]> git.saurik.com Git - apple/xnu.git/blame - bsd/miscfs/nullfs/null_vnops.c
xnu-792.25.20.tar.gz
[apple/xnu.git] / bsd / miscfs / nullfs / null_vnops.c
CommitLineData
1c79356b 1/*
5d5c5d0d
A
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
6601e61a 4 * @APPLE_LICENSE_HEADER_START@
1c79356b 5 *
6601e61a
A
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
8f6c56a5 11 *
6601e61a
A
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
6601e61a
A
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
8f6c56a5 19 *
6601e61a 20 * @APPLE_LICENSE_HEADER_END@
1c79356b
A
21 */
22/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
23/*
24 * Copyright (c) 1992, 1993
25 * The Regents of the University of California. All rights reserved.
26 *
27 * This code is derived from software contributed to Berkeley by
28 * John Heidemann of the UCLA Ficus project.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 * 3. All advertising materials mentioning features or use of this software
39 * must display the following acknowledgement:
40 * This product includes software developed by the University of
41 * California, Berkeley and its contributors.
42 * 4. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
59 *
60 * Ancestors:
61 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
62 * ...and...
63 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
64 */
65
66/*
67 * Null Layer
68 *
69 * (See mount_null(8) for more information.)
70 *
71 * The null layer duplicates a portion of the file system
72 * name space under a new name. In this respect, it is
73 * similar to the loopback file system. It differs from
74 * the loopback fs in two respects: it is implemented using
75 * a stackable layers techniques, and it's "null-node"s stack above
76 * all lower-layer vnodes, not just over directory vnodes.
77 *
78 * The null layer has two purposes. First, it serves as a demonstration
79 * of layering by proving a layer which does nothing. (It actually
80 * does everything the loopback file system does, which is slightly
81 * more than nothing.) Second, the null layer can serve as a prototype
82 * layer. Since it provides all necessary layer framework,
83 * new file system layers can be created very easily be starting
84 * with a null layer.
85 *
86 * The remainder of this man page examines the null layer as a basis
87 * for constructing new layers.
88 *
89 *
90 * INSTANTIATING NEW NULL LAYERS
91 *
92 * New null layers are created with mount_null(8).
93 * Mount_null(8) takes two arguments, the pathname
94 * of the lower vfs (target-pn) and the pathname where the null
95 * layer will appear in the namespace (alias-pn). After
96 * the null layer is put into place, the contents
97 * of target-pn subtree will be aliased under alias-pn.
98 *
99 *
100 * OPERATION OF A NULL LAYER
101 *
102 * The null layer is the minimum file system layer,
103 * simply bypassing all possible operations to the lower layer
104 * for processing there. The majority of its activity centers
105 * on the bypass routine, though which nearly all vnode operations
106 * pass.
107 *
108 * The bypass routine accepts arbitrary vnode operations for
109 * handling by the lower layer. It begins by examing vnode
110 * operation arguments and replacing any null-nodes by their
111 * lower-layer equivlants. It then invokes the operation
112 * on the lower layer. Finally, it replaces the null-nodes
113 * in the arguments and, if a vnode is return by the operation,
114 * stacks a null-node on top of the returned vnode.
115 *
91447636
A
116 * Although bypass handles most operations, vnop_getattr, vnop_lock,
117 * vnop_unlock, vnop_inactive, vnop_reclaim, and vnop_print are not
1c79356b 118 * bypassed. Vop_getattr must change the fsid being returned.
91447636 119 * Vop_lock and vnop_unlock must handle any locking for the
1c79356b 120 * current vnode as well as pass the lock request down.
91447636 121 * Vop_inactive and vnop_reclaim are not bypassed so that
1c79356b
A
122 * they can handle freeing null-layer specific data. Vop_print
123 * is not bypassed to avoid excessive debugging information.
