]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
0b4c1975 | 2 | * Copyright (c) 2000-2010 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | ||
32 | /* | |
33 | * File: i386/rtclock.c | |
34 | * Purpose: Routines for handling the machine dependent | |
91447636 A |
35 | * real-time clock. Historically, this clock is |
36 | * generated by the Intel 8254 Programmable Interval | |
37 | * Timer, but local apic timers are now used for | |
38 | * this purpose with the master time reference being | |
39 | * the cpu clock counted by the timestamp MSR. | |
1c79356b A |
40 | */ |
41 | ||
1c79356b | 42 | #include <platforms.h> |
1c79356b | 43 | #include <mach_kdb.h> |
55e303ae A |
44 | |
45 | #include <mach/mach_types.h> | |
46 | ||
1c79356b | 47 | #include <kern/cpu_data.h> |
91447636 | 48 | #include <kern/cpu_number.h> |
1c79356b | 49 | #include <kern/clock.h> |
55e303ae | 50 | #include <kern/host_notify.h> |
1c79356b A |
51 | #include <kern/macro_help.h> |
52 | #include <kern/misc_protos.h> | |
53 | #include <kern/spl.h> | |
91447636 | 54 | #include <kern/assert.h> |
7e4a7d39 | 55 | #include <kern/etimer.h> |
1c79356b A |
56 | #include <mach/vm_prot.h> |
57 | #include <vm/pmap.h> | |
58 | #include <vm/vm_kern.h> /* for kernel_map */ | |
0c530ab8 | 59 | #include <architecture/i386/pio.h> |
55e303ae | 60 | #include <i386/machine_cpu.h> |
91447636 | 61 | #include <i386/cpuid.h> |
91447636 | 62 | #include <i386/cpu_threads.h> |
b0d623f7 | 63 | #include <i386/mp.h> |
91447636 | 64 | #include <i386/machine_routines.h> |
6d2010ae | 65 | #include <i386/pal_routines.h> |
b0d623f7 A |
66 | #include <i386/proc_reg.h> |
67 | #include <i386/misc_protos.h> | |
55e303ae | 68 | #include <pexpert/pexpert.h> |
91447636 A |
69 | #include <machine/limits.h> |
70 | #include <machine/commpage.h> | |
71 | #include <sys/kdebug.h> | |
0c530ab8 | 72 | #include <i386/tsc.h> |
6d2010ae | 73 | #include <i386/rtclock_protos.h> |
91447636 | 74 | |
91447636 | 75 | #define UI_CPUFREQ_ROUNDING_FACTOR 10000000 |
1c79356b | 76 | |
0c530ab8 | 77 | int rtclock_config(void); |
6601e61a | 78 | |
0c530ab8 | 79 | int rtclock_init(void); |
6601e61a | 80 | |
b0d623f7 A |
81 | uint64_t tsc_rebase_abs_time = 0; |
82 | ||
0c530ab8 A |
83 | static void rtc_set_timescale(uint64_t cycles); |
84 | static uint64_t rtc_export_speed(uint64_t cycles); | |
8f6c56a5 | 85 | |
060df5ea A |
86 | void |
87 | rtc_timer_start(void) | |
88 | { | |
89 | /* | |
90 | * Force a complete re-evaluation of timer deadlines. | |
91 | */ | |
92 | etimer_resync_deadlines(); | |
93 | } | |
94 | ||
4a3eedf9 A |
95 | /* |
96 | * tsc_to_nanoseconds: | |
97 | * | |
98 | * Basic routine to convert a raw 64 bit TSC value to a | |
99 | * 64 bit nanosecond value. The conversion is implemented | |
100 | * based on the scale factor and an implicit 32 bit shift. | |
101 | */ | |
102 | static inline uint64_t | |
103 | _tsc_to_nanoseconds(uint64_t value) | |
104 | { | |
b0d623f7 | 105 | #if defined(__i386__) |
4a3eedf9 A |
