]>
Commit | Line | Data |
---|---|---|
b0d623f7 A |
1 | |
2 | /* | |
3 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. | |
4 | * | |
5 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
6 | * | |
7 | * This file contains Original Code and/or Modifications of Original Code | |
8 | * as defined in and that are subject to the Apple Public Source License | |
9 | * Version 2.0 (the 'License'). You may not use this file except in | |
10 | * compliance with the License. The rights granted to you under the License | |
11 | * may not be used to create, or enable the creation or redistribution of, | |
12 | * unlawful or unlicensed copies of an Apple operating system, or to | |
13 | * circumvent, violate, or enable the circumvention or violation of, any | |
14 | * terms of an Apple operating system software license agreement. | |
15 | * | |
16 | * Please obtain a copy of the License at | |
17 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
18 | * | |
19 | * The Original Code and all software distributed under the License are | |
20 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
21 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
22 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
23 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
24 | * Please see the License for the specific language governing rights and | |
25 | * limitations under the License. | |
26 | * | |
27 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
28 | */ | |
29 | /* | |
30 | * @OSF_COPYRIGHT@ | |
31 | */ | |
32 | /* | |
33 | * Mach Operating System | |
34 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University | |
35 | * All Rights Reserved. | |
36 | * | |
37 | * Permission to use, copy, modify and distribute this software and its | |
38 | * documentation is hereby granted, provided that both the copyright | |
39 | * notice and this permission notice appear in all copies of the | |
40 | * software, derivative works or modified versions, and any portions | |
41 | * thereof, and that both notices appear in supporting documentation. | |
42 | * | |
43 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
44 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
45 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
46 | * | |
47 | * Carnegie Mellon requests users of this software to return to | |
48 | * | |
49 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
50 | * School of Computer Science | |
51 | * Carnegie Mellon University | |
52 | * Pittsburgh PA 15213-3890 | |
53 | * | |
54 | * any improvements or extensions that they make and grant Carnegie Mellon | |
55 | * the rights to redistribute these changes. | |
56 | */ | |
57 | /* | |
58 | */ | |
59 | ||
60 | /* | |
61 | * File: pmap.c | |
62 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
63 | * (These guys wrote the Vax version) | |
64 | * | |
65 | * Physical Map management code for Intel i386, i486, and i860. | |
66 | * | |
67 | * Manages physical address maps. | |
68 | * | |
69 | * In addition to hardware address maps, this | |
70 | * module is called upon to provide software-use-only | |
71 | * maps which may or may not be stored in the same | |
72 | * form as hardware maps. These pseudo-maps are | |
73 | * used to store intermediate results from copy | |
74 | * operations to and from address spaces. | |
75 | * | |
76 | * Since the information managed by this module is | |
77 | * also stored by the logical address mapping module, | |
78 | * this module may throw away valid virtual-to-physical | |
79 | * mappings at almost any time. However, invalidations | |
80 | * of virtual-to-physical mappings must be done as | |
81 | * requested. | |
82 | * | |
83 | * In order to cope with hardware architectures which | |
84 | * make virtual-to-physical map invalidates expensive, | |
85 | * this module may delay invalidate or reduced protection | |
86 | * operations until such time as they are actually | |
87 | * necessary. This module is given full information as | |
88 | * to which processors are currently using which maps, | |
89 | * and to when physical maps must be made correct. | |
90 | */ | |
91 | ||
92 | #include <string.h> | |
b0d623f7 A |
93 | #include <mach_kdb.h> |
94 | #include <mach_ldebug.h> | |
95 | ||
96 | #include <libkern/OSAtomic.h> | |
97 | ||
98 | #include <mach/machine/vm_types.h> | |
99 | ||
100 | #include <mach/boolean.h> | |
101 | #include <kern/thread.h> | |
102 | #include <kern/zalloc.h> | |
103 | #include <kern/queue.h> | |
104 | ||
105 | #include <kern/lock.h> | |
106 | #include <kern/kalloc.h> | |
107 | #include <kern/spl.h> | |
108 | ||
109 | #include <vm/pmap.h> | |
110 | #include <vm/vm_map.h> | |
111 | #include <vm/vm_kern.h> | |
112 | #include <mach/vm_param.h> | |
113 | #include <mach/vm_prot.h> | |
114 | #include <vm/vm_object.h> | |
115 | #include <vm/vm_page.h> | |
116 | ||
117 | #include <mach/machine/vm_param.h> | |
118 | #include <machine/thread.h> | |
119 | ||
120 | #include <kern/misc_protos.h> /* prototyping */ | |
121 | #include <i386/misc_protos.h> | |
122 | #include <x86_64/lowglobals.h> | |
123 | ||
124 | #include <i386/cpuid.h> | |
125 | #include <i386/cpu_data.h> | |
126 | #include <i386/cpu_number.h> | |
127 | #include <i386/machine_cpu.h> | |
128 | #include <i386/seg.h> | |
129 | #include <i386/serial_io.h> | |
130 | #include <i386/cpu_capabilities.h> | |
131 | #include <i386/machine_routines.h> | |
132 | #include <i386/proc_reg.h> | |
133 | #include <i386/tsc.h> | |
134 | #include <i386/pmap_internal.h> | |
135 | ||
136 | #if MACH_KDB | |
137 | #include <ddb/db_command.h> | |
138 | #include <ddb/db_output.h> | |
139 | #include <ddb/db_sym.h> | |
140 | #include <ddb/db_print.h> | |
141 | #endif /* MACH_KDB */ | |
142 | ||
143 | #include <vm/vm_protos.h> | |
144 | ||
145 | #include <i386/mp.h> | |
146 | #include <i386/mp_desc.h> | |
147 | ||
148 | ||
b0d623f7 A |
149 | |
150 | #ifdef IWANTTODEBUG | |
151 | #undef DEBUG | |
152 | #define DEBUG 1 | |
153 | #define POSTCODE_DELAY 1 | |
154 | #include <i386/postcode.h> | |
155 | #endif /* IWANTTODEBUG */ | |
156 | ||
157 | boolean_t pmap_trace = FALSE; | |
158 | ||
159 | #if PMAP_DBG | |
160 | #define DBG(x...) kprintf("DBG: " x) | |
161 | #else | |
162 | #define DBG(x...) | |
163 | #endif | |
164 | ||
165 | boolean_t no_shared_cr3 = DEBUG; /* TRUE for DEBUG by default */ | |
166 | ||
167 | /* | |
168 | * Forward declarations for internal functions. | |
169 | */ | |
170 | ||
b0d623f7 A |
171 | |
172 | void phys_attribute_clear( | |
173 | ppnum_t phys, | |
174 | int bits); | |
175 | ||
176 | int phys_attribute_test( | |
177 | ppnum_t phys, | |
178 | int bits); | |
179 | ||
180 | void phys_attribute_set( | |
181 | ppnum_t phys, | |
182 | int bits); | |
183 | ||
184 | void pmap_set_reference( | |
185 | ppnum_t pn); | |
186 | ||
187 | boolean_t phys_page_exists( | |
188 | ppnum_t pn); | |
189 | ||
190 | ||
191 | int nx_enabled = 1; /* enable no-execute protection */ | |
192 | int allow_data_exec = VM_ABI_32; /* 32-bit apps may execute data by default, 64-bit apps may not */ | |
193 | int allow_stack_exec = 0; /* No apps may execute from the stack by default */ | |
194 | ||
195 | const boolean_t cpu_64bit = TRUE; /* Mais oui! */ | |
196 | ||
b0d623f7 A |
197 | uint64_t max_preemption_latency_tsc = 0; |
198 | ||
b0d623f7 A |
199 | pv_hashed_entry_t *pv_hash_table; /* hash lists */ |
200 | ||
201 | uint32_t npvhash = 0; | |
202 | ||
b0d623f7 A |
203 | pv_hashed_entry_t pv_hashed_free_list = PV_HASHED_ENTRY_NULL; |
204 | pv_hashed_entry_t pv_hashed_kern_free_list = PV_HASHED_ENTRY_NULL; | |
205 | decl_simple_lock_data(,pv_hashed_free_list_lock) | |
206 | decl_simple_lock_data(,pv_hashed_kern_free_list_lock) | |
207 | decl_simple_lock_data(,pv_hash_table_lock) | |
208 | ||
209 | int pv_hashed_free_count = 0; | |
210 | int pv_hashed_kern_free_count = 0; | |
b0d623f7 | 211 | |
b0d623f7 A |
212 | |
213 | zone_t pv_hashed_list_zone; /* zone of pv_hashed_entry structures */ | |
214 | ||
b0d623f7 A |
215 | /* |
216 | * Each entry in the pv_head_table is locked by a bit in the | |
217 | * pv_lock_table. The lock bits are accessed by the physical | |
218 | * address of the page they lock. | |
219 | */ | |
220 | ||
221 | char *pv_lock_table; /* pointer to array of bits */ | |
b7266188 | 222 | |
b0d623f7 A |
223 | |
224 | char *pv_hash_lock_table; | |
b7266188 | 225 | |
b0d623f7 A |
226 | |
227 | /* | |
228 | * First and last physical addresses that we maintain any information | |
229 | * for. Initialized to zero so that pmap operations done before | |
230 | * pmap_init won't touch any non-existent structures. | |
231 | */ | |
232 | boolean_t pmap_initialized = FALSE;/* Has pmap_init completed? */ | |
233 | ||
234 | static struct vm_object kptobj_object_store; | |
235 | static struct vm_object kpml4obj_object_store; | |
236 | static struct vm_object kpdptobj_object_store; | |
237 | ||
238 | /* | |
b7266188 | 239 | * Array of physical page attributes for managed pages. |
b0d623f7 A |
240 | * One byte per physical page. |
241 | */ | |
242 | char *pmap_phys_attributes; | |
243 | unsigned int last_managed_page = 0; | |
b0d623f7 A |