124 * Also, certain vnode operations change the locking state within
125 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
126 * and symlink). Ideally these operations should not change the
127 * lock state, but should be changed to let the caller of the
128 * function unlock them. Otherwise all intermediate vnode layers
129 * (such as union, umapfs, etc) must catch these functions to do
130 * the necessary locking at their layer.
131 *
132 *
133 * INSTANTIATING VNODE STACKS
134 *
135 * Mounting associates the null layer with a lower layer,
136 * effect stacking two VFSes. Vnode stacks are instead
137 * created on demand as files are accessed.
138 *
139 * The initial mount creates a single vnode stack for the
140 * root of the new null layer. All other vnode stacks
141 * are created as a result of vnode operations on
142 * this or other null vnode stacks.
143 *
144 * New vnode stacks come into existance as a result of
145 * an operation which returns a vnode.
146 * The bypass routine stacks a null-node above the new
147 * vnode before returning it to the caller.
148 *
149 * For example, imagine mounting a null layer with
150 * "mount_null /usr/include /dev/layer/null".
151 * Changing directory to /dev/layer/null will assign
152 * the root null-node (which was created when the null layer was mounted).
91447636 153 * Now consider opening "sys". A vnop_lookup would be
1c79356b
A
154 * done on the root null-node. This operation would bypass through
155 * to the lower layer which would return a vnode representing
156 * the UFS "sys". Null_bypass then builds a null-node
157 * aliasing the UFS "sys" and returns this to the caller.
158 * Later operations on the null-node "sys" will repeat this
159 * process when constructing other vnode stacks.
160 *
161 *
162 * CREATING OTHER FILE SYSTEM LAYERS
163 *
164 * One of the easiest ways to construct new file system layers is to make
165 * a copy of the null layer, rename all files and variables, and
166 * then begin modifing the copy. Sed can be used to easily rename
167 * all variables.
168 *
169 * The umap layer is an example of a layer descended from the
170 * null layer.
171 *
172 *
173 * INVOKING OPERATIONS ON LOWER LAYERS
174 *
175 * There are two techniques to invoke operations on a lower layer
176 * when the operation cannot be completely bypassed. Each method
177 * is appropriate in different situations. In both cases,
178 * it is the responsibility of the aliasing layer to make
179 * the operation arguments "correct" for the lower layer
180 * by mapping an vnode arguments to the lower layer.
181 *
182 * The first approach is to call the aliasing layer's bypass routine.
183 * This method is most suitable when you wish to invoke the operation
184 * currently being hanldled on the lower layer. It has the advantage
185 * that the bypass routine already must do argument mapping.
186 * An example of this is null_getattrs in the null layer.
187 *
188 * A second approach is to directly invoked vnode operations on
189 * the lower layer with the VOP_OPERATIONNAME interface.
190 * The advantage of this method is that it is easy to invoke
191 * arbitrary operations on the lower layer. The disadvantage
192 * is that vnodes arguments must be manualy mapped.
193 *
194 */
195
196#include <sys/param.h>
197#include <sys/systm.h>
198#include <sys/proc.h>
91447636 199#include <sys/kauth.h>
1c79356b
A
200#include <sys/time.h>
201#include <sys/types.h>
202#include <sys/vnode.h>
91447636 203#include <sys/mount_internal.h>
1c79356b
A
204#include <sys/namei.h>
205#include <sys/malloc.h>
206#include <sys/buf.h>
207#include <miscfs/nullfs/null.h>
208
209
210int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */
211
212/*
213 * This is the 10-Apr-92 bypass routine.
214 * This version has been optimized for speed, throwing away some
215 * safety checks. It should still always work, but it's not as
216 * robust to programmer errors.
217 * Define SAFETY to include some error checking code.
218 *
219 * In general, we map all vnodes going down and unmap them on the way back.
220 * As an exception to this, vnodes can be marked "unmapped" by setting
221 * the Nth bit in operation's vdesc_flags.