106 | asm volatile("movl %%edx,%%esi ;" |
107 | "mull %%ecx ;" | |
108 | "movl %%edx,%%edi ;" | |
109 | "movl %%esi,%%eax ;" | |
110 | "mull %%ecx ;" | |
111 | "addl %%edi,%%eax ;" | |
112 | "adcl $0,%%edx " | |
593a1d5f | 113 | : "+A" (value) |
6d2010ae | 114 | : "c" (pal_rtc_nanotime_info.scale) |
593a1d5f | 115 | : "esi", "edi"); |
b0d623f7 A |
116 | #elif defined(__x86_64__) |
117 | asm volatile("mul %%rcx;" | |
118 | "shrq $32, %%rax;" | |
119 | "shlq $32, %%rdx;" | |
120 | "orq %%rdx, %%rax;" | |
121 | : "=a"(value) | |
6d2010ae | 122 | : "a"(value), "c"(pal_rtc_nanotime_info.scale) |
b0d623f7 A |
123 | : "rdx", "cc" ); |
124 | #else | |
125 | #error Unsupported architecture | |
126 | #endif | |
4a3eedf9 A |
127 | |
128 | return (value); | |
129 | } | |
130 | ||
b0d623f7 A |
131 | static inline uint32_t |
132 | _absolutetime_to_microtime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *microsecs) | |
133 | { | |
134 | uint32_t remain; | |
135 | #if defined(__i386__) | |
136 | asm volatile( | |
137 | "divl %3" | |
138 | : "=a" (*secs), "=d" (remain) | |
139 | : "A" (abstime), "r" (NSEC_PER_SEC)); | |
140 | asm volatile( | |
141 | "divl %3" | |
142 | : "=a" (*microsecs) | |
143 | : "0" (remain), "d" (0), "r" (NSEC_PER_USEC)); | |
144 | #elif defined(__x86_64__) | |
145 | *secs = abstime / (uint64_t)NSEC_PER_SEC; | |
146 | remain = (uint32_t)(abstime % (uint64_t)NSEC_PER_SEC); | |
147 | *microsecs = remain / NSEC_PER_USEC; | |
148 | #else | |
149 | #error Unsupported architecture | |
150 | #endif | |
151 | return remain; | |
152 | } | |
153 | ||
154 | static inline void | |
155 | _absolutetime_to_nanotime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *nanosecs) | |
156 | { | |
157 | #if defined(__i386__) | |
158 | asm volatile( | |
159 | "divl %3" | |
160 | : "=a" (*secs), "=d" (*nanosecs) | |
161 | : "A" (abstime), "r" (NSEC_PER_SEC)); | |
162 | #elif defined(__x86_64__) | |
163 | *secs = abstime / (uint64_t)NSEC_PER_SEC; | |
164 | *nanosecs = (clock_usec_t)(abstime % (uint64_t)NSEC_PER_SEC); | |
165 | #else | |
166 | #error Unsupported architecture | |
167 | #endif | |
168 | } | |
169 | ||
1c79356b A |
170 | /* |
171 | * Configure the real-time clock device. Return success (1) | |
172 | * or failure (0). | |
173 | */ | |
174 | ||
175 | int | |
0c530ab8 | 176 | rtclock_config(void) |
1c79356b | 177 | { |
0c530ab8 | 178 | /* nothing to do */ |
91447636 A |
179 | return (1); |
180 | } | |
181 | ||
182 | ||
183 | /* | |
184 | * Nanotime/mach_absolutime_time | |
185 | * ----------------------------- | |
0c530ab8 A |
186 | * The timestamp counter (TSC) - which counts cpu clock cycles and can be read |
187 | * efficiently by the kernel and in userspace - is the reference for all timing. | |
188 | * The cpu clock rate is platform-dependent and may stop or be reset when the | |
189 | * processor is napped/slept. As a result, nanotime is the software abstraction | |
190 | * used to maintain a monotonic clock, adjusted from an outside reference as needed. | |