244 | uint64_t pde_mapped_size = PDE_MAPPED_SIZE; |
245 | ||
b0d623f7 A |
246 | unsigned pmap_memory_region_count; |
247 | unsigned pmap_memory_region_current; | |
248 | ||
249 | pmap_memory_region_t pmap_memory_regions[PMAP_MEMORY_REGIONS_SIZE]; | |
250 | ||
251 | /* | |
252 | * Other useful macros. | |
253 | */ | |
254 | #define current_pmap() (vm_map_pmap(current_thread()->map)) | |
255 | ||
256 | struct pmap kernel_pmap_store; | |
257 | pmap_t kernel_pmap; | |
258 | ||
259 | pd_entry_t high_shared_pde; | |
260 | pd_entry_t commpage64_pde; | |
261 | ||
262 | struct zone *pmap_zone; /* zone of pmap structures */ | |
263 | ||
b0d623f7 A |
264 | unsigned int inuse_ptepages_count = 0; |
265 | ||
266 | addr64_t kernel64_cr3; | |
267 | ||
268 | /* | |
269 | * Pmap cache. Cache is threaded through ref_count field of pmap. | |
270 | * Max will eventually be constant -- variable for experimentation. | |
271 | */ | |
272 | int pmap_cache_max = 32; | |
273 | int pmap_alloc_chunk = 8; | |
274 | pmap_t pmap_cache_list; | |
275 | int pmap_cache_count; | |
276 | decl_simple_lock_data(,pmap_cache_lock) | |
277 | ||
278 | extern char end; | |
279 | ||
280 | static int nkpt; | |
281 | ||
282 | pt_entry_t *DMAP1, *DMAP2; | |
283 | caddr_t DADDR1; | |
284 | caddr_t DADDR2; | |
b0d623f7 A |
285 | /* |
286 | * for legacy, returns the address of the pde entry. | |
287 | * for 64 bit, causes the pdpt page containing the pde entry to be mapped, | |
288 | * then returns the mapped address of the pde entry in that page | |
289 | */ | |
290 | pd_entry_t * | |
291 | pmap_pde(pmap_t m, vm_map_offset_t v) | |
292 | { | |
293 | pd_entry_t *pde; | |
294 | ||
295 | assert(m); | |
296 | #if 0 | |
297 | if (m == kernel_pmap) | |
298 | pde = (&((m)->dirbase[(vm_offset_t)(v) >> PDESHIFT])); | |
299 | else | |
300 | #endif | |
301 | pde = pmap64_pde(m, v); | |
302 | ||
303 | return pde; | |
304 | } | |
305 | ||
306 | /* | |
307 | * the single pml4 page per pmap is allocated at pmap create time and exists | |
308 | * for the duration of the pmap. we allocate this page in kernel vm. | |
309 | * this returns the address of the requested pml4 entry in the top level page. | |
310 | */ | |
311 | static inline | |
312 | pml4_entry_t * | |
313 | pmap64_pml4(pmap_t pmap, vm_map_offset_t vaddr) | |
314 | { | |
315 | return &pmap->pm_pml4[(vaddr >> PML4SHIFT) & (NPML4PG-1)]; | |
316 | } | |
317 | ||
318 | /* | |
319 | * maps in the pml4 page, if any, containing the pdpt entry requested | |
320 | * and returns the address of the pdpt entry in that mapped page | |
321 | */ | |
322 | pdpt_entry_t * | |
323 | pmap64_pdpt(pmap_t pmap, vm_map_offset_t vaddr) | |
324 | { | |
325 | pml4_entry_t newpf; | |
326 | pml4_entry_t *pml4; | |
327 | ||
328 | assert(pmap); | |
329 | if ((vaddr > 0x00007FFFFFFFFFFFULL) && | |
330 | (vaddr < 0xFFFF800000000000ULL)) { | |
331 | return (0); | |
332 | } | |
333 | ||
334 | pml4 = pmap64_pml4(pmap, vaddr); | |
335 | if (pml4 && ((*pml4 & INTEL_PTE_VALID))) { | |
336 | newpf = *pml4 & PG_FRAME; | |
337 | return &((pdpt_entry_t *) PHYSMAP_PTOV(newpf)) | |
338 | [(vaddr >> PDPTSHIFT) & (NPDPTPG-1)]; | |
339 | } | |
340 | return (NULL); | |
341 | } | |
342 | /* | |
343 | * maps in the pdpt page, if any, containing the pde entry requested | |
344 | * and returns the address of the pde entry in that mapped page | |
345 | */ | |
346 | pd_entry_t * | |
347 | pmap64_pde(pmap_t pmap, vm_map_offset_t vaddr) | |
348 | { | |
349 | pdpt_entry_t newpf; | |
350 | pdpt_entry_t *pdpt; | |
351 | ||
352 | assert(pmap); | |
353 | if ((vaddr > 0x00007FFFFFFFFFFFULL) && | |
354 | (vaddr < 0xFFFF800000000000ULL)) { | |
355 | return (0); | |
356 | } | |
357 | ||
358 | pdpt = pmap64_pdpt(pmap, vaddr); | |
359 | ||
360 | if (pdpt && ((*pdpt & INTEL_PTE_VALID))) { | |
361 | newpf = *pdpt & PG_FRAME; | |
362 | return &((pd_entry_t *) PHYSMAP_PTOV(newpf)) | |
363 | [(vaddr >> PDSHIFT) & (NPDPG-1)]; | |
364 | } | |
365 | return (NULL); | |
366 | } | |
367 | ||
368 | /* | |
369 | * return address of mapped pte for vaddr va in pmap pmap. | |
370 | * | |
371 | * physically maps the pde page, if any, containing the pte in and returns | |
372 | * the address of the pte in that mapped page | |
373 | * | |
374 | * In case the pde maps a superpage, return the pde, which, in this case | |
375 | * is the actual page table entry. | |
376 | */ | |
377 | pt_entry_t * | |
378 | pmap_pte(pmap_t pmap, vm_map_offset_t vaddr) | |
379 | { | |
380 | pd_entry_t *pde; | |
381 | pd_entry_t newpf; | |
382 | ||
383 | assert(pmap); | |
384 | pde = pmap_pde(pmap, vaddr); | |
385 | ||
386 | if (pde && ((*pde & INTEL_PTE_VALID))) { | |
387 | if (*pde & INTEL_PTE_PS) | |
388 | return pde; | |
389 | newpf = *pde & PG_FRAME; | |
390 | return &((pt_entry_t *)PHYSMAP_PTOV(newpf)) | |
391 | [i386_btop(vaddr) & (ppnum_t)(NPTEPG-1)]; | |
392 | } | |
393 | return (NULL); | |
394 | } | |
395 | ||
396 | /* | |
397 | * Map memory at initialization. The physical addresses being | |
398 | * mapped are not managed and are never unmapped. | |
399 | * | |
400 | * For now, VM is already on, we only need to map the | |
401 | * specified memory. | |
402 | */ | |
403 | vm_offset_t | |
404 | pmap_map( | |
405 | vm_offset_t virt, | |
406 | vm_map_offset_t start_addr, | |
407 | vm_map_offset_t end_addr, | |
408 | vm_prot_t prot, | |
409 | unsigned int flags) | |
410 | { | |
411 | int ps; | |
412 | ||
413 | ps = PAGE_SIZE; | |
414 | while (start_addr < end_addr) { | |
415 | pmap_enter(kernel_pmap, (vm_map_offset_t)virt, | |
416 | (ppnum_t) i386_btop(start_addr), prot, flags, FALSE); | |
417 | virt += ps; | |
418 | start_addr += ps; | |
419 | } | |
420 | return(virt); | |
421 | } | |
422 | ||
423 | /* | |
424 | * Back-door routine for mapping kernel VM at initialization. | |
425 | * Useful for mapping memory outside the range | |
426 | * Sets no-cache, A, D. | |
427 | * Otherwise like pmap_map. | |
428 | */ | |
429 | vm_offset_t | |
430 | pmap_map_bd( | |
431 | vm_offset_t virt, | |
432 | vm_map_offset_t start_addr, | |
433 | vm_map_offset_t end_addr, | |
434 | vm_prot_t prot, | |
435 | unsigned int flags) | |
436 | { | |
437 | pt_entry_t template; | |
438 | pt_entry_t *pte; | |
439 | spl_t spl; | |
440 | ||
441 | template = pa_to_pte(start_addr) | |
442 | | INTEL_PTE_REF | |
443 | | INTEL_PTE_MOD | |
444 | | INTEL_PTE_WIRED | |
445 | | INTEL_PTE_VALID; | |
446 | ||
447 | if (flags & (VM_MEM_NOT_CACHEABLE | VM_WIMG_USE_DEFAULT)) { | |
448 | template |= INTEL_PTE_NCACHE; | |
449 | if (!(flags & (VM_MEM_GUARDED | VM_WIMG_USE_DEFAULT))) | |
450 | template |= INTEL_PTE_PTA; | |
451 | } | |
452 | if (prot & VM_PROT_WRITE) | |
453 | template |= INTEL_PTE_WRITE; | |
454 | ||
455 | ||
456 | while (start_addr < end_addr) { | |
457 | spl = splhigh(); | |
458 | pte = pmap_pte(kernel_pmap, (vm_map_offset_t)virt); | |
459 | if (pte == PT_ENTRY_NULL) { | |
460 | panic("pmap_map_bd: Invalid kernel address\n"); | |
461 | } | |
462 | pmap_store_pte(pte, template); | |
463 | splx(spl); | |
464 | pte_increment_pa(template); | |
465 | virt += PAGE_SIZE; | |
466 | start_addr += PAGE_SIZE; | |
467 | } | |
468 | ||
469 | ||
470 | flush_tlb(); | |
471 | return(virt); | |
472 | } | |
473 | ||
474 | extern char *first_avail; | |
475 | extern vm_offset_t virtual_avail, virtual_end; | |
476 | extern pmap_paddr_t avail_start, avail_end; | |
477 | extern vm_offset_t sHIB; | |
478 | extern vm_offset_t eHIB; | |
479 | extern vm_offset_t stext; | |
480 | extern vm_offset_t etext; | |
481 | extern vm_offset_t sdata; | |
482 | ||
483 | void | |
484 | pmap_cpu_init(void) | |
485 | { | |
486 | /* | |
487 | * Here early in the life of a processor (from cpu_mode_init()). | |
488 | * Ensure global page feature is disabled. | |
489 | */ | |
490 | set_cr4(get_cr4() &~ CR4_PGE); | |
491 | ||
492 | /* | |
493 | * Initialize the per-cpu, TLB-related fields. | |
494 | */ | |
495 | current_cpu_datap()->cpu_kernel_cr3 = kernel_pmap->pm_cr3; | |
496 | current_cpu_datap()->cpu_active_cr3 = kernel_pmap->pm_cr3; | |
497 | current_cpu_datap()->cpu_tlb_invalid = FALSE; | |
498 | } | |
499 | ||
500 | ||
501 | ||
502 | /* | |
503 | * Bootstrap the system enough to run with virtual memory. | |
504 | * Map the kernel's code and data, and allocate the system page table. | |
505 | * Called with mapping OFF. Page_size must already be set. | |
506 | */ | |
507 | ||
508 | void | |
509 | pmap_bootstrap( | |
510 | __unused vm_offset_t load_start, | |
511 | __unused boolean_t IA32e) | |
512 | { | |
513 | #if NCOPY_WINDOWS > 0 | |
514 | vm_offset_t va; | |
515 | int i; | |
516 | #endif | |
517 | ||
518 | assert(IA32e); | |
519 | ||
520 | vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Set the highest address | |
521 | * known to VM */ | |
522 | /* | |
523 | * The kernel's pmap is statically allocated so we don't | |
524 | * have to use pmap_create, which is unlikely to work | |
525 | * correctly at this part of the boot sequence. | |
526 | */ | |
527 | ||
528 | kernel_pmap = &kernel_pmap_store; | |
529 | kernel_pmap->ref_count = 1; | |
530 | kernel_pmap->nx_enabled = FALSE; | |
531 | kernel_pmap->pm_task_map = TASK_MAP_64BIT; | |