222 *
91447636 223 * Also, some BSD vnode operations have the side effect of node_put'ing
1c79356b
A
224 * their arguments. With stacking, the reference counts are held
225 * by the upper node, not the lower one, so we must handle these
226 * side-effects here. This is not of concern in Sun-derived systems
227 * since there are no such side-effects.
228 *
229 * This makes the following assumptions:
230 * - only one returned vpp
91447636 231 * - no INOUT vpp's (Sun's vnop_open has one of these)
1c79356b
A
232 * - the vnode operation vector of the first vnode should be used
233 * to determine what implementation of the op should be invoked
234 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
235 * problems on rmdir'ing mount points and renaming?)
236 */
237int
238null_bypass(ap)
91447636 239 struct vnop_generic_args /* {
1c79356b
A
240 struct vnodeop_desc *a_desc;
241 <other random data follows, presumably>
242 } */ *ap;
243{
244 extern int (**null_vnodeop_p)(void *); /* not extern, really "forward" */
245 register struct vnode **this_vp_p;
246 int error;
247 struct vnode *old_vps[VDESC_MAX_VPS];
248 struct vnode **vps_p[VDESC_MAX_VPS];
249 struct vnode ***vppp;
250 struct vnodeop_desc *descp = ap->a_desc;
251 int reles, i;
252
253 if (null_bug_bypass)
254 printf ("null_bypass: %s\n", descp->vdesc_name);
255
256#ifdef SAFETY
257 /*
258 * We require at least one vp.
259 */
260 if (descp->vdesc_vp_offsets == NULL ||
261 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
262 panic ("null_bypass: no vp's in map.\n");
263#endif
264
265 /*
266 * Map the vnodes going in.
267 * Later, we'll invoke the operation based on
268 * the first mapped vnode's operation vector.
269 */
270 reles = descp->vdesc_flags;
271 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
272 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
273 break; /* bail out at end of list */
274 vps_p[i] = this_vp_p =
275 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
276 /*
277 * We're not guaranteed that any but the first vnode
278 * are of our type. Check for and don't map any
279 * that aren't. (We must always map first vp or vclean fails.)
280 */
281 if (i && (*this_vp_p == NULL ||
282 (*this_vp_p)->v_op != null_vnodeop_p)) {
283 old_vps[i] = NULL;
284 } else {
285 old_vps[i] = *this_vp_p;
286 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
287 /*
288 * XXX - Several operations have the side effect
91447636 289 * of vnode_put'ing their vp's. We must account for
1c79356b
A
290 * that. (This should go away in the future.)
291 */
292 if (reles & 1)
91447636 293 vnode_get(*this_vp_p);
1c79356b
A
294 }
295
296 }
297
298 /*
299 * Call the operation on the lower layer
300 * with the modified argument structure.
301 */
302 error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
303
304 /*
305 * Maintain the illusion of call-by-value
306 * by restoring vnodes in the argument structure
307 * to their original value.
308 */
309 reles = descp->vdesc_flags;
310 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
311 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
312 break; /* bail out at end of list */
313 if (old_vps[i]) {
314 *(vps_p[i]) = old_vps[i];
315 if (reles & 1)
91447636 316 vnode_put(*(vps_p[i]));
1c79356b
A
317 }
318 }
319
320 /*
321 * Map the possible out-going vpp
322 * (Assumes that the lower layer always returns
91447636 323 * a vnode_get'ed vpp unless it gets an error.)
1c79356b
A
324 */
325 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
326 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
327 !error) {
328 /*
329 * XXX - even though some ops have vpp returned vp's,
91447636 330 * several ops actually vnode_put this before returning.
1c79356b
A
331 * We must avoid these ops.
332 * (This should go away when these ops are regularized.)
333 */
334 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
335 goto out;
336 vppp = VOPARG_OFFSETTO(struct vnode***,
337 descp->vdesc_vpp_offset,ap);
338 error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
339 }
340
341 out:
342 return (error);
343}
344
345/*
346 * We have to carry on the locking protocol on the null layer vnodes
347 * as we progress through the tree. We also have to enforce read-only
348 * if this layer is mounted read-only.
