623f7 A |
5624 | |
5625 | ||
55e303ae | 5626 | entry = 0; |
2d21ac55 A |
5627 | |
5628 | xfer_size = size; | |
5629 | dst_offset = offset; | |
5630 | ||
5631 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
5632 | fault_info.user_tag = 0; | |
5633 | fault_info.lo_offset = offset; | |
5634 | fault_info.hi_offset = offset + xfer_size; | |
5635 | fault_info.no_cache = FALSE; | |
b0d623f7 A |
5636 | fault_info.stealth = FALSE; |
5637 | ||
5638 | dwp = &dw_array[0]; | |
5639 | dw_count = 0; | |
2d21ac55 | 5640 | |
55e303ae | 5641 | while (xfer_size) { |
2d21ac55 | 5642 | vm_fault_return_t result; |
b0d623f7 A |
5643 | unsigned int pg_num; |
5644 | ||
5645 | dwp->dw_mask = 0; | |
2d21ac55 | 5646 | |
55e303ae A |
5647 | dst_page = vm_page_lookup(object, dst_offset); |
5648 | ||
91447636 A |
5649 | /* |
5650 | * ENCRYPTED SWAP: | |
5651 | * If the page is encrypted, we need to decrypt it, | |
5652 | * so force a soft page fault. | |
5653 | */ | |
b0d623f7 A |
5654 | if (dst_page == VM_PAGE_NULL || |
5655 | dst_page->busy || | |
5656 | dst_page->encrypted || | |
5657 | dst_page->error || | |
5658 | dst_page->restart || | |
5659 | dst_page->absent || | |
5660 | dst_page->fictitious) { | |
5661 | ||
5662 | if (object == kernel_object) | |
5663 | panic("vm_object_iopl_request: missing/bad page in kernel object\n"); | |
2d21ac55 | 5664 | |
55e303ae A |
5665 | do { |
5666 | vm_page_t top_page; | |
5667 | kern_return_t error_code; | |
5668 | int interruptible; | |
5669 | ||
2d21ac55 | 5670 | if (cntrl_flags & UPL_SET_INTERRUPTIBLE) |
55e303ae | 5671 | interruptible = THREAD_ABORTSAFE; |
2d21ac55 | 5672 | else |
55e303ae | 5673 | interruptible = THREAD_UNINT; |
2d21ac55 A |
5674 | |
5675 | fault_info.interruptible = interruptible; | |
5676 | fault_info.cluster_size = xfer_size; | |
55e303ae | 5677 | |
b0d623f7 A |
5678 | vm_object_paging_begin(object); |
5679 | ||
55e303ae | 5680 | result = vm_fault_page(object, dst_offset, |
2d21ac55 A |
5681 | prot | VM_PROT_WRITE, FALSE, |
5682 | &prot, &dst_page, &top_page, | |
5683 | (int *)0, | |
5684 | &error_code, no_zero_fill, | |
5685 | FALSE, &fault_info); | |
5686 | ||
5687 | switch (result) { | |
5688 | ||
55e303ae A |
5689 | case VM_FAULT_SUCCESS: |
5690 | ||
5691 | PAGE_WAKEUP_DONE(dst_page); | |
55e303ae A |
5692 | /* |
5693 | * Release paging references and | |
5694 | * top-level placeholder page, if any. | |
5695 | */ | |
2d21ac55 | 5696 | if (top_page != VM_PAGE_NULL) { |
55e303ae | 5697 | vm_object_t local_object; |
2d21ac55 A |
5698 | |
5699 | local_object = top_page->object; | |
5700 | ||
5701 | if (top_page->object != dst_page->object) { | |
5702 | vm_object_lock(local_object); | |
55e303ae | 5703 | VM_PAGE_FREE(top_page); |
2d21ac55 A |
5704 | vm_object_paging_end(local_object); |
5705 | vm_object_unlock(local_object); | |
55e303ae A |
5706 | } else { |
5707 | VM_PAGE_FREE(top_page); | |
2d21ac55 | 5708 | vm_object_paging_end(local_object); |
55e303ae A |
5709 | } |
5710 | } | |
b0d623f7 | 5711 | vm_object_paging_end(object); |
55e303ae A |
5712 | break; |
5713 | ||
55e303ae A |
5714 | case VM_FAULT_RETRY: |
5715 | vm_object_lock(object); | |
55e303ae A |
5716 | break; |
5717 | ||
5718 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
5719 | vm_page_more_fictitious(); | |
2d21ac55 | 5720 | |
55e303ae | 5721 | vm_object_lock(object); |
55e303ae A |
5722 | break; |
5723 | ||
5724 | case VM_FAULT_MEMORY_SHORTAGE: | |
5725 | if (vm_page_wait(interruptible)) { | |
5726 | vm_object_lock(object); | |
55e303ae A |
5727 | break; |
5728 | } | |
5729 | /* fall thru */ | |
5730 | ||
5731 | case VM_FAULT_INTERRUPTED: | |
5732 | error_code = MACH_SEND_INTERRUPTED; | |
5733 | case VM_FAULT_MEMORY_ERROR: | |
b0d623f7 | 5734 | memory_error: |
2d21ac55 | 5735 | ret = (error_code ? error_code: KERN_MEMORY_ERROR); |
0c530ab8 | 5736 | |
2d21ac55 | 5737 | vm_object_lock(object); |
0c530ab8 | 5738 | goto return_err; |
b0d623f7 A |
5739 | |
5740 | case VM_FAULT_SUCCESS_NO_VM_PAGE: | |
5741 | /* success but no page: fail */ | |
5742 | vm_object_paging_end(object); | |
5743 | vm_object_unlock(object); | |
5744 | goto memory_error; | |
5745 | ||
5746 | default: | |
5747 | panic("vm_object_iopl_request: unexpected error" | |
5748 | " 0x%x from vm_fault_page()\n", result); | |
55e303ae | 5749 | } |
2d21ac55 | 5750 | } while (result != VM_FAULT_SUCCESS); |
b0d623f7 | 5751 | |
55e303ae | 5752 | } |
0c530ab8 | 5753 | |
b0d623f7 A |
5754 | if (upl->flags & UPL_KERNEL_OBJECT) |
5755 | goto record_phys_addr; | |
5756 | ||
5757 | if (dst_page->cleaning) { | |
5758 | /* | |
5759 | * Someone else is cleaning this page in place.as | |
5760 | * In theory, we should be able to proceed and use this | |
5761 | * page but they'll probably end up clearing the "busy" | |
5762 | * bit on it in upl_commit_range() but they didn't set | |
5763 | * it, so they would clear our "busy" bit and open | |
5764 | * us to race conditions. | |
5765 | * We'd better wait for the cleaning to complete and | |
5766 | * then try again. | |
5767 | */ | |
5768 | vm_object_iopl_request_sleep_for_cleaning++; | |
5769 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
5770 | continue; | |
5771 | } | |
0c530ab8 A |
5772 | if ( (cntrl_flags & UPL_NEED_32BIT_ADDR) && |
5773 | dst_page->phys_page >= (max_valid_dma_address >> PAGE_SHIFT) ) { | |
5774 | vm_page_t low_page; | |
5775 | int refmod; | |
5776 | ||
5777 | /* | |
5778 | * support devices that can't DMA above 32 bits | |
5779 | * by substituting pages from a pool of low address | |
5780 | * memory for any pages we find above the 4G mark | |
5781 | * can't substitute if the page is already wired because | |
5782 | * we don't know whether that physical address has been | |
5783 | * handed out to some other 64 bit capable DMA device to use | |
5784 | */ | |
b0d623f7 | 5785 | if (VM_PAGE_WIRED(dst_page)) { |
0c530ab8 A |
5786 | ret = KERN_PROTECTION_FAILURE; |
5787 | goto return_err; | |
5788 | } | |
0c530ab8 A |
5789 | low_page = vm_page_grablo(); |
5790 | ||
5791 | if (low_page == VM_PAGE_NULL) { | |
5792 | ret = KERN_RESOURCE_SHORTAGE; | |
5793 | goto return_err; | |
5794 | } | |
5795 | /* | |
5796 | * from here until the vm_page_replace completes | |
5797 | * we musn't drop the object lock... we don't | |
5798 | * want anyone refaulting this page in and using | |
5799 | * it after we disconnect it... we want the fault | |
5800 | * to find the new page being substituted. | |
5801 | */ | |
2d21ac55 A |
5802 | if (dst_page->pmapped) |
5803 | refmod = pmap_disconnect(dst_page->phys_page); | |
5804 | else | |
5805 | refmod = 0; | |
0c530ab8 | 5806 | vm_page_copy(dst_page, low_page); |
2d21ac55 | 5807 | |
0c530ab8 A |
5808 | low_page->reference = dst_page->reference; |
5809 | low_page->dirty = dst_page->dirty; | |
5810 | ||
5811 | if (refmod & VM_MEM_REFERENCED) | |
5812 | low_page->reference = TRUE; | |
5813 | if (refmod & VM_MEM_MODIFIED) | |
5814 | low_page->dirty = TRUE; | |
5815 | ||
0c530ab8 | 5816 | vm_page_replace(low_page, object, dst_offset); |
0c530ab8 A |
5817 | |
5818 | dst_page = low_page; | |
5819 | /* | |
5820 | * vm_page_grablo returned the page marked | |
5821 | * BUSY... we don't need a PAGE_WAKEUP_DONE | |
5822 | * here, because we've never dropped the object lock | |
5823 | */ | |
5824 | dst_page->busy = FALSE; | |
5825 | } | |
b0d623f7 | 5826 | dwp->dw_mask |= DW_vm_page_wire; |
55e303ae | 5827 | |
91447636 A |
5828 | if (cntrl_flags & UPL_BLOCK_ACCESS) { |
5829 | /* | |
5830 | * Mark the page "busy" to block any future page fault | |
5831 | * on this page. We'll also remove the mapping | |
5832 | * of all these pages before leaving this routine. | |
5833 | */ | |
5834 | assert(!dst_page->fictitious); | |
5835 | dst_page->busy = TRUE; | |
5836 | } | |
2d21ac55 A |
5837 | /* |
5838 | * expect the page to be used | |
5839 | * page queues lock must be held to set 'reference' | |
5840 | */ | |
b0d623f7 | 5841 | dwp->dw_mask |= DW_set_reference; |
55e303ae | 5842 | |
2d21ac55 A |
5843 | if (!(cntrl_flags & UPL_COPYOUT_FROM)) |
5844 | dst_page->dirty = TRUE; | |
b0d623f7 A |
5845 | record_phys_addr: |
5846 | pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE); | |
5847 | assert(pg_num == (dst_offset-offset)/PAGE_SIZE); | |
5848 | lite_list[pg_num>>5] |= 1 << (pg_num & 31); | |
55e303ae | 5849 | |
2d21ac55 A |
5850 | if (dst_page->phys_page > upl->highest_page) |
5851 | upl->highest_page = dst_page->phys_page; | |
55e303ae | 5852 | |
2d21ac55 A |
5853 | if (user_page_list) { |
5854 | user_page_list[entry].phys_addr = dst_page->phys_page; | |
2d21ac55 A |
5855 | user_page_list[entry].pageout = dst_page->pageout; |