91447636 A |
191 | * |
192 | * The kernel maintains nanotime information recording: | |
0c530ab8 | 193 | * - the ratio of tsc to nanoseconds |
91447636 A |
194 | * with this ratio expressed as a 32-bit scale and shift |
195 | * (power of 2 divider); | |
0c530ab8 | 196 | * - { tsc_base, ns_base } pair of corresponding timestamps. |
6601e61a | 197 | * |
0c530ab8 A |
198 | * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage |
199 | * for the userspace nanotime routine to read. | |
6601e61a | 200 | * |
0c530ab8 A |
201 | * All of the routines which update the nanotime data are non-reentrant. This must |
202 | * be guaranteed by the caller. | |
91447636 A |
203 | */ |
204 | static inline void | |
6d2010ae | 205 | rtc_nanotime_set_commpage(pal_rtc_nanotime_t *rntp) |
91447636 | 206 | { |
0c530ab8 A |
207 | commpage_set_nanotime(rntp->tsc_base, rntp->ns_base, rntp->scale, rntp->shift); |
208 | } | |
6601e61a | 209 | |
0c530ab8 A |
210 | /* |
211 | * rtc_nanotime_init: | |
212 | * | |
213 | * Intialize the nanotime info from the base time. | |
214 | */ | |
215 | static inline void | |
6d2010ae | 216 | _rtc_nanotime_init(pal_rtc_nanotime_t *rntp, uint64_t base) |
0c530ab8 A |
217 | { |
218 | uint64_t tsc = rdtsc64(); | |
21362eb3 | 219 | |
6d2010ae | 220 | _pal_rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp); |
91447636 A |
221 | } |
222 | ||
223 | static void | |
0c530ab8 | 224 | rtc_nanotime_init(uint64_t base) |
91447636 | 225 | { |
6d2010ae A |
226 | _rtc_nanotime_init(&pal_rtc_nanotime_info, base); |
227 | rtc_nanotime_set_commpage(&pal_rtc_nanotime_info); | |
91447636 A |
228 | } |
229 | ||
0c530ab8 A |
230 | /* |
231 | * rtc_nanotime_init_commpage: | |
232 | * | |
233 | * Call back from the commpage initialization to | |
234 | * cause the commpage data to be filled in once the | |
235 | * commpages have been created. | |
236 | */ | |
237 | void | |
238 | rtc_nanotime_init_commpage(void) | |
91447636 | 239 | { |
0c530ab8 A |
240 | spl_t s = splclock(); |
241 | ||
6d2010ae | 242 | rtc_nanotime_set_commpage(&pal_rtc_nanotime_info); |
0c530ab8 | 243 | splx(s); |
91447636 A |
244 | } |
245 | ||
0c530ab8 A |
246 | /* |
247 | * rtc_nanotime_read: | |
248 | * | |
249 | * Returns the current nanotime value, accessable from any | |
250 | * context. | |
251 | */ | |
2d21ac55 | 252 | static inline uint64_t |
91447636 A |
253 | rtc_nanotime_read(void) |
254 | { | |
2d21ac55 A |
255 | |
256 | #if CONFIG_EMBEDDED | |
257 | if (gPEClockFrequencyInfo.timebase_frequency_hz > SLOW_TSC_THRESHOLD) | |
060df5ea | 258 | return _rtc_nanotime_read(&rtc_nanotime_info, 1); /* slow processor */ |
2d21ac55 A |
259 | else |
260 | #endif | |
6d2010ae | 261 | return _rtc_nanotime_read(&pal_rtc_nanotime_info, 0); /* assume fast processor */ |
91447636 A |
262 | } |
263 | ||
91447636 | 264 | /* |
0c530ab8 A |
265 | * rtc_clock_napped: |
266 | * | |
4a3eedf9 A |
267 | * Invoked from power management when we exit from a low C-State (>= C4) |