532 | kernel_pmap->pm_obj = (vm_object_t) NULL; | |
533 | kernel_pmap->dirbase = (pd_entry_t *)((uintptr_t)IdlePTD); | |
534 | kernel_pmap->pm_pdpt = (pd_entry_t *) ((uintptr_t)IdlePDPT); | |
535 | kernel_pmap->pm_pml4 = IdlePML4; | |
536 | kernel_pmap->pm_cr3 = (uintptr_t)ID_MAP_VTOP(IdlePML4); | |
537 | ||
538 | ||
539 | current_cpu_datap()->cpu_kernel_cr3 = (addr64_t) kernel_pmap->pm_cr3; | |
540 | ||
541 | nkpt = NKPT; | |
542 | OSAddAtomic(NKPT, &inuse_ptepages_count); | |
543 | ||
544 | virtual_avail = (vm_offset_t)(VM_MIN_KERNEL_ADDRESS) + (vm_offset_t)first_avail; | |
545 | virtual_end = (vm_offset_t)(VM_MAX_KERNEL_ADDRESS); | |
546 | ||
547 | #if NCOPY_WINDOWS > 0 | |
548 | /* | |
549 | * Reserve some special page table entries/VA space for temporary | |
550 | * mapping of pages. | |
551 | */ | |
552 | #define SYSMAP(c, p, v, n) \ | |
553 | v = (c)va; va += ((n)*INTEL_PGBYTES); | |
554 | ||
555 | va = virtual_avail; | |
556 | ||
557 | for (i=0; i<PMAP_NWINDOWS; i++) { | |
558 | #if 1 | |
559 | kprintf("trying to do SYSMAP idx %d %p\n", i, | |
560 | current_cpu_datap()); | |
561 | kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap); | |
562 | kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap->mapwindow); | |
563 | kprintf("two stuff %p %p\n", | |
564 | (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP), | |
565 | (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR)); | |
566 | #endif | |
567 | SYSMAP(caddr_t, | |
568 | (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP), | |
569 | (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR), | |
570 | 1); | |
571 | current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = | |
572 | &(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP_store); | |
573 | *current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = 0; | |
574 | } | |
575 | ||
576 | /* DMAP user for debugger */ | |
577 | SYSMAP(caddr_t, DMAP1, DADDR1, 1); | |
578 | SYSMAP(caddr_t, DMAP2, DADDR2, 1); /* XXX temporary - can remove */ | |
579 | ||
580 | virtual_avail = va; | |
581 | #endif | |
582 | ||
583 | if (PE_parse_boot_argn("npvhash", &npvhash, sizeof (npvhash))) { | |
584 | if (0 != ((npvhash + 1) & npvhash)) { | |
585 | kprintf("invalid hash %d, must be ((2^N)-1), " | |
586 | "using default %d\n", npvhash, NPVHASH); | |
587 | npvhash = NPVHASH; | |
588 | } | |
589 | } else { | |
590 | npvhash = NPVHASH; | |
591 | } | |
592 | ||
593 | printf("npvhash=%d\n", npvhash); | |
594 | ||
595 | simple_lock_init(&kernel_pmap->lock, 0); | |
596 | simple_lock_init(&pv_hashed_free_list_lock, 0); | |
597 | simple_lock_init(&pv_hashed_kern_free_list_lock, 0); | |
598 | simple_lock_init(&pv_hash_table_lock,0); | |
599 | ||
600 | pmap_cpu_init(); | |
601 | ||
602 | kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n", | |
603 | (long)KERNEL_BASE, (long)virtual_end); | |
604 | kprintf("Available physical space from 0x%llx to 0x%llx\n", | |
605 | avail_start, avail_end); | |
606 | ||
607 | /* | |
608 | * The -no_shared_cr3 boot-arg is a debugging feature (set by default | |
609 | * in the DEBUG kernel) to force the kernel to switch to its own map | |
610 | * (and cr3) when control is in kernelspace. The kernel's map does not | |
611 | * include (i.e. share) userspace so wild references will cause | |
612 | * a panic. Only copyin and copyout are exempt from this. | |
613 | */ | |
614 | (void) PE_parse_boot_argn("-no_shared_cr3", | |
615 | &no_shared_cr3, sizeof (no_shared_cr3)); | |
616 | if (no_shared_cr3) | |
617 | kprintf("Kernel not sharing user map\n"); | |
618 | ||
619 | #ifdef PMAP_TRACES | |
620 | if (PE_parse_boot_argn("-pmap_trace", &pmap_trace, sizeof (pmap_trace))) { | |
621 | kprintf("Kernel traces for pmap operations enabled\n"); | |
622 | } | |
623 | #endif /* PMAP_TRACES */ | |
624 | } | |
625 | ||
626 | void | |
627 | pmap_virtual_space( | |
628 | vm_offset_t *startp, | |
629 | vm_offset_t *endp) | |
630 | { | |
631 | *startp = virtual_avail; | |
632 | *endp = virtual_end; | |
633 | } | |
634 | ||
635 | /* | |
636 | * Initialize the pmap module. | |
637 | * Called by vm_init, to initialize any structures that the pmap | |
638 | * system needs to map virtual memory. | |
639 | */ | |
640 | void | |
641 | pmap_init(void) | |
642 | { | |
643 | long npages; | |
644 | vm_offset_t addr; | |
060df5ea | 645 | vm_size_t s, vsize; |
b0d623f7 A |
646 | vm_map_offset_t vaddr; |
647 | ppnum_t ppn; | |
648 | ||
649 | ||
650 | kernel_pmap->pm_obj_pml4 = &kpml4obj_object_store; | |
651 | _vm_object_allocate((vm_object_size_t)NPML4PGS, &kpml4obj_object_store); | |
652 | ||
653 | kernel_pmap->pm_obj_pdpt = &kpdptobj_object_store; | |
654 | _vm_object_allocate((vm_object_size_t)NPDPTPGS, &kpdptobj_object_store); | |
655 | ||
656 | kernel_pmap->pm_obj = &kptobj_object_store; | |
657 | _vm_object_allocate((vm_object_size_t)NPDEPGS, &kptobj_object_store); | |
658 | ||
659 | /* | |
660 | * Allocate memory for the pv_head_table and its lock bits, | |
661 | * the modify bit array, and the pte_page table. | |
662 | */ | |
663 | ||
664 | /* | |
665 | * zero bias all these arrays now instead of off avail_start | |
666 | * so we cover all memory | |
667 | */ | |
668 | ||
669 | npages = i386_btop(avail_end); | |
670 | s = (vm_size_t) (sizeof(struct pv_rooted_entry) * npages | |
671 | + (sizeof (struct pv_hashed_entry_t *) * (npvhash+1)) | |
672 | + pv_lock_table_size(npages) | |
673 | + pv_hash_lock_table_size((npvhash+1)) | |
674 | + npages); | |
675 | ||
676 | s = round_page(s); | |
677 | if (kernel_memory_allocate(kernel_map, &addr, s, 0, | |
678 | KMA_KOBJECT | KMA_PERMANENT) | |
679 | != KERN_SUCCESS) | |
680 | panic("pmap_init"); | |
681 | ||
682 | memset((char *)addr, 0, s); | |
683 | ||
060df5ea A |
684 | vaddr = addr; |
685 | vsize = s; | |
686 | ||
b0d623f7 A |
687 | #if PV_DEBUG |
688 | if (0 == npvhash) panic("npvhash not initialized"); | |
689 | #endif | |
690 | ||
691 | /* | |
692 | * Allocate the structures first to preserve word-alignment. | |
693 | */ | |
694 | pv_head_table = (pv_rooted_entry_t) addr; | |
695 | addr = (vm_offset_t) (pv_head_table + npages); | |
696 | ||
697 | pv_hash_table = (pv_hashed_entry_t *)addr; | |
698 | addr = (vm_offset_t) (pv_hash_table + (npvhash + 1)); | |
699 | ||
700 | pv_lock_table = (char *) addr; | |
701 | addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages)); | |
702 | ||
703 | pv_hash_lock_table = (char *) addr; | |
704 | addr = (vm_offset_t) (pv_hash_lock_table + pv_hash_lock_table_size((npvhash+1))); | |
705 | ||
706 | pmap_phys_attributes = (char *) addr; | |
707 | ||
708 | ppnum_t last_pn = i386_btop(avail_end); | |
709 | unsigned int i; | |
710 | pmap_memory_region_t *pmptr = pmap_memory_regions; | |
711 | for (i = 0; i < pmap_memory_region_count; i++, pmptr++) { | |
712 | if (pmptr->type != kEfiConventionalMemory) | |
713 | continue; | |
714 | unsigned int pn; | |
715 | for (pn = pmptr->base; pn <= pmptr->end; pn++) { | |
716 | if (pn < last_pn) { | |
717 | pmap_phys_attributes[pn] |= PHYS_MANAGED; | |
060df5ea | 718 | |
b0d623f7 A |
719 | if (pn > last_managed_page) |
720 | last_managed_page = pn; | |
060df5ea A |
721 | |
722 | if (pn < lowest_lo) | |
723 | pmap_phys_attributes[pn] |= PHYS_NOENCRYPT; | |
724 | else if (pn >= lowest_hi && pn <= highest_hi) | |
725 | pmap_phys_attributes[pn] |= PHYS_NOENCRYPT; | |
726 | ||
b0d623f7 A |
727 | } |
728 | } | |
729 | } | |
060df5ea A |
730 | while (vsize) { |
731 | ppn = pmap_find_phys(kernel_pmap, vaddr); | |
b0d623f7 | 732 | |
060df5ea A |
733 | pmap_phys_attributes[ppn] |= PHYS_NOENCRYPT; |
734 | ||
735 | vaddr += PAGE_SIZE; | |
736 | vsize -= PAGE_SIZE; | |
737 | } | |
b0d623f7 A |
738 | /* |
739 | * Create the zone of physical maps, | |
740 | * and of the physical-to-virtual entries. | |
741 | */ | |
742 | s = (vm_size_t) sizeof(struct pmap); | |
743 | pmap_zone = zinit(s, 400*s, 4096, "pmap"); /* XXX */ | |
060df5ea A |
744 | zone_change(pmap_zone, Z_NOENCRYPT, TRUE); |
745 | ||
b0d623f7 A |
746 | s = (vm_size_t) sizeof(struct pv_hashed_entry); |
747 | pv_hashed_list_zone = zinit(s, 10000*s, 4096, "pv_list"); /* XXX */ | |
060df5ea | 748 | zone_change(pv_hashed_list_zone, Z_NOENCRYPT, TRUE); |
b0d623f7 A |
749 | |
750 | /* create pv entries for kernel pages mapped by low level | |
751 | startup code. these have to exist so we can pmap_remove() | |
752 | e.g. kext pages from the middle of our addr space */ | |
753 | ||
754 | vaddr = (vm_map_offset_t) VM_MIN_KERNEL_ADDRESS; | |
755 | for (ppn = 0; ppn < i386_btop(avail_start); ppn++) { | |
756 | pv_rooted_entry_t pv_e; | |
757 | ||
758 | pv_e = pai_to_pvh(ppn); | |
759 | pv_e->va = vaddr; | |
760 | vaddr += PAGE_SIZE; | |
761 | pv_e->pmap = kernel_pmap; | |
762 | queue_init(&pv_e->qlink); | |
763 | } | |
764 | pmap_initialized = TRUE; | |
765 | ||
766 | /* | |
767 | * Initialize pmap cache. | |
768 | */ | |
769 | pmap_cache_list = PMAP_NULL; | |
770 | pmap_cache_count = 0; | |
771 | simple_lock_init(&pmap_cache_lock, 0); | |
772 | ||
773 | max_preemption_latency_tsc = tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS, tscFCvtn2t); | |
774 | ||
775 | /* | |