5856 | user_page_list[entry].absent = dst_page->absent; | |
593a1d5f | 5857 | user_page_list[entry].dirty = dst_page->dirty; |
2d21ac55 | 5858 | user_page_list[entry].precious = dst_page->precious; |
593a1d5f | 5859 | user_page_list[entry].device = FALSE; |
2d21ac55 A |
5860 | if (dst_page->clustered == TRUE) |
5861 | user_page_list[entry].speculative = dst_page->speculative; | |
5862 | else | |
5863 | user_page_list[entry].speculative = FALSE; | |
593a1d5f A |
5864 | user_page_list[entry].cs_validated = dst_page->cs_validated; |
5865 | user_page_list[entry].cs_tainted = dst_page->cs_tainted; | |
55e303ae | 5866 | } |
b0d623f7 A |
5867 | if (object != kernel_object) { |
5868 | /* | |
5869 | * someone is explicitly grabbing this page... | |
5870 | * update clustered and speculative state | |
5871 | * | |
5872 | */ | |
5873 | VM_PAGE_CONSUME_CLUSTERED(dst_page); | |
55e303ae A |
5874 | } |
5875 | entry++; | |
5876 | dst_offset += PAGE_SIZE_64; | |
5877 | xfer_size -= PAGE_SIZE; | |
b0d623f7 A |
5878 | |
5879 | if (dwp->dw_mask) { | |
5880 | if (dst_page->busy == FALSE) { | |
5881 | /* | |
5882 | * dw_do_work may need to drop the object lock | |
5883 | * if it does, we need the pages it's looking at to | |
5884 | * be held stable via the busy bit. | |
5885 | */ | |
5886 | dst_page->busy = TRUE; | |
5887 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); | |
5888 | } | |
5889 | dwp->dw_m = dst_page; | |
5890 | dwp++; | |
5891 | dw_count++; | |
5892 | ||
5893 | if (dw_count >= DELAYED_WORK_LIMIT) { | |
5894 | dw_do_work(object, &dw_array[0], dw_count); | |
5895 | ||
5896 | dwp = &dw_array[0]; | |
5897 | dw_count = 0; | |
5898 | } | |
5899 | } | |
55e303ae | 5900 | } |
b0d623f7 A |
5901 | if (dw_count) |
5902 | dw_do_work(object, &dw_array[0], dw_count); | |
55e303ae | 5903 | |
2d21ac55 A |
5904 | if (page_list_count != NULL) { |
5905 | if (upl->flags & UPL_INTERNAL) | |
55e303ae | 5906 | *page_list_count = 0; |
2d21ac55 | 5907 | else if (*page_list_count > entry) |
55e303ae A |
5908 | *page_list_count = entry; |
5909 | } | |
55e303ae | 5910 | vm_object_unlock(object); |
55e303ae | 5911 | |
91447636 A |
5912 | if (cntrl_flags & UPL_BLOCK_ACCESS) { |
5913 | /* | |
5914 | * We've marked all the pages "busy" so that future | |
5915 | * page faults will block. | |
5916 | * Now remove the mapping for these pages, so that they | |
5917 | * can't be accessed without causing a page fault. | |
5918 | */ | |
5919 | vm_object_pmap_protect(object, offset, (vm_object_size_t)size, | |
5920 | PMAP_NULL, 0, VM_PROT_NONE); | |
b0d623f7 A |
5921 | assert(!object->blocked_access); |
5922 | object->blocked_access = TRUE; | |
91447636 | 5923 | } |
91447636 | 5924 | return KERN_SUCCESS; |
0c530ab8 | 5925 | |
0c530ab8 | 5926 | return_err: |
b0d623f7 | 5927 | dw_index = 0; |
0c530ab8 A |
5928 | |
5929 | for (; offset < dst_offset; offset += PAGE_SIZE) { | |
5930 | dst_page = vm_page_lookup(object, offset); | |
5931 | ||
5932 | if (dst_page == VM_PAGE_NULL) | |
5933 | panic("vm_object_iopl_request: Wired pages missing. \n"); | |
2d21ac55 | 5934 | |
b0d623f7 A |
5935 | if (dw_count) { |
5936 | if (dw_array[dw_index].dw_m == dst_page) { | |
5937 | dw_index++; | |
5938 | dw_count--; | |
5939 | continue; | |
5940 | } | |
5941 | } | |
2d21ac55 | 5942 | vm_page_lockspin_queues(); |
0c530ab8 A |
5943 | vm_page_unwire(dst_page); |
5944 | vm_page_unlock_queues(); | |
2d21ac55 A |
5945 | |
5946 | VM_STAT_INCR(reactivations); | |
0c530ab8 | 5947 | } |
b0d623f7 A |
5948 | #if UPL_DEBUG |
5949 | upl->upl_state = 2; | |
5950 | #endif | |
5951 | if (! (upl->flags & UPL_KERNEL_OBJECT)) { | |
5952 | vm_object_activity_end(object); | |
5953 | } | |
0c530ab8 A |
5954 | vm_object_unlock(object); |
5955 | upl_destroy(upl); | |
5956 | ||
5957 | return ret; | |
1c79356b A |
5958 | } |
5959 | ||
91447636 A |
5960 | kern_return_t |
5961 | upl_transpose( | |
5962 | upl_t upl1, | |
5963 | upl_t upl2) | |
1c79356b | 5964 | { |
91447636 A |
5965 | kern_return_t retval; |
5966 | boolean_t upls_locked; | |
5967 | vm_object_t object1, object2; | |
1c79356b | 5968 | |
b0d623f7 | 5969 | if (upl1 == UPL_NULL || upl2 == UPL_NULL || upl1 == upl2 || ((upl1->flags & UPL_VECTOR)==UPL_VECTOR) || ((upl2->flags & UPL_VECTOR)==UPL_VECTOR)) { |
91447636 A |
5970 | return KERN_INVALID_ARGUMENT; |
5971 | } | |
5972 | ||
5973 | upls_locked = FALSE; | |
1c79356b | 5974 | |
91447636 A |
5975 | /* |
5976 | * Since we need to lock both UPLs at the same time, | |
5977 | * avoid deadlocks by always taking locks in the same order. | |
5978 | */ | |
5979 | if (upl1 < upl2) { | |
5980 | upl_lock(upl1); | |
5981 | upl_lock(upl2); | |
5982 | } else { | |
5983 | upl_lock(upl2); | |
5984 | upl_lock(upl1); | |
5985 | } | |
5986 | upls_locked = TRUE; /* the UPLs will need to be unlocked */ | |
5987 | ||
5988 | object1 = upl1->map_object; | |
5989 | object2 = upl2->map_object; | |
5990 | ||
5991 | if (upl1->offset != 0 || upl2->offset != 0 || | |
5992 | upl1->size != upl2->size) { | |
5993 | /* | |
5994 | * We deal only with full objects, not subsets. | |
5995 | * That's because we exchange the entire backing store info | |
5996 | * for the objects: pager, resident pages, etc... We can't do | |
5997 | * only part of it. | |
5998 | */ | |
5999 | retval = KERN_INVALID_VALUE; | |
6000 | goto done; | |
6001 | } | |
6002 | ||
6003 | /* | |
6004 | * Tranpose the VM objects' backing store. | |
6005 | */ | |
6006 | retval = vm_object_transpose(object1, object2, | |
6007 | (vm_object_size_t) upl1->size); | |
6008 | ||
6009 | if (retval == KERN_SUCCESS) { | |
6010 | /* | |
6011 | * Make each UPL point to the correct VM object, i.e. the | |
6012 | * object holding the pages that the UPL refers to... | |
6013 | */ | |
b0d623f7 | 6014 | #if UPL_DEBUG |
2d21ac55 A |
6015 | queue_remove(&object1->uplq, upl1, upl_t, uplq); |
6016 | queue_remove(&object2->uplq, upl2, upl_t, uplq); | |
6017 | #endif | |
91447636 A |
6018 | upl1->map_object = object2; |
6019 | upl2->map_object = object1; | |
b0d623f7 | 6020 | #if UPL_DEBUG |
2d21ac55 A |
6021 | queue_enter(&object1->uplq, upl2, upl_t, uplq); |
6022 | queue_enter(&object2->uplq, upl1, upl_t, uplq); | |
6023 | #endif | |
91447636 A |
6024 | } |
6025 | ||
6026 | done: | |
6027 | /* | |
6028 | * Cleanup. | |
6029 | */ | |
6030 | if (upls_locked) { | |
6031 | upl_unlock(upl1); | |
6032 | upl_unlock(upl2); | |
6033 | upls_locked = FALSE; | |
6034 | } | |
6035 | ||
6036 | return retval; | |
6037 | } | |
6038 | ||
6039 | /* | |
6040 | * ENCRYPTED SWAP: | |
6041 | * | |
6042 | * Rationale: the user might have some encrypted data on disk (via | |
6043 | * FileVault or any other mechanism). That data is then decrypted in | |
6044 | * memory, which is safe as long as the machine is secure. But that | |
6045 | * decrypted data in memory could be paged out to disk by the default | |
6046 | * pager. The data would then be stored on disk in clear (not encrypted) | |
6047 | * and it could be accessed by anyone who gets physical access to the | |
6048 | * disk (if the laptop or the disk gets stolen for example). This weakens | |
6049 | * the security offered by FileVault. | |
6050 | * | |
6051 | * Solution: the default pager will optionally request that all the | |
6052 | * pages it gathers for pageout be encrypted, via the UPL interfaces, | |
6053 | * before it sends this UPL to disk via the vnode_pageout() path. | |
6054 | * | |
6055 | * Notes: | |
6056 | * | |
6057 | * To avoid disrupting the VM LRU algorithms, we want to keep the | |
6058 | * clean-in-place mechanisms, which allow us to send some extra pages to | |
6059 | * swap (clustering) without actually removing them from the user's | |
6060 | * address space. We don't want the user to unknowingly access encrypted | |
6061 | * data, so we have to actually remove the encrypted pages from the page | |
6062 | * table. When the user accesses the data, the hardware will fail to | |
6063 | * locate the virtual page in its page table and will trigger a page | |
6064 | * fault. We can then decrypt the page and enter it in the page table | |
6065 | * again. Whenever we allow the user to access the contents of a page, | |
6066 | * we have to make sure it's not encrypted. | |
6067 | * | |
6068 | * | |
6069 | */ | |
6070 | /* | |
6071 | * ENCRYPTED SWAP: | |
6072 | * Reserve of virtual addresses in the kernel address space. | |
6073 | * We need to map the physical pages in the kernel, so that we | |
6074 | * can call the encryption/decryption routines with a kernel | |
6075 | * virtual address. We keep this pool of pre-allocated kernel | |