268 | * and the TSC has stopped counting. The nanotime data is updated according | |
269 | * to the provided value which represents the new value for nanotime. | |
91447636 | 270 | */ |
0c530ab8 | 271 | void |
4a3eedf9 | 272 | rtc_clock_napped(uint64_t base, uint64_t tsc_base) |
0c530ab8 | 273 | { |
6d2010ae | 274 | pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info; |
4a3eedf9 A |
275 | uint64_t oldnsecs; |
276 | uint64_t newnsecs; | |
277 | uint64_t tsc; | |
2d21ac55 A |
278 | |
279 | assert(!ml_get_interrupts_enabled()); | |
4a3eedf9 A |
280 | tsc = rdtsc64(); |
281 | oldnsecs = rntp->ns_base + _tsc_to_nanoseconds(tsc - rntp->tsc_base); | |
282 | newnsecs = base + _tsc_to_nanoseconds(tsc - tsc_base); | |
283 | ||
284 | /* | |
285 | * Only update the base values if time using the new base values | |
286 | * is later than the time using the old base values. | |
287 | */ | |
288 | if (oldnsecs < newnsecs) { | |
6d2010ae | 289 | _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp); |
4a3eedf9 | 290 | rtc_nanotime_set_commpage(rntp); |
6d2010ae | 291 | trace_set_timebases(tsc_base, base); |
4a3eedf9 | 292 | } |
0c530ab8 A |
293 | } |
294 | ||
0b4c1975 A |
295 | /* |
296 | * Invoked from power management to correct the SFLM TSC entry drift problem: | |
6d2010ae A |
297 | * a small delta is added to the tsc_base. This is equivalent to nudgin time |
298 | * backwards. We require this to be on the order of a TSC quantum which won't | |
299 | * cause callers of mach_absolute_time() to see time going backwards! | |
0b4c1975 A |
300 | */ |
301 | void | |
302 | rtc_clock_adjust(uint64_t tsc_base_delta) | |
303 | { | |
6d2010ae | 304 | pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info; |
0b4c1975 | 305 | |
6d2010ae A |
306 | assert(!ml_get_interrupts_enabled()); |
307 | assert(tsc_base_delta < 100ULL); /* i.e. it's small */ | |
308 | _rtc_nanotime_adjust(tsc_base_delta, rntp); | |
309 | rtc_nanotime_set_commpage(rntp); | |
0b4c1975 A |
310 | } |
311 | ||
91447636 A |
312 | void |
313 | rtc_clock_stepping(__unused uint32_t new_frequency, | |
314 | __unused uint32_t old_frequency) | |
315 | { | |
0c530ab8 | 316 | panic("rtc_clock_stepping unsupported"); |
91447636 A |
317 | } |
318 | ||
91447636 | 319 | void |
0c530ab8 A |
320 | rtc_clock_stepped(__unused uint32_t new_frequency, |
321 | __unused uint32_t old_frequency) | |
91447636 | 322 | { |
2d21ac55 | 323 | panic("rtc_clock_stepped unsupported"); |
1c79356b A |
324 | } |
325 | ||
326 | /* | |
0c530ab8 A |
327 | * rtc_sleep_wakeup: |
328 | * | |
6d2010ae | 329 | * Invoked from power management when we have awoken from a sleep (S3) |
0c530ab8 A |
330 | * and the TSC has been reset. The nanotime data is updated based on |
331 | * the passed in value. | |
332 | * | |
333 | * The caller must guarantee non-reentrancy. | |
91447636 A |
334 | */ |
335 | void | |
0c530ab8 A |
336 | rtc_sleep_wakeup( |
337 | uint64_t base) | |
91447636 | 338 | { |
060df5ea A |
339 | /* Set fixed configuration for lapic timers */ |