776 | * Ensure the kernel's PML4 entry exists for the basement | |
777 | * before this is shared with any user. | |
778 | */ | |
779 | pmap_expand_pml4(kernel_pmap, KERNEL_BASEMENT); | |
780 | } | |
781 | ||
782 | ||
783 | /* | |
784 | * this function is only used for debugging fron the vm layer | |
785 | */ | |
786 | boolean_t | |
787 | pmap_verify_free( | |
788 | ppnum_t pn) | |
789 | { | |
790 | pv_rooted_entry_t pv_h; | |
791 | int pai; | |
792 | boolean_t result; | |
793 | ||
794 | assert(pn != vm_page_fictitious_addr); | |
795 | ||
796 | if (!pmap_initialized) | |
797 | return(TRUE); | |
798 | ||
799 | if (pn == vm_page_guard_addr) | |
800 | return TRUE; | |
801 | ||
802 | pai = ppn_to_pai(pn); | |
803 | if (!IS_MANAGED_PAGE(pai)) | |
804 | return(FALSE); | |
805 | pv_h = pai_to_pvh(pn); | |
806 | result = (pv_h->pmap == PMAP_NULL); | |
807 | return(result); | |
808 | } | |
809 | ||
810 | boolean_t | |
811 | pmap_is_empty( | |
812 | pmap_t pmap, | |
813 | vm_map_offset_t va_start, | |
814 | vm_map_offset_t va_end) | |
815 | { | |
816 | vm_map_offset_t offset; | |
817 | ppnum_t phys_page; | |
818 | ||
819 | if (pmap == PMAP_NULL) { | |
820 | return TRUE; | |
821 | } | |
822 | ||
823 | /* | |
824 | * Check the resident page count | |
825 | * - if it's zero, the pmap is completely empty. | |
826 | * This short-circuit test prevents a virtual address scan which is | |
827 | * painfully slow for 64-bit spaces. | |
828 | * This assumes the count is correct | |
829 | * .. the debug kernel ought to be checking perhaps by page table walk. | |
830 | */ | |
831 | if (pmap->stats.resident_count == 0) | |
832 | return TRUE; | |
833 | ||
834 | for (offset = va_start; | |
835 | offset < va_end; | |
836 | offset += PAGE_SIZE_64) { | |
837 | phys_page = pmap_find_phys(pmap, offset); | |
838 | if (phys_page) { | |
839 | kprintf("pmap_is_empty(%p,0x%llx,0x%llx): " | |
840 | "page %d at 0x%llx\n", | |
841 | pmap, va_start, va_end, phys_page, offset); | |
842 | return FALSE; | |
843 | } | |
844 | } | |
845 | ||
846 | return TRUE; | |
847 | } | |
848 | ||
849 | ||
850 | /* | |
851 | * Create and return a physical map. | |
852 | * | |
853 | * If the size specified for the map | |
854 | * is zero, the map is an actual physical | |
855 | * map, and may be referenced by the | |
856 | * hardware. | |
857 | * | |
858 | * If the size specified is non-zero, | |
859 | * the map will be used in software only, and | |
860 | * is bounded by that size. | |
861 | */ | |
862 | pmap_t | |
863 | pmap_create( | |
864 | vm_map_size_t sz, | |
865 | boolean_t is_64bit) | |
866 | { | |
867 | pmap_t p; | |
868 | vm_size_t size; | |
869 | pml4_entry_t *pml4; | |
870 | pml4_entry_t *kpml4; | |
871 | ||
872 | PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START, | |
873 | (uint32_t) (sz>>32), (uint32_t) sz, is_64bit, 0, 0); | |
874 | ||
875 | size = (vm_size_t) sz; | |
876 | ||
877 | /* | |
878 | * A software use-only map doesn't even need a map. | |
879 | */ | |
880 | ||
881 | if (size != 0) { | |
882 | return(PMAP_NULL); | |
883 | } | |
884 | ||
885 | p = (pmap_t) zalloc(pmap_zone); | |
886 | if (PMAP_NULL == p) | |
887 | panic("pmap_create zalloc"); | |
888 | ||
889 | /* init counts now since we'll be bumping some */ | |
890 | simple_lock_init(&p->lock, 0); | |
891 | p->stats.resident_count = 0; | |
892 | p->stats.resident_max = 0; | |
893 | p->stats.wired_count = 0; | |
894 | p->ref_count = 1; | |
895 | p->nx_enabled = 1; | |
896 | p->pm_shared = FALSE; | |
897 | ||
898 | p->pm_task_map = is_64bit ? TASK_MAP_64BIT : TASK_MAP_32BIT;; | |
899 | ||
900 | /* alloc the pml4 page in kernel vm */ | |
901 | if (KERN_SUCCESS != kmem_alloc_kobject(kernel_map, (vm_offset_t *)(&p->pm_pml4), PAGE_SIZE)) | |
902 | panic("pmap_create kmem_alloc_kobject pml4"); | |
903 | ||
904 | memset((char *)p->pm_pml4, 0, PAGE_SIZE); | |
905 | p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4); | |
906 | ||
907 | OSAddAtomic(1, &inuse_ptepages_count); | |
908 | ||
909 | /* allocate the vm_objs to hold the pdpt, pde and pte pages */ | |
910 | ||
911 | p->pm_obj_pml4 = vm_object_allocate((vm_object_size_t)(NPML4PGS)); | |
912 | if (NULL == p->pm_obj_pml4) | |
913 | panic("pmap_create pdpt obj"); | |
914 | ||
915 | p->pm_obj_pdpt = vm_object_allocate((vm_object_size_t)(NPDPTPGS)); | |
916 | if (NULL == p->pm_obj_pdpt) | |
917 | panic("pmap_create pdpt obj"); | |
918 | ||
919 | p->pm_obj = vm_object_allocate((vm_object_size_t)(NPDEPGS)); | |
920 | if (NULL == p->pm_obj) | |
921 | panic("pmap_create pte obj"); | |
922 | ||
923 | /* All pmaps share the kennel's pml4 */ | |
924 | pml4 = pmap64_pml4(p, 0ULL); | |
925 | kpml4 = kernel_pmap->pm_pml4; | |
926 | pml4[KERNEL_PML4_INDEX] = kpml4[KERNEL_PML4_INDEX]; | |
927 | pml4[KERNEL_KEXTS_INDEX] = kpml4[KERNEL_KEXTS_INDEX]; | |
928 | pml4[KERNEL_PHYSMAP_INDEX] = kpml4[KERNEL_PHYSMAP_INDEX]; | |
929 | ||
930 | PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START, | |
931 | p, is_64bit, 0, 0, 0); | |
932 | ||
933 | return(p); | |
934 | } | |
935 | ||
936 | /* | |
937 | * Retire the given physical map from service. | |
938 | * Should only be called if the map contains | |
939 | * no valid mappings. | |
940 | */ | |
941 | ||
942 | void | |
943 | pmap_destroy( | |
944 | register pmap_t p) | |
945 | { | |
946 | register int c; | |
947 | ||
948 | if (p == PMAP_NULL) | |
949 | return; | |
950 | ||
951 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_START, | |
952 | p, 0, 0, 0, 0); | |
953 | ||
954 | PMAP_LOCK(p); | |
955 | ||
956 | c = --p->ref_count; | |
957 | ||
958 | if (c == 0) { | |
959 | /* | |
960 | * If some cpu is not using the physical pmap pointer that it | |
961 | * is supposed to be (see set_dirbase), we might be using the | |
962 | * pmap that is being destroyed! Make sure we are | |
963 | * physically on the right pmap: | |
964 | */ | |
965 | PMAP_UPDATE_TLBS(p, 0x0ULL, 0xFFFFFFFFFFFFF000ULL); | |
966 | } | |
967 | ||
968 | PMAP_UNLOCK(p); | |
969 | ||
970 | if (c != 0) { | |
971 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END, | |
972 | p, 1, 0, 0, 0); | |
973 | return; /* still in use */ | |
974 | } | |
975 | ||
976 | /* | |
977 | * Free the memory maps, then the | |
978 | * pmap structure. | |
979 | */ | |
980 | int inuse_ptepages = 0; | |
981 | ||
982 | inuse_ptepages++; | |
983 | kmem_free(kernel_map, (vm_offset_t)p->pm_pml4, PAGE_SIZE); | |
984 | ||
985 | inuse_ptepages += p->pm_obj_pml4->resident_page_count; | |
986 | vm_object_deallocate(p->pm_obj_pml4); | |
987 | ||
988 | inuse_ptepages += p->pm_obj_pdpt->resident_page_count; | |
989 | vm_object_deallocate(p->pm_obj_pdpt); | |
990 | ||
991 | inuse_ptepages += p->pm_obj->resident_page_count; | |
992 | vm_object_deallocate(p->pm_obj); | |
993 | ||
994 | OSAddAtomic(-inuse_ptepages, &inuse_ptepages_count); | |
995 | ||
996 | zfree(pmap_zone, p); | |
997 | ||
998 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END, | |
999 | 0, 0, 0, 0, 0); | |
1000 | } | |
1001 | ||
1002 | /* | |
1003 | * Add a reference to the specified pmap. | |
1004 | */ | |
1005 | ||
1006 | void | |
1007 | pmap_reference(pmap_t p) | |
1008 | { | |
1009 | if (p != PMAP_NULL) { | |
1010 | PMAP_LOCK(p); | |
1011 | p->ref_count++; | |
1012 | PMAP_UNLOCK(p);; | |
1013 | } | |
1014 | } | |
1015 | ||
b0d623f7 A |
1016 | /* |
1017 | * Remove phys addr if mapped in specified map | |
1018 | * | |
1019 | */ | |
1020 | void | |
1021 | pmap_remove_some_phys( | |
1022 | __unused pmap_t map, | |
1023 | __unused ppnum_t pn) | |
1024 | { | |
1025 | ||
1026 | /* Implement to support working set code */ | |
1027 | ||
1028 | } | |
1029 | ||
b0d623f7 A |
1030 | |
1031 | /* | |
1032 | * Routine: | |
1033 | * pmap_disconnect | |
1034 | * | |
1035 | * Function: | |
1036 | * Disconnect all mappings for this page and return reference and change status | |
1037 | * in generic format. | |
1038 | * | |
1039 | */ | |
1040 | unsigned int pmap_disconnect( | |
1041 | ppnum_t pa) | |
1042 | { | |
1043 | pmap_page_protect(pa, 0); /* disconnect the page */ | |
1044 | return (pmap_get_refmod(pa)); /* return ref/chg status */ | |
1045 | } | |
1046 | ||
1047 | /* | |
1048 | * Set the physical protection on the | |
1049 | * specified range of this map as requested. | |
1050 | * Will not increase permissions. | |
1051 | */ | |
1052 | void | |
1053 | pmap_protect( | |
1054 | pmap_t map, | |
1055 | vm_map_offset_t sva, | |
1056 | vm_map_offset_t eva, | |
1057 | vm_prot_t prot) | |
1058 | { | |
1059 | pt_entry_t *pde; | |
1060 | pt_entry_t *spte, *epte; | |
1061 | vm_map_offset_t lva; | |
1062 | vm_map_offset_t orig_sva; | |
1063 | boolean_t set_NX; | |
1064 | int num_found = 0; | |
1065 | ||
1066 | pmap_intr_assert(); | |
1067 | ||
1068 | if (map == PMAP_NULL) | |
1069 | return; | |
1070 | ||
1071 | if (prot == VM_PROT_NONE) { | |
1072 | pmap_remove(map, sva, eva); | |
1073 | return; | |
1074 | } | |
1075 | PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_START, | |
1076 | map, | |
1077 | (uint32_t) (sva >> 32), (uint32_t) sva, | |
1078 | (uint32_t) (eva >> 32), (uint32_t) eva); | |
1079 | ||
1080 | if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !map->nx_enabled) | |