6076 | * virtual addresses so that we don't have to scan the kernel's | |
6077 | * virtaul address space each time we need to encrypt or decrypt | |
6078 | * a physical page. | |
6079 | * It would be nice to be able to encrypt and decrypt in physical | |
6080 | * mode but that might not always be more efficient... | |
6081 | */ | |
6082 | decl_simple_lock_data(,vm_paging_lock) | |
6083 | #define VM_PAGING_NUM_PAGES 64 | |
6084 | vm_map_offset_t vm_paging_base_address = 0; | |
6085 | boolean_t vm_paging_page_inuse[VM_PAGING_NUM_PAGES] = { FALSE, }; | |
6086 | int vm_paging_max_index = 0; | |
2d21ac55 A |
6087 | int vm_paging_page_waiter = 0; |
6088 | int vm_paging_page_waiter_total = 0; | |
91447636 A |
6089 | unsigned long vm_paging_no_kernel_page = 0; |
6090 | unsigned long vm_paging_objects_mapped = 0; | |
6091 | unsigned long vm_paging_pages_mapped = 0; | |
6092 | unsigned long vm_paging_objects_mapped_slow = 0; | |
6093 | unsigned long vm_paging_pages_mapped_slow = 0; | |
6094 | ||
2d21ac55 A |
6095 | void |
6096 | vm_paging_map_init(void) | |
6097 | { | |
6098 | kern_return_t kr; | |
6099 | vm_map_offset_t page_map_offset; | |
6100 | vm_map_entry_t map_entry; | |
6101 | ||
6102 | assert(vm_paging_base_address == 0); | |
6103 | ||
6104 | /* | |
6105 | * Initialize our pool of pre-allocated kernel | |
6106 | * virtual addresses. | |
6107 | */ | |
6108 | page_map_offset = 0; | |
6109 | kr = vm_map_find_space(kernel_map, | |
6110 | &page_map_offset, | |
6111 | VM_PAGING_NUM_PAGES * PAGE_SIZE, | |
6112 | 0, | |
6113 | 0, | |
6114 | &map_entry); | |
6115 | if (kr != KERN_SUCCESS) { | |
6116 | panic("vm_paging_map_init: kernel_map full\n"); | |
6117 | } | |
6118 | map_entry->object.vm_object = kernel_object; | |
b0d623f7 | 6119 | map_entry->offset = page_map_offset; |
2d21ac55 A |
6120 | vm_object_reference(kernel_object); |
6121 | vm_map_unlock(kernel_map); | |
6122 | ||
6123 | assert(vm_paging_base_address == 0); | |
6124 | vm_paging_base_address = page_map_offset; | |
6125 | } | |
6126 | ||
91447636 A |
6127 | /* |
6128 | * ENCRYPTED SWAP: | |
6129 | * vm_paging_map_object: | |
6130 | * Maps part of a VM object's pages in the kernel | |
6131 | * virtual address space, using the pre-allocated | |
6132 | * kernel virtual addresses, if possible. | |
6133 | * Context: | |
6134 | * The VM object is locked. This lock will get | |
2d21ac55 A |
6135 | * dropped and re-acquired though, so the caller |
6136 | * must make sure the VM object is kept alive | |
6137 | * (by holding a VM map that has a reference | |
6138 | * on it, for example, or taking an extra reference). | |
6139 | * The page should also be kept busy to prevent | |
6140 | * it from being reclaimed. | |
91447636 A |
6141 | */ |
6142 | kern_return_t | |
6143 | vm_paging_map_object( | |
6144 | vm_map_offset_t *address, | |
6145 | vm_page_t page, | |
6146 | vm_object_t object, | |
6147 | vm_object_offset_t offset, | |
2d21ac55 | 6148 | vm_map_size_t *size, |
593a1d5f | 6149 | vm_prot_t protection, |
2d21ac55 | 6150 | boolean_t can_unlock_object) |
91447636 A |
6151 | { |
6152 | kern_return_t kr; | |
6153 | vm_map_offset_t page_map_offset; | |
6154 | vm_map_size_t map_size; | |
6155 | vm_object_offset_t object_offset; | |
91447636 | 6156 | int i; |
91447636 | 6157 | |
593a1d5f | 6158 | |
91447636 | 6159 | if (page != VM_PAGE_NULL && *size == PAGE_SIZE) { |
2d21ac55 | 6160 | assert(page->busy); |
91447636 | 6161 | /* |
91447636 A |
6162 | * Use one of the pre-allocated kernel virtual addresses |
6163 | * and just enter the VM page in the kernel address space | |
6164 | * at that virtual address. | |
6165 | */ | |
91447636 A |
6166 | simple_lock(&vm_paging_lock); |
6167 | ||
91447636 A |
6168 | /* |
6169 | * Try and find an available kernel virtual address | |
6170 | * from our pre-allocated pool. | |
6171 | */ | |
6172 | page_map_offset = 0; | |
2d21ac55 A |
6173 | for (;;) { |
6174 | for (i = 0; i < VM_PAGING_NUM_PAGES; i++) { | |
6175 | if (vm_paging_page_inuse[i] == FALSE) { | |
6176 | page_map_offset = | |
6177 | vm_paging_base_address + | |
6178 | (i * PAGE_SIZE); | |
6179 | break; | |
6180 | } | |
6181 | } | |
6182 | if (page_map_offset != 0) { | |
6183 | /* found a space to map our page ! */ | |
6184 | break; | |
6185 | } | |
6186 | ||
6187 | if (can_unlock_object) { | |
6188 | /* | |
6189 | * If we can afford to unlock the VM object, | |
6190 | * let's take the slow path now... | |
6191 | */ | |
91447636 A |
6192 | break; |
6193 | } | |
2d21ac55 A |
6194 | /* |
6195 | * We can't afford to unlock the VM object, so | |
6196 | * let's wait for a space to become available... | |
6197 | */ | |
6198 | vm_paging_page_waiter_total++; | |
6199 | vm_paging_page_waiter++; | |
6200 | thread_sleep_fast_usimple_lock(&vm_paging_page_waiter, | |
6201 | &vm_paging_lock, | |
6202 | THREAD_UNINT); | |
6203 | vm_paging_page_waiter--; | |
6204 | /* ... and try again */ | |
91447636 A |
6205 | } |
6206 | ||
6207 | if (page_map_offset != 0) { | |
6208 | /* | |
6209 | * We found a kernel virtual address; | |
6210 | * map the physical page to that virtual address. | |
6211 | */ | |
6212 | if (i > vm_paging_max_index) { | |
6213 | vm_paging_max_index = i; | |
6214 | } | |
6215 | vm_paging_page_inuse[i] = TRUE; | |
6216 | simple_unlock(&vm_paging_lock); | |
2d21ac55 A |
6217 | |
6218 | if (page->pmapped == FALSE) { | |
0c530ab8 A |
6219 | pmap_sync_page_data_phys(page->phys_page); |
6220 | } | |
2d21ac55 A |
6221 | page->pmapped = TRUE; |
6222 | ||
6223 | /* | |
6224 | * Keep the VM object locked over the PMAP_ENTER | |
6225 | * and the actual use of the page by the kernel, | |
6226 | * or this pmap mapping might get undone by a | |
6227 | * vm_object_pmap_protect() call... | |
6228 | */ | |
0c530ab8 A |
6229 | PMAP_ENTER(kernel_pmap, |
6230 | page_map_offset, | |
6231 | page, | |
593a1d5f | 6232 | protection, |
0c530ab8 A |
6233 | ((int) page->object->wimg_bits & |
6234 | VM_WIMG_MASK), | |
6235 | TRUE); | |
91447636 A |
6236 | vm_paging_objects_mapped++; |
6237 | vm_paging_pages_mapped++; | |
6238 | *address = page_map_offset; | |
91447636 A |
6239 | |
6240 | /* all done and mapped, ready to use ! */ | |
6241 | return KERN_SUCCESS; | |
6242 | } | |
6243 | ||
6244 | /* | |
6245 | * We ran out of pre-allocated kernel virtual | |
6246 | * addresses. Just map the page in the kernel | |
6247 | * the slow and regular way. | |
6248 | */ | |
6249 | vm_paging_no_kernel_page++; | |
6250 | simple_unlock(&vm_paging_lock); | |
2d21ac55 A |
6251 | } |
6252 | ||
6253 | if (! can_unlock_object) { | |
6254 | return KERN_NOT_SUPPORTED; | |
91447636 | 6255 | } |
91447636 A |
6256 | |
6257 | object_offset = vm_object_trunc_page(offset); | |
6258 | map_size = vm_map_round_page(*size); | |
6259 | ||
6260 | /* | |
6261 | * Try and map the required range of the object | |
6262 | * in the kernel_map | |
6263 | */ | |
6264 | ||
91447636 A |
6265 | vm_object_reference_locked(object); /* for the map entry */ |
6266 | vm_object_unlock(object); | |
6267 | ||
6268 | kr = vm_map_enter(kernel_map, | |
6269 | address, | |
6270 | map_size, | |
6271 | 0, | |
6272 | VM_FLAGS_ANYWHERE, | |
6273 | object, | |
6274 | object_offset, | |
6275 | FALSE, | |
593a1d5f | 6276 | protection, |
91447636 A |
6277 | VM_PROT_ALL, |
6278 | VM_INHERIT_NONE); | |
6279 | if (kr != KERN_SUCCESS) { | |
6280 | *address = 0; | |
6281 | *size = 0; | |
6282 | vm_object_deallocate(object); /* for the map entry */ | |
2d21ac55 | 6283 | vm_object_lock(object); |
91447636 A |
6284 | return kr; |
6285 | } | |
6286 | ||
6287 | *size = map_size; | |
6288 | ||
6289 | /* | |
6290 | * Enter the mapped pages in the page table now. | |
6291 | */ | |
6292 | vm_object_lock(object); | |
2d21ac55 A |
6293 | /* |
6294 | * VM object must be kept locked from before PMAP_ENTER() | |
6295 | * until after the kernel is done accessing the page(s). | |
6296 | * Otherwise, the pmap mappings in the kernel could be | |
6297 | * undone by a call to vm_object_pmap_protect(). | |
6298 | */ | |
6299 | ||
91447636 A |
6300 | for (page_map_offset = 0; |
6301 | map_size != 0; | |
6302 | map_size -= PAGE_SIZE_64, page_map_offset += PAGE_SIZE_64) { | |
6303 | unsigned int cache_attr; | |
6304 | ||
6305 | page = vm_page_lookup(object, offset + page_map_offset); | |
6306 | if (page == VM_PAGE_NULL) { | |
2d21ac55 A |
6307 | printf("vm_paging_map_object: no page !?"); |
6308 | vm_object_unlock(object); | |
6309 | kr = vm_map_remove(kernel_map, *address, *size, | |
6310 | VM_MAP_NO_FLAGS); | |
6311 | assert(kr == KERN_SUCCESS); | |
6312 | *address = 0; | |
6313 | *size = 0; | |
6314 | vm_object_lock(object); | |