340 | rtc_timer->config(); | |
341 | ||
91447636 A |
342 | /* |
343 | * Reset nanotime. | |
344 | * The timestamp counter will have been reset | |
345 | * but nanotime (uptime) marches onward. | |
91447636 | 346 | */ |
0c530ab8 | 347 | rtc_nanotime_init(base); |
91447636 A |
348 | } |
349 | ||
350 | /* | |
351 | * Initialize the real-time clock device. | |
352 | * In addition, various variables used to support the clock are initialized. | |
1c79356b A |
353 | */ |
354 | int | |
0c530ab8 | 355 | rtclock_init(void) |
1c79356b | 356 | { |
91447636 A |
357 | uint64_t cycles; |
358 | ||
0c530ab8 A |
359 | assert(!ml_get_interrupts_enabled()); |
360 | ||
91447636 | 361 | if (cpu_number() == master_cpu) { |
0c530ab8 A |
362 | |
363 | assert(tscFreq); | |
364 | rtc_set_timescale(tscFreq); | |
365 | ||
91447636 | 366 | /* |
0c530ab8 | 367 | * Adjust and set the exported cpu speed. |
91447636 | 368 | */ |
0c530ab8 | 369 | cycles = rtc_export_speed(tscFreq); |
91447636 A |
370 | |
371 | /* | |
372 | * Set min/max to actual. | |
373 | * ACPI may update these later if speed-stepping is detected. | |
374 | */ | |
0c530ab8 A |
375 | gPEClockFrequencyInfo.cpu_frequency_min_hz = cycles; |
376 | gPEClockFrequencyInfo.cpu_frequency_max_hz = cycles; | |
91447636 | 377 | |
060df5ea | 378 | rtc_timer_init(); |
91447636 | 379 | clock_timebase_init(); |
0c530ab8 | 380 | ml_init_lock_timeout(); |
1c79356b | 381 | } |
91447636 | 382 | |
6d2010ae | 383 | /* Set fixed configuration for lapic timers */ |
060df5ea | 384 | rtc_timer->config(); |
060df5ea | 385 | rtc_timer_start(); |
91447636 | 386 | |
1c79356b A |
387 | return (1); |
388 | } | |
389 | ||
0c530ab8 A |
390 | // utility routine |
391 | // Code to calculate how many processor cycles are in a second... | |
1c79356b | 392 | |
0c530ab8 A |
393 | static void |
394 | rtc_set_timescale(uint64_t cycles) | |
1c79356b | 395 | { |
6d2010ae | 396 | pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info; |
b0d623f7 | 397 | rntp->scale = (uint32_t)(((uint64_t)NSEC_PER_SEC << 32) / cycles); |
2d21ac55 | 398 | |
6d2010ae | 399 | #if CONFIG_EMBEDDED |
2d21ac55 | 400 | if (cycles <= SLOW_TSC_THRESHOLD) |
b0d623f7 | 401 | rntp->shift = (uint32_t)cycles; |
2d21ac55 | 402 | else |
6d2010ae | 403 | #endif |
593a1d5f | 404 | rntp->shift = 32; |
1c79356b | 405 | |
b0d623f7 A |
406 | if (tsc_rebase_abs_time == 0) |
407 | tsc_rebase_abs_time = mach_absolute_time(); | |
408 | ||
0c530ab8 | 409 | rtc_nanotime_init(0); |
1c79356b A |
410 | } |
411 | ||
91447636 | 412 | static uint64_t |
0c530ab8 | 413 | rtc_export_speed(uint64_t cyc_per_sec) |
9bccf70c | 414 | { |
0c530ab8 | 415 | uint64_t cycles; |
1c79356b | 416 | |
0c530ab8 A |
417 | /* Round: */ |
418 | cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR/2)) | |
91447636 A |
419 | / UI_CPUFREQ_ROUNDING_FACTOR) |
420 | * UI_CPUFREQ_ROUNDING_FACTOR; | |
9bccf70c | 421 | |
91447636 A |
422 | /* |
423 | * Set current measured speed. | |
424 | */ | |