349 */
350null_lookup(ap)
91447636 351 struct vnop_lookup_args /* {
1c79356b
A
352 struct vnode * a_dvp;
353 struct vnode ** a_vpp;
354 struct componentname * a_cnp;
91447636 355 vfs_context_t a_context;
1c79356b
A
356 } */ *ap;
357{
358 struct componentname *cnp = ap->a_cnp;
359 struct proc *p = cnp->cn_proc;
360 int flags = cnp->cn_flags;
1c79356b
A
361 struct vnode *dvp, *vp;
362 int error;
363
1c79356b 364 error = null_bypass(ap);
91447636 365
1c79356b
A
366 /*
367 * We must do the same locking and unlocking at this layer as
368 * is done in the layers below us. We could figure this out
369 * based on the error return and the LASTCN, LOCKPARENT, and
370 * LOCKLEAF flags. However, it is more expidient to just find
371 * out the state of the lower level vnodes and set ours to the
372 * same state.
373 */
374 dvp = ap->a_dvp;
375 vp = *ap->a_vpp;
376 if (dvp == vp)
377 return (error);
1c79356b
A
378 return (error);
379}
380
381/*
91447636 382 * Setattr call.
1c79356b
A
383 */
384int
91447636
A
385null_setattr(
386 struct vnop_setattr_args /* {
1c79356b
A
387 struct vnodeop_desc *a_desc;
388 struct vnode *a_vp;
91447636
A
389 struct vnode_attr *a_vap;
390 kauth_cred_t a_cred;
1c79356b 391 struct proc *a_p;
91447636 392 } */ *ap)
1c79356b
A
393{
394 struct vnode *vp = ap->a_vp;
91447636
A
395 struct vnode_attr *vap = ap->a_vap;
396
397 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
1c79356b
A
398 switch (vp->v_type) {
399 case VDIR:
400 return (EISDIR);
401 case VCHR:
402 case VBLK:
403 case VSOCK:
404 case VFIFO:
405 return (0);
406 case VREG:
407 case VLNK:
408 default:
1c79356b
A
409 }
410 }
411 return (null_bypass(ap));
412}
413
414/*
415 * We handle getattr only to change the fsid.
416 */
417int
418null_getattr(ap)
91447636 419 struct vnop_getattr_args /* {
1c79356b 420 struct vnode *a_vp;
91447636
A
421 struct vnode_attr *a_vap;
422 vfs_context_t a_context;
1c79356b
A
423 } */ *ap;
424{
425 int error;
426
427 if (error = null_bypass(ap))
428 return (error);
429 /* Requires that arguments be restored. */
91447636 430 VATTR_RETURN(ap->a_vap, va_fsid, ap->a_vp->v_mount->mnt_vfsstat.f_fsid.val[0]);
1c79356b
A
431 return (0);
432}
433
434int
435null_access(ap)
91447636 436 struct vnop_access_args /* {
1c79356b 437 struct vnode *a_vp;
91447636
A
438 int a_action;
439 vfs_context_t a_context;
1c79356b
A
440 } */ *ap;
441{
1c79356b
A
442 return (null_bypass(ap));
443}
444
445int
446null_inactive(ap)
91447636 447 struct vnop_inactive_args /* {
1c79356b 448 struct vnode *a_vp;
91447636 449 vfs_context_t a_context;
1c79356b
A
450 } */ *ap;
451{
452 /*
453 * Do nothing (and _don't_ bypass).
91447636 454 * Wait to vnode_put lowervp until reclaim,
1c79356b
A
455 * so that until then our null_node is in the
456 * cache and reusable.
457 *
458 * NEEDSWORK: Someday, consider inactive'ing
459 * the lowervp and then trying to reactivate it
460 * with capabilities (v_id)
461 * like they do in the name lookup cache code.