6315 | return KERN_MEMORY_ERROR; | |
91447636 | 6316 | } |
2d21ac55 | 6317 | if (page->pmapped == FALSE) { |
91447636 A |
6318 | pmap_sync_page_data_phys(page->phys_page); |
6319 | } | |
2d21ac55 | 6320 | page->pmapped = TRUE; |
91447636 A |
6321 | cache_attr = ((unsigned int) object->wimg_bits) & VM_WIMG_MASK; |
6322 | ||
2d21ac55 | 6323 | //assert(pmap_verify_free(page->phys_page)); |
91447636 A |
6324 | PMAP_ENTER(kernel_pmap, |
6325 | *address + page_map_offset, | |
6326 | page, | |
593a1d5f | 6327 | protection, |
91447636 | 6328 | cache_attr, |
0c530ab8 | 6329 | TRUE); |
91447636 A |
6330 | } |
6331 | ||
6332 | vm_paging_objects_mapped_slow++; | |
b0d623f7 | 6333 | vm_paging_pages_mapped_slow += (unsigned long) (map_size / PAGE_SIZE_64); |
91447636 A |
6334 | |
6335 | return KERN_SUCCESS; | |
6336 | } | |
6337 | ||
6338 | /* | |
6339 | * ENCRYPTED SWAP: | |
6340 | * vm_paging_unmap_object: | |
6341 | * Unmaps part of a VM object's pages from the kernel | |
6342 | * virtual address space. | |
6343 | * Context: | |
6344 | * The VM object is locked. This lock will get | |
6345 | * dropped and re-acquired though. | |
6346 | */ | |
6347 | void | |
6348 | vm_paging_unmap_object( | |
6349 | vm_object_t object, | |
6350 | vm_map_offset_t start, | |
6351 | vm_map_offset_t end) | |
6352 | { | |
6353 | kern_return_t kr; | |
91447636 | 6354 | int i; |
91447636 | 6355 | |
0c530ab8 | 6356 | if ((vm_paging_base_address == 0) || |
8f6c56a5 A |
6357 | (start < vm_paging_base_address) || |
6358 | (end > (vm_paging_base_address | |
2d21ac55 | 6359 | + (VM_PAGING_NUM_PAGES * PAGE_SIZE)))) { |
91447636 A |
6360 | /* |
6361 | * We didn't use our pre-allocated pool of | |
6362 | * kernel virtual address. Deallocate the | |
6363 | * virtual memory. | |
6364 | */ | |
6365 | if (object != VM_OBJECT_NULL) { | |
6366 | vm_object_unlock(object); | |
6367 | } | |
6368 | kr = vm_map_remove(kernel_map, start, end, VM_MAP_NO_FLAGS); | |
6369 | if (object != VM_OBJECT_NULL) { | |
6370 | vm_object_lock(object); | |
6371 | } | |
6372 | assert(kr == KERN_SUCCESS); | |
6373 | } else { | |
6374 | /* | |
6375 | * We used a kernel virtual address from our | |
6376 | * pre-allocated pool. Put it back in the pool | |
6377 | * for next time. | |
6378 | */ | |
91447636 | 6379 | assert(end - start == PAGE_SIZE); |
b0d623f7 A |
6380 | i = (int) ((start - vm_paging_base_address) >> PAGE_SHIFT); |
6381 | assert(i >= 0 && i < VM_PAGING_NUM_PAGES); | |
91447636 A |
6382 | |
6383 | /* undo the pmap mapping */ | |
0c530ab8 | 6384 | pmap_remove(kernel_pmap, start, end); |
91447636 A |
6385 | |
6386 | simple_lock(&vm_paging_lock); | |
6387 | vm_paging_page_inuse[i] = FALSE; | |
2d21ac55 A |
6388 | if (vm_paging_page_waiter) { |
6389 | thread_wakeup(&vm_paging_page_waiter); | |
6390 | } | |
91447636 | 6391 | simple_unlock(&vm_paging_lock); |
91447636 A |
6392 | } |
6393 | } | |
6394 | ||
2d21ac55 | 6395 | #if CRYPTO |
91447636 A |
6396 | /* |
6397 | * Encryption data. | |
6398 | * "iv" is the "initial vector". Ideally, we want to | |
6399 | * have a different one for each page we encrypt, so that | |
6400 | * crackers can't find encryption patterns too easily. | |
6401 | */ | |
6402 | #define SWAP_CRYPT_AES_KEY_SIZE 128 /* XXX 192 and 256 don't work ! */ | |
6403 | boolean_t swap_crypt_ctx_initialized = FALSE; | |
6404 | aes_32t swap_crypt_key[8]; /* big enough for a 256 key */ | |
6405 | aes_ctx swap_crypt_ctx; | |
6406 | const unsigned char swap_crypt_null_iv[AES_BLOCK_SIZE] = {0xa, }; | |
6407 | ||
6408 | #if DEBUG | |
6409 | boolean_t swap_crypt_ctx_tested = FALSE; | |
6410 | unsigned char swap_crypt_test_page_ref[4096] __attribute__((aligned(4096))); | |
6411 | unsigned char swap_crypt_test_page_encrypt[4096] __attribute__((aligned(4096))); | |
6412 | unsigned char swap_crypt_test_page_decrypt[4096] __attribute__((aligned(4096))); | |
6413 | #endif /* DEBUG */ | |
6414 | ||
91447636 A |
6415 | /* |
6416 | * Initialize the encryption context: key and key size. | |
6417 | */ | |
6418 | void swap_crypt_ctx_initialize(void); /* forward */ | |
6419 | void | |
6420 | swap_crypt_ctx_initialize(void) | |
6421 | { | |
6422 | unsigned int i; | |
6423 | ||
6424 | /* | |
6425 | * No need for locking to protect swap_crypt_ctx_initialized | |
6426 | * because the first use of encryption will come from the | |
6427 | * pageout thread (we won't pagein before there's been a pageout) | |
6428 | * and there's only one pageout thread. | |
6429 | */ | |
6430 | if (swap_crypt_ctx_initialized == FALSE) { | |
6431 | for (i = 0; | |
6432 | i < (sizeof (swap_crypt_key) / | |
6433 | sizeof (swap_crypt_key[0])); | |
6434 | i++) { | |
6435 | swap_crypt_key[i] = random(); | |
6436 | } | |
6437 | aes_encrypt_key((const unsigned char *) swap_crypt_key, | |
6438 | SWAP_CRYPT_AES_KEY_SIZE, | |
6439 | &swap_crypt_ctx.encrypt); | |
6440 | aes_decrypt_key((const unsigned char *) swap_crypt_key, | |
6441 | SWAP_CRYPT_AES_KEY_SIZE, | |
6442 | &swap_crypt_ctx.decrypt); | |
6443 | swap_crypt_ctx_initialized = TRUE; | |
6444 | } | |
6445 | ||
6446 | #if DEBUG | |
6447 | /* | |
6448 | * Validate the encryption algorithms. | |
6449 | */ | |
6450 | if (swap_crypt_ctx_tested == FALSE) { | |
6451 | /* initialize */ | |
6452 | for (i = 0; i < 4096; i++) { | |
6453 | swap_crypt_test_page_ref[i] = (char) i; | |
6454 | } | |
6455 | /* encrypt */ | |
6456 | aes_encrypt_cbc(swap_crypt_test_page_ref, | |
6457 | swap_crypt_null_iv, | |
6458 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6459 | swap_crypt_test_page_encrypt, | |
6460 | &swap_crypt_ctx.encrypt); | |
6461 | /* decrypt */ | |
6462 | aes_decrypt_cbc(swap_crypt_test_page_encrypt, | |
6463 | swap_crypt_null_iv, | |
6464 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6465 | swap_crypt_test_page_decrypt, | |
6466 | &swap_crypt_ctx.decrypt); | |
6467 | /* compare result with original */ | |
6468 | for (i = 0; i < 4096; i ++) { | |
6469 | if (swap_crypt_test_page_decrypt[i] != | |
6470 | swap_crypt_test_page_ref[i]) { | |
6471 | panic("encryption test failed"); | |
6472 | } | |
6473 | } | |
6474 | ||
6475 | /* encrypt again */ | |
6476 | aes_encrypt_cbc(swap_crypt_test_page_decrypt, | |
6477 | swap_crypt_null_iv, | |
6478 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6479 | swap_crypt_test_page_decrypt, | |
6480 | &swap_crypt_ctx.encrypt); | |
6481 | /* decrypt in place */ | |
6482 | aes_decrypt_cbc(swap_crypt_test_page_decrypt, | |
6483 | swap_crypt_null_iv, | |
6484 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6485 | swap_crypt_test_page_decrypt, | |
6486 | &swap_crypt_ctx.decrypt); | |
6487 | for (i = 0; i < 4096; i ++) { | |
6488 | if (swap_crypt_test_page_decrypt[i] != | |
6489 | swap_crypt_test_page_ref[i]) { | |
6490 | panic("in place encryption test failed"); | |
6491 | } | |
6492 | } | |
6493 | ||
6494 | swap_crypt_ctx_tested = TRUE; | |
6495 | } | |
6496 | #endif /* DEBUG */ | |
6497 | } | |
6498 | ||
6499 | /* | |
6500 | * ENCRYPTED SWAP: | |
6501 | * vm_page_encrypt: | |
6502 | * Encrypt the given page, for secure paging. | |
6503 | * The page might already be mapped at kernel virtual | |
6504 | * address "kernel_mapping_offset". Otherwise, we need | |
6505 | * to map it. | |
6506 | * | |
6507 | * Context: | |
6508 | * The page's object is locked, but this lock will be released | |
6509 | * and re-acquired. | |
6510 | * The page is busy and not accessible by users (not entered in any pmap). | |
6511 | */ | |
6512 | void | |
6513 | vm_page_encrypt( | |
6514 | vm_page_t page, | |
6515 | vm_map_offset_t kernel_mapping_offset) | |
6516 | { | |
91447636 | 6517 | kern_return_t kr; |
91447636 A |
6518 | vm_map_size_t kernel_mapping_size; |
6519 | vm_offset_t kernel_vaddr; | |
6520 | union { | |
6521 | unsigned char aes_iv[AES_BLOCK_SIZE]; | |
6522 | struct { | |
6523 | memory_object_t pager_object; | |
6524 | vm_object_offset_t paging_offset; | |
6525 | } vm; | |
6526 | } encrypt_iv; | |
6527 | ||
6528 | if (! vm_pages_encrypted) { | |
6529 | vm_pages_encrypted = TRUE; | |
6530 | } | |
6531 | ||
6532 | assert(page->busy); | |
6533 | assert(page->dirty || page->precious); | |
6534 | ||
6535 | if (page->encrypted) { | |
6536 | /* | |
6537 | * Already encrypted: no need to do it again. | |
6538 | */ | |
6539 | vm_page_encrypt_already_encrypted_counter++; | |
6540 | return; | |
6541 | } | |
6542 | ASSERT_PAGE_DECRYPTED(page); | |
6543 | ||
6544 | /* | |
2d21ac55 A |
6545 | * Take a paging-in-progress reference to keep the object |
6546 | * alive even if we have to unlock it (in vm_paging_map_object() | |
6547 | * for example)... | |
91447636 | 6548 | */ |