425 | if (cycles >= 0x100000000ULL) { | |
426 | gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL; | |
55e303ae | 427 | } else { |
91447636 | 428 | gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles; |
9bccf70c | 429 | } |
91447636 | 430 | gPEClockFrequencyInfo.cpu_frequency_hz = cycles; |
55e303ae | 431 | |
0c530ab8 | 432 | kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec); |
91447636 | 433 | return(cycles); |
9bccf70c | 434 | } |
1c79356b | 435 | |
55e303ae A |
436 | void |
437 | clock_get_system_microtime( | |
b0d623f7 A |
438 | clock_sec_t *secs, |
439 | clock_usec_t *microsecs) | |
9bccf70c | 440 | { |
0c530ab8 | 441 | uint64_t now = rtc_nanotime_read(); |
6601e61a | 442 | |
b0d623f7 | 443 | _absolutetime_to_microtime(now, secs, microsecs); |
1c79356b A |
444 | } |
445 | ||
55e303ae A |
446 | void |
447 | clock_get_system_nanotime( | |
b0d623f7 A |
448 | clock_sec_t *secs, |
449 | clock_nsec_t *nanosecs) | |
55e303ae | 450 | { |
0c530ab8 | 451 | uint64_t now = rtc_nanotime_read(); |
8f6c56a5 | 452 | |
b0d623f7 | 453 | _absolutetime_to_nanotime(now, secs, nanosecs); |
6601e61a A |
454 | } |
455 | ||
456 | void | |
0c530ab8 A |
457 | clock_gettimeofday_set_commpage( |
458 | uint64_t abstime, | |
459 | uint64_t epoch, | |
460 | uint64_t offset, | |
b0d623f7 A |
461 | clock_sec_t *secs, |
462 | clock_usec_t *microsecs) | |
0c530ab8 | 463 | { |
b0d623f7 | 464 | uint64_t now = abstime + offset; |
0c530ab8 | 465 | uint32_t remain; |
6601e61a | 466 | |
b0d623f7 | 467 | remain = _absolutetime_to_microtime(now, secs, microsecs); |
6601e61a | 468 | |
b0d623f7 | 469 | *secs += (clock_sec_t)epoch; |
6601e61a | 470 | |
2d21ac55 | 471 | commpage_set_timestamp(abstime - remain, *secs); |
91447636 A |
472 | } |
473 | ||
1c79356b A |
474 | void |
475 | clock_timebase_info( | |
476 | mach_timebase_info_t info) | |
477 | { | |
91447636 | 478 | info->numer = info->denom = 1; |
1c79356b A |
479 | } |
480 | ||
1c79356b | 481 | /* |
91447636 | 482 | * Real-time clock device interrupt. |
1c79356b | 483 | */ |
1c79356b | 484 | void |
0c530ab8 A |
485 | rtclock_intr( |
486 | x86_saved_state_t *tregs) | |
1c79356b | 487 | { |
0c530ab8 A |
488 | uint64_t rip; |
489 | boolean_t user_mode = FALSE; | |
91447636 A |
490 | |
491 | assert(get_preemption_level() > 0); | |
492 | assert(!ml_get_interrupts_enabled()); | |
493 | ||
0c530ab8 A |
494 | if (is_saved_state64(tregs) == TRUE) { |
495 | x86_saved_state64_t *regs; | |
496 | ||
497 | regs = saved_state64(tregs); | |
5d5c5d0d | 498 | |
b0d623f7 A |
499 | if (regs->isf.cs & 0x03) |
500 | user_mode = TRUE; | |
0c530ab8 A |
501 | rip = regs->isf.rip; |
502 | } else { | |
503 | x86_saved_state32_t *regs; | |
8ad349bb | 504 | |
0c530ab8 | 505 | regs = saved_state32(tregs); |
4452a7af | 506 | |
0c530ab8 A |
507 | if (regs->cs & 0x03) |
508 | user_mode = TRUE; | |
509 | rip = regs->eip; | |
510 | } | |
89b3af67 | 511 | |
0c530ab8 A |
512 | /* call the generic etimer */ |
513 | etimer_intr(user_mode, rip); | |