1081 | set_NX = FALSE; | |
1082 | else | |
1083 | set_NX = TRUE; | |
1084 | ||
1085 | PMAP_LOCK(map); | |
1086 | ||
1087 | orig_sva = sva; | |
1088 | while (sva < eva) { | |
1089 | lva = (sva + pde_mapped_size) & ~(pde_mapped_size - 1); | |
1090 | if (lva > eva) | |
1091 | lva = eva; | |
1092 | pde = pmap_pde(map, sva); | |
1093 | if (pde && (*pde & INTEL_PTE_VALID)) { | |
1094 | if (*pde & INTEL_PTE_PS) { | |
1095 | /* superpage */ | |
1096 | spte = pde; | |
1097 | epte = spte+1; /* excluded */ | |
1098 | } else { | |
1099 | spte = pmap_pte(map, (sva & ~(pde_mapped_size - 1))); | |
1100 | spte = &spte[ptenum(sva)]; | |
1101 | epte = &spte[intel_btop(lva - sva)]; | |
1102 | } | |
1103 | ||
1104 | for (; spte < epte; spte++) { | |
1105 | if (!(*spte & INTEL_PTE_VALID)) | |
1106 | continue; | |
1107 | ||
1108 | if (prot & VM_PROT_WRITE) | |
1109 | pmap_update_pte(spte, *spte, | |
1110 | *spte | INTEL_PTE_WRITE); | |
1111 | else | |
1112 | pmap_update_pte(spte, *spte, | |
1113 | *spte & ~INTEL_PTE_WRITE); | |
1114 | ||
1115 | if (set_NX) | |
1116 | pmap_update_pte(spte, *spte, | |
1117 | *spte | INTEL_PTE_NX); | |
1118 | else | |
1119 | pmap_update_pte(spte, *spte, | |
1120 | *spte & ~INTEL_PTE_NX); | |
1121 | ||
1122 | num_found++; | |
1123 | } | |
1124 | } | |
1125 | sva = lva; | |
1126 | } | |
1127 | if (num_found) | |
1128 | PMAP_UPDATE_TLBS(map, orig_sva, eva); | |
1129 | ||
1130 | PMAP_UNLOCK(map); | |
1131 | ||
1132 | PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_END, | |
1133 | 0, 0, 0, 0, 0); | |
1134 | ||
1135 | } | |
1136 | ||
1137 | /* Map a (possibly) autogenned block */ | |
1138 | void | |
1139 | pmap_map_block( | |
1140 | pmap_t pmap, | |
1141 | addr64_t va, | |
1142 | ppnum_t pa, | |
1143 | uint32_t size, | |
1144 | vm_prot_t prot, | |
1145 | int attr, | |
1146 | __unused unsigned int flags) | |
1147 | { | |
1148 | uint32_t page; | |
1149 | int cur_page_size; | |
1150 | ||
1151 | if (attr & VM_MEM_SUPERPAGE) | |
1152 | cur_page_size = SUPERPAGE_SIZE; | |
1153 | else | |
1154 | cur_page_size = PAGE_SIZE; | |
1155 | ||
1156 | for (page = 0; page < size; page+=cur_page_size/PAGE_SIZE) { | |
1157 | pmap_enter(pmap, va, pa, prot, attr, TRUE); | |
1158 | va += cur_page_size; | |
1159 | pa+=cur_page_size/PAGE_SIZE; | |
1160 | } | |
1161 | } | |
1162 | ||
b0d623f7 A |
1163 | /* |
1164 | * Routine: pmap_change_wiring | |
1165 | * Function: Change the wiring attribute for a map/virtual-address | |
1166 | * pair. | |
1167 | * In/out conditions: | |
1168 | * The mapping must already exist in the pmap. | |
1169 | */ | |
1170 | void | |
1171 | pmap_change_wiring( | |
1172 | pmap_t map, | |
1173 | vm_map_offset_t vaddr, | |
1174 | boolean_t wired) | |
1175 | { | |
1176 | pt_entry_t *pte; | |
1177 | ||
1178 | PMAP_LOCK(map); | |
1179 | ||
1180 | if ((pte = pmap_pte(map, vaddr)) == PT_ENTRY_NULL) | |
1181 | panic("pmap_change_wiring: pte missing"); | |
1182 | ||
1183 | if (wired && !iswired(*pte)) { | |
1184 | /* | |
1185 | * wiring down mapping | |
1186 | */ | |
1187 | OSAddAtomic(+1, &map->stats.wired_count); | |
1188 | pmap_update_pte(pte, *pte, (*pte | INTEL_PTE_WIRED)); | |
1189 | } | |
1190 | else if (!wired && iswired(*pte)) { | |
1191 | /* | |
1192 | * unwiring mapping | |
1193 | */ | |
1194 | assert(map->stats.wired_count >= 1); | |
1195 | OSAddAtomic(-1, &map->stats.wired_count); | |
1196 | pmap_update_pte(pte, *pte, (*pte & ~INTEL_PTE_WIRED)); | |
1197 | } | |
1198 | ||
1199 | PMAP_UNLOCK(map); | |
1200 | } | |
1201 | ||
1202 | void | |
1203 | pmap_expand_pml4( | |
1204 | pmap_t map, | |
1205 | vm_map_offset_t vaddr) | |
1206 | { | |
1207 | vm_page_t m; | |
1208 | pmap_paddr_t pa; | |
1209 | uint64_t i; | |
1210 | ppnum_t pn; | |
1211 | pml4_entry_t *pml4p; | |
1212 | ||
1213 | DBG("pmap_expand_pml4(%p,%p)\n", map, (void *)vaddr); | |
1214 | ||
1215 | /* | |
1216 | * Allocate a VM page for the pml4 page | |
1217 | */ | |
1218 | while ((m = vm_page_grab()) == VM_PAGE_NULL) | |
1219 | VM_PAGE_WAIT(); | |
1220 | ||
1221 | /* | |
1222 | * put the page into the pmap's obj list so it | |
1223 | * can be found later. | |
1224 | */ | |
1225 | pn = m->phys_page; | |
1226 | pa = i386_ptob(pn); | |
1227 | i = pml4idx(map, vaddr); | |
1228 | ||
1229 | /* | |
1230 | * Zero the page. | |
1231 | */ | |
1232 | pmap_zero_page(pn); | |
1233 | ||
1234 | vm_page_lockspin_queues(); | |
1235 | vm_page_wire(m); | |
1236 | vm_page_unlock_queues(); | |
1237 | ||
1238 | OSAddAtomic(1, &inuse_ptepages_count); | |
1239 | ||
1240 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ | |
1241 | vm_object_lock(map->pm_obj_pml4); | |
1242 | ||
1243 | PMAP_LOCK(map); | |
1244 | /* | |
1245 | * See if someone else expanded us first | |
1246 | */ | |
1247 | if (pmap64_pdpt(map, vaddr) != PDPT_ENTRY_NULL) { | |
1248 | PMAP_UNLOCK(map); | |
1249 | vm_object_unlock(map->pm_obj_pml4); | |
1250 | ||
1251 | VM_PAGE_FREE(m); | |
1252 | ||
1253 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1254 | return; | |
1255 | } | |
1256 | ||
1257 | #if 0 /* DEBUG */ | |
1258 | if (0 != vm_page_lookup(map->pm_obj_pml4, (vm_object_offset_t)i)) { | |
1259 | panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n", | |
1260 | map, map->pm_obj_pml4, vaddr, i); | |
1261 | } | |
1262 | #endif | |
1263 | vm_page_insert(m, map->pm_obj_pml4, (vm_object_offset_t)i); | |
1264 | vm_object_unlock(map->pm_obj_pml4); | |
1265 | ||
1266 | /* | |
1267 | * Set the page directory entry for this page table. | |
1268 | */ | |
1269 | pml4p = pmap64_pml4(map, vaddr); /* refetch under lock */ | |
1270 | ||
1271 | pmap_store_pte(pml4p, pa_to_pte(pa) | |
1272 | | INTEL_PTE_VALID | |
1273 | | INTEL_PTE_USER | |
1274 | | INTEL_PTE_WRITE); | |
1275 | ||
1276 | PMAP_UNLOCK(map); | |
1277 | ||
1278 | return; | |
1279 | } | |
1280 | ||
1281 | void | |
1282 | pmap_expand_pdpt( | |
1283 | pmap_t map, | |
1284 | vm_map_offset_t vaddr) | |
1285 | { | |
1286 | vm_page_t m; | |
1287 | pmap_paddr_t pa; | |
1288 | uint64_t i; | |
1289 | ppnum_t pn; | |
1290 | pdpt_entry_t *pdptp; | |
1291 | ||
1292 | DBG("pmap_expand_pdpt(%p,%p)\n", map, (void *)vaddr); | |
1293 | ||
1294 | while ((pdptp = pmap64_pdpt(map, vaddr)) == PDPT_ENTRY_NULL) { | |
1295 | pmap_expand_pml4(map, vaddr); | |
1296 | } | |
1297 | ||
1298 | /* | |
1299 | * Allocate a VM page for the pdpt page | |
1300 | */ | |
1301 | while ((m = vm_page_grab()) == VM_PAGE_NULL) | |
1302 | VM_PAGE_WAIT(); | |
1303 | ||
1304 | /* | |
1305 | * put the page into the pmap's obj list so it | |
1306 | * can be found later. | |
1307 | */ | |
1308 | pn = m->phys_page; | |
1309 | pa = i386_ptob(pn); | |
1310 | i = pdptidx(map, vaddr); | |
1311 | ||
1312 | /* | |
1313 | * Zero the page. | |
1314 | */ | |
1315 | pmap_zero_page(pn); | |
1316 | ||
1317 | vm_page_lockspin_queues(); | |
1318 | vm_page_wire(m); | |
1319 | vm_page_unlock_queues(); | |
1320 | ||
1321 | OSAddAtomic(1, &inuse_ptepages_count); | |
1322 | ||
1323 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ | |
1324 | vm_object_lock(map->pm_obj_pdpt); | |
1325 | ||
1326 | PMAP_LOCK(map); | |
1327 | /* | |
1328 | * See if someone else expanded us first | |
1329 | */ | |
1330 | if (pmap64_pde(map, vaddr) != PD_ENTRY_NULL) { | |
1331 | PMAP_UNLOCK(map); | |
1332 | vm_object_unlock(map->pm_obj_pdpt); | |
1333 | ||
1334 | VM_PAGE_FREE(m); | |
1335 | ||
1336 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1337 | return; | |
1338 | } | |
1339 | ||
1340 | #if 0 /* DEBUG */ | |
1341 | if (0 != vm_page_lookup(map->pm_obj_pdpt, (vm_object_offset_t)i)) { | |
1342 | panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n", | |
1343 | map, map->pm_obj_pdpt, vaddr, i); | |
1344 | } | |
1345 | #endif | |
1346 | vm_page_insert(m, map->pm_obj_pdpt, (vm_object_offset_t)i); | |
1347 | vm_object_unlock(map->pm_obj_pdpt); | |
1348 | ||
1349 | /* | |
1350 | * Set the page directory entry for this page table. | |
1351 | */ | |
1352 | pdptp = pmap64_pdpt(map, vaddr); /* refetch under lock */ | |
1353 | ||
1354 | pmap_store_pte(pdptp, pa_to_pte(pa) | |
1355 | | INTEL_PTE_VALID | |
1356 | | INTEL_PTE_USER | |
1357 | | INTEL_PTE_WRITE); | |
1358 | ||
1359 | PMAP_UNLOCK(map); | |
1360 | ||
1361 | return; | |
1362 | ||
1363 | } | |
1364 | ||
1365 | ||
1366 | ||
1367 | /* | |
1368 | * Routine: pmap_expand | |
1369 | * | |
1370 | * Expands a pmap to be able to map the specified virtual address. | |
1371 | * | |
1372 | * Allocates new virtual memory for the P0 or P1 portion of the | |
1373 | * pmap, then re-maps the physical pages that were in the old | |
1374 | * pmap to be in the new pmap. | |
1375 | * | |
1376 | * Must be called with the pmap system and the pmap unlocked, | |
1377 | * since these must be unlocked to use vm_allocate or vm_deallocate. | |
1378 | * Thus it must be called in a loop that checks whether the map | |
1379 | * has been expanded enough. | |
1380 | * (We won't loop forever, since page tables aren't shrunk.) | |
1381 | */ | |
1382 | void | |
1383 | pmap_expand( | |
1384 | pmap_t map, | |
1385 | vm_map_offset_t vaddr) | |
1386 | { | |
1387 | pt_entry_t *pdp; | |
1388 | register vm_page_t m; | |
1389 | register pmap_paddr_t pa; | |