2d21ac55 | 6549 | vm_object_paging_begin(page->object); |
91447636 A |
6550 | |
6551 | if (kernel_mapping_offset == 0) { | |
6552 | /* | |
6553 | * The page hasn't already been mapped in kernel space | |
6554 | * by the caller. Map it now, so that we can access | |
6555 | * its contents and encrypt them. | |
6556 | */ | |
6557 | kernel_mapping_size = PAGE_SIZE; | |
6558 | kr = vm_paging_map_object(&kernel_mapping_offset, | |
6559 | page, | |
6560 | page->object, | |
6561 | page->offset, | |
2d21ac55 | 6562 | &kernel_mapping_size, |
593a1d5f | 6563 | VM_PROT_READ | VM_PROT_WRITE, |
2d21ac55 | 6564 | FALSE); |
91447636 A |
6565 | if (kr != KERN_SUCCESS) { |
6566 | panic("vm_page_encrypt: " | |
6567 | "could not map page in kernel: 0x%x\n", | |
6568 | kr); | |
6569 | } | |
6570 | } else { | |
6571 | kernel_mapping_size = 0; | |
6572 | } | |
6573 | kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset); | |
6574 | ||
6575 | if (swap_crypt_ctx_initialized == FALSE) { | |
6576 | swap_crypt_ctx_initialize(); | |
6577 | } | |
6578 | assert(swap_crypt_ctx_initialized); | |
6579 | ||
6580 | /* | |
6581 | * Prepare an "initial vector" for the encryption. | |
6582 | * We use the "pager" and the "paging_offset" for that | |
6583 | * page to obfuscate the encrypted data a bit more and | |
6584 | * prevent crackers from finding patterns that they could | |
6585 | * use to break the key. | |
6586 | */ | |
6587 | bzero(&encrypt_iv.aes_iv[0], sizeof (encrypt_iv.aes_iv)); | |
6588 | encrypt_iv.vm.pager_object = page->object->pager; | |
6589 | encrypt_iv.vm.paging_offset = | |
6590 | page->object->paging_offset + page->offset; | |
6591 | ||
91447636 A |
6592 | /* encrypt the "initial vector" */ |
6593 | aes_encrypt_cbc((const unsigned char *) &encrypt_iv.aes_iv[0], | |
6594 | swap_crypt_null_iv, | |
6595 | 1, | |
6596 | &encrypt_iv.aes_iv[0], | |
6597 | &swap_crypt_ctx.encrypt); | |
6598 | ||
6599 | /* | |
6600 | * Encrypt the page. | |
6601 | */ | |
6602 | aes_encrypt_cbc((const unsigned char *) kernel_vaddr, | |
6603 | &encrypt_iv.aes_iv[0], | |
6604 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6605 | (unsigned char *) kernel_vaddr, | |
6606 | &swap_crypt_ctx.encrypt); | |
6607 | ||
6608 | vm_page_encrypt_counter++; | |
6609 | ||
91447636 A |
6610 | /* |
6611 | * Unmap the page from the kernel's address space, | |
6612 | * if we had to map it ourselves. Otherwise, let | |
6613 | * the caller undo the mapping if needed. | |
6614 | */ | |
6615 | if (kernel_mapping_size != 0) { | |
6616 | vm_paging_unmap_object(page->object, | |
6617 | kernel_mapping_offset, | |
6618 | kernel_mapping_offset + kernel_mapping_size); | |
6619 | } | |
6620 | ||
6621 | /* | |
2d21ac55 | 6622 | * Clear the "reference" and "modified" bits. |
91447636 A |
6623 | * This should clean up any impact the encryption had |
6624 | * on them. | |
2d21ac55 A |
6625 | * The page was kept busy and disconnected from all pmaps, |
6626 | * so it can't have been referenced or modified from user | |
6627 | * space. | |
6628 | * The software bits will be reset later after the I/O | |
6629 | * has completed (in upl_commit_range()). | |
91447636 | 6630 | */ |
2d21ac55 | 6631 | pmap_clear_refmod(page->phys_page, VM_MEM_REFERENCED | VM_MEM_MODIFIED); |
91447636 A |
6632 | |
6633 | page->encrypted = TRUE; | |
2d21ac55 A |
6634 | |
6635 | vm_object_paging_end(page->object); | |
91447636 A |
6636 | } |
6637 | ||
6638 | /* | |
6639 | * ENCRYPTED SWAP: | |
6640 | * vm_page_decrypt: | |
6641 | * Decrypt the given page. | |
6642 | * The page might already be mapped at kernel virtual | |
6643 | * address "kernel_mapping_offset". Otherwise, we need | |
6644 | * to map it. | |
6645 | * | |
6646 | * Context: | |
6647 | * The page's VM object is locked but will be unlocked and relocked. | |
6648 | * The page is busy and not accessible by users (not entered in any pmap). | |
6649 | */ | |
6650 | void | |
6651 | vm_page_decrypt( | |
6652 | vm_page_t page, | |
6653 | vm_map_offset_t kernel_mapping_offset) | |
6654 | { | |
91447636 A |
6655 | kern_return_t kr; |
6656 | vm_map_size_t kernel_mapping_size; | |
6657 | vm_offset_t kernel_vaddr; | |
91447636 A |
6658 | union { |
6659 | unsigned char aes_iv[AES_BLOCK_SIZE]; | |
6660 | struct { | |
6661 | memory_object_t pager_object; | |
6662 | vm_object_offset_t paging_offset; | |
6663 | } vm; | |
6664 | } decrypt_iv; | |
6665 | ||
6666 | assert(page->busy); | |
6667 | assert(page->encrypted); | |
6668 | ||
6669 | /* | |
2d21ac55 A |
6670 | * Take a paging-in-progress reference to keep the object |
6671 | * alive even if we have to unlock it (in vm_paging_map_object() | |
6672 | * for example)... | |
91447636 | 6673 | */ |
2d21ac55 | 6674 | vm_object_paging_begin(page->object); |
91447636 A |
6675 | |
6676 | if (kernel_mapping_offset == 0) { | |
6677 | /* | |
6678 | * The page hasn't already been mapped in kernel space | |
6679 | * by the caller. Map it now, so that we can access | |
6680 | * its contents and decrypt them. | |
6681 | */ | |
6682 | kernel_mapping_size = PAGE_SIZE; | |
6683 | kr = vm_paging_map_object(&kernel_mapping_offset, | |
6684 | page, | |
6685 | page->object, | |
6686 | page->offset, | |
2d21ac55 | 6687 | &kernel_mapping_size, |
593a1d5f | 6688 | VM_PROT_READ | VM_PROT_WRITE, |
2d21ac55 | 6689 | FALSE); |
91447636 A |
6690 | if (kr != KERN_SUCCESS) { |
6691 | panic("vm_page_decrypt: " | |
2d21ac55 A |
6692 | "could not map page in kernel: 0x%x\n", |
6693 | kr); | |
91447636 A |
6694 | } |
6695 | } else { | |
6696 | kernel_mapping_size = 0; | |
6697 | } | |
6698 | kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset); | |
6699 | ||
6700 | assert(swap_crypt_ctx_initialized); | |
6701 | ||
6702 | /* | |
6703 | * Prepare an "initial vector" for the decryption. | |
6704 | * It has to be the same as the "initial vector" we | |
6705 | * used to encrypt that page. | |
6706 | */ | |
6707 | bzero(&decrypt_iv.aes_iv[0], sizeof (decrypt_iv.aes_iv)); | |
6708 | decrypt_iv.vm.pager_object = page->object->pager; | |
6709 | decrypt_iv.vm.paging_offset = | |
6710 | page->object->paging_offset + page->offset; | |
6711 | ||
91447636 A |
6712 | /* encrypt the "initial vector" */ |
6713 | aes_encrypt_cbc((const unsigned char *) &decrypt_iv.aes_iv[0], | |
6714 | swap_crypt_null_iv, | |
6715 | 1, | |
6716 | &decrypt_iv.aes_iv[0], | |
6717 | &swap_crypt_ctx.encrypt); | |
6718 | ||
6719 | /* | |
6720 | * Decrypt the page. | |
6721 | */ | |
6722 | aes_decrypt_cbc((const unsigned char *) kernel_vaddr, | |
6723 | &decrypt_iv.aes_iv[0], | |
6724 | PAGE_SIZE / AES_BLOCK_SIZE, | |
6725 | (unsigned char *) kernel_vaddr, | |
6726 | &swap_crypt_ctx.decrypt); | |
6727 | vm_page_decrypt_counter++; | |
6728 | ||
91447636 A |
6729 | /* |
6730 | * Unmap the page from the kernel's address space, | |
6731 | * if we had to map it ourselves. Otherwise, let | |
6732 | * the caller undo the mapping if needed. | |
6733 | */ | |
6734 | if (kernel_mapping_size != 0) { | |
6735 | vm_paging_unmap_object(page->object, | |
6736 | kernel_vaddr, | |
6737 | kernel_vaddr + PAGE_SIZE); | |
6738 | } | |
6739 | ||
6740 | /* | |
6741 | * After decryption, the page is actually clean. | |
6742 | * It was encrypted as part of paging, which "cleans" | |
6743 | * the "dirty" pages. | |
6744 | * Noone could access it after it was encrypted | |
6745 | * and the decryption doesn't count. | |
6746 | */ | |
6747 | page->dirty = FALSE; | |
b0d623f7 | 6748 | assert (page->cs_validated == FALSE); |
2d21ac55 | 6749 | pmap_clear_refmod(page->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); |
91447636 A |
6750 | page->encrypted = FALSE; |
6751 | ||
6752 | /* | |
6753 | * We've just modified the page's contents via the data cache and part | |
6754 | * of the new contents might still be in the cache and not yet in RAM. | |
6755 | * Since the page is now available and might get gathered in a UPL to | |
6756 | * be part of a DMA transfer from a driver that expects the memory to | |
6757 | * be coherent at this point, we have to flush the data cache. | |
6758 | */ | |
0c530ab8 | 6759 | pmap_sync_page_attributes_phys(page->phys_page); |
91447636 A |
6760 | /* |
6761 | * Since the page is not mapped yet, some code might assume that it | |
6762 | * doesn't need to invalidate the instruction cache when writing to | |
2d21ac55 A |
6763 | * that page. That code relies on "pmapped" being FALSE, so that the |
6764 | * caches get synchronized when the page is first mapped. | |
91447636 | 6765 | */ |
2d21ac55 A |
6766 | assert(pmap_verify_free(page->phys_page)); |
6767 | page->pmapped = FALSE; | |