5d5c5d0d A |
514 | } |
515 | ||
060df5ea | 516 | |
0c530ab8 A |
517 | /* |
518 | * Request timer pop from the hardware | |
519 | */ | |
520 | ||
060df5ea | 521 | uint64_t |
0c530ab8 A |
522 | setPop( |
523 | uint64_t time) | |
5d5c5d0d | 524 | { |
6d2010ae A |
525 | uint64_t now; |
526 | uint64_t pop; | |
060df5ea A |
527 | |
528 | /* 0 and EndOfAllTime are special-cases for "clear the timer" */ | |
6d2010ae | 529 | if (time == 0 || time == EndOfAllTime ) { |
060df5ea A |
530 | time = EndOfAllTime; |
531 | now = 0; | |
6d2010ae | 532 | pop = rtc_timer->set(0, 0); |
060df5ea | 533 | } else { |
6d2010ae A |
534 | now = rtc_nanotime_read(); /* The time in nanoseconds */ |
535 | pop = rtc_timer->set(time, now); | |
060df5ea | 536 | } |
4452a7af | 537 | |
6d2010ae | 538 | /* Record requested and actual deadlines set */ |
060df5ea | 539 | x86_lcpu()->rtcDeadline = time; |
6d2010ae | 540 | x86_lcpu()->rtcPop = pop; |
4452a7af | 541 | |
060df5ea | 542 | return pop - now; |
89b3af67 A |
543 | } |
544 | ||
6601e61a A |
545 | uint64_t |
546 | mach_absolute_time(void) | |
4452a7af | 547 | { |
0c530ab8 A |
548 | return rtc_nanotime_read(); |
549 | } | |
550 | ||
551 | void | |
552 | clock_interval_to_absolutetime_interval( | |
553 | uint32_t interval, | |
554 | uint32_t scale_factor, | |
555 | uint64_t *result) | |
556 | { | |
557 | *result = (uint64_t)interval * scale_factor; | |
91447636 A |
558 | } |
559 | ||
560 | void | |
561 | absolutetime_to_microtime( | |
562 | uint64_t abstime, | |
b0d623f7 A |
563 | clock_sec_t *secs, |
564 | clock_usec_t *microsecs) | |
91447636 | 565 | { |
b0d623f7 | 566 | _absolutetime_to_microtime(abstime, secs, microsecs); |
1c79356b A |
567 | } |
568 | ||
569 | void | |
0c530ab8 A |
570 | absolutetime_to_nanotime( |
571 | uint64_t abstime, | |
b0d623f7 A |
572 | clock_sec_t *secs, |
573 | clock_nsec_t *nanosecs) | |
6601e61a | 574 | { |
b0d623f7 | 575 | _absolutetime_to_nanotime(abstime, secs, nanosecs); |
6601e61a A |
576 | } |
577 | ||
578 | void | |
0c530ab8 | 579 | nanotime_to_absolutetime( |
b0d623f7 A |
580 | clock_sec_t secs, |
581 | clock_nsec_t nanosecs, | |
0c530ab8 | 582 | uint64_t *result) |
1c79356b | 583 | { |
0c530ab8 | 584 | *result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs; |
1c79356b A |
585 | } |
586 | ||
587 | void | |
588 | absolutetime_to_nanoseconds( | |
0b4e3aa0 A |
589 | uint64_t abstime, |
590 | uint64_t *result) | |
1c79356b | 591 | { |
0b4e3aa0 | 592 | *result = abstime; |
1c79356b A |
593 | } |
594 | ||
595 | void | |
596 | nanoseconds_to_absolutetime( | |
0b4e3aa0 A |
597 | uint64_t nanoseconds, |
598 | uint64_t *result) | |
1c79356b | 599 | { |
0b4e3aa0 | 600 | *result = nanoseconds; |
1c79356b A |
601 | } |
602 | ||
55e303ae | 603 | void |
91447636 | 604 | machine_delay_until( |
55e303ae A |
605 | uint64_t deadline) |
606 | { | |
607 | uint64_t now; | |
608 | ||
609 | do { | |
610 | cpu_pause(); | |
611 | now = mach_absolute_time(); | |
612 | } while (now < deadline); | |
613 | } |