462 * That's too much work for now.
463 */
1c79356b
A
464 return (0);
465}
466
467int
468null_reclaim(ap)
91447636 469 struct vnop_reclaim_args /* {
1c79356b 470 struct vnode *a_vp;
91447636 471 vfs_context_t a_context;
1c79356b
A
472 } */ *ap;
473{
474 struct vnode *vp = ap->a_vp;
475 struct null_node *xp = VTONULL(vp);
476 struct vnode *lowervp = xp->null_lowervp;
477
478 /*
91447636 479 * Note: in vnop_reclaim, vp->v_op == dead_vnodeop_p,
1c79356b
A
480 * so we can't call VOPs on ourself.
481 */
482 /* After this assignment, this node will not be re-used. */
483 xp->null_lowervp = NULL;
484 LIST_REMOVE(xp, null_hash);
485 FREE(vp->v_data, M_TEMP);
486 vp->v_data = NULL;
91447636 487 vnode_put (lowervp);
1c79356b
A
488 return (0);
489}
490
491/*
91447636 492 * XXX - vnop_strategy must be hand coded because it has no
1c79356b
A
493 * vnode in its arguments.
494 * This goes away with a merged VM/buffer cache.
495 */
496int
497null_strategy(ap)
91447636 498 struct vnop_strategy_args /* {
1c79356b
A
499 struct buf *a_bp;
500 } */ *ap;
501{
502 struct buf *bp = ap->a_bp;
503 int error;
504 struct vnode *savedvp;
505
91447636
A
506 savedvp = vnode(bp);
507 buf_setvnode(bp, NULLVPTOLOWERVP(savedvp));
1c79356b 508
91447636 509 error = VNOP_STRATEGY(bp);
1c79356b 510
91447636 511 buf_setvnode(bp, savedvp);
1c79356b
A
512
513 return (error);
514}
515
516/*
91447636 517 * XXX - like vnop_strategy, vnop_bwrite must be hand coded because it has no
1c79356b
A
518 * vnode in its arguments.
519 * This goes away with a merged VM/buffer cache.
520 */
521int
522null_bwrite(ap)
91447636 523 struct vnop_bwrite_args /* {
1c79356b
A
524 struct buf *a_bp;
525 } */ *ap;
526{
527 struct buf *bp = ap->a_bp;
528 int error;
529 struct vnode *savedvp;
530
91447636
A
531 savedvp = buf_vnode(bp);
532 buf_setvnode(bp, NULLVPTOLOWERVP(savedvp));
1c79356b 533
91447636 534 error = VNOP_BWRITE(bp);
1c79356b 535
91447636 536 buf_setvnode(bp, savedvp);
1c79356b
A
537
538 return (error);
539}
540
541/*
542 * Global vfs data structures
543 */
544
545#define VOPFUNC int (*)(void *)
546
547int (**null_vnodeop_p)(void *);
548struct vnodeopv_entry_desc null_vnodeop_entries[] = {
91447636
A
549 { &vnop_default_desc, (VOPFUNC)null_bypass },
550
551 { &vnop_lookup_desc, (VOPFUNC)null_lookup },
552 { &vnop_setattr_desc, (VOPFUNC)null_setattr },
553 { &vnop_getattr_desc, (VOPFUNC)null_getattr },
554 { &vnop_access_desc, (VOPFUNC)null_access },
555 { &vnop_inactive_desc, (VOPFUNC)null_inactive },
556 { &vnop_reclaim_desc, (VOPFUNC)null_reclaim },
557
558 { &vnop_strategy_desc, (VOPFUNC)null_strategy },
559 { &vnop_bwrite_desc, (VOPFUNC)null_bwrite },
1c79356b
A
560
561 { (struct vnodeop_desc*)NULL, (int(*)())NULL }
562};
563struct vnodeopv_desc null_vnodeop_opv_desc =
564 { &null_vnodeop_p, null_vnodeop_entries };