4a3eedf9 | 6768 | page->wpmapped = FALSE; |
2d21ac55 A |
6769 | |
6770 | vm_object_paging_end(page->object); | |
91447636 A |
6771 | } |
6772 | ||
b0d623f7 | 6773 | #if DEVELOPMENT || DEBUG |
91447636 A |
6774 | unsigned long upl_encrypt_upls = 0; |
6775 | unsigned long upl_encrypt_pages = 0; | |
b0d623f7 | 6776 | #endif |
91447636 A |
6777 | |
6778 | /* | |
6779 | * ENCRYPTED SWAP: | |
6780 | * | |
6781 | * upl_encrypt: | |
6782 | * Encrypts all the pages in the UPL, within the specified range. | |
6783 | * | |
6784 | */ | |
6785 | void | |
6786 | upl_encrypt( | |
6787 | upl_t upl, | |
6788 | upl_offset_t crypt_offset, | |
6789 | upl_size_t crypt_size) | |
6790 | { | |
b0d623f7 A |
6791 | upl_size_t upl_size, subupl_size=crypt_size; |
6792 | upl_offset_t offset_in_upl, subupl_offset=crypt_offset; | |
91447636 | 6793 | vm_object_t upl_object; |
b0d623f7 | 6794 | vm_object_offset_t upl_offset; |
91447636 A |
6795 | vm_page_t page; |
6796 | vm_object_t shadow_object; | |
6797 | vm_object_offset_t shadow_offset; | |
6798 | vm_object_offset_t paging_offset; | |
6799 | vm_object_offset_t base_offset; | |
b0d623f7 A |
6800 | int isVectorUPL = 0; |
6801 | upl_t vector_upl = NULL; | |
6802 | ||
6803 | if((isVectorUPL = vector_upl_is_valid(upl))) | |
6804 | vector_upl = upl; | |
6805 | ||
6806 | process_upl_to_encrypt: | |
6807 | if(isVectorUPL) { | |
6808 | crypt_size = subupl_size; | |
6809 | crypt_offset = subupl_offset; | |
6810 | upl = vector_upl_subupl_byoffset(vector_upl, &crypt_offset, &crypt_size); | |
6811 | if(upl == NULL) | |
6812 | panic("upl_encrypt: Accessing a sub-upl that doesn't exist\n"); | |
6813 | subupl_size -= crypt_size; | |
6814 | subupl_offset += crypt_size; | |
6815 | } | |
91447636 | 6816 | |
b0d623f7 | 6817 | #if DEVELOPMENT || DEBUG |
91447636 A |
6818 | upl_encrypt_upls++; |
6819 | upl_encrypt_pages += crypt_size / PAGE_SIZE; | |
b0d623f7 | 6820 | #endif |
91447636 A |
6821 | upl_object = upl->map_object; |
6822 | upl_offset = upl->offset; | |
6823 | upl_size = upl->size; | |
6824 | ||
91447636 A |
6825 | vm_object_lock(upl_object); |
6826 | ||
6827 | /* | |
6828 | * Find the VM object that contains the actual pages. | |
6829 | */ | |
6830 | if (upl_object->pageout) { | |
6831 | shadow_object = upl_object->shadow; | |
6832 | /* | |
6833 | * The offset in the shadow object is actually also | |
6834 | * accounted for in upl->offset. It possibly shouldn't be | |
6835 | * this way, but for now don't account for it twice. | |
6836 | */ | |
6837 | shadow_offset = 0; | |
6838 | assert(upl_object->paging_offset == 0); /* XXX ? */ | |
6839 | vm_object_lock(shadow_object); | |
6840 | } else { | |
6841 | shadow_object = upl_object; | |
6842 | shadow_offset = 0; | |
6843 | } | |
6844 | ||
6845 | paging_offset = shadow_object->paging_offset; | |
6846 | vm_object_paging_begin(shadow_object); | |
6847 | ||
2d21ac55 A |
6848 | if (shadow_object != upl_object) |
6849 | vm_object_unlock(upl_object); | |
6850 | ||
91447636 A |
6851 | |
6852 | base_offset = shadow_offset; | |
6853 | base_offset += upl_offset; | |
6854 | base_offset += crypt_offset; | |
6855 | base_offset -= paging_offset; | |
91447636 | 6856 | |
2d21ac55 | 6857 | assert(crypt_offset + crypt_size <= upl_size); |
91447636 | 6858 | |
b0d623f7 A |
6859 | for (offset_in_upl = 0; |
6860 | offset_in_upl < crypt_size; | |
6861 | offset_in_upl += PAGE_SIZE) { | |
91447636 | 6862 | page = vm_page_lookup(shadow_object, |
b0d623f7 | 6863 | base_offset + offset_in_upl); |
91447636 A |
6864 | if (page == VM_PAGE_NULL) { |
6865 | panic("upl_encrypt: " | |
6866 | "no page for (obj=%p,off=%lld+%d)!\n", | |
6867 | shadow_object, | |
6868 | base_offset, | |
b0d623f7 | 6869 | offset_in_upl); |
91447636 | 6870 | } |
2d21ac55 A |
6871 | /* |
6872 | * Disconnect the page from all pmaps, so that nobody can | |
6873 | * access it while it's encrypted. After that point, all | |
6874 | * accesses to this page will cause a page fault and block | |
6875 | * while the page is busy being encrypted. After the | |
6876 | * encryption completes, any access will cause a | |
6877 | * page fault and the page gets decrypted at that time. | |
6878 | */ | |
6879 | pmap_disconnect(page->phys_page); | |
91447636 | 6880 | vm_page_encrypt(page, 0); |
2d21ac55 | 6881 | |
b0d623f7 | 6882 | if (vm_object_lock_avoid(shadow_object)) { |
2d21ac55 A |
6883 | /* |
6884 | * Give vm_pageout_scan() a chance to convert more | |
6885 | * pages from "clean-in-place" to "clean-and-free", | |
6886 | * if it's interested in the same pages we selected | |
6887 | * in this cluster. | |
6888 | */ | |
6889 | vm_object_unlock(shadow_object); | |
b0d623f7 | 6890 | mutex_pause(2); |
2d21ac55 A |
6891 | vm_object_lock(shadow_object); |
6892 | } | |
91447636 A |
6893 | } |
6894 | ||
6895 | vm_object_paging_end(shadow_object); | |
6896 | vm_object_unlock(shadow_object); | |
b0d623f7 A |
6897 | |
6898 | if(isVectorUPL && subupl_size) | |
6899 | goto process_upl_to_encrypt; | |
91447636 A |
6900 | } |
6901 | ||
2d21ac55 A |
6902 | #else /* CRYPTO */ |
6903 | void | |
6904 | upl_encrypt( | |
6905 | __unused upl_t upl, | |
6906 | __unused upl_offset_t crypt_offset, | |
6907 | __unused upl_size_t crypt_size) | |
6908 | { | |
6909 | } | |
6910 | ||
6911 | void | |
6912 | vm_page_encrypt( | |
6913 | __unused vm_page_t page, | |
6914 | __unused vm_map_offset_t kernel_mapping_offset) | |
6915 | { | |
6916 | } | |
6917 | ||
6918 | void | |
6919 | vm_page_decrypt( | |
6920 | __unused vm_page_t page, | |
6921 | __unused vm_map_offset_t kernel_mapping_offset) | |
6922 | { | |
6923 | } | |
6924 | ||
6925 | #endif /* CRYPTO */ | |
6926 | ||
b0d623f7 A |
6927 | void |
6928 | vm_pageout_queue_steal(vm_page_t page, boolean_t queues_locked) | |
6929 | { | |
6930 | page->list_req_pending = FALSE; | |
6931 | page->cleaning = FALSE; | |
6932 | page->pageout = FALSE; | |
6933 | ||
6934 | if (!queues_locked) { | |
6935 | vm_page_lockspin_queues(); | |
6936 | } | |
6937 | ||
6938 | /* | |
6939 | * need to drop the laundry count... | |
6940 | * we may also need to remove it | |
6941 | * from the I/O paging queue... | |
6942 | * vm_pageout_throttle_up handles both cases | |
6943 | * | |
6944 | * the laundry and pageout_queue flags are cleared... | |
6945 | */ | |
6946 | vm_pageout_throttle_up(page); | |
6947 | ||
6948 | /* | |
6949 | * toss the wire count we picked up | |
6950 | * when we intially set this page up | |
6951 | * to be cleaned... | |
6952 | */ | |
6953 | vm_page_unwire(page); | |
6954 | ||
6955 | vm_page_steal_pageout_page++; | |
6956 | ||
6957 | if (!queues_locked) { | |
6958 | vm_page_unlock_queues(); | |
6959 | } | |
6960 | } | |
6961 | ||
6962 | upl_t | |
6963 | vector_upl_create(vm_offset_t upl_offset) | |
6964 | { | |
6965 | int vector_upl_size = sizeof(struct _vector_upl); | |
6966 | int i=0; | |
6967 | upl_t upl; | |
6968 | vector_upl_t vector_upl = (vector_upl_t)kalloc(vector_upl_size); | |
6969 | ||
6970 | upl = upl_create(0,UPL_VECTOR,0); | |
6971 | upl->vector_upl = vector_upl; | |
6972 | upl->offset = upl_offset; | |
6973 | vector_upl->size = 0; | |
6974 | vector_upl->offset = upl_offset; | |
6975 | vector_upl->invalid_upls=0; | |
6976 | vector_upl->num_upls=0; | |
6977 | vector_upl->pagelist = NULL; | |
6978 | ||
6979 | for(i=0; i < MAX_VECTOR_UPL_ELEMENTS ; i++) { | |
6980 | vector_upl->upl_iostates[i].size = 0; | |
6981 | vector_upl->upl_iostates[i].offset = 0; | |
6982 | ||
6983 | } | |
6984 | return upl; | |
6985 | } | |
6986 | ||
6987 | void | |
6988 | vector_upl_deallocate(upl_t upl) | |
6989 | { | |
6990 | if(upl) { | |
6991 | vector_upl_t vector_upl = upl->vector_upl; | |
6992 | if(vector_upl) { | |
6993 | if(vector_upl->invalid_upls != vector_upl->num_upls) | |
6994 | panic("Deallocating non-empty Vectored UPL\n"); | |
6995 | kfree(vector_upl->pagelist,(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE))); | |
6996 | vector_upl->invalid_upls=0; | |
6997 | vector_upl->num_upls = 0; | |
6998 | vector_upl->pagelist = NULL; | |
6999 | vector_upl->size = 0; | |
7000 | vector_upl->offset = 0; | |
7001 | kfree(vector_upl, sizeof(struct _vector_upl)); | |
7002 | vector_upl = (vector_upl_t)0xdeadbeef; | |
7003 | } | |
7004 | else | |
7005 | panic("vector_upl_deallocate was passed a non-vectored upl\n"); | |
7006 | } | |
7007 | else | |
7008 | panic("vector_upl_deallocate was passed a NULL upl\n"); | |
7009 | } | |
7010 | ||
7011 | boolean_t | |
7012 | vector_upl_is_valid(upl_t upl) | |
7013 | { | |
7014 | if(upl && ((upl->flags & UPL_VECTOR)==UPL_VECTOR)) { | |
7015 | vector_upl_t vector_upl = upl->vector_upl; | |