1390 | uint64_t i; | |
1391 | ppnum_t pn; | |
1392 | ||
1393 | ||
1394 | /* | |
1395 | * For the kernel, the virtual address must be in or above the basement | |
1396 | * which is for kexts and is in the 512GB immediately below the kernel.. | |
1397 | * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT | |
1398 | */ | |
1399 | if (map == kernel_pmap && | |
1400 | !(vaddr >= KERNEL_BASEMENT && vaddr <= VM_MAX_KERNEL_ADDRESS)) | |
1401 | panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr); | |
1402 | ||
1403 | ||
1404 | while ((pdp = pmap64_pde(map, vaddr)) == PD_ENTRY_NULL) { | |
1405 | /* need room for another pde entry */ | |
1406 | pmap_expand_pdpt(map, vaddr); | |
1407 | } | |
1408 | ||
1409 | /* | |
1410 | * Allocate a VM page for the pde entries. | |
1411 | */ | |
1412 | while ((m = vm_page_grab()) == VM_PAGE_NULL) | |
1413 | VM_PAGE_WAIT(); | |
1414 | ||
1415 | /* | |
1416 | * put the page into the pmap's obj list so it | |
1417 | * can be found later. | |
1418 | */ | |
1419 | pn = m->phys_page; | |
1420 | pa = i386_ptob(pn); | |
1421 | i = pdeidx(map, vaddr); | |
1422 | ||
1423 | /* | |
1424 | * Zero the page. | |
1425 | */ | |
1426 | pmap_zero_page(pn); | |
1427 | ||
1428 | vm_page_lockspin_queues(); | |
1429 | vm_page_wire(m); | |
1430 | vm_page_unlock_queues(); | |
1431 | ||
1432 | OSAddAtomic(1, &inuse_ptepages_count); | |
1433 | ||
1434 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ | |
1435 | vm_object_lock(map->pm_obj); | |
1436 | ||
1437 | PMAP_LOCK(map); | |
1438 | ||
1439 | /* | |
1440 | * See if someone else expanded us first | |
1441 | */ | |
1442 | if (pmap_pte(map, vaddr) != PT_ENTRY_NULL) { | |
1443 | PMAP_UNLOCK(map); | |
1444 | vm_object_unlock(map->pm_obj); | |
1445 | ||
1446 | VM_PAGE_FREE(m); | |
1447 | ||
1448 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1449 | return; | |
1450 | } | |
1451 | ||
1452 | #if 0 /* DEBUG */ | |
1453 | if (0 != vm_page_lookup(map->pm_obj, (vm_object_offset_t)i)) { | |
1454 | panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n", | |
1455 | map, map->pm_obj, vaddr, i); | |
1456 | } | |
1457 | #endif | |
1458 | vm_page_insert(m, map->pm_obj, (vm_object_offset_t)i); | |
1459 | vm_object_unlock(map->pm_obj); | |
1460 | ||
1461 | /* | |
1462 | * Set the page directory entry for this page table. | |
1463 | */ | |
1464 | pdp = pmap_pde(map, vaddr); | |
1465 | pmap_store_pte(pdp, pa_to_pte(pa) | |
1466 | | INTEL_PTE_VALID | |
1467 | | INTEL_PTE_USER | |
1468 | | INTEL_PTE_WRITE); | |
1469 | ||
1470 | PMAP_UNLOCK(map); | |
1471 | ||
1472 | return; | |
1473 | } | |
1474 | ||
1475 | /* On K64 machines with more than 32GB of memory, pmap_steal_memory | |
1476 | * will allocate past the 1GB of pre-expanded virtual kernel area. This | |
1477 | * function allocates all the page tables using memory from the same pool | |
1478 | * that pmap_steal_memory uses, rather than calling vm_page_grab (which | |
1479 | * isn't available yet). */ | |
1480 | void | |
1481 | pmap_pre_expand(pmap_t pmap, vm_map_offset_t vaddr) { | |
1482 | ppnum_t pn; | |
1483 | pt_entry_t *pte; | |
1484 | ||
1485 | PMAP_LOCK(pmap); | |
1486 | ||
1487 | if(pmap64_pdpt(pmap, vaddr) == PDPT_ENTRY_NULL) { | |
0b4c1975 | 1488 | if (!pmap_next_page_hi(&pn)) |
b0d623f7 A |
1489 | panic("pmap_pre_expand"); |
1490 | ||
1491 | pmap_zero_page(pn); | |
1492 | ||
1493 | pte = pmap64_pml4(pmap, vaddr); | |
1494 | ||
1495 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) | |
1496 | | INTEL_PTE_VALID | |
1497 | | INTEL_PTE_USER | |
1498 | | INTEL_PTE_WRITE); | |
1499 | } | |
1500 | ||
1501 | if(pmap64_pde(pmap, vaddr) == PD_ENTRY_NULL) { | |
0b4c1975 | 1502 | if (!pmap_next_page_hi(&pn)) |
b0d623f7 A |
1503 | panic("pmap_pre_expand"); |
1504 | ||
1505 | pmap_zero_page(pn); | |
1506 | ||
1507 | pte = pmap64_pdpt(pmap, vaddr); | |
1508 | ||
1509 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) | |
1510 | | INTEL_PTE_VALID | |
1511 | | INTEL_PTE_USER | |
1512 | | INTEL_PTE_WRITE); | |
1513 | } | |
1514 | ||
1515 | if(pmap_pte(pmap, vaddr) == PT_ENTRY_NULL) { | |
0b4c1975 | 1516 | if (!pmap_next_page_hi(&pn)) |
b0d623f7 A |
1517 | panic("pmap_pre_expand"); |
1518 | ||
1519 | pmap_zero_page(pn); | |
1520 | ||
1521 | pte = pmap64_pde(pmap, vaddr); | |
1522 | ||
1523 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) | |
1524 | | INTEL_PTE_VALID | |
1525 | | INTEL_PTE_USER | |
1526 | | INTEL_PTE_WRITE); | |
1527 | } | |
1528 | ||
1529 | PMAP_UNLOCK(pmap); | |
1530 | } | |
1531 | ||
1532 | /* | |
1533 | * pmap_sync_page_data_phys(ppnum_t pa) | |
1534 | * | |
1535 | * Invalidates all of the instruction cache on a physical page and | |
1536 | * pushes any dirty data from the data cache for the same physical page | |
1537 | * Not required in i386. | |
1538 | */ | |
1539 | void | |
1540 | pmap_sync_page_data_phys(__unused ppnum_t pa) | |
1541 | { | |
1542 | return; | |
1543 | } | |
1544 | ||
1545 | /* | |
1546 | * pmap_sync_page_attributes_phys(ppnum_t pa) | |
1547 | * | |
1548 | * Write back and invalidate all cachelines on a physical page. | |
1549 | */ | |
1550 | void | |
1551 | pmap_sync_page_attributes_phys(ppnum_t pa) | |
1552 | { | |
1553 | cache_flush_page_phys(pa); | |
1554 | } | |
1555 | ||
1556 | ||
1557 | ||
1558 | #ifdef CURRENTLY_UNUSED_AND_UNTESTED | |
1559 | ||
1560 | int collect_ref; | |
1561 | int collect_unref; | |
1562 | ||
1563 | /* | |
1564 | * Routine: pmap_collect | |
1565 | * Function: | |
1566 | * Garbage collects the physical map system for | |
1567 | * pages which are no longer used. | |
1568 | * Success need not be guaranteed -- that is, there | |
1569 | * may well be pages which are not referenced, but | |
1570 | * others may be collected. | |
1571 | * Usage: | |
1572 | * Called by the pageout daemon when pages are scarce. | |
1573 | */ | |
1574 | void | |
1575 | pmap_collect( | |
1576 | pmap_t p) | |
1577 | { | |
1578 | register pt_entry_t *pdp, *ptp; | |
1579 | pt_entry_t *eptp; | |
1580 | int wired; | |
1581 | ||
1582 | if (p == PMAP_NULL) | |
1583 | return; | |
1584 | ||
1585 | if (p == kernel_pmap) | |
1586 | return; | |
1587 | ||
1588 | /* | |
1589 | * Garbage collect map. | |
1590 | */ | |
1591 | PMAP_LOCK(p); | |
1592 | ||
1593 | for (pdp = (pt_entry_t *)p->dirbase; | |
1594 | pdp < (pt_entry_t *)&p->dirbase[(UMAXPTDI+1)]; | |
1595 | pdp++) | |
1596 | { | |
1597 | if (*pdp & INTEL_PTE_VALID) { | |
1598 | if(*pdp & INTEL_PTE_REF) { | |
1599 | pmap_store_pte(pdp, *pdp & ~INTEL_PTE_REF); | |
1600 | collect_ref++; | |
1601 | } else { | |
1602 | collect_unref++; | |
1603 | ptp = pmap_pte(p, pdetova(pdp - (pt_entry_t *)p->dirbase)); | |
1604 | eptp = ptp + NPTEPG; | |
1605 | ||
1606 | /* | |
1607 | * If the pte page has any wired mappings, we cannot | |
1608 | * free it. | |
1609 | */ | |
1610 | wired = 0; | |
1611 | { | |
1612 | register pt_entry_t *ptep; | |
1613 | for (ptep = ptp; ptep < eptp; ptep++) { | |
1614 | if (iswired(*ptep)) { | |
1615 | wired = 1; | |
1616 | break; | |
1617 | } | |
1618 | } | |
1619 | } | |
1620 | if (!wired) { | |
1621 | /* | |
1622 | * Remove the virtual addresses mapped by this pte page. | |
1623 | */ | |
1624 | pmap_remove_range(p, | |
1625 | pdetova(pdp - (pt_entry_t *)p->dirbase), | |
1626 | ptp, | |
1627 | eptp); | |
1628 | ||
1629 | /* | |
1630 | * Invalidate the page directory pointer. | |
1631 | */ | |
1632 | pmap_store_pte(pdp, 0x0); | |
1633 | ||
1634 | PMAP_UNLOCK(p); | |
1635 | ||
1636 | /* | |
1637 | * And free the pte page itself. | |
1638 | */ | |
1639 | { | |
1640 | register vm_page_t m; | |
1641 | ||
1642 | vm_object_lock(p->pm_obj); | |
1643 | ||
1644 | m = vm_page_lookup(p->pm_obj,(vm_object_offset_t)(pdp - (pt_entry_t *)&p->dirbase[0])); | |
1645 | if (m == VM_PAGE_NULL) | |
1646 | panic("pmap_collect: pte page not in object"); | |
1647 | ||
1648 | VM_PAGE_FREE(m); | |
1649 | ||
1650 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1651 | ||
1652 | vm_object_unlock(p->pm_obj); | |
1653 | } | |
1654 | ||
1655 | PMAP_LOCK(p); | |
1656 | } | |
1657 | } | |
1658 | } | |
1659 | } | |
1660 | ||
1661 | PMAP_UPDATE_TLBS(p, 0x0, 0xFFFFFFFFFFFFF000ULL); | |
1662 | PMAP_UNLOCK(p); | |
1663 | return; | |
1664 | ||
1665 | } | |
1666 | #endif | |
1667 | ||
1668 | ||
1669 | void | |
1670 | pmap_copy_page(ppnum_t src, ppnum_t dst) | |
1671 | { | |
1672 | bcopy_phys((addr64_t)i386_ptob(src), | |
1673 | (addr64_t)i386_ptob(dst), | |
1674 | PAGE_SIZE); | |
1675 | } | |
1676 | ||
1677 | ||
1678 | /* | |
1679 | * Routine: pmap_pageable | |
1680 | * Function: | |
1681 | * Make the specified pages (by pmap, offset) | |
1682 | * pageable (or not) as requested. | |
1683 | * | |
1684 | * A page which is not pageable may not take | |
1685 | * a fault; therefore, its page table entry | |
1686 | * must remain valid for the duration. | |
1687 | * | |
1688 | * This routine is merely advisory; pmap_enter | |
1689 | * will specify that these pages are to be wired | |
1690 | * down (or not) as appropriate. | |
1691 | */ | |
1692 | void | |
1693 | pmap_pageable( | |
1694 | __unused pmap_t pmap, | |
1695 | __unused vm_map_offset_t start_addr, | |
1696 | __unused vm_map_offset_t end_addr, | |