7016 | if(vector_upl == NULL || vector_upl == (vector_upl_t)0xdeadbeef || vector_upl == (vector_upl_t)0xfeedbeef) | |
7017 | return FALSE; | |
7018 | else | |
7019 | return TRUE; | |
7020 | } | |
7021 | return FALSE; | |
7022 | } | |
7023 | ||
7024 | boolean_t | |
7025 | vector_upl_set_subupl(upl_t upl,upl_t subupl, uint32_t io_size) | |
7026 | { | |
7027 | if(vector_upl_is_valid(upl)) { | |
7028 | vector_upl_t vector_upl = upl->vector_upl; | |
7029 | ||
7030 | if(vector_upl) { | |
7031 | if(subupl) { | |
7032 | if(io_size) { | |
7033 | if(io_size < PAGE_SIZE) | |
7034 | io_size = PAGE_SIZE; | |
7035 | subupl->vector_upl = (void*)vector_upl; | |
7036 | vector_upl->upl_elems[vector_upl->num_upls++] = subupl; | |
7037 | vector_upl->size += io_size; | |
7038 | upl->size += io_size; | |
7039 | } | |
7040 | else { | |
7041 | uint32_t i=0,invalid_upls=0; | |
7042 | for(i = 0; i < vector_upl->num_upls; i++) { | |
7043 | if(vector_upl->upl_elems[i] == subupl) | |
7044 | break; | |
7045 | } | |
7046 | if(i == vector_upl->num_upls) | |
7047 | panic("Trying to remove sub-upl when none exists"); | |
7048 | ||
7049 | vector_upl->upl_elems[i] = NULL; | |
7050 | invalid_upls = hw_atomic_add(&(vector_upl)->invalid_upls, 1); | |
7051 | if(invalid_upls == vector_upl->num_upls) | |
7052 | return TRUE; | |
7053 | else | |
7054 | return FALSE; | |
7055 | } | |
7056 | } | |
7057 | else | |
7058 | panic("vector_upl_set_subupl was passed a NULL upl element\n"); | |
7059 | } | |
7060 | else | |
7061 | panic("vector_upl_set_subupl was passed a non-vectored upl\n"); | |
7062 | } | |
7063 | else | |
7064 | panic("vector_upl_set_subupl was passed a NULL upl\n"); | |
7065 | ||
7066 | return FALSE; | |
7067 | } | |
7068 | ||
7069 | void | |
7070 | vector_upl_set_pagelist(upl_t upl) | |
7071 | { | |
7072 | if(vector_upl_is_valid(upl)) { | |
7073 | uint32_t i=0; | |
7074 | vector_upl_t vector_upl = upl->vector_upl; | |
7075 | ||
7076 | if(vector_upl) { | |
7077 | vm_offset_t pagelist_size=0, cur_upl_pagelist_size=0; | |
7078 | ||
7079 | vector_upl->pagelist = (upl_page_info_array_t)kalloc(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)); | |
7080 | ||
7081 | for(i=0; i < vector_upl->num_upls; i++) { | |
7082 | cur_upl_pagelist_size = sizeof(struct upl_page_info) * vector_upl->upl_elems[i]->size/PAGE_SIZE; | |
7083 | bcopy(UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(vector_upl->upl_elems[i]), (char*)vector_upl->pagelist + pagelist_size, cur_upl_pagelist_size); | |
7084 | pagelist_size += cur_upl_pagelist_size; | |
7085 | if(vector_upl->upl_elems[i]->highest_page > upl->highest_page) | |
7086 | upl->highest_page = vector_upl->upl_elems[i]->highest_page; | |
7087 | } | |
7088 | assert( pagelist_size == (sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)) ); | |
7089 | } | |
7090 | else | |
7091 | panic("vector_upl_set_pagelist was passed a non-vectored upl\n"); | |
7092 | } | |
7093 | else | |
7094 | panic("vector_upl_set_pagelist was passed a NULL upl\n"); | |
7095 | ||
7096 | } | |
7097 | ||
7098 | upl_t | |
7099 | vector_upl_subupl_byindex(upl_t upl, uint32_t index) | |
7100 | { | |
7101 | if(vector_upl_is_valid(upl)) { | |
7102 | vector_upl_t vector_upl = upl->vector_upl; | |
7103 | if(vector_upl) { | |
7104 | if(index < vector_upl->num_upls) | |
7105 | return vector_upl->upl_elems[index]; | |
7106 | } | |
7107 | else | |
7108 | panic("vector_upl_subupl_byindex was passed a non-vectored upl\n"); | |
7109 | } | |
7110 | return NULL; | |
7111 | } | |
7112 | ||
7113 | upl_t | |
7114 | vector_upl_subupl_byoffset(upl_t upl, upl_offset_t *upl_offset, upl_size_t *upl_size) | |
7115 | { | |
7116 | if(vector_upl_is_valid(upl)) { | |
7117 | uint32_t i=0; | |
7118 | vector_upl_t vector_upl = upl->vector_upl; | |
7119 | ||
7120 | if(vector_upl) { | |
7121 | upl_t subupl = NULL; | |
7122 | vector_upl_iostates_t subupl_state; | |
7123 | ||
7124 | for(i=0; i < vector_upl->num_upls; i++) { | |
7125 | subupl = vector_upl->upl_elems[i]; | |
7126 | subupl_state = vector_upl->upl_iostates[i]; | |
7127 | if( *upl_offset <= (subupl_state.offset + subupl_state.size - 1)) { | |
7128 | /* We could have been passed an offset/size pair that belongs | |
7129 | * to an UPL element that has already been committed/aborted. | |
7130 | * If so, return NULL. | |
7131 | */ | |
7132 | if(subupl == NULL) | |
7133 | return NULL; | |
7134 | if((subupl_state.offset + subupl_state.size) < (*upl_offset + *upl_size)) { | |
7135 | *upl_size = (subupl_state.offset + subupl_state.size) - *upl_offset; | |
7136 | if(*upl_size > subupl_state.size) | |
7137 | *upl_size = subupl_state.size; | |
7138 | } | |
7139 | if(*upl_offset >= subupl_state.offset) | |
7140 | *upl_offset -= subupl_state.offset; | |
7141 | else if(i) | |
7142 | panic("Vector UPL offset miscalculation\n"); | |
7143 | return subupl; | |
7144 | } | |
7145 | } | |
7146 | } | |
7147 | else | |
7148 | panic("vector_upl_subupl_byoffset was passed a non-vectored UPL\n"); | |
7149 | } | |
7150 | return NULL; | |
7151 | } | |
7152 | ||
7153 | void | |
7154 | vector_upl_get_submap(upl_t upl, vm_map_t *v_upl_submap, vm_offset_t *submap_dst_addr) | |
7155 | { | |
7156 | *v_upl_submap = NULL; | |
7157 | ||
7158 | if(vector_upl_is_valid(upl)) { | |
7159 | vector_upl_t vector_upl = upl->vector_upl; | |
7160 | if(vector_upl) { | |
7161 | *v_upl_submap = vector_upl->submap; | |
7162 | *submap_dst_addr = vector_upl->submap_dst_addr; | |
7163 | } | |
7164 | else | |
7165 | panic("vector_upl_get_submap was passed a non-vectored UPL\n"); | |
7166 | } | |
7167 | else | |
7168 | panic("vector_upl_get_submap was passed a null UPL\n"); | |
7169 | } | |
7170 | ||
7171 | void | |
7172 | vector_upl_set_submap(upl_t upl, vm_map_t submap, vm_offset_t submap_dst_addr) | |
7173 | { | |
7174 | if(vector_upl_is_valid(upl)) { | |
7175 | vector_upl_t vector_upl = upl->vector_upl; | |
7176 | if(vector_upl) { | |
7177 | vector_upl->submap = submap; | |
7178 | vector_upl->submap_dst_addr = submap_dst_addr; | |
7179 | } | |
7180 | else | |
7181 | panic("vector_upl_get_submap was passed a non-vectored UPL\n"); | |
7182 | } | |
7183 | else | |
7184 | panic("vector_upl_get_submap was passed a NULL UPL\n"); | |
7185 | } | |
7186 | ||
7187 | void | |
7188 | vector_upl_set_iostate(upl_t upl, upl_t subupl, upl_offset_t offset, upl_size_t size) | |
7189 | { | |
7190 | if(vector_upl_is_valid(upl)) { | |
7191 | uint32_t i = 0; | |
7192 | vector_upl_t vector_upl = upl->vector_upl; | |
7193 | ||
7194 | if(vector_upl) { | |
7195 | for(i = 0; i < vector_upl->num_upls; i++) { | |
7196 | if(vector_upl->upl_elems[i] == subupl) | |
7197 | break; | |
7198 | } | |
7199 | ||
7200 | if(i == vector_upl->num_upls) | |
7201 | panic("setting sub-upl iostate when none exists"); | |
7202 | ||
7203 | vector_upl->upl_iostates[i].offset = offset; | |
7204 | if(size < PAGE_SIZE) | |
7205 | size = PAGE_SIZE; | |
7206 | vector_upl->upl_iostates[i].size = size; | |
7207 | } | |
7208 | else | |
7209 | panic("vector_upl_set_iostate was passed a non-vectored UPL\n"); | |
7210 | } | |
7211 | else | |
7212 | panic("vector_upl_set_iostate was passed a NULL UPL\n"); | |
7213 | } | |
7214 | ||
7215 | void | |
7216 | vector_upl_get_iostate(upl_t upl, upl_t subupl, upl_offset_t *offset, upl_size_t *size) | |
7217 | { | |
7218 | if(vector_upl_is_valid(upl)) { | |
7219 | uint32_t i = 0; | |
7220 | vector_upl_t vector_upl = upl->vector_upl; | |
7221 | ||
7222 | if(vector_upl) { | |
7223 | for(i = 0; i < vector_upl->num_upls; i++) { | |
7224 | if(vector_upl->upl_elems[i] == subupl) | |
7225 | break; | |
7226 | } | |
7227 | ||
7228 | if(i == vector_upl->num_upls) | |
7229 | panic("getting sub-upl iostate when none exists"); | |
7230 | ||
7231 | *offset = vector_upl->upl_iostates[i].offset; | |
7232 | *size = vector_upl->upl_iostates[i].size; | |
7233 | } | |
7234 | else | |
7235 | panic("vector_upl_get_iostate was passed a non-vectored UPL\n"); | |
7236 | } | |
7237 | else | |
7238 | panic("vector_upl_get_iostate was passed a NULL UPL\n"); | |
7239 | } | |
7240 | ||
7241 | void | |
7242 | vector_upl_get_iostate_byindex(upl_t upl, uint32_t index, upl_offset_t *offset, upl_size_t *size) | |
7243 | { | |
7244 | if(vector_upl_is_valid(upl)) { | |
7245 | vector_upl_t vector_upl = upl->vector_upl; | |
7246 | if(vector_upl) { | |
7247 | if(index < vector_upl->num_upls) { | |
7248 | *offset = vector_upl->upl_iostates[index].offset; | |
7249 | *size = vector_upl->upl_iostates[index].size; | |
7250 | } | |
7251 | else | |
7252 | *offset = *size = 0; | |
7253 | } | |
7254 | else | |
7255 | panic("vector_upl_get_iostate_byindex was passed a non-vectored UPL\n"); | |
7256 | } | |
7257 | else | |
7258 | panic("vector_upl_get_iostate_byindex was passed a NULL UPL\n"); | |
7259 | } | |
7260 | ||
7261 | upl_page_info_t * | |
7262 | upl_get_internal_vectorupl_pagelist(upl_t upl) | |
7263 | { | |
7264 | return ((vector_upl_t)(upl->vector_upl))->pagelist; | |
7265 | } | |
7266 | ||
7267 | void * | |
7268 | upl_get_internal_vectorupl(upl_t upl) | |
7269 | { | |
7270 | return upl->vector_upl; | |
7271 | } | |
7272 | ||
91447636 A |
7273 | vm_size_t |
7274 | upl_get_internal_pagelist_offset(void) | |
7275 | { | |
7276 | return sizeof(struct upl); | |
7277 | } | |
7278 | ||
91447636 A |
7279 | void |
7280 | upl_clear_dirty( | |
0c530ab8 A |
7281 | upl_t upl, |
7282 | boolean_t value) | |
91447636 | 7283 | { |
0c530ab8 A |
7284 | if (value) { |
7285 | upl->flags |= UPL_CLEAR_DIRTY; | |
7286 | } else { | |
7287 | upl->flags &= ~UPL_CLEAR_DIRTY; | |
7288 | } | |
91447636 A |
7289 | } |
7290 | ||
7291 | ||
7292 | #ifdef MACH_BSD | |
1c79356b | 7293 | |
2d21ac55 A |
7294 | boolean_t upl_device_page(upl_page_info_t *upl) |
7295 | { | |
7296 | return(UPL_DEVICE_PAGE(upl)); | |
7297 | } | |
1c79356b A |
7298 | boolean_t upl_page_present(upl_page_info_t *upl, int index) |
7299 | { | |
7300 | return(UPL_PAGE_PRESENT(upl, index)); | |
7301 | } | |
2d21ac55 A |
7302 | boolean_t upl_speculative_page(upl_page_info_t *upl, int index) |
7303 | { | |
7304 | return(UPL_SPECULATIVE_PAGE(upl, index)); | |
7305 | } | |
1c79356b A |
7306 | boolean_t upl_dirty_page(upl_page_info_t *upl, int index) |
7307 | { | |
7308 | return(UPL_DIRTY_PAGE(upl, index)); | |
7309 | } | |
7310 | boolean_t upl_valid_page(upl_page_info_t *upl, int index) | |
7311 | { | |
7312 | return(UPL_VALID_PAGE(upl, index)); | |
7313 | } | |
91447636 | 7314 | ppnum_t upl_phys_page(upl_page_info_t *upl, int index) |
1c79356b | 7315 | { |
91447636 | 7316 | return(UPL_PHYS_PAGE(upl, index)); |
1c79356b A |
7317 | } |
7318 | ||
2d21ac55 | 7319 | |
0b4e3aa0 A |
7320 | void |
7321 | vm_countdirtypages(void) | |
1c79356b A |
7322 | { |
7323 | vm_page_t m; | |
7324 | int dpages; | |
7325 | int pgopages; | |
7326 | int precpages; | |
7327 | ||
7328 | ||
7329 | dpages=0; | |
7330 | pgopages=0; | |
7331 | precpages=0; | |
7332 | ||
7333 | vm_page_lock_queues(); | |
7334 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
7335 | do { | |
7336 | if (m ==(vm_page_t )0) break; | |
7337 | ||
7338 | if(m->dirty) dpages++; | |
7339 | if(m->pageout) pgopages++; | |
7340 | if(m->precious) precpages++; | |
7341 | ||
91447636 | 7342 | assert(m->object != kernel_object); |
1c79356b A |
7343 | m = (vm_page_t) queue_next(&m->pageq); |
7344 | if (m ==(vm_page_t )0) break; | |
7345 | ||
7346 | } while (!queue_end(&vm_page_queue_inactive,(queue_entry_t) m)); | |
7347 | vm_page_unlock_queues(); | |
9bccf70c | 7348 | |
2d21ac55 A |
7349 | vm_page_lock_queues(); |
7350 | m = (vm_page_t) queue_first(&vm_page_queue_throttled); | |
7351 | do { | |
7352 | if (m ==(vm_page_t )0) break; | |
7353 | ||
7354 | dpages++; | |
7355 | assert(m->dirty); | |
7356 | assert(!m->pageout); | |
7357 | assert(m->object != kernel_object); | |
7358 | m = (vm_page_t) queue_next(&m->pageq); | |
7359 | if (m ==(vm_page_t )0) break; | |
7360 | ||
7361 | } while (!queue_end(&vm_page_queue_throttled,(queue_entry_t) m)); | |
7362 | vm_page_unlock_queues(); | |
7363 | ||
9bccf70c A |
7364 | vm_page_lock_queues(); |
7365 | m = (vm_page_t) queue_first(&vm_page_queue_zf); | |
7366 | do { | |
7367 | if (m ==(vm_page_t )0) break; | |
7368 | ||
7369 | if(m->dirty) dpages++; | |
7370 | if(m->pageout) pgopages++; | |
7371 | if(m->precious) precpages++; | |
7372 | ||
91447636 | 7373 | assert(m->object != kernel_object); |
9bccf70c A |
7374 | m = (vm_page_t) queue_next(&m->pageq); |
7375 | if (m ==(vm_page_t )0) break; | |
7376 | ||
7377 | } while (!queue_end(&vm_page_queue_zf,(queue_entry_t) m)); | |
7378 | vm_page_unlock_queues(); | |
1c79356b A |
7379 | |
7380 | printf("IN Q: %d : %d : %d\n", dpages, pgopages, precpages); | |
7381 | ||
7382 | dpages=0; | |
7383 | pgopages=0; | |
7384 | precpages=0; | |
7385 | ||
7386 | vm_page_lock_queues(); | |
7387 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
7388 | ||
7389 | do { | |
7390 | if(m == (vm_page_t )0) break; | |
7391 | if(m->dirty) dpages++; | |
7392 | if(m->pageout) pgopages++; | |
7393 | if(m->precious) precpages++; | |
7394 | ||
91447636 | 7395 | assert(m->object != kernel_object); |
1c79356b A |
7396 | m = (vm_page_t) queue_next(&m->pageq); |
7397 | if(m == (vm_page_t )0) break; | |
7398 | ||
7399 | } while (!queue_end(&vm_page_queue_active,(queue_entry_t) m)); | |
7400 | vm_page_unlock_queues(); | |
7401 | ||
7402 | printf("AC Q: %d : %d : %d\n", dpages, pgopages, precpages); | |
7403 | ||
7404 | } | |
7405 | #endif /* MACH_BSD */ | |
7406 | ||
0c530ab8 | 7407 | ppnum_t upl_get_highest_page( |
2d21ac55 | 7408 | upl_t upl) |
0c530ab8 | 7409 | { |
2d21ac55 | 7410 | return upl->highest_page; |
0c530ab8 A |
7411 | } |
7412 | ||
b0d623f7 A |
7413 | upl_size_t upl_get_size( |
7414 | upl_t upl) | |
7415 | { | |
7416 | return upl->size; | |
7417 | } | |
7418 | ||
7419 | #if UPL_DEBUG | |
7420 | kern_return_t upl_ubc_alias_set(upl_t upl, uintptr_t alias1, uintptr_t alias2) | |
1c79356b A |
7421 | { |
7422 | upl->ubc_alias1 = alias1; | |
7423 | upl->ubc_alias2 = alias2; | |
7424 | return KERN_SUCCESS; | |
7425 | } | |
b0d623f7 | 7426 | int upl_ubc_alias_get(upl_t upl, uintptr_t * al, uintptr_t * al2) |
1c79356b A |
7427 | { |
7428 | if(al) | |
7429 | *al = upl->ubc_alias1; | |
7430 | if(al2) | |
7431 | *al2 = upl->ubc_alias2; | |
7432 | return KERN_SUCCESS; | |
7433 | } | |
91447636 | 7434 | #endif /* UPL_DEBUG */ |
1c79356b A |
7435 | |
7436 | ||
7437 | ||
7438 | #if MACH_KDB | |
7439 | #include <ddb/db_output.h> | |
7440 | #include <ddb/db_print.h> | |
7441 | #include <vm/vm_print.h> | |
7442 | ||
7443 | #define printf kdbprintf | |
1c79356b A |
7444 | void db_pageout(void); |
7445 | ||
7446 | void | |
7447 | db_vm(void) | |
7448 | { | |
1c79356b A |
7449 | |
7450 | iprintf("VM Statistics:\n"); | |
7451 | db_indent += 2; | |
7452 | iprintf("pages:\n"); | |
7453 | db_indent += 2; | |
7454 | iprintf("activ %5d inact %5d free %5d", | |
7455 | vm_page_active_count, vm_page_inactive_count, | |
7456 | vm_page_free_count); | |
7457 | printf(" wire %5d gobbl %5d\n", | |
7458 | vm_page_wire_count, vm_page_gobble_count); | |
1c79356b A |
7459 | db_indent -= 2; |
7460 | iprintf("target:\n"); | |
7461 | db_indent += 2; | |
7462 | iprintf("min %5d inact %5d free %5d", | |
7463 | vm_page_free_min, vm_page_inactive_target, | |
7464 | vm_page_free_target); | |
7465 | printf(" resrv %5d\n", vm_page_free_reserved); | |
7466 | db_indent -= 2; | |
1c79356b | 7467 | iprintf("pause:\n"); |
1c79356b A |
7468 | db_pageout(); |
7469 | db_indent -= 2; | |
7470 | } | |
7471 | ||
1c79356b | 7472 | #if MACH_COUNTERS |
91447636 | 7473 | extern int c_laundry_pages_freed; |
1c79356b A |
7474 | #endif /* MACH_COUNTERS */ |
7475 | ||
91447636 A |
7476 | void |
7477 | db_pageout(void) | |
7478 | { | |
1c79356b A |
7479 | iprintf("Pageout Statistics:\n"); |
7480 | db_indent += 2; | |
7481 | iprintf("active %5d inactv %5d\n", | |
7482 | vm_pageout_active, vm_pageout_inactive); | |
7483 | iprintf("nolock %5d avoid %5d busy %5d absent %5d\n", | |
7484 | vm_pageout_inactive_nolock, vm_pageout_inactive_avoid, | |
7485 | vm_pageout_inactive_busy, vm_pageout_inactive_absent); | |
7486 | iprintf("used %5d clean %5d dirty %5d\n", | |
7487 | vm_pageout_inactive_used, vm_pageout_inactive_clean, | |
7488 | vm_pageout_inactive_dirty); | |
1c79356b A |
7489 | #if MACH_COUNTERS |
7490 | iprintf("laundry_pages_freed %d\n", c_laundry_pages_freed); | |
7491 | #endif /* MACH_COUNTERS */ | |
7492 | #if MACH_CLUSTER_STATS | |
7493 | iprintf("Cluster Statistics:\n"); | |
7494 | db_indent += 2; | |
7495 | iprintf("dirtied %5d cleaned %5d collisions %5d\n", | |
7496 | vm_pageout_cluster_dirtied, vm_pageout_cluster_cleaned, | |
7497 | vm_pageout_cluster_collisions); | |
7498 | iprintf("clusters %5d conversions %5d\n", | |
7499 | vm_pageout_cluster_clusters, vm_pageout_cluster_conversions); | |
7500 | db_indent -= 2; | |
7501 | iprintf("Target Statistics:\n"); | |
7502 | db_indent += 2; | |
7503 | iprintf("collisions %5d page_dirtied %5d page_freed %5d\n", | |
7504 | vm_pageout_target_collisions, vm_pageout_target_page_dirtied, | |
7505 | vm_pageout_target_page_freed); | |
1c79356b A |
7506 | db_indent -= 2; |
7507 | #endif /* MACH_CLUSTER_STATS */ | |
7508 | db_indent -= 2; | |
7509 | } | |
7510 | ||
1c79356b | 7511 | #endif /* MACH_KDB */ |