1697 | __unused boolean_t pageable) | |
1698 | { | |
1699 | #ifdef lint | |
1700 | pmap++; start_addr++; end_addr++; pageable++; | |
1701 | #endif /* lint */ | |
1702 | } | |
1703 | ||
1704 | /* | |
1705 | * Clear specified attribute bits. | |
1706 | */ | |
1707 | void | |
1708 | phys_attribute_clear( | |
1709 | ppnum_t pn, | |
1710 | int bits) | |
1711 | { | |
1712 | pv_rooted_entry_t pv_h; | |
1713 | pv_hashed_entry_t pv_e; | |
1714 | pt_entry_t *pte; | |
1715 | int pai; | |
1716 | pmap_t pmap; | |
1717 | ||
1718 | pmap_intr_assert(); | |
1719 | assert(pn != vm_page_fictitious_addr); | |
1720 | if (pn == vm_page_guard_addr) | |
1721 | return; | |
1722 | ||
1723 | pai = ppn_to_pai(pn); | |
1724 | ||
1725 | if (!IS_MANAGED_PAGE(pai)) { | |
1726 | /* | |
1727 | * Not a managed page. | |
1728 | */ | |
1729 | return; | |
1730 | } | |
1731 | ||
1732 | ||
1733 | PMAP_TRACE(PMAP_CODE(PMAP__ATTRIBUTE_CLEAR) | DBG_FUNC_START, | |
1734 | pn, bits, 0, 0, 0); | |
1735 | ||
1736 | pv_h = pai_to_pvh(pai); | |
1737 | ||
1738 | LOCK_PVH(pai); | |
1739 | ||
1740 | /* | |
1741 | * Walk down PV list, clearing all modify or reference bits. | |
1742 | * We do not have to lock the pv_list because we have | |
1743 | * the entire pmap system locked. | |
1744 | */ | |
1745 | if (pv_h->pmap != PMAP_NULL) { | |
1746 | /* | |
1747 | * There are some mappings. | |
1748 | */ | |
1749 | ||
1750 | pv_e = (pv_hashed_entry_t)pv_h; | |
1751 | ||
1752 | do { | |
1753 | vm_map_offset_t va; | |
1754 | ||
1755 | pmap = pv_e->pmap; | |
1756 | va = pv_e->va; | |
1757 | ||
1758 | /* | |
1759 | * Clear modify and/or reference bits. | |
1760 | */ | |
1761 | pte = pmap_pte(pmap, va); | |
1762 | pmap_update_pte(pte, *pte, (*pte & ~bits)); | |
1763 | /* Ensure all processors using this translation | |
1764 | * invalidate this TLB entry. The invalidation *must* | |
1765 | * follow the PTE update, to ensure that the TLB | |
1766 | * shadow of the 'D' bit (in particular) is | |
1767 | * synchronized with the updated PTE. | |
1768 | */ | |
1769 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE); | |
1770 | ||
1771 | pv_e = (pv_hashed_entry_t)queue_next(&pv_e->qlink); | |
1772 | ||
1773 | } while (pv_e != (pv_hashed_entry_t)pv_h); | |
1774 | } | |
1775 | pmap_phys_attributes[pai] &= ~bits; | |
1776 | ||
1777 | UNLOCK_PVH(pai); | |
1778 | ||
1779 | PMAP_TRACE(PMAP_CODE(PMAP__ATTRIBUTE_CLEAR) | DBG_FUNC_END, | |
1780 | 0, 0, 0, 0, 0); | |
1781 | } | |
1782 | ||
1783 | /* | |
1784 | * Check specified attribute bits. | |
1785 | */ | |
1786 | int | |
1787 | phys_attribute_test( | |
1788 | ppnum_t pn, | |
1789 | int bits) | |
1790 | { | |
1791 | pv_rooted_entry_t pv_h; | |
1792 | pv_hashed_entry_t pv_e; | |
1793 | pt_entry_t *pte; | |
1794 | int pai; | |
1795 | pmap_t pmap; | |
1796 | int attributes = 0; | |
1797 | ||
1798 | pmap_intr_assert(); | |
1799 | assert(pn != vm_page_fictitious_addr); | |
1800 | if (pn == vm_page_guard_addr) | |
1801 | return 0; | |
1802 | ||
1803 | pai = ppn_to_pai(pn); | |
1804 | ||
1805 | if (!IS_MANAGED_PAGE(pai)) { | |
1806 | /* | |
1807 | * Not a managed page. | |
1808 | */ | |
1809 | return 0; | |
1810 | } | |
1811 | ||
1812 | /* | |
1813 | * super fast check... if bits already collected | |
1814 | * no need to take any locks... | |
1815 | * if not set, we need to recheck after taking | |
1816 | * the lock in case they got pulled in while | |
1817 | * we were waiting for the lock | |
1818 | */ | |
1819 | if ((pmap_phys_attributes[pai] & bits) == bits) | |
1820 | return bits; | |
1821 | ||
1822 | pv_h = pai_to_pvh(pai); | |
1823 | ||
1824 | LOCK_PVH(pai); | |
1825 | ||
1826 | attributes = pmap_phys_attributes[pai] & bits; | |
1827 | ||
1828 | ||
1829 | /* | |
1830 | * Walk down PV list, checking the mappings until we | |
1831 | * reach the end or we've found the attributes we've asked for | |
1832 | * We do not have to lock the pv_list because we have | |
1833 | * the entire pmap system locked. | |
1834 | */ | |
1835 | if (attributes != bits && | |
1836 | pv_h->pmap != PMAP_NULL) { | |
1837 | /* | |
1838 | * There are some mappings. | |
1839 | */ | |
1840 | pv_e = (pv_hashed_entry_t)pv_h; | |
1841 | do { | |
1842 | vm_map_offset_t va; | |
1843 | ||
1844 | pmap = pv_e->pmap; | |
1845 | va = pv_e->va; | |
1846 | /* | |
1847 | * first make sure any processor actively | |
1848 | * using this pmap, flushes its TLB state | |
1849 | */ | |
1850 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE); | |
1851 | ||
1852 | /* | |
1853 | * pick up modify and/or reference bits from mapping | |
1854 | */ | |
1855 | ||
1856 | pte = pmap_pte(pmap, va); | |
1857 | attributes |= (int)(*pte & bits); | |
1858 | ||
1859 | pv_e = (pv_hashed_entry_t)queue_next(&pv_e->qlink); | |
1860 | ||
1861 | } while ((attributes != bits) && | |
1862 | (pv_e != (pv_hashed_entry_t)pv_h)); | |
1863 | } | |
1864 | ||
1865 | UNLOCK_PVH(pai); | |
1866 | return (attributes); | |
1867 | } | |
1868 | ||
1869 | /* | |
1870 | * Set specified attribute bits. | |
1871 | */ | |
1872 | void | |
1873 | phys_attribute_set( | |
1874 | ppnum_t pn, | |
1875 | int bits) | |
1876 | { | |
1877 | int pai; | |
1878 | ||
1879 | pmap_intr_assert(); | |
1880 | assert(pn != vm_page_fictitious_addr); | |
1881 | if (pn == vm_page_guard_addr) | |
1882 | return; | |
1883 | ||
1884 | pai = ppn_to_pai(pn); | |
1885 | ||
1886 | if (!IS_MANAGED_PAGE(pai)) { | |
1887 | /* Not a managed page. */ | |
1888 | return; | |
1889 | } | |
1890 | ||
1891 | LOCK_PVH(pai); | |
1892 | pmap_phys_attributes[pai] |= bits; | |
1893 | UNLOCK_PVH(pai); | |
1894 | } | |
1895 | ||
1896 | /* | |
1897 | * Set the modify bit on the specified physical page. | |
1898 | */ | |
1899 | ||
1900 | void | |
1901 | pmap_set_modify(ppnum_t pn) | |
1902 | { | |
1903 | phys_attribute_set(pn, PHYS_MODIFIED); | |
1904 | } | |
1905 | ||
1906 | /* | |
1907 | * Clear the modify bits on the specified physical page. | |
1908 | */ | |
1909 | ||
1910 | void | |
1911 | pmap_clear_modify(ppnum_t pn) | |
1912 | { | |
1913 | phys_attribute_clear(pn, PHYS_MODIFIED); | |
1914 | } | |
1915 | ||
1916 | /* | |
1917 | * pmap_is_modified: | |
1918 | * | |
1919 | * Return whether or not the specified physical page is modified | |
1920 | * by any physical maps. | |
1921 | */ | |
1922 | ||
1923 | boolean_t | |
1924 | pmap_is_modified(ppnum_t pn) | |
1925 | { | |
1926 | if (phys_attribute_test(pn, PHYS_MODIFIED)) | |
1927 | return TRUE; | |
1928 | return FALSE; | |
1929 | } | |
1930 | ||
1931 | /* | |
1932 | * pmap_clear_reference: | |
1933 | * | |
1934 | * Clear the reference bit on the specified physical page. | |
1935 | */ | |
1936 | ||
1937 | void | |
1938 | pmap_clear_reference(ppnum_t pn) | |
1939 | { | |
1940 | phys_attribute_clear(pn, PHYS_REFERENCED); | |
1941 | } | |
1942 | ||
1943 | void | |
1944 | pmap_set_reference(ppnum_t pn) | |
1945 | { | |
1946 | phys_attribute_set(pn, PHYS_REFERENCED); | |
1947 | } | |
1948 | ||
1949 | /* | |
1950 | * pmap_is_referenced: | |
1951 | * | |
1952 | * Return whether or not the specified physical page is referenced | |
1953 | * by any physical maps. | |
1954 | */ | |
1955 | ||
1956 | boolean_t | |
1957 | pmap_is_referenced(ppnum_t pn) | |
1958 | { | |
1959 | if (phys_attribute_test(pn, PHYS_REFERENCED)) | |
1960 | return TRUE; | |
1961 | return FALSE; | |
1962 | } | |
1963 | ||
1964 | /* | |
1965 | * pmap_get_refmod(phys) | |
1966 | * returns the referenced and modified bits of the specified | |
1967 | * physical page. | |
1968 | */ | |
1969 | unsigned int | |
1970 | pmap_get_refmod(ppnum_t pn) | |
1971 | { | |
1972 | int refmod; | |
1973 | unsigned int retval = 0; | |
1974 | ||
1975 | refmod = phys_attribute_test(pn, PHYS_MODIFIED | PHYS_REFERENCED); | |
1976 | ||
1977 | if (refmod & PHYS_MODIFIED) | |
1978 | retval |= VM_MEM_MODIFIED; | |
1979 | if (refmod & PHYS_REFERENCED) | |
1980 | retval |= VM_MEM_REFERENCED; | |
1981 | ||
1982 | return (retval); | |
1983 | } | |
1984 | ||
1985 | /* | |
1986 | * pmap_clear_refmod(phys, mask) | |
1987 | * clears the referenced and modified bits as specified by the mask | |
1988 | * of the specified physical page. | |
1989 | */ | |
1990 | void | |
1991 | pmap_clear_refmod(ppnum_t pn, unsigned int mask) | |
1992 | { | |
1993 | unsigned int x86Mask; | |
1994 | ||
1995 | x86Mask = ( ((mask & VM_MEM_MODIFIED)? PHYS_MODIFIED : 0) | |
1996 | | ((mask & VM_MEM_REFERENCED)? PHYS_REFERENCED : 0)); | |
1997 | phys_attribute_clear(pn, x86Mask); | |
1998 | } | |
1999 | ||
2000 | void | |
2001 | invalidate_icache(__unused vm_offset_t addr, | |
2002 | __unused unsigned cnt, | |
2003 | __unused int phys) | |
2004 | { | |
2005 | return; | |
2006 | } | |
2007 | ||
2008 | void | |
2009 | flush_dcache(__unused vm_offset_t addr, | |
2010 | __unused unsigned count, | |
2011 | __unused int phys) | |
2012 | { | |
2013 | return; | |
2014 | } | |
2015 | ||
2016 | #if CONFIG_DTRACE | |
2017 | /* | |
2018 | * Constrain DTrace copyin/copyout actions | |
2019 | */ | |
2020 | extern kern_return_t dtrace_copyio_preflight(addr64_t); | |
2021 | extern kern_return_t dtrace_copyio_postflight(addr64_t); | |
2022 | ||
2023 | kern_return_t dtrace_copyio_preflight(__unused addr64_t va) | |
2024 | { | |
2025 | thread_t thread = current_thread(); | |
2026 | ||
2027 | if (current_map() == kernel_map) | |
2028 | return KERN_FAILURE; | |
2029 | else if (get_cr3() != thread->map->pmap->pm_cr3) | |
2030 | return KERN_FAILURE; | |
2031 | else if (thread->machine.specFlags & CopyIOActive) | |
2032 | return KERN_FAILURE; | |
2033 | else | |
2034 | return KERN_SUCCESS; | |
2035 | } | |
2036 | ||
2037 | kern_return_t dtrace_copyio_postflight(__unused addr64_t va) | |
2038 | { | |
2039 | return KERN_SUCCESS; | |
2040 | } | |
2041 | #endif /* CONFIG_DTRACE */ | |
2042 | ||
2043 | #include <mach_vm_debug.h> | |
2044 | #if MACH_VM_DEBUG | |
2045 | #include <vm/vm_debug.h> | |
2046 | ||
2047 | int | |
2048 | pmap_list_resident_pages( | |
2049 | __unused pmap_t pmap, | |
2050 | __unused vm_offset_t *listp, | |
2051 | __unused int space) | |
2052 | { | |
2053 | return 0; | |
2054 | } | |
2055 | #endif /* MACH_VM_DEBUG */ | |
2056 | ||
2057 | ||
2058 | ||
2059 | /* temporary workaround */ | |
2060 | boolean_t | |
2061 | coredumpok(__unused vm_map_t map, __unused vm_offset_t va) | |
2062 | { | |
2063 | #if 0 | |
2064 | pt_entry_t *ptep; | |
2065 | ||
2066 | ptep = pmap_pte(map->pmap, va); | |
2067 | if (0 == ptep) | |
2068 | return FALSE; | |
2069 | return ((*ptep & (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)) != (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)); | |
2070 | #else | |
2071 | return TRUE; | |
2072 | #endif | |
2073 | } | |
2074 | ||
2075 | ||
2076 | boolean_t | |
2077 | phys_page_exists(ppnum_t pn) | |
2078 | { | |
2079 | assert(pn != vm_page_fictitious_addr); | |
2080 | ||
2081 | if (!pmap_initialized) | |
2082 | return TRUE; | |
2083 | ||
2084 | if (pn == vm_page_guard_addr) | |
2085 | return FALSE; | |
2086 | ||
2087 | if (!IS_MANAGED_PAGE(ppn_to_pai(pn))) | |
2088 | return FALSE; | |
2089 | ||
2090 | return TRUE; | |
2091 | } | |
2092 | ||
b0d623f7 A |
2093 | void |
2094 | pmap_switch(pmap_t tpmap) | |
2095 | { | |
2096 | spl_t s; | |
2097 | ||
2098 | s = splhigh(); /* Make sure interruptions are disabled */ | |
2099 | set_dirbase(tpmap, current_thread()); | |
2100 | splx(s); | |
2101 | } | |
2102 | ||
2103 | ||
2104 | /* | |
2105 | * disable no-execute capability on | |
2106 | * the specified pmap | |
2107 | */ | |
2108 | void | |
2109 | pmap_disable_NX(pmap_t pmap) | |
2110 | { | |
2111 | pmap->nx_enabled = 0; | |
2112 | } | |
2113 | ||
2114 | void | |
2115 | pt_fake_zone_info( | |
2116 | int *count, | |
2117 | vm_size_t *cur_size, | |
2118 | vm_size_t *max_size, | |
2119 | vm_size_t *elem_size, | |
2120 | vm_size_t *alloc_size, | |
2121 | int *collectable, | |
2122 | int *exhaustable) | |
2123 | { | |
2124 | *count = inuse_ptepages_count; | |
2125 | *cur_size = PAGE_SIZE * inuse_ptepages_count; | |
2126 | *max_size = PAGE_SIZE * (inuse_ptepages_count + | |
2127 | vm_page_inactive_count + | |
2128 | vm_page_active_count + | |
2129 | vm_page_free_count); | |
2130 | *elem_size = PAGE_SIZE; | |
2131 | *alloc_size = PAGE_SIZE; | |
2132 | ||
2133 | *collectable = 1; | |
2134 | *exhaustable = 0; | |
2135 | } | |
2136 | ||
060df5ea A |
2137 | extern long NMIPI_acks; |
2138 | ||
b0d623f7 A |
2139 | static inline void |
2140 | pmap_cpuset_NMIPI(cpu_set cpu_mask) { | |
2141 | unsigned int cpu, cpu_bit; | |
2142 | uint64_t deadline; | |
2143 | ||
2144 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { | |
2145 | if (cpu_mask & cpu_bit) | |
2146 | cpu_NMI_interrupt(cpu); | |
2147 | } | |
2148 | deadline = mach_absolute_time() + (LockTimeOut); | |
2149 | while (mach_absolute_time() < deadline) | |
2150 | cpu_pause(); | |
2151 | } | |
2152 | ||
2153 | /* | |
2154 | * Called with pmap locked, we: | |
2155 | * - scan through per-cpu data to see which other cpus need to flush | |
2156 | * - send an IPI to each non-idle cpu to be flushed | |
2157 | * - wait for all to signal back that they are inactive or we see that | |
2158 | * they are at a safe point (idle). | |
2159 | * - flush the local tlb if active for this pmap | |
2160 | * - return ... the caller will unlock the pmap | |
2161 | */ | |
2162 | void | |
2163 | pmap_flush_tlbs(pmap_t pmap) | |
2164 | { | |
2165 | unsigned int cpu; | |
2166 | unsigned int cpu_bit; | |
2167 | cpu_set cpus_to_signal; | |
2168 | unsigned int my_cpu = cpu_number(); | |
2169 | pmap_paddr_t pmap_cr3 = pmap->pm_cr3; | |
2170 | boolean_t flush_self = FALSE; | |
2171 | uint64_t deadline; | |
2172 | ||
2173 | assert((processor_avail_count < 2) || | |
2174 | (ml_get_interrupts_enabled() && get_preemption_level() != 0)); | |
2175 | ||
2176 | /* | |
2177 | * Scan other cpus for matching active or task CR3. | |
2178 | * For idle cpus (with no active map) we mark them invalid but | |
2179 | * don't signal -- they'll check as they go busy. | |
2180 | */ | |
2181 | cpus_to_signal = 0; | |
2182 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { | |
2183 | if (!cpu_datap(cpu)->cpu_running) | |
2184 | continue; | |
2185 | uint64_t cpu_active_cr3 = CPU_GET_ACTIVE_CR3(cpu); | |
2186 | uint64_t cpu_task_cr3 = CPU_GET_TASK_CR3(cpu); | |
2187 | ||
2188 | if ((pmap_cr3 == cpu_task_cr3) || | |
2189 | (pmap_cr3 == cpu_active_cr3) || | |
2190 | (pmap->pm_shared) || | |
2191 | (pmap == kernel_pmap)) { | |
2192 | if (cpu == my_cpu) { | |
2193 | flush_self = TRUE; | |
2194 | continue; | |
2195 | } | |
2196 | cpu_datap(cpu)->cpu_tlb_invalid = TRUE; | |
2197 | __asm__ volatile("mfence"); | |
2198 | ||
2199 | /* | |
2200 | * We don't need to signal processors which will flush | |
2201 | * lazily at the idle state or kernel boundary. | |
2202 | * For example, if we're invalidating the kernel pmap, | |
2203 | * processors currently in userspace don't need to flush | |
2204 | * their TLBs until the next time they enter the kernel. | |
2205 | * Alterations to the address space of a task active | |
2206 | * on a remote processor result in a signal, to | |
2207 | * account for copy operations. (There may be room | |
2208 | * for optimization in such cases). | |
2209 | * The order of the loads below with respect | |
2210 | * to the store to the "cpu_tlb_invalid" field above | |
2211 | * is important--hence the barrier. | |
2212 | */ | |
2213 | if (CPU_CR3_IS_ACTIVE(cpu) && | |
2214 | (pmap_cr3 == CPU_GET_ACTIVE_CR3(cpu) || | |
2215 | pmap->pm_shared || | |
2216 | (pmap_cr3 == CPU_GET_TASK_CR3(cpu)))) { | |
2217 | cpus_to_signal |= cpu_bit; | |
2218 | i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC); | |
2219 | } | |
2220 | } | |
2221 | } | |
2222 | ||
2223 | PMAP_TRACE(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_START, | |
2224 | pmap, cpus_to_signal, flush_self, 0, 0); | |
2225 | ||
2226 | /* | |
2227 | * Flush local tlb if required. | |
2228 | * Do this now to overlap with other processors responding. | |
2229 | */ | |
2230 | if (flush_self) | |
2231 | flush_tlb(); | |
2232 | ||
2233 | if (cpus_to_signal) { | |
2234 | cpu_set cpus_to_respond = cpus_to_signal; | |
2235 | ||
2236 | deadline = mach_absolute_time() + LockTimeOut; | |
2237 | /* | |
2238 | * Wait for those other cpus to acknowledge | |
2239 | */ | |
2240 | while (cpus_to_respond != 0) { | |
060df5ea | 2241 | long orig_acks = 0; |
b0d623f7 A |
2242 | |
2243 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { | |
2244 | if ((cpus_to_respond & cpu_bit) != 0) { | |
2245 | if (!cpu_datap(cpu)->cpu_running || | |
2246 | cpu_datap(cpu)->cpu_tlb_invalid == FALSE || | |
2247 | !CPU_CR3_IS_ACTIVE(cpu)) { | |
2248 | cpus_to_respond &= ~cpu_bit; | |
2249 | } | |
2250 | cpu_pause(); | |
2251 | } | |
2252 | if (cpus_to_respond == 0) | |
2253 | break; | |
2254 | } | |
060df5ea A |
2255 | if (mach_absolute_time() > deadline) { |
2256 | if (machine_timeout_suspended()) | |
2257 | continue; | |
2258 | pmap_tlb_flush_timeout = TRUE; | |
2259 | orig_acks = NMIPI_acks; | |
2260 | pmap_cpuset_NMIPI(cpus_to_respond); | |
2261 | ||
2262 | panic("TLB invalidation IPI timeout: " | |
2263 | "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx", | |
2264 | cpus_to_respond, orig_acks, NMIPI_acks); | |
2265 | } | |
b0d623f7 A |
2266 | } |
2267 | } | |
2268 | ||
2269 | PMAP_TRACE(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_END, | |
2270 | pmap, cpus_to_signal, flush_self, 0, 0); | |
2271 | } | |
2272 | ||
2273 | void | |
2274 | process_pmap_updates(void) | |
2275 | { | |
2276 | assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0); | |
2277 | ||
2278 | flush_tlb(); | |
2279 | ||
2280 | current_cpu_datap()->cpu_tlb_invalid = FALSE; | |
2281 | __asm__ volatile("mfence"); | |
2282 | } | |
2283 | ||
2284 | void | |
2285 | pmap_update_interrupt(void) | |
2286 | { | |
2287 | PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_START, | |
2288 | 0, 0, 0, 0, 0); | |
2289 | ||
2290 | process_pmap_updates(); | |
2291 | ||
2292 | PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_END, | |
2293 | 0, 0, 0, 0, 0); | |
2294 | } | |
2295 | ||
2296 | ||
2297 | unsigned int | |
2298 | pmap_cache_attributes(ppnum_t pn) | |
2299 | { | |
2300 | return IS_MANAGED_PAGE(ppn_to_pai(pn)) ? VM_WIMG_COPYBACK | |
2301 | : VM_WIMG_IO; | |
2302 | } | |
2303 | ||
2